
Katarina Stanojević, BSc

Robust Control of Networked Systems:
Buffering, Control Design and Realization

Master’s Thesis
to achieve the university degree of

Master of Science
Master’s degree programme: Electrical Engineering

submitted to

Graz University of Technology

Supervisor
Ass. Prof. Dipl.-Ing. Dr.techn. Martin Steinberger

Institute of Automation and Control
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Martin Horn

Graz, September 2020



Affidavit
I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. The text
document uploaded to TUGRAZonline is identical to the present master‘s thesis.

Date Signature

i



To my grandmother, Jelena.

ii



Abstract

Rapid development of communication technology in the last decades led to a tendency for
replacement of traditional point-to-point wiring with modern communication networks
which resulted in a wide application of Wireless Networked Control Systems. These
system architectures received significant attention due to their prominent characteristics
such as flexibility and low maintenance cost. However, the use of a communication
channel in control systems introduces some challenges from the control theory point of
view. In order to reduce the impact of network imperfections such as variable time
delays and packet dropouts on control performance, it is necessary to consider these
uncertainties in the control system design.
Besides the uncertainties resulting from the used network, every practical realization of
a control system is affected by disturbances. Although modeling of Networked Control
System (NCS) and stability properties have been studied in literature extensively,
the potential of robust control techniques such as sliding mode control algorithms for
disturbance rejection in perturbed NCS has still not been fully exploited.

The focus of this master’s thesis lies on the application of integral sliding mode
technique to robustify networked systems. To overcome the problem of network-
induced uncertainties which leads to a complex time-variant mathematical model, a
specific buffering mechanism is proposed. The buffered networked control system is
motivated by the existing approaches available in literature and adapted with the
goal to reduce the time delay introduced by the buffer. This results in a simplified
time-variant mathematical model of NCS which, with an appropriate unknown input
compensation can be made suitable for the use of a discretized version of the super-
twisting algorithm.
Furthermore, to fully understand the behavior and practical limitations of NCS and to
examine the control performance of the proposed approach in a real world application,
a Wireless Networked Control System is implemented in Matlab/Simulink using an
Arduino board and Simulink support packages. The simulation and experimental results
show effectiveness with respect to disturbance rejection. Moreover, the delay resulting
from the proposed buffering mechanism is considerably reduced in comparison to the ex-
isting approaches available in literature and a very good system performance is achieved.
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1
Introduction

Contents
1.1 Brief Introduction to Networked Control Systems . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Brief Introduction to Networked Control Sys-
tems

Networked Control Systems (NCSs) are system architectures, where the system to be
controlled including sensors and actuators is connected over a communication channel
to the controller . The communication links between the plant and controller side can
be implemented either by wired (e.g. Ethernet) or wireless networked technologies (e.g
wireless LAN), depending on the specific application of the system.
The rapidly growing interest in Networked Control Systems (NCS) over the past decades
has been motivated by many benefits they offer, such as increased flexibility and low
installation and maintenance costs. In addition, closing the control loop over a wireless
network technology significantly reduces the system wiring [1]. These advantages,
together with the development of communication technologies, resulted in applications
of this control architecture in industry.
Nevertheless, the presence of a communication network in the control loop introduces
some unfavorable effects, which if not properly modeled and considered in the control
design, can degrade the performance of these systems or even lead to instability. These
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1. Introduction

Figure 1.1: General model of a networked control system [2]

disadvantages result from network-induced imperfection, which modify the signals sent
over the network. A very general model of a NCS is shown in Figure 1.1.
The network uncertainties, considered in this master’s thesis, are (variable) time delays,
which arise as a result of the limited transmission speed, and packet dropouts (data
loss), due to the unreliability of the network. These imperfections strongly determine
the modeling of the system to be controlled and make some of the conventional control
approaches not applicable.
One additional challenge present in every practical implementation are disturbances.
Even though extensive research which considers the above mentioned networked
imperfections is available, not much of the published work deal with perturbations
rejection. One group of control algorithms, so-called sliding mode techniques has been
proven to efficiently achieve robustness of control systems against model uncertainties
and external perturbations. However, their potential with respect to perturbed
networked control system has not been yet fully exploited in literature.

1.2 Problem Statement

This master’s thesis deals with single-input perturbed networked control systems that
consist of a continuous-time linear plant and a discrete-time controller and is in large
parts motivated by [3], [4], [5] and [6]. The outline of the thesis is as follows. In
chapter 2, a general model of the considered system which incorporates the above
mentioned network-induced imperfections is described. Motivated by the complexity
of the derived model, a specific buffering mechanism, which allows the use of existing
discrete-time sliding mode control strategies is proposed in chapter 3. Chapter 4
summarizes the theoretical background necessary for the controller design for buffered
NCS. In chapter 5, the realization of the wireless NCS using an embedded system
platform (Arduino board) is described and the behavior of the wireless network is
examined. The proposed buffering mechanism and control approach are implemented
in Simulink. In chapter 6, an illustrative example based on a model of a rotary servo

2



1. Introduction

plant is used to underpin the effectiveness of the proposed control approach by means
of both numerical simulations done in the simulation toolbox from [6] and experiments
performed on the WNCS described in chapter 5.

3



2
Modeling of Networked Control

Systems

Contents
2.1 Small Delay Case . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Large Delay Case . . . . . . . . . . . . . . . . . . . . . . . . 7

In this chapter, a discrete-time model of single-input perturbed networked control
system which incorporates network imperfections is derived based on [6], [7] and [8].
First, the small delay case, where the total variable transmission delay (round trip time)
τk induced by the network is smaller than the sample time Td, is modeled. Afterwards,
this model is extended to a less limiting large delay case, which is characterized by
round trip times τk larger than the sample time Td.

The schematic overview of the perturbed NCS which incorporates the network
imperfections is shown in Figure 2.1. The linear continuous-time plant with a single
input uk and a matched perturbation fk is given by

ẋ(t) = Acx(t) + bs(u∗(t) + f(t)) (2.1)

with Ac ∈ Rn×n and bc ∈ Rn. The effect of measuring the system states x(t) with the
constant sampling time Td resulting in xk values is represented by the sensor block.
To transform the discrete-time control signal uk back to the continuous-time actuator
signal, a zero-order hold block is necessary. Variable network induced delays consisting
of a sensor-to-controller delay τ sck and a controller-to-actuator delay τ cak are both taken

4



2. Modeling of Networked Control Systems

Figure 2.1: Schematic overview of the networked control system

into account by the delay blocks in Figure 2.1. Additionally, variable time needed
for the computation of the control law is modeled by τ ck . Under the assumption, that
a static control law is used, i.e uk = f(xk), the individual delays can be captured
by a single delay, defined as a round trip time

τk = τ sck + τ ck + τ cak (2.2)

Data loss (packet dropouts) which can occur in wireless networked control systems
is modeled by parameters msc

k and mca
k depending on whether a packet is dropped

in the sensor-to controller or in the controller-to-actuator connection. However, due
to the fact that a packet dropout occurring in one of the two connections (for a
static control law) leads to the same result, a single variable mk can be used to
model this network imperfection:

mk =
0 xk and uk are received

1 xk and/or uk is lost
(2.3)

The equivalent simplified schematic overview of the NCS resulting from these assump-
tions is shown in Figure 2.2.
Furthermore, it is assumed, that the variation of the round trip time and the number
of subsequent packet dropouts δ̄ are bounded by

τmin ≤ τk ≤ τmax, (2.4)

k∑
l=k−δ̄

ml ≤ δ̄. (2.5)

5



2. Modeling of Networked Control Systems

Figure 2.2: Simplified schematic overview of the networked control system

Figure 2.3: Timing diagram - small delay case [6] τk ∈ [0, Td)

2.1 Small Delay Case

In the small delay case, every control signal is delayed by the round trip time which is
smaller then a sample time. Hence, only one new control input can be acquired during
one sampling interval. This can be illustrated by a so-called timing diagram shown in
Figure 2.3, where all labels with the same color correspond to the same k-sample.
In order to obtain a discrete-time model of the perturbed NCS, first an assumption
must be made that the sample time Td is chosen small enough to ensure that the
perturbation is piece-wise constant [6], i.e.

f(t) = f(kTd) = fk, kTd ≤ t ≤ (k + 1)Td, k ∈ N. (2.6)

Afterwards, the exact discretization can be applied to (2.1) resulting in

xk+1 = Adxk +
∫ Td−τk

0
eAcsdsbcuk +

∫ Td

Td−τk
eAcsdsbcuk−1 + bdfk (2.7)

with

Ad := eAcTd (2.8a)

bd :=
∫ Td

0
eAcsdsbc (2.8b)

6



2. Modeling of Networked Control Systems

For more details on the derivation, see [6] and [8] .
The corresponding delay-free model (lifted model) equivalent to (2.7) is given by

ξk+1 = Â(τk)ξk + b̂(τk)uk + b̂ffk (2.9)

with the augmented state vector

ξk =
[
xk
uk−1

]
(2.10)

and matrices

Â(τk) =

 Ad

∫ Td

Td−τk
eAcsdsbc

01×n 0

 (2.11a)

b̂(τk) =
∫ Td−τk

0
eAcsdsbc

1

 (2.11b)

b̂f =
[
bd
0

]
(2.11c)

Note that the mathematical model (2.9) is time-variant due to varying time delays τk.

2.2 Large Delay Case

The condition that delays are smaller than the sample time is quite limiting, since
the sample time of the systems can not be arbitrarily increased. The more relevant
scenario in practical applications is the case where delays due to network imperfections
are larger than the sampling interval. Increasing the delay leads to a varying number of
control signals which are active over one sampling interval. This effect is demonstrated
in the timing diagram shown in Figure 2.4. Due to the delay τk+1, which is larger than
Td there is only one signal uk acting between (k+1)Td and (k+2)Td. However, between
(k + 2)Td and (k + 3)Td one has to differ between three control signals uk, uk+1 and
uk+2, which are applied to the system for a different period of time. For the purpose of
modeling NCS in the large delay case, two additional variables are introduced:

d̄ :=
⌈
τmax

Td

⌉
(2.12)

i.e. the smallest integer larger than or equal to τmax
Td

and

δ := d̄+ δ̄ (2.13)

7



2. Modeling of Networked Control Systems

Figure 2.4: Timing diagram - large delay case [6] τk ∈
[
0, d̄Td

)

where δ̄ is defined according to (2.5). Furthermore, due to varying delays larger than
Td can happen that packets do not arrive in correct order. In this case, it is preferable
to implement a message rejection algorithm which, depending on the data timestamp,
avoids implementation of older data.
To specify the signal u∗(t) from (2.1) in the large delay case it is necessary to indicate
which signals are active over each sample interval. In addition, the period of time for
which a specific signal is applied to the system is relevant. For this reason, so-called
arrival times tkj ∈ [0, Td] are defined:

tkj = min
{

max [0, τj − (k − j)Td] +mjTd,

max [0, τj+1 − (k − j − 1)Td] +mj+1Td, (2.14)

. . . ,max [0, τk] +mkTd, Td

}
with tkj ≤ tkj+1 and j ∈ [k − δ, k − δ − 1, . . . , k]. Additionally, the following relation
holds for the arrival times tkj :

0 = tkk−δ ≤ tkk−δ+1 ≤ · · · ≤ tkk ≤ tkk+1 = Td (2.15)

The case when tkj = tkk+1 corresponds to the scenario when a control signal uj is not
active meaning the possibility of message rejection is included explicitly.
The continuous-time control signal u∗(t) from (2.1) is therefore given by

u∗(t) = uj for t ∈
[
kTd + tkj , kTd + tkj+1

)
(2.16)

for j ∈ [k − δ, k − δ − 1, . . . , k]. Moreover, in the large delay case it is reasonable to
define a vector θk consisting of uncertain arrival times

θk =
[
tkk−δ+1 . . . tkk

]T
. (2.17)

The discrete-time model of the NCS in the large delay case can be defined as

xk+1 = Adxk +
k∑

j=k−δ

∫ Td−tkj

Td−tkj+1

eAcsdsbcuj. (2.18)

8



2. Modeling of Networked Control Systems

The equivalent delay-free model is given by

ξk+1 = Â(θk)ξk + b̂(θk)uk + b̂ffk (2.19)

with the augmented state vector

ξk =
[
xk uk−1 . . . uk−δ

]T
(2.20)

and matrices

Â(θk) =



Ad

∫ Td−tkk−1

Td−tk
k

eAcsdsbc . . .
∫ Td−tkk−δ−1

Td−tk
k−δ

eAcsdsbc

∫ Td

Td−tk
k−δ+1

eAcsdsbc

01×n 0 . . . 0 0
01×n 1 . . . 0 0
... . . . ...

01×n 0 . . . 1 0


(2.21a)

b̂(θk) =



∫ Td−tkk

0
eAcsdsbc

1
0
...
0


(2.21b)

b̂f =


bd
0
...
0

 (2.21c)

The matrices Ad and bd are calculated according to (2.8).

9



3
Buffering Mechanism

Contents
3.1 Original Buffering Mechanism . . . . . . . . . . . . . . . . . 10
3.2 Modified Buffering Mechanism . . . . . . . . . . . . . . . . 12

The introduction of uncertain time delays and dropouts to the NCS model leads to
a complex time-variant mathematical model defined in the previous chapter, which
makes the stability proof and controller design quite mathematically demanding. For
this reason, a specific buffering mechanism is proposed.
The buffer implementation proposed in [6] is used as a basis of the buffering mechanism
proposed in this chapter. To understand the motivation for modifying of the existing
approach, the original buffer from [6] is first described. Afterwards, the adapted version
of the buffered networked control system is explained.

3.1 Original Buffer Mechanism

The buffering mechanism proposed in [6] consists of the buffer implemented directly
at the receiving end of the feedback channel, as shown in Figure 3.1. Its effect is
defined so that it ensures a constant round trip time, which is done by introducing an
additional time delay τ bk for each packet before forwarding it to the zero-order hold
block. The value of the additional delay is given by

τ bk = d̄Td − (τ sck + τ ck + τ cak ) (3.1)

10



3. Buffering Mechanism

Figure 3.1: Simplified schematic overview of the buffered networked control system
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Figure 3.2: Original buffer mechanism

and is calculated based on the timestamp of the data, which is assumed to be attached
to each message. This approach ensures the constant round trip time which is equal to
the maximal round trip time d̄Td. Figure 3.2 demonstrates the effect of the original
buffer mechanism for d̄ = 5. The controller uk = k + 1 is chosen for the sake of
clarity and is plotted with a black line whereas the black stars correspond to the time
instants at which control signals are received and applied to the system. The blue
line corresponds to the actuator signal in the case of an event-driven controller. The
effect of the original buffer implementation is demonstrated with a red line, which
corresponds to the control signal uk always delayed by the maximal round trip time
5Td.
On the one hand, the great advantage of this approach is that the resulting model of
NCS is due to the constant round trip time time-invariant. This simplifies the stability
proof and controller synthesis because it allows the use of classical methods such as

11
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Figure 3.3: Modified buffer mechanism

eigenvalue placement of the closed loop system directly. On the other hand, even
though is the control signal, e.g., uk = 2 available already in the second sample interval,
it is not sent to the plant before t = 6Td. This disadvantage is especially relevant for
systems where a few data packets are delayed by a longer time delay (e.g. in case of
retransmissions for lost packets) in comparison to most messages. This can be avoided
either by a specific mechanism (e.g. to treat all packets arrived after a specified time
delay limit as a message dropout) or by modifying the buffering mechanism.

3.2 Modified Buffering Mechanism

In the first step, the message rejection mechanism is implemented, which ensures
that no older control data is sent to the plant. This is demonstrated by the yellow
line from Figure 3.3 which is strictly increasing. The proposed buffer mechanism
introduces the additional delay which is calculated with respect to the time instant
at which a control signal arrives to the actuator:

if 0 ≤ τ sck + τ ck + τ cak ≤ Td then τ bk = Td − (τ sck + τ ck + τ cak ) → τk = Td

if 0 ≤ τ sck + τ ck + τ cak ≤ 2Td then τ bk = 2Td − (τ sck + τ ck + τ cak ) → τk = 2Td
... (3.2)

if 0 ≤ τ sck + τ ck + τ cak ≤ d̄Td then τ bk = d̄Td − (τ sck + τ ck + τ cak ) → τk = d̄Td

This implies that if a control signal arrives between two sample times, it becomes
active at the beginning of the next sample time. In case of more than one control signal

12



3. Buffering Mechanism

arriving between kTd and (k + 1)Td, the most resent control signal is applied whereas
the remaining signals are rejected. The actuator signal u∗(t) generated in described
scenario is shown in Figure 3.3 in light blue. The signal is strictly increasing and change
of the value occurs only at the beginning of the sample intervals. The time difference
between the black signal and the signal resulting from this buffer implementation is
not constant as it is the case in the previously described approach, but it is an integer
multiple of Td which varies between zero and d̄Td. Furthermore, there is always only
one signal acting on the plant over each sample interval.
The buffered networked control system can, in this case, be represented by the
discrete-time model

xk+1 = Adxk + bd (uk−dk + fk) (3.3)

where dk represents an unknown input delay with

dk ∈ {0, 1, . . . , d̄}. (3.4)

The matrices Ad and bd are calculated according to (2.8).
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In this chapter, the design of the discrete-time controller based on Integral Sliding
Modes for the described NCS model is presented.

4.1 Integral Sliding Mode Control

Sliding mode techniques represent a very powerful group of control algorithms originated
from the theory of Variable Structure Systems (VSS). These systems consist of different
subsystems for which a region of validity and corresponding switching rules are defined,
resulting in control actions which are a discontinuous function of system states [9]. The
concept of Sliding Mode Control (SMC) lies in the introduction of a specific so-called
sliding variable, whose design is crucial for the performance of the system. The SMC
process includes typically 2 phases: the steering of the system trajectories to the chosen
sliding manifold, where a sliding variable is equal to zero and maintaining of the states
sliding along the switching plane to the origin. In this context, one differs between the
reaching phase, which is not characterized by an insensitivity property, and a sliding
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phase, during which the system response becomes insensitive to matched perturbations,
i.e. perturbations that act in the same channel as the input of the system.
Integral Sliding Modes (ISMC) are a special type of conventional sliding mode techniques
which are motivated by the need for elimination of the reaching phase. This means
that the sliding variable is equal to zero from the very beginning and kept at zero
thereafter, which ensures the robustness of the system from the initial time instant
[10]. The control design is made under the assumption that a nominal controller
can be designed, which ensures the stability and desired performance of the ideal
system. The sliding mode part of the control law for uncertainty and disturbance
rejection is added to the nominal controller:

uk = uNk + uSk (4.1)

4.2 Nominal Controller

The nominal (ideal) part of the control law guarantees the asymptotic stability of the
ideal closed loop system. Since the focus of this master’s thesis lies in the application
of the sliding mode techniques, the nominal controller is designed based on the existing
stability analysis and controller synthesis results proposed in [7].

Remark 4.1:

The presence of the proposed buffering mechanism from chapter 3 is not taken
into account in the controller synthesis of the nominal control law. The designed
state-feedback controller guarantees the global asymptotic stability of the closed
loop NCS for any delay τk from the interval [τmin, τmax].

In the following theorem a finite number of linear matrix inequality (LMI) conditions
for the state-feedback controller that depends only on the state xk of the form

uNk = −K̄ξk = −Kxxk (4.2)

with
K̄ =

[
Kx 01×δ

]
(4.3)

and δ from (2.13) is defined.
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Theorem 4.2: Nominal Control Law[7]

Consider the nominal NCS model

ξk+1 = Â(θk)ξk + b̂(θk)uk (4.4)

with matrices Â(θk), b̂(θk) from (2.21a) and (2.21b) respectively and uncertain
parameters θk (2.17). Based on the real Jordan form of the matrix Ac a generic
model of the form

ζk+1 =
F0 +

ξ∑
i=1

αi(θk)Fi

 ζk +
G0 +

ξ∑
i=1

αi(θk)Gi

uk (4.5)

can be derived. Moreover, define the set that contains the bounds of the uncertain
parameters

Θk =
{
θk ∈ Rδ

∣∣∣tkj ∈ [tj,min, tj,max] , 1 ≤ j ≤ δ, 0 ≤ tkk−δ+1 ≤ · · · ≤ tkk ≤ Td

}
(4.6)

and gives rise to the set of matrices

FG =

F0 +

ξ∑
i=1

αi(θk)Fi

 ,
G0 +

ξ∑
i=1

αi(θk)Gi

 ∣∣∣∣θk
 (4.7)

which is a subset of the convex hull co(H FG)

H FG =

F0 +

ξ∑
i=1

αi(θk)Fi

 ,
G0 +

ξ∑
i=1

αi(θk)Gi

 :

αi ∈ {αi, ᾱi, i = 1, 2, ..., ξ}
 (4.8)

with αi and ᾱi being the minimum and maximum value of αi(θk) respectively.
If there exist symmetric positive definite matrices

Yj ∈ R(n+δ)×(n+δ), (4.9a)

matrices
Z̄ ∈ R1×n (4.9b)

Xj =
(
X̄1 0
X̄2,j X̄3,j

)
with X̄1 ∈ R, X̄2,j ∈ Rδ×n, X̄3,j ∈ Rδ×δ (4.9c)

for j = 1, 2, . . . , 2ζ and a scalar

0 ≤ γ < 1 (4.9d)
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that satisfy Xj +XT
j − Yj XT

j HF,j −
(
Z̄ 0

)T
HT

G,j

HF,jXj −HG,j

(
Z̄ 0

)
(1− γ)Yl

 > 0 (4.10)

for j, l ∈ {1, 2, . . . , 2ζ} and ζ being the number of time-varying functions in NCS
model, then the closed loop NCS with K̄ = Z̄X̄−1 is globally asymptotically
stable.

For more details about the Jordan form and the proof of the theorem see [7] and
appendix B in [8].

The use of a static control law of the form (4.2) allows simplification of the NCS by
considering the sum of all network induces delays as one single delay without additional
restrictive assumptions regarding the sensor to controller time delays. Furthermore,
possible deadlocks which can occur when using a dynamic controller are avoided [7], [8].

Note that this theorem can be extended to the NCS model with time-varying
sampling instants and possible packet dropouts as proposed in [7]. In addition, with
appropriate adaptation of the matrices (4.9b) and (4.9c), an extended (dynamic) state
feedback controller can be derived.

4.2.1 Computation of the controller

It was shown that the controller synthesis problem can be expressed through LMIs,
which are essentially convex constraints and as such can be solved efficiently using
existing algorithms and software (see e.g [11]). In this master thesis, a free Matlab
toolbox Yalmip (Yet Another LMI Parser) [12] with a solver MOSEK is used for
the computation of the nominal controller. This toolbox was first released in 2001 and
by now supports very wide range of optimization problems and suitable solvers and
because of this can be used as a very powerful computational tool for solving many
optimization problems which arise in control theory.
In order to determine the gain matrix K̄ (4.3), the LMIs from theorem 4.2 should be
implemented in Matlab. The optimization variables can be defined by the command
sdpvar. It is important to mention that the square matrices defined by this command
are by default symmetric. If this should not be the case, additional argument ’full’
can be used. In addition, YALMIP submits an error when using strict inequalities
which can be avoided by defining non-strict inequalities with a specific margin. Here,
the margin is set to eps*eye()), with eps being the distance from 1.0 to the next
larger double-precision number equal to 2.2204 · 10−16 in Matlab and eye() being an

17



4. Controller Design

identity matrix of the appropriate size.

The nominal controller from theorem 4.2 for any NCS problem can be designed

with a following piece of code:

1 %% Define Optimization Problem -> YALMIP
2 % ---------------------------------------------
3 % n - nr. of system states
4 % m - nr. of inputs
5 % zeta - nr. of time - varying functions alpha
6 % d - maximal delay+ dropouts
7 % gamma - scalar used in theorem
8 % ---------------------------------------------
9 Y = cell (2^ zeta ,1);

10 Z = sdpvar(m,n,’full ’);
11 X1= sdpvar(n,n,’full ’);
12 X = cell (2^ zeta ,1);
13
14 for k = 1:2^ zeta
15 Y{k} = sdpvar(n+d*m,n+d*m);
16 X{k} = [ X1 , zeros(n,d*m)
17 sdpvar(d*m,n,’full ’),sdpvar(d*m,d*m,’full ’)];
18 end
19
20 constr= [];
21 % ------------------------------------------------------
22 for j = 1:2^ zeta
23 constr = [constr ,Y{j}>= eps*eye(n+d*m)];
24 for l = 1:2^ zeta
25 M{j,l}=[ X{j}+(X{j}).’-Y{j} , ...
26 (X{j}).’*(Hf{j}).’-[Z,zeros (1,d)]’*(Hg{j}).’;
27 Hf{j}*X{j}-Hg{j}*[Z,zeros (1,d)] , ...
28 (1- gamma)*Y{l}];
29 constr = [constr ,M{j,l}>= eps*eye (2*(n+d*m))];
30 end
31 end
32 % ------------------------------------------------------
33 options = sdpsettings (’verbose ’,0,’solver ’,mosek);
34 diagnostics = optimize (constr ,[], options );
35
36 K = value(Z)*inv(value(X1));

Note that the number of LMI conditions to be solved for controller synthesis increases

exponentially with the number of time-varying functions α(θk) which depends on the

size of the continuous-time system matrix Ac and parameter δ defined in (2.13).
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4.3 Sliding Mode Controller

The sliding mode control law used in this master’s thesis is based on the discrete-time
equivalent of the super-twisting algorithm with matching approach proposed in [13],
[14] and adapted in [6]. In order to use this control algorithm in the NCS model
(3.3) with the modified version of the buffer, an additional adaptation with respect
to the unknown input delay is required.

4.3.1 Unknown Input Delay Compensation

Due to the fact that in the modified version of the buffer proposed in the chapter 3 the
resulting model of the NCS (3.3) is still time-variant comparing to the time-invariant
representation of NCS in [6], the problem of the unknown time-varying input delay
must be addressed first. In order to design a sliding variable which is independent of
the unknown delay, it is necessary to compensate the input-delay which can be done
in the sensor node. In addition to the measuring of the state signals, the variable sk
should be calculated and sent together with the sensor signals to the controller:

sk = mTxk − uk−dk−1 (4.11)

where uk−dk−1 is the control signal acting on plant in the previous step and the
vector mT can be chosen so that

mTbd = 1 (4.12)

holds.

4.3.2 Design of the Sliding Variable

The system states xk and the variable sk are sent to the controller where the discrete
time integral sliding variable is defined:

σk = sk + uk−1 + wk (4.13)

Considering the forward increment of (4.11) and using (4.12), (4.1) the expression
for the sliding variable in the next step can be obtained:

σk+1 = mTxk+1 − uk−dk + uk + wk+1 (4.14)
= mTAdxk + fk + uNk + uSk + wk+1 (4.15)

Defining wk+1 so that all known quantities in (4.15) are cancelled out, i.e.

wk+1 = −mTAdxk − uNk (4.16)

19



4. Controller Design

gives

σk+1 = uSk + fk (4.17)

which is independent of the unknown input delay. The forward increment of the sliding
variable now has the appropriate form so that the existing approaches for discrete-time
super-twisting algorithms can be used.

Remark 4.3:

If the forward increment of the sliding variable is achieved to be equal to zero, it
follows from (4.17) that

uSk = −fk (4.18)
holds. Substituting uSk in the NCS model (3.3) with (4.2) leads to the plant
dynamics

xk+1 =
(
Adxk − bduNk−dk

)
+ (fk − fk−dk) (4.19)

with dk being the unknown input delay (3.4). Due to the perturbation (fk− fk−dk)
acting on the plant, it is reasonable to consider the worst-case scenario regarding
the change rate Lf :

Lf = max
∣∣∣∣∣fk − fk−δ

Td

∣∣∣∣∣ (4.20)

Theorem 4.4: Sliding Mode Control Law [6]

Consider the discrete-time representation of the networked control system with
buffering mechanism given in (3.3) with a sampling time Td. Moreover, consider
the sliding variable σk in (4.13) with mT defined in (4.12), sk defined in (4.11)
and wk+1 given by (4.16). Suppose that for a specific value of the change rate
Lf (4.20) the parameters α and β are chosen by a well-established super-twisting
parameter setting

α = 1.5
√
Lf
Td

β = 1.1Lf
Td
. (4.21)

Furthermore, for p(1), p(2) and s(1)(σk), s(2)(σk) the following expressions hold

p(1) = −α2 −
√
α2 − 4β

4 p(2) = −α2 +
√
α2 − 4β

4 (4.22)

s(1)(σk) = p(1)|σk|−
1
2 s(2)(σk) = p(2)|σk|−

1
2 (4.23)

(4.24)
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Using eigenvalue mapping with matching approach leads to

q
(1)
k =

es
(1)(σk)Td σk 6= 0

0 σk = 0
q

(2)
k =

es
(2)(σk)Td σk 6= 0

0 σk = 0
(4.25)

If a sliding mode controller

uSk = σk + l̃k + νk (4.26)

with

νk+1 = νk + lkσk (4.27)
l̃k = q

(1)
k + q

(2)
k − 1 (4.28)

lk = 1
T

(
l̃ − q(1)

k q
(2)
k

)
(4.29)

is used, than the plant states are ultimately bounded.

For more details about the algorithm and the proofs see [6], [13] and [15].

Remark 4.5:

The initial value for wk should be determined based on the requirement σ0 = 0
(sliding phase starting from the initial time instance):

w0 = −mTx0. (4.30)
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In this chapter, a realization of the networked control system with a continuous-time
plant and discrete-time controller connected via a wireless communication network is
proposed. First, the hardware components and required support packages used for
the practical set up is described. Furthermore, a strategy used for estimation of the
maximal network induced delay necessary for the controller synthesis from chapter 4 is
presented. As a result, a system which can be used to practically examine the efficacy
of the proposed buffering mechanism and control laws is developed.
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5.1 Wireless Communication and Network Proto-
col

Different wireless technologies can be used for data transmission in wireless NCSs such
as Bluetooth, Zigbee, WLAN TCP/IP and WLAN UDP/IP. In this master’s thesis
the communication within the control loop is completed using a so-called personal
or mobile hotspot, where a smartphone is turned into a Wi-Fi hotspot in order to
create a Local Area Network (LAN). For the choice of the network protocol, the
protocols Transmission Control Protocol (TCP) and User Datagram Protocols (UDP)
are compared with respect to their use in the networked control systems. Though the
TCP on the one hand provides assured delivery and reliability, sending acknowledgment
signals, possible re-transmissions and error-detection lengthen the latency and lead to
longer network delays. On the other hand, the UDP prioritizes time over reliability
since it permits packets dropouts rather than re-transmit them again which makes this
network protocol more efficient in terms of both latency and bandwidth. Furthermore,
the round trip time can be even 2 times or more as long when using the TCP comparing
to UDP [16], which would significantly increase the number of LMIs and computation
time needed for the controller synthesis of the nominal control law (4.2). Due to these
reasons, the User Datagram Protocol (UDP) is chosen for the realization of the WNCS.

5.2 Components of the WNCS

Due to extensive documentation and various support packages for Arduino hardware,
also with respect to the WiFi communication, an Arduino board is used to achieve the
wireless communication between the plant and controller as shown in Figure 5.1. On
the plant side, the Arduino board which is connected to the WiFi hotspot shared by
the smartphone, can be directly or over a PC connected to a physical system. Since
the focus of this master’s thesis lies in the controller synthesis for WNCS and the
realization of WNCS to further explore the real network imperfections and limitations
regarding these, the transfer function implemented on the Arduino board instead of
a real system is used. The proposed control law is implemented in Simulink on the
PC2 (controller side) which is connected to the WiFi hotspot. In the next sections, the
necessary configurations for the plant and controller sides are explained thoroughly.
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Figure 5.1: Components of the WNCS

5.3 Plant Side

5.3.1 Arduino Hardware

In order to use WiFi on the Arduino hardware in Matlab, one can choose between
a WiFi Shield or ESP8266 (low-cost Wi-Fi microchip) which both should be first
connected to one of the supported Arduino boards (Arduino Uno, Arduino Due etc.)
and Arduino MKR1000 which has an on-board WiFi chip. The main properties
regarding the choice of the hardware are summarized in Table 5.1 1. On account of
its properties regarding the maximal number of connection (in order not to limit the
setup only to single-input or small spatially distributed WNCS with max. 2 inputs)
and the minimal sample time (to keep the round trip time as small as possible) the
Arduino MKR1000, shown in Figure 5.2, is chosen. Furthermore, a WiFi library 101
which allows Arduino MKR1000 board to connect to the internet wirelessly should
be installed (Arduino IDE>Tools>Manage Libraries).

5.3.2 Matlab/Simulink with Arduino Hardware

In order to use Matlab/Simulink to communicate with the Arduino board to create
and run Simulink models on MKR1000, support packages are necessary. To find and

1The Matlab related information were found on https://de.mathworks.com. For all relevant
URLs see appendix B
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Target hardware ESP08266 WiFi Shield MKR1000
Min. sample time 0.01s 0.000001s 0.000001s
Max. Nr. of received Bytes 40 64 1400
Max. Nr. of connections - WiFi UDP 1 2 4
Max. Nr. of connections - WiFi TCP 1 2 7

Table 5.1: Comparison of Matlab supported hardware

Figure 5.2: Arduino MKR1000 Board (from https://store.arduino.cc/arduino-mkr10
00-wifi)

install add-ons, open the Add-On Explorer in Matlab, which can be found in the Home
tab in the Environment section (the Add-Ons icon), see Figure 5.3. After installing
the support packages and connecting the Arduino board with USB cable, the following
message should appear on the command window

Arduino MKR1000 detected.
This device is ready for use with Matlab Support Package for Arduino
Hardware. Get started with examples and other documentation.
This device is ready for use with Simulink Support Package for Arduino
Hardware. Get started with examples and other documentation.

In the next step, the Simulink model and network settings should be configured,
which can be done in the Configuration Parameters dialog (see Figure 5.4). For
detailed explanation, run the command

helpview(fullfile(codertarget.internal.arduinoert.getDocRoot,’ug’,
’configure-network-settings-for-arduino-wifi-shield.html’),’-helpbrowser’)

by entering it in the Matlab Command Window, which will open a documentation page
with examples. From this point on, a Simulink model can be built using blocks from
Simulink Library Browser. For this master’s thesis relevant Arduino blocks can be
found in Figure 5.5. To connect the Arduino board to in Figure 5.4 defined network
and run the model, click on the Build, Deploy & Start button on the toolbar.
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Figure 5.3: Add-On Explorer window

Figure 5.4: Configuration Parameters dialog
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Figure 5.5: Simulink blocks - plant side
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Figure 5.6: Simulink Model of the Plant Side

5.3.3 Simulink Model of the Plant Side

The Simulink model of the plant side for a general system can be found in Figure 5.6.
The WiFi UDP Receive block is used to receive data with a sample time (interval at
which block reads data from sending host) of 2ms. In the Block Parameters dialog
of this block, tha Data Size of the UDP message can be chosen. Due to defined rules
for the output of this block2, additional switch logic is used. This way, it is possible
to define the sample time lower than the sample time of the system to be able to
receive more data packets during one period. In case no new data is received or the
length of received UDP message is smaller than the defined Data Size, the previously
obtained message is repeated for the next 2ms until the next reading of the data. The
remaining configuration of this block depends on the remote host and is explained after
the controller side model of the WNCS is described (see section 5.5). In the subsystem
System (data processing) (Figure 5.4) the physical system should be connected.

2see https://de.mathworks.com/help/supportpkg/arduino/ref/wifiudpreceive.html?s_t
id=srchtitle > Outputs for Received Data
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Figure 5.7: Subsystem to transmit data to serial monitor

To send data to the remote host, the WiFi UDP send block can be configured with
parameters depending on the remote host (see section5.5). The received and sent data
can be accessed and used for further data processing (e.g for plotting) with a Serial
Transmit block which is here realized with an enabled subsystem (see Figure 5.7). The
reason for using the Enable block in both system and serial transmit subsystem is to
leave enough time from the moment when the model is ready to run and activation
of the system. This way all data can be properly saved without possible missing of
first (for control very relevant) values. Saving the data while the model is running
is made with an open source software named Putty 3. To automatize the process of
logging and saving data, a shortcut to the .exe file is created, which can generate a
.txt file with 1-click containing all the data sent to the block Serial Transmit. This
file can be loaded to Matlab and used to, e.g., determine the round trip time or plot
the signals. The Putty relevant URLs can be found in appendix B.4.

5.4 Controller Side

For the realization of the controller side, PC2 should be connected to the same WiFi
hotspot as the Arduino. In order to make the wireless communication between PC1
and PC2 possible, the Simulink model should include blocks which can receive and send
data to the Arduino board. These blocks can be found in the DSP System Toolbox in
Simulink Library Browser (library sinks and sources) and are shown in Figure 5.8.

5.4.1 Simulink Model of the Controller Side

The Simulink model of the controller side can be seen in Figure 5.9. The sample time
of the UDP Receive block is chosen to be two times larger (4ms) as the receiving
sample time of the WiFi UDP Receive block. It is realized with the same switching
logic as the receiving block on the plant side, with the difference that a value received
with the status port (values 1 or 0) is used as criteria for passing first input. With
this simple sampling scheme no clock synchronization is required. After processing

3https://www.putty.org/
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Figure 5.9: Simulink Model of the Controller Side

of the received data (controller Realization subsystem), UDP packages are sent to
the Arduino board via the UDP Send block. The remaining configuration properties
of the blocks can be found in the following section.

5.5 Communication between Plant and Controller
Side

Through the proper configuration properties of each Send and Receive block, the
communication between MKR1000 (plant side) and PC2 (controller side) can be
established. For that it is necessary to define the IP addresses and ports in the blocks.
Note that the IP address of the Arduino WiFi hardware and the IP address of the
computer must be in the same range so they can communicate with each other. The
IP Address of the PC2 can be determined by opening the Command Prompt (type
cmd in Start) and typing ipconfig (here 172.20.10.2). As soon as an IP address is
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Arduino board PC2
plant side controller side

IP address 172.20.10.4 172.20.10.2
Port 50020 −→ 50021
Port 50010 ←− -1

Table 5.2: Ports and IP addresses of the Send and Receive blocks

assigned to the Arduino board on the plant side, an additional variable (name-of-
the-simulink-model_IPaddress) with the corresponding IP address is defined in the
workspace. For the configuration of the blocks, see Table 5.2. In order to specify the
parameters for, e.g., WiFi UDP Send block on the plant side (shown in Figure 5.10),
the local port should be equal to the port from the column regarding the sending
side (Arduino), in the row with −→ (Arduino sends to PC2). The remote address
denotes the address of the receiving device (PC2) and remote IP port corresponds
to the port of the PC2 in the row denoting sending data from Arduino to PC2. The
rest of the blocks can be configured analogously.

Figure 5.10: Block Parameters: WiFi-UDP Send
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Figure 5.11: Simulink model for RTT estimation - plant side

5.6 Round Trip Time Estimation

The property of the network crucial for the controller synthesis is the round trip
time (RTT). In this master’s thesis the practical embedded implementation for RTT
estimation include sending integer numbers from 1 to 250 of the data type double with
a timestamp identifying when a certain number is sent. The data is sent from the plant
to the controller with a sample rate of 20ms, where it is directly forwarded back to
the plant side without additional processing. As soon as the data is received on the
plant side, the total delay is determined by subtracting the timestamp of the sent data
from the current time and sent to Putty. It is important to mention, that using the
timestamp option in the serial monitor to determine the RTT can lead to incorrect
results for smaller values of the sample time. Hence, the timestamps and delays are
determined directly in Simulink models using clock sources. The Simulink models of
the plant and controller side can be seen in Figures 5.11 and 5.12.
At the beginning of every experiment the internet speed is determined with a mobile
app SPEEDTEST4, to make sure that the properties of the network stay the same as
much as possible. All the experiments were done when the internet speed is close to
the speed determined in this experiment (see Figure 5.13). The sent and received data
with corresponding round trip delay is shown in Figure 5.14. For a better overview,
the results are plotted for 1s as well (see Figure 5.15). The RTT is found to be mostly
between 1Td and 3Td in most of the experiments and no dropouts occurred. Since the
UDP in general allows message drops as explained in section 5.1, an experiment with 1
dropout (which is the maximal number of dropouts determined) is plotted.

4https://www.speedtest.net/apps
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Figure 5.12: Simulink model for RTT estimation - controller side

Figure 5.13: Internet Speed Test
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5.7 Implementation of the proposed Buffering Mech-
anism and Control Laws

The Simulink models from Figures 5.6 and 5.9 are used as a basis for implementa-
tion of the proposed buffering mechanism on the plant side and control laws on
the controller side.

5.7.1 Message Rejection Mechanism

Since the UDP allows packets to arrive out of order, it is necessary to implement
the Message Rejection Mechanism which ensures that, if more recent control data is
available before the older data arrives to the plant, the older data should be neglected.
This mechanism can be implemented with a very simple switching logic (see Figure 5.16)
where a signal timestamp included in every data packet is used. The timestamps of
the input signal and from the previously used signal are selected with a Simulink block
Selector and compared with each other. In case of the received timestamp being older
than the applied control data, the new data is used until more recent data is available.
To demonstrate the effect of this block, a simple example is used. The timestamps of
received data and Message Rejection block output data are shown in Figure 5.17.

5.7.2 Data Buffer

For the realization of the buffer, a simple zero-order hold (ZOH ) block with a sample
time equal to the sample time of the system to be controlled is used. The ZOH takes
the newest signal and holds it for the specified sample time which is demonstrated in
Figure 5.18 for the simple example where one sinus signal with sample time 0.1Td is
sent to the buffer with the sample time Td.

1
IN

1
OUT

T

F

	>	

in:	Selector

out:	Selector

in:	Timestamp
out:	Timestamp

Figure 5.16: Realization of the message rejection mechanism
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0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

Figure 5.17: Message rejection mechanism

Figure 5.18: Buffering Mechanism

In addition to the message rejection and data buffer realization, the signals necessary
for controller synthesis (plant signals xk with corresponding timestamp and variable sk
calculated according to (4.11)) are sent to the WiFi-UDP Send block. The resulting
Simulink model of the plant side with all necessary adaptations for the proposed
control algorithms can be seen in Figure 5.19.

5.7.3 Control Law

In order to avoid synchronization of the two Simulink models, an enabled subsystem is
used for the controller realization as well. This system gets activated as soon as the
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received timestamp is larger than 5s, since from this time instant the plant side gets
activated as well. The delay of 5s is not subtracted from the timestamp until the data
is sent to Putty and being processed in order to differ between the value 0 when no
data is received and when timestamp is equal to 0. For the realization of the proposed
control laws the block Unit Delay is necessary. However, due to the sample time of the
UDP Receive block which is in general smaller that the sample time of the system, it is
possible that no new data is acquired between the sample steps. This leads to more
samples of the same value which could make the use of one Unit Delay block useless.
This problem can be solved either by using more Unit Delay blocks or more elegantly,
by using the block Buffer, where one can set not only the buffer size but the overlap
and initial condition as well. As a consequence, any input sequence can be buffered
to a smaller or larger frame size. The function of this block relevant for this master’s
thesis is demonstrated by means of a simple example with Repeating Sequence Stairs
source (integers from 1 to 10) for the buffer size equal to 3 and buffer overlap equal to
2 with zero as initial condition in Figure 5.21. One can see that in this scenario the last
signal is the newest one corresponding to the input. The second to last output signal
is the input signal delayed for one sample step and so on. The Buffer blocks in Figure
5.22 which represents the realization of the controller subsystem is chosen with buffer
size equal to 20 and overlap equal to 19. In addition, the input signal is first sent to
one Unit Delay block with Ts = 4ms to avoid algebraic loops, which does not affect the
functionality of the proposed realization, since the newest signal is never used in the
control laws. This approach is used for signals uk, wk, νk and for the timestamp value
which are necessary for the realization of (4.13),(4.16) and (4.27) resulting in signals
uk_old, wk_old, nuk_old and TS_old (see Figure 5.22).
The following lines of code from the first MATLAB function block is used for

implementation of equations (4.2), (4.16) and (4.13):
1 function [uNk ,sigmak ,wk1] = ControlLaw (sk ,xk ,Ad , mT , K,TS

,TS_old , uk_old , wk_old)
2 % wk1 = w_{k+1} uk_1 = u_{k -1}
3 uNk = -K*xk;
4 IND = find(TS_old < TS); % vector of indices
5 if isempty (IND)
6 IND = 1;
7 end
8 ind = IND(end); % index of the previous sample
9 uk_1 = uk_old(ind);

10 wk = wk_old(ind);
11 wk1 = -mT*Ad*xk -uNk;
12
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13 sigmak = sk+wk+uk_1;
14 end

The initial condition for the timestamp value is set to 1e6 to avoid possible confusion.
Furthermore, the value 0 is chosen for initial condition of uk and w0 is set according to
(4.30).
The similar approach is used in the second MATLAB function block implementing
equations (4.23)-(4.29):

1 function [uSk ,nuk1] = ControlLaw (sigmak ,TS ,TS_old ,nuk_old
,Td , p)

2 % nuk1 = nu_{k+1}
3 ind = find(TS_old < TS);
4 if isempty (ind)
5 ind = 1;
6 end
7 ind = ind(end);
8
9 nuk = nuk_old (ind);

10
11 sk = p/( sqrt(abs(sigmak)));
12 qk = (sigmak ~=0)*exp(sk*Td);
13
14 lTildek = sum(qk) -1;
15 lk = (lTildek -prod(qk))/Td;
16
17 uTildek = (lTildek -1)*sigmak/Td + nuk;
18 uSk = real(sigmak+Td* uTildek );
19
20 nuk1 = real(nuk+lk*sigmak);
21 end
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In this chapter, the efficacy of the proposed algorithms is examined by means of an
example representing a rotary servo plant consisting of a DC motor in a solid aluminum
frame. First, a mathematical model describing the set-up is derived which serves
as a basis for modeling of the corresponding NCS. Furthermore, to demonstrate the
robustness of the system with respect to disturbances, the perturbation consisting of a
constant component and two sinusoidal signals is applied. Afterwards, the controller
proposed in chapter 4 is designed for the perturbed networked control system whose
performance is examined in both simulation and experiments.
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6.1 Mathematical Model of the Rotary Servo Plant

This example is based on the laboratory model Quanser SRV02 rotary servo plant
which can directly provide rotary motion for different modules (e.g. inverted pendulum,
flexible joint etc.) and is available at the Institute of Automation and Control. The
schematic overview of the system can be found in Figure 6.1.

Figure 6.1: Schematic overview of the rotary servo plant

Under the assumption that the motor inductance can be neglected, the following
equations can be derived based on Newton’s Second Law of Motion and Kirch-
hoff’s Voltage Law:

u = Ri+ kM ϕ̇M (6.1)

with the parameters motor armature resistance R, motor back-emf constant kM ,
total gear ration kG, motor friction constant kR and equivalent moment of inertia
J given in Table 6.1.

Jϕ̈L = kGkM i− kRϕ̇L (6.2)

From the equation (6.1) it follows that

i = 1
R

(u− kM ϕ̇M). (6.3)

In addition, the following relations hold:

ϕM = kGϕL (6.4)
ML = kGMM . (6.5)

Substituting (6.3)-(6.5) into (6.2) leads to the equation of motion:

ϕ̈L +
(
k2
Gk

2
M − kRR
RJ

)
ϕ̇L = kGkM

RJ
u. (6.6)
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Symbol Description Value
R Motor armature resistance 2.6Ω
kM Motor back-emf constant 7.68 · 10−7kg· m2

kG Low-gear total gear ration 14
kR Motor friction constant 0.004 Nms
J Equivalent moment of inertia 1.7615 · 10−4kg· m2

Table 6.1: Physical specification of the model [17]

The equation (6.6) can be expressed in the state-space form by choosing the angle
and rotational speed as the state variables of the state vector xc =

[
x1 x2

]T
, whereas

the armature circuit voltage is treated as the input.

x1 := ϕL (6.7)
x2 := ϕ̇L = ẋ1 (6.8)

ẋc =

0 1

0 −
(
k2
Gk

2
M − kRR
RJ

)xc +
 0
kGkM
RJ

u (6.9)

The values of the parameters from (6.9) can be found in Table 6.1

6.2 Networked Control System

The sample time is chosen as Td = 20ms. According to the considerations from
the previous chapter, the round trip time is bounded by 4Td and it is assumed that
no dropouts occur. This leads to

δ = 4. (6.10)

The proposed buffering mechanism is implemented on the plant side so that for
the round trip time

τk ∈ {0, Td, 2Td, 3Td, 4Td} (6.11)

holds and additionally, the perturbation fk is applied to the plant

fk = 1
3

[
sin

(3
2t+ 5

)
+ sin

( 1
π

(3
2t+ 5

))
+ 1

]
(6.12)

Exact discretization of (6.9) with the implemented buffer and the perturbation gives

xk+1 = Adxk + bd(uk−dk + fk) (6.13)
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with

Ad :=
[
1 0.0129
0 0.3833

]
(6.14)

bd :=
[
0.0349
3.0195

]
(6.15)

and

dk ∈ {0, 1, 2, 3, 4} (6.16)

6.3 Controller Synthesis

6.3.1 Nominal Control Law uNk

The nominal control law uNk is designed to ensure the stability of the nominal networked
control system without the buffer, given by

xk+1 = eAcTd +
∫ Td

Td−tk
k−3

eAc·sbcds · uk−4 +
∫ Td−tkk−3

Td−tk
k−2

eAc·sbcds · uk−3+

+
∫ Td−tkk−2

Td−tk
k−1

eAc·sbcds · uk−2 +
∫ Td−tkk−1

Td−tk
k

eAc·sbcds · uk−1 +
∫ 0

Td−tk
k

eAc·sbcds · uk (6.17)

The piece of code from chapter 4 for γ = 0.07 is used for the controller synthesis in
Matlab. The obtained nominal control law is given by

uNk = −
[
0.53073 0.0072248

]
xk (6.18)

The number of LMIs which have to be solved for the controller design is equal to 65.792
(= 2n·δ · 2n·δ + 2n·δ). If the parameter δ is increased to 5, the number of LMIs increases
to 1.049.600 which results in significantly longer computation time. In addition, the
effort necessary for the Jordan form used in the controller design increases as well.
Details on the set of vertices (4.7) and convex over-approximation (4.8) derived both
with Jordan form and analytical solutions of integrals, are given in the appendix A.

6.3.2 Sliding Mode Control Law uSk

For the controller synthesis of the sliding mode control law the integral sliding variable
σk is defined according to (4.13). The vector mT is chosen to satisfy the condition
(4.12) (mT = (bTd bd)−1bTd ) and is therefore given by

mT =
[
0.0038 0.3311

]
(6.19)
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6.4 Simulation Results

All simulations done in this master’s thesis are made in a simulation toolbox which
was developed as a part of [6]. In this simulation environment developed in Matlab,
networked control systems with possibility for a buffering mechanism can be designed
and different control strategies can be implemented. The performance of networked
control systems can be examined with help of the Matlab/Simulink-based simulator for
real-time control systems called TrueTime1 [18] which is embedded in the simulation
toolbox. For a detailed explanation of the simulation environment, see [6]. The
adaptation of the simulation toolbox, which are needed for the implementation of the
proposed buffering mechanism and control algorithms are specified in the appendix C
and the adapted Simulink model used in the simulation is shown in Figure 6.2. For the
choice of the parameter Lf (4.20), the change rate of the fk is to be considered as

Lf,min = δ · 0.6575 (6.20)

The value used in simulations Lf = 5 is slightly higher than the exact change rate of
the perturbation. The same round trip times defined as uniformly distributed random
numbers between 0 and δTd can be once defined in Matlab and used in all simulations.
First, the equation (4.17) is used to verify the implementation of the proposed strategy,
according to which the sliding variable equals the disturbance fk delayed by one step
in the case, where no sliding control law is applied. The simulation results in the
described scenario is shown in Figure 6.3.
The simulation results for the case without sliding mode control law (i.e. uk = uNk ), for
the original buffering mechanism and with the modified buffer proposed in this master’s
thesis are depicted in Figures 6.4 and 6.5. The signals obtained with the proposed
approach show similar behavior as in the case of the original buffer, even though the
system is still time-invariant and the input delay is still unknown. The impact of the
reduced delay is especially demonstrated at the beginning of the simulation, where a
control signal is applied to the system as soon as it is available, while in the case of the
original buffer, no control signal is applied for the first 4Td. Moreover, the simulation
results for the plant states xk show significant reduction of the disturbance impact.
The chattering effects can be reduced by decreasing the sample time Td, e.g., in case
Td = 10ms no chattering effects can be noticed. This would however result in a larger
value of δ and hence, much higher number of LMIs to be solved.

1http://www.control.lth.se/truetime/
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Figure 6.2: Example - simulations: Simulink model of the Wireless Networked Control
System [6]
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Figure 6.3: Sliding variable σk and disturbance fk−1 for uSk = 0
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Figure 6.4: Example - simulation results: system states xk and sliding variable σk

49



6. Illustrative Example: Simulation and Experimental Results

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 6.5: Example - simulation results: control signals uk, uNk and uSk

50



6. Illustrative Example: Simulation and Experimental Results

6.5 Experimental Results

In this section, the experimental set-up and Simulink models 5.19 with 5.7, 5.16 and
5.20 with 5.22 described in the previous chapter are used. Furthermore, the same value
of Lf as in the simulations is used.
As a verification of the set-up, the equation (4.17) can be exploited. The results which
confirm that the sliding variable is equal to the disturbance fk delayed by one step for
uk = uNk are depicted in Figure 6.6. Results of two experiments are used to examine
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Figure 6.6: Example - experimental results: sliding variable σk and disturbance fk−1 for
uSk = 0

the performance of the proposed approach: experiment with uk = uNk and experiment
with the modified buffering mechanism where uk = uNk + uSk holds. Note that the case
with original buffer implementation is not implemented in the experimental set-up.
The signals xk, σk and uk are shown in Figure 6.7. Additionally, the control signal and
the resulting round trip delay can be seen in Figure 6.8.
It is clear from the Figure 6.8 representing the round trip time, that the round trip
delays are significantly reduced comparing to the delays which would yield the case with
the original buffer. The buffer implementation proposed in [6] would always introduce τ bk
so that the round trip time is equal to the maximal delay δTd = 4Td, even though most
of the delays resulting from the network imperfections are between one and two sample
times. Furthermore, the considerable improvement of the accuracy can be observed in
the evolution of the plant states when the sliding mode part of the control law is used.

51



6. Illustrative Example: Simulation and Experimental Results

-0.5

0

0.5

1

1.5

2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.7: Example - experimental results: system states xk and sliding variable σk

52



6. Illustrative Example: Simulation and Experimental Results

0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10 15
0

$T
d
$

2T
d

3T
d

4T
d
 

Figure 6.8: Example - experimental results: control signal uk and round trip time τk
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7
Summary and Outlook

This master’s thesis aims to further exploit the potential of the sliding mode control
algorithms in the perturbed networked control systems. To obtain a mathematical
model which incorporates relevant network-induced imperfection but it is also suitable
for the controller synthesis of the discretized version of the super-twisting algorithm,
a specific buffering mechanisms is proposed. The buffered networked control system
is motivated by the existing approaches available in literature and adapted with the
goal to reduce the time delay introduced by the buffer. The challenge of the resulting
time-variant model can be overcome through an unknown-input compensation approach
implemented in the sensor and the performance of the proposed strategy is examined
in the simulations. Furthermore, the wireless networked control system is implemented
in Matlab/Simulink. For the purpose of connecting the plant with a controller over a
WLAN, the Arduino board MKR1000 is used. The behavior of the system is studied
with respect to network-induced delays and dropouts. Afterwards, the proposed
approach for the buffered NCS subjected to perturbation is examined. The experiment
results indicate that the system is still able to meet the required disturbance rejection
as it is shown in the simulation study. Moreover, performed experiments show that
round trip times obtained with the proposed buffering mechanism are significantly
reduced.

Since the focus in this master’s thesis is set on the application of the integral
sliding mode algorithm to the time-variant model and WiFi implementation of wireless
networked control systems, the existing control strategy proposed in [8] is used for the
nominal controller law. However, this control law ensures stability of the NCS without
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7. Summary and Outlook

any buffer and therefore is the controller synthesis quite mathematically demanding
as demonstrated in appendix A. It is based on deriving the stability conditions in
form of linear matrix inequalities whose number increases exponentially with the
system complexity and the parameter δ from (2.13). Hence, the potential for further
research can be found in developing a new control strategy for the nominal control
law which takes the simplification of the model obtained by the buffer into account.
Furthermore, since the results from this master’s thesis support the expectations
regarding the unknown input delay compensation which allows the application of
the sliding mode algorithm to time-variant models, this approach can be adapted to
further reduce the delay introduced by the buffer.
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A
Illustrative Example:

Jordan Form and Integration

Contents
A.1 Jordan Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3 Convex Over-approximation . . . . . . . . . . . . . . . . . . 65
A.4 Lifted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Modeling of NCS imperfections such as time-varying delay is necessary to understand
the influence of these uncertainties on the system performance and to design controllers
which can guarantee the closed-loop stability. However, it leads to the model where
these uncertainties appear in exponential form, which makes the stability analysis very
complicated. To avoid this issue, instead of directly using the original NCS model
based on exact-discretization of the continuous system, one of many over-approximation
techniques available in literature can be applied to define a larger model whose structure
is more convenient for the stability analysis. For the overview and comparison of the
over-approximation methods (real Jordan form, Cayley-Hamilton theorem etc.) see [2]
and references therein.

The considerations from this appendix are applied to the discrete-time single input
NCS of the rotary servo plant from Chapter 6. Since the effects of the implemented
buffering mechanism are not taken into account for the controller synthesis of the
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A. Illustrative Example: Jordan Form and Integration

nominal control law, the model to be considered is given by

xk+1 = eAcTd +
∫ Td

Td−tk
k−3

eAc·sbcds · uk−4 +
∫ Td−tkk−3

Td−tk
k−2

eAc·sbcds · uk−3+

+
∫ Td−tkk−2

Td−tk
k−1

eAc·sbcds · uk−2 +
∫ Td−tkk−1

Td−tk
k

eAc·sbcds · uk−1 +
∫ 0

Td−tk
k

eAc·sbcds · uk (A.1)

that leads to the lifted model, which can be found at the end of this Appendix (A.48).
In section A.1, the Jordan form is used to determine the generic solutions for integrals
in (A.48) which can be used to rewrite the discrete-time NCS model. In section A.2,
the integrals from (A.48) are analytically solved for the sake of comparison. The
convex over-approximation is described in section A.3.

A.1 Jordan Form

In this section which is completely based on the appendix B in [8], the Jordan form is
applied to obtain the generic solutions for the integrals of matrix exponentials necessary
for controller synthesis of the nominal law described in chapter 4.
First, eigenvalues with their algebraic and geometric multiplicity (mi and gi, respec-
tively) of the continuous-time matrix Ac from (6.9) are determined:

λ1 = −47.8842 m1 = 1 g1 = 1 (A.2a)

λ2 = 0 m2 = 1 g2 = 1 (A.2b)

The Jordan form is given by

J = diag(JR,JC) (A.3)

with

JNZ = diag(JNZ,1, . . . ,JNZ,pNZ) (A.4)

JR = diag(JNZ ,JZ) (A.5)

JC = diag(JC,1, . . . ,JC,pC) (A.6)

where JNZ,i corresponds to the Jordan block of the ith distinct real non-zero eigenvalue,
JZ is the Jordan matrix of the eigenvalues equal to zero and JC,i is the Jordan block
of the ith distinct pair of complex eigenvalues. The number of distinct real nonzero
eigenvalues is denoted by pNZ , number of zero eigenvalues by pZ with pR = pNZ + pZ

and number of distinct complex pairs of eigenvalues by pC .
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A. Illustrative Example: Jordan Form and Integration

Due to the fact that both eigenvalues are real, the Jordan Canonical form (A.5)
is applied (in comparison to real Jordan form (A.6) in case of complex eigenvalues)1.
From (A.2a) and p = 2 follows

JR =
[
JNZ 0

0 JZ

]
=
[
λ1 0
0 λ2

]
(A.7)

Q =
[
−0.0209 1.0000
0.9998 0

]
(A.8)

A general solution for the integral of exponential of the continuous-time matrix Ac

required to rewrite the NCS model is given by:∫
eAcsds =

∫
QeJRsQ−1 = Q

[
eJNZs 0

0 eJZs

]
Q−1ds (A.9)

with ∫
eJNZsds = eλ1sSNZ,1,0 (A.10)∫
eJZsds = sSZ,1,0 (A.11)

For the (in this example) scalars SNZ,1,0 and SZ,1,0 holds

SNZ,1,0 = 1 (A.12)
SZ,1,0 = 1 (A.13)

Under the assumption that the sampling time is constant, the number of time-varying
functions αi(tkj ) is defined as

β := βNZ + βZ + βC . (A.14)

The values βNZ , βZ and βC depend on the value of δ and on the dimension of the
corresponding Jordan block and are given by:

βNZ = δ · dim JNZ = 4 (A.15)
βZN = δ · dim JZN = 4 (A.16)
βCN = 0 (A.17)

This results in 8 different time-varying functions αi(tkj ), for which, based on definitions
from [8], one gets:

αi(tkj ) =
αNZ,i(tkj ) if i ∈ {1, 2, 3, 4}
αZ,i(tkj ) if i ∈ {5, 6, 7, 8}

(A.18)

1Jordan Canonical Form can be determined in Matlab with the command jordan, whereas for real
Jordan form the command cdf2rdf is relevant.
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A. Illustrative Example: Jordan Form and Integration

with

αNZ,i(tkj ) =



(Td − tkj )ĵ

ĵ!
eλ1(Td−tkj ) for ĵ = 0

for i = (j − (k − 4))
for j = k − 3, k − 2, k − 1, k

0 if oi /∈ {1, 2, 3, 4}

(A.19)

for the nonzero eigenvalue λ1 and

αZ,i(tkj ) =



(Td − tkj )ĵ

ĵ!
eλ1(Td−tkj ) for ĵ = 1

for i = 4 + (j − (k − 4))
for j = k − 3, k − 2, k − 1, k

0 if oi /∈ {5, 6, 7, 8}

(A.20)

for the eigenvalue λ2 equal to zero. The equations (A.18)-(A.20) result in the fol-
lowing α(tkj ) functions

αNZ,1(tkk−3) = eλ1(Td−tkk−3)

αNZ,2(tkk−2) = eλ1(Td−tkk−2)

αNZ,3(tkk−1) = eλ1(Td−tkk−1)

αNZ,4(tkk)−1 = eλ1(Td−tkk)

αZ,5(tkk−3) =
(
Td − tkk−3

)
αZ,6(tkk−2) =

(
Td − tkk−2

)
αZ,7(tkk−1) =

(
Td − tkk−1

)
αZ,8(tkk)−1 =

(
Td − tkk

)
(A.21)

The constant matrices F0, Fi, G0 and Gi for i ∈ {1, 2, . . . 8} are given by

F0 =


QΘ0Q

−1 QΘ1Q
−1bc QΘ2Q

−1bc QΘ3Q
−1bc QΘ4Q

−1bc
01×2 0 0 0 0
01×2 1 0 0 0
01×2 0 1 0 0
01×2 0 0 1 0

 (A.22a)

Fi =


QΓ0,iQ

−1 QΓ1,iQ
−1bc QΓ2,iQ

−1bc QΓ3,iQ
−1bc QΓ4,iQ

−1bc
01×2 0 0 0 0
01×2 0 0 0 0
01×2 0 0 0 0
01×2 0 0 0 0

 (A.22b)

G0 =

QΞ0Q
−1bc

1
03×1

 (A.22c)

Gi =
[
QΞiQ

−1bc
04×1

]
(A.22d)
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A. Illustrative Example: Jordan Form and Integration

Note, that matrices Θî, Γî,i and Ξî, i ∈ {1, 2, . . . , 8}, î ∈ {0, 1, 2, 3, 4} should be defined
for the eigenvalue different from zero and the eigenvalue equal to zero separately,
after which the following relations can be used

Θî = diag(ΘNZ
î
,ΘZ

î
) (A.23a)

Γî,i = diag(ΓNZ
î,i ,Γ

Z
î,i) (A.23b)

Ξî = diag(ΞNZ
î
,ΞZ

î
) (A.23c)

with:

• Θî =
[
ΘNZ

0 0
0 ΘZ

0

]
, î ∈ {0, 1, 2, 3, 4}

Θ0 =
[
eJNZTd 0

0 eJZTd

]
(A.24)

Θ1 = 02×2 (A.25)
Θ1 = 02×2 (A.26)
Θ1 = 02×2 (A.27)

Θ4 =
[
J−1
NZe

JNZTd 0
0 TdSZ,1,0

]
(A.28)

• Γî,i =
[
ΓNZ
î,i

0
0 ΓZ

î,i

]
, î ∈ {0, 1, 2, 3, 4}and i ∈ {1, 2, . . . , 8}

Γ0,i = 02×2 ∀i ∈ {1, 2, . . . , 8} (A.29)

Γ1,1 = 02×2 (A.30a)
Γ1,2 = 02×2 (A.30b)

Γ1,3 =
[
−J−1

NZT
NZ
3 0

0 0

]
(A.30c)

Γ1,4 =
[
−J−1

NZT
NZ
4 0

0 0

]
(A.30d)

Γ1,5 = 02×2 (A.30e)
Γ1,6 = 02×2 (A.30f)

Γ1,7 =
[
0 0
0 −TZ7

]
(A.30g)

Γ1,8 =
[
0 0
0 −TZ8

]
(A.30h)
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A. Illustrative Example: Jordan Form and Integration

Γ2,1 = 02×2 (A.31a)

Γ2,2 =
[
−J−1

NZT
NZ
2 0

0 0

]
(A.31b)

Γ2,3 =
[
−J−1

NZT
NZ
3 0

0 0

]
(A.31c)

Γ2,4 = 02×2 (A.31d)

Γ2,5 = 02×2 (A.31e)

Γ2,6 =
[
0 0
0 −TZ7

]
(A.31f)

Γ2,7 =
[
0 0
0 −TZ8

]
(A.31g)

Γ2,8 = 02×2 (A.31h)

Γ3,1 =
[
−J−1

NZT
NZ
1 0

0 0

]
(A.32a)

Γ3,2 =
[
−J−1

NZT
NZ
2 0

0 0

]
(A.32b)

Γ3,3 = 02×2 (A.32c)

Γ3,4 = 02×2 (A.32d)

Γ3,5 =
[
0 0
0 −TZ5

]
(A.32e)

Γ3,6 =
[
0 0
0 −TZ6

]
(A.32f)

Γ3,7 = 02×2 (A.32g)

Γ3,8 = 02×2 (A.32h)
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Γ4,1 =
[
−J−1

NZT
NZ
1 0

0 0

]
(A.33a)

Γ4,2 = 02×2 (A.33b)
Γ4,3 = 02×2 (A.33c)
Γ4,4 = 02×2 (A.33d)

Γ4,5 =
[
0 0
0 −TZ5

]
(A.33e)

Γ4,6 = 02×2 (A.33f)
Γ4,7 = 02×2 (A.33g)
Γ4,8 = 02×2 (A.33h)

• Ξî =
[
ΞNZ

0 0
0 ΞZ

0

]
, î ∈ {0, 1, 2, 3, 4}

Ξ0 =
[
−J−1

NZ 0
0 0

]
(A.34)

Ξ1 = 02×2 (A.35)
Ξ1 = 02×2 (A.36)
Ξ1 = 02×2 (A.37)

Ξ4 =
[
J−1
NZT

NZ
4 0

0 TZ8

]
(A.38)

TNZi and TZi are for i ∈ {1, 2, . . . , 8} in this example scalars given by

TNZi =
SNZ,1,0 i ∈ {1, 2, 3, 4}

0 i /∈ {1, 2, 3, 4}
(A.39)

and

TZi =
SZ,1,0N i ∈ {5, 6, 7, 8}

0 i /∈ {5, 6, 7, 8}
(A.40)

with the scalars SNZ,1,0 and SZ,1,0 defined in (A.12).
With the constant matrices F0, Fi, G0 and Gi for i ∈ {1, 2, . . . 8} and time-varying
functions αi(tkj ) the expression (4.5) can be determined, which is used for the controller
synthesis of the nominal control law.
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A.2 Integration

In this section, the integrals in the lifted model from A.48 are solved analytically.
For the sake of both clarity and overview, the Jordan form of the matrix Ac is again
used, where the eigenvalue λ2 which is equal to zero is used directly to simplify the
expressions. First, the solution of the integral with general limits is determined.

∫ B

A
eAc·sbcds =

∫ B

A
QeJ ·sQ−1bcds = Q

 1
λ1
eλ1s 0
0 s


B

A

Q−1bc =

= 1
λ1
Q

[(
eλ1B − eλ1A

)
0

0 (B − A)

]
Q−1bc (A.41)

To determine the time-varying functions αi the expression (A.41) is evaluated for the
limits in the lifted model, which can be found at the end of this appendix (A.48):

∫ Td

Td−tk
k−3

eAc·sbcds = 1
λ1
Q

[
eλ1Td − eλ1(Td−tkk−3) 0

0 Td − (Td − tkk−3)

]
Q−1bc (A.42a)

∫ Td−tkk−3

Td−tk
k−2

eAc·sbcds = 1
λ1
Q

[
eλ1(Td−tkk−3) − eλ1(Td−tkk−2) 0

0 (Td − tkk−3)− (Td − tkk−2)

]
Q−1bc

(A.42b)

∫ Td−tkk−2

Td−tk
k−1

eAc·sbcds = 1
λ1
Q

[
eλ1(Td−tkk−2) − eλ1(Td−tkk−1) 0

0 (Td − tkk−2)− (Td − tkk−1)

]
Q−1bc

(A.42c)

∫ Td−tkk−1

Td−tk
k

eAc·sbcds = 1
λ1
Q

[
eλ1(Td−tkk−1) − eλ1(Td−tkk) 0

0 (Td − tkk−1)− (Td − tkk)

]
Q−1bc

(A.42d)

∫ Td−tkk

0
eAc·sbcds = 1

λ1
Q

[
1− eλ1(Td−tkk) 0

0 (Td − tkk)

]
Q−1bc (A.42e)

The only unknown variables in the expressions (A.42a)-(A.42e) are the arrival times
resulting in the following time-varying functions αi(θk):

α1(θk) = eλ1(Td−tkk−3)

α2(θk) = eλ1(Td−tkk−2)

α3(θk) = eλ1(Td−tkk−1)

α4(θk) = eλ1(Td−tkk)

α5(θk) =
(
Td − tkk−3

)
α6(θk) =

(
Td − tkk−2

)
α7(θk) =

(
Td − tkk−1

)
α8(θk) =

(
Td − tkk

)
(A.43)
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which is the same result as the result obtained with Jordan Form strategy proposed
in [8] and demonstrated in section A.1. The integrals (A.43) are rewritten using
the time-varying function:

∫ Td

Td−tk
k−3

eAc·sbcds = 1
λ1
Q

[
Td − α1 0

0 Td − α5

]
Q−1bc (A.44a)

∫ Td−tkk−3

Td−tk
k−2

eAc·sbcds = 1
λ1
Q

[
α1 − α2 0

0 α5 − α6

]
Q−1bc (A.44b)

∫ Td−tkk−2

Td−tk
k−1

eAc·sbcds = 1
λ1
Q

[
α2 − α3 0

0 α6 − α7

]
Q−1bc (A.44c)

∫ Td−tkk−1

Td−tk
k

eAc·sbcds = 1
λ1
Q

[
α3 − α4 0

0 α7 − α8

]
Q−1bc (A.44d)

∫ Td−tkk

0
eAc·sbcds = 1

λ1
Q

[
1− α4 0

0 α8

]
Q−1bc (A.44e)

These expressions are used to define the lifted model of the NCS which can be found
in (A.49). For the controller synthesis is the complete model of the form (4.5) used,
hence the matrices F0-F5 and G0-G5 do not have to be derived explicitly.

Remark A1:

Due to the simplicity of the chosen system in this example, it is possible to
calculate the solution of the integrals analytically. However, for systems of the
higher order, the calculation of analytical solutions for the integrals in the NCS
model gets much more complicated. In this case, the efficiency and necessity of
the real Jordan form (especially for matrices Ac with complex eigenvalues) soon
becomes obvious.

A.3 Convex Over-approximation

Based in the set of vertices FG from (4.7) the nominal controller should be designed.
However, since the uncertain parameters from (2.17) can take arbitrary values between
the defined bounds, this set is infinite. In order to define a convex over-approximation
H FG which avoids the problem of infinite dimension, the maximum and minimal value
of uncertain functions ᾱi(θk) and α(θk) with respect to θk are needed. These can be
determined from the boundaries defined for the arrival times tkj

0 ≤ tkj ≤ Td ∀j ∈ [k − δ, k − δ − 1, . . . , k] (A.45)
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αNZ,i = eλ1Td = 0.3833 ᾱNZ,i = 1 (A.46)

for i ∈ {1, 2, 3, 4} and

αZ,iN = 0 ᾱZ,iN = Td (A.47)

for i ∈ {5, 6, 7, 8}. The convex over-approximation H FG consist therefore of 2β = 28

combinations of matrices and can be defined in Matlab, e.g., using cell arrays and for
loop. The matrices HF,j and HG,j from (4.10) for j ∈ {1, 2, . . . , 2β} are individual
matrices from the defined convex over-approximation.
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A.4 Lifted Model

ξ
k
+

1
=

        eA
c
T
d
∫ T d−

tk k
−

1
T
d
−
tk k

eA
c
·s
b
c
d
s
∫ T d−

tk k
−

2
T
d
−
tk k

−
1
eA

c
·s
b
c
d
s
∫ T d−

tk k
−

3
T
d
−
tk k

−
2
eA

c
·s
b
c
d
s
∫ T d T
d
−
tk k

−
3
eA

c
·s
b
c
d
s

0
0

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

1
0

        ξ
k

+

       ∫ T d−
tk k

0
eA

c
·s
b
c
d
s

1 0 0 0

       u
k

(A.48)
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Â
=

         eA
c
T
d

1 λ
1
Q

[ α 3
−
α

4
0

0
α

7
−
α

8] Q
−

1 b
c

1 λ
1
Q

[ α 2
−
α

3
0

0
α

6
−
α

7] Q
−

1 b
c

1 λ
1
Q

[ α 1
−
α

2
0

0
α

6
−
α

7] Q
−

1 b
c

1 λ
1
Q

[ T d
−
α

1
0

0
T
d
−
α

5] Q
−

1 b
c

0
0

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

1
0

         

b̂
=

         1 λ
1
Q

[ 1
−
α

4
0

0
−
α

8] Q
−

1 b
c

1 0 0 0

         

(A.49)
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B.1 Arduino

• Arduino MKR1000 https://store.arduino.cc/arduino-mkr1000-wifi

• WiFi library https://www.arduino.cc/en/Reference/WiFi

• WiFi101 library https://www.arduino.cc/en/Reference/WiFi1011

B.2 Simulink blocks

• Buffer https://de.mathworks.com/help/dsp/ref/buffer.html

B.3 Matlabs/Simulink with Arduino Hardware

• Getting Started with Arduino® Hardware https://de.mathworks.com/help/
supportpkg/arduino/ref/getting-started-with-arduino-hardware.html

1Simulink Support Package requires this library to be of the the specific version 0.14.3
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B. Relevant URLs

• Getting Started with WiFi on Arduino® Hardware: https://de.mathworks.c
om/help/supportpkg/arduino/examples/getting-started-with-wifi-on
-arduino-hardware.html

• Simulink block WiFi UDP Receive https://de.mathworks.com/help/suppor
tpkg/arduino/ref/wifiudpreceive.html?s_tid=srchtitle

• Simulink block WiFi UDP Send https://de.mathworks.com/help/supportp
kg/arduino/ref/wifiudpsend.html?s_tid=srchtitle

• Simulink block UDP Receive https://de.mathworks.com/help/instrument/u
dpreceive.html?s_tid=srchtitle

• Simulink block UDP Send https://de.mathworks.com/help/instrument/udp
send.html?s_tid=srchtitle

B.4 Putty

• Putty https://www.putty.org/

• Log all session output by default https://www.viktorious.nl/2013/01/14/p
utty-log-all-session-output/

• Load a session automatically https://kb.norsetech.net/how-to-make-put
ty-automatically-load-a-session/

B.5 Speed Test

• App https://www.speedtest.net/apps
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C.1 Message Rejection Mechanism

NCS_ISMC

• define property msg_rej_nodes

• function generateISMNodes()

– define network_msg_rej_nodenumber to be equal to act_number+4; buffer
and act node number should be act_number+5 and act_number+6 respec-
tively

– include obj.msg_rej_nodes{i} = MsgRejection(network_buffer_nodenumber,
network_msg_rej_nodenumber, ith_ncs_problem.m);

– re-define tau_ca_nodes{i} so that it sends data to message rejection node

• function out = get.allnodes(obj): include obj.msg_rej_nodes in the vari-
able out
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C. Adaptation of the Simulation Toolbox

Simulink

• define additional TrueTime Kernel with node object
ism_sys_obj.msg_rej_nodes{i}

C.2 Modified Buffering Mechanism

• NetworkBuffer: set transmit_time = ceil(currenttime/obj.Td)*obj.Td;

C.3 Control Law

C.3.1 Nominal Control Law

Since solving LMIs requires long computation time, the controller gain is first determined
and than directly used as an input in the class NCS_ISMC.

• define new function designK_Direct with obj.K = directK

C.3.2 Sliding Mode Control Law

• Simulink: send delayed (Unit delay) output of the Network Buffer node to
Sensor Node as the last input

• class SensorNode

– set starttime to 1e-9

– define vector mT in properties

– calculate sk from inputs and send it to the delay node (tx_data(end) =
obj.mT*tx_data(1:2).’-tx_data(end))

• class ISM_ControllerNode: define σk and wk+1 in
function sigmaik = calc_sliding_var(obj,xik,uiNk,sigmak_temp)
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