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Abstract

Today the internet is growing fast as users generate an increasing amount of
data. Therefore, finding relevant information is getting more and more time-
consuming. This happens as the internet consists of a larger amount of data
that is distributed over various information sources. Search engines filter
data, and reduce the time required to find relevant information. We focus
on scientific literature search where search engines help to find scientific
articles. An advantage of scientific articles is that they share a common
structure to increase their readability. This structure is known is IMRaD
(Introduction, Method, Results and Discussion). We tackle the question
whether it is possible to improve the search result quality while searching
for scientific works by leveraging IMRaD structure information. We use
several state-of-the-art ranking algorithms, and compare them against each
other in our experiments. Our results show that the importance of IMRaD
chapter features depends on the complexity of the query. Finally, we focus
on structured text retrieval and the influence of single chapters on the
search result. We set out to tackle the problem to improve the quality of
the results produced by state-of-the-art ranking algorithms for scientific
literature research.

Keywords: Information Retrieval; Structured Text Retrieval; IMRaD; Term
Frequency; TF-IDF; Ranked Boolean Retrieval; Okapi BM25; Divergence
from Randomness
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1 Introduction

Today a world without internet is unimaginable to many people. It affects
almost all areas of our daily life. In a minute, for example, 3.7 million search
queries are made on Google, 18 million messages are sent on Whatsapp,
and 4.3 million videos are viewed on YouTube (see Figure 1.1). Furthermore,
at the same time many websites are created, blog entries are written, videos
and pictures are uploaded and shared. Hence, users generate a lot of data.
Due to this vast amount of generated data, almost everything can be found
on the internet.

In order to find relevant information, the challenge becomes to filter the data,
because a typical user is usually interested in a specific piece of information.
Applications which use information retrieval to find relevant information
for the user are known as search engines. To be more specific, a search
engine helps to reduce the time required to find a piece of information, and
minimize the number of information sources that need to be searched. That
sounds very simple at first, but each user has different subjective expecta-
tions, and therefore search engines have to fulfill different requirements.
For example, a user uses a web search engine to search for ”restaurant”.
Normally, the top recommendations would be restaurants near the user, or
the best restaurants in town. But on the other hand the user could not be
interested in eating, but wants to know the origin of the word.

During a single request search engines leverage different information chan-
nels. First, information provided by the user. For many known search
engines, these are keywords used as a query. Another possibility is to search
with files like pictures, articles, or scientific papers. When a search engine
uses only this type of information it is called an explicit search. The explicit
search process itself works in a way that stored data is examined first. After-
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1 Introduction

Figure 1.1: User activity of the Internet in 2018. The Internet has become a daily com-
panion, and is an indispensable part of life. This figure gives an overview
of what happens within the most popular services in a single minute.
Retrieved July 19, 2019 from https://www.allaccess.com/merge/archive/

28030/2018-update-what-happens-in-an-internet-minute

wards the results are ranked according to their relevance. Finally, the user
gets an sorted list with the best results on top of the list.

However, there is also other implicit information available, which was not
explicitly provided by the user. With this additional information, the results
can be better adapted to the needs of the user. For example Agichtein et al.
[ABD06] use machine learning approaches to take user actions during the
search process into account. Leveraging this type of information in addition
to information provided by the user is denoted implicit search.
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1 Introduction

1.1 Motivation

Search engines are used in many different areas. One of them is in the field
of science, where they simplify literature search. Before there were search
engines on the Internet, literature search was only possible in libraries. The
search was more complicated, since certain literature was only available in
certain libraries. This resulted in a time expenditure, since literature had to
be sent or picked up. In addition, all publications needed to be examined
by the user itself. Overall the search of relevant literature was tedious for
the user and a time consuming process.

Modern search engines made searching in the field of science more comfort-
able. With a single query all publications are searched for the query words.
Normally, this takes only a few seconds. The ranking of the results also
gives a first overview which literature is relevant for the user. To provide
these publications to the user the search results typically contain a link to
the publications.

The main goal of our thesis is to apply structural document information
of scientific papers into the most common ranking algorithms of search
engines. In general, a ranking algorithm ranks based on keywords in the
text areas of scientific papers. Therefore, when two papers are related to
each other they have similar keywords. We deduce that a more targeted
search is possible by providing the information of the section where the
keywords are located. For example, if the introduction is compared there is
only a subset of keywords where the similarity depends on.

Sollaci and Pereira [SP04] describe in their work how the structure of a
scientific paper changed over time. They concluded that the subdivision
into introduction, method, result, and discussion became a common format
in the course of the twentieth century. This subdivision is better known as
the IMRaD structure, which we used as a base. This means we created a
mapping from the chapter titles to this structure. Additionally, we adapted
the ranking algorithms in a way that they take this structural information
into account.

3



1 Introduction

(a) Explicit Search (b) Implicit Search

Figure 1.2: Explicit and Implicit Search using Document Structure Information. Using
explicit search (a) the user have to define where query words should occur.
Then the specified areas of each scientific work in the database are searched
through the word. The difference of implicit search (b) is that the user does
not recognize the usage of structural information within the search engine. If
a scientific work is used to search for other scientific works the words in the
document gets structured by the search engine.

1.2 Research Questions

In general, we tackle the question whether it is possible to improve the
search result quality while searching for scientific works by using IMRaD
structure information. This means we evaluate if our adapted algorithms
can achieve better results with the usage of IMRaD structure information
than the standard version.

Hence, the following research questions arise:

1. Does the search result improve for explicit search using queries?

4



1 Introduction

Figure 1.3: Difference between Input Areas and Search Areas. When using a scientific
work to search implicit for other scientific works there are two different areas.
The first is the input area which is part of the used scientific work. The second
one is the search area where query words of the input area should occur. The
used chapters of the input area do not have to be the same as the chapters of
the search area.

For our first research question we focus on explicit search. Specifically,
queries that contain the query keywords as well as the chapters in which
they appear are used for the search. Our hypothesis is that used keywords
vary in different search areas. Therefore, a more targeted search is possible
if a user can specify where query words should occur (see Figure 1.2 a).

2. Does the search result improve for implicit search using complete
scientific papers?

When a paper is used as a query, the query words and the structure infor-
mation are available. Therefore, the query words can be mapped to their
occurred chapter. (see Figure 1.2 b). Using the same assumption than in the
previous question, the similarity of the scientific papers should be higher.

3. Does the search result improve if only a single chapter of the scientific

5



1 Introduction

paper is used for searching?

The hypothesis is that each chapter has a different influence on the search
result. Therefore, there are chapters with a higher impact than others, which
could be positive for the resulting list, but also be negative. The idea is to
improve the result by using only chapters with a positive effect.

Furthermore, keywords of a chapter can be used in other chapters (see
Figure 1.3). For example, the Methods section of one paper would be
referenced in the Related Work of another paper.

6



2 Related Work

2.1 Information Retrieval Models

Creating an information retrieval system is a complex process that has to be
planned accordingly. To reach this goal models are used as a base, where
the whole system is sketched. The model generation consists of two tasks.
First, design a framework which represents the documents and the user
queries. Second, create a ranking function, which generates a numeric rank
for each document based on a query. Afterwards these ranks are used by
the system to sort the documents.

One of the most common retrieval approaches is retrieval based on index
terms. In this context an index term is a keyword, which appears in the
document collection of the framework. This approach can be implemented
efficiently as query words can be used as index terms with limited trans-
formations. For example a user is interested in cooking, and searches for
”Austrian dishes”. The query words ”Austrian”, and ”dishes” can directly
used to search through the document collection since they do not need any
transformation.

In general, information retrieval models consists of four parts. Ribeiro-Neto
and Baeza-Yates [RB99] define them as a quadruple [D, Q,F ,R(qi, dj)],
where:

1. D is a set composed of logical views of documents in a collection.
2. Q is a set composed of logical views of the user information needs.

Such representations are called queries.

7
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3. F is a framework for modeling document representations, queries,
and their relationships.

4. R(qi, dj) is a raking function that associates a real number with a
query representation qi ∈ Q and a document representation dj ∈ D.
The ranking function generates an order over all documents D with
respect to a query qi.

Hence, the model is used to define the framework F and the ranking
function R(qi, dj). For example, for textual documents the document repre-
sentation is a set of all terms within the document. To keep the collection
smaller without losing any information stop words should be removed in
a preprocessing step. The set of index terms within a document collection
is called vocabulary. According to our document representation the query
representation is a set of all terms within the query. There can also be an
additional preprocessing step in the query creation. An example for such an
preprocessing step would be synonyms which are added to the query set.

After the design of the framework, a ranking function is created. It should
be constructed in a way that it fits to the requirements of the user. This
means for a given query, the ranking function determines a numeric rank to
each document in the collection, which represents the relevance for the user.
For example, the ranking function counts how many query terms appear in
the term set of a document.

Another example is to use term frequency as ranking function. Term fre-
quency itself denotes how often a term occurs in a document. To be able to
use it, the document representation is adapted from a set with all terms to a
bag of words. In a bag of words each term is represented as a pair of term
and term frequency. The ranking function sums the frequencies over all
query terms. To be able to compare the documents using the term frequency,
the ranks are normalized.

Information retrieval is used in several fields where the underlying models
have to fulfill different requirements. Therefore, they are separated into text-
based models, link-based models, and multimedia objects-based models.
Furthermore, text-based models can be categorized in unstructured, and

8
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semi-structured text models. Unstructured text models are used for text
documents where the content is represented as sequence of words. Semi-
structured text models contain structure such as title, sections, paragraphs,
in addition to unstructured text.

The web is rapidly growing, and as a consequence has a huge number of web
pages (i.e. documents). Therefore, additional information has to be leveraged
as well. This means that the content of documents, and furthermore the links
between those documents are take into account. Models which use those
additional link information are called Link-based models where PageRank
[BP98] and Hyperlink-Induced Topic Search [Kle99] are important parts of
the models.

Information retrieval for multimedia objects differs according their under-
lying data from the first 2 types. For example, when thinking on a image
it can be seen as a matrix of color values. Detecting similarities between
images requires the calculation of more complex features, such as shapes.
The representation of the query has to be adapted as well. The user can
use words, or use images to define a query. One of the simplest forms of
multimedia-based retrieval is image retrieval. Audio and video retrieval are
more complicated since there is also a time value which have to be taken
into account.

2.2 Unstructured Text Retrieval

In unstructured text retrieval, documents can be seen as sequence of words.
The 3 classical models are boolean-, vector-, and probabilistic model. First,
in the boolean model, documents and queries are represented as sets. Terms
are stitched together with boolean operators to formulate user queries.
Second, in the vector model, documents and queries are represented as
a vector in a t-dimensional space. The size of t is defined by the number
of words in the vocabulary of the collection. Third, in the probabilistic
model, documents and queries are represented based on probability theory.
Specifically by estimating the probability of a term appearing in a relevant

9
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document. Gudivada et al. [Gud+97] advice in their work to denote boolean
models as set theoretic, vector models as algebraic, and probabilistic models
as probabilistic.

2.2.1 The Boolean Model

The boolean model is a well-known information retrieval model in the
area of unstructured text retrieval. It was proposed as a paradigm for
accessing large-scale systems since the 1950s [Mel09]. The model uses
boolean operators and set theory to find relevant documents.

The classic boolean model can only decide if a document is relevant for the
user, or not. It does not provide a rank, which is used to sort the documents.
Salton et al. [SFW83] introduce in their work an extension where documents
are sorted according their relevance.

Index terms are combined with the 3 boolean operators NOT(¬), AND(∧),
OR(∨) to formulate user queries. The disjunctive normal form of the query
shows which areas of the sets are relevant. For example, for query q =
t1 ∧ (t2 ∨ ¬t3), and vocabulary V = {t1, t2, t3}, qDNF is:

qDNF = (t1 ∧ t2 ∧ t3) ∨ (t1 ∧ t2 ∧ ¬t3) ∨ (t1 ∧ ¬t2 ∧ ¬t3) (2.1)

This representation of the query highlight that 3 areas are relevant for the
user. First, all 3 query terms occur. Second, the first and the second term
occur, but not the third. Finally, the first term occurs, but not the second
and the third. Figure 2.1 displays the example query represented in a Venn
diagram, where the 3 areas can be seen in a graphical representation.

The boolean model works also if not all terms of the vocabulary are part
of the user query. Considering a vocabulary V = {t1, t2, t3, t4}, and the
previous example query, the disjunctive normal form is:

qDNF =(t1 ∧ t2 ∧ t3 ∧ ¬t4) ∨ (t1 ∧ t2 ∧ t3 ∧ t4)∨
(t1 ∧ t2 ∧ ¬t3 ∧ ¬t4) ∨ (t1 ∧ t2 ∧ ¬t3 ∧ t4)∨
(t1 ∧ ¬t2 ∧ ¬t3 ∧ ¬t4) ∨ (t1 ∧ ¬t2 ∧ ¬t3 ∧ t4)

(2.2)

10
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3.4.2020 boolean_model.drawio

1/1

∧ ∧ ¬t1 t2 t3

∧ ¬ ∧t1 t2 t3
¬ ∧ ∧t1 t2 t3

∧ ∧t1 t2 t3

¬ ∧ ¬ ∧t1 t2 t3

∧ ¬ ∧ ¬t1 t2 t3 ¬ ∧ ∧ ¬t1 t2 t3

t1

t3

t2

Figure 2.1: Example query in the boolean model with 3 terms. For the boolean model
documents in the collection are represented as sets of terms. In this example the
vocabulary of the document collection is given by V = {t1, t2, t3}. Furthermore,
documents can be separated according to the terms they are containing. Given
a query q = t1 ∧ (t2 ∨ ¬t3) all documents which satisfy this query are marked
with an green hook. This means that they are relevant for the user. All other
documents which does not satisfy the query are marked with a red cross.

The last term (i.e., t4), which is not part of the query, is also considered in
the disjunctive normal form. It is added once as present, and once as absent
to the other 3 terms.

The main advantages of the boolean model are the clean formalism, and
its simplicity [RB99]. These advantages comes with the usage of binary
operators, and binary index term weighing. One of the main disadvantages
is the exact matching of documents. This means that a document can only
be relevant, or not relevant to the user, without any ranking. As a result,
users receive too few or too many documents.

11
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2.2.2 The Vector Space Model

The vector space model was introduced by Salton et al. [SWY75]. In the
model documents and queries are represented as vectors in an t-dimensional
space, whereas t is the number of words in the vocabulary.

The vector space model is more advanced than the Boolean model, as it
contains partial matching. Partial matching means, that a degree of similar-
ity between user queries and documents in the system are calculated. To
accomplish this, non-binary weights are used in combination with index
terms.

The idea of non-binary weights is based on the assumption that some index
terms are more important than others to describe the content of a document.
The calculation of such term weights is a challenging task, as they have to
reflect the subjective expectation of a user. As a result, terms that appear
in a few documents have a higher weight than terms that occur in many
documents.

For example, a collection consists of 3 documents, given by D1 = {”cooking”,
”appetizer”}, D2 = {”cooking”, ”main”, ”dish”}, and D3 = {”cooking”,
”dessert”}. A user is interested to prepare a dessert. Therefore he searches for
”cooking dessert”. The first query word ”cooking” is part of each document.
This means it is not very useful to define the users requirements. The second
query word ”dessert” is only part of one document. Therefore, it has more
expressiveness than the first term. As a result, the weight of the first term
will be smaller than the weight of the second term.

The combination of index terms and weights allows to calculate a numeric
rank for each document. These ranks are used to sort the documents ranked
by a user query. The resulting list contains the best results on top according
to their relevance.

When having a closer look on index terms and their correlations it can be
assumed that they are mutually independent. This means knowing wi,j,
where wi,j is the weight of an index term ti in a document dj, tells nothing

12
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about the next weight wi+1,j. The assumption does not hold, as terms in a
document are always related to each other. For example, the words mobile
and phone, which often occur together. Therefore, when a document contains
the word mobile it is probable that the document also contains the word
phone. This correlation is reflected in their term weights. The term-term
correlation matrix described by Ribeiro-Neto and Baeza-Yates [RB99] model
such relations. It is defined as:

C = M ·MT, (2.3)

where M is a term-document matrix with t rows, and N columns. Each
row contains a term of the vocabulary. As a result, the number of rows is
equal to the size of the vocabulary. The columns represent the documents
collection, where each column contains a single document. Each entry in the
matrix M is given a weight wi,j associated with index term ti and document
dj. In the term-term correlation matrix C each element cu,v ∈ C describes
the correlation between the terms tu and tv, which is given by:

cu,v = ∑
dj

wu,j × wv,j. (2.4)

Therefore the relation between any two terms tu and tv is in the matrix. It is
based on the joint co-occurrence of the two terms within all documents of
the collection. For example, when having a collection of 2 documents, and
the vocabulary of the collection is given by V = {t1, t2, t3}. The term-term
correlation matrix is calculated as follows:

d1 d2[ ]t1 w1,1 w1,2
t2 w2,1 w2,2
t3 w3,1 w3,2

t1 t2 t3[ ]
d1 w1,1 w2,1 w3,1
d2 w1,2 w2,2 w3,2

M × MT︸ ︷︷ ︸
⇓

t1 t2 t3[ ]t1 w1,1w1,1 + w1,2w1,2 w1,1w2,1 + w1,2w2,2 w1,1w3,1 + w1,2w3,2
t2 w2,1w1,1 + w2,2w1,2 w2,1w2,1 + w2,2w2,2 w2,1w3,1 + w2,2w3,2
t3 w3,1w1,1 + w3,2w1,2 w3,1w2,1 + w3,2w2,2 w3,1w3,1 + w3,2w3,2

It can be seen that the term-document matrix M has size 3 x 2, where rows
consists of the terms, and columns consists of the documents. For example,

13
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the weight in the first row, and in the first column w1,1 contains the weight
of t1 in document d1. The transposed matrix consists of the terms in the
columns, and the documents in the rows. By multiplying these 2 matrices
the term-term correlation matrix C is generated. It has size 3 x 3, where rows
and columns consists of the terms in the vocabulary. For example, the entry
in the first row, and in the second column contains the joint co-occurrence
of the terms t1 and t2.

The vector space model is just one information retrieval model which takes
advantage of term-term correlation. Other models are the set-based model,
fuzzy information retrieval models, and language models.

In the vector space model documents, and queries are represented as vectors
in an t-dimensional space. The size of t is defined by the size of the vocab-
ulary. As a result, each index term represent one dimension in the vector.
Ribeiro-Neto and Baeza-Yates [RB99] define the document representation
dj, and the query representation q as:

~dj = (w1,j, w2,j, . . . , wt,j) (2.5)

~q = (w1,q, w2,q, . . . , wt,q). (2.6)

In both representations the vector consists of term weights which describes
their content. Each document in the collection is represented by a document
vector ~dj. Thereby wi,j is defined as the weight of term ti in document dj.
It has to be non-negative, and non-binary. The term weights of the query
wi,q consists the weight of term ti, which occurs in query q. It has to be
non-negative.

The degree of similarity between a document dj, and a query q is calcu-
lated by the cosine of the angle between their corresponding vectors (see
Figure 2.2). Specifically,

sim(dj, q) =
~dj •~q
|~dj| × |~q|

=
∑t

i=1 wi,j × wi,q√
∑t

i=1 w2
i,j ×

√
∑t

i=1 w2
i,q

,
(2.7)
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Figure 2.2: Example of the similarity between query and documents in the vector space
model. In this example, the vocabulary of the document collection is given
by V = {”appetizer”, ”dessert”}. The 2 documents d1, d2, and the query q are
represented as vectors according their term weights. The similarity of 2 vectors
is given by the cosine of the angle between them.

where ~dj •~q is the internal product of the 2 vectors. The factor |~dj| is the
norm of the document vector, and |~q| is the norm of query vector. These
norms define the document length, and the query length. The norm of the
query vector does not affect the ranking result since it is the same for all
documents in the collection. Singhal et. al [SBM96] discuss in their work
more advanced document length normalization for vector space models.

TF-IDF Weighting Scheme

Term weighting was first discussed by Luhn [Luh57]. The Author observed
that terms that occurs more often in a document are important to describe
the content of the document. Therefore, these terms can be seen as keywords.
As a result, he assumed that the term frequency fi,j, where term ti occurs in
document dj, is relative to the term frequency weight TFi,j. Hence, a high
term frequency leads to a high term frequency weight. This assumption
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leads to the following formulation of term frequency weights

tf i,j = fi,j. (2.8)

In this formula the raw term frequency is used as term weight. However,
Salton and Yang [SY73] observed in their work that in some cases term
frequency weights are an improvement according binary weights. Further-
more, they state inconsistence in their test results when they changed their
test collection, and query set.

To improve the results of term frequency weighting, inverse document
frequency weights are used additionally. The concept of inverse document
frequency was introduced by Spärck Jones [Jon72], and is one of the founda-
tions of term weighting. Therefore, it is used in every modern information
retrieval system. The inverse document frequency weight is approximated
using Zipf’s Law [Zip32]

IDFi = log
N
ni

. (2.9)

It is called inverse document frequency as ni/N is the relative document
frequency. Therefore, is ni the number of documents, where a term ki occurs
in the document collection, and N is the size of the document collection. The
inverse document frequency represents the importance of a term regarding
the whole document collection. It is small if a term occurs in almost every
document, and it is high if the term appears just in a few documents.

To use term frequency weighting in combination with inverse document
frequency weighting the raw term frequency weight (see Equation (2.8)) has
to be adopted to the logarithmic term frequency weight:

tf i,j =

{
1 + log fi,j, if fi,j > 0
0, otherwise.

(2.10)

The log term frequency weight is one of the most frequently used term
frequency weighing schemes as the inverse document frequency term weight
is also a logarithmic function. Therefore, they can be combined directly as
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defined by Salton and Yang [SY73] to the TF-IDF weighing scheme:

wi,j =

{
1 + log fi,j × log N

ni
, if fi,j > 0

0, otherwise,
(2.11)

where wi,j is the term weight of term ki, which occurs in document dj. On the
one hand, this includes the term frequency, which represents the importance
of the term within the document. On the other hand, it is composed of
the inverse document frequency, which represents the importance of the
term within the whole document collection. The combination of these two
weights leads to an effective term weighting scheme. Therefore, it is the
base for term weighting that is used in almost every modern information
retrieval system.

As the TF-IDF weighting scheme is one of the most popular weighting
schemes in information retrieval several variants where proposed over
time. Ribeiro-Neto and Baeza-Yates [RB99] describe in their work the most
important forms of term frequency weighting (see Table 2.1), and inverse
document weighting (see Table 2.2). Furthermore, they discuss the best

Weighting scheme TF Weight

Binary {0, 1}
Raw Frequency fi,j
Log Normalization 1 + log fi,j

Double Normalization 0.5 0.5 + 0.5
fi,j

max fi,j

Double Normalization K K + (1− K)
fi,j

maxi fi,j

Table 2.1: Variants of TF weight. There exist 5 important variants of term frequency weight-
ing. First, Binary weight is the simplest form, and only captures if a term occurs
in a document. Second, Raw Frequency uses the term frequency directly, and can
be seen as base for term frequency weighting. Third, Log Normalization is an
extension of Raw Frequency, and uses the logarithm of the (raw) frequency. Forth,
Double Normalization 0.5 rescales the weights to be in the range between 0.5 and
1.0. Therefore, the weight is always normalized. Fifth, the Double Normalization K
is a generalization of the Double Normalization 0.5, where K can take values in the
range between 0.0 and 1.0.
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combinations of them to compile different TF-IDF weighting schemes for
document term weighting, as well as query term weighting.

For example, given a document d1 = {”apple”, ”apple”, ”apple”, ”pear”, ”pear”}.
When searching for ”pear”, the individual variants of term frequency weight-
ing (see Table 2.1) yield different results. First, Binary weight captures if
the term occurs in the document. Therefore, the weight of d1 is 1. Second,
Raw Frequency denotes how often a term occurs in a document. As a result,
the weight is 2. Third, Log Normalization uses 1 for each query term in the
document, and adds the logarithmic Raw Frequency of the term. Hence,
the weight is approximately 1.7. Fourth, Double Normalization 0.5 leverages
the constant factor 0.5, the Raw Frequency of a term, and the maximum
frequency over all terms to normalize weights in the range between 0.5 and
1.0. The result of the document weight is 0.83. Fifth, Double Normalization K
is a generalization of the Double Normalization 0.5. For example, if K is 0.1,
the weighting value lies between 0.1 and 1.

Weighting scheme IDF Weight

Unary 1
Inverse Frequency log N

ni

Inverse Frequency Smooth log(1 + N
ni
)

Inverse Frequency Max log(1 + maxini
ni

)

Probabilistic Inverse Frequency log(N−ni
ni

)

Table 2.2: Variants of inverse document frequency weight. There exist 5 important vari-
ants of inverse document frequency weight. First, the Unary form is used to
ignore the inverse document frequency. Second, the Inverse Frequency is the stan-
dard variant as it was initial introduced. Third, the Inverse Frequency Smooth
adds 1 to the fracture result. This produces a more representative weight for
extreme values of ni. Fourth, the Inverse Frequency Max uses the term with the
largest document frequency instead of the number of documents in the collection.
Therefore the computed weights are relative to the term with the highest docu-
ment frequency. Fifth, the Probabilistic Inverse Frequency subtract the document
frequency from the number of documents in the collection. It is the basic form
for the probabilistic model, as described in the next section
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To illustrate inverse term frequency, in addition to to d1, the document
collection also contains d2 = {”apple”, ”peach”}. When searching for ”apple”
all documents of the collection contain the term. Therefore, the term is not
useful to differentiate documents of the collection. As a result, the inverse
document frequency weight is the minimum possible outcome for each
weighting scheme (see Table 2.2). When searching for ”pear” 1 of 2 docu-
ments contain the term. Hence, the individual variants of inverse document
frequency weighting lead to different results. First, the Unary variant is
always 1. Second, the Inverse Frequency variant denotes N as the number of
all documents in the collection. Additionally, ni is the document frequency
of the query term. The logarithm of these to values leads approximately
to 0.7. Third, Inverse Frequency Smooth also uses N and ni. In contrast to
Inverse Frequency, 1 is added inside the logarithm, which results of a weight
of approximately 1.1. Fourth, the Inverse Frequency Max is similar to the
Inverse Frequency Smooth, however uses the term with the largest document
frequency instead of N. In our example that is ”apple”, which occurs in
every document. Therefore, the result is also approximately 1.1. Fifth, the
Probabilistic Inverse Frequency is similar to the Inverse Frequency, however sub-
tracted N by ni inside the logarithm. This leads to an inverse term frequency
weight of 0.0.

There exist several forms of TF-IDF weighting schemes. The best performing
variant could vary given different document collections. In Table 2.3 are
3 recommended combinations, which were proposed by Salton [Sal71].

Document term weight Query term weight

fi,j (0.5 + 0.5
fi,q

maxi fi,q
)× log N

ni

1 + log fi,j log(1 + N
ni
)

(1 + log fi,j × log N
ni
) (1 + log fi,q)× log N

ni

Table 2.3: Recommended variants of the TF-IDF weighting scheme. There exist 3 recom-
mended variants of the TF-IDF weighting scheme. Given different document
collections the best performing form could vary. They combine term frequency
weighing variants with inverse frequency weighing variants. Additionally, they
distinguish between document term weights, and query term weights.
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The author distinguishes between document term weights, and query term
weights.

1. The first variant combines the Raw Frequency of the term frequency
weighing variants in Table 2.1, and the Inverse Frequency of the inverse
frequency weighing variants in Table 2.2 for the document term weight.
The associated query term weight uses Double Normalization 0.5 and
also Inverse Frequency.

2. The second variant differs, as document terms consist only of a term
frequency weight, and query terms consists only of a inverse frequency
weight. It uses the Log Normalization as term frequency weight, and
the Inverse Frequency Smooth as inverse frequency weight.

3. The third variant is the initial variant, as it was defined by Salton
and Yang [SY73]. It combines the Log Normalization, and the Inverse
Frequency for document-, and query terms.

The third variant is the most common used form in the vector space model.
Ribeiro-Neto and Baeza-Yates [RB99] describe in their work an extension for
this variant to retrieve better results. There the document term weight, and
the query term weight should only be used if the term frequency is greater
than 0, otherwise the corresponding weight is 0. In the web it is common
that the query term frequency is 1. Therefore, it should be reduced to the
inverse document frequency. If this is done, the similarity (see Equation (2.7))
captures TF× IDF2. To bring it back to the TF× IDF form, the document
term weight is reduced to the term frequency weight TF. The second variant
is based on the same basic principle.

The TF-IDF weighting scheme can also be used as a ranking function with
limited knowledge about vectors. Manning et. al [MRS08] describe in their
work such a TF-IDF ranking function:

Score(q, d) = ∑
i∈q

tf-idfi,d

tf-idfi,d = fi,q × log
N
ni

,
(2.12)

where the query q, and a document d are passed into the ranking function.
The query and the document can be seen as sets of terms. To calculate
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the rank, the TF-IDF weights are summed up. For every query term that
does not occur in the document the weight is 0. For the calculation the
Raw Frequency term frequency weighing, and the Inverse Frequency inverse
frequency weighing are used (see Table 2.1, and Table 2.2).

The TF-IDF weighting scheme is one of the most popular weighting schemes
in information retrieval as it is leveraged, adapted and optimized for a wide
array of different use-cases.

2.2.3 The Probabilistic Model

The first probabilistic model was introduced by Robertson and Sparck Jones
[RJ76]. In their work they defined the Probabilistic Relevance Model as
framework for future models. Given a user query the task is to find the set
of documents that contain all relevant documents. This set of documents is
called the ideal answer set.

Properties are defined to receive the ideal answer set. The challenge is to
define these properties with index terms. An additional challenge is, that the
properties of the ideal answer set are not known at query time. Therefore,
they are estimated to generate the initial answer set.

Afterwards, the answer set is improved by user interaction. For example,
the user has to choose which documents of the answer set are relevant. With
this user decisions the known properties are adapted, and a new answer set
is generated. With each iteration of this process, the resulting answer set
converges to the ideal answer set.

Robertson [Rob97] proposed is his work the probability ranking princi-
ple, which denotes that documents that are relevant for the user can be
influenced by properties outside the system. Therefore, the ideal answer
set generated by the system is not necessarily the ideal answer set for the
user.
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In the probabilistic model documents are represented as vectors in a t-
dimensional space:

~dj = (w1,j, w2,j, . . . , wt,j), (2.13)

where the size of t is the size of the vocabulary. As a result, each index
term represents one dimension in the vector. Furthermore, the weights of
the vector are binary. Hence, wi,j = 1 if term ki occurs in document dj, and
wi,j = 0 otherwise. The query q is a subset of index terms.

Using the document representation dj, and the query representation q, the
similarity can be calculated as follows:

sim(dj, q) =
P(R|~dj, q)

P(R|~dj, q)
, (2.14)

where R is a set of documents that is initially estimated, or known to be
relevant for the user given a query q. R describes the complement of R
(i.e., the set of documents that are not relevant for the user). Furthermore,
P(R|~dj, q) defines the probability that a document dj is relevant with respect
to query q, and P(R|~dj, q) defines the probability that the document is not
relevant given this query. The equation can be approximated, as denoted by
Ribeiro-Neto and Baeza-Yates [RB99], using:

sim(dj, q) ∼ ∑
ki∈q∧ki∈dj

log
(

P(ki|R, q)
1− P(ki|R, q)

)
+ log

(
1− P(ki|R, q)

P(ki|R, q)

)
, (2.15)

where P(ki|R, q) is the probability that index term ki is present in a document
selected randomly from the set of relevant documents R. Furthermore,
P(ki|R, q) is the probability that index term ki is not present in a document
selected randomly from R. Equation (2.15) can be seen as foundation for
ranking in probabilistic models.

The set of relevant documents R is not known initially. Therefore, an ad-
ditional method is necessary to calculate P(ki|R, q), and P(ki|R, q) for the
initial answer set. One possible solution is a contingency table as proposed
by Robertson and Sparck Jones [RJ76] (see Table 2.4).
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With the contingency table P(ki|R, q), and P(ki|R, q) can be defined as:

P(ki|R, q) =
ri

R
(2.16)

P(ki|R, q) =
ni − ri

N − R
, (2.17)

where the first equation captures the relevant documents that contain term
ki in relation to all relevant documents. The second equation captures the
non-relevant documents that contain term ki in relation to all relevant
documents. By combining these two equations with Equation (2.15) the
similarity can be computed:

sim(dj, q) ∼ ∑
ki∈q∧ki∈dj

log
(

ri(N − ni − R + ri)

(R− ri)(ni − ri)

)
. (2.18)

To improve numerical stability of the equation, a constant of 0.5 is added ro
ri:

sim(dj, q) ∼ ∑
ki∈q∧ki∈dj

log
(
(ri + 0.5)(N − ni − R + ri + 0.5)

(R− ri + 0.5)(ni − ri + 0.5)

)
. (2.19)

This is the classic probabilistic ranking equation, called the Robertson-
Sparck Jones equation. However, it is still necessary to know the relevant
documents, as R and ri are part of the equation. One solution is to set R,

Case Relevant Non-relevant Total

Documents containing ki ri ni − ri ni
Documents not containing ki R− ri N − ni − (R− ri) N − ni

All documents R N − R N

Table 2.4: Contingency table for probabilistic ranking. The contingency table represents
the relationships between documents and relevance. N is the number of all
documents in the collection, ni defines the number of documents that contain an
index term ki. Furthermore, R is the number of documents that are relevant for a
user with respect to a query q, ri defines the number of relevant documents that
contain an index term ki.
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and ri to be 0:

sim(dj, q) ∼ ∑
ki∈q∧ki∈dj

log
(

N − ni + 0.5
ni + 0.5

)
. (2.20)

This equation is used to calculate the initial set of relevant documents.
Robertson [Rob04] proposed is his work that the equation has negative
terms if ni > N/2. Therefore, he defined an alternative form by removing
the subtraction of ni in the numerator:

sim(dj, q) ∼ ∑
ki∈q∧ki∈dj

log
(

N + 0.5
ni + 0.5

)
. (2.21)

As a result, the term of the sum is zero if the index term occurs in each
document. Furthermore, it can be determined that the calculation for one
term is similar to the calculation of the inverse document frequency (see
Equation (2.9)).

In theory, the probabilistic model is optimal, as documents are ordered
by the probability of being relevant for the user. In practice the system
is affected by external factors. Therefore, finding the ideal answer set is
only theoretically possible. An additional disadvantages is that the initial
relevant-, and not-relevant sets have to be estimated. Furthermore, term
frequency is not used, as document weights are binary. More advanced
extensions of the probabilistic model tackle some of the outlined issues. For
example, BM25, which will be discussed in the text.

Okapi BM25

Okapi BM25 is the result of several experiments by Robertson et. al [Rob+92;
Rob+93; Rob+94]. The idea is to transfer the strengths of the vector space
model to the probabilistic model. These advantages are inverse document
frequency, term frequency, and document length normalization. As founda-
tion the classic probabilistic ranking equation (see Equation (2.20)) is used.
The equation already covers the usage of the inverse document frequency,
and is known as BM1.
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To bring the term frequency into the probabilistic model the following
equation was designed:

Fi,j = S1 ×
fi,j

K1 + fi,j
, (2.22)

where fi,j is the term frequency of term ki that occurs in document dj.
Furthermore, K1 is a constant that is determined based on the document
collection. When K1 is set to 0 the factor becomes 1, and the term frequency
is not used for ranking. Finally, S1 is used as a scaling factor.

The next step was to bring document length normalization into the proba-
bilistic model. To that end, the above equation was adjusted:

F ′i,j = S1 ×
fi,j

K1×len(dj)

avg doclen + fi,j

, (2.23)

where len(dj) is the number of terms in the document, and avg doclen is
the average document length over all documents in the collection. Further-
more, a correction factor for the document length, and the query length is
introduced:

Gi,q = K2 × len(q)×
avg doclen− len(dj)

avg doclen + len(dj)
, (2.24)

where len(q) is the number of terms in the query, and K2 is a constant. To
introduce term frequency into queries, an additional equation was designed
based on Equation (2.22):

Fi,q = S3 ×
fi,q

K3 + fi,q
, (2.25)

where fi,q is the term frequency of term ki that occurs in query q. K3 is an
additional constant, and is determined based on queries. S3 is a scaling
factor for the fraction term.
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With these 4 equations BM15, and BM11 can be defined:

simBM15(dj, q) ∼ Gi,q + ∑
ki∈q∧ki∈dj

Fi,j ×Fi,q × log
(

N − ni + 0.5
ni + 0.5

)
(2.26)

simBM11(dj, q) ∼ Gi,q + ∑
ki∈q∧ki∈dj

F ′i,j ×Fi,q × log
(

N − ni + 0.5
ni + 0.5

)
. (2.27)

BM15 uses Fi,j without the extension of document length normalization,
as introduced in BM11. Robertson and Walker [RW94] observed in their
work that the best value for K2 = 0. As a result, the correction factor
Gi,q is eliminated. Furthermore, they suggest S1 = (K1 + 1), and S3 =
(K3 + 1), where the evaluation results increased between 12 and 37 percent
(depending on the query length) if K3 was chosen large (e.g., 100 as in their
experiments). Finally, they observed that the query term frequency factor
Fi,q can be reduced to fi,q, and for small queries set to be 1. Adding these
findings to the BM15-, and BM11-equation they can be simplified:

simBM15(dj, q) ∼ ∑
ki∈q∧ki∈dj

(K1 + 1) fi,j

(K1 + fi,j)
× log

(
N − ni + 0.5

ni + 0.5

)
(2.28)

simBM11(dj, q) ∼ ∑
ki∈q∧ki∈dj

(K1 + 1) fi,j
K1×len(dj)

avg doclen + fi,j

× log
(

N − ni + 0.5
ni + 0.5

)
. (2.29)

In these equations the correction factor, and the query term frequency factor
are removed. Furthermore, S1 is set to be K1 + 1. As the document length
normalization is only part of BM11 it outperforms the BM15.

BM25 was designed as a combination of BM15, and BM11. As a result,
their term frequency factors (see Equation (2.22), and Equation (2.23)) was
merged to generate the term frequency factor of BM25:

Bi,j =
(K1 + 1) fi,j

K1

[
(1− b) + b

len(dj)

avg doclen

]
+ fi,j

, (2.30)

where b is a constant that takes values between 0.0 and 1.0. On the one
hand, for b = 0 the equation is reduced to the BM15 term frequency factor.
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On the other hand, for b = 1 the equation is reduced to the BM11 term
frequency factor. When using Bi,j BM25 is defined as follows:

simBM25(dj, q) ∼ ∑
ki∈q∧ki∈dj

Bi,j × log
(

N − ni + 0.5
ni + 0.5

)
. (2.31)

Robertson et. al [Rob+94] find in their work that b = 0.75, and K1 = 1 is
the best choice for most cases. In general, they proposed that b should be
close to 1 to apply the document length normalization.

BM25 transfer the strengths of the vector space model to the probabilistic
model. It requires additional tuning, but achieves better performance than
the vector space model for general document collections. Therefore, it has
become to a baseline to evaluate new ranking methods.

Divergence from Randomness

The Divergence from Randomness model was introduced by Amati and
Rijsbergen [AR02]. It is a probabilistic model that exhibits characteristics
of a language model as well. In the model, the term weights are computed
by evaluating the divergence between the actual term distribution and the
term distribution generated by a random process.

The model is based on 2 assumptions:

1. First, terms of a document have different importance when describing
the content of it. It assumes that less important words are distributed
randomly over the document collection C. The probability distribution
of a term ki over the document collection C is given by P(ki|C). Fur-
thermore, the amount of information of these terms over the whole
document collection is defined as − log P(Ki|C).

2. Second, a complementary term distribution is received by considering
only the subset of documents that contain term ki. This subset is called
elite set. The underlying probability distribution is defined as P(ki|dj).
The probability is high if the term ki occurs often in document dj.
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Furthermore, if a term occurs rarely in a document, it is important
to describe the content of the document. Therefore, the amount of
information of these terms being in the elite set is given by 1− P(ki|dj).

By combining these 2 assumptions the term weight is given by:

wi,j = (− log P(ki|C))× (1− P(ki|dj)), (2.32)

where wi,j is the term weight of term ki, which occurs in document dj.
Furthermore, the ranking function is defined as:

R(dj, q) = ∑
ki∈q

fi,q × wi,j, (2.33)

where fi,q is the term frequency of term ki in query q. To approximate the
first term of the term weight the following definition are needed:

Fi = ∑
j

fi,j (2.34)

λi = p× Fi, (2.35)

where Fi is the frequency of a term ki over all documents in the collection.
For Equation (2.35), p is defined to be p = 1/N.

The first part of the term weight (see Equation (2.32)) represents the amount
of information of a term over the entire document collection. Amati and
Rijsbergen [AR02] propose in their work 2 approximations:

− log P(ki|C) ≈ fi,j log
( fi,j

λi

)
+
(

λi +
1

12 fi,j + 1
− fi,j

)
log e (2.36)

+
1
2

log(2π fi,j)

− log P(ki|C) ≈− log
(

1
1 + λi

)
− fi,j × log

(
λi

1 + λi

)
, (2.37)

where fi,j is the frequency of term ki in document dj. For the second approx-
imation p = 1/(1 + λi).
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The second part of the term weight (see Equation (2.32)) represents the
amount of information of a term with respect to the elite set, which is
calculated by:

1− P(ki|dj) =
1

fi,j + 1
(2.38)

1− P(ki|dj) =
Fi + 1

ni × ( fi,j + 1)
, (2.39)

where ni is the number of documents that contain term ki.

The basic form of the Divergence from Randomness model does not take
document length normalization into account. Therefore, there exist 2 exten-
sions for the term frequency fi,j. Each of them can be used to add document
length normalization:

f ′i,j = fi,j ×
avg doclen

len(dj)
(2.40)

f ′i,j = fi,j × log

(
1 +

avg doclen
len(dj)

)
, (2.41)

where avg doclen is the average document length over the entire collection,
and len(dj) is the number of terms inside document dj.

For a practical implementation of Divergence from Randomness the pre-
viously discussed alternatives of the individual parts of the equation (see
Equation (2.36), Equation (2.37), Equation (2.38), Equation (2.39), Equa-
tion (2.40), and Equation (2.41)) can arbitrary be combined. Therefore, the
best performing variant depends on the given document collection.

2.3 Structured Text Retrieval

Text documents always contain a certain structure. For example, a scientific
paper can be split by its sections, subsections, and paragraphs. Another
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example would be a book that is divided by pages and columns. Informa-
tion retrieval models that leverages document structure, in addition to the
content, are called structured text retrieval models. There are several stages
in which the information retrieval systems can take the advantage of this
structural information:

1. At index stage, where components of a document are detected, and
indexed separately. The relationship between the components is pre-
served.

2. At retrieval stage, by allowing components to be retrieved in varying
granularity.

3. As result of the presentation stage, where only relevant components
are returned to the user and not the entire document.

4. At querying stage, where a query language is used that includes
structural constrains.

Information retrieval models use structural information either in an ex-
plicit or implicit way. More frequently, an explicit structure is used where
documents are structured in a defined scheme (e.g., XML scheme). The
advantage of this structure is that relationships between the components of
the document remain. For example, a nested component knows its parent,
and the parent knows its children.

For implicit structure, it is not possible to distinguish between content
and structural information. Documents are represented as a sequence of
text tokens and mark-up tokens. At query time the sequence of tokens is
searched for opening and closing mark-up tokens. Afterwards the structural
component is generated with the content between these mark-up tokens. It
exists only at query time and is discarded by the system afterwards.

In an information retrieval system it is possible to use multiple layers. For
example, the first layer represents the logical structure of a scientific paper.
Therefore, it contains the information about chapters, sections, subsections,
and paragraphs. The second layer represents the layout structure. Hence, it
contains information about columns and pages. Multiple layers are usually
used for explicit structure, as maintaining them for implicit structure is too
complex.
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Inside one layer, content of a document is always assignable to one compo-
nent (e.g., text in a subsection). If this is the case, components do not overlap.
Across different layers it is possible that content is assigned to multiple
components. Therefore, the components overlap. Alink et al. [Ali+06] tackle
in their work the possibility to mix layers in one query. Therefore, they
defined navigation steps to allow changing between layers.

One of the first models that use structured text retrieval was proposed by
Burkowski [Bur92a; Bur92b]. It is based on non-overlapping lists. Therefore,
a list for each type of document component is generated. For example, a
first list contains all sections, a second list all subsections, and a third list
all subsubsections. An inverted index is generated to search for a term. The
inverted index stores a mapping from index terms to occurrences. Queries
that contain terms and component types are used to search for content
within the lists.

Another model was introduced by Baeza-Yates and Navarro [NB95; NB97]
that is based on proximal nodes. The model uses hierarchical index struc-
tures to store structural information. A more targeted search is possible as
relationships between components are stored.

2.3.1 Ranking Strategies in XML Retrieval

When XML was introduced in 1998 it became to the standard in structured
text retrieval. Nowadays XML Retrieval is almost a synonym for Structured
Text Retrieval.

In the XML Retrieval documents are represented in a XML structure. Rank-
ing Algorithms are used (cf. Section 2.2) to calculate ranks for document
components. To that end, documents are represented as set of terms, and
components are subsets of these terms. In addition, calculations require a
ranking strategy, as ranking of structured text differs from the ranking of
unstructured text. For example, a single component does not have to contain
all query terms, as they can occur in different parts of the document.
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The first ranking strategy is known as contextualization. For this strategy,
the rank of the component is combined with the rank of its root element,
which is the document. Arvola et al. [AJK05] suggest in their work to use
the average of these 2 ranks. In addition, Mass and Mandelbrod [MM04]
introduced in their work a scaling factor for each rank.

The second ranking strategy is named propagation. It requires that only
leaf elements are indexed. The rank of the document is calculated from
bottom-up. First, the rank of the leaf elements is calculated. Afterwards,
the rank of the parent is calculated based on its children ranks. This is
continued until the root element is reached. The most common propagation
mechanisms are based on weighted sums. Geva [Gev06] introduced in his
work a weighing based on the number of children:

score(e, q) = D(m)×∑
ec

score(ec, q), (2.42)

where e is the component, ec are the child components of e, and m is
the number of retrieved child components of e. Retrieved indicates that
score(ec, q) > 0 holds. Furthermore, D(m) = 0.49 if e has just one retrieved
child (m = 1), otherwise D(m) = 0.99. Propagation mechanisms are more
complex to implement than contextualization mechanisms, but provide
good retrieval performance.

The third ranking strategy is called aggregation and is proposed by Chiaramella
et al. [CMF96]. In their work they describe that the representation of a XML
element can be interpreted as an aggregation of its own and its children
content representations. Linear interpolation can be used as aggregation
strategy. To calculate the probability for leaf elements the following defini-
tions are needed:

P(q, Me) = ∏
ki∈q

P(ki|Me, λ) (2.43)

P(ki|Me, λ) = λP(ki|e) + (1− λ)P(ki|C), (2.44)

where P(ki|e) is the probability of query term ki in component e, and yields
the element models term frequency. P(ki|C) is the probability of query
term ki in the collection C, and represents the element models inverse
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document frequency (see Section 2.2.2 for different approaches to compute
term frequency, and inverse document frequency). The constant λ is used as
smoothing parameter. Equation (2.43) represents the probability of a query
q being generated by a components language model Me. Afterwards, the
aggregation strategy based on linear interpolation is defined as:

P(ki|Me) = ∑
ej

wjP(ki|Mej), (2.45)

where ∑ej
wj = 1. The rank of the leaf elements is generated by Equa-

tion (2.43). For example, a section s1 contains 3 paragraphs p1, p2, and
p3. Furthermore, the probabilities when searching for ”apple” are defined
as P(”apple”|Mp1) = 0.26, P(”apple”|Mp2) = 0.49, and P(”apple”|Mp3) =
0.15. When ”apple” is passed as query into the aggregation function then
P(”apple”|Ms1) = 1/3× (0.26 + 0.49 + 0.15) = 0.3. Where wj = 1/3 for all
components as they contribute equally.

The fourth strategy is named merging. It requires a selective index strat-
egy as described by Mass and Mandelbrod [MM04], where a separate
index is created for each component type (similar to the model based on
non-overlapping lists). Afterwards, the components are ranked for each
type. As a result, ranked lists are created for each type. To merge the list
normalization is required, as components of different types have different
lengths (e.g., the length of a section, and the length of a paragraph). Hence,
the normalization of components is defined as follows:

max
(

score(e, q)
score(q, q)

, 1
)

, (2.46)

where score(q, q) is taken for normalization. There, any element that is
identical to the query obtains the full score of 1. Afterwards, the ranked
lists of components can be merged according their normalized score.

Manning et al. [MRS08] propose in their work a method to include zone
scores. Their approach assigns a weight between 0.0 and 1.0 to a document
d with respect to a query q. This is done by linear combinations of zone
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scores, where each zone of the document contributes to a boolean value:
l

∑
i=1

gisi, (2.47)

where l is the number of zones, and gi are the zone scores. Each zone score
is between 0.0 and 1.0, and ∑l

i=1 = 1. The parameter si is the boolean score
that represents a match between the query and the ith zone. The weighted
zone scoring is also known as Ranked Boolean Retrieval.

There exist many more strategies to rank structured text. Some of them
require special indexing strategies. The best ranking strategy always strongly
depends on the used document collection.

2.4 IMRaD Structure

To increase the readability within articles it is important to have a common
structure. Therefore, if the reader is familiar with the structure of the article
it is easier to find the relevant pieces of information. Today the IMRaD
(Introduction, Method, Results and Discussion) structure is a commonly
agreed structure of scientific papers. Within the structure the chapters
contain the following information:

• The Introduction section should answer the question why the study
was done. Furthermore, it contains research questions, a hypothesis,
and a research purpose.
• The Method section should answer the questions when, where, and

how the study was done. Additionally, it contains information about
the used materials.
• The Results section contains the answers to the research questions. In

addition, the study results are listed and explained according to the
hypothesis.
• The Discussion section should interpret the results. Furthermore, they

are compared with results of other researchers and future work is
discussed.

34



2 Related Work

When having a look on the history of scientific articles their structure
changed over time. Meadows [Mea85] describes in his work that the first
articles appear in the the 17th century. At this time they are published in the
form of descriptive letters and chronologically structured narratives. This
format was used for more than 2 centuries.

Day [Day89] propose in his work that the first IMRaD-like writing structure
was generated by Louis Pasteur with his book in ”Etudes sur la Biere” orig-
inally published in 1876. In the book Introduction, Method, and Discussion
can be found although the headings of the section were different. Sollaci
and Pereira [SP04] describe in their work that the IMRaD structure began
to be adopted in the 1940s. Furthermore, they propose that it became the
standard format for scientific articles in the 1970s. Today, IMRaD is the
standard for all major journals.

Although the format of IMRaD was introduced there are minor differences
in the arrangement of chapters. Bertin et al. [Ber+13] analyzed articles of
several journals according their IMRaD structure distribution. They used 7
peer-reviewed academic journals from the Public Library of Science (PLOS),
compiled of scientific articles in the fields of biology and medicine. The
largest journal is PLOS ONE, which contains 33, 782 articles. On average an
article of PLOS ONE consist of 4.47 sections, and 90.2% of the sections can

Name of Section Section 1 Section 2 Section 3 Section 4

Introduction 99.90% 0.07% 0.00% 0.00%
Method 0.00% 47.82% 5.95% 46.86%
Results 0.00% 51.48% 47.90% 0.12%
Discussion 0.00% 0.08% 45.79% 46.78%
Other 0.09% 0.55% 0.36% 6.24%

Total 100.00% 100.00% 100.00% 100.00%

Table 2.5: IMRaD chapter distribution. For the IMRaD chapter distribution the PLOS
(Public Library of Science) ONE journal which consists of 33, 782 articles was
analyzed. In this Table the relation between section and the IMRaD type is
shown. For example, 99.90% of first sections are Introductions and 51.48% of
second sections are Results.
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be assigned to an IMRaD type.

In Table 2.5 the IMRaD chapter distribution for PLOS ONE is shown. The
distribution represents the relation between section and the IMRaD type.
For example, 99.90% of the articles has Introduction as first section. The other
IMRaD types cannot be assigned so clearly to a section. Method is mostly
assigned to the second or the forth section, Results to the second or third
section, and Discussion to the third or fourth section.

The structure of articles is commonly used in information retrieval systems
as it provides additional information. For example, the IMRaD structure
can be leveraged by dividing articles according to their IMRaD sections.
Therefore, section headings have to be mapped to IMRaD sections. This is
done during the index process by classifying extracted section headings. For
example, to use a query like ”network IN Methods” the methods section has
to be known for all articles in the document collection.

Ahmed and Afzal [AA20] describe in their work that dictionary terms, the
template of a paper, and in-text citation are state-of-the-art technologies to
map section headings onto logical sections. Furthermore, they proposed a
novel approach that employs new features for these technologies.

In Summary, IMRaD is widespread as it has been used for centuries. Due
to its clear structure and comprehensibility, it quickly became the standard
for scientific articles. This is also the reason why it can be found in the
publications of many scientific fields.
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3.1 Dataset

3.1.1 Generation

We created our dataset from approximately 3, 000 scientific articles in PDF
format. An important point was that these articles come from different
scientific fields.

We used a text mining pre-processing technique as introduced by Vijayarani
et al. [VIN15] to separate the text from the PDFs and add additional informa-
tion. This technique consists of three key steps, which are called extraction,
stopword removal, and stemming. First, we used a framework described in
[Kla+14] to separated the article structure and the raw text from the PDF.
Afterwards the stopwords are removed, and the remaining terms of the raw
text are stemmed.

One additional information we had to add was IMRaD structure (see Sec-
tion 2.4). The IMRaD structure maps Related Work to be part of the Intro-
duction. Since most of our papers had an own section titled Related Work
we introduce an additional type called Background for it. We were able to
classify the IMRaD structure with simple keyword detection in the section
titles. Table 3.1 shows the mapping between IMRaD-Types and these titles.
Because it was not really possible to identify Method sections by using the
section titles we used information about their position in the article. We
manage that by using the Background section as upper bound, and the Result
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section as lower bound. We classify all sections between these two bounds as
a Method section. When the Background section was not available, we set the
Introduction section as upper bound. Additionally, when the Result section
was not available, we set the Discussion section as lower bound. If one of the
two bounds could not be set, we discarded the scientific article. Note that,
chapters can have several IMRaD-Types. For example, if a section was titled
”Results and Discussion” it belongs to the types Result and Discussion.

Another additional detail we had to add were links between the scientific
articles. For this we performed a semi-automated annotation. Thereby simi-
larities about the references of an article and the titles of all other articles
are compared, and if they exceed a given threshold a recommendation to
create a link between the two was given.

We created each data record in such a way that it can be transferred directly
to the database schema shown in Figure 3.1. To reduce noise during the

per Section Overall
IMRaD Type Section Title # Paper Percent # Paper Percent

Introduction Introduction 822 100% 822 100%

Background Related Work 465 56.57% 465 56.57%

Methods
Method 97 11.8%

312 37.96%Model 134 16.3%
Approach 81 9.85%

Result
Experience 396 48.18%

687 83.58%Result 163 19.83%
Evaluation 128 15.57%

Discussion
Conclusion 581 70.68%

773 94.04%Discussion 179 21.78%
Future Work 13 1.58%

Table 3.1: Mapping of the Section Titles to IMRaD-Types. In this Table we show which
section titles was used to generate the IMRaD structure information. Additionally,
we show the relation between titles and how often they occurs in the used dataset.
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Figure 3.1: Database Schema for the used Dataset

evaluation we removed all articles without any connection to other articles.

Finally, we have 821 scientific articles in our dataset. This are only 27 percent
of the initial set. This small number is due to the environment and the used
scientific articles. One major problem was that the framework used to
separate the structure had issues with documents that were not created with
latex.

3.1.2 Structure of a Scientific Article

We designed a database schema, which corresponds to the structure of a
scientific article. The table ”scientific article” in the schema (see Figure 3.1)
can be seen as the root node for each database entry.

The ”author text” attribute refers to the table ”AuthorText”. It contains
the names and email addresses of all associated authors. These values are
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Figure 3.2: Example of a Scientific Article Tree. In this figure we highlight the hierarchical
structure of an typical scientific article. For example it can be composed into
multiple sections.

generated from the author area, which is normally on the first page of
each paper. In the database schema this attribute consists of three values.
First, the complete text, which contains the whole author area. Second, the
email text, which are all email addresses separated from the complete text.
Finally, a list with all authors. The author area is the only area that is not
prepossessed.

One of the most important characteristics are sections, and the underlying
structure. Figure 3.2 shows an example of an article, and the tree-like
structure that comes with it. Chapters are non-leaf nodes, and text areas
are leaf nodes. This is represented in database schema as two lists, one for
subsections and one for text areas. In addition to the lists, each section itself
has a section type. This attribute describes whether the section is a section,
subsection, or subsubsection. The IMRaD structure information is stored
as the IMRaD-Type. As described in Section 3.1.1, each section may have
several IMRaD-Types. Each type of section holds its own list of these types.
Hence, subsections and subsubsections keep the same IMRaD-Types as their
parent section.

We store word histograms for articles as well as the sections, so we do
not have to scan the entire text for each search request. These histograms
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contain the term frequencies of the corresponding area. Therefore, subsub-
sections contain the frequencies of their text areas, subsections contain the
frequencies of their text areas, and their subsubsections text areas, and so
on. Finally, an article holds the term frequencies of the whole document.

The last two attributes of an article are the reference-, and the cited-by-lists.
The two lists are used to generate connections between articles. A reference
holds the identifier of a referred paper. In turn, the referred paper has an
entry with the paper id in the cited-by-list. Additionally, we store the text
of whole reference, the authors, and other available information such as
publisher, pages, or the volume.

One characteristic over all tables of the schema is, that all extracted text
values are available as raw-, and processed text values. Raw represents the
text as it was separated from the used framework. Processed is the raw text
after the stopword removal and the stemming.

3.1.3 Citation Network

A Citation network represents the relationship between scientific articles.
In general citation means that one article mentions the work of another
article. Therefore a reference with the title, the authors and the publication
journal is added. Figure 3.3 shows the structure of such a network. Scientific
articles are nodes, and citations are directed edges between these nodes.
The timeline indicates that new articles are citing already existing articles,
and thus there can not be cyclic dependencies.

M. Kas [Kas11] defined the basic properties of citation networks in their
work. In our case the most important ones are:

• Directed.
• Acyclic.
• All edges point backwards in time
• Edges are permanent
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Figure 3.3: General Structure of a Citation Network. The timeline indicates that new
articles citing existing articles, and thus there can not be cyclic dependencies
between them.

• The existing part is mostly constant. Only the leading edges changes

The network is directed and acyclic because each article has a publication
date and can only cite previously published articles. Due to these properties
edges can only point back in time. The edges of the network have to be
permanent because the references of the existing articles never change.
When a new node is added it generates edges to existing articles. This
means that all other nodes and edges stays constant.

The main properties of our citation network are shown in Table 3.2. Scientific
articles are the nodes, and citations are the edges between these nodes. This
means that our network consists of 821 articles, and 1, 716 citations between
these articles. During the generation of our dataset we found cycles due
to preprints. Preprints are versions of scientific articles which are not peer
reviewed, and published in a scientific journal. In our case we removed
all preprints from the dataset. The longest path length indicates that the
longest citation chain of our network consists of 12 articles. The root nodes
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Max References 98

Mean References 5.8767

Median References 2
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(b) In-Degree Distribution

Figure 3.4: In-Degree Distribution. The in-degree distribution describes how often articles
get referred by other articles. The long tail of the distribution indicates that there
are a lot of articles which are cited only a few times, and a few articles which
are cited more often. There are some outliers with a higher degree than 20.
This can also be seen by the difference between the mean and the median. The
maximum number of references in connection with the zoomed view represents
that one single article was cited by 98 other articles.

are nodes without any outgoing edges. In our network are 107 root articles
which cite no other article. This happens because none of their referred
articles are part of our dataset.

Figure 3.4 describes the in-degree distribution of our citation network. In
general, the in-degree of a node is the number of ingoing edges. The in-

Number of Nodes 821

Number of Edges 1, 716

Longest Path Length 12

Number of Root Nodes 107

Table 3.2: General Properties about the citation network. The citation network represents
the relationship between our used scientific articles. The number of nodes indi-
cates the number of articles, and the number of edges citations between those
articles. There are no cycles inside the graph, and the longest citation chain
consists of 12 articles. There are 107 articles which has no outgoing edges. That
means that none of their referred articles are part of our dataset.
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Max References 13

Mean References 2.4034

Median References 2
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(b) Out-Degree Distribution

Figure 3.5: Out-Degree Distribution. The out-degree distribution describes how often
articles refer other articles. The long tail of the distribution indicates that there
are a lot of articles which refer less than 7 other articles, and only few with refer
to more articles. Mean and median of the outgoing edges are low, because not
every refereed article is part of our dataset. By the small difference between the
mean and the median can be seen that there are less outliers. The maximum
number of references represent that the highest number of a single article refers
other articles is 13.

degree distribution represents the probability distribution of these nodes
over the whole network. Regarding a citation network the in-degree of
a node is the number of articles which referred to this article. The long
tail of the in-degree distribution indicates that there are a lot of articles
which are referred only a few times, and a few articles which are referred
more often. There are only some articles with an in-degree higher than 20.
The maximum number of references in connection with the zoomed view
represents that one single article was referred by 98 other articles.

The out-degree distribution and their properties are displayed in Figure 3.5.
In contrast to the in-degree distribution, the out-degree distribution de-
scribes the number of outgoing edges. Regarding to the citation network,
the out-degree of a node can be described as the number of articles which
gets referred by this article. The long tail of the out-degree distribution
indicates that there are a lot of articles which refer less than 7 other articles,
and only few with refer 7 or more articles. Mean and median of the outgoing
edges are low, because not every refereed article is part of our dataset. By
the small difference between mean and median we can also see that there
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are less outliers. The maximum number of references represent the highest
number of a single article refers to other articles, which is in our case 13.

3.2 Model

An information retrieval model is defined by the quadruple [D, Q,F ,R(qi, dj)]
that contains the design of documents in the document collection D, queries
Q, the framework F , and the ranking function R(qi, dj) (cf. Section 2.1). We
design our system with the goal to compare various common ranking algo-
rithms. Therefore, we generate a model that allows that ranking algorithms
can easily be exchanged by a configuration parameter. Additionally, our
model is designed to work with unstructured as well as structured data.
This is reflected by the query language.

For structured text retrieval, we structure the documents according to their
IMRaD sections (see Section 2.4). In our dataset the background chapter is
available in addition to the IMRaD chapters. Therefore, it was introduced as
an additional IMRaD type.

We define documents to provide data unstructured and structured. Hence,
each document in the dataset contains a bag of words where all index
terms of its text content (DBWAll) are stored. In a bag of words each term
is represented as a pair of term and term frequency. Additionally, the
documents contain 5 bag of words for each IMRaD-type (DBWIntroduction,
DBWBackground, DBWMethods, DBWResults, DBWDiscussion), where:

DBWIMRaD =DBWIntroduction ∪ DBWBackground ∪ DBWMethods

∪ DBWResults ∪ DBWDiscussion. (3.1)

DBWIMRaD differs from DBWAll, as there exist areas in the document that
cannot be assigned to an IMRaD-type (e.g., Abstract).

We remove stopwords and stem words during the indexing process of a
document to generate index terms. Afterwards, we assign the index terms
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to bag of words of a document. For example, ”I love deadlines.” is in the
Introduction and ”I like the whooshing sound they make as they fly by.” is in the
Methods of a document A. The underlying bags of words in the document
are given by:

DBWAll = {”love” : 1, ”deadlin” : 1, ”whoosh” : 1, ”sound” : 1, ”fly” : 1}
DBWIntroduction = {”love” : 1, ”deadlin” : 1}

DBWMethods = {”whoosh” : 1, ”sound” : 1, ”fly” : 1}.
(3.2)

We represent IMRaD sections that do not occur in the document by an empty
bag of words. In this example, the union of DBWIntroduction and DBWMethods is
identical to DBWAll. When we define A to additionally contain ”I love music.”
in the Abstract then DBWAll changes, but DBWIntroduction and DBWMethods stay
the same.

We define the query language in a way that the user can choose if un-
structured or structured text retrieval is used. Therefore, we design an
IN-statement that connects query terms and IMRaD-Types. For example,
with the query ”local, network IN Methods” a user can specify that the terms
local and network should occur in the Methods section of a document.

The left part of the IN-statement is converted into a set of query terms.
Hence, multiple occurrences of a single term in the query does not affect
the outcome. The right part of the IN-statement captures in which set the
query term is stored. Therefore, given the 5 IMRaD-Types we defined 6
query sets (QSAll, QSIntroduction, QSBackground, QSMethods, QSResults, QSDiscussion).
The query sets are connected directly to the documents bags of words in
the framework. For example, the terms in QSIntroduction are used to search in
DBWIntroduction.

When a query contains terms without any IN-statements the terms are
added to QSAll. Hence, query terms are stored in an IMRaD query set if an
IN-statement is present, or in QSAll otherwise. As a result, query terms are
searched in DBWAll or DBWIMRaD, but never in both of them. This query
structure avoids the usage of unstructured and structured text retrieval with
a single request.
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We introduce an AND-statement to combine multiple IN-statements. For
example, ”area IN Background” AND ”local, network IN Methods” expresses
that area should occur in Background section and the terms local and network
should occur in the Methods section of a document. Therefore, ”area” is
added to QSBackground and ”local”, ”network” is added to QSMethods. The
definition of the AND-statement allows to search multiple bags of words
with a single request. We combine the query sets on the left part of the
IN-statement at query time when an IMRaD type appears multiple times.
The same holds when unstructured text retrieval is used (e.g., ”area” AND
”local, network”).

Only one query term has to occur in the specified bag of words to mark
a document as relevant. This increases the number of relevant documents
in the resulting ranked list. For example, a query is given by ”plane IN
Introduction” AND ”fly IN Methods”. When document A in the previous
example (see Equation (3.2)) is searched with respect to the defined query it
will be marked as relevant. This happens as fly appears in DBWMethods. We
design our system that the maximum number of relevant documents in a
generated ranked list can be set via a configuration parameter. When this
setting is disabled all documents that are marked as relevant are returned
to the user.

In our system, it is possible to use entire documents (in PDF format) to
search for other documents. In this case, the user has to specify if unstruc-
tured or structured text retrieval should be used. The specification influences
the generation of the query sets QS. The system processes query sets gen-
erated by a document the same way as they are generated by a query. To
transform a document into query sets we perform the following steps:

1. First, we extract the article structure and the text content from the PDF.
To that end, we use a framework described in [Kla+14].

2. Second, we map section headings to IMRaD sections by keyword
detection. We apply a similar approach to map the Methods section
as we did for the generation of the dataset (see Section 3.1.1). The
only difference is that a document will not be rejected if the upper or
lower bound cannot be detected. In that case, the Methods section is not
mapped. This step is only performed for structured text retrieval, as
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IMRaD-Type detection is not necessary for unstructured text retrieval.
3. Third, we remove stopwords and stem terms for the whole content of

the document.
4. The fourth step differs depending on the usage of unstructured or

structured text retrieval:

• For unstructured text retrieval, we added all terms to QSAll.
• For structured text retrieval, we added the terms to a query set

with respect to the IMRaD-Type of the section they occur.

Finally, our system searches for other documents with the usage of the
generated query sets. Therefore, we calculate a rank for each document
that contains query words in the specified section. In Section 2.2 we discuss
several ranking algorithms. All of them calculate rankings based on a query
q, and a document dj. For unstructured text retrieval, the ranking algorithms
are used without any transformation as QSAll represents the query and
DBWAll the document.

We change the calculation of the rank for structured text retrieval to take
the IMRaD structure into account:

sim(dj, q) =
1

|IMRaD-TYPES| × ∑
k∈IMRaD-TYPES

sim(dj,k, qk), (3.3)

where IMRaD-TYPES is an array containing all IMRaD-Types. The document
dj is a dictionary that contains all IMRaD bags of words, and dj,k is the bag
of words of IMRaD-type k. Furthermore, q is a dictionary containing all
query sets, and qk is the query set of IMRaD-type k. However, for structured
text retrieval the mean rank over all IMRaD-types is assigned to be the
documents rank.

In our system, Term Frequency (TF), Term Frequency - Inverse Document Fre-
quency (TF-IDF), BM25, Divergence from Randomness (DfR), and Ranked Boolean
Retrieval (RBR) are available as ranking algorithms. A configuration param-
eter defines which ranking algorithm is used. Additional parameters of
the ranking algorithm (e.g., b and K1 for BM25) are also added to the
configuration.
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The simplest ranking algorithm is TF. It sums the frequencies given in a bag
of words, for all terms in a query set. For example, document B is given
by:

DBWAll = {”love” : 5, ”deadlin” : 1, ”whoosh” : 2}
DBWIntroduction = {”love” : 3, ”deadlin” : 1}

DBWMethods = {”love” : 2, ”whoosh” : 2}.
(3.4)

Furthermore, we configure TF as ranking algorithm and a query is given by
”love, whoosh”. Hence, QSAll = {”love”, ”whoosh”} and the rank of B is 7 as
the counts of DBWAll are taken.

Another example would be to use the same document B and TF as ranking al-
gorithm, but the query is given by ”love IN Introduction” AND ”whoosh IN
Methods”. Therefore, the underlying query sets are QSIntroduction = {”love”}
and QSMethods = {”whoosh”}. We calculate the ranking based on Equa-
tion (3.3) since IMRaD structure features are used. The rank of B is 1 as
counts are taken from DBWIntroduction and DBWMethods, and are divided by
the number of IMRaD-types. There exist different variants to calculate the
term frequency (see Section 2.2.2).

RBR is also a simple ranking algorithm, as it combines zone scores with
boolean expressions. The score is applied to the ranking if terms occur in the
zone (cf. Section 2.3.1). TF and RBR do not have any external data sources
that have to be provided by the framework. Therefore, the entire calculation
of the rank can be done with the document and the query that are passed
into the ranking function.

To calculate a rank TF-IDF and BM25 require the number of documents,
in which a term occurs in the document collection. This term occurrence
is precalculated for all terms of the Alphabet to increase the performance.
We store multiple term occurrences for each term as we assume that the
distribution of words changes over different IMRaD sections. Hence, we
generate them as bags of words with respect to entire documents, and addi-
tionally for each IMRaD-type (TOAll, TOIntroduction, TOBackground, TOMethods,
TOResults, TODiscussion). On one hand, TOAll expresses the term occurrence
for unstructured text retrieval. On the other hand, the bag of words ac-
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cording to the IMRaD-type signals the term occurrence for structured text
retrieval.

For TF-IDF and BM25 the term occurrence is related to the calculation of the
inverted document frequency. The inverted document frequency represents
the importance of a term regarding the whole document collection. There
exist different variants to calculate the inverted document frequency (see
Section 2.2.2).

Term frequencies over the entire document collection are required to calcu-
late rankings with DfR. Therefore, we precalculate them the same way as
we do for the term occurrence of TF-IDF and BM25.

Our proposed ranking algorithms require additional variables such as
average document length, and number of documents in the collection.
We do not discuss their calculation in detail as they can be computed
with negligible effort. All precalculated values are bound by the document
collection. Therefore, we recalculate them when the document collection
changes.
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In this chapter we discuss the results of our information retrieval model.
For our evaluation, we generated a dataset with 821 scientific articles. Each
document in the dataset was stored with its logical structure (title, head-
ings, chapters, sections, subsections, subsubsections). Additionally, sections
contain information about their IMRaD-Types. Usually a section has only
one IMRaD-Type, but some of them have more (e.g., Results and Discussion
are assigned the IMRaD-Types Result and Discussion). Furthermore, the
articles are linked according their citations. For more information about the
creation of our dataset see Section 3.1.

In our experiments we compare 5 common ranking algorithms:

1. First, Term Frequency is the simplest approach to rank generated lists.
We used Raw Frequency of the term frequency variants. There the
occurrences of each query term are counted within the document.
To read more about different variants of term frequency and inverse
document frequency see Section 2.2.2.

2. Second, TF-IDF to take inverse document frequency into account. The
inverse document frequency represents the importance of a term with
respect to the entire document collection. Therefore, Inverse Frequency
is applied in combination with Raw Frequency.

3. Third, Okapi BM25 is a baseline ranking algorithm. We use the params
as suggested by Robertson et. al [Rob+94]. Therefore, we set b = 0.75
and K1 = 1 (cf. Section 2.2.3).

4. Fourth, Divergence from Randomness has 2 assumptions that are for-
malized with equations. In our experiments we used Equation (2.36)
and Equation (2.38) for our practical implementation of the assump-
tions. Furthermore, Equation (2.40) was applied for document length
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normalization (cf. Section 2.2.3).
5. Fifth, Ranked Boolean Retrieval is a ranking method that combines zone

scores with boolean expressions. The score is applied to the ranking if
terms occur in the zone. The configuration of the algorithm depends
on the experiment (cf. Section 2.3.1).

4.1 Evaluation of Ranking Algorithms

The effectivity of an information retrieval system (IRS) is lean on the underly-
ing ranking function. Therefore, it is important to measure the performance
of these ranking functions to make them comparable.

Evaluation of a IRS is based on the set of relevant documents provided by the
system. To evaluate a generated set 2 information retrieval basic measures
known as Precision and Recall are used. Both measures do not take any
ranking of the relevant documents into account. Precision is a measurement
of retrieved documents (see Figure 4.1 for sets in the document collection
split according their relevance) that are relevant for the user:

Precision =
# relevant items retrieved

# retrieved items
=P(relevant|retrieved)

=
true positives

true positives + false positives
. (4.1)

Recall represents the fraction of relevant documents that are received:

Recall =
# relevant items retrieved

# relevant items
=P(retrieved|relevant)

=
true positives

true positives + false negatives
. (4.2)

There is a trade-off between the two measures. Therefore, when having a
Recall of 1 it is possible to have a low Precision. This happens as Recall always
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Figure 4.1: Document collection split according their relevance. During the evaluation of
a ranking algorithm the document collection is split into 4 subsets. First, the
true positive documents retrieved as relevant for the user, which are actually
relevant. Second, the false positive documents retrieved as relevant, but are not
relevant for the user. Third, the true negatives documents were correctly received
as not relevant. Forth, the false negatives documents were incorrectly received
as not relevant. The true positive set, and true negative set should be as large as
possible as it is directly related to the effectivity of the ranking algorithm.

increasing until all relevant documents are retrieved, but new received
documents can be false positives. Hence, the Precision decreases, and Recall
stays the same.

There exist many different metrics to evaluate generated sets with ranking
(ordered). Average Precision is one of the most commonly used evaluation
techniques. It is defined as the average of all precision values after a new
relevant document is observed:

APi =
1
|Ri|

|Ri|

∑
k=1

P(Ri[k]), (4.3)

where Ri is the set of relevant documents with respect to query qi. Ri[k]
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Figure 4.2: Example for Mean Average Precision of a single query. The Precision values
are calculated according the retrieved set of relevant documents. Documents
with a green hook are true positives (TP), and documents with a red cross
are false positives (FP). The precision values of FP documents are ignored for
these documents, as they are not counted. In the example R1 = {TP, FP, TP,
TP, FP, TP}, and therefore |R1| = 6. Inserting these values into the Mean
Average Precision formula of a single query (see Equation (4.3)) results in
MAP1 = 1/6× (1 + (2/3) + (3/4) + (4/6)) = 0.5138.

represents the reference of the kth document in Ri, and P(Ri[k]) is the
Precision of the document (see Equation (4.1)). If Ri[k] belongs to a false
positive document P(Ri[k]) = 0. Furthermore, the Mean Average Precision
over a set of queries is defined as:

MAP =
1

Nq

|Nq|

∑
i=1

APi, (4.4)

where Nq is the total number of queries.

Mean Average Precision is widely used as it is simple, easy to implement,
versatile, and stable. Therefore, we apply it to compare the generated ranked
lists of our proposed ranking algorithms (for an example see Figure 4.2).

4.2 Leveraging IMRaD Structure Features

In our first experiments we compare unstructured text retrieval with struc-
tured text retrieval. Therefore, each document in the document collection
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contains multiple bag of words. In a bag of words, each index term is
represented as a pair of term and term frequency (see Section 3.2 for the
definition of the document). For structured text retrieval, we focus on the
underlying IMRaD structure.

First, we evaluate explicit search for which query terms have to be for-
mulated explicitly. For example, given a query q1 =”network IN Methods”
the system leverages different bag of words to search for the term. For
structured text retrieval the Methods-bag of words is used as it was spec-
ified in the query. In our system IN-statements of queries are ignored for
unstructured text retrieval, as all terms are searched in the bag of words
containing all index terms of a document.

Second, we discuss implicit search were we use entire scientific articles to
search for other articles. For structured text retrieval, we split the input paper
according to its IMRaD-structure. We generate a query that is similar to the
query of the explicit variant with the extracted terms. For unstructured text
retrieval the same process is used to create the query, however IN-statements
are ignored here as well.

4.2.1 Explicit Search using Word N-Grams

Searching with information provided by the user is denoted as explicit
search. For our information retrieval model this is done by formalizing user
queries. These queries can be seen as a sequence of keywords.

Our generated dataset consists of scientific articles and links between them.
We extracted citations in order to get queries that are used for testing. We
base our model on the assumption that citations describe the content of
referenced articles. Therefore, a referenced article is represented by the
citation.

We store each citation as a set of terms. An important addition is that
the order of terms within the set is not lost. Additionally, we assume that
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a typical user searches by combining keywords. Therefore, we removed
stopwords from the set, but terms were not stemmed. For each citation set
we store information about the cited article and the IMRaD-Types of the
section. For example, ”The authors of [1] present a comprehensive system for
the structure extraction of PDF books, which is used within a commercial e-book
software.” is in the Introduction of scientific article A. Furthermore, ”[1]”
is the reference to the cited scientific article B. The resulting citation set
looks as follows: csA1 = {”authors”, ”present”, ”comprehensive”, ”system”,
”structure”, ”extraction”, ”PDF”, ”books”, ”commercial”, ”e-book”, ”software”},
and additionally the reference to article B, and the IMRaD-Type Introduction
is stored for csA1.

Queries are produced as N-Grams using the citation sets. This means the
citation sets are split into subsets of size N. Furthermore, the order of the
terms is also important for these subsets. For example, csA1 is split into
5-Grams. The 7 resulting subsets are:

NGcsA1,1 = {”authors”, ”present”, ”comprehensive”, ”system”, ”structure”}
NGcsA1,2 = {”present”, ”comprehensive”, ”system”, ”structure”, ”extraction”}
NGcsA1,3 = {”comprehensive”, ”system”, ”structure”, ”extraction”, ”PDF”}
NGcsA1,4 = {”system”, ”structure”, ”extraction”, ”PDF”, ”books”}
NGcsA1,5 = {”structure”, ”extraction”, ”PDF”, ”books”, ”commercial”, }
NGcsA1,6 = {”extraction”, ”PDF”, ”books”, ”commercial”, ”e-book”}
NGcsA1,7 = {”PDF”, ”books”, ”commercial”, ”e-book”, ”software”}

In general, the number of subsets that can be generated from a citation set
cs is defined as:

l = len(cs)− N + 1, (4.5)

where len(cs) is the number of terms in cs.

The last step of our query generation process is to transform query sets and
IMRaD-type into our used query structure. For example, the resulting query
compiled by NGcsA1,1 looks as follows: q1 =”authors, present, comprehensive,
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system, structure IN Introduction”. In our system IN-statements of queries
are ignored if IMRaD chapter features are disabled.

Mean Average Precision (see Section 4.1) is used to evaluate our proposed
ranking algorithms. Therefore, we pass the query into our information
retrieval system. The Average Precision depends on the position of the cited
article in the generated ranked list.

Table 4.1 highlights the performance of our proposed ranking algorithms. We
evaluate different query lengths (the number of terms in the query), where
query lengths vary in the range between 2 to 14. Furthermore, we compare
the algorithms with respect to the usage of IMRaD chapter features, where
disabled features denote unstructured text retrieval and enabled features
represent structured text retrieval. We highlight the best results with enabled
features in violet and with disabled features in blue for every algorithm.

All 5 algorithms achieve better performance results without IMRaD chapter
features. Therefore, the ranking is generated with respect to their achieved
accuracy when IMRaD chapter features are disabled. The best performing
algorithm is TF-IDF. It achieves a MAP of 0.2199 with disabled features,
where the query consists of 11 terms. In contrast, the same algorithm
achieves a MAP of 0.1642 with enabled features and a query length of 12.
Therefore, unstructured text retrieval is 5.57% better than structured text
retrieval for this configuration.

The second best algorithm is TF. It achieves an accuracy of 0.1966 with
disabled features and a query length of 11. In contrast, the same algorithm
achieves a MAP of 0.1293 with enabled features and a query length of 12.
Therefore, unstructured text retrieval is 6.73% better than structured text
retrieval for this configuration. In comparison to TF-IDF the achieved accu-
racy is 2.33% lower with disabled features, and 3.49% lower with enabled
features. The best performing query lengths are the same as for TF-IDF.

The third best algorithm is Ranked Boolean Retrieval. Zone scores zs have to
be defined to configure the algorithm (cf. Section 2.3.1). For the experiments
only zones that contain text areas are set to a value greater zero. This is
done as all citations were extracted from text areas.
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#
Terms

in
Query

#
Queries

Using
IMRaD
Chapter
Features

Term
Frequency TF-IDF

Ranked
Boolean
Retrieval

Okapi
BM25

Diver-
gence

from Ran-
domness

2 8770 No 0.0882 0.1128 0.1035 0.0442 0.0498
Yes 0.0696 0.0897 0.0638 0.045 0.0379

3 7070 No 0.1038 0.1382 0.1198 0.064 0.046
Yes 0.0785 0.1042 0.0713 0.0628 0.0323

4 5589 No 0.1197 0.1547 0.1336 0.0739 0.0448
Yes 0.0894 0.1167 0.0787 0.0734 0.031

5 4347 No 0.1317 0.1689 0.1479 0.0794 0.0416
Yes 0.0993 0.1262 0.0844 0.0791 0.0317

6 3336 No 0.1469 0.1766 0.1603 0.0804 0.0396
Yes 0.1042 0.1319 0.0918 0.0819 0.0311

7 2550 No 0.1588 0.1857 0.167 0.0817 0.0404
Yes 0.1085 0.1375 0.0961 0.0842 0.0312

8 1911 No 0.1712 0.1957 0.1718 0.0818 0.0449
Yes 0.1158 0.1441 0.0988 0.0916 0.0303

9 1402 No 0.1804 0.2074 0.1757 0.0879 0.0456
Yes 0.1213 0.1496 0.1015 0.0969 0.0301

10 1051 No 0.1847 0.2153 0.1851 0.0952 0.0466
Yes 0.1235 0.1555 0.1005 0.099 0.0304

11 787 No 0.1966 0.2199 0.1921 0.1075 0.0439
Yes 0.1217 0.1589 0.0978 0.1034 0.0296

12 606 No 0.1923 0.2159 0.1851 0.1102 0.0397
Yes 0.1293 0.1642 0.0974 0.1043 0.0296

13 470 No 0.1846 0.205 0.1712 0.1192 0.0319
Yes 0.1247 0.1637 0.0958 0.1058 0.0295

14 362 No 0.1634 0.1919 0.1558 0.1207 0.0221
Yes 0.1183 0.1589 0.0964 0.1008 0.0311

Table 4.1: Ranking results of our proposed ranking algorithms using explicit search. Mean Average
Precision is used to evaluate our proposed ranking algorithms. Furthermore, we compare
them with and without IMRaD chapter features. Without IMRaD chapter features the entire
document is used to search for query terms (unstructured). When IMRaD chapter features are
enabled query terms are searched only in specified sections. We evaluate query lengths (the
number of terms in the query) in the range between 2 to 14.
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In our model, these are text areas of sections, subsections, and subsubsec-
tions. Therefore, the constant zone scores are zsSection = 0.34, zsSubsection =
0.33, and zsSubsubsection = 0.33.

Ranked Boolean Retrieval achieves an accuracy of 0.1921 with disabled features
and a query length of 11. Hence, in the context of unstructured text retrieval
the best performing query length is the same as for TF-IDF and TF. In
contrast, the same algorithm achieves a MAP of 0.1015 with enabled features
and a query length of 9. Therefore, unstructured text retrieval is 9.06%
better than structured text retrieval for this configuration. In comparison
to TF-IDF the achieved accuracy is 2.78% lower with disabled features
and 6.27% lower with enabled features. Furthermore, in comparison to TF
the accuracy is 0.45% lower with disabled features, and 2.78% lower with
enabled features.

The forth best algorithm is Okapi BM25. It achieves an accuracy of 0.1207
with disabled features. The associated best performing query length is 14,
which was the upper bound of the query lengths for our experiments. The
upper bound comes from the number of queries that can be generated from
our dataset. In contrast, the same algorithm achieves a MAP of 0.1058 with
enabled features and a query length of 13. Therefore, unstructured text
retrieval is 1.49% better than structured text retrieval for this configuration.
In comparison to TF-IDF the achieved accuracy is 9.92% lower with disabled
features and 5.84% lower with enabled features. Furthermore, in comparison
to Ranked Boolean Retrieval the accuracy is 7.14% lower with disabled features,
and 0.43% better with enabled features.

The fifth best algorithm is Divergence from Randomness. It achieves an ac-
curacy of 0.0498 with disabled features, and an accuracy of 0.0379 with
enabled features. Therefore, unstructured text retrieval is 1.19% better than
structured text retrieval for this configuration. The best performing query
length is 2 with disabled and enabled features. In comparison to TF-IDF
the achieved accuracy is 17.01% lower with disabled features, and 12.63%
lower with enabled features. Furthermore, in comparison to Okapi BM25
the accuracy is 7.09% lower with disabled features, and 6.79% lower with
enabled features.
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An interpretation of the results captures that it is not necessary to have
the overhead of IMRaD chapter features when only a few keywords are
used to search for scientific articles. This happens as the keywords define
content that should occur anywhere in the articles. Additional constraints
that restrict where terms can appear are rather obstructive as they tend to
prevent the retrieval of relevant articles.

Furthermore, we interpret the results of each ranking algorithm. TF-IDF
outperforms the other algorithms, which was unsurprisingly as good results
are often observed for this algorithm. During our research we found Okapi
BM25 with similar results. However, to achieve a good performance an exten-
sive parameter search is required. We use Okapi BM25 with recommended
parameters, which results in worse accuracy. In comparison to the other
ranking algorithms Divergence from Randomness is always outperformed by
all other algorithms. This bad performance is probably related to our dataset.
The good performance of Ranked Boolean Retrieval was surprising. We can
probably attribute this to the zone scores, as they are hiding irrelevant areas,
and mark important article areas.

4.2.2 Implicit Search using Scientific Articles

In traditional information retrieval models information is available that was
not explicitly provided by the user. Leveraging this type of information
in addition is denoted implicit search. In our model, we use explicit and
implicit information of scientific articles to search for other articles. This
approach is referred to as more like this.

For our experiment we transformed scientific articles into user queries.
Therefore, queries contain information about index terms and the IMRaD
sections they occur. For example, q1 =”structure, present IN Introduction

AND system, structure IN Methods” is a query that can be executed by our
system. IN-statements are used to define where the terms occur, and AND-
statements are used to combine subqueries. In our system IN-statements of
queries are ignored if IMRaD chapter features are disabled.
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We use a generated dataset with 821 scientific articles to evaluate our
proposed ranking algorithms. Therefore, we assume that the content of a
scientific article has to be similar to its cited articles. As a result, the Mean
Average Precision (see Section 4.1) is calculated with respect to the position
of the cited articles in the generated ranked list.

Table 4.2 highlights the performance of our proposed ranking algorithms. TF,
TF-IDF, Ranked Boolean Retrieval, and Okapi BM25 obtain higher results with
the usage of IMRaD chapter features. We find no difference in performance
of Divergence from Randomness when leveraging IMRaD chapter features.

The ranking of the proposed ranking algorithms is generated with respect
to their achieved accuracy when IMRaD chapter features are enabled. The
best performing algorithm is TF-IDF. It achieves an accuracy of 0.1613
with enabled features, and 0.1163 with disabled features. Therefore, struc-
tured text retrieval is 4.5% better than unstructured text retrieval for this
configuration.

The second best performing algorithm is TF. It achieves an accuracy of
0.1463 with enabled features, and 0.1186 with disabled features. Therefore,
structured text retrieval is 2.77% better than unstructured text retrieval for
this configuration. In comparison to TF-IDF the achieved accuracy is 1.5%
lower for enabled features, and 0.2% better for disabled features.

Using
IMRaD
Chapter
Features

Term
Frequency TF-IDF

Ranked
Boolean
Retrieval

Okapi
BM25

Diver-
gence

from Ran-
domness

No 0.1186 0.1163 0.0466 0.0554 0.0137
Yes 0.1463 0.1613 0.0506 0.0882 0.0137

Table 4.2: Ranking results of the used weighting schemes using scientific articles. We
compare our proposed ranking algorithms with respect to the underlying struc-
ture. Therefore, we use scientific articles unstructured and structured to search
for other scientific articles. For structured articles, we focus on the underlying
IMRaD structure. Mean average precision was used to evaluate the results.
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The third best performing algorithm is Okapi BM25. It achieves an accuracy
of 0.0882 with enabled features, and 0.0554 with disabled features. Therefore,
structured text retrieval is 3.28% better than unstructured text retrieval
for this configuration. In comparison to TF-IDF the achieved accuracy is
7.31% lower for enabled features, and 6.09% lower for disabled features.
Furthermore, in comparison to TF the accuracy is 5.81% lower for enabled
features, and 6.32% lower for disabled features.

The forth best performing algorithm is Ranked Boolean Retrieval. Zone scores
zs have to be defined to configure the algorithm. For our experiments
we determine the best configuration using parameter search. The best
performing configuration is as follows:

zsTitle = 0.2
zsSection Title = 0.3
zsSection Text = 0.2

zsSubsection Title = 0.18
zsSubsection Text = 0.05

zsSubsubsection Title = 0.05
zsSubsubsection Text = 0.02,

where ”Title” defines the header of the document component, and ”Text”
the text area of the of the document component. Fur further information
about structured text retrieval, document components, and Ranked Boolean
Retrieval see Section 2.3.

Ranked Boolean Retrieval achieves an accuracy of 0.0506 with enabled features,
and 0.0466 with disabled features. Therefore, structured text retrieval is 0.4%
better than unstructured text retrieval for this configuration. In comparison
to TF-IDF the achieved accuracy is 11.07% lower for enabled features, and
6.97% lower for disabled features. Furthermore, in comparison to Okapi
BM25 the accuracy is 3.76% lower for enabled features, and 0.88% lower for
disabled features.

The fifth best performing algorithm is Divergence from Randomness. It achieves
an accuracy of 0.0137 with enabled and disabled features. In comparison
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to TF-IDF the achieved accuracy is 14.76% lower for enabled features, and
10.26% lower for disabled features. Furthermore, in comparison to Ranked
Boolean Retrieval the accuracy is 3.69% lower for enabled features, and 3.29%
lower for disabled features.

When articles are used to search for other articles they can be seen as large
and precise queries. IMRaD chapter features are leveraged to define these
queries. These are helpful as they introduce constraints that describe the
expected content of articles.

As expected, we find that TF-IDF achieves the best accuracy. We used Okapi
BM25 only with recommended parameters. An exhaustive parameter search
would be necessary to fit our generated dataset. In comparison to the other
ranking algorithms Divergence from Randomness was always outperformed
by all other algorithms. This bad performance is probably related to our
dataset. In this experiments it can be seen that the zone scores of Ranked
Boolean Retrieval are not enough to fit the complexity of large queries.

4.3 Chapter Based Search

When searching with entire scientific articles (see Section 4.2.2) we obtain
better results with the usage of IMRaD chapter features compared to the

Section Introduction Background Methods Results Discussion
Introduction 0.1242 0.1226 0.1095 0.1092 0.1049
Background 0.1454 0.1249 0.1331 0.1255 0.1106

Methods 0.0947 0.0857 0.1017 0.0897 0.0668
Results 0.0877 0.0783 0.0815 0.0783 0.0631

Discussion 0.1188 0.1078 0.0957 0.0914 0.084

Table 4.3: Chapter based Search using TF-IDF. Keywords of a single chapter are used to
search in individual chapters of other articles. These input chapters are repre-
sented as rows, and the search chapters are represented as columns. Mean average
precision was used to evaluate the results of the TF-IDF ranking algorithm.
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usage without IMRaD chapter features. Therefore, we focus on structured
text retrieval and the influence of single chapters on the search result. The
idea is that keywords of a chapter can be used to search in other chapters.
For example, the Methods section of one paper can be referenced in the
Related Work of another paper.

We use the same dataset and evaluation process as for our implicit search
evaluation (see Section 4.2.2). In our dataset the background chapter is
available in addition to the IMRaD chapters. The evaluation was done for
TF-IDF and Okapi BM25 as they are state-of-the-art ranking algorithms.

The chapter of the article that is used to search for other articles is defined
as input chapter. Furthermore, the chapter that is searched in the articles of
the collection is defined as search chapter. For example, the introduction of
an article is used to search in the discussion of articles in the collection. In
this example the introduction is the input chapter and the discussion is the
search chapter.

Table 4.3 highlights the performance results of TF-IDF. When Introduction,
Background, Results, or Discussion is the input chapter the best results are
obtained when Introduction is the search chapter. Furthermore, when Methods
is the input chapter then the best performance is given if Methods is also the
search chapter. The highest accuracy is 0.1454, where Background is the input
chapter, and Introduction the search chapter. When summing up accuracies

Section Introduction Background Methods Results Discussion
Introduction 0.0884 0.0686 0.0631 0.061 0.0708
Background 0.0909 0.0715 0.076 0.0618 0.0751

Methods 0.0565 0.0417 0.0593 0.0379 0.0403
Results 0.0438 0.0426 0.0433 0.0461 0.0443

Discussion 0.0799 0.0682 0.0587 0.0595 0.0616

Table 4.4: Chapter based Search using Okapi BM25. Keywords of a single chapter are
used to search in individual chapters of other articles. These input chapters are
represented as rows, and the search chapters are represented as columns. Mean
average precision was used to evaluate the results of the Okapi BM25 ranking
algorithm.
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Background is the best performing input chapter, and Introduction the best
performing search chapter.

Table 4.4 highlights the performance results of Okapi BM25. When Intro-
duction, Background, or Discussion is the input chapter the best results are
obtained when Introduction is the search chapter. For Methods and Results
the best results are obtained when they are used as input chapter as well as
search chapter. The highest accuracy is 0.0909, where Background is the input
chapter, and Introduction the search chapter. When summing up accuracies
Background is the best performing input chapter, and Introduction the best
performing search chapter.

TF-IDF achieves better results than Okapi BM25 when comparing the per-
formance results. Both ranking algorithms have Background as their best
performing input chapter, and Introduction as their best performing search
chapter. When comparing their highest accuracy TF-IDF is 5.45% better than
Okapi BM25. This reflects also approximately the performance of the other
input chapters and search chapters.

The accuracy of implicit search with enabled IMRaD chapter Features is
1.59% better than the highest accuracy of search with single chapters. One
interesting point is that queries for single chapters are one fifth of queries
of implicit search, but have almost the same performance. We used Okapi
BM25 only with recommended parameters. A more precised parameter
search would be necessary to suite our generated dataset.
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5.1 Summary

Search engines help to reduce the time required to find a piece of infor-
mation, and minimize the number of information sources that need to be
searched. We focus on scientific literature search where search engines help
to find scientific articles.

An advantage of scientific articles is that they share a common structure
to increase the readability. This structure is known is IMRaD (Introduc-
tion, Method, Results and Discussion). In our work we tackle the problem
whether it is possible to improve the search result quality when searching for
scientific works by leveraging IMRaD structure information. Specifically,

(a) Does the search result improve for explicit search using queries?
(b) Does the search result improve for implicit search using complete

scientific papers?
(c) Does the search result improve if only a single chapter of the scientific

paper is used for searching?

In the related work section we describe the definition of an information
retrieval model. Afterwards, we discuss the 3 classical models for unstruc-
tured text retrieval. First, the boolean model where documents and queries
are represented as sets. Terms are combined with boolean operators to
formulate queries. Second, the vector model where documents and queries
are represented as a vector in a t-dimensional space. Third, the probabilistic
model where documents and queries are represented based on probability
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theory. Specifically, by estimating the probability of a term appearing in a
relevant document.

Additionally, we describe extensions of the vector-, and the probabilistic
model. First, the TF-IDF model which is based on the vector space model,
and is one of the most popular weighting schemes in information retrieval.
Second, the BM25 model which is based on the probabilistic model. It is
the result of several experiments by Robertson et. al [Rob+92; Rob+93;
Rob+94]. Third, the Divergence from Randomness model was introduced
by Amati and Rijsbergen [AR02] and is a probabilistic model that exhibits
characteristics of a language model as well.

Next, we discuss techniques of structured text retrieval. We focus specif-
ically on 5 ranking strategies known as contextualization, propagation,
aggregation, merging, and zone scores. The model based on zone scores is
proposed by Manning et al. [MRS08], and is also known as Ranked Boolean
Retrieval.

In the last part of the related work we focus on the IMRaD structure in
scientific articles. Sollaci and Pereira [SP04] describe in their work that
the IMRaD structure began to be adopted in the 1940s, and became the
standard format for scientific articles in the 1970s. Furthermore, we discuss
IMRaD structure distributions as proposed by Bertin et al. [Ber+13], and
how IMRaD structure can be leveraged in information retrieval systems.

In the methods section we started with the description of our dataset.
Our dataset is composed of 821 scientific articles. We added additional
information such as IMRaD mappings, and links between the articles based
on citations. Furthermore, we defined our database schema with respect to
the article structure and analyze the citation network.

Afterwards, we describe our introduced system and the underlying model.
We design our system to compare various common ranking algorithms.
Hence, the ranking algorithms require to be easily interchangeable. In
addition, our model is designed to work with unstructured as well as
structured data. This is reflected by the query language.
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In the results and discussion section we describe a measure for the perfor-
mance of ranking algorithms, which is required to compare our proposed
ranking algorithms.

Finally, we list our study results, and interpret them. We divide our inter-
pretation into 3 parts, which is based on our research questions:

(a) First, we compare unstructured text retrieval with structured text re-
trieval where we simulate explicitly formulated queries with the usage
of a generated test set. We find that it is not necessary to have the
overhead of IMRaD chapter features when only a few keywords are
used to search for scientific articles. This happens as the keywords de-
fine the content that should occur anywhere in the articles. Additional
constraints that restrict where terms can appear are rather obstructive,
as they tend to prevent the retrieval of relevant articles.

(b) Second, we discuss implicit search were we use entire scientific articles
to search for other articles. When articles are used to search they
can be seen as large and precise queries. IMRaD chapter features are
leveraged to define these queries. We find that these are helpful as they
introduce constraints that describe the expected content of articles.

(c) Third, we focus on structured text retrieval and the influence of single
chapters on the search result. Searching with all IMRaD chapter of
a document performs marginally better than searching with single
IMRaD chapters. We obtain the best accuracy when we use the Back-
ground section to search in Introduction sections. One interesting
point we found out is that queries for single chapters are one fifth of
queries of implicit search, but have almost the same performance.

5.2 Overarching results

In this chapter we briefly summarize the results we obtained in Chapter 4.
Afterward, we discuss these results against each other to present them in a
larger context.
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For our first experiments, we compare unstructured text retrieval with
structured text retrieval where we simulate explicitly formulated queries
with the usage of a generated test set. The accuracies of the 3 best performing
algorithms are between 0.1921 and 0.2199 for unstructured text retrieval,
and between 0.1015 and 0.1642 for IMRaD structured text retrieval. We
only take the best 3 results as others have less significance for the best
performing results. Based on the results we find that unstructured text
retrieval outperforms IMRaD structured text retrieval. This happens as
terms in a short query define content that should occur anywhere in the
articles. Additional constraints that restrict where terms can appear are
rather obstructive as they tend to prevent the retrieval of relevant articles.

For our second experiments, we compare unstructured text retrieval with
structured text retrieval according entire documents. The accuracies of the 3
best performing algorithms are between 0.0554 and 0.1186 for unstructured
text retrieval, and between 0.0882 and 0.1613 for IMRaD structured text
retrieval. Based on the results we find that IMRaD structured text retrieval
outperforms unstructured text retrieval. This happens as documents can
be seen as large and precise queries when searching for other documents.
IMRaD chapter features are leveraged to define these queries. These are
helpful as they introduce constraints that describe the expected content of
articles.

The comparison of the accuracies in the 2 experiments may lead to the
assumption that searches with queries result with more relevant papers than
searches with documents. This conclusion is misleading as the 2 experiments
cover different requirements of a user. On one hand, when a short query
is used to search for other articles a user expects a lot of documents due
to unknown expectations. On the other hand, when a user searches with
the usage of a document then other documents that are related to it are
expected.

The accuracies of Term Frequency, TF-IDF, and BM25 are similarly high
for the first and the second experiment when using IMRaD structured
text retrieval. Only Ranked Boolean Retrieval lost a lot of its accuracy. We
assume that this is due to the fact that the Ranked Boolean Retrieval already
provides a structure for the ranking, and the 2 structures influence each
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other negatively. All 4 algorithms show a similar decrease in accuracy for
unstructured text retrieval. Divergence from Randomness always performs
bad, and therefore the results are hard to interpret.

For our third experiments we focus on structured text retrieval and the
influence of single chapters on the search result. We used TF-IDF and
BM25 as ranking algorithms for the experiment. The highest accuracy was
obtained when the Background section is used to search in Introduction
sections, where TF-IDF obtains an accuracy of 0.1454 and BM25 obtains an
accuracy of 0.0909.

In comparison with our first experiment the accuracies are lower, but also
they reflect different requirements. Furthermore, in comparison to our
second experiment the performance is 1.59% worse. Therefore, searching
with all IMRaD chapter of a document performs marginally better than
searching with single IMRaD chapters.

During the development of our system, we focus on 2 applications for
information retrieval system in the field of scientific literature research. We
find that the usage of IMRaD structure features depends on the use-case. The
first application is based on breadth-first search and covers the initial search
process. During this initial search a user wants to gets a first overview of a
topic, and obtain many articles based on a set of given keywords. Therefore,
the system has to provide these articles in response to simple structured
queries. We discussed for our first experiments that additional constraints
that restrict where terms can appear are rather obstructive as they tend to
prevent the retrieval of relevant articles. IMRaD structure features are not
necessary when a system is used for the initial search.

The second application is based on depth-first search and covers the specific
search of literature. More precise queries are necessary when a user is
finished with the initial search, and specifically wants to find additional
literature based on the articles obtained in the first step. Therefore, the
system has to leverage additional functionality to handle more complex
queries. In our second experiment we observe that IMRaD structure features
are helpful as they introduce constraints that describe the expected content
of articles. As a result, IMRaD structure features improve the results for the
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specific literature search.

5.3 Future Work

The implemented information retrieval system, and the generated dataset
provide various opportunities for possible extensions and experiments. The
following examples should give ideas of what are possible paths for future
research.

For IMRaD structured text retrieval we calculate the rank based on the
mean over all IMRaD chapters. As discussed in Section 2.3.1 there exist
other ranking strategy as well. They can be added as extensions to our sys-
tem. Afterwards, different combinations of ranking algorithms and ranking
strategies can be evaluated.

Another possible improvement would be a parameter search for BM25.
Robertson et. al [Rob+94] propose in their work a general configuration
that suites many cases. We find that BM25 always performs mediocre with
this configuration. With an extensive parameter search the performance may
increase, and BM25 could catch up with the best performing algorithms.

We use a dataset that consists of 821 scientific articles. One improvement
would be to add additional articles. However, we assume for our query
evaluation that citations describe the content of referenced articles. Af-
terward, queries were auto-generated based on this assumption. These
auto-generated queries require to be verified as the assumption may not
hold for all of them. All queries where the assumption does not hold needs
to be removed from the test set. Another possibility is to create document
collections from journals of the Public Library of Science (PLOS). These
journals consist of thousands of articles, which increases the expressiveness
of experiments.

An additional extension for our system would be to calculate similarities
based on article clusters. The idea is that the user provides a set of articles,
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which are clustered with the articles in the document collection. These
clusters are generated based on different properties (e.g., based on the
Introduction of the articles). Afterwards a ranked list is generated based on
the distances in the cluster.
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ized contextualization method for XML information retrieval.”
In: CIKM. Ed. by Otthein Herzog et al. ACM, 2005, pp. 20–27.
isbn: 1-59593-140-6 (cit. on p. 32).

[Ali+06] Wouter Alink et al. “XIRAF - XML-based indexing and querying
for digital forensics.” In: Digital Investigation 3.Supplement-1
(2006), pp. 50–58 (cit. on p. 31).

[AR02] Gianni Amati and C. J. van Rijsbergen. “Probabilistic models of
information retrieval based on measuring the divergence from
randomness.” In: ACM Trans. Inf. Syst. 20.4 (2002), pp. 357–389

(cit. on pp. 27, 28, 67).

[Ber+13] M. Bertin et al. “The Distribution of References in Scientific
Papers: an Analysis of the IMRaD Structure.” In: In proceed-
ing of: 14th International Society of Scientometrics and Informetrics
Conference 1 (2013), pp. 591–603 (cit. on pp. 35, 67).

73

http://dblp.uni-trier.de/db/journals/access/access8.html#AhmedA20a
http://dblp.uni-trier.de/db/journals/access/access8.html#AhmedA20a


Bibliography

[BP98] Sergey Brin and Lawrence Page. “The Anatomy of a Large-scale
Hypertextual Web Search Engine.” In: Comput. Netw. ISDN Syst.
30.1-7 (1998), pp. 107–117. issn: 0169-7552 (cit. on p. 9).

[Bur92a] Forbes J. Burkowski. “An algebra for hierarchically organized
text-dominated databases.” In: Information Processing and Man-
agement 28.3 (1992), pp. 333–348. issn: 0306-4573. doi: https:
//doi.org/10.1016/0306-4573(92)90079-F (cit. on p. 31).

[Bur92b] Forbes J. Burkowski. “Retrieval Activities in a Database Consist-
ing of Heterogeneous Collections of Structured Text.” In: SIGIR.
Ed. by Nicholas J. Belkin, Peter Ingwersen, and Annelise Mark
Pejtersen. ACM, 1992, pp. 112–125. isbn: 0-89791-523-2 (cit. on
p. 31).

[CMF96] Yves Chiaramella, P. Mulhelm, and Franck Fourel. “A Model
for Multimedia Information Retrieval.” In: (Nov. 1996) (cit. on
p. 32).

[Day89] Robert A. Day. “The Origins of the Scientific Paper: The IM-
RAD Format.” In: American Medical Writers Association Journal
4.2 (1989). Archived from the original on September 27, 2011.
Retrieved 2011-06-17., pp. 16–18 (cit. on p. 35).

[Gev06] Shlomo Geva. “GPX - Gardens Point XML IR at INEX 2005.”
In: Advances in XML Information Retrieval and Evaluation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 240–253 (cit.
on p. 32).

[Gud+97] V.N. Gudivada et al. “Information retrieval on the World Wide
Web.” In: Internet Computing, IEEE 1.5 (1997), pp. 58–68. issn:
1089-7801 (cit. on p. 10).

[Jon72] Karen Spärck Jones. “A statistical interpretation of term speci-
ficity and its application in retrieval.” In: Journal of Documentation
28.1 (1972) (cit. on p. 16).

[Kas11] M. Kas. Structures and Statistics of Citation Networks. Master’s
thesis, Carnegie Mellon University Pittsburgh, PA. 2011 (cit. on
p. 41).

74

https://doi.org/https://doi.org/10.1016/0306-4573(92)90079-F
https://doi.org/https://doi.org/10.1016/0306-4573(92)90079-F


Bibliography

[Kla+14] Stefan Klampfl et al. “Unsupervised document structure anal-
ysis of digital scientific articles.” In: Int. J. on Digital Libraries
14.3-4 (2014), pp. 83–99 (cit. on pp. 37, 47).

[Kle99] Jon M. Kleinberg. “Authoritative Sources in a Hyperlinked En-
vironment.” In: J. ACM 46.5 (1999), pp. 604–632. issn: 0004-5411

(cit. on p. 9).

[Luh57] H. P. Luhn. “A statistical approach to mechanized encoding and
searching of literary information.” In: IBM Journal of Research
and Development 1 (1957), pp. 309–317 (cit. on p. 15).

[Mea85] Arthur J. Meadows. “The scientific paper as an archaeological
artefact.” In: Journal of Information Science 11.1 (1985), pp. 27–30

(cit. on p. 35).

[Mel09] Massimo Melucci. “Boolean Model.” In: Encyclopedia of Database
Systems. Boston, MA: Springer US, 2009, pp. 260–260. isbn: 978-
0-387-39940-9 (cit. on p. 10).

[MM04] Yosi Mass and Matan Mandelbrod. “Component Ranking and
Automatic Query Refinement for XML Retrieval.” In: INEX. Ed.
by Norbert Fuhr et al. Vol. 3493. Lecture Notes in Computer
Science. Springer, 2004, pp. 73–84. isbn: 3-540-26166-4 (cit. on
pp. 32, 33).

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge Univer-
sity Press, 2008 (cit. on pp. 20, 33, 67).

[NB95] Gonzalo Navarro and Ricardo Baeza-Yates. “A Language for
Queries on Structure and Contents of Textual Databases.” In: Pro-
ceedings of the 18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’95. Seat-
tle, Washington, USA: Association for Computing Machinery,
1995, pp. 93–101. isbn: 0897917146. doi: 10.1145/215206.215336
(cit. on p. 31).

[NB97] Gonzalo Navarro and Ricardo Baeza-Yates. “Proximal Nodes:
A Model to Query Document Databases by Content and Struc-
ture.” In: ACM Trans. Inf. Syst. 15 (Oct. 1997), pp. 400–435. doi:
10.1145/263479.263482 (cit. on p. 31).

75

https://doi.org/10.1145/215206.215336
https://doi.org/10.1145/263479.263482


Bibliography

[RB99] Berthier Ribeiro-Neto and Ricardo Baeza-Yates. Modern Informa-
tion Retrieval. ACM Press / Addison-Wesley, 1999 (cit. on pp. 7,
11, 13, 14, 17, 20, 22).

[RJ76] S. E. Robertson and Sparck K. Jones. “Relevance weighting of
search terms.” In: Journal of the American Society for Information
Science 27.3 (1976), pp. 129–146. doi: 10.1002/asi.4630270302
(cit. on pp. 21, 22).

[Rob+92] Stephen E. Robertson et al. “Okapi at TREC.” In: TREC. Ed.
by Donna K. Harman. Vol. 500-207. NIST Special Publication.
National Institute of Standards and Technology (NIST), 1992,
pp. 21–30 (cit. on pp. 24, 67).

[Rob+93] Stephen E. Robertson et al. “Okapi at TREC-2.” In: TREC. Ed.
by Donna K. Harman. Vol. 500-215. NIST Special Publication.
National Institute of Standards and Technology (NIST), 1993,
pp. 21–34 (cit. on pp. 24, 67).

[Rob+94] Stephen E. Robertson et al. “Okapi at TREC-3.” In: TREC. Ed.
by Donna K. Harman. Vol. 500-225. NIST Special Publication.
National Institute of Standards and Technology (NIST), 1994,
pp. 109–126 (cit. on pp. 24, 27, 51, 67, 71).

[Rob04] S. Robertson. “Understanding Inverse Document Frequency: on
Theoretical Arguments for IDF.” In: Journal of Documentation 60

(2004), pp. 503–520 (cit. on p. 24).

[Rob97] Stephen E. Robertson. “The probability ranking principle in IR.”
In: Journal of Documentation 33 (1997), pp. 294–304 (cit. on p. 21).

[RW94] Stephen E. Robertson and Steve Walker. “Some Simple Effec-
tive Approximations to the 2-Poisson Model for Probabilistic
Weighted Retrieval.” In: SIGIR. Ed. by W. Bruce Croft and C. J.
van Rijsbergen. ACM/Springer, 1994, pp. 232–241 (cit. on p. 26).

[Sal71] G. Salton, ed. The SMART Retrieval System Experiments in Auto-
matic Document Processing. Englewood Cliffs: Prentice-Hall, 1971

(cit. on p. 19).

[SBM96] Amit Singhal, Chris Buckley, and Mandar Mitra. “Pivoted Docu-
ment Length Normalization.” In: SIGIR. ACM, 1996, pp. 21–29.
isbn: 0-89791-792-8 (cit. on p. 15).

76

https://doi.org/10.1002/asi.4630270302


Bibliography

[SFW83] Gerard Salton, Edward A. Fox, and Harry Wu. “Extended
Boolean Information Retrieval.” In: Communications of the ACM
26.11 (1983), pp. 1022–1036 (cit. on p. 10).

[SP04] L.B. Sollaci and M.G. Pereira. “The introduction, methods, re-
sults, and discussion (IMRAD) structure: A fifty-year survey.” In:
Journal of the Medical Library Association 92.3 (2004), pp. 364–367

(cit. on pp. 3, 35, 67).

[SWY75] G. Salton, A. Wong, and C. S. Yang. “A Vector Space Model
for Automatic Indexing.” In: Communications of the ACM 18.11

(1975), pp. 613–620. issn: 0001-0782 (cit. on p. 12).

[SY73] G. Salton and C. S. Yang. “On the specification of term values
in automatic indexing.” In: Journal of Documentation. 29.4 (1973),
pp. 351–372 (cit. on pp. 16, 17, 20).

[VIN15] S. Vijayarani, M. J. Ilamathi, and M. Nithya. “Preprocessing
Techniques for Text Mining - An Overview.” In: International
Journal Computer Science and Communication Network 5 (2015),
pp. 7–16 (cit. on p. 37).

[Zip32] G.K. Zipf. Selected Studies of the Principle of Relative Frequency in
Language. Harvard University Press, 1932 (cit. on p. 16).

77


