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Abstract

Traditional graphics hardware can only do regular, linear rasterization, meaning that the

distance between two neighboring pixels sample locations is uniform over the entire image.

This works well for displaying images on rectangular screens but not so well for surfaces

that need to display a non-rectangular image, which most prominently is the case in

virtual reality headsets and various shadow mapping techniques. Existing solutions to

this problem lack in either quality, performance, or require advanced hardware features.

We propose a rasterizer design that can do nonlinear rasterization without storing an

intermediate image while delivering good quality and competitive performance.
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Kurzfassung

Herkömmliche Grafikhardware kann nur für lineare Rasterisierung verwendet werden, das

heißt, dass der Abstand zwischen den Abtastpunkten zweier benachbarter Pixel überall auf

dem Bild gleich sein muss. Das funktioniert sehr gut, um Bilder auf rechteckigen Bildschir-

men anzuzeigen, jedoch eher schlecht, wenn kein rechteckiges Bild dargestellt werden soll,

was bei Virtual Reality Headsets meistens und bei Shadowmapping häufig vorkommt. Bei

existierenden Lösungen zu diesem Problem mangelt es entweder an Qualität, Performance

oder es werden sehr moderne Hardwarefunktionen benötigt. Wir beschreiben eine Raster-

isierungspipeline mit der man nichtlineare Verzerrungen darstellen kann, ohne dabei auf

ein zwischengespeichertes, normal rasterisiertes Bild zurückzugreifen. Außerdem liefert

unsere Pipeline hohe visuelle Qualität mit vergleichsweise guter Performance.
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1
Introduction

In the early years of computer graphics, every part of the graphics pipeline was processed

on the Central Processing Unit (CPU). This meant that modifications to the pipeline could

be easily made by changing code, but the performance left much to be desired. Therefore,

specialized hardware was invented to reduce CPU bottlenecks when dealing with graphics

data and thus increase performance. This specialized hardware was further developed over

time, until it became what we call Graphics Processing Unit (GPU) today. On the other

hand, this reduced flexibility, since changes to the hardware parts of the pipeline were

no longer easily possible. The graphics pipelines, which are predominantly in use today,

use hardware acceleration for many of their compute-heavy tasks. There are, however,

parts of the pipeline that are programmable. These are called shaders, and can be useful

for a great variety of graphical effects and optimizations, but their use cases are limited

by constraints set by the pipeline. Technical advancements in this field are limited by

the speed of the hardware design processes, which may not be optimal in a ever-changing

domain. Modifications to the pipeline are also subject to the same limitations, meaning

that use cases that do not fit the predefined pipeline can simply not be implemented at

all.

One way to achieve greater flexibility would be to implement the pipeline entirely in

software, as it was before GPUs. Every step of the pipeline would be freely programmable,

modifications would be as easy as changing some code. This can be used to test potential

features for future hardware, as changing code is much easier than designing hardware

for the same task. Although modern GPUs can be used in compute mode, which means

that they act similar to a regular CPU, which can then be used to implement software

pipelines, there is still a large performance penalty in comparison to a hybrid pipeline.

There have been many implementations of such a software pipeline, such as cuRE by

Kenzel et al. [9], FreePipe by Liu et al. [12] and CudaRaster by Laine et al. [11]. In our

work, we implemented such a software rasterization pipeline with a focus on a customizable

rasterization stage.
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2 Chapter 1. Introduction

1.1 CUDA

To better understand the following chapters, it is advantageous to know the fundamentals

of CUDA programming in terms of modern Nvidia GPUs. A more detailed description of

the following, shortened explanations was written by Cook [5], with the official documen-

tation by Nvidia [15] focusing heavily on the programming side. Fundamentally, a GPU

is a coprocessor with a focus on massively parallel computation employing a throughput-

oriented design.

From the top down, the graphics processor is made up of several multiprocessors and

memory which can be accessed from within all multiprocessors, the so-called global mem-

ory. Each multiprocessor has its own exclusive memory, which is called shared memory,

and a number of single-instruction, multiple-data (SIMD) processors. A visual represen-

tation of these hierarchical relationships is depicted in Figure 1.1.

Multiprocessor

SIMD
Shared

memory
SIMD
SIMD
SIMD

Multiprocessor

SIMD
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memory
SIMD
SIMD
SIMD
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Multiprocessor
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SIMD
SIMD
SIMD

GPU

Global memory

Figure 1.1: High-level overview of the Nvidia GPU architecture. A multiprocessor is made up of
SIMD processors and shared memory, the GPU of global memory and multiple multiprocessors.

The developer now needs to divide the compute workload into meaningful chunks that

fit the hardware architecture. The abstractions for this are called grid, blocks and threads,

which are depicted in Figure 1.2. A grid is made up of multiple blocks, and each block

is further subdivided into threads, whereas each block has the same number of threads.

Design considerations here are that efficient communication is only possible within a block,

but using only a single block would severely reduce overall performance as each block is

executed on only one multiprocessor. The threads of a block are partitioned in groups of

32, called warps, and executed on the multiprocessor. All active threads within a warp

have to simultaneously execute the same instruction, meaning that if one thread needs

to wait for data to become available, e.g. due to a cache miss, all other threads have
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to wait as well. If code paths of groups of one or more threads within a warp diverge,

these groups have to be executed in series, with all other threads being deactivated in the

meantime, until all code paths merge again. This behavior is called thread divergence,

and it is unwanted because it reduces the amount of calculations per clock cycle, making

the implementation less efficient.

Grid

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Thread (0,2) Thread (1,2) Thread (2,2) Thread (3,2)

Block (0,1)

Figure 1.2: High-level overview of the CUDA programming model. A grid is composed of multiple
blocks, and each block contains an equal number of threads. When executing the grid, each block
is run on a single multiprocessor. Groups of 32 threads, which are called warps, are run in sequence
on the multiprocessor.

1.2 OpenGL pipeline

In a similar way, it is also beneficial to have a rough understanding of how the graphics

pipeline works and what stages it is comprised of. A detailed description of the entire

OpenGL graphics pipeline is given in the OpenGL specification [22]. For better compre-

hension, the following descriptions are illustrated in Figure 1.3.

The host application starts the pipeline by feeding primitives, such as triangles or

quads, into the pipeline. At first, the vertices of the primitives are processed in the

vertex shading stage, which uses the programmable vertex shader to allow for fine control
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Vertex shader
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Geometry shader
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Figure 1.3: High-level overview of the stages of the OpenGL graphics pipeline. Starting from
the host application, vertex data is propagated through various geometry and rasterization stages
until it reaches the framebuffer.

over how the vertex positions and attributes are calculated. The following, fixed-function

primitive assembly stage assembles the primitives in accordance with the specified format

of the input data. The two following, optional, stages work on a per-primitive basis

and can be used to generate additional geometry. Tesselation, which is comprised of a

programmable control shader, a programmable evaluation shader, and the fixed-function

primitive generation in between, is the first optional stage. The important distinction to

the following stage is the presence of adjacency information, which is commonly used for

variable subdivision, which, in turn, can be used to dynamically adjust the level of detail

of geometry or to perform displacement mapping. The geometry shading stage can also

be used to generate additional geometry, but since the programmable geometry shader

does not have access to adjacency information, its use cases are more limited

To finish geometry processing, culling and clipping is performed. Culling means that

primitives that are not visible at all are discarded, either because they are completely

outside of the visible area, or optionally, are facing away from the camera. Clipping deals

with primitives that are partially visible, for example if they pass through the near or

far plane. Depending on the implementation, it might additionally be necessary that

primitives do not extend too far from the visible area due to floating point or fixed-point

precision. The fixed-function rasterizer then creates fragments for the transformed, culled

and clipped primitives, and interpolates vertex attributes to be used in the fragment

shading stage, which in turn calls the programmable fragment shader on each fragment to

determine its color and additional attributes of interest. At the very end, raster operations

are performed, which consist mainly of fragments being written to the framebuffer, with

various pipeline settings determining the result of two or more fragments claiming the
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same location.

1.3 Rendering techniques

Rendering of computer-generated imagery can be classified into two large categories: Ray

tracing and rasterization. Traditionally, rasterization was used for real-time rendering and

ray tracing for offline high quality rendering. Ray tracing used for rendering, which was

first described by Appel [1], is a highly flexible algorithm that can be used to determine

arbitrary point-to-point visibility. By extending the algorithm to cast additional, recursive

rays from the hit surface, Whitted [25] gave rise to simple and elegant high-quality render-

ing techniques, such as path tracing, which is a widely-used variant in use today. To make

ray tracing efficient, spacial acceleration structures, such a bounding volume hierarchies,

are required.

Rasterization, on the other hand, is mostly used for determining the primary visibility

of geometry, although tricks also allow for secondary effects, such as shadow maps and the

like. In comparison to image order ray tracing, a rasterization pipeline employs an object

order method, which means that every primitive is touched only once, projected to screen,

determines the covered pixels (the actual rasterization), determines the color for each

pixel and resolves the image using depth buffering. While the typical real-time rendering

pipeline has evolved over the years, the basic concept of rasterization, as described by

Shirley and Marschner [23], and depicted in Figure 1.4, is still the same.

(a) (b) (c)

Figure 1.4: Simplified depiction of the rasterization algorithm. Starting with a triangle in screen-
space coordinates (1.4a), the fragments whose centers are covered by the triangle are filled (1.4b)
and shaded (1.4c).

The popularity of rasterization pipelines comes from the fact that they are efficient:

Memory is accessed efficiently, every primitive is loaded only once from memory. Shading

execution is well suited for SIMD execution as all fragments of a primitive are generated

together. Preprocessing of the data is not needed, it can be passed to the rasterization

pipeline unmodified, there is no need for an acceleration data structure, thus all types of

dynamic scenes can be handled. The pipeline design is efficient, temporary data can be

stored in on-chip buffers, thus data amplification can be dealt with in a simple and efficient
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manner. The hardware for basic math operations is efficient, which is used extensively in

the rasterizer for e.g., pixel coverage tests.

Ray tracing has different strengths: There is no overdraw, although determining the

first hit may be more costly than determining any hit. Also, rays can be shot in arbitrary

directions, which are not bound to any fixed pattern, such as a raster.

Aiming for higher and higher quality images also in real-time rendering, ray tracing is

by now not only suppoerted in hardware, but also used in hybrid rendering pipelines for

effects such as reflections, shadows, and global illumination approximations. In the future,

we may see ray/path tracing take an even bigger hold in real-time rendering, especially

if we reach the compute resources to apply full path tracing. While ray tracing seems

inevitable to determine secondary light paths, ray-tracing is also being increasingly used

for primary rays [8].

Ray tracing is attractive for primary rays when rasterization reaches its limits, for ex-

ample in head-mounted displays (HMDs) where lens distortion leads to non-linear distor-

tion and, thus, cannot be rasterized directly [24], or when targeting foveated rendering [18]

where many pixels are needed for the current focal point and only few in the periphery.

Paradoxically, rendering on mobile devices, such as HMDs, or when performing foveated

rendering, one’s goal is to render as efficiently as possible and, thus, rasterization seems

to be a more natural choice, if it was not for the limitations of rasterization.

In this paper, we analyze the possibilities of non-linear rasterization and propose an

architecture that is applicable to different distortion functions, we make the following

contributions:

• A software rasterization pipeline with programmable rasterizer, which is able to

achieve interactive framerates

• A rectilinear and bijective rasterizer implementation with efficient hierarchical raster-

ization, with the bijective rasterizer being able to render images with lens distortion

and foveation.



2
Related work

Previous work on dual-paraboloid shadow mapping as described originally by Brabec et

al. [3] is based on the idea that if geometry is tesselated finer and finer, with a nonlinear

transformation being applied to the tesselated vertices, the rendered image looks more

and more correct. If the tesselation is fine enough, this approximation makes the visual

artifacts vanish completely, making the image indistinguishable from a mathematically

correct rendering. Advancements in graphics hardware and further investigations lead to

practical implementations of this technique using hardware tessellation, as described by

Osman et al. [17]. The tessellation requirement, however, still leads to a performance

overhead and makes this technique unavailable to platforms that do not support hardware

tessellation. In his work on making shadow mapping more efficient while maintaining

graphical fidelity, Rosen [21] also relies on tessellation to approximate more expensive

calculations for scenes with a high number of triangles. Depending on the tested scene,

the rendering time can easily double compared to not using tessellation, when using the

recommended number of triangle subdivisions for a good tradeoff between performance

and quality. The ability to rasterize nonlinear projections without generating additional

triangles could lead to performance improvements for this type of application.

To the best of our knowledge, there exists no similar pipeline modification for any of

the GPU-based software graphics pipelines that we considered for comparison, namely

FreePipe by Liu et al. [12], CUDARaster by Laine et al. [11] and Piko by Patney et

al. [19]. Therefore, results are later, among others, compared to a hardware pipeline

where distortion happens in a post-processing stage.

Perceptual rasterization by Friston et al. [6] also aims at improving the experience of

virtual reality (VR) applications, and does so by using nonlinear rendering and foveation.

Foveated rendering means that the image is rasterized with different resolutions depending

on the on-screen distance to the point where the eye is currently looking at. This signifi-

cantly reduces the number of pixels to be drawn, but also requires eye tracking, which is

not a common feature in contemporary consumer HMDs. The nonlinear rendering part of

this work can be used irregardless of the presence of eye tracking.

7
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Modifications to the hardware graphics pipeline have previously, among others, been

proposed by Lloyd et al. [13]. In their work they propose to adapt the hardware raster-

izer to allow for logarithmic rasterization, which they demonstrated can be used for less

bandwidth-heavy shadow map calculations while maintaining the same shadow quality.

The pipeline modifications that we describe in section 4.1 can also be used to implement

logarithmic rasterization as described in their work, since it is a version of rectilinear dis-

tortion where one dimension is not distorted while the other is logarithmically distorted.

Raytracing, which predates programmable graphics hardware by many years [20], can

also be used to achieve the same effects as described in this work. Until recently, raytrac-

ing had the significant disadvantage of not having the possibility to resort to hardware

acceleration, which did not allow for competitive rendering times. Since the introduction

of hardware raytracing in newer Nvidia GPUs [7] this is now also a feasable method for

realtime applications. The downside of needing efficient acceleration structures, which is

necessary to achieve interactive frame rates, still persists. The time required to recre-

ate acceleration structures in non-static scenes can add a significant portion of the total

rendering time. Rasterization, on the other hand, naturally handles arbitrarily dynamic

scenes, since the raw mesh data is processed by the pipeline.



3
Pipeline design

First, we discuss the basic design of rasterization pipelines and the underlying ideas of

going from a linear rasterizer to a non-linear rasterizer.

Previous approaches to non-linear rasterization either distort the geometry or perform

some form of raytracing and thus build a hybrid rasterizer. Distorting geometry essen-

tially comes down to applying distortion functions to the triangles. Typically a distortion

function is a simple function in the form

[x′, y′]T = f(x, y), (3.1)

with x and y being the original screen-space coordinates, and x′ and y′ the distorted

coordinates. The function f uniquely maps each two-dimensional coordinate to another

two-dimensional coordinate. This distortion function not only distorts the vertices, but

may also turns straight edges into curves. As a result, traditional techniques cannot be

applied. If triangles are small enough, the distortions may become small enough for the

nonlinearities introduced on top of the edges to be tolerable. However, this puts unnec-

essary high loads on temporary memory bandwidth, rasterization loads and complicated

shading, such as quad shading because of generating large numbers of triangles. Using

per-triangle raytracing for rasterization, as Friston et al. [6] did, requires the rasterizer to

run on a bounding shape around the distorted triangle and perform pixel tests using ray-

tracing in the fragment shader, leading to excessive number of fragments being generated

an discarded.

Our approach, on the other hand, achieves the same result by moving the sample

location of each fragment according to the underlying distortion function before evaluating

the fragment. By doing this on a per-fragment basis, we do not need to change the

geometry in any way, we only need to account for nonlinearities in some of the pipeline

stages. To verify that this approach makes sense from a performance point of view, we

evaluated the performance in chapter 5.

9



10 Chapter 3. Pipeline design

3.1 Rasterizer design

In accordance with the models described by Molnar et al. [14], our pipeline is classified as a

sort-middle pipeline. This means that the sort from object space to screen space happens

in the middle of the pipeline, between the geometry and rasterizer stage. We chose this

model because it is the most common for parallel rendering systems, and fits nicely between

the disadvantages of the susceptibility of sort-first to load imbalance because of adverse

primitive distribution and the potentially very high pixel traffic of the sort-last approach.

A high-level overview of our pipeline can be seen in Figure 3.1.

BR

BR

BR

BR

TR

TR

TR

TR

FP

FP

FP

FP

VS

VS

VS

VS

Figure 3.1: High-level overview of our sort-middle pipeline. Global work distribution only takes
place right between the geometry stage, which contains the vertex shader (VS), and the rasteriza-
tion stages. During the following bin rasterizer (BR), tile rasterizer (TR) and fragment processing
(FP) there is only local work distribution.

Geometry Processing Geometry processing operates on input primitives, perform-

ing many different types of geometric transformations, including projection, and outputs

vertices in clip space and indices. This part of the pipeline can contain steps like tessel-

lation, geometry shading, or even mesh shaders. The only requirement is on the output.

Thus, various transformations are typically happening during geometry processing, such

as skinning or displacement maps. This part of the pipeline is not affected by the type of

projection.

Right at the end of geometry processing, operations related to the rasterizer are per-

formed on a per-primitive and per vertex basis:

Culling removes triangles that are outside of the view frustum, modern pipelines may

do so in a mesh shader already.

Clipping cuts triangles if they cannot be handled as a whole, for example if they

reach behind the near/camera plane. Furthermore clipping may also be necessary if fixed-

point conversion is otherwise not possible. Fixed-point arithmetic only works within a

pre-defined range – the range supported by the chosen format. This supported range is

typically called guard band, see Figure 3.2. If a triangle reaches out of the guard band it

is clipped and only the inside part is forwarded to the next stage. Clipping may produce

one or two triangles.

Fixed-point conversion takes the projected vertex coordinates and snaps them to the

fixed-point raster. Typically one works with 256, i.e., 8 bits, between pixel locations.
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Figure 3.2: Visualization of clipping and guard band. The viewport is the white space in the
center, the light green area around it is the guard band. Everything outside of the guard band,
visualized as the slightly brighter areas of the triangles, is removed, i.e., clipped.

Finally, to cater for parallelism and data locality, primitives are assigned to screen

space bins or tiles, each being assigned to a specific rasterizer. Note that this is both true

for desktop devices with fine-granular rasterizer patterns [10] and mobile devices which

implement a tiled rasterizer [4].

Fragment Processing The last step of rasterization is fragment processing, which gen-

erates all fragments covered by a primitive. Note that additional helper fragments may

be generated to support derivative computations, which results in so-called quad shading.

For each fragment, a fragment shader is called which produces the output color of the frag-

ment. Finally the fragment is subject to depth testing and potentially blending with the

already present color in the framebuffer to adjust the color in the frame buffer. To reduce

the number of fragment shader invocations which do not contribute to the output color, as

they are discarded by depth testing, fragments, or even entire groups of fragments, may be

discarded before fragment shading or during rasterization in so called early-depth testing.

To this end, a depth value closer to the camera than the newly generated fragment(s)

must have been generated beforehand.

Our non-linear rasterization approaches do not affect any parts of the above mentioned

processing after rasterization. We only change parts of the pipeline at the end of geometry

processing and in the rasterizer itself.

3.2 Experimentation Pipeline

To allow testing of our approach, we implemented our approach as a parallel software

rasterizer, running on the programmable cores of current GPUs. Our approach follows the

previous software rasterization designs [9, 11, 19]. Our rasterizer follows a tiled hierarchical

rasterization approach in four stages:

1. Geometry processing

2. Load-balancing
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3. Bin-to-tile rasterization

4. Tile-to-fragment rasterization and fragment processing

Geometry processing follows the previously discussed general geometry processing pro-

cessing strategies, with rasterization preparation steps at the end. In our simple setup

geometry processing takes and index and vertex buffer as input, starts one thread per

triangle, fetches the referenced vertices, performs a matrix multiplication to go from ob-

ject to clip space for each triangle, and hands the triangle with its attributes over to the

system.

After culling and clipping we store each surviving or generated triangle into a single

global triangle queue. Additionally, we assign the triangle to a raster of fixed size bins.

For our linear baseline, we use bins of 64× 64 pixels as bins which are organized regularly

with the screen center being located at [0, 0] and touches four bins. For efficient bin

assignment, we take the bounding box of every triangle and insert the triangle into the

queue associated with each bin the bounding box touches. The queues only store indices

to the global triangle queue.

Load-balancing ensure that the following rasterization stages can operate in limited

memory. We use tiles of 8× 8 pixels. Using another set of queues for each tile on screen

may use significant amounts of memory, one of the issues of CUDARaster [11] and Piko [19]

according to Kenzel et al [9]. To avoid this issue, we, for each bin, compute the worst

case number of tile entries that may be produced, i.e., the number of bin queue entries

multiplied by 64. We then use a modified binary reduction to merge bins that can run

concurrently while staying within a given maximum amount of memory. Essentially, we

just combine neighboring bins until their sum of bin queue entries exceeds a threshold.

Combining this binary reduction with a prefix sum, we can directly compute the offset of

each bin within the the combined set of bins. The result of this step is a list of grouped

bins that can run concurrently. For small scenes, all bins may be able to run concurrently,

for extreme cases every bin may need to run separately.

The bin-to-tile rasterizer takes all triangles associated with the bin as input and assigns

each triangle to all tiles it covers. For efficient processing, we use one thread per triangle

and create a bitmask of covered tiles, before we insert the triangle ids into the respective

tile queues. For efficient rasterization, we follow the approach outlined by Kenzel et al. [9],

stepping along each edge in y-direction and masking entire rows of pixels in the bit mask.

The process is outlined in Figure 3.3. While Kenzel et al. [9] operate in floating point, we

perform these computations in fixed-point.

The tile rasterizer takes each triangle assigned to the tile as input and computes the

triangle coverage and shading in parallel. We use a warp per triangle, with a tile size

of 8 × 8 each thread is responsible for exactly two fragments. Each thread fetches the

fixed-point vertex positions, computes the edge equations and inserts its pixel values into

the edge equations. The results of the edge equation tests can directly be transformed into

barycentric coordinates, which in turn can easily be corrected for perspective interpolation
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Figure 3.3: Visualization of scanline rasterization in the bin rasterizer. The relevant tiles are the
ones that are covered by the bounding rectangle and all three edge half-planes.

and are used for fragment shading in our case.

For depth testing, we currently use global memory atomic operations on 64-bit words,

where we use 32-bit for depth and 32-bit as color payload. Thus, we do not need to

synchronize between fragments that may write to the same buffer location in this prototype

renderer. To support more complex blending and output to multiple buffers, we could

either ensure that only a single thread accesses a pixel, similar to Kenzel et al. [9], or even

keep the buffers in shared memory and coordinate writes within the same warps [11].





4
Nonlinear rendering

Hardware acceleration plays an important role in the high performance of contemporary

GPUs, but the upsides of higher throughput and lower energy consumption come at the

cost of less flexibility. Programmable pipeline stages take some flexibility back, but can, of

course, not cover every possible use-case. The constraint that is discussed in this work is

that hardware-accelerated graphics pipelines can only efficiently depict linear mappings,

since it contains non-programmable parts that only work in this setting. Nonlinear map-

pings can not be efficiently rendered.

Based on complexity of the implementation, we identify three tiers of nonlinearity.

First, we want a mapping that distorts the output image in x and y direction independently.

We call this rectilinear distortion, which is explained in more detail in section 4.1, and could

mainly be used for various shadow mapping techniques. Second, a mapping that distorts

the output image based on a function of both x and y, which could be used to create for

example barrel distortions, which, in turn, can be used to render VR applications without

having to apply distortions in a post-processing step. We call this bijective distortion,

which is extensively explained in section 4.2. A possible third tier would be to have

arbitrary sample locations in the output image. This approach could, however, lead to a

non continuous, non invertible distortion function and would therefore not be usable by

our software pipeline implementation. There are also no obvious use cases apparent to

us, therefore, the third tier was not pursued. Since the first tier of nonlinearity is also

implicitly included in the second tier, it is important to note that the distinction still

makes sense from a performance point of view, as the less complex implementation for

rectilinear distortion leads to better performance over bijective distortion. This correlation

is later shown in section 5.4.

In this work, the term distortion is described as a mapping x, y 7→ f(x, y), whereas both

x and y are screen-space coordinates in the range [−1; 1]. We call this forward distortion.

In order for this mapping to be useable by the pipeline, it needs to be continuous and bi-

jective. For bijectivitiy, we introduce the appropriate inverse mapping x′, y′ 7→ f−1(x′, y′),

which we call inverse distortion. It has the property of f(f−1(x, y)) = f−1(f(x, y)) = x, y,

15
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meaning successively applying forward and inverse distortion yields the original coordi-

nates.

4.1 Rectilinear distortion

In rectilinear distortion the sample locations of the fragments are distorted independently

in x and y direction. This means that all sample locations who share either x or y coor-

dinates before applying the distortion, do so also after the distortion was applied. Math-

ematically, this means the general distortion function is simplified to the mapping x, y 7→
f(x), g(y). Consequentially, the inverse distortion therefore is x′, y′ 7→ f−1(x′), g−1(y′).

An example of such a rectilinear mapping can be seen in Figure 4.1, which shows a cylin-

drical projection. The inverse distortion can in this case also be analytically calculated,

leading to no rounding errors when doing a forward calculation followed by an inverse

calculation.

(a) (b)

Figure 4.1: Visualization of forward distortion (4.1a) and inverse distortion (4.1b) as described in
section 4.1 being applied to a regular grid, with the regular grids being shown as dotted, green lines
and the distorted grids as solid, black lines. Since a rectilinear distortion is used, which applies to
x and y direction independently, lines are still lines after distortion being applied.

In order to adapt the pipeline for this type of rendering, only two small changes are

necessary. First, when finding out which bin a given fragment belongs to, the forward

distortion has to be applied to its sample location, and second, when rasterizing the

fragment, the inverse distortion has to be applied to its sample location. All the other

parts of the pipeline stay the same, and can be inherited without changes. An image of a

cube rendered with this distortion can be seen in Figure 4.2.
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(a) (b)

Figure 4.2: Visulization of a cube without distortion (4.2a) and rectilinear distortion being
applied during rendering (4.2b). It is the same distortion that is used in Figure 4.1a. The parts in
the center become horizontally stretched, while the parts at the left and right edge are compressed,
leading to a s-shaped appearance of some of the edges.

4.2 Bijective distortion

Here, x and y are distorted by a two-dimensional function and cannot be distorted inde-

pendently. Sample locations that share x or y coordinates before applying the distortion

do not necessarily still form a line after the distortion is applied. A visualization of such

a forward and inverse distortion being applied to a regular grid with the parameters that

are later used in the implementation can be seen in Figure 4.3. An image of a cube ren-

dered with the same distortion can be seen in Figure 4.4. Contemporary VR headsets use

lenses to simulate large perceptible distances for eyes to focus on, but introduce distortion

in the process. For most popular contemporary headsets, this is pincushion distortion,

which needs to be countered by applying its inverse, a barrel distortion, which is a form

of bijective distortions, somewhere in the graphics pipeline.

The forward distortion function that is used in our experimental implementation is a

cubic polynomial, the reasons for that are explained in section 4.3. Since evaluating the

exact inverse of a third-order polynomial is computationally intensive, an approximate

inverse is calculated instead. For convenience and runtime performance reasons, this

is done for a univariate polynomial, which maps normalized x, y coordinates to their

corresponding inversely distorted points by using it in a radial distortion function. The

coefficients of the polynomial for this mapping are estimated by minimizing the maximum

error after a sequence of distortion and inverse distortion for each point on a regular point

grid on the normalized x, y-plane. The order of the polynomial of this inverse distortion
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(a) (b)

Figure 4.3: Visualization of forward radial distortion (4.3a) and inverse radial distortion (4.3b)
as described in section 4.2 being applied to a regular grid, with the regular grids being shown as
dotted lines and the distorted grids as solid lines.

(a) (b)

Figure 4.4: Visulization of a cube without distortion (4.4a) and barrel distortion, a form of
radial distortion, being applied during rendering (4.4b). It is the same distortion that is used in
Figure 4.3b. The curvature of the edges, which bend away from the center, is clearly visible.
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can be arbitrary chosen, with higher-order polynomials leading to smaller errors but being

computationally more expensive. When, for example, choosing an ninth-order polynomial,

we empirically determined the residual error on a Full-HD screen to be less than one pixel,

which is good enough for our use case. Nonetheless, since this polynomial is of finite

order, the minimized maximum error does not reach 0, which is accounted for by adding

safety margins proportional to the maximum error around the distortion-aware triangle

boundaries. A visualization of the residual error of the chosen inverse distortion can be

seen in Figure 4.5.

0 0.2

Estimation error in pixels

Figure 4.5: Visualization of pixel displacement error compared to original positions after doing
a forward distortion followed by an inverse distortion. Gray colors indicates a small error, green
indicates a large error. The maximum error in this picture in normalized coordinates is about
0.0004, which corresponds to about 0.2 pixels at a size of 512x512 pixels.

4.3 Forward and inverse distortions

The implementation of bijective distortion in our experimental pipeline is loosely based on

the moderately popular OpenHMD library [16], which uses an universal distortion shader

to unify rendering for many different virtual reality headsets under a common API. The

library also contains distortion parameters for many common HMDs, which were calculated

by taking images of the HMD from the eye perspective with a camera and using computer

vision algorithms to deduce the approximate parameters. These parameters are to be

interpreted as coefficients of a third-order polynomial, which is used to distort normalized

coordinates inversely to the respective lens distortion, such that they cancel each other

out. Some of these are used for testing in this work.

In addition to these parameters, the inverse of this distortion is required to do correct

bin and tile assignments when calculating the distortion-aware boundary of each triangle.

Both forward and inverse distortion are implemented as radial distortions. This means
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that screen-space positions are displaced radially based on the formula

l =

∥∥∥∥∥
(
x

y

)∥∥∥∥∥(
x′

y′

)
=

(
x

y

)
(cn · ln + cn−1 · ln−1 + . . . + c1 · l + c0),

(4.1)

whereas c0 . . . cn are the polynomial coefficients, x and y are the undistorted coordinates

and x′ and y′ are the distorted coordinates. The forward and inverse polynomial which is

used in the implementation can be seen in Figure 4.6.
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Figure 4.6: Visualization of forward and inverse distortion polynomials (4.6a) and the one-
dimensional distortion functions applied to the variable range 0 . . .

√
2 (4.6b). The polynomials

themselves are not monotone, but the resulting distorted values are monotone and need to be
monotone in order for the inverse mapping to work.

The effect of different polynomial orders for the inverse polynomial on the maximum

error can be seen in Figure 4.7. Choosing the correct polynomial degree is a tradeoff

between computation cost of evaluating the polynomial and computation cost of having

to deal with additional fragments due to the pixel displacement error as described in

Figure 4.5.

4.4 Nonlinear pipeline modifications

At the end of geometry processing, out of screen culling, near plane clipping, guard-band

clipping, fixed-point conversion and backface culling are happening as usual. Small triangle

culling, bin assignment, triangle collection and tile rasterization need to be adapted for

nonlinear rendering.

Small triangle culling Small triangle culling, also called between sample culling, is

important for scenes with very fine geometry and can significantly increase performance
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Figure 4.7: Visualization of the maximum error when doing a forward distortion followed by
a inverse distortion while varying the degree of the inverse polynomial of the one-dimensional
distortion functions in the variable range 0 . . .

√
2 . Figure 4.7a shows the range 3 to 32, while

Figure 4.7b shows the range 6 to 32 to enhance the detail in the higher orders. Starting at about
degree 26 overfitting can be observed.

as triangles that will not produce any samples can be removed early in the pipeline. With

non-linear rasterization, we face the problem that the sample locations used in the end are

transformed individually and, thus, simple culling, as is traditionally used, is not possible.

Typically, one would simply compute the bounding box of a triangle and, if the bounding

box falls between two adjacent sample rows or columns, directly cull the triangle.

For non-linear rasterization we need to consider the following: First, we could take the

bounding box, use the inverse distortion to compute the distorted bounding box and see

whether the bounding box falls between non-distorted sample rows or columns. However,

as the inverse distortion is not an analytic inverse of the forward distortion this would

result in errors. Also note that the inverse distortion applied to the bounding box also

needs to consider the case where transforming the corners is not sufficient to get the right

result. Second, we could compute the standard bounding box and search for the pixels

that after forward distortion intersect with the bounding box. However, finding those

pixels without additional information is non-trivial in the general case.

However, given that we have the inverse distortion function—albeit it is not being

exact—we can use it to guide the search for pixels that are closest to the triangle. Thus,

our algorithm for rejecting triangles that fall between sample locations looks as follows:

FixedPointBBox bbox(v1_e, v2_e, v3_e);

FixedPointVector blower = undistort(bbox.min);

FixedPointVector bupper = undistort(bbox.max);

int2 lower_pixel = {blower.x - halfPixel - 1,

blower.y - halfPixel - 1};

int2 upper_pixel = {bupper.x + halfPixel + 1,

bupper.y + halfPixel + 1};
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if (upper_pixel.x - lower_pixel.x > 1 &&

upper_pixel.y - lower_pixel.y > 1)

{

culled = false;

}

else

{

int2 loxloy = distort({lower_pixel.x, lower_pixel.y});

int2 loxhiy = distort({lower_pixel.x, upper_pixel.y});

int2 hixloy = distort({upper_pixel.x, lower_pixel.y});

int2 hixhiy = distort({upper_pixel.x, upper_pixel.y});

if (upper_pixel.x - lower_pixel.x == 1 &&

((lower_pixel.y < 0) ^ (upper_pixel.y < 0)) == 0 &&

(loxloy.x < bbox.min.x && hixloy.x > bbox.max.x &&

loxhiy.x < bbox.min.x && hixhiy.x > bbox.max.x))

{

culled = true;

}

else if (upper_pixel.y - lower_pixel.y == 1 &&

((lower_pixel.x < 0) ^ (upper_pixel.x < 0)) == 0 &&

(loxloy.y < bbox.min.y && loxhiy.y > bbox.max.y &&

hixloy.y < bbox.min.y && hixhiy.y > bbox.max.y))

{

culled = true;

}

}

First we compute the bounding box from the fixed-point vertex locations in undistorted

space. We then perform inverse distortion to get an estimate of the distorted bounding

box. Next, we round the surrounding undistored pixel locations, giving us the closest pixel

indices outside the bounding box. If those are further than one pixel apart in both x and

y direction, the triangle reaches out both a pixel row and a pixel column and the triangle

is not culled. This path is highly efficient and equal to the previously described option

one.

However, if a triangle could still be culled, we now perform bit stable test. We apply

the inverse distortion the so found four pixel locations. Finally we test whether the original

triangle bounding box falls between either the distorted pixel row or column. Depending on

the distortion function slightly more or less tests are necessary. For rectilinear distortions,

we only have two x and two y coordinates, min and max, to consider and we do not need

to have any special case handling. For bijective distortions, we need to consider all four

corners as those may transform differently. Furthermore, if the bounding box crosses the

respective coordinate axis, the transformation is not monotonic and the ”bending” may
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allow crossing multiple pixel rows/columns while the extrema do not capture this fact.

Thus, we exclude those cases from culling and accept a few additional triangles in favor of

performing more complicated tests. Note that in this way, the undistorted bounding box

computed from the already quantised fixed-point vertices is tested against that fixed-point

distorted, i.e., moved pixel locations which are used during tile rasterization. Thus the

results are fully stable.

Bin assignment For bin assignment, we compute the conservative inverse distorted

bounding box and add the triangle to all bins that are touched by the bounding box.

Depending on the distortion function, the bounding box computation is slightly different:

For rectilinear distortion, we just perform the inverse transform on the bounding box x

and y coordinates. For bijective distortion, we perform the inverse transform on all three

vertices, which is more efficient than transforming the 4 bounding box corners. Then we

compute min and max over the transformed vertices. If the triangle is crossing an axis,

we use the original bounding box intersection with the axis and again inverse transform

on the intersection and update min and max with the new values.

Finally we add an additional margin on top of the bounding box to ensure we ac-

commodate for inaccuracies between the forward and inverse transform. This epsilon is

determined before setting up the transform, computing the maximum difference in be-

tween the distortion functions, as described in Figure 4.7. Note that we could even use a

higher order error bound, however a constant is a better tradeoff in terms of computation

cost and accuracy.

Triangle collection The triangle collection steps—the bin-to-tile and tile rasterizer—

also need to be modified to account for distortion. The steps described in section 3.2

need to be adapted because an unmodified scanline rasterization would not work unless

an intersection between the triangles edges and a distorted bin grid could be calculated

with little effort. Since this does not seem to be possible, and calculating the tile bitmask

by checking every tile separately would also not be very efficient, we use a binary search

over the tile row instead, which halves the performance impact over checking each tile

individually on average. We did not find a more efficient way of finding the intersections.

A graphical representation of this step can be seen in Figure 4.8.

Tile rasterizer The tile rasterizer also needs to be altered, with a forward distortion

being applied to the fragment positions before they are checked against the triangles edge

equations. Since in fragment processing one warp is responsible for one tile, and therefore

one thread for only two fragments, we did not use binary search in this stage, as it would

not improve performance.
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Figure 4.8: Visualization of scanline rasterization in the bin rasterizer for a radial distortion.
Each bin covered by the bounding rectangle is subdivided into tiles. After the forward distortion
is applied to the grid, the three edge equations are used to find tiles that are completely outside
of the triangle, which are then discarded together with tiles outside of the bounding box. The
remaining tiles are processed further.
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Performance evaluation

For evaluating the performance we ran various test scenes, both with single-mesh objects

and scenes captured from video games. Since we used theses captured scenes we were

able to get a good understanding of how our pipeline works with real-world data. For

comparison of the performance of rectilinear and bijective distortions we compared our

implementation to a standard OpenGL pipeline with distortions being applied in a post-

processing stage, the lens distortion part of the work by Friston et al. [6], and a raytracing

implementation based on Nvidia Falcor [2]. For testing the pipeline without distortion we

only compared it to a standard OpenGL pipeline and raytracing.

5.1 Test setup

We ran our test scenes with an Intel Core i5-4690 CPU and 16 GiB or RAM, on a PC

running Windows 10. All tests were performed with a Nvidia Geforce GTX 1080 Ti and

RTX 2080 Ti. The in comparison relatively old CPU does not influence the results in a

negative way since we only tested static scenes, which makes running the pipelines require

very little CPU cycles. As resolutions, we chose 1920x1080 and 3840x2160 pixels for all

test cases. The findings presented here represent a summary of all measurements, the test

results as a whole are not included.

5.2 Real-world scenes

At 1080p resolution, and with the 1080 Ti, comparing our implementation with real-

world scenes yields that an OpenGL implementation with distortion being applied in

postprocessing is currently by far the fastest way of achieving distorted rendering. Our

pipeline performs on average slightly better than Perceptual Rasterization for rectilinear

and radial distortion, and slightly worse for foveation distortion and no distortion, which

is illustrated in Figure 5.1.

25
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At 2160p (4K) resolution, our implementation is almost universally significantly better-

performing than Perceptual Rasterization, with the only exception being the very simple

scenes of Age of Mythology. Also the difference to OpenGL shrank, which we attribute to

the large constant overhead of doing a screen-space rendering pass at a higher resolution,

as shown in Figure 5.2

With the 2080 Ti on the other hand our implementation is better performing in every

game except, again, Age of Mythology. While the frametimes are slightly better on the

lower resolution, at the higher resolution the difference is significant. Also the difference

between our implementation and OpenGL is smallest at the higher resolution, with the

difference being less than one millisecond most of the time. These figures can be seen in

Figure 5.3 and Figure 5.4.

Figure 5.1: Comparison of radial distortion rendering times between implementations for real-
world scenes (1920×1080, 1080Ti).

5.3 Artificial scenes

Drawing conclusions from the artificial test scenes is more difficult, since we only tested

ten of them. Stating with the 1080 Ti, we observed that the different resolutions did not

make that large of a difference as with the real-world scenes. What is still universally

true is that OpenGL is the fastest, no matter the resolution or distortion type. Our

implementation, on the other hand, seems to be faster than Perceptual Rasterization at

1080p more often than not, which is depicted in Figure 5.5. Surprisingly, this is not also
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Figure 5.2: Comparison of radial distortion rendering times between implementations for real-
world scenes (3840×2160, 1080Ti).

Figure 5.3: Comparison of radial distortion rendering times between implementations for real-
world scenes (1920×1080, 2080Ti).
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Figure 5.4: Comparison of radial distortion rendering times between implementations for real-
world scenes (3840×2160, 2080Ti).

the case at 4k, where this circumstance is reversed. Ray tracing, no matter the resolution,

is mostly slower than our pipeline, mostly because of the missing hardware support on

this device. This can be seen in Figure 5.6.

Changing to the 2080 Ti, which has hardware support for ray tracing, draws a com-

pletely different picture: Ray tracing is now universally faster than even OpenGL, even

more so at higher resolutions. When accounting for acceleration structure rebuild times,

which would play a role if an animated scene was rendered, it is no longer faster than

OpenGL, but still faster than the other two implementations. Our implementation tends

to be faster than Perceptual Rasterization at 1080p, while they are more or less evenly

matched at 4k resolution. Figure 5.7 and Figure 5.8 show this situation.

5.4 Distortion tiers

By comparing the rendering times of our implementation using no distortion, rectilinear

distortion and radial distortion, we get a good understanding of how our nonlinear pipeline

modifications affect performance. A summary of this data for the real-world scenes for

the configuration 1080p/2080Ti is depicted in Figure 5.9, the other configurations look

very similar. The linear rasterizer is the fastest in all scenes, while the bijective rasterizer

is the slowest, with the rectilinear rasterizer being in the middle. This confirms our

assumption from chapter 4 that making rectilinear distortion a separate tier make sense

from a performance point of view.
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Figure 5.5: Comparison of radial distortion rendering times between implementations for artificial
test scenes (1920×1080, 1080Ti).

Figure 5.6: Comparison of radial distortion rendering times between implementations for artificial
test scenes (3840×2160, 1080Ti).
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Figure 5.7: Comparison of radial distortion rendering times between implementations for artificial
test scenes (1920×1080, 2080Ti).

Figure 5.8: Comparison of radial distortion rendering times between implementations for artificial
test scenes (3840×2160, 2080Ti).
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Figure 5.9: Comparison of rendering times of the real-world scenes in our implementation with
varying distortion type. It is apparent that rendering without distortion is fastest while radial
distortion is slowest (1920×1080, 2080Ti).

5.5 Remarks

While comparing raw performance numbers does make sense if the visual output is the

same, it is not so easy if this is not the case. The OpenGL implementation, for example,

leads to slightly worse image quality around the center of the image because of resampling

at a varying pixel density. Simultaneously, the quality at the edges of the image is higher

than with the other implementations because of the same reason. If we were to increase

the intermediate image size of the OpenGL implementation, meaning the size of the image

of the first rendering pass, until there is no difference in image quality at the center, the

results may look different, but we did not check if that would make a significant difference.





6
Conclusion

We demonstrated how to implement a software rasterization pipeline and adapt it for non-

linear rendering. Furthermore, we showed that it can achieve competitive performance

when rendering nonlinear distortions. While our implementation is almost always per-

forming worse than a näıve OpenGL implementation with postprocessing, the exception

being high resolutions with very simple scenes, the tradeoff between quality and perfor-

mance of these two implementations is at least debatable. The performance of Perceptual

Rasterization, which yields the exact same quality as our implementation, is more often

than not worse than ours, with this circumstance being more pronounced at higher resolu-

tions. This applies to both artificial test scenes and real-world scenes. The performance of

ray tracing is, as to be expected, largely dependent on hardware support. On the 2080Ti,

which has hardware support for ray tracing, our implementation came nowhere near close

to that of ray tracing, at least on the tested static scenes. It also has to be noted that

there was no significant fragment shader load in our experimental implementations, with

all of them being implemented as deferred shading and only counting the geometry pass

towards the rendering time. We did not investigate how a more bandwidth- and compute-

heavy fragment shader would influence the results, but given that we use deferred shading

anyway, using a different fragment shader would result in similar absolute differences in

overall rendering time.

Since our pipeline is implemented entirely in software, significant performance gains are

to be expected if the nonlinear rasterizers were implemented in hardware. As rasterization

will most likely still be relevant in the near future, especially on mobile devices where ray

tracing might not be a good fit because of the inherent non-uniform memory access and

memory bandwidth playing a more important role than on desktop systems, extending

the graphics hardware would make sense. On desktop systems, on the other hand, the

meaningfulness of such a hardware change is not as clear, as ray tracing performance is

constantly improving, with the current generation of GPUs doubling that of the 2080Ti

from two years ago.
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