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Abstract

The Kernel of Operating Systems is a nowadays a well-liked target of cybercrim-
inals. Many attack schemes they perform make use of hardware-depending side-
channels timing leaks to obtain information of the kernel virtual memory layout
upon runtime. This information may then be used to break Kernel Address Space
Layout Randomization (KASLR) and perform follow-up attacks. This thesis intro-
duces a way to prevent such attacks. Therefore, we extend the operating system
kernel, a new countermeasure: Kernel Address Isolation to have Side-channels Effi-
ciently Removed (KAISER). KAISER isolates the Kernel Virtual Memory against
side-channel attacks from the User Space. It creates virtual shadow mappings,
so most of the kernel is unmapped in User Mode, and the memory caches are
invalidated upon context switch. This way, malicious user programs are not able
to gather any information about the kernel virtual memory any longer. The im-
plementation runs under the Linux kernel on x64 64 platforms. Test results for
different Intel CPUs show that most attacks can be countered, with a performance
impact of down to 0.28% on up-to-date Intel CPUs.

Keywords: Linux kernel, Side-Channel Countermeasure, x86 64, Kernel Vir-
tual Memory Isolation
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Kurzfassung

Der Betriebssystem-Kernel ist ein beliebtes Ziel von Cyber-Kriminellen. Sie
verwenden zeitbasierte Seitenkanalangriffe um Informationen vom Speicherlayout
des Kernels zu erhalten, und die Kernel Address Space Layout Randomization
(KASLR) zu brechen. Diese Informationen können dann für einen Folgeangriff
verwendet werden. In dieser Arbeit wird eine Methode vorgestellt, die diese Art
von Angriffen verhindert. Dafür erweitern wir den Betriebssystem-Kernel um
einem Patch: Kernel Address Isolation to have Side-channels Efficiently Removed
(KAISER). KAISER isoliert den virtuellen Kernel-Speicher gegen Seitenkanalan-
griffe von Benutzer-Programmen. Hierzu erstellt KAISER eine Schattenkopie des
Speicherlayouts, und entfernt den Kernel-Speicher im Benutzermodus. Des Weit-
eren invalidiert es bei Kontextwechseln Zwischenspeicher des virtuellen Speichers,
die für Angriffe genutzt werden können. Durch diese Gegenmaßnahmen können
böswillige Benutzerprogramme keine Informationen über das Speicherlayout des
Kernels mehr erhalten. KAISER ist in dem Linux Kernel für x86 64 CPUs einge-
baut. Tests zeigen, dass viele Angriffe durch diesen Patch verhindert werden, und
die Arbeitsleistung Einbußen von nur 0.28% auf modernen Intel CPUs erfährt.

Stichwörter: Linux Kernel, Seitenkanal-Gegenmaßnahmen, x86 64, Speicheriso-
lation
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Chapter 1

Introduction

Operating systems have always been a popular target for attackers. They are
running on most desktop PCs, servers, smartphones, tablets, and are becoming
more common on embedded systems. Attackers with user privileges try to obtain
information from the kernel. To prevent attacks on the operating system kernel,
many countermeasures have been developed over the past years. Modern operating
systems are protected against user access by using hardware memory protection
features. Operating systems use privilege modes in combination with paging to
prevent user programs from attacking the kernel. Supervisor Mode Access Protec-
tion (SMAP) and Supervisor Mode Execution Protection (SMEP), and are used
to block kernel threads from unintentionally executing user code or accessing user
data. Also, modern operating systems use KASLR to impede attacks that need
knowledge about the kernel memory layout to be successful.

Still, attackers find new ways to work around such countermeasures. CPU
features used to boost the program performance, often leak information about
other processes or the kernel as a side effect. These leaks can be used to obtain
secret information about the operating system kernel at run-time. Therefore,
randomizing the kernel address space layout is not an effective countermeasure
any longer. The layout is only shuffled upon kernel boot and module load time
but it is not changed afterward. Attackers can recover the memory layout at
run-time and bypass the Kernel Address Space Layout Randomization. There is
no efficient method to fix these software-based micro-architectural side-channel
attacks yet. So, they are still a serious security issue, which is present on most
servers and desktop computers.

Problem Statement Gruss et al. [28], Hund et al. [37], and Evtyushkin et al.
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[20] presented new attacks to obtain information of the kernel memory layout at
run-time. This way, they can break the KASLR. They use the fact that on many
processor architectures, user programs and kernel share the virtual address space.
The gained information is used to obtain secret data or to assist other attacks.
When the CPU resolves a virtual address, it leaks timing information about the
mapping level and cache status. These attacks can be mitigated in hardware, but
doing so lowers the performance of the processors. So these side-channel attacks
will unlikely be fixed in the hardware. Therefore, an efficient way of how to fix the
side channels in software has to be found.

Approach In this thesis, we present a way to isolate the kernel against at-
tacks from user programs. The main contribution of the thesis is a technique
called KAISER. We present a prototypical implementation for the Linux kernel on
x86 64-processor-architectures. KAISER removes the kernel space from the vir-
tual memory mapping while the system is in user mode, and clears all Translation
Lookaside Buffers (TLBs) and paging structure caches. By doing so, malicious
user programs are not able to obtain information about the virtual address space
of the kernel any longer. To do so, a shadow mapping of the virtual memory is
created for each process. When a thread is in kernel mode, the entire memory
mapping is mapped. In user mode, only a small part of the kernel memory is
mapped, to minimize the attack space. This small mapping is needed for virtual
memory structures used by hardware features, and to switch between user- and
kernel mode.

1.1 Motivation

Since the thesis presents a new countermeasure, several research questions need to
be clarified. Which attacks on the kernel virtual address space can be mitigated
in software? Is additional hardware support needed to fix the side channels?

The thesis also addresses engineering questions. What is the best way to im-
plement the countermeasure on the Linux kernel? How effective are the software
mitigations? Is there remaining leakage? Does the implementation introduce new
side channels, which can be used by attackers? What is the performance impact
on the system?

This master thesis answers these questions. We evaluate KAISER against previ-
ously known attacks, and detail the remaining attack surface. We also approximate
its run-time and memory overhead. Furthermore, we discuss other countermea-
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sures against side channel attacks on Kernel Page Table Isolation (KPTI). We
present benchmarks of the KAISER run-time overhead against a kernel without
KAISER. In the end, we present new attacks that KAISER mitigates, and discuss
the real world impact of KAISER.

Outline This thesis is structured as follows.

Chapter 2 presents the background information, which is required to get a basic
understanding of the attacks and the solution to prevent them. It starts with an
overview of CPU architectures, their virtual memory support features, and some
mechanisms used by operating systems. We discuss CPU protection features as
well as the CPU mechanisms that create the side channels. We then describe the
main principles of modern operating systems, and focus on the Linux kernel entry
handlers and memory layout. Then, we discuss a set of timing side-channel attacks
on KASLR.

After the background, chapter 3 explains how the kernel memory is hardened
against side-channel attacks. It shows how the shadow memory is structured, and
how the kernel-user switch and the virtual memory mapping has to be adapted.
The strengths and weaknesses of the countermeasure are compared and evaluated.

In chapter 4, we detail the design and implementation of KAISER in the Linux
kernel. We show how the existing kernel is modified. Then, we introduce the
virtual shadow memory. KAISER uses architectural tricks to lower the impact on
the system. We present alternatives to protect the kernel virtual memory layout
against side channel attacks, and compare them against KAISER.

To confirm that the introduced countermeasure works, we evaluate the security
of KAISER in chapter 5. We evaluate the efficacy of an unmodified kernels as well
as a kernel with KAISER.

The results of this master thesis are broadly used in practice. We emphasize
that only a very small percentage of Laptops, Desktops, and Servers do not use the
technique developed in this master thesis in practice today. In Chapter chapter 6,
we present the successor of KAISER, KPTI, are evaluated in terms of memory
and computational overhead. Then, we discuss new attacks on the kernel virtual
memory. One of these attacks is Meltdown. We show that KAISER prevents
Meltdown attacks. In the end, we discuss the impact of Meltdown and this thesis
in a broader context on different systems.

Chapter 7 summarizes and concludes this master thesis.
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Chapter 2

Background

This chapter provides the background that this master thesis builds upon. It
shows the need for a countermeasure to mitigate microarchitectural side-channel
attacks on modern operating systems. The first section discusses CPU features.
It introduces the reader to hardware mechanisms for operating systems and secu-
rity mechanisms. It also gives a detailed explanation of virtual address resolution
on the x86 64 architecture. The next section provides an overview of the Linux
kernel. It starts with an overview of the most commonly used operating systems.
Next, it explains the Linux kernel structure and its address space layout. We
provide an overview of essential parts of the kernel. The next section contains in-
formation about state-of-the-art kernel memory protection principles. It explains
the essential Linux countermeasures against memory-based attacks. At last, re-
cently discovered attacks on operating system kernels are presented. These attacks
use hardware side channels to obtain information about the kernel address space
from user programs. Before this work, there were no countermeasures to fix the
hardware weaknesses. This thesis presents a possible solution to make such side-
channel based attacks impossible. The attacks are used in Chapter 5 to confirm
the effectiveness of the presented countermeasure.

2.1 CPU Features

A CPU is a computing unit used to execute programs. It contains one or more
cores. Cores support an instruction set to perform operations, manipulate data,
and communicate with other components. Registers are used to represent the
internal state of the CPU. The CPU provides peripheral interfaces to communicate
with external or internal devices. Programs and data are persistently stored on an
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external data storage device. This device is usually a Hard Disk Drive (HDD) or
Solid State Drive (SSD). For computation, a CPU uses external Random Access
Memory (RAM). The RAM is non-persistent, i.e., it is erased on every power
loss. The reason why RAM is used is that it is faster than persistent data storage
devices. When physical memory is mentioned in this thesis, we mean RAM. The
CPU can directly or indirectly read from or write to memory.

Program Execution. To execute a program, it loads data from the storage into
memory. Program memory consists of different virtual memory sections. When
the program is executed, it is mapped into the physical memory. The loading
can also be done lazily. Parts of the sections are then only loaded and copied into
memory when they are required first. The most common sections are as follows [50,
ch. 6.3]:

• The .text section contains the executable code of a program.

• The .data section contains the initialized static data.

• The .rodata section contains the read-only static data.

• The .bss section contains the uninitialized static data.

• The stack stores temporary data. The temporary data size is unknown at
compile-time, and therefore, the stack is dynamically allocated. It contains
local variables and stores information where to return from a function.

• The heap provides space for dynamic program data, which cannot be allo-
cated at compile-time but cannot be placed on the stack. The heap allows
allocating data chunks, which then can be used by the program. The pro-
gram frees the heap chunks after they are not required any longer. The heap
grows upwards (from lower to higher addresses).

There are many types of CPUs available. They differ in their instruction set,
the cores, registers, the supported peripherals, and hardware features. Two of the
most widely spread Instruction Set Architectures (ISAs) are x86 and Advanced
RISC Machine (ARM) CPUs.

Multiprocessor Systems. One way to speed up the system’s performance is
to use multiple cores instead of one central core for computation. These systems
are called multi-processor CPUs. The cores share their physical memory and
Input/Output (IO) but have their general registers and specific control registers
and status registers. This way, multiple programs can run in parallel for Symmetric
Multiprocessing (SMP) instead of scheduling them sequentially.
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The x86 architecture is a Complex Instruction Set Computing (CISC) ISA
initially designed by Intel [49]. Nowadays, there are various x86 sub-architectures
for 16 bit, 32 bit, and 64 bit. Most personal computers and servers use such
CPUs. IDC [98] estimated that 12.2 of 14.6 billion dollars are spent yearly on
x86 server CPUs in the fourth quarter of 2016. This thesis only focuses on 64-bit
implementations. For AMD, they are called x86 64 or AMD64. The equivalent
of Intel is Intel 64 (not IA-64, which is the Intel Itanium architecture). The x86
architectures are backward-compatible, which means an x86 64 CPU can also run
a 16-bit or 32-bit program. The 16-bit mode is called Real Mode, the 32-bit mode
is called Protected Mode, and the 64-bit mode is called Long Mode. All x86 CPUs
boot into real mode first and switch to the protected mode or long mode afterward.
x86 64 CPUs also support other modes. These other modes are not relevant to
this thesis. Thus we omit them in this thesis for the sake of brevity.

ARM also developed multiple, widely used ISAs. ARM CPUs are mostly
used for mobile, home, enterprise, and embedded devices. In 2015, 95 % of the
smartphones were sold with an ARM processor [58]. ARM offers different ISAs
for 16-bit and 32-bit Reduced Instruction Set Computing (RISC) instructions and
32-bit and 64-bit general-purpose registers. In this master thesis, we focus on x86
64-bit systems. ARM architecture features are just briefly mentioned for context.

Memory Management . A CPU requires to manage the physical memory for
several reasons. The address space layout of the memory does not have to be
linear. The address space can have holes that do not map to RAM. Every memory
address can be read, written, or executed all the time. The memory available is
usually not known until the system boots. However, a program requires to have a
defined address space layout. Otherwise, it could not jump or branch to a specific
address or access data. Even worse, two independent programs with overlapping
address space layouts could not run at the same time. One way to handle these
problems is to fix the address space layout at compile time. Micro-controllers
usually do so because the RAM usually is embedded on-chip or on-circuit. For a
modern computer, this approach is not feasible. The program would have to be
compiled anew separately for every different computer setup. Therefore, the CPU
provides mechanisms to deal with these issues. It offers the programs a virtual
address space. The virtual address space is a range of virtual addresses, which
map to the physical memory. This way, it allows a program to run independently
of the physical address space organization.

Memory Segmentation [39, p. 5, pp. 65ff.] is one way to create an address
space. The CPU splits the address space into segments. Segment registers refer-
ence the segments. Logical addresses with segmentation contain the base address
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as well as information about the segment. Memory segmentation enables the use
of address-layout-independent executables. With memory segmentation, an ex-
ecutable uses logical addresses to refer to memory. The operating system then
maps the segment base addresses to linear address space chunks within physical
memory. Whenever a program dereferences a logical address, the CPU adds the
corresponding segment base address to the address. The linear address either
points into the physical memory, or it points to virtual memory. A segment regis-
ter either directly contains the address offset or point to a segment descriptor. The
CPU supports various segment registers for the different program parts. Modern
operating systems barely use segments. ARM does not support segmentation at
all [57]. x86 provides registers for several segments [41, ch. 3.4.3]: Code Segment
(CS), Data Segment (DS), Stack Segment (SS), Extra Segment (ES), General Pur-
pose Segment F (FS), General Purpose Segment G (GS), and Task State Segment
(TSS). In Real Mode, the segment registers contain the segment address offset.
An x86 64 CPU also uses segment descriptors in protected mode and long mode.
These descriptors contain the base address of the segment, its size, and some flags
to customize the segment. Call gates are also realized via descriptors. Call gates
allow the system to raise privileges by jumping to a call gate address. We detail
privileges later in this section. Sets of descriptors are stored in descriptor ta-
bles. x86 64 supports a Local Descriptor Table (LDT), a Global Descriptor Table
(GDT), and an IDT. The GDT contains code- and data segments that can be
used by all tasks. It is located in the virtual memory, and the CPU looks it up via
the Global Descriptor Table Register (GDTR). The LDT contains the per-process
local descriptors. To get the correct descriptor table entry, a segment selector
selects the index of the table. Figure 2.1 illustrates the linear address resolution
of a logical address.
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TI

GDTR

OffsetIndex

LDTR

Descriptor

Descriptor Table Linear Address Space

RPL

Segment Selector

Figure 2.1: A x86 64 lookup on CPUs in protected mode with seg-
mentation splits the logical address. The CPU looks up the target
descriptor table by the Table Indicator (TI). The index selects the
descriptor in the descriptor table. The segment base address of the
descriptor is added to the offset to get the linear address [41, ch. 3.4].

In Long Mode, only the CS, the FS, and the GS and can be used [41, ch. 3.4.4].
The CPU ignores the base address, limit, and attributes of the ES, DS, and SS
segments. The CPU treats them as if they have base address zero and max limit.
Segmentation cannot be completely disabled on x86 64 in long mode.

Paging [39, pp. 7ff.] [41, ch. 4.1] is another memory management mechanism.
Instead of using segments of variable size and offset, paging splits the entire mem-
ory into linear chunks of a fixed size. The chunks are called pages. The CPU
then maps the physical pages to virtual pages in a tree-like structure. The virtual
pages then form the virtual address space. A program in long mode or protected
mode only operates with virtual addresses. The CPU is responsible for resolving
virtual pages to physical pages. Therefore, it uses paging structure tables. Paging
structure tables are an array of paging structure table entries. An entry contains
the physical page number to the physical page or the next paging structure table
and some flags. The CPU performs a virtual address resolution the following way:
A control register is the entry point to the paging structure hierarchy. It contains
the physical page number to the top-most paging-structure table. The CPU splits
the virtual address into offsets. The top-most paging structure table is indexed
by the top-most offset to get to the paging structure table of the next paging
structure level. The lowest paging-structure level entry, usually named Page Table
(PT) entry, contains the physical page number to the target physical page. The
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rest of the virtual address is used as a byte offset within the page. The CPU uses
flags within the paging structure entries to determine if the next paging structure
table or the physical page is present. The paging structure can thereby create a
sparse tree-structure to reduce the number of paging structure tables. x86 CPUs
in protected mode and real mode and ARM [7, B4. 7] CPUs support paging. The
x86 64 long mode has four page table levels [39, pp. 25ff.]: Page Map Level 4
(PML4) , Page Directory Pointer (PDPT), Page Directory (PD) and PT. These
tables are 4 kB large, and each has 512 × 64-bit entries. Figure 2.2 illustrates a
virtual address resolution on x86 64 long mode.

PML4

PDPT

PD PT

Physical
Memory

CR3

ppnflags
ppnflags

ppnflags

ppnflags

Page

byte

canonical PML4E offset PDPTE offset PDE offset PTE offset Byte offset
021 123048 3963

Figure 2.2: This figure shows the resolution of a virtual address on an
x86 64 CPU in long mode. The CPU splits the virtual address into five
parts to resolve the physical address: It uses bits 39 to 47 to index into
the PML4 . The PML4 contains the Physical Page Number (PPN) to
the corresponding PDPT. The CPU then uses bits 30 to 38 to resolve
the PDPT entry, which contains the PD PPN. Bits 21 to 29 are used
as the PD index, and the PT PPN can be looked up. Bits 12 to 20 are
used for the PT index. The PT entry then contains the PPN for the
actual page. Bits 0 to 11 are used as an offset within the page.

The address bits 48 to 63 are not used for the address resolution. x86 64 forces
the upper bits, also called sign extension, have to be a copy of the bit 47. Such
addresses are canonical addresses. If the system tries to access non-canonical
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addresses, the CPU throws a general protection fault. As a result, the address
space can be split into canonical lower addresses, non-canonical addresses, and
canonical upper addresses, as shown in Figure 2.3.

canonical lower half

canonical upper half

non-canonical
adresses

0x0000'0000'0000'0000

0x0000'0080'0000'0000

0xFFFF'FF80'0000'0000

0xFFFF'FFFF'FFFF'FFFF

Figure 2.3: The canonical address space of the x86 64 long mode
splits the virtual addresses into a lower canonical address space and an
upper canonical address space. The non-canonical addresses in-between
cannot be mapped.

Paging structure table entries contain flags in addition to the physical page
number to the next mapping level. These flags provide additional information to
the CPU or can be used to give the software information about accesses. Every
mapping layer contains different flags, each represented by one bit. The flags which
are important for this thesis are [41, ch. 4.5]:

• Present. The present-bit is zero if the page referred by this entry is not
present. This way, not the entire virtual address space has to map to physical
addresses.

• Read/write. If the writable-bit is zero, writing access to the mapped address
space is not allowed. Read accesses are allowed in both modes.
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• User/supervisor. If the user-accessible bit is not set, accesses of unprivileged
programs to the corresponding part of the address space are not allowed.

• Accessed. The accessed bit is set by hardware or software and is reset by
software. It indicates whether a read or write access has happened to a
virtual address.

• Dirty. Similar to the accessed bit, the hardware sets the dirty bit when a
program performs a write to the target address range of the paging structure
entry.

• Page size. A PDPT entry or PD entry can directly refer to a huge page (often
also referred to as a large page) instead of to the next mapping level. All lower
bits of the address are then used as an offset within the physical memory.
This way, the page table memory overhead is reduced for large chunks of
physical memory that are linearly addressed. A huge PD entry refers to
2 MB of physical memory (12 + 9-bit address offset). A huge PDPT- entry
with page size set addresses 1 GB (12 + 9 + 9-bit address offset) physical
memory.

• No execute. If this bit is set, the mapped memory is not allowed to be
executed [41, ch. 4.6].

• Global. The mapped pages are not thrown out of the caches when the system
changes the virtual mapping space. The global flag indicates that a virtual
memory area keeps maps to the same physical pages for different programs.
The CPU does do not need to flush corresponding cache entries when it
switches between different programs.

Whenever an address is resolved, the CPU checks if it maps to physical memory,
and if the current executable is allowed to access this data by the given bits. It also
updates the accessed and dirty bits. If the access can or shall not be performed, a
fault is triggered to resolve the issue.

The CR3 contains the PPN of the PML4 in bits 12 to 50. When a program
wants to switch the virtual address space, the CR3 is updated. All corresponding
hardware buffers and caches are flushed implicitly by setting the CR3 . The
page translation type is selected using the Control Register 4 (CR4) . Newer
ARM versions provide two registers to refer to the top-level page table, namely
Translation Table Base Register (TTBR) 0 and 1 [7, B4.7.1]. TTBR 0 usually
contains the user mapping, and TTBR 1 the kernel- and IO mapping.

Interrupts and Exceptions are mechanisms provided by most CPUs and micro-
processors. They allow the system to suspend the current program execution and
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jump to a handler routine. The routine then handles the cause of the interrupt
or exception and then continues the program. We distinguish three main types of
x86 64 CPUs [39, ch. 8]: external interrupts, internal interrupts, and exceptions.

External interrupts are interrupts that are triggered by external IO or inter-
nal CPU features. They allow reacting to the change in peripheral states. Instead
of hardware interrupts, the system can also poll for IO changes. Polling means
periodically checking whether an event occurred. Polling is time-intensive since it
blocks the CPU, and thus is avoided in most circumstances. A typical IO hard-
ware interrupt would be a keyboard interrupt. On every key press and key release,
an interrupt is triggered. Timer interrupts are CPU features. They interrupt the
program flow after a specified time. Hardware interrupts are asynchronous in-
terrupts. The interruption is independent of the program status. x86 64 CPUs
handle external interrupts via the local Advanced Programmable Interrupt Con-
troller (APIC), or via pins directly connected to the processor [41, ch. 6.3.1, ch.
10] [39, ch. 16]. The local APIC is integrated into the processor and is connected
to the I/O APIC. When an external interrupt is triggered, the I/O APIC forwards
it to the local APIC through the system bus or a specific APIC bus.

Exceptions are raised whenever an instruction causes an abnormal condition.
An exception can happen due to invalid instructions, forbidden operations, or
invalid memory or register accesses. Exceptions themselves are categorized in
faults, traps, and aborts [39, ch. 8.1.3]. Some important exceptions in long mode
are:

• General Protection Fault. This fault indicates a general access violation
caused by a program, e.g., due to a lack of privileges or access to a non-
canonical address.

• Page Faults. When the system tries to fetch data from pages that are not
mapped or not allowed to be accessed this way (e.g., write to a read-only
page that is marked as read-only), the CPU triggers a page fault.

• Double Fault. If an interrupt or exception produces an exception itself, the
CPU triggers a double fault.

• Triple Fault. When the double fault causes an exception, a triple fault is
triggered. At this stage, the system can most likely not recover any longer.
So the triple fault restarts the system, instead of handling it via a software
routine.

Exceptions are synchronous because they may directly interfere with the program
execution.
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Software interrupts allow programs to trigger interrupts by software. The
x86 ISA has dedicated instructions to enter and exit interrupt routines from soft-
ware. Interrupt routines run with higher privileges than regular programs. So
they are often used as an interface between privileged- and unprivileged programs.
x86 64 has its own set of instructions to enter and exit software interrupts. The
IDT contains the interrupt and exception routine entries points as entry gates.
Whenever the system triggers an interrupt or exception in long mode, the inter-
rupts are disabled so that no other interrupt can intercept the routine. Information
as the Register Instruction Pointer (RIP), CS, FLAGS Register E (EFLAGS), Reg-
ister Stack Pointer (RSP), and SS are pushed onto the new stack. Then the target
RSP is load from the TSS. The SS is then set to zero. The new entry is loaded
into the RIP register, and the routine is then run. When the interrupt routine is
finished, the same procedure is done in reverse. The x86 64 architecture introduces
a new way of how to use stacks during interrupts, namely via the Interrupt Stack
Table (IST). The IST is used to automatically load the corresponding stack for an
interrupt or exception, instead of loading a stack from the TSS. x86 allows masking
(disabling) and unmasking (enabling) of specific interrupts, i.e., interrupts can be
deactivated and re-activated. Not all interrupts are maskable (e.g., double faults
and page faults cannot be masked).

Access privileges determine which registers or address ranges can be accessed
by a program in which way. Not every program needs to have access to every
system resource. If there is no limitation on access, malicious or bad programmed
software could harm the system or other programs. They could also obtain secret
information. Because of that, access to not required resources can be restricted by
the hardware. The resources which have to be protected against forbidden access
include:

• Registers. Especially control and status registers need to be protected.

• Memory. Not every memory region should be accessible to every program.

• IO. Not every program should be able to access IO addresses and registers.

• Instructions. Not every instruction should be allowed for every program.

For this purpose, x86 offers four different privilege modes, which are also called
rings. Privilege level 3 offers the least privileges. It is also referred to as user
mode. Privilege level 0 offers the full system features and is named supervisor
mode. The privilege levels 1 and 2 offer some privileges and are usually not used
on most operating systems. An exception is para-virtualized hypervisors. There,
the hypervisor executes on privilege level 0, and the operating system runs on
privilege level 1 or 2 [100]. The CPU manages privileges of resources by the
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Descriptor Privilege Level (DPL) of gate descriptors, segment descriptors, and
paging structure flags. Each core has an assigned Current Privilege Level (CPL).
Each program can only access data, execute instructions, or trigger interrupts if
the DPL of the target segment or gate descriptor is bigger or equal to the CPL.
When a program successfully calls or triggers a call gate or interrupt gate, the
CPL is raised to the DPL of the target CS.

Privileged Calls. Interrupt context switches and returns are rather slow. The
x86 64 architecture provides the SYSCALL, SYSRET, SYSENTER, and SYSEXIT in-
structions [41, ch. 5.8] [39, pp. 448-459]. SYSCALL and SYSENTER allow a user
program to call a privileged function fast, and SYSRET and SYSEXIT to fast re-
turn to user mode. The entry points to the privileged functions are set up via
Model-Specific Registers (MSRS) [41, ch. 35].

SYSENTER and SYSEXIT are system call instructions to enter and exit a long-
mode kernel from a 32-bit program run in compatibility mode. SYSCALL and
SYSRET are the 64-bit fast system call entry and exit instructions. The following
paragraph gives an example of SYSCALL and SYSRET on Intel CPUs [41, ch. 5.8.8]:

When a thread calls the SYSCALL instruction, the CPU stores the user thread’s
RFLAGS and the RIP (pointing to the next instruction) to registers. It raises the
privilege level to 0 and sets up the CS, RIP, RFLAGS, and RSP, stored in the
MSRS. SYSRET switches back to user mode. It restores the user thread CS and SS
from MSRS, switches the privilege level to 3, and restores the RIP.

AMD and Intel have different compatibility system call schemes to switch be-
tween a protected mode 32-bit user program and a 64-bit long mode kernel, and
different MSRS to support system calls. Intel x86 64 CPUs support SYSENTER and
SYSEXIT instructions both in protected and long mode [41, ch. 5.8.7.1]. AMD,
on the other side, does not support SYSENTER and SYSEXIT in long mode [39, ch.
6.1.2]. They instead have a 32-bit SYSCALL and SYSRET compatibility mode [39,
ch. 6.1.1].

Caching and Buffers. Memories with a high density like RAM are cheap, but
also very slow. It takes several cycles to fetch data from memory. Memory caching
fixes this bottleneck. Caches are memory blocks which are faster than RAM, but
also more expensive. Therefore, hardware caches are not directly used for data
storage. Instead, they are used as a layer between the memory and the CPU.
One memory cache entry can represent one memory data set, but various memory
data-sets can map to the same cache entry. Caches use memory access patterns
to predict which data will be used in the future and store it. The used memory
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access pattern for caches is based on the principle of locality. Therefore, caches
store the last data accessed because it is likely to be used again soon.

When the CPU then accesses memory, the cache is looked up before. If the
required information is present within the cache, the cache lookup produces a
cache hit. The CPU can load data directly from the cache and does not need
to load it from the slower memory. If read access happens, and the data is not
present any longer or has become invalid, the data has to be loaded from the
RAM. When the data is available, it is used by the CPU and additionally stored
into the cache. If there is already another entry present, it is overwritten. There
are different policies if data is written: The write-through policy directly writes
data into RAM and updates the cache entry. The write-back policy first writes the
data into the cache only and updates the RAM upon cache eviction. Caches are
indexed using virtual or physical memory addresses. In case the virtual address
space is switched, virtually tagged caches have to be flushed.

Most x86 CPUs have different layers of caches. Bigger and slower caches are
closer to the RAM, and small, but fast caches are closer to the core. Many
x86 CPUs provide three layers of cache, namely L1, L2, and Last Level Cache
(LLC) [44, pp. 2-23]. The L1 cache is split into instruction and data cache. L2
cache and LLC share instruction and data. The L1 and L2 cache are tightly cou-
pled per core. The L3 is shared between all cores. The L1 and L2 cache on x86
systems is virtually indexed and physically tagged. Higher cache levels are usually
physically indexed and physically tagged.
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0x3f
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Figure 2.4: An example L1 cache lookup on an Intel Core i7 CPU [41,
tab. 11-1]. The data cache is a 32 kB 8-way-set-associative cache with
64 B line width. The cache splits the physical address into the cache
tag, set index, and line byte offset. The cache controller looks up the
set via the index. It checks if any cache way in the set is marked as
valid and if any valid cache way tag is matching. In this example, the
cache way 0 entry is valid and matches. The cache controller looks up
the 64-bit value stored at the corresponding byte offset in the matching
cache line.

TLB. In addition to memory caches, CPUs provide TLBs to speed up the address
translation. Some CPUs have split TLBs for instruction and data [44, pp. 22-
23] [41, ch. 11.1]. Whenever the system has to resolve the mapping between
virtual and physical addresses, the TLB performs a lookup. The entry consists
of the virtual page number, the corresponding physical page number, and some
mapping flags for access and privilege checks. If a mapping entry is present, the
physical page number can be directly used to resolve the physical page, instead
of walking through the four mapping levels in long mode. Most SMP CPU cores
have dedicated TLBs for instructions and data. On Intel x86 64, the TLB can be
tagged using the Process-Context Identifier (PCID) [41, ch. 4.10.1]. The PCID
is represented by the least 12 bits of the current PML4 physical page number.
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The entries of the TLB do not have to be flushed every a context switch happens.
However, the entries may have to be removed if there is a tag collision for two or
more PCIDs. Intel x86 64 CPUs also have their dedicated data and instruction
TLBs for large pages [41, ch. 11.1, ch. 11.11.9].

Paging-Structure Caches extend the TLB to more layers to speed up the
virtual address resolution further [41, ch. 4.10.3]. Instead of fully resolving to the
target physical address, paging structure caches just resolve parts of the address
translation by the corresponding virtual address. The paging-structure cache entry
stores the physical page number of the next paging level as well as some flags to
check for an access violation. The paging-structure caches are filled whenever a
virtual address is resolved. The activity diagram in Figure 2.5 illustrates a TLB
and paging-structure cache lookup of a virtual address. The PML4 cache takes
the bits 39 to 47 of the virtual address as the index and returns the reference to
the PDPT. The PDPT entry cache takes the bits 30 to 47 as the index and returns
the PD physical page number. The PD entry cache is indexed by the bits 21 to
47 and provides the PT page number. These caches have to be flushed at every
virtual memory switch unless they are tagged with the PCID [41, ch. 4.10.1].
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Figure 2.5: The address resolution of x86 64 in long mode with
Paging-Structure Caches [41, ch. 4.10.3.2]. When the CPU resolves
an address, it first looks up the TLB. If the TLB misses, the processor
looks up the corresponding entries in the paging-structure caches, i.e.,
the CPU looks up the address in the PT entry cache, the PD entry
cache, PDPT entry cache, and PML4 entry cache. If one of them re-
solves the target paging structure, the result is taken as part of the
page resolution.

Superscalar CPUs. Modern CPUs have a variety of measures to increase com-
putational performance. A normal pipeline sequentially fetches instruction into
the pipeline. A CPU can have a superscalar architecture to speed up the instruc-
tion pipeline [94, ch. 1.3.1]. A multiscalar CPU has multiple functional units
that serve a special purpose (like an Integer Unit or a Memory Unit). The CPU
fetches multiple instructions and distributes the execution of the different func-
tional units [92].

Out-of-order execution is a superscalar processor mechanism that speeds
up program execution. The CPU reorders and parallelizes sequential instructions
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and executes them ahead of time to optimize the load of different CPU execution
units. The CPU evaluates if an instruction can be pre-processed depending on the
data flow graph. If data dependencies and currently available resources allow it,
the CPU executes the instruction ahead of time.

Branch Prediction. When the program reaches a conditional branch, the CPU
cannot out-of-order execute further instructions as the branch target is not known
until the branch is processed [96]. In this case, the CPU can speculate what the
branch target will be and execute instructions of this branch target to optimize
the CPU load. The speculative results are temporarily stored. Once the CPU
evaluates the conditional branch, it takes the results. Otherwise, the CPU discards
the results. A Branch Prediction Unit (BPU) decides which branch shall be pre-
executed. It estimates which branch will most likely be entered based on the
previous branch targets [78]. The history of recent branch targets is stored in a
Branch Target Buffer (BTB) [24]. The BTB entries contain the source address,
target address, and a history of the last conditional or unconditional branches.
This way, a branch can be estimated before it is happening, and the instruction
pipeline of a processor can be filled earlier. If the branch prediction misses, the
pipeline has to be flushed and reloaded. The BTB structure is similar to those of
caches [24]. It uses virtual branch addresses as the index and provides the history
of the recent branch targets from this point.

Intel Transactional Synchronization Extensions (TSX) [44, ch. 12] is a
thread-synchronization mechanism introduced by Intel 2012 in the Haswell archi-
tecture. A thread on a multi-threaded system prevents race conditions on shared
data by locking critical regions where other threads shall not access or change
the same data. Locking is an expensive operation, which requires the use of a
synchronization mechanism like semaphores or mutexes [94, ch. 2.3]. Intel TSX
is an instruction set extension that speeds up atomic data access. A software de-
veloper can define atomic code regions. The system tracks the memory accesses
within these regions. If another thread accesses the memory at the same time as
the current thread and produces a read-write conflict, results are discarded. This
way, operations can be performed atomically without locking the shared resources.
Unlike other mechanisms, a failing transaction inside an Intel TSX region does not
trigger an exception that can be caught. Instead, the event is handled in the TSX
region itself. TSX includes two features: the Hardware Lock Elision (HLE) instruc-
tion extension for backward-compatible binaries, and the Restricted Transactional
Memory (RTM) instructions. HLE adds two new instruction prefixes XACQUIRE

and XRELEASE. With HLE, a locking mechanism can be implemented. On new
systems, the HLE lock marks the start and stops a TSX region. At the first entry

19



of the region, the optimistic program skips writing to the lock variable. If the
transaction fails, the region is restarted again, and the lock is acquired. The HLE
extension is ignored on CPUs that do not support TSX. So binaries with XACQUIRE

and XRELEASE can have locks that run on CPUs with and without TSX. The RTM
instructions XBEGIN, XEND, and XABORT allows a developer to implement a TSX
region with an additional fallback option. An atomic operation region is started
at XBEGIN and ends with XEND. If the memory transaction fails in an atomic region,
the CPU reverts the state. It then returns to XBEGIN and writes an error code to
EAX. The program can then handle the failed transaction.

Prefetch. The x86 64 PREFETCHh instruction allows a program to fetch data
into the caches before it is accessed. Developers can use this feature to pre-load
data in order to boost the actual access of the data when it is needed. The data
can be loaded into different cache levels. Because a user program could try to
prefetch not-yet mapped data, the PREFETCHh instruction may not fail. A prefetch
attempt of data that is not accessible or requires higher privileges does not raise
a page fault or general protection fault.

2.2 The Linux Operating System Kernel

A kernel is the core part of an operating system. It is capable of booting, providing
a generic interface to the system, managing the user programs, protecting the
systems from corruption and attacks, and many other features. This section gives
an overview of the Linux kernel and its parts that are relevant for this thesis.

The Linux kernel. In 1991, Linus Torvald released the first version of the
Linux kernel for the Intel 80386 CPU [50, p. 6]. The Linux kernel is open source.
Other operating systems share common principles with the Linux kernel but are
often held close source. The Linux kernel is a monolithic kernel [89, p. 145]. A
monolithic kernel, in comparison to a micro-kernel, runs its functionality in a single
program. Micro-kernels, on the other hand, break their functionality down into
separated processes. The Linux kernel uses a Portable Operating System Interface
(POSIX) compliant interface [89, p. iv]. It can be cross-compiled for different
system architectures, like x86 and arm [67, p. 3]. This master thesis focuses on
the Linux kernel version 4.10-rc6 on x86 64 with default kernel configurations.

Kernel Boot. The operating system boot consists of multiple steps. x86 CPUs
support one of two main processes to load the operating system into RAM upon

20



startup: The legacy Basic Input/Output System (BIOS) boot process and the
newer Unified Extensible Firmware Interface (UEFI) boot process. The UEFI
or BIOS firmware loads a boot loader like the GNU Grand Unified Bootloader
(GRUB) from the drive or network in multiple stages [19] [48]. The last boot
loader has a driver for a file system. It loads the Linux kernel image and the initial
ramdisk into RAM and executes the kernel [62]. The Linux kernel can be packed
in different file formats. A common kernel image file format on x86 platforms is
bzImage [91]. A bzImage consists of a header, setup code for initial execution, and
the compressed vmlinux image. The boot loader starts the Linux kernel head code
in Real Mode. After the basic setup, the kernel switches to either Protected Mode
or Long Mode. Then, the kernel decompresses the vmlinux binary and executes
it. The start kernel function [63] is the platform-independent entry point to the
uncompressed kernel. This routine initializes the entire kernel infrastructure and
drivers, the interrupts, and the scheduler. Then, it starts the kernel init thread,
the kernel worker thread daemon (kthreadd), and the idle thread. The kernel
init thread sets up SMP and then executes the first user process.

Processes and Threads. Linux handles its user programs as processes. A
process can have one or more threads. The threads of a process share the same
virtual memory, but all have their stack and registers. A process forks itself to
create a new child process. The forked process has the memory layout, files, and
the same threads as its parent. The created child process can then execute another
binary using execve [50, pp. 31-32]. The Linux kernel abstracts and manages all
resources for processes and threads. It provides drivers and unified interfaces to
the user processes and threads. A user thread can access these resources via
system calls or memory mapping. In addition to user threads, the Linux kernel
also supports kernel threads. The kernel thread daemon creates the kernel threads.

Each thread has its own kernel stack and a task struct. The task struct

contains all relevant information for the task. The Linux kernel handles thread exe-
cution via a scheduler. The scheduler is responsible for switching between threads,
balancing the processing time of processes, and optimizing the CPU load [64]. The
x86 64 Linux kernel supports program architectural backward compatibility for
processes compiled for x86 32.

Memory Layout and Management. The Linux kernel v4.16-rc6 for x86 64
long mode uses different names for the paging structures as Intel or AMD - The
PML4 is the PGD, the PDPT is the Page Upper Directory (PUD), the PD is the
Page Middle Directory (PMD). A PT is still called PT. In the context of Linux, we
will use the Linux paging structure definitions. The Linux kernel uses the upper
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canonical address space as kernel space and the lower half as userspace. Figure 2.6
gives an overview of the kernel virtual memory layout.

(hypervisor)

direct mapping

vmalloc

vm map

kasan

esp fixup stacks

EFI mapping

kernel text

modules
vsyscalls

user space

Figure 2.6: The Linux kernel v6.10-rc6 virtual memory layout [51].

The upper canonical half of the virtual address space is reserved for the kernel.
It starts with a guard hole that can be used for a hypervisor. The direct map-
ping is an identity mapping of the physical address space for direct virtual access.
The vmalloc area is the kernel heap memory, as well as the IO remap area. The
virtual memory map area contains a linked list of the physical pages and their vir-
tual addresses. The KernelAddressSanitizer (KASAN) region contains the shadow
memory table for dynamic memory access error detection. The ESP fixup stacks
are workaround stacks to not leak parts of the ESP register content to 16-bit mode
user programs [5]. The Extensible Firmware Interface (EFI) mapping space is re-
served to map EFI runtime services for EFI runtime calls. The kernel text section
contains the Linux kernel RO binary. It is mapped starting from physical page
0 [51]. The modules are mapped next, followed by the virtual syscall area. The
kernel maps data and functions into the virtual memory and makes them accessi-
ble to user threads. User programs can directly access kernel data (e.g., date and
time information) or call functions without switching to kernel mode [11]. The
virtual syscall mechanism is deprecated and replaced by the vDSO mechanism.
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The kernel still reserves the virtual memory region to virtualize the virtual system
calls for backward compatibility with old user programs. The initial PGD of the
Linux kernel is set up at boot and used as the basis for all paging structures. The
kernel copies the content of the upper PGD half when a process is forked. The
kernel also keeps the kernel virtual memory in sync, so all processes share the same
virtual kernel memory.

The physical memory is managed using a physical memory map with struct

page entries [88]. Linux supports different memory models to maintain the memory
map. On x86 64, the Linux kernel uses SPARSEMEM memory management [86].
The memory is represented in sections of different sizes, which then resolves to
page struct entries. Each Page-Frame Number (PFN) refers to a physical page.
Its upper bits are used to find the section, and the lower bits find the corresponding
page. The Linux kernel linearly maps the entire physical memory map into the
virtual memory to speed up the translation between PFN and page struct. Holes
between segments are not mapped in the virtual memory map, but their virtual
memory within the map is still reserved. The kernel uses the virtual memory map
offset to convert between a PFN and its page struct.

The virtual memory information of each Linux process is held in a struct

mm struct. It contains the reference to the PGD and a double-chained sorted list
of the virtual memory areas. These virtual memory areas each represent a linear
virtual memory area within the address space. They contain the reference to the
source where they are loaded from (e.g., a file), as well as access flags. A page not
representing a file is an anonymous page, and pages that contain file contents are
page-cache pages. The kernel loads virtual memory area pages on demand. When
a virtual memory area is created, the kernel just refers to the corresponding file but
does not allocate and map physical memory yet. When a thread tries to access the
page, a page fault is triggered, and the kernel maps the page on-demand. Besides,
the kernel shares pages where possible. As long as memory content is not modified,
it can be mapped into multiple virtual memory areas simultaneously. An example
is the virtual memory of a forked process. When the parent process forks its child,
the physical pages are not duplicated. Instead, the kernel links them into the new
page table structure and sets the page table entries non-writable in both processes.
When a thread attempts to write to a deduplicated virtual memory area, the CPU
triggers a page fault, and the kernel performs a Copy-On-Write (COW). The kernel
copies the physical page content onto a new page, links the new page, and sets
the new page table entry writable again. The old page table is also made writable
again if it is the last one referencing the deduplicated page. Pages can even be
deduplicated at runtime via Kernel Samepage Merging (KSM) [18]. Kernel Space
scans over anonymous user pages and deduplicates them if possible.
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The scheduler only switches the virtual memory layout only if necessary. If
possible, it does not replace the current paging structure to avoid unnecessary
cache flushes and reduce the context switch overhead [97]. If the scheduler switches
to a new thread that does not need to access the user virtual address space, the
scheduler stays with the current virtual address layout. The thread can keep the
foreign virtual address layout. Since all threads share the kernel mapping, the
kernel-only threads can always stay with the current virtual memory layout.

Per-CPU data. The Linux kernel supports SMP CPUs. Therefore, it requires
to manage per-core instantiated data, the so-called per-CPU data [2] [56]. An
example of per-CPU data is the IRQ stacks or the GDT. These data structures
are virtually mapped into the kernel space and set up at boot. The Linux kernel
provides functions to read/modify/write per-CPU data of the current core, another
core, or all cores. Linux uses the GS to select the per-CPU defined variables per
core in kernel mode. In user mode, the GS is zeroed.

Interrupt, System Call, and Exception handling. Whenever an x86 64 in-
terrupt or exception is triggered, the CPU looks up the corresponding IDT entry
and checks the DPL. If the interrupt descriptor is valid, the CPU calls the entry
gate by the segment selector and the offset. All interrupts, system calls, and excep-
tions which direct to the Linux kernel code segment have their entry and exit points
in arch/x86/entry/entry 64.S and arch/x86/entry/entry 64 compat.S [59].
These entry and exit points are stored in a separate Linux kernel text section.
The Linux kernel has to provide different types of entries due to x86 64’s inter-
rupt, system call, and exception calling conventions [9].

System Calls. A Linux system call, or syscall, is a mechanism that allows a user
program to access kernel functionality in a defined way. User programs usually
call system calls via a wrapper library like libc [15] [68]. Libc provides a POSIX-
compatible interface to the user program for independence and prepares the system
call in user mode if required. Performing a system call into the kernel is expensive.
System call functionality that does not need additional privileges can be entirely
handled in libc, vsyscall, or vDSO [11]. The user program calls the vsyscall or
vSDO without a need for a kernel gate or kernel system call, which is much faster.
The kernel maps the vsyscall segment into the top of the virtual kernel space
and makes it user-accessible. The vDSO segment, on the other hand, is dynamically
mapped into the userspace. If the system call requires increased privileges, the user
program has to enter the kernel.
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A user thread passes a system call number and up to six arguments to the kernel
via registers when it performs a system call. The system call number is determining
which actions shall be performed. After storing the necessary information into the
registers, the user thread enters the kernel by executing the SYSCALL instruction,
the SYSENTER instruction, or the software interrupt INT80. Since these ways of en-
tering the kernel all need to be handled differently, the Linux kernel has a different
entry point for them. The long mode SYSCALL instruction calls entry SYSCALL 64.
On AMD CPUs, the SYSCALL instruction is also used by 32-bit protected mode
user programs. They enter entry SYSCALL compat. Figure 2.7 shows the flow
chart of entry SYSCALL 64. 32-bit programs that are running on an Intel x86 64
CPU enter the Linux kernel in entry SYSENTER compat via the SYSENTER instruc-
tion. Legacy protected mode programs perform a system call via INT80, and land
in entry INT80 compat. To support protected mode programs on both Intel and
AMD CPUs, Linux recommends entering the kernel from a protected mode thread
via kernel vsyscall, which is mapped by vDSO [75].

25



64 bit
SYSCALL

Swap GS

Push Registers

Yes

No

Entry/Exit Work?

Enable Interrups

syscall_table[nr]()

Disable Interrupts

Exit Work?

Pop Registers

Swap GS

Push Extra Regs

syscall_return_slowpath()

Push Extra Registers do_syscall_64()

Pop Extra Regs

NoYes

Sysret possible?

Swap GS

Pop Registers

Yes
No

Target Stack
on LDT?

Swap GS

Switch to ESP Fixup
Stack

Swap GSSYSRET

IRET

Setup Kernel SP

Setup User SP

Figure 2.7: The flow chart of the Linux kernel v4.10-rc6 64 bit system
call entry (without tracing) [59][66]. The long mode SYSCALL entry
provides a fast entry path and a slow entry path. The kernel entry
code switches to the kernel GS. It sets up the kernel stack pointer and
pushes the necessary registers on the stack. The registers R12 - R15,
RBP, and RBX are preserved by the calling user thread and do not need
to be saved [66]. If the current thread requires to perform syscall entry
or exit work, it enters the slow path, stores the rest of the registers, and
calls do syscall 64. If no entry or exit work is pending, the thread
directly calls the system call function from the system call callback
table. The thread can return to user-mode in two ways. If possible, it
returns via SYSRET, because it is much faster. If a return via SYSRET is
not possible (e.g., the target return address does not match the entry
address stored in RCX), the thread has to exit the system call via IRET.
The kernel switches the stack to the ESP fixup stack if the user stack
segment is in the LDT before it executes the IRET instruction, and
returns into user mode [5].
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Interrupts and Exception Entry and Exit. The Linux kernel supports dif-
ferent kinds of interrupts and exceptions. On x86 64, interrupt gates are registered
in the IDT. The Linux x86 64 interrupt layout is shown in Table 2.1. As described

Range Interrupts
0x0-0x1F System Traps and Exceptions
0x20-0x7F Device Interrupts
0x80 Legacy INT80 syscall
0x81-0xEE Device Interrupts
0xEF-0xFF Special Interrupts

Table 2.1: This table gives an overview of the x86 64 Linux kernel
IDT layout [60]. The first 32 entries of the Linux x86 64 kernel IDT
are reserved for system interrupts and exceptions, like the external Non-
Maskable Interrupt (NMI) or the page fault. They are defined by the
CPU [41, tab. 6.1]. The following IDT entries are device interrupts
and exceptions, which are configured by the APIC. They are platform-
dependent (e.g., driver interrupts). Interrupt 0x80 is reserved for the
legacy INT80 system call. Linux defines the last interrupts (0xEE-0xFF)
as special interrupts, which are fixed by the kernel. An example for a
special interrupt is the reschedule interrupt.

above, the x86 64 kernel has different entry points for the interrupts and excep-
tions. The use of the SWAPGS instruction is especially tricky. When an interrupt is
triggered, the kernel has to determine whether the thread came from user mode or
kernel mode. Linux has a fast check and a slow check mechanism to determine if
the thread came from user mode or kernel mode [59]. In the fast check, the kernel
reads the CS of the called thread and checks the DPL. The kernel performs the
fast check on every entry that cannot interrupt in a context switch. The slow or
paranoid entry check, on the other hand, is performed on interrupts and excep-
tions that can interrupt an ongoing entry handler. Exceptions and interrupts like
NMI or INT3 (the breakpoint interrupt) may interrupt right between a CS check
and SWAPGS of an already ongoing entry function. If the fast entry is performed
in this case, the entry function switches the GS back to the user GS, and thereby
accesses wrong per-CPU data. The entry code instead reads the GS from the
MSRS to determine the thread status.

Device interrupts enter the kernel via an entry stub [66]. Each device inter-
rupt has its dedicated stub. The stub pushes the interrupt number on the stack
and jumps to a shared device interrupt function. common interrupt saves the
registers, and swaps GS if required (performing a fast GS check). It switches to
the interrupt stack if the thread came from user mode and then jumps into the
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do IRQ() function. do IRQ() then executes the actual interrupt routine based on
the interrupt number. At the exit point, common interrupt tests if the thread
returns to user mode via a fast check. If it returns to user mode, it swaps back
GS and returns to user context via an interrupt return instruction. If the thread
returns to kernel mode, the current thread returns to the previous context or
switches to another thread if the current thread terminates. The kernel handles
special interrupt entry and exits similar to the device interrupts. Instead of en-
tering the kernel interrupt routine via do IRQ(), these interrupt entry functions
directly call the kernel function.

System traps and exceptions have either a non-paranoid or a paranoid entry
point. If a non-paranoid system exception handler is triggered, the CPU pushes all
registers on the stack. If a fast check indicates the thread came from user mode,
the kernel swaps the GS and calls the actual Interrupt Service Routine (ISR). If
the thread came from kernel mode, the entry function performs additional fixes if
it returns to kernel mode with the user GS set. That can happen if the interrupted
thread is returning to user mode via an interrupt return instruction, or if it executes
native load gs index to update the GS of the current thread (e.g., to clean up
the mm struct of a terminating process).

A paranoid entry is used for all exceptions and traps that can interrupt at any
time, so also at other atomic interrupt entry and exit points. When a thread
enters a paranoid exception, it first performs a fast user mode check. If the thread
entered from user mode, it switches the stack and performs a similar sequence
as the non-paranoid exception entry. If the fast check indicates that the thread
may be in kernel mode, the thread performs the paranoid check, and swaps GS is
required.

The Linux kernel implements a particular entry and exit point for NMIs. It
allows nesting NMIs. If the current thread comes from user mode, it switches
its current stack to the thread stack. If the thread came from kernel mode, the
interrupt entry routine sets up an NMI nesting stack frame that following nested
NMIs can use to handle nesting.

Kernel Stacks. The Linux kernel supports different stacks for the kernel [1].
Each kernel thread and user thread has its dedicated 8 kB thread stack. That
stack is used for thread work and to handle system calls. To keep the per-thread
stack size small, Linux has additional individual per-CPU stacks. For device Inter-
rupt Requests (IRQs) and software IRQs from the kernel, each CPU core has an
interrupt stack with 16 kB size. When the thread came from user mode, the kernel
switches the IRQ stack. The x86 64 architecture allows the kernel to automatically
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load one of up to 7 stacks per core for interrupt descriptors to circumvent nested
interrupt stack race conditions. These stacks are registered in the IST of the TSS
and indexed via the interrupt gate descriptor. The Linux kernel uses the IST for
special interrupts and exceptions. The kernel has a separate stack for double fault
exceptions, NMIs, Machine Check Exception (MCE), and debug interrupts.

2.3 Kernel Memory Protection Principles and

Recent Work

Operating system kernels nowadays provide a rich set of mechanisms to protect
themselves against forbidden access and misuse. Monolithic kernels become more
complicated with increased size. Therefore, developers cannot ensure to fix every
weakness of the kernel and its modules. Kernel countermeasures make use of
hardware features to prevent attacks on the kernel from a malicious user program.

Address Space Isolation. The kernel memory is split up into kernel space
and user space to prevent programs from unallowed access or execution of kernel
memory and resources. The Linux kernel is mapped into the upper half of the
canonical address space on x86 64, and user programs have the lower canonical
space available. Even though every process has its own virtual address space
layout, they all share the same kernel address space. When a user program wants
to access restricted resources, it has to do so via a defined entry point. Such an
entry point can be e.g., a system call or an exception. The kernel then handles the
request and passes it back to the user program. If a user program tries to access
kernel memory, the CPU informs the kernel via a page fault [41, ch. 5.11.3, ch.
4.7]. The Linux kernel then informs the user program about its termination via a
SIGSEGV (segmentation violation) signal [50, p. 393]. This signal kills the process
if the process does not catch it via a signal handler.

SMEP. An attacker might use kernel bugs to manipulate return addresses on the
stack or function pointers to execute malicious user code in kernel mode. SMEP is
a security feature that is available on x86 64 CPUs. SMEP restricts the execution
of non-privileged instructions in user mode. When SMEP is active, and the CPL
is not in ring 3, executing an instruction on a non-privileged page will result in an
exception. It is activated in the CR4 of x86 64 CPUs.

SMAP has been developed for Intel x86 64 CPUs, and is similar to SMEP.
When the system is in supervisor mode, it is not allowed to access the virtual
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pages marked as user pages. This feature can be activated in the CR4 and can
be temporarily disabled by setting the EFLAGS.AC flag. If a program has to read
or write user data, it can temporarily disable SMEP.

Write XOR Execute (W⊕X) . Since a user program cannot access the kernel
memory directly, attackers try to find vulnerabilities in the kernel to inject code
into the kernel space and execute it. An attacker can, for instance, produce a buffer
overflow to overwrite functions, or write malicious instructions into the buffer and
modify the stack return address. The W⊕X policy is a kernel mechanism that
prevents such attacks. The x86 64 page structures support flags to make a page
non-executable (XD) and writeable (R/W). The W⊕X policy defines that every
page shall either be writable or executable, but never both. By restricting writable
executable memory accesses, attackers can no longer inject malicious program
snippets into the kernel and then execute them. There may still be memory regions
that are neither writable nor executable. An attacker can thereby not inject code
into executable regions any longer, and also not make the CPU execute buffer
content.

KASLR. Although the previously introduced countermeasures hamper many
attacks, attackers are still able to obtain information out of the kernel or even ex-
ecute instructions in kernel mode [25] [87]. Return-oriented Programming (ROP)
exploits like return-to-libc attacks usually require two pre-conditions: First,
they need a weakness in the system under attack. Such weaknesses can be an
unchecked boundary indexing in a buffer. The second requirement is the knowl-
edge about the virtual address space layout of the system under attack. Address
Space Layout Randomization (ASLR) is a method to mitigate attacks that need
to have pre-knowledge about the virtual address space layout [76, 83]. When a
process gets initialized or requests more memory, the kernel places the memory re-
gions at random positions in the virtual memory address space. Since the attacks
mentioned above need to know the virtual address space layout, ASLR impedes
these attacks. KASLR uses the same mechanism as ASLR and randomizes the
kernel virtual address layout upon boot. It was merged into the Linux kernel
3.14 [12]. Figure 2.8 explains how the virtual address space layout of an x86 64
virtual kernel memory is randomized. The boot loader places the kernel code at
a 2 MB-aligned random address within the 1 GB kernel text region [61]. The ker-
nel places modules with a random page-aligned base address between 4 kB and
2 MB [35]. The kernel relocates the direct physical mapping, the vmalloc region,
and the virtual memory map during boot. The virtual address space in which
they are placed is ≈119 TB large, and their virtual start addresses are aligned to

30



1 TB. To sum it up, Linux 4.10-rc6 KASLR for x86 64 adds ≈9 bit entropy to
the kernel text virtual address, ≈10 bit entropy to the virtual address offsets of
modules. The offset relocation of the physical mapping region, the vmalloc and
I/O remap region, and the virtual memory map region add ≈7 bit of entropy each.

(hypervisor)

direct mapping
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vm map
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esp fixup stacks

EFI mapping

kernel text

modules
vsyscalls

user space hypervisor
/ guard hole
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vm map
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vsyscalls
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align(2MB)
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Figure 2.8: The KASLR of the Linux kernel 4.10-rc6 for x86 64 ran-
domizes the offsets of the kernel text section, the module base address,
the direct physical mapping, the vmalloc and ioremap region, and the
virtual memory map memory at boot [51]. The KASLR region starts
at the hypervisor or guard hole end address. The end of the KASLR
region is the lowest start address of the kernel text section, the EFI
mapping, and the ESP fixup stack (ESP fixup stacks and the EFI map-
ping are compile-time optional). KASLR and KASAN are mutually
exclusive. Therefore, KASLR uses the KASAN shadow memory region
to increase the virtual memory space and therefore the entropy.
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2.4 Side-Channel Attacks

Kocher [53] introduced side-channel attacks [34]. A side-channel leaks information
from a hidden state or sequence. A side-channel attack makes use of such a leak.
The attacker analyzes the side-channel information to recover the hidden state or
sequence of a victim. Such side-channel information can be a power consumption
analysis, heat analysis, or timing differences. Spreitzer et al. [93] categorize side-
channel attacks by the following parameters: The activeness of a side-channel
attack shows how much the attacker influences the device under attack to leak
information. The more passive an attack is, the harder it is to attack. An attack’s
invasiveness shows how much access or control the attacker requires to have on the
target system. Highly invasive attacks even need to open the chip of the target
under attack, while less or non-invasive attacks may not even need hardware access.
Covert channels allow attackers to exchange information between two parties that
are not allowed to communicate. Many side-channel attack techniques can directly
be used to open a covert channel.

This thesis focuses on local software-based timing side channels on x86 64 ma-
chines that do not need direct hardware access. Such side-channel attacks are
performed from a malicious process that is executed on the target system. They
make use of the RDTSC instruction to read out the time-stamp counter and measure
time.

Cache Timing Attacks. Cache attacks are a widely known technique to obtain
information about data accesses of other processes or the kernel. Caches are usually
smaller than the virtual or the physical address space. Therefore, caches use
indexes and tags to map from an address to a data set. Since the cache entry
index is usually smaller than the virtual address, only some bits of the virtual
address is taken as the index, and the rest is stored in the tag. An attacker,
who knows parts or the entire virtual address space layout, can provoke cache
misses and measure the timing of memory access to estimate which data has been
accessed. Since only some bits of an address are used to index caches, the attack
on kernel data can be performed via congruent user addresses. Thus, the attacker
only requires a process without privileges. Different cache levels can be attacked
this way. In the following, we introduce some types of attacks which can obtain
information about the kernel memory and its layout. These attack types use cache
timing side channels.
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Prime+Probe. Osvik et al. [82], Gruss et al. [27], and Younis et al. [102] use
Prime+Probe for their attacks. A Prime+Probe attack targets data caches and
allows them to check if another thread has accessed data. Prime+Probe first
accesses all lines of a cache set. The cache lines within the cache set are filled with
data of the attacker. The attacker waits until the attacked thread is executed and
reaccesses the data. If the target has accessed or executed an address with the
same cache set in-between, a cache miss happens because the cache line tag does
not match any longer. The CPU has to reload the data from RAM. The attacker’s
data access takes longer, and the attacker learns if the victim accessed or executed
the target address. An example cache set attack is illustrated in Figure 2.9.
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Figure 2.9: An Prime+Probe attack on a single cache set [34, p. 104].
Red cache line entries are loaded by the attacker, blue by the victim.
Starting with the prime step (A), the attacker accesses indices of a
data array that share the same cache set index. The CPU fills all cache
lines of the set with the data from the array of the attacker. Then,
the attacker lets the victim execute. When the victim tries to access
or execute a physical address with the same cache set (B), the CPU
gets a cache miss and loads the new entry into the cache. The attacker
then performs the probe step (C). The attacker accesses all the data
of the same cache set again and measures the timing. If one or more
accesses take longer than a defined threshold, the attacker knows that
the victim has accessed or executed lines from the same cache set. The
attacker can thereby derive parts of the physical and virtual address of
a data access or branch path of the victim.

Prime+Probe attacks can be performed on any level of data and instruction
caches [74]. Prime+Probe can also attack cross-core on an SMP CPU if it attacks
the LLC.
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Flush+Reload. Another cache timing attack strategy is Flush+Reload. This
attack is similar to Prime+Probe, but instead of accessing data in the first place,
the cache lines under attack are reset using a flush instruction. This attack type
was described by Yarom and Falkner [101]. A Flush+Reload works on the LLC
cache lines for shared pages. Such a shared page may contain, e.g., a shared library.
First, the attacker flushes a shared address. The CPU flushes the corresponding
LLC cache line. Then, the attacker waits for the victim to access or execute the
address under attack. Then, the attacker reaccesses the address. If the access time
is below a pre-defined threshold, the CPU has loaded the content into the LLC in
the meantime. The attacker can thereby find out if the victim has accessed the
shared memory.

The Flush+Flush attack [29] is a side-channel attack that is similar to the
Flush+Reload attack. Instead of reloading the address after the flush, the address
is flushed again. The second address flush is faster when the data has not been
cached in the LLC. The attacker can observe data accesses this way.

Prefetch Side-Channel Attacks. Gruss et al. [28] wanted to use the property
of the prefetch instruction of Intel x86 64 CPUs to obtain information of the Kernel
Virtual Memory (KVM) layout and the access pattern of kernel addresses. The
prefetch instruction, as described in Section 2.1, does not fail. It even does not fault
if the fetched virtual memory address does not map to a physical page or requires
a higher privilege mode to access it. Gruss et al. [28] states that it instead just
loads the data into the caches, even if the callee lacks permissions. Gruss et al. [28]
presented two attacks that use PREFETCHh instructions to obtain information about
the kernel virtual memory mapping from user mode. The CPU needs to resolve
the physical address. It looks up the TLBs, the paging structure caches, and in the
worst case, the paging structure tables to convert the virtual address to a physical
address. The execution time of a prefetch instruction depends on the number of
cache, buffer, and table lookups. The translation-level recovery attack measures
this time to obtain information about the kernel virtual memory mapping. With
that information, an attacker is able to recover the kernel virtual memory layout
and break KASLR. Gruss et al. [28] also assumed the prefetch side channel can
also be used to find the physical page of a virtual page in the kernel. The address-
translation attack prefetches a virtual memory address. Then, it prefetches a
target virtual memory address within the direct physical mapping. The prefetch
instruction loads the value into the data caches at the first prefetch. If the physical
address of the direct physical mapping matches the target virtual memory address,
the CPU does not need to load the data caches again. Therefore the access is faster
if the target virtual memory address refers to the physical address of the direct
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physical mapping. The attacker is able to find the physical memory address of any
virtual memory address in the kernel space or user space [28, p. 7].

Double Page-Fault Attacks. Hund et al. [37] found another side-channel at-
tack on the kernel virtual memory layout. Their attack makes use of a specific
behavior of Intel CPU TLB lookups. When a user program accesses privileged
memory, the CPU triggers a page fault. On Intel CPUs (unlike, e.g., AMD [37,
p. 9]), the CPU creates a TLB entry at a TLB miss even if the privilege check
fails. The double page-fault attack, as shown in Figure 2.10, makes use of this
mechanism to recover the virtual memory layout of the kernel when KASLR is
active. A malicious user process accesses a virtual address of the kernel space.
The CPU triggers a page fault to the kernel, which then sends a SIGSEGV signal to
the user process [50, p. 393]. If the page is mapped at this point, the CPU creates
a TLB entry for the virtual address under attack. The user process then triggers
a page fault on the same virtual address again, and measures the timing it takes
to return to the signal handler. If the TLB entry was already present, the fault
handling is significantly faster than if the TLB entry has to be resolved again. The
attacker can scan the entire kernel virtual address space, and apply a differential
analysis on the observed timings to get the kernel virtual memory layout.
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Figure 2.10: An attacker that makes use of the double page-fault
side channel [37] first accesses a page of interest, so the CPU attempts
to resolve the virtual address to check the access permissions. If the
page is present in virtual memory as shown in A, the Intel x86 64 CPU
updates a TLB entry before the page fault is triggered due to the access
permission violation. In the second access on the same virtual memory
address, the TLB entry is already valid, and no TLB miss must be
handled. For example B, the virtual address is not mapped. The CPU
does not update the TLB entry upon the first memory access. When
the attacker accesses the virtual address a second time, the CPU has
to resolve the virtual address again. The attacker measures the time
from the second address access to the second signal handler call. If
the page is not present as in example B, the access takes significantly
longer than in example A.

Intel TSX-based Side-Channel Attacks. Jang et al. [46] developed the De-
Randomize Kernel address space (DrK) attack to break KASLR. DrK is a virtual
memory side-channel attack that makes use of the Intel TSX mechanism. When a
thread is in an RTM region, and it accesses or executes virtual memory that is not
mapped or accessed despite a lack of privileges, Intel TSX aborts the region and
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rolls back the state. The attacker cannot directly observe if the virtual memory
address is mapped or not. When a thread in an RTM region accesses a virtual
memory address, the CPU has to resolve the state of the page, and check if the
access is permitted. Due to the multi-stage pipeline and the cache structures,
the address resolution and permission checks differ in time until the RTM abort is
triggered. The DrK attack measures time, enters a TSX RTM region, and accesses
a kernel memory address. The CPU detects that the virtual page is not mapped or
requires higher access privileges, and aborts the TSX region. The attacker thread
jumps into the abort handler and measures the time again. Depending on the
timing difference, the attacker can find out if the page is mapped or not. If the
page is mapped, the attacker performs the attack again but executes the address
instead of reading it. Again, the attacker measures the time difference, which is
smaller if the page is executable. DrK can scan the entire virtual address space
(page-wise) of the kernel with this method and fully recover the kernel address
space layout.

BTB Attacks. The BTB, as described in section 2.1, is a hardware feature to
speed up unconditional and conditional branches by storing the source and target
address of branches. Because the BTB is not big enough to store all branch sources,
a part of the source instruction address is taken as the index to the BTB-entry,
and other parts are taken for the tag. In case a branch occurs and a valid branch is
already placed within the BTB-entry, the old entry is overwritten. When the old
branch is performed a second time, it is significantly slower than it would be with a
valid BTB-entry. This branch timing can be measured and used for timing attacks,
as Acıiçmez et al. [3] and [4] have demonstrated. Also, not all parts of an address
are used for index and tag, as [20] showed for the Intel Haswell architecture. They
found out that only 30 of the 48 address bits are used for the index and tag. Thus,
BTB entries may mismatch, even though the index and tag match, leading to a
wrong prediction. BTB mismatches are not problematic for the BTB mechanism.
In this case, the CPU flushes the pipeline, as it would normally be a BTB miss.
However, Evtyushkin et al. [20] used this collision to recover the random bits of the
KASLR. As said before, Linux only uses 9 bits of the virtual address to calculate
the text section offset at boot time. It randomizes the bits 21 to 29, which is the
PD index part of the virtual address. This part of the virtual address overlaps with
the index and tag of the BTB entry. The attacker knows branch sources for the
Linux kernel. The attacker creates a binary with branch sources at addresses that
have a collision with the BTB entry of the kernel branches. Then, the attacker
iterates over the possible KASLR offsets. For every possible offset, the attacker
uses the branches to fill the BTB entries and then calls a syscall to switch to kernel
mode. After the syscall returns, the attacker tries to do the same branch again
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and measures its time. If the call takes longer than usual, one can assume that
the correct offset for the KASLR text section has been found. BTB attacks only
work while running on the same core, but this is irrelevant since the kernel text
section addresses are the same on every core of the CPU.
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Chapter 3

Kernel Virtual Memory Isolation

This chapter presents software-based countermeasures to mitigate kernel virtual
memory side channels. We analyze if they are practical and check if they can
impede kernel virtual memory side-channel attacks. At last, we design a counter-
measure based on the evaluation and our design goals.

Assumptions. We evaluate countermeasures against the following attack sce-
nario:

[Assumption A] The operating system under attack is executed on a non-
virtualized x86 64 SMP CPU without PCIDs.

[Assumption B] The operating system performed KASLR at boot-time and
uses SMAP and SMEP.

[Assumption C] A malicious user program wants to perform a ROP attack
on the kernel and therefore needs to know the layout of the kernel virtual memory.

[Assumption D] The attacker performs a virtual memory timing attack to
break KASLR.

Timing attacks on KASLR (as described in Section 2.4) attack the paging
structure of the virtual memory, the TLB, or the paging-structure caches [28, 37,
46]. They need to have the virtual kernel memory to be mapped in user mode,
the TLB and paging-structure caches to be filled with kernel page entries, and a
way to measure time differences.
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3.1 Countermeasures

There are different approaches to counter these types of attacks in software. We
analyze which countermeasures are practical and check if they can impede kernel
virtual memory side-channel attacks.

Disable Time Stamp Counter. All time-based side-channel attacks need a
way to measure timing differences. The time stamp counter provides a precise time
measurement for attackers. Therefore, many attacks rely on the RDTSC instruction
to perform their attacks. Hund et al. [37] and Percival [84] suggest disabling the
use of the RDTSC instruction in x86 64 programs. The Time Stamp Disable (TSD)
bit of the CR4 register can restrict the RDTSC and RDTSCP instruction to privilege
level 0 [41, ch. 2.5]. Hund et al. [37] point out that many applications make use
of the RDTSC instruction, and removing it is impractical. Percival [84] suggests to
use this option only on non-SMP systems due to the potential use of Virtual Time
Stamp Counters (VTSCs). To implement a VTSC, an attacker can count up a
shared variable in a thread on another core. Martin et al. [77] present a method to
mitigate VTSC based attacks. Unfortunately, a practical implementation of this
countermeasure requires micro-architectural changes.

Manipulate Time Stamp Counter. Martin et al. [77] propose to obscure the
behavior of the time stamp counter. The kernel can disable the RDTSC instruction,
and virtualize the instruction when the privilege violation exception raises. The
virtualized RDTSC instruction then returns a slightly modified value, which adds
entropy to the counter, and makes it unusable for precise time measurements.

Kernel Memory Isolation. An effective way to stop leaking information to
attackers is to remove the kernel virtual memory when a thread is user mode.
The side channel still exists, but an attacker cannot observe valuable information
through it. A thread can either remove or replace the kernel virtual memory when
it enters user mode to hide the kernel virtual address layout from side-channel
attacks. All TLB entries and kernel space paging-structure cache entries have to
be invalidated as well. When the thread enters the kernel again, it has to restore
the kernel virtual memory layout.

A problem with this approach is the switch between user mode and kernel mode
of a task. If the kernel address space is removed or replaced, the stacks and context
switch routines are unavailable when entering the kernel mode. Also, some virtual
address regions need to be mapped in user mode because the CPU or user threads
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still need them. Therefore, parts of the KVM still have to be mapped in user
mode. Figure 3.1 shows the Virtual Memory (VM) map of a process in user mode
and kernel mode. The virtual memory mapping in user mode is called Shadow
Memory Mapping in this thesis.

user space

switch to
user mode

kernel space

Kernel Mode VM User Mode VM

kernel space

minimal mapping

switch to 
kernel mode

user space

A B

Figure 3.1: The virtual memory layout of a process in kernel mode
and user mode. When a thread is in kernel mode (A), the full address
space is mapped. When the thread is in user mode (B), the kernel space
gets mostly unmapped. Only some sections still need to be present in
user mode.

There are two different approaches to hide the kernel virtual address layout in
user mode.

Paging Structure Update . One method to isolate the KVM, is to unmap all
kernel pages from the page table upon a context switch to user mode. Gens et al.
[23] developed LAZARUS, a technique and Linux kernel patch that implement this
countermeasure. LAZARUS only maps the pages the CPU and the kernel need to
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have in user mode. Upon a context switch to user mode, LAZARUS replaces the
rest of the KVM mapping with a dummy mapping. The dummy mapping does
not contain valuable information. When the thread switches to kernel mode, the
kernel entry handler restores the kernel mapping upon entry. Figure 3.2 shows an
example of a process page table structure in kernel mode and user mode. Since
the CPU does not implicitly invalidate the TLB and the paging-structure caches
upon a paging-structure update, the kernel has to manually disable the entries
that map the kernel virtual memory via the INVLPG instruction [41, ch. 4.10.4.1].
LAZARUS does not need to invalidate the minimal kernel mapping and user space
TLB and paging-structure cache entries.
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Figure 3.2: In kernel mode (A), the paging structure maps the entire
kernel and user virtual memory. In user mode (B), the paging structure
only maps the minimal virtual memory required. The other pages are
either unmapped or reference a dummy mapping.

The paging structure update does not work on multi-threaded SMP systems
without restrictions. When a thread switches from kernel mode into user mode,
the KVM of all other threads within the same process is removed. Therefore,
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no other thread can use the same paging structure while one thread is in kernel
mode on another CPU core. The kernel can handle the SMP constraints by not
scheduling two user threads with the same paging structure on different cores at
the same time.

Paging Structure Replacement. Gruss et al. [28] propose Strong Kernel Iso-
lation as a countermeasure against the prefetch attack. The paging structure
replacement is similar to the 4G/4G VM split patch for the x86 32 Linux kernel
[80]. Every user process has two page table structures, one for the kernel mode,
and a shadow page table structure for the user mode. Upon switching from kernel
mode to user mode, the kernel exit routine replaces the mapping with a shadow
mapping. It does so by changing the top-level page table register (CR3 ). When
the thread switches back to kernel mode, the paging structure register is changed
to point to the full page table structure again. Figure 3.2 gives an example of
the paging structures of two processes. When the CR3 register is changed, the
CPU implicitly invalidates all TLB and paging-structure caches except for paging-
structure entries marked as global [41, ch. 4.10.4.1]. To invalidate all kernel
paging-structure caches and TLB entries when a thread switches to user mode,
the kernel needs to remove the global flag from the kernel virtual address space.

Countermeasure Evaluation. Disabling or manipulating the time stamp counter
is no practical countermeasure against attacks on SMP systems. Attackers can run
a VTSC on another thread or process, and not use the RDTSC instruction.

The paging structure update countermeasure does not need to invalidate all
TLB and paging-structure caches upon a context switch between user mode and
kernel. However, it needs to manually invalidate all kernel TLB and paging-
structure cache entries when it enters user mode. The kernel scheduling policy
has to be adapted, so no thread in user mode ever shares its paging structure with
a thread in kernel mode. Therefore, on a multi-threaded SMP system, the page
structure update countermeasure is impractical.

The paging structure replacement countermeasure invalidates all TLB entries
and paging-structure cache entries that are not global upon every kernel entry
and exit. The option to keep the kernel pages marked as global, and manually
invalidate the TLB reduces the kernel page misses but adds additional complexity
to the kernel exit functions. Paging structure replacement works on multi-threaded
SMP systems without any additional scheduling policies. Threads in kernel mode
and threads in user mode never share their paging structure by design.
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3.2 Design of KAISER.

In this thesis, we present KAISER, a minimalistic countermeasure against at-
tacks on the kernel virtual memory from user programs. We designed KAISER to
achieve specific goals. KAISER shall have minimal impact on the structure of the
operating system. KAISER shall be easy to analyze for potential new bugs or side
channels. KAISER shall be portable to other operating systems or CPU architec-
tures. KAISER shall impede a class of side-channel attacks. KAISER shall have a
low boot time impact. KAISER shall have a low static runtime memory overhead.
KAISER shall have a low per-thread and per-process memory overhead. KAISER
shall have a low runtime overhead.

KAISER implements a paging structure replacement mechanism to hide the
kernel pages in user mode. It creates a shadow paging structure for every process.
The shadow paging structure maps only the necessary minimal virtual addresses
for CPU features. All other virtual kernel pages are not present.

Upon boot, KAISER sets up a single initial kernel shadow mapping. New
processes copy the shadow mapping kernel part from the current process or kernel
thread. Processes share the shadow paging structure tables except for the top-
level page tables, so a new process just needs to reserve a new top-level page
table. Figure 3.3 shows how two processes share their paging structures between
each other and between the full mapping and shadow mapping. Whenever the
kernel modifies the virtual memory layout of the user space, KAISER immediately
synchronizes it with the shadow memory.
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Figure 3.3: KAISER extends the paging structure of processes (A)
(B) by a shadow top-level page structure. In this case, the system
supports four-level paging. Every process gets an additional shadow
PML4 4 for the user mode of threads. Modern operating systems share
the kernel paging-structure tables (C) between processes to reduce the
overhead of paging structure tables and synchronization. KAISER also
shares the shadow kernel paging structures (D) between processes for
the same reason. A process also shares the userspace paging structure
tables (E)(F) between the full paging structure and the shadow paging
structures. The PML4 4 and shadow PML4 4 user parts are always in
sync.

When the kernel creates a new user thread, it maps the thread’s kernel stack
into the shadow mapping. When the kernel deletes the thread, it removes the
kernel stack mapping again.

Whenever a thread exits the kernel to user mode, KAISER switches to the
shadow mapping. This switch happens just before the return instruction, so the
shadow memory has to map only the minimally necessary virtual memory areas.
Upon a kernel entry from user mode, the current thread immediately switches
to the full paging structure. Entry gates for interrupts and exceptions can be
called in both kernel and user mode. To avoid paging structure switches when
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possible, interrupt and exception handlers check whether the current thread came
from kernel mode. If the interrupt or exception was triggered while the thread
was in kernel mode, it does not need to change the paging structure. Upon an exit
from an interrupt or exception, the thread switches to the shadow mapping only
if it is returning to user mode. A thread shall never return from kernel to kernel
mode with the shadow mapping, as this would trigger a page fault because the
text section of the kernel is not present.

To ensure that all TLB entries and paging-structure caches are invalidated
when a thread is in user mode, KAISER removes the use of global mappings.
When the kernel switches a paging structure, the CPU implicitly invalidates all
paging-structure caches and TLB entries. The overhead introduced by KAISER
through disabling the global bit of the paging structures only affects kernel pages.
User processes do not share the same virtual address-space layout and, thus, their
pages are not globally mapped.
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Chapter 4

Implementation in Linux

This chapter focuses on the KAISER proof-of-concept kernel patch. We show that
it is feasible to implement a kernel protection mechanism that can hide the kernel
virtual address layout in user mode and hinder side-channel attacks. KAISER
is implemented in Linux kernel version 4.10 for x86 64 platforms with default
settings. The KAISER patch runs on a non-virtualized SMP CPU with four-level
paging. It can be enabled at compile-time via the Linux Kconfig system. In the
last section of this chapter, we analyze the boot-time and run-time performance
and memory impact of KAISER.

4.1 Shadow Memory

As explained in Section 3, the Linux kernel memory needs to be hidden in user
mode. Linux and x86 64 CPU long-mode mechanisms still require some kernel
virtual memory areas to be present in user mode. KAISER implements a mecha-
nism to copy regions from the kernel to an initial shadow mapping and create new
paging structure tables. The initial shadow memory PML4 4 page is reserved in
head 64.S. The kernel sets up the initial shadow memory PML4 4 after the mem-
ory layout, but before it sets up the scheduler and creates the first user processes.

Entry and Exit handlers. The entry and exit points of the Linux kernel have
been described in Section 2.2. The kernel linker scripts already place all entry
and exit points into the .entry.text section, and define labels for the entry
section start and end. Since this section only contains the minimal entry and exit
functionality, KAISER fully maps the entry section into the shadow memory.
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Stacks. Some kernel exception and interrupt entries and exits need a stack to
push or pop data. The Linux kernel has different stacks per core - one IRQ stack,
four different exception stacks, and the ESP fixup stacks, which are described in
Section 2.2. The CPU uses them upon a switch between user and kernel mode,
so KAISER maps them into the shadow memory. The Linux kernel already maps
the ESP fixup stacks into an exclusive PUD range. KAISER directly references
the ESP fixup PUD to save physical memory.

vsyscalls. The deprecated vsyscall mechanism allows a user program to di-
rectly call functions located at the top of the virtual memory. The x86 64 Linux
kernel does not map an executable section to the vsyscall region. Instead, it
handles vsyscall calls in the page-fault handler. Therefore, the vsyscall area
does not need to be mapped in the shadow mapping.

Descriptor Tables and TSS. The descriptor table registers contain the virtual
base addresses of their tables. x86 64 also requires a TSS to be set up per core.
The CPU needs the TSS, IDT, and GDT to be present all the time. Since their
location and size do not change post-boot, KAISER only needs to map them once.

Context Switch Variables. To exchange the CR3 register, the entry and exit
code need variables to switch between kernel and user mode. These variables are
per-CPU defined. Their functionality is described in Section 4.2.

Per-CPU Memory. The Linux kernel handles the indexing of the per-core vari-
ables via the GS, which includes an offset within a per-CPU virtual memory sec-
tion. KAISER splits the layout into a user-mapped and a non-user-mapped area.
The per-CPU memory is located at the beginning of each per-CPU region within
the section. Only these regions of the per-CPU section are virtually mapped while
a thread is in user-mode.

Run-time Mapping. The Linux kernel creates user threads at boot time, and
via the fork mechanism. Each thread has its own kernel stack. System calls and
interrupts use the thread stack to enter and exit, so the thread stack has to be
mapped in user-mode. Whenever the kernel creates a new thread, it clones the
current thread’s task struct, and allocates new stack pages. KAISER maps the
allocated stack into the shadow mapping. When the kernel frees the thread stack,
KAISER removes it from the mapping. These stacks are allocated page-aligned
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in the vmalloc region. Because the kernel modifies the shadow memory paging
structure at several points, the shadow page tables have a shared spin lock, that a
thread acquired whenever it adds or removes a virtual memory area in the shadow
memory.

Global Pages. Upon a switch to user mode, KAISER has to ensure that all
kernel TLB and paging structures are empty. Linux marks kernel pages like the
kernel executable pages as global in the paging structure table entries. The refer-
ences to these pages will stay in the paging structure caches and the TLB when the
CR3 register is updated. To completely invalidate the kernel entries, KAISER
sets the PAGE GLOBAL mask in arch/x86/include/asm/pgtable types.h to 0,
and effectively disabling the global bit for all memory.

Kernel-Space Synchronization. The kernel part of the shadow PML4 4 needs
to be synchronized between all threads. Since the kernel adds and removes kernel
thread stacks in the shadow mapping at run-time, the shadow paging structure can
contain duplicated and non-synchronized tables. Since a thread stack is cleaned
up by a thread other than its owner, it has to have the same shadow kernel PGD
entries as the cleaned-up thread. The kernel could always iterate over all shadow
PML4 4s, and synchronize them whenever the shadow memory layout changes.
KAISER instead directly maps the kernel PUD pages into the shadow memory at
boot. This way, all PGDs always have the same layout and do not need further
kernel space synchronization.

User Space Synchronization. All user threads of a process share the same
virtual user memory. The kernel has several places in which it needs to copy data
between kernel space and user space. The user mapping stays present in kernel
mode. KAISER extends the function native set pgd(pgd t *pgdp, pgd t pgd)

to synchronize the user space part of the full mapping and the shadow mapping. A
PGD has to be page-aligned, so a PGD entry references user space if ((unsigned
long)pgdp % PAGE SIZE) < (PAGE SIZE/2). Whenever the kernel sets a PGD
entry in user space, KAISER copies the content it into the corresponding shadow
PGD entry. Kernel modules and functions are not allowed to exit the kernel on
their own. They need to use entry-section functions. To ensure that a program does
not use an alternative kernel exit point, native set pgd(pgd t *pgdp, pgd t

pgd) disables the user flag in the shadow user-space PGD entries. If a kernel
thread would exit to the user-mode via an alternative exit point, the Memory
Management Unit (MMU) triggers a protection fault. This mechanism also ensures
that KAISER does not skip any valid exit points.

50



PGD Entry Conversion. Linux accesses the paging structure entries via the
physical direct mapping. KAISER needs a mechanism to convert PGD entries
to shadow PGD entries and back: KAISER puts the shadow PGD on the next
physical page of the full PGD. It also aligns the PGD physical address to 2 *

sizeof(PAGE SIZE). The kernel accesses the PGD entries via the direct physical
mapping, so the placement is both useful for virtual addressing as for CR3 updates.
The following snippet shows how KAISER performs the conversion between full
and shadow PGD:

USER_CR3 = CR3 | PAGE_SIZE

KERNEL_CR3 = CR3 & ~PAGE_SIZE

pgd_t* shadow_pgdp = &pgdp[512]

The CR3 conversion shown above is fail-safe: A thread can switch to the full
or the shadow PGD based on the current CR3 value. If the kernel would compute
the CR3 value by an offset, and a bug causes the kernel to switch to user mode
or kernel mode twice, the CR3 does not refer to the correct PGD any longer. By
using a mask, KAISER ensures that double called entry and exit functions (e.g.,
via an NMI) do not cause the address resolution to break.
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Figure 4.1: KAISER puts the shadow PGD on the physical page
next to the full PGD, and aligns the physical full PGD address to
2*PAGE SIZE. Using this trick, KAISER can resolve the shadow PGD
entry of any full PGD entry. It converts a PGD entry pointer to
a shadow PGD entry pointer by adding PAGE SIZE to them. The
mm struct holds the reference to the full PGD.

4.2 Kernel Entry and Exit

The kernel entry and exit handlers, as described in 2.2, have to switch the GS as
soon as they switch between kernel and user mode. KAISER has to switch the
CR3 as soon as possible because some entry and exit points access global per-CPU
variables. Also, some ISR entry and exit points don’t have a clean stack to enter
or exit. Therefore, KAISER implements macros to switch to the kernel CR3 and
the user CR3 of the current thread:

.macro _SWITCH_TO_KERNEL_CR3 reg

movq %cr3, \reg
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andq $(~0x1000), \reg

movq \reg, %cr3

.endm

.macro _SWITCH_TO_USER_CR3 reg

movq %cr3, \reg

orq $(0x1000), \reg

movq \reg, %cr3

.endm

The CR3 register is only accessible by MOV instructions [41, ch. 2.5], so KAISER
needs an additional register to modify it. Most entries and exits push the tempo-
rary register content onto the stack. Unfortunately, some exceptions and interrupts
have no save-to-use stack available when they enter or exit an ISR (e.g., the NMI
handler). For these handlers, KAISER reserves a register backup memory in the
user mapped per-CPU variables.

The kernel has to always execute the swapgs instruction when the current
thread switches from kernel to user mode and from user to kernel mode. KAISER
makes use of the existing entry and exit checks. It switches to the kernel PGD
right after the entry swapgs instruction, and to user PGD right before the exit
swapgs instruction.

4.3 Performance and Memory Impact

We design the KAISER implementation to be memory and performance efficient.
In this section, we have a look at the performance and memory overhead intro-
duced by the KAISER patch. We have a look at the static and dynamic physical
memory overhead and performance impact. Then, we present benchmarks of a
Linux operating system with KAISER to see the performance impact on a real
system.

Cache Performance Impact. KAISER updates the CR3 register on every
kernel entry from user mode or exit to user mode. In addition, it marks all virtual
kernel pages as non-global. As a result, every kernel entry and exit, and every
change of the current PGD, invalidates all TLB and paging-structure cache entries.
Figure 4.2 shows transitions of threads between user mode and kernel mode on a
single core. It highlights when the kernel updates the CR3 register.

The scheduler is responsible for transitions between user-mode threads. Since
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Linux handles thread scheduling in kernel mode, every transition between user-
mode threads updates the CR3 register at least twice. If the current user-mode
thread switches to a user-mode thread of another process, the kernel updates the
CR3 three times. The first CR3 update already invalidates all cache entries. The
following CR3 updates do not impact the performance as much, because the user-
and kernel TLB and paging structure cache entries are already invalid.

Kernel-only

Process BProcess A

(B)
T1 KM T3 KM

(A)

T3 UM

T4 KM

(A)

T2 KM

T2 UM T5 KM

(A)

T1 UM

KM ... Kernel Mode
UM ... User Mode
Tx ... Thread x

(A) ... KAISER CR3 Update
(B) ... Linux CR3 Update
(C) ... Update CR3 
          if active_mm != next->mm

(C)
(D)

(C)
(D)

Figure 4.2: KAISER adds additional CR3 switches and invalidates
TLB and paging structure cache entries. This example highlights the
CR3 switches between different threads. When a user thread switches
between user mode and kernel mode (A), KAISER swaps the CR3 value
between full PGD and shadow PGD. The scheduler changes the CR3
register when it switches between kernel threads of different user pro-
cesses (B). If a user thread in kernel mode switches to a kernel-only
thread (D), it keeps the current virtual address space. When the sched-
uler switches from a kernel-only thread to a user thread in kernel mode
(C), it needs to update CR3 if the virtual address space is not identical.
Other context switches, or kernel entry and exit points, do not require
to switch the PGD at run-time.
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Computational Overhead. KAISER has low initialization and run-time com-
putational overhead. At boot time, KAISER just needs to create shadow page
tables, and link them to the full mapping pages. Whenever the kernel creates
a new process, KAISER allocates two pages and copies the PGD entries to the
shadow mapping. When the kernel creates or deletes a user thread, KAISER has
to update the shared shadow mapping structures and therefore acquire a global
shadow table lock. The kernel synchronizes all other accesses to the PGD and
shadow PGD page by mm struct->page table lock. Whenever a thread changes
a user-space PGD entry, KAISER clones it into the shadow PGD entry via a sim-
ple pointer update. The KAISER entry and exit CR3 switch only needs three
to five additional instructions per CR3 update. As shown in Section 4.2, it re-
quires only three instructions (plus an unused register) to change from user- to
kernel-CR3 . To sum it up, the boot and static KAISER setup are very cheap
computation-wise compared to the CR3 update. The most significant run-time
computational overhead is the update of the shadow paging-structure. Whenever
the kernel creates or removes a user-thread, it locks the shadow paging structure
for all CPUs and acquires or releases up to 2 pages for the page tables.

Performance Measurements. In our paper about KAISER [30], we evaluated
the performance of the KAISER proof-of-concept path by benchmarking it. We ran
different benchmarks with and without KAISER on an Intel Core i7-6700K Skylake
CPU with 16GB of RAM. The result is presented in Figure 4.3. As benchmarks, we
chose pgbench [95], PARSEC 3.0 [85], and SPLASH-2-x [85]. The execution time
for the benchmarks with KAISER was compared to the execution time without
KAISER, yielding the execution overhead. We performed the measurements for
1, 2, 4, and 8 threads on different cores to see the impact of KAISER on a multi-
threaded SMP system.
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Fig. 8: Comparison of the runtime of different benchmarks when running on the
KAISER-protected kernel. The default kernel serves as baseline (=100%). We
see that the average overhead is 0.28% and the maximum overhead is 0.68%.

3.0 [1] (input set “native”), the pgbench [24] and the SPLASH-2x [16] (input set
“native”) benchmark suites to exhaustively measure the performance overhead
of KAISER in various different scenarios.

The results of the different benchmarks are summarized in Figure 8 and
Table 1. We observed a very small average overhead of 0.28% for all benchmark
suites and a maximum overhead of 0.68% for single tests. This surprisingly low
performance overhead underlines that KAISER should be deployed in practice.

4.3 Reproducibility of Results

In order to make our evaluation of efficacy and performance of KAISER eas-
ily reproducible, we provide the source code and precompiled Debian pack-
ages compatible with Ubuntu 16.10 on GitHub. The repository can be found
at https://github.com/IAIK/KAISER. We fully document how to build the
Ubuntu Linux kernel with KAISER protections from the source code and how
to obtain the benchmark suites we used in this evaluation.

Figure 4.3: Gruss, Lipp, Schwarz, Fellner, Maurice, and Mangard
[30] benchmarked the Linux KAISER patch on an Intel Core i7-6700K.
We compare their results against the same kernel without KAISER.
This graph shows the overhead measured by different benchmarks over
a different number of threads. The performance overhead is 0.28 % on
average, with a peak overhead of 0.68 %.

Fogh [21] estimates that a countermeasure like KAISER would lower the system
performance by around 5 %. Gruss et al. [30] speculates that the much lower
performance impact of only 0.28 % on average comes from undocumented Intel
features. The Intel manuals state that the CPU invalidates all non-global TLB and
paging-structure cache entries upon a CR3 switch [41, ch. 4.10.4.1]. Gruss et al.
[30], however, speculate that Intel CPUs like the Intel Core i7-6700K internally
tag TLB and paging-structure caches, e.g., , with the CR3 register value [99].
Thus, similar to the PCID mechanism, the CPU would not invalidate the entries
upon a CR3 update. This would explain the low performance impact of KAISER
observed in benchmarks.

Memory Overhead. KAISER needs additional physical memory, that is re-
served in the Linux kernel image, or allocated at boot time. First, KAISER in-
creases the .text section. At boot time, KAISER reserves an additional shadow
PGD page next to the initial PGD page. KAISER pre-reserves a PUD page for
every kernel shadow mapping. Then, KAISER maps the user per-CPU map, the
kernel entry text section, and the IDT into the shadow memory. KAISER maps
13 pages from the per-CPU area into the shadow memory per core. The layout of
the user mapped area and their size are listed in Table 4.1.

Linux has a dedicated allocator for kernel and module per-CPU variables. On
x86 64, the kernel sequentially places the per-CPU variables into the virtual mem-
ory with additional spacing for modules. It reserves 0x80000 bytes (or 128 pages)
per core. The kernel aligns the first per-CPU area with beginning at the first
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Name Size
IRQ stack 16 kB
TSS and I/O bitmap 102 B + 8 kB
GDT page 4 kB
exception stacks 3 × 4 kB + 8 kB = 20 kB
register backup 8 B
pages/core 13 × 4 kB pages

Table 4.1: The user-mapped per-CPU memory and the number of
virtual user-mapped pages per core.

entry of a PMD [65]. KAISER, therefore, needs to allocate one PT page per 4
cores (rounded up) and one PMD page. The number of CPUs is limited to 64 per
default, and one PMD can references to up to 512 PUDs, and up to 2048 per-CPU
sections.

Whenever the kernel creates a new process, it allocates one page for the PGD.
With KAISER, it allocates two physical pages instead. KAISER maps the 16 kB
stack of a user-thread into the shadow memory. Thus, it needs two pages for
PT and PMD. The number of stack mapping pages may vary depending on the
alignment of the virtual address because the stack spans over two pages, and can
hit a PMD or PT virtual address border. Table 4.2 lists the overall physical
memory overhead KAISER introduces to the kernel.

As one can see, the most memory overhead of KAISER is caused by the pre-
allocated PUD pages for the shadow memory. The compressed Linux 4.10-rc6
kernel bzImage with KAISER is only 1280 Bytes larger than the same bzImage
compiled without KAISER.
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Name Size
.text Overhead 5 kB
entry & exit mapping 2 pages
per-CPU PMD 1 page
per-CPU PTs 1 page / 4 CPUs
IDT Mapping 2 pages
initial Shadow PGD 1 page
process Shadow PGD 1 page / process
thread stack mapping 2 pages / thread
Shadow PUDs 255 pages
overall overhead 1.02 MB

+ 4 kB/4CPUs
+ 4 kB/process
+ 8 kB/user thread

Table 4.2: The additional KAISER memory overhead depends on
the number of cores, number of processes, and the number of user-
threads. To measure the .text, .bss, and .data section overhead, we
compiled the Linux kernel with gcc 5.4.0, and compared the size of the
sections with and without KAISER. The result can vary depending on
the configuration of the kernel, drivers compiled with the kernel, the
position of the thread stacks. It also does not include the overhead of
physical page management.
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Chapter 5

Security Evaluation

While we have shown that KAISER is an efficient patch with a memory overhead
of ≈10 MB and performance overhead of ≈0.28 % on Intel Skylake CPUs [30].
In this chapter, we have a look at the security impact of KAISER. First, we
look at different cache side-channel attacks and evaluate if KAISER can mitigate
them by design. We present measurements of side-channel-attacks on the KAISER
proof-of-concept implementation and compare them to attacks on a kernel without
KAISER. In the end, we identify weaknesses of the KAISER patch and how one
can fix them.

5.1 Side Channels

The KAISER patch isolates the kernel virtual memory. It mitigates timing leaks
in the virtual to physical address resolution of paging. It also ensures that a user
thread can obtain no direct timing information of the TLB and paging-structure
cache entries that refer to kernel memory.

Whenever a thread switches to user mode, most of the kernel virtual memory
is unmapped. Also, all TLB and paging-structure caches are invalidated. Since
CPU cores do not share the TLB and paging-structure caches, a thread does not
leak kernel information to a user thread that runs on another core.

Flush+Flush, Flush+Reload, and Prime+Probe attacks use side-channels
if the L1, L2, and L3 caches [29, 82, 101, 102]. The CPU does not invalidate L1,
L2, and L3 (LLC) caches upon a CR3 update. Therefore, KAISER does not
invalidate any caches that resolve a physical address to a cached value, potentially
leaving certain side channels open.
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BTB attacks attack the kernel via timing leaks of the BTB. Intel x86 64
processors implement a Indirect Branch Predictor Barrier (IBPB) to flush the
BTB [43, ch. 2.4.3]. KAISER does not use the IBPB upon kernel entry and exit.
It flush the BTB, and does not prevent BTB side-channel attacks on the kernel.

5.2 Attacks

In Section 2.4, we presented state-of-the-art timing side-channel attacks on CPU
caches. This section evaluates whether KAISER prevents these attacks.

Prefetch Side-Channel Attacks, as explained in Section 2.4, targets the vir-
tual memory and the paging-structure caches of the kernel with a Flush+Reload
mechanism [28]. Gruss et al. [28] assumed that the prefetch side-channel at-
tack needs the virtual memory of the kernel to be mapped in the user mode.
Consequently, KAISER can prevent this attack. When an attacker performs a
translation-level recovery attack from a user-mode thread, the attacker can re-
cover the kernel shadow virtual memory layout. We performed an attack on a
Linux kernel hardened with KAISER [30]. Our results are illustrated in Figure 5.1.
Schwarzl et al. [90] later showed that the address-translation attack, which is able
to recover the virtual to physical memory mapping of the kernel, is actually based
on another side channel. They proved that the prefetch instruction itself does not
leak any information about the kernel virtual to physical memory mapping. The
KAISER patch prevented the address-translation attack by accident. The reason
is explained in Section 6.3.1.
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leaks information on the translation level. With KAISER, the execution time is
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Figure 7 shows the address-translation attack. While the correct guess can
clearly be detected without the countermeasure (dotted line), KAISER elim-
inates the timing difference. Thus, the attacker is not able to determine the
correct virtual-to-physical translation anymore.

4.2 Performance Evaluation

As described in Section 3.2, KAISER has a low memory overhead of 8 kB per
user thread, 12 kB per user process, and a system-wide total overhead of 1 MB. A
full-blown Ubuntu Linux already consumes several hundred megabytes of mem-
ory. Hence, in our evaluation the memory overhead introduced by KAISER was
hardly observable.

In order to evaluate the runtime performance impact of KAISER, we execute
different benchmarks with and without the countermeasure. We use the PARSEC

Figure 5.1: We performed a translation-level recovery attack on the
kernel virtual memory. Without KAISER, an attacker is able to iden-
tify the parts of a virtual kernel address that is preset in the paging-
structure and TLB entries. With KAISER, the attack does not leak
any timing information about the kernel mapping any longer [30].

The double page-fault attack, which we described in Section 2.4, accesses a
virtual kernel address twice [37]. The first time, the CPU loads the corresponding
TLB entry if the page is present. The second time, the attacking thread measures
the time between the access and the SIGSEGV signal from the kernel. If the virtual
page is present in virtual memory, the CPU does not need to handle a TLB miss
and, thus, throws the page fault faster. Since KAISER invalidates the TLB upon
every switch from kernel to user mode, the second double page-fault TLB lookup
always misses. Figure 5.2 shows an execution time measurement of a double page-
fault attack. The kernel mapping does not leak any information with KAISER.KASLR is Dead: Long Live KASLR 11
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Fig. 4: Double page fault attack with and without KAISER: mapped and un-
mapped pages cannot be distinguished if KAISER is in place.

are commonly referred to as segmentation faults, typically terminating the user
program.

Intel TSX-based Attack. The Intel TSX-based attack presented by Jang et al.
[10] (cf. Section 2) exploits the same timing difference as the double page fault
attack. However, with Intel TSX the page fault handler is not invoked, resulting
in a significantly faster and more stable attack. As the basic underlying principle
is equivalent to the double page fault attack, KAISER successfully prevents
this attack as well. Figure 5 shows the execution time of a TSX transaction
for unmapped pages, non-executable mapped pages, and executable mapped
pages. With the default kernel, the transaction execution time is 299 cycles for
unmapped pages, 270 cycles for non-executable mapped pages, and 226 cycles
for executable mapped pages. With KAISER, we measure a constant timing of
300 cycles. As in the double page fault attack, KAISER successfully eliminates
the timing side channel.

We also verified this result by running the attack demo by Jang et al. [9].
On the default kernel, the attack recovers page mappings with a 100 % accu-
racy. With KAISER, the attack does not even detect a single mapped page and
consequently no modules.

Prefetch Side-Channel Attack. As described in Section 2, prefetch side-
channel attacks exploit timing differences in software prefetch instructions to
obtain address information. We evaluate the efficacy of KAISER against the
two prefetch side-channel attacks presented by Gruss et al. [6].

Figure 6 shows the median execution time of the prefetch instruction in
cycles compared to the actual address translation level. We observed an execution
time of 241 cycles on our test system for page translations terminating at PDPT
level and PD level respectively. We observed an execution time of 237 cycles
when the page translation terminates at the PT level. Finally, we observed a
distinct execution times of 212 when the page is present and cached, and 515
when the page is present but not cached. As in the previous attack, KAISER
successfully eliminates any timing differences. The measured execution time is
241 cycles in all cases.

Figure 5.2: The execution time of a double page-fault attack leaks the
mapping status of a kernel page. When KAISER is active, the attack
cannot distinguish mapped from unmapped kernel pages [30].

The DrK attack accesses and execute kernel virtual memory in an Intel TSX
RTM region. The CPU detects the privilege violation and aborts the RTM region.
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The attacker measures the processing time of the RTM region. Depending on
the timing, the attacker can determine the level of the mapping, and whether it is
executable. KAISER removes the virtual kernel memory in user mode, so the DrK
attack can only see the shadow memory layout. The measurements presented in
Figure 5.3 shows that KAISER closes this side channel.12 D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, S. Mangard
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Fig. 5: Intel TSX-based attack: On the default kernel, the status of a page can
be determined using the TSX-based timing side channel. KAISER completely
eliminates the timing side channel, resulting in an identical execution time in-
dependent of the status.
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the address translation terminates. With the default kernel, the execution time
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Figure 7 shows the address-translation attack. While the correct guess can
clearly be detected without the countermeasure (dotted line), KAISER elim-
inates the timing difference. Thus, the attacker is not able to determine the
correct virtual-to-physical translation anymore.

4.2 Performance Evaluation

As described in Section 3.2, KAISER has a low memory overhead of 8 kB per
user thread, 12 kB per user process, and a system-wide total overhead of 1 MB. A
full-blown Ubuntu Linux already consumes several hundred megabytes of mem-
ory. Hence, in our evaluation the memory overhead introduced by KAISER was
hardly observable.

In order to evaluate the runtime performance impact of KAISER, we execute
different benchmarks with and without the countermeasure. We use the PARSEC

Figure 5.3: Without the KAISER patch, the DrK attack can find
out if a page is mapped in kernel space, and if it is executable. With
the KAISER patch, an attacker cannot observe the mapping state of
a virtual kernel page by the timing any longer Gruss, Lipp, Schwarz,
Fellner, Maurice, and Mangard [30].

5.3 Summary

In this section, we have shown that KAISER can prevent certain attacks on the
kernel virtual memory layout. The double page fault attack cannot recover any
mapping since the kernel invalidates the TLBs every time the attacking thread
returns to user mode. With DrK and the prefetch attack, an attacker can only
recover a layout of the shadow kernel mapping.

The KAISER proof-of-concept implementation only maps the necessary kernel
parts into the virtual memory of the user thread. However, it does not randomize
the virtual addresses of the mapped regions. KASLR, as shown in Figure 2.8, aligns
the randomized regions at 1 TB, the kernel text section at 2 MB, and the modules
at 4 kB. Due to the sparse virtual memory layout of the kernel, an attacker can
recover the offset of KASLR regions that the shadow memory maps.

A real-world KAISER patch needs to place all shadow mapped regions at a
fixed location in virtual memory like a fixmap to close this side channel. This way,
an attacker can see the fixed region layout, but cannot obtain any information
about the KASLR randomized regions.
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Chapter 6

Practical Impact

In this chapter, we have a look at the practical impact of KAISER. First, we
show what happened to the original patch, and how it got merged into the Linux
kernel mainline. Then, we present new information leakage attacks: Meltdown [73]
and Spectre [52]. These attacks exploit a weakness of out-of-order CPUs to read
data from the protected kernel. We describe how they work and evaluate whether
KAISER defends the kernel against them.

6.1 KAISER Improvements

We designed and implemented KAISER to prevent attacks on KASLR, and made
the proof-of-concept implementation available to the public in the form of a patch1 [30].
In October 2017, Dave Hansen picked up the KAISER patch. He cleaned it up in
order to integrate into the Linux kernel v4.14 [13, 32, 33]. The patch set fixed bugs
on the kernel entry and exit functions that crash the kernel under special circum-
stances. Hansen added trampoline stacks for the kernel threads, so the shadow
memory does not need to map all thread stacks and instead can hide the kernel
physical page mapping. It also maps LDTs into the shadow memory, since some
user programs use the LDT via the modify ldt() syscall [14, 69]. Furthermore,
Hansen added support for the PCID feature to lower the performance impact of
KAISER. The CPU tags the TLB entries and the paging-structure caches with the
current PCID, and does not invalidate them upon a context switch [41, ch. 4.10.1].
In their implementation, the kernel and user processes have different PCIDs. When
a thread switches from or to kernel mode, it updates the PCID at the same time

1Available at https://github.com/IAIK/KAISER.
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as the CR3 register. This way, the CPU does not flush the tagged kernel and user
TLB entries upon a context switch. Still, an attacker cannot observe information
via side channels from user mode, because a user thread can only access the TLB
entries with the PCID of its process.

To further decrease the performance impact, the patch set enables the use of
the global bit for shadow mapped pages again. Since the kernel maps shadow
kernel pages in user mode and kernel mode at the same virtual addresses, they do
not leak any additional information about the layout. Furthermore, the patch set
changes the paging structure to make extensive use of huge pages. The huge page
TLBs entries can handle 2 MB and 1 GB virtual memory pages directly. Thus,
huge pages reduce the number of TLB entries that KPTI flushes, and the CPU
has to reload.

KAISER was not added into the Linux kernel v4.14 [70]. Instead, kernel devel-
opers extended KAISER and renamed it to KPTI [14]. They also added support
for Intel’s 5-level paging [16], various bug fixes, as well as arm64 support [17], and
released KPTI in the Linux kernel v4.15 [71].

6.2 KAISER / KPTI Performance

As we already discussed in Section 4.3, KAISER/ KPTI add a significant per-
formance overhead. Even though [30] benchmarked the performance overhead of
KAISER to be on average 0.28 % and 0.68 % in the worst case, [32] estimates it to
be 5 % on average and 30 % in the worst case. The operating system performance
impact of KAISER/ KPTI depends on the several parameters [26]. Processors
have different architectures, TLB, and paging-structure cache sizes, and support
different performance improvements like PCID. A higher syscall rate and num-
ber of context switches of a user thread increases the number of switches between
user mode and kernel mode, as Figure 4.2 illustrates. Interrupts and exceptions,
like page faults, in user mode also switch to kernel mode and back. Finally, the
working-set size and virtual-memory access pattern of user programs and the ker-
nel also influence the number of TLB and paging-structure cache entries that are
in use.

With the performance impact of KAISER/ KPTI depending on multiple factors,
Gregg [26] measured an KPTI overhead of −5 % to 800 %, depending on the pa-
rameters described above. As the resulting overhead measurements in Figure 6.1
show, hardware acceleration features significantly decrease the KPTI overhead.
PCID reduces the impact to 2.6 % at 50 000 syscalls per second. With large pages
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and Intel’s large page TLBs, the operating system even performs better with KPTI
at certain syscall frequencies [31].
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macrobenchmarks, and microbenchmarks varies between −5% 
and 800%. One reason is the increase in TLB flushes, especially 
on systems without PCID support, as well as extra cycles for CR3 
manipulation. More indirect is the increase in TLB pressure, 
caused by the additional TLB entries due to the large number of 
duplicated page table entries. CPU- or GPU-intense workloads 
that trigger a negligible number of context switches, and thus a 
negligible number of TLB flushes and CR3 manipulations, are 
mostly unaffected.

The different implementations of KAISER have different optimi-
zations. In this performance analysis, we focus on Linux (i.e., 
KPTI). However, the reported numbers are well aligned with 
reports of performance overheads on other operating systems [1, 7].

We explore the overheads for different system call rates [2] by 
timing a simultaneous working-set walk, as shown in Figure 2.

Without PCID, at low system call rates, the overheads were neg-
ligible, as expected: near 0%. At the other end of the spectrum, 
at over 10 million system calls per second per CPU, the overhead 
was extreme: the benchmark ran over 800% slower. While it 
is unlikely that a real-world application will come anywhere 
close tonthis, it still points out a relevant bottleneck that has 
not existed without the KAISER patches. For perspective, the 

 system call rates for different cloud services at Netflix were 
studied, and it was found that database services were the high-
est, with around 50,000 system calls per second per CPU. The 
overhead at this rate was about 2.6% slower.

While PCID support greatly reduced the overhead, from 2.6% to 
1.1%, there is another technique to reduce TLB pressure: large 
pages. Using large pages reduces the overhead for our specific 
benchmark so much that for any real-world system call rate 
there is a performance gain.

Another interesting observation while running the microben-
chmarks was an abrupt drop in performance overhead, depend-
ing on the hardware and benchmark, at a syscall rate of 5000. 
While this was correlated with the last-level cache hit ratio, it is 
unclear what the exact reason is. One suspected cause is a sweet 
spot in either the amount of memory touched or the access pat-
tern between two system calls, where, for example, the processor 
switches the cache eviction policy [3].

With PCID support and using large pages when possible, one can 
conclude that the overheads of Linux’s KPTI and other KAISER 
implementations are acceptable. Furthermore, rudimentary 
performance tuning (i.e., analyzing and reducing system call and 
context switch rates) may yield additional performance gains.

Outlook and Conclusion
With KAISER and related real-world patches, we accepted a 
performance overhead to cope with the insufficient hardware-
based isolation. While more strict isolation can be a more resil-
ient design in general, it currently functions as a workaround for 
a specific hardware bug. However, there are more Meltdown-
type hardware bugs [8, 10], causing unreliable permission checks 
during transient out-of-order execution, for other page table bits. 
Mitigating them requires additional countermeasures beyond 
KAISER. For now, KAISER will still be necessary for commod-
ity processors.
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Figure 2: The runtime overhead for different workloads with different 
KPTI configurations [2]. The overhead increases with the system call rate 
due to the additional TLB flushes and CR3 manipulations during context 
switches.

Figure 6.1: This graph shows the KPTI overhead with different op-
timization methods for different syscall frequencies. The overhead axis
is logarithmic above 0 %, and linear below 0 %. With PCID and large
pages, a kernel with KPTI can be even faster than a kernel without [31].

6.3 Transient-Execution Attacks

In January 2018, Lipp et al. [73] and Kocher et al. [52] introduced two new sorts of
attacks on kernel memory: Meltdown and Spectre. Based on the research of Fogh
[22], Meltdown and Spectre bypass privilege isolation, and allow an attacker to
obtain protected data from user mode. Both Meltdown and Spectre make use of
transient-execution leaks. Transient execution is the erroneous ahead-of-time com-
putation of instructions that the CPU discards [10], as described in Section 2.1.
Intel, IBM, Arm, and AMD processors are vulnerable to transient-execution at-
tacks [8, 36, 38, 40, 52].

6.3.1 Spectre

State-of-the-art CPUs, as described in Section 2.1, can speculatively execute in-
structions of a branch to optimize the system load. The branch predictor computes
the most-likely branch target based on previous branch targets. The CPU then
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loads and executes instructions of the speculated branch target. Once the CPU
resolves the actual branch target, it keeps the results if the prediction is valid,
or discards them if it is invalid. Even though the CPU reverts the register and
memory state, it does not reset the microarchitectural state. Caches and buffers
still hold information about the speculative execution. Spectre attacks recover
this information leak. They can thereby observe information, and bypass privilege
checks. The types of Spectre attacks are shown in Figure 6.2.
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RSB-SA-IP
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Figure 6.2: This figure visualizes the different variants of Spectre
attacks. The non-leaf nodes of the graph represent attack groups, and
the leaf nodes are actual attacks [10, 81].

To give an idea of a Spectre attack, we showcase a Spectre-Pattern History
Table (PHT) attack based on the code snippet in Listing 6.1. In this example,
the attacker is in control of the byte index x, has access to the byte array array2,
and can trigger the victim to execute the if-clause (e.g., via a syscall). First, the
attacking thread flushes array2. Then, the attacker trains the branch predictor.
It triggers the snippet execution with a valid value for x until the branch pre-
dictor consistently predicts to branch into the if-clause. Then, the attacker sets
x = &secret - &array1[0]. When the victim executes the snippet, the CPU
speculatively reads the value array2[secret * PAGE SIZE] from the cache. It
validates the corresponding page in the data caches before it discards the spec-
ulative results. The attacker then recovers the secret by checking for cached pages:
secret = argmin(z, read access time(&buffer2[z * PAGE SIZE])). Be aware
that the training phase already caches the array2 pages. The attacker either fil-
ters for the trained entries or flushes array2 after the branch prediction training
phase.
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i f ( x < a r r a y 1 s i z e ) {
/∗ The CPU can s p e c u l a t i v e l y execute the array

access , even i f the boundary check f a i l s . ∗/
y = array2 [ array1 [ x ] ∗ 4 0 9 6 ] ;

}

Listing 6.1: A Spectre-PHT in-place (Spectre PHT-SA-IP)
conditional branch snippet, which is executed by the a thread in
kernel-mode, or a thread of another process [52].

As shown in this example, the attacking thread does not need to have the secret
mapped, nor does it use caches or buffers that the CPU invalidates upon a CR3
update. The attacker can use a syscall to validate the data cache entry in kernel-
mode. Since KAISER maps the full address space in kernel-mode, the attacker
can bypass the address-space isolation. Thus, KAISER does not mitigate Spectre
attacks.

The implementation of the translation-level recovery attack, as described
in Section 2.4, performed an unintended Spectre-BTB attack. Schwarzl et al. [90]
showed that the virtual address stored in register R14 caused the information leak.
The Linux kernel v4.10 entry code used this register to load an address after an
indirect branch. Gruss et al. [28] assumed that the PREFETCHh instruction caused
the timing leak because Spectre attacks were not known at this time. The KAISER
patch did not counter the prefetch side-channel attack. KAISER modified the
kernel entry and exit code. By code changes, it slightly changed the registers used
by the virtual address resolution that caused the leak [90].

6.3.2 Meltdown

Meltdown attacks, as Spectre attacks, use microarchitectural leaks of rolled-back
transient execution. Instead of branch-prediction-based speculative execution,
Meltdown uses faults with out-of-order execution to leak data. Modern CPUs
can reorder and parallelize instruction execution of a sequential program to opti-
mize the CPU load. When the CPU detects a fault within an operation, it reverts
the state of ahead-of-time computed instructions, and then handles the fault. Even
though the CPU discards results of instructions after the fault, it still leaks in-
formation through side effects. It does not revert CPU buffer and cache entries.
There are a number of variants of Meltdown, as Figure 6.3 shows.
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Figure 6.3: This figure visualizes the different variants of Meltdown
attacks. The non-leaf nodes of the graph represent attack groups, and
the leaf nodes are actual attacks [10, 81].

Meltdown-US-L1 [73] (also known as CVE-2017-5754, Rogue Data Cache Load,
and Variant 3 [42, 79]) is the first published Meltdown attack. It allows an attacker
to read protected kernel memory from a user-mode thread. The Meltdown-US
variants use a transient-execution leak in user mode to bypass the paging-structure
privilege protection mechanism. When a user-mode thread accesses or executes
a kernel address, the CPU resolves the virtual address. Since the corresponding
TLB, paging-structure cache entry, or paging-structure entry user (or supervisor)
flag is zero, the CPU triggers a page fault. Due to out-of-order-execution, the
CPU out-of-order executes following instructions and reverts the results once it
detects the access violation. Lipp et al. [73] found out that the CPU can leak a
kernel value by instructions after the access violating instruction. If an attacker
indirectly accesses a probe array based on protected kernel data, the CPU does
not invalidate the L1 data cache entry when it reverts the instruction execution.
The attacker can recover the protected kernel memory value through e.g., via a
Flush+Reload attack.
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Listing 6.2 shows a simplified example of the core part of Meltdown-US-L1.
The attacking user thread first flushes the data caches of a probe array. It then
accesses the secret kernel address. Directly afterward, the thread indirectly ac-
cesses the probe array by secret * PAGE SIZE. The CPU transiently loads and
the value, and updates the corresponding cache line entry. Then, it detects the
access violation and throws an exception. There are several ways to deal with
the fault. The attacker can handle the exception by forking a second process and
using a shared probe array to recover the secret. The attacker can also set up
a signal handler and recover the secret when the kernel attempts to kill the at-
tacker’s process. To suppress the exception entirely, the attacker can use an Intel
TSX RTM region [73]. The attacker can also suppress the exception entirely by us-
ing a branch miss-prediction speculative execution (similar to Spectre). Once the
attacker suppressed or handled the fault, the attacker probes (reloads) the probe
array page-wise. From this step, the attacker can recover the secret by measuring
the access time [73].

/∗ Dere f e r ence a ke rne l address , so the CPU t r i g g e r s an
except ion . ∗/

x = ∗( u i n t 8 t ∗) p t r s e c r e t ;
/∗ The CPU a c c e s s e s the probe array out−of−order , even

though i t should never reach the i n s t r u c t i o n . ∗/
y = probe array [ x ∗4 0 9 6 ] ;

Listing 6.2: A Meltdown-US-L1 code snippet, which is executed
by a thread in user mode to read kernel data [73].

Meltdown-US-L1 needs the kernel memory to be mapped in user mode. Since
KAISER removes most of the kernel-space mapping when a thread is in user mode,
it mitigates the Meltdown-US-L1 attack [73].

6.4 Meltdown Mitigations

Since the Meltdown-US-L1 attack can readout protected kernel memory with up
to 503 kB/s, Lipp et al. recommended to immediately deploy KAISER on every
operating system kernel [73]. Linux kernel developers merged KPTI (aka KAISER)
into the kernel v4.15-rc5, and back-ported KAISER for the long-term support
kernels v4.9 [55] and v4.4 [54]. They also added support for 32-bit x86 kernels in
Linux kernel v4.19 [72].

Windows, macOS, and iOS also implemented countermeasures against Melt-
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down [6, 47]. These countermeasures implement the same idea and principle that
we proposed with KAISER.

New Intel processors starting with the Intel Whiskey Lake architecture and
AMD processors mitigate Meltdown-US-L1 by design and do not need a software
mitigation [10, 45]. Still, KAISER adds additional protection against certain side-
channel attacks.
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Chapter 7

Conclusion

In this thesis we presented a novel security mechanism we designed and developed,
namely KAISER. KAISER is a mechanism and proof-of-concept implementation
to protect against attacks on KASLR. It unmaps the kernel virtual memory when a
thread is in user mode, and flushes TLB and paging-structure caches whenever the
kernel switches between user mode and kernel mode. We developed the KAISER
implementation for Linux kernel v4.10-rc6 for x86 64 CPUs. Whenever a thread
enters or exits the kernel-mode by an interrupt, exception, or system call, the
kernel switches the CR3 to a shadow paging-structure. The shadow mapping
unmaps most of the Linux kernel, leaving the necessary entry code, exit code, and
structures that the CPU needs, mapped in user mode. KAISER also stops the
use of the global flag in kernel paging-structure tables, so the CPU invalidates all
entries of the TLBs and the paging-structure caches upon context switches. When
the thread switches back into the kernel mode, the entry handlers switch from the
shadow mapping to the full kernel mapping again.

We evaluated the performance impact and memory footprint of KAISER and
showed that KAISER only adds ≈1 MB memory and ≈0.28 % performance over-
head on an Intel Skylake CPU. The security evaluation showed that our counter-
measures mitigate double page-fault attacks, Intel TSX-based side channels, and
translation-level recovery attacks, and, consequently, contributes to the leakage-
resilience of KASLR implementations.

The idea of KAISER is to provide stronger isolation for kernel memory and
we advised deployment as a precaution. Shortly after our initial publication of
the KAISER idea and patch, Meltdown, a powerful transient execution attack,
was discovered. Meltdown can directly read kernel memory if it is mapped in an
address space shared between user and kernel, i.e., the traditional address space
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design in modern operating systems. Since KAISER removes the kernel memory
mappings in user mode, KAISER turned out to be a software countermeasure
against this new attack. This directly confirmed our initial recommendation to
deploy KAISER as a precaution.

Kernel developers reworked the KAISER proof-of-concept patch. They re-
named KAISER to KPTI and merged it into the Linux mainstream kernel version
4.15. They also back-ported it to other Linux long-term kernel versions and added
support for x86 and Arm AArch64 processors. The overheads of KPTI in practice
are between −5 % and 800 %, depending on processor and system activity. Mi-
crosoft Windows and Apple iOS and macOS implemented our idea from scratch in
their operating systems. Thus, our idea is now implemented in all major operating
systems and used by billions of users worldwide.
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Acronyms

APIC Advanced Programmable Interrupt Controller.

ARM Advanced RISC Machine.

ASLR Address Space Layout Randomization.

BIOS Basic Input/Output System.

BPU Branch Prediction Unit.

BTB Branch Target Buffer.

CISC Complex Instruction Set Computing.

COW Copy-On-Write.

CPL Current Privilege Level.

CPU Central Processing Unit.

CR3 Control Register 3.

CR4 Control Register 4.

CS Code Segment.

DPL Descriptor Privilege Level.

DrK De-Randomize Kernel address space.

DS Data Segment.

EFI Extensible Firmware Interface.

EFLAGS FLAGS Register E.

ES Extra Segment.
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FS General Purpose Segment F.

GDT Global Descriptor Table.

GDTR Global Descriptor Table Register.

GRUB Grand Unified Bootloader.

GS General Purpose Segment G.

HDD Hard Disk Drive.

HLE Hardware Lock Elision.

IBPB Indirect Branch Predictor Barrier.

IDT Interrupt Descriptor Table.

IO Input/Output.

IRQ Interrupt Request.

ISA Instruction Set Architecture.

ISR Interrupt Service Routine.

IST Interrupt Stack Table.

KAISER Kernel Address Isolation to have Side-channels Efficiently Removed.

KASAN KernelAddressSanitizer.

KASLR Kernel Address Space Layout Randomization.

KPTI Kernel Page Table Isolation.

KS Kernel Space.

KSM Kernel Samepage Merging.

KVM Kernel Virtual Memory.

LDT Local Descriptor Table.

LLC Last Level Cache.

MCE Machine Check Exception.

MMU Memory Management Unit.

83



MSRS Model-Specific Registers.

NMI Non-Maskable Interrupt.

PCID Process-Context Identifier.

PD Page Directory.

PDPT Page Directory Pointer.

PFN Page-Frame Number.

PGD Page Global Directory.

PHT Pattern History Table.

PMD Page Middle Directory.

PML4 Page Map Level 4.

POSIX Portable Operating System Interface.

PPN Physical Page Number.

PT Page Table.

PUD Page Upper Directory.

RAM Random Access Memory.

RIP Register Instruction Pointer.

RISC Reduced Instruction Set Computing.

ROP Return-oriented Programming.

RSP Register Stack Pointer.

RTM Restricted Transactional Memory.

SMAP Supervisor Mode Access Protection.

SMEP Supervisor Mode Execution Protection.

SMP Symmetric Multiprocessing.

SS Stack Segment.

SSD Solid State Drive.
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TI Table Indicator.

TLB Translation Lookaside Buffer.

TSD Time Stamp Disable.

TSS Task State Segment.

TSX Transactional Synchronization Extensions.

TTBR Translation Table Base Register.

UEFI Unified Extensible Firmware Interface.

VM Virtual Memory.

VTSC Virtual Time Stamp Counter.

W⊕X Write XOR Execute.
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