

Alexander Wieland, BSc

IPv6 over Bluetooth Low Energy on Android OS

MASTER'S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master's degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dr.tech. Carlo Alberto Boano

Advisor

Dipl.Ing. Michael Spörk

Institute of Technical Informatics

Graz, August 2020

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

AFFIDAVIT

Alexander Wieland, BSc

IPv6 over Bluetooth Low Energy on Android OS

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

Masterstudium Informatik

eingereicht an der

Technischen Universität Graz

Beurteilender

Ass.Prof. Dr.tech Carlo Alberto Boano

Betreuer

Dipl.Ing. Michael Spörk

Institut für Technische Informatik

Graz, August 2020

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht

habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden

Masterarbeit identisch.

Datum Unterschrift

Abstract

Bluetooth Low Energy (BLE) is the energy-efficient evolution of Bluetooth. This revised
technology is used in a wide range of application areas (e.g., connected health, smart
homes, logistics and automation) as well as in a large number of consumer electronic
devices. Most of these applications and devices are often connected not only to each
other, but also to other systems or networks through the Internet, forming the so called
“Internet of Things” (IoT). Since the application requirements and employed hardware
platforms are largely diverse, not all devices forming the IoT use the same communication
standards: this makes it difficult to preserve the Internet’s end-to-end principle when
developing IoT systems.

Thus, the need for a standardized connection between a Bluetooth Low Energy device
and the Internet arose in the past decade, leading to the development of the RFC Standard
7668 for transmitting IPv6 packages through Bluetooth Low Energy. This standard allows
the sending and forwarding of IPv6 packets within a BLE network and beyond, although
a border router is still necessary to connect the BLE network to the Internet. For
this task, smartphones and tablets are suitable, because they are able to connect to the
Internet through 3G / LTE or WiFi, and most of them also have an integrated BLE chip.
Unfortunately, to date, no smartphone operating system provides support for IPv6 over
BLE. The contribution of this thesis is the design and implementation of an IPv6-over-BLE
communication stack compliant to the RFC Standard 7668. The stack is interoperable
with the Bluetooth stack of Android OS, the most widespread mobile operating system
for smartphones and tablets; and it is usable within a normal Android application. In
designing and implementing the IPv6-over-BLE stack, a number of challenges had to be
tackled, including Android’s restricted access to the BLE stack, the need to handle several
IPv6-over-BLE connections in parallel, as well as the required multithreading, and the
different ways of IPv6-supported Internet connections.

Furthermore, this thesis entails experiments that prove that the Android implemen-
tation is interoperable with existing standard-compliant solutions, that the implemented
IPv6-over-BLE stack is working in parallel with the existing Bluetooth stack of Android,
and that routing and border routing functionality is also possible with this implementa-
tion. The simple use of the app and the widespread use of Android devices could further
accelerate the adoption of IPv6-over-BLE communication within the Internet of Things.

V

Kurzfassung

Bluetooth Low Energy (BLE) ist die energieeffiziente Evolution von Bluetooth. Diese übe-
rarbeitete Technologie wird in einer Vielzahl von Anwendungsbereichen (e.g., vernetzte
Medizin, Smart Homes, Logistik und Automatisierung) und einer großen Anzahl von Un-
terhaltungselektronik verwendet. Die meisten dieser Anwendungen und Geräte sind nicht
oder nicht nur miteinander verbunden, sondern auch mit anderen Systemen oder Netzw-
erken über das Internet. Diese Geräte und Netzwerke bilden das ”Internet der Dinge”. Da
die Anzahl der verschiedenen Geräte sehr groß ist, verwenden nicht alle Geräte dieselben
Kommunikationsstandards: das macht es schwierig das End-zu-End Prinzip des Internets
bei der Entwicklung von Systemen im Internet der Dinge zu gewährleisten. Aus diesem
Grund stieg im letzten Jahrzehnt der Bedarf für eine standardisierte Verbindung zwischen
den Bluetooth Low Energy Geräten und dem Internet, was zu der Entwicklung des RFC
7668 Standard für die Übertragung von IPv6 Paketen über Bluetooth Low Energy führte.
Dieser Standard erlaubt das Senden und Weiterleiten von IPv6 Paketen innerhalb eines
BLE Netzwerks und darüber hinaus, obwohl ein Router weiterhin erforderlich ist, um das
BLE Netzwerk mit dem Internet zu verbinden.

Für diese Aufgabe sind Smartphones und Tablets gut geeignet, da sie über 3G / LTE
oder WiFi eine Verbindung zum Internet herstellen können, und die meisten von diesen
Geräten auch über einen integrierten BLE Chip verfügen. Bis heute unterstützt leider
kein mobiles Betriebssystem IPv6 über BLE.

Diese Masterarbeit enthält das Design und die Implementierung eines IPv6-über-BLE
Kommunikationsstacks, der dem RFC 7668 Standard entspricht. Dieser Kommunikation-
sstack ist mit dem existierenden Bluetooth Kommunikationsstack des Android Betriebssys-
tems kompatibel, welches das am meisten verbreitete mobile Betriebssystem für Smart-
phones und Tablets ist. Dieser Stack ist mit einer normalen Android Applikation verwend-
bar, welche leicht zu installieren und zu verwenden ist. Die größten Herausforderungen bei
der Implementierung waren der eingeschränkte Zugriff auf den BLE Stack des Android Be-
triebssystems, die Unterstützung von mehreren IPv6 über BLE Verbindungen gleichzeitig,
das Multithreading, und die unterschiedlichen Möglichkeiten einer IPv6-unterstützenden
Internetverbindung. Darüber hinaus enthält diese Arbeit Tests welche zeigen, dass die
Implementierung mit vorhandenen standardkonformen Lösungen kompatibel ist, dass der
implementierte IPv6-über-BLE Kommunikationsstack parallel zum bereits vorhandenen
Bluetooth Stack von Android funkioniert, und dass Routing und Border Routing Funkio-
nen in dieser Implementierung ebenfalls enthalten sind und funktionieren. Durch die
einfache Verwendung der App und der weiten Verbreitung von Android Geräten könnte
dies die Verwendung der IPv6-über-BLE Kommunikation innerhalb des Internet der Dinge
weiter forcieren.

VI

Acknowledgment

First I would like to thank my supervisor Carlo Alberto Boano for his support and feedback
during my work on this Master Thesis. Additionally I would like to thank Michael Spörk
for his help and advice during this thesis.

I would like to thank my partner Sabine for her support and understanding. I would
also like to thank my familiy, especially my parents, for their support and understanding,
and for making me who I am today. Finally, I thank my friends and workmates for
motivating and encouraging me.

Graz, August 2020 Alexander Wieland

VII

Danksagung

Ich möchte vor allem meinem Betreuer Carlo Alberto Boano für seine gute Zusammenar-
beit und Unterstützung danken. Zudem danke ich auch Michael Spörk für seine Hilfe und
seinen Rat während dieser Arbeit.

Ich möchte mich auch bei meiner Partnerin Sabine für ihre Unterstützung und ihr
Verständnis bedanken. Ebenso danke ich meiner Familie, vor allem meinen Eltern, dass
sie mich immer unterstützt und gefördert haben, jederzeit beigestanden sind, und mich
zu dem gemacht haben der ich heute bin. Zuletzt danke ich noch meinen Freunden und
Arbeitskollegen, welche mich motiviert und bestärkt haben.

Graz, im August 2020 Alexander Wieland

VIII

Contents

1 Introduction 1
1.1 BLE and the Internet of Things . 2
1.2 Problem Statement . 2
1.3 Contributions . 2
1.4 Limitations . 3
1.5 Outline . 3

2 Background 5
2.1 Bluetooth Low Energy . 5

2.1.1 Fundamentals . 5
2.1.2 BLE Stack . 6
2.1.3 BLE version 5 . 10

2.2 6LoWPAN . 11
2.2.1 6LoWPAN for IEEE 802.15.4 . 11

2.3 IPv6 over BLE . 11
2.3.1 Topology . 11
2.3.2 6LoWPAN for BLE . 12
2.3.3 IPv6 adaptation . 15
2.3.4 IPv6 over BLE Stack . 15

2.4 Android Operating System . 16
2.5 Employed Hardware . 17

3 Related Work 20
3.1 Existing 6LoWPAN Border Router . 20
3.2 Related Research Studies . 22

4 Creating an IPv6-over-BLE Stack for Android OS 24
4.1 IPv6 over BLE Stack . 24

4.1.1 Communication Stack . 24
4.1.2 Communication Setup . 26

4.2 General Requirements . 28
4.3 Integration Into Android . 29

4.3.1 Bluetooth Architecture in Android 29
4.3.2 Structure of IPv6-over-BLE stack . 32

4.4 Challenges . 33

IX

5 Implementation 36
5.1 Features . 36
5.2 Communication Stack . 37

5.2.1 Bluetooth Stack . 37
5.2.2 Integration In Android . 38

5.3 Android Application . 40
5.3.1 Design . 40
5.3.2 Implementation . 41

5.4 Implementation Challenges . 44
5.5 Portability . 45

6 Evaluation 47
6.1 Energy Consumption and Timeliness . 47

6.1.1 Experimental Target . 47
6.1.2 Experimental Setup . 47
6.1.3 Result and Analysis . 48

6.2 Comparing MPS and Credit Parameters . 51
6.2.1 Experimental Target . 52
6.2.2 Experimental Setup . 52
6.2.3 Result and Analysis . 52

6.3 Scalability . 54
6.3.1 Experimental Target . 54
6.3.2 Experimental Setup . 54
6.3.3 Result and Analysis . 55

6.4 Subnet Routing . 56
6.4.1 Experimental Target . 56
6.4.2 Experimental Setup . 56
6.4.3 Result and Analysis . 57

6.5 Long-Time Experiment . 58
6.5.1 Experimental Target . 58
6.5.2 Experimental Setup . 58
6.5.3 Result and Analysis . 58

6.6 Parallel GATT Sample Usage . 59
6.6.1 Experimental Target . 59
6.6.2 Experimental Setup . 59
6.6.3 Result and Analysis . 60

6.7 Internet Connectivity . 60
6.7.1 Experimental Target . 60
6.7.2 Experimental Setup . 60
6.7.3 Result and Analysis . 61

7 Conclusion 62

X

8 Future Work 63
8.1 Node functionality . 63
8.2 User Interface . 63
8.3 Android versions . 64
8.4 Further Operating Systems . 64

Bibliography 65

XI

List of Figures

2.1 BLE Stack without IPv6. 6
2.2 Link Layer states of BLE. 8
2.3 L2CAP packet format. 9
2.4 L2CAP flow-control packet format. 9
2.5 Piconet with one master and two slaves. 12
2.6 IPv6 over BLE network connected to the Internet. 13
2.7 IPv6 header. 13
2.8 Comporessed IPv6 base header. 14
2.9 LoWPAN IPHC and NHC configuration. 15
2.10 IPv6 extension header encoding. 15
2.11 LG Nexus 5X smartphone. 17
2.12 Samsung Galaxy Tab S3 tablet. 18
2.13 Nordic Semiconductor nRF52840-DK with Zephyr OS. 19
2.14 Raspberry Pi 4 Model B with Raspbian OS. 19

4.1 BLE Stack for IPv6 and GATT. 25
4.2 IPv6-over-BLE connection setup. 27
4.3 Simple connection test setup. 30

5.1 Android application preview with necessary features. 40
5.2 Android application preview with optional features. 42
5.3 Screenshot user interface with two devices 43
5.4 Screenshot user interface with two devices one selected and connected . . . 44

6.1 Simple connection test setup. 48
6.2 Connection test setup with nodedevice and all router devices. 49
6.3 Power Consumption Router devices. 49
6.4 Round Trip Time Router devices. 50
6.5 Power Consumption MPS and credits. 53
6.6 Round Trip Time MPS and credits. 53
6.7 Parallel nodes test setup. 54
6.8 Parallel nodes RTT Results. 56
6.9 Simple connection test setup. 57

XII

List of Tables

3.1 Properties of Linux Implementations . 21

4.1 Challenges of the integration . 35

6.1 Parallel nodes Measurement Results. 55
6.2 Subnet Routing Test Measurement Results 57
6.3 Long Time Test Results . 59
6.4 Long Time Test Outliers . 59
6.5 Parallel usage of GATT application . 60
6.6 Internet connectivity . 61

XIII

Abbreviations

6CO 6LoWPAN Context Option

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

AFH Adaptive Frequency Hopping

AOSP Android Open Source Project

API Application Programming Interface

ARO Address Registration Option

ATT Attribute Protocol

BDA Bluetooth Device Address

BLE Bluetooth Low Energy

BR Border Router

CI Connection Interval

CID Channel ID

CoC Connection-oriented Channel

CPU Central Processing Uni

DAC Destination Address Compression

DAM Destination Address Mode

DHCPv6 Dynamic Host Configuration Protocol version 6

DK Development Kit

DNS Domain Name System

ECN Explicit Congestion Notification

GAP Generic Access Profile

XIV

GATT Generic Attribute Profile

GFSK Gaussian Frequency Shift Keying

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HCI Host Controller Interface

ICMPv6 Internet Control Message Protocol version 6

IDE Intelligent Development Environment

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IID Interface Identifier

IoT Internet of Things

IP Internet Protocol

IPHC Internet Protocol Header Compression

IPSP Internet Protocol Support Profile

IPSS Internet Protocol Support Service

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISM Industrial, Scientific and Medical

ISP Internet Service Provider

JNI Java Native Interface

L2CAP Logical Link Control and Adaptations Protocol

LAN Local Area Network

LE Low Energy

LL Link Layer

LTE Long Term Evolution

MPS Maximum Payload Size

MTU Maximum Transmission Unit

XV

XVI

NA Neighbor Advertisement

NHC Next Header Compression

NS Neighbor Solicitation

OS Operating System

PHY Physical Layer

PIO Prefix Information Option

PRR Packet Reception Rate

PSM Protocol Service Multiplexer

RA Router Advertisement

RAM Random Access Memory

RS Router Solicitation

RTT Round Trip Time

SAC Source Address Compression

SAM Source Address Mode

SDK Software Development Kit

SIG Special Interest Group

SM Security Manager

SoC System on Chip

TCP Transmission Control Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

WPAN Wireless Personal Area Network

Chapter 1

Introduction

The connection of everyday objects to the Internet of Things (IoT) has gained increasing
popularity in the last few years. Over the years, more and more simple devices such as
fridges, washing machines, watches, parking areas and parcels use wireless technologies to
connect to the Internet. Once connected, these smart objects can talk to other devices
on the Internet to improve their user’s experience. The main advantages of smart objects
are, among others, the saving of energy, the saving of effort and time for the user, and
the increasing personalization of objects and applications. The automatic notification of
available parking places when entering a car park, the automatic shutter adjustment based
on sensor data collected by a weather station, the suitable training plan due to the data
collected by a fitness bracelet, or the mechanical distribution of packets according to their
RFID-chip are just a few examples.

To support a vast amount and variety of devices on the IoT, there are several require-
ments on the communication on the IoT.

First, the devices need to be interoperable with other devices on the Internet. To
achieve such interoperability, standardized communication procotols, such as the Internet
Protocol (IP), are used. Devices and systems of different producers and for different
purposes have interfaces and protocols to fit their original demands. With the IoT, the
requirements increased and a standardized communication is necessary to connect these
devices and systems with each other [1].

Second, the communication methods used by these devices need to be reliable to satisfy
the end-user or given safety requirements. Indeed, to guarantee the correct behaviour of
devices and applications, especially when they concern critical behaviour like a pacemaker
or a fire alarm, a reliable communication is critical.

Third, some smart objects are battery-powered and therefore operate on a limited
energy budget. For these devices it is essential that the used communication technology
is energy efficient, in order for the system to have a low power consumption. Smart
objects usually do not process much data, but they rather only collect and transmit sensor
readings. Therefore, the radio is the most power consuming component of a smart object,
and it is essential that it is shut off as much as possible.

1

CHAPTER 1. INTRODUCTION 2

1.1 BLE and the Internet of Things

Bluetooth Low Energy (BLE) is a low-power wireless technology that meets all the re-
quirements of smart objects. It is designed to be very energy-efficient during connection
establishment and data exchange [2]. Additionally, BLE provides several communication
parameters that allow to configure the communication and therefore support a wide range
of applications like a wireless blood pressure wrist and the BLE Blood Pressure Profile
(BLP), or the Cycling Speed and Cadence Profile (CSCP) on a cyclocomputer [3]. Since
BLE is already integrated into most everyday devices like smartphones and tablets, all
these devices can directly interact with BLE-based smart objects without the need for a
gateway. One example is the Nuki Smart Lock [4], which opens the door automatically
if eligible smartphones are in range. Another example is the shutterBox [5], which is a
shutter accessible by a tablet or smartphone over BLE. To make BLE even better suited
for its use in the IoT, the Internet Engineering Task Force (IETF) has released in 2015
the RFC 7668 standard [6], which specifies how IPv6 packets can be exchanged over BLE
connections. This enables smart objects based on BLE to directly connect to the IoT with
their own IPv6 address. BLE-based smart objects that support this RFC specification are
able to connect to any standard-compliant IPv6-over-BLE border router, like the Rasp-
berry Pi, to join the IoT. Support for IPv6 over BLE is also available in most operating
systems for constrained embedded devices like Zephyr [7] and Contiki [8].

1.2 Problem Statement

A major problem, however, is that so far there exists no RFC 7668 compliant imple-
mentation of an IPv6-over-BLE border router for smartphones or tablets. Neither the
new iPhone models nor any Windows phone have IPv6 over BLE implemented. Also the
Android operating system does not have an IPv6-over-BLE implementation, since the op-
erating system denies the access to the L2CAP layer of the BLE stack, which is mandatory
to implement IPv6-over-BLE support.

The aim of using smartphones as IPv6-over-BLE border routers is to facilitate and
simplify the use of IoT devices. Standardization means that the router can be used for all
IoT devices which are also standardized.

The main challenge of adding IPv6-over-BLE support to the Android OS is the access
to the BLE L2CAP layer, which is the basis to support IPv6-over-BLE communication
in Android. All layers above can be implemented inside the Android application itself.
Another goal is to make the application as encapsulated as possible, to ensure reusability.
It should run on as many Android OS as possible, to simplify the use and to spread it,
and thus to expedite further development. Beside that, the developed application must
be interoperable with other RFC 7668 compliant implementations.

1.3 Contributions

This thesis discusses how IPv6 over BLE can be implemented on the Android operating
system, and presents an implementation according to the RFC 7668 standard [6]. Follow-
ing points are addressed in this work:

CHAPTER 1. INTRODUCTION 3

� Design of a portable implementation of IPv6 over BLE for the Android operating
system;

� Implementation on the Android Open Source Project (AOSP) version 7;

� Implementation on the Android factory image version 8;

� Full interoperability with implementations according to RFC 7668 standard [6];

� Routing functionality within the BLE subnet;

� Border router functionality.

In addition to these contributions, this Master thesis includes an evaluation of the com-
parison between an existing RFC 7668 compliant border router implementation, and the
versions implemented in this thesis. Specifically, the evaluation considers power con-
sumption and latency, and also contains further analyses the use of different connection
parameters, the simultaneous usage of several nodes and other BLE protocols, as well as
the routing functionality inside the BLE subnet and to the Internet.

1.4 Limitations

The application for supporting IPv6-over-BLE communication has the following limita-
tions:

� The implementation is developed and tested with two operating systems: the An-
droid Open Source Project version 7 and the Android factory image version 8. Al-
though the application itself is designed for being used in further operating systems,
small adaptations need to made when using another OS besides these two, as dis-
cussed in Section 8.3.

� The Internet routing capabilities are dependent on the mobile radio provider or the
Internet service provider. One of them must support IPv6 communication, and in
case of WiFi also the WiFi router must support IPv6. If none of them supports it,
an alternative would be the usage of an IPv6 tunnel application, provided by third
party providers.

� The user interface from the application of this Thesis contains only basic func-
tionality. Sufficient for these experiments, it supports device discovery, connection
establishment, and IPv6 prefix setting. Further functionalities are not provided by
the implementation presented in this thesis, but can be expanded as the application
is designed to support enhancements.

1.5 Outline

The remaining part of this thesis is structured as follows. First, the necessary background
knowledge is shown in Chapter 2, which includes the key features of Bluetooth Low Energy
and the BLE-stack. It also shows the design of IPv6 over BLE, the structure of Android

CHAPTER 1. INTRODUCTION 4

OS, and the hardware employed in all experiments. Chapter 3 compares existing IPv6-
over-BLE implementations and summarizes scientific papers addressing the same topic.
Chapter 4 describes the design of the new Bluetooth stack and the necessary adaptations
of the Bluetooth architecture inside the Android operating system. It also includes the
design of the user interface, the description of the communication setup, and a listing of the
design challenges. Chapter 5 presents the implementation details concerning the Bluetooth
stack, the integration into Android OS, the user interface and thread handling inside the
application, as well as the points to consider when porting it to other Android OS versions.
The evaluation of the performance, supported features and limits of the implementation are
described in Chapter 6. The conclusion of this thesis is presented in Chapter 7. Chapter
8 provides possible improvements and additions on the implementation supporting IPv6
over BLE on Android.

Chapter 2

Background

This chapter describes the main background aspects and their relation to this thesis. First,
the radio technology Bluetooth Low Energy (i.e., the evolution of classic Bluetooth) and
its stack are described. Second, details on the IPv6-over-BLE connection corresponding
to the RFC 7668 standard [6], such as the topology, its adaptation of IPv6, and its stack
are described. Third, both versions of Android OS used in this thesis, the Android Open
Source Project, and the official Android factory image, are presented.

2.1 Bluetooth Low Energy

Bluetooth Low Energy (also referred to as Bluetooth LE or Bluetooth Smart) is a radio
technology representing the energy-efficient evolution of Bluetooth. While the focus of
classic Bluetooth was on high throughput, high range, and feature enhancements, the
main design goal of BLE was its simplicity, energy-efficiency and low hardware cost, which
makes it very suitable for applications that need a low data rate [3].

2.1.1 Fundamentals

The BLE radio operates in the unlicensed 2.4 GHz, industrial, scientific, and medical
(ISM) band [9]. Because it is globally license free, several other wireless technologies, like
WiFi, Bluetooth Basic Rate / Enhanced Rate (BR/EDR), or IEEE 802.15.4, also use these
frequencies. In addition, this band is also interfered by other devices like microwave ovens
or radars, leading to communication errors and packet loss. To avoid such interferences,
BLE uses adaptive frequency-hopping (AFH). BLE uses only three radio channels for
advertising and setting up the communication. Since there are just these three channels
to scan, the connection between two devices can be set up much faster, compared with
classic Bluetooth. Even if a connection is established between two BLE devices, the radio
is mostly switched off. It is only switched on again if there are packets to transfer. So BLE
does not necessarily poll between connected devices, such as classic Bluetooth is doing.
Pure BLE chips are easier constructed than Bluetooth chips. They do not need such a
wide frequency band and have a reduced dynamic memory because of reduced buffer sizes.
It is also not necessary for all BLE chips to have a transmitter and receiver implemented,
for some devices one of them is sufficient, depending on the task of the device, and it

5

CHAPTER 2. BACKGROUND 6

Figure 2.1: BLE communication stack [6].

enables a saving in the silicon area. In addition to the short package size, shorter headers,
a uniform packet format, and a simple protocol help reducing the memory usage.

2.1.2 BLE Stack

In this section the BLE stack in version 4.2 is described. The changes of the stack up to
version 5 are described in the next section. Figure 2.1 shows the Bluetooth Low Energy
protocol stack. The stack is split into two parts: a BLE controller and a BLE host. Both
are connected via the Host Controller Interface (HCI).

Physical Layer

The physical layer is responsible for sending and receiving data. As already mentioned,
the radio chip can contain both receiver and transmitter, or only one of them, depending
on the purpose of the device. It operates in the 2.4 GHz ISM band and uses 40 radio
channels that have a spacing of 2 MHz, whereby three of these channels are dedicated
advertising channels. BLE devices have a range of 30 to 100 meters and a data rate of 1
Mbps, BLE v5.0 achieves even 2 Mbps [10]. The physical layer uses Gaussian Frequency
Shift Keying (GFSK) for modulating / demodulating the signals [3].

Link Layer (LL)

At the beginning of a BLE communication, the BLE devices can have two different roles:
advertiser or scanner. The advertiser can broadcast BLE advertising packets on the three
advertising channels. These packets are receivable by any listening device in close prox-
imity. BLE devices that listen for these advertising packets are in the scanning state and
thus called scanners. The link layer states are represented in Figure 2.2. The time slots
in which the packets are sent are called advertising events, which are non-overlapping and
equally spaced out over time. At the beginning of every advertising event, an advertiser

CHAPTER 2. BACKGROUND 7

sends an advertising packet on one or multiple advertising channels. This communication
is happening unidirectionally from advertiser to scanner, and is called connection-less.

If these two devices want to communicate bidirectionally, they need to establish a
connection. Therefore, one device acts as initiator and is at the initiating state. It can
also receive advertising packets and can respond with a connection request to initiate a
connection with the advertiser. This works only if the advertising message entailed that the
advertiser supports connections. During connection establishment, the initiating device
sends all necessary connection parameters in the connection request packet, including the
used data channel map and information about connection event timing. At the link layer,
the connection interval and the latency are set by the master. The connection interval
is the time between the events during which the radio is not active. The latency is the
number of events the slave can skip in order to conserve energy. A short interval means a
higher data rate, but also a higher power consumption [11].

If the connection is established, the master device is the previous initiator, and the
slave is the previous advertiser, and both exchange data over this connection-based mode
[3]. The time slot at which the master and the slave exchange data is called connection
event. At each of these events, the master sends a packet to the slave, and the slave has
to respond. After this exchange, the master and the slave can send further data packets
until the end of the connection event. This flow control and packet acknowledgement
guarantees the correct order of packets and retransmission of packet losses [12]. The
used data channel of a connection event is calculated by the Adaptive Frequency Hopping
algorithm of the BLE specification. This algorithm chooses one of the 37 available data
channels [3]. The purpose of AFH is to mitigate interference, because of the general use
of the same 2.4 GHz ISM band. During connection establishment, master and slave also
synchronize the change of the data channels, which happens for every connection event.
The map for the common change of the channels is called hop sequence, and it is unique
for every connection. Since one channel is only used for a small timeframe and the hop
sequence changes for every connection, the interference is reduced to a minimum.

Host Controller Interface (HCI)

The Host Controller Interface (HCI) provides standardized communication between the
host and controller devices. It ensures that host devices may use BLE controllers from
different manufacturers. The controller implements all BLE buffer management and com-
munication timing functionality. The BLE host simply needs to add packets to the BLE
controller via the HCI. This simplifies the development on the host. Four different kinds
of HCI packages exist: command packages, event packages, synchronous data packages,
and asynchronous data packages [14]. Commands are used to send orders from the host
to the controller. The HCI events are used to notify the host if an event occurs at the
controller, which can be a response to an earlier command. Errors are also sent by HCI
event packages. The data packets can only be sent from host to controller or vice versa if
a connection has been established. The host controller interface is optional. In case that
HCI is not implemented in the system, the L2CAP layer may interact directly with the
link layer [3].

CHAPTER 2. BACKGROUND 8

Figure 2.2: The link layer states of Bluetooth Low Energy taken from [13].

Logical Link Control and Adaptation Protocol Layer (L2CAP)

The Logical Link Control and Adaptation Protocol layer (L2CAP) provides protocol mul-
tiplexing and packet fragmentation and reassembly to the upper stack layers of the host. It
is responsible for multiplexing and demultiplexing of channels over the shared logical link.
It can also act as an interface between the upper layers and the controller layers, in case
that the HCI is not implemented [3]. L2CAP contains five modes: basic L2CAP mode,
flow control mode, retransmission mode, enhanced retransmission mode, and streaming
mode. While only the basic L2CAP mode is used in BLE, the other ones are used in
classic Bluetooth. In the flow control mode, the receiver is able to limit the number of in-
coming packets by setting the credit-value. For the use of IPv6 over BLE, it is required to
support the flow control mode in BLE. Using the flow control mode, the requesting device
(scanner) sends the credit-based connection request to the responding device (advertiser),
which sends a credit-based connection response as answer. In the configuration process,
the two devices negotiate the parameters of the L2CAP connection-oriented channel in
credit-based flow control mode. These parameters are the low energy protocol service mul-
tiplexer (PSM), the channel ID (CID) of the source and the destination, the maximum
transmission unit (MTU), the maximum payload size (MPS), and the initial credit value.
The PSM is a port number that belongs to the protocol using the connection-oriented
channel. The CID for the connection-oriented channels are dynamically assigned, where
for BLE only the credit-based flow control mode for connection-oriented channels is possi-
ble [15]. The MTU describes the payload size of the L2CAP frame that will be exchanged

CHAPTER 2. BACKGROUND 9

Figure 2.3: L2CAP packet format (adapted from [3]).

Figure 2.4: L2CAP flow-control packet format (adapted from [3]).

with the upper layers. The MPS describes the whole L2CAP frame, including L2CAP
protocol information fields. The initial credit value states the number of LE frames that
the advertiser can transmit. The advertiser can send a LE flow control credit packet to
increase the credit counter. If the buffer is big enough for handling more packets, the flow
control credit packet increases the credit counter according to the content of the credit
packet. If the advertiser tries to send more LE frames than the credit counter states, the
scanner will close the channel.

Security Manager Layer (SM)

The security manager layer (SM) contains the processes for authentication, pairing and
encryption in BLE. It is needed if a connection requests security and is responsible for
generating as well as securely storing cryptographic keys used for communication. Fur-
thermore, the SM layer is responsible for generating the devices’ random device address
and for resolving random addresses from other BLE devices [3].

Attribute Protocol Layer (ATT)

The attribute protocol layer (ATT) implements a client / server protocol that allows
BLE devices to exchange information about attributes. Every BLE device can be client
or server, independent of being master or slave. The server has attributes that can be
discovered, read, and written from the client. An attribute can be any data and has
describing information about this data. The server can also notify the client about its
attributes [3].

CHAPTER 2. BACKGROUND 10

Generic Attribute Profile Layer (GATT)

The generic attribute profile layer (GATT) provides services to communicate between two
connected devices. It defines a framework with services and characteristics, which uses the
ATT attributes. Besides this, it defines how to read, write, and notify these attributes.
The attributes can be grouped into services and be used hierarchically by the GATT layer
[3].

Generic Access Profile Layer (GAP)

That layer defines the main functionalities all BLE devices have in common. It is manda-
tory for all devices and ensures interoperability between devices from different vendors.
This entails general services regarding device modes, device discovery, device connection,
and security. A BLE device can take one of four GAP roles: broadcaster, observer, pe-
ripheral, or central. In the broadcast role, a device sends advertising events periodically.
In the observer role, a device receives the advertising packets from a broadcast device. In
the Peripheral role, a device accepts a connection request and is therefore a slave. In the
central role, a device initiates a connection establishment and is therefore a master [3].

2.1.3 BLE version 5

Bluetooth Low Energy version 5 has some improvements compared to version 4.2 [16].
First of all, the speed has been doubled. Second, the range has increased by 4 times
compared to the previous version. Third, the data capacity of broadcast messages is 8
times higher than before. BLE version 5 is backwards compatible, but only with the
features of the previous BLE version, so with the lower speed, range, and data capacity.
This version also has two new physical layers compared to version 4. Each physical layer
supports different capabilities. The first physical layer, called 1M PHY, is the same as
used in version 4. The second one, called 2M PHY, has the capability of doubling the
speed and supports higher data rates than the 1M PHY. The third physical layer, called
Coded PHY, supports a much longer range thanks to additional symbol redundancy when
encoding bits. However, not all features of version 5 can be used in parallel, since only
one of the physical layer can be used at once.

Bluetooth version 5.1 was released in 2019 [17] and contains small improvements com-
pared to version 5.0. It contains the feature to determine the direction of the Bluetooth
signal, by using Angle of Arrival measurements, which allow for a more accurate loca-
tion determination. In addition, BLE v5.1 makes pairing of devices faster by improving
advertising, and enhances GATT caching for better avoiding disruptions.

Bluetooth version 5.2 was released in 2020 [18]. It contains a new feature to support LE
audio in BLE devices through isochronous channels, which enables the communication of
time bound data. In addition, version 5.2 supports low energy power control and enhanced
attribute protocol.

CHAPTER 2. BACKGROUND 11

2.2 6LoWPAN

6LoWPAN takes his name from 6Lo (IPv6 over networks of resource constrained nodes)
and WPAN (Wireless Personal Area Networks). 6LoWPAN is a communication protocol
designed to support IPv6 communication through wireless data transmission between con-
strained and low energy devices. It is specified in the RFC 4944 standard [19] released in
2007. This standard was developed for communication through IEEE 802.15.4, and was
adapted for communication through Bluetooth Low Energy in the standard RFC 7668 [6],
which was released in 2015.

2.2.1 6LoWPAN for IEEE 802.15.4

The 6LoWPAN adaptation layer has been specifically designed for IEEE 802.15.4 [19]. It
contains functionalities like the IPv6 header compression [20], fragmentation and defrag-
mentation of packets, address configuration, neighbor discovery [21] on low power wireless
networks, and packet delivery in mesh networks.

Besides the star topology, the standard supports also mesh routing, which means that
the features must also be adapted in terms of mesh routing. Neighbor discovery opti-
mizations for 6LoWPAN are described in the RFC 6775 standard [21]. The latter defines
neighbor discovery optimizations for low power wireless personal area networks including
IPv6 neighbor discovery, addressing mechanisms, and duplicate address detection. These
optimizations concern both star and mesh toplogies.

Since IPv6 needs a higher MTU than IEEE 802.15.4 supports, it is necessary to split the
packets into smaller fragments that are individually sent and reassembled at the receiver.
For the star topology, it is easy to transmit frames and reassemble them. However, there
are two options for mesh routing: completely reassembling a message on each node before
forwarding, or forwarding each frame separately.

The features of the 6LoWPAN adaptation layer for IEEE 802.15.4, which are also used
for IPv6 over Bluetooth low energy (header compression, address configuration, neighbor
discovery), are included in the standard of IPv6 over Bluetooth low energy [6] and are
described in Section 2.3.2.

2.3 IPv6 over BLE

As already discussed, BLE fits all the requirements for smart objects that connect to the
IoT. To allow seamless integration of BLE devices into the IoT, the RFC 7668 standard [6]
specifies the exchange of IPv6 packets over a Bluetooth Low Energy connection. The main
parts of this standard are the new protocol stack, the link model, the address configuration,
and the header compression.

2.3.1 Topology

Initially, BLE only had support for star networks (see Figure 2.5) consisting of a central
master device and one or multiple slave devices. At the end of 2017, however, the Bluetooth
Special Interest Group (SIG) introduced the BLE mesh specification [22]. Because the
specification of IPv6 over BLE only supports the star topology of BLE, we will focus on

CHAPTER 2. BACKGROUND 12

Figure 2.5: Piconet with one master (M) and two slaves (S).

this topology during this work. An IPv6-over-BLE network only supports star topology
with an IPv6-over-BLE border router (the BLE master) as a central, and one or multiple
IPv6-over-BLE nodes (BLE slaves), as shown in Figure 2.6. The BLE mesh topology is
not supported in IPv6 over BLE.

The IPv6 neighbour discovery has to consider only functions concerning star topology.
The nodes do not have to register their link-local addresses, but still need to register
their non-link-local addresses on the border router. To this end, they send a Neighbour
Solicitation (NS) message which contains the Address Registration Option (ARO). Then
they get a response from the BR with the Neighbour Advertisement (NA) [6]. Each node
device has only a single BLE connection to its border router. When nodes in the same
subnet want to communicate, they need to route their messages over the central border
router.

2.3.2 6LoWPAN for BLE

The 6LoWPAN adaptation layer was created for IEEE 802.15.4 [19] and it is the ancestor
of IPv6 over BLE [6]. 6LoWPAN for BLE builds on top of that standard but it only takes
on a few of the features of 6LoWPAN for IEEE 802.15.4, because IPv6 over BLE only
supports star topology, and parts of the functionality is already covered by other layers
in the BLE stack. The header compression and the address configuration are taken over.
The neighbor discovery is partly taken over, since IPv6 over BLE does not support mesh
topology. Packet fragmentation is not necessary, because this feature is already covered
by the L2CAP layer of BLE.

The 6LoWPAN layer for BLE communication [6] is responsible for the compression
of the IPv6 header [20], since the fragmentation gets executed on the L2CAP layer. The
compression is standardized in RFC 6282 [20], and results in a header with a size of 2, 12
or 20 bytes depending on the network location of the target [23].

The IPv6 header has a size of 40 bytes. The first field contains the IP version with the
size of 4 bits. It can be omitted entirely, since the version is already fixed. The next field

CHAPTER 2. BACKGROUND 13

Figure 2.6: IPv6-over-BLE network connected to the Internet (adapted from [6]).

Figure 2.7: IPv6 header with fixed header fields (adapted from [24]).

CHAPTER 2. BACKGROUND 14

Figure 2.8: Compressed IPv6 base header (adapted from [20]).

is one byte long and contains the traffic class with 6 bits, and 2 bits Explicit Congestion
Notification (ECN) priority value. This field is either fully elided, partially elided (1 or 3
bytes carried in-line), or fully contained (4 bytes) in the in-line fields. The field describing
the payload length with size of 2 bytes is also entirely omitted. The next field is 1 byte
long and specifies the type of the next header. Either this field is carried fully in-line, or
this field is compressed and the next header is encoded using the next header compression
(NHC). After that, there is the hop limit field, also with length of 1 byte. It is either
fully carried in-line or compressed, and the value is included inside the base format of
the header compression. The remaining two fields contain the source and the destination
addresses, each with a size of 16 bytes. The addresses can either be completely omitted,
partially omitted (8, 6 or 2 bytes carried in-line), or completely included in-line.

The source address of a transmission from a node to the border router has to be fully
elided, also transmissions with a non-link-local source address that are registered to the
border router if it is the latest address of the node for the indicated prefix. The source
address of a transmission from a border router to a node has to be fully elided, if it is
the link-local address based on the border routers BDA. Also the source prefix or address
has to be elided if a compression context has been set up. The destination address of a
transmission from a BR to a node has to be also fully elided, if it is the link-local address
based on the nodes BDA, or if the latest registered address matches with the destination
address. To elide addresses, the header compression flags SAC, SAM, DAC and DAM are
used.

The resulting compressed IP header is shown in Figure 2.9. It consists of the base
format, which is either 2 or 3 bytes long, the appended in-line IPv6 header fields, the next
header compression, appended in-line next header fields, and the payload.

The first three bits of the base format are a dispatch. Then 2 bits follow for traffic
class and flow label. The next bit belongs to the next header field, and the last two bits
of the first byte describe the hop limit. The second byte starts with one bit describing
if a context identifier extension field is attached, which is following the two bytes of the
base format of the IPv6 compressed header. The next bit belongs to the source address
compression, followed by two bits for the source address mode. Then one bit for the
multicast compression, followed by one bit for the destination address compression are
used. The last two bits belong to destination address mode.

The next header compression [20] also consists of a header compression encoding and

CHAPTER 2. BACKGROUND 15

Figure 2.9: Full compressed IPv6 message with 6LoWPAN IPHC and NHC configuration
(adapted from [20]).

Figure 2.10: IPv6 extension header encoding (adapted from [20]).

in-line fields. The next header compression encoding consists of a single byte (Figure
2.10). The first four bits are a dispatch, and the following three bits are an identifier for
the following IPv6 extension header. The last bit indicates if the following header uses
next header compression as well.

2.3.3 IPv6 adaptation

To use IPv6 packets on BLE devices, several adaptations need to be performed. First, a
link-local IPv6-over-BLE address is generated based on the devices’ BLE address. The
link-local addresses are used to establish the connection. Nodes and border routers should
use a private Bluetooth Device Address (BDA), and thus should periodically change the
BDA to keep the addresses private, as already mentioned at the link layer in Section 2.1.2.
From the BDA a 64-bit Interface Identifier (IID) is formed. Link-local addresses should
stay the same for one L2CAP channel. So changing device addresses does not influence
communication, as long as the L2CAP channel stays the same [6]. Addresses that are
non-link-local should not embed the BDA in the IID. For generating the IID, methods
like cryptographic generated addresses, privacy extensions, or DHCPv6 should be used
instead. If the BDA is private, it can be used in the IID.

Second, IPv6 over BLE compresses IP headers [20]. In addition, also the device ad-
dresses can be compressed using the star topology. Further details on the IPv6 header
compression and the included compression of device addresses, both provided by 6LoW-
PAN, is described in Section 2.2.

2.3.4 IPv6 over BLE Stack

To support IPv6 over BLE, only the layers of the BLE host need to be adapted. The
BLE controller stays unchanged. The normal BLE stack can be seen in Figure 2.1, and

CHAPTER 2. BACKGROUND 16

the new stack supporting IPv6 can be seen in Figure 4.1. The L2CAP layer needs to be
used in credit-based flow control mode. This mode checks if the communication partner
can receive the packets and then sends all fragmented packets consecutively in the right
order. The credit number states the amount of packets a device can receive. This mode is
used to control the flow of the LE-frames, so that the IPv6 packets are fully transferred.
IPv6 packets may be bigger than the BLE package size: IPv6 alone has a header length of
40 bytes, UDP has a header of 8 bytes. In BLE specification v4.0 and v4.1 the data field
at the L2CAP layer has a size of 27 bytes, but in v4.2 and above it increases to 251 bytes
[25]. Therefore, a fragmentation and reassembly of the IPv6 packets is necessary. This will
be taken care by L2CAP frames to its already integrated features. L2CAP enables higher
layer protocols to send bigger data packets, which get split and sent to the controller in
appropriate sizes dependent on the buffers. After reception, the L2CAP layer reassembles
the fragmented data, reconstructs the data packet, and notifies the upper layers [3].

2.4 Android Operating System

There are several operating systems that would be suitable to implement IPv6 over BLE
on smartphones, like iOS, Windows Phone, and Android. The focus of this thesis is on
Android because it has a market share [26] of 75.0 % worldwide and provides its operating
system not only for smartphones, but also for tablets. These are good reasons to implement
the requested solution for Android devices.

Because of the restrictions of a normal Android application, a wide intervention to the
lower layers of the Android operating system is not possible with a normal Android app.
Especially the access to the Bluetooth LE L2CAP layer, which is an important part of the
implementation of IPv6-over-BLE communication, is denied by the OS.

However, the Android Open Source Project (AOSP) [27] enables to make changes at
every layer of the operating system. Thus it is possible to implement the IPv6 communica-
tion in the necessary layers of the Bluetooth Low Energy stack, and to add the remaining
functionality in the app itself. Other advantages of using the AOSP is the free availabil-
ity of this operating system and the suitability for many devices, both smartphones and
tablets.

If the L2CAP layer does not have to be changed because the required functionality is
already supported in the layer, and made accessible through the interface, it is possible to
build the remaining implementation into the app itself. This also simplifies the usage, as
only the Android application has to be installed.

The factory image of Android 8 supports the L2CAP connection establishment of a
connection-oriented channel in credit-based flow control mode. However, the interface
is not publicly available, which normally excludes its use. Nevertheless, through the
workaround with Java reflection, this functionality can still be used. This means that
the Android app developed in this thesis can also work with all smartphones and tablets
that use Android 8. This considerably increases the proportion of devices that could
immediately support IPv6-over-BLE communication. In addition, the effort required when
using a factory image from Android is significantly lower than when using the Android
Open Source project.

CHAPTER 2. BACKGROUND 17

Figure 2.11: LG Nexus 5X smartphone with Android OS [28].

2.5 Employed Hardware

The hardware used for the implementation of IPv6 over BLE and for the evaluation exper-
iments are the LG Nexus 5X, the Raspberry Pi 4 Model B, the Samsung Galaxy Tab S3
tablet as border router, as well as the Nordic Semiconductor nRF52840-DK development
kit as node device.

LG Nexus 5X

The LG Nexus 5X is a smartphone with Android OS. It is a Google device, which means
that it is distributed by Google, and was produces by a contract manufacturer [28]. It
is designed for Android OS and has some advantages compared to non Google devices,
like preinstalled software and additional Google support. The used operating system is
Android 8.0. Since it is a Google device, it is easy to install a version of the Android
Open Source Project on it, which is the reason why it was chosen for this thesis. It has a
Qualcomm Snapdragon 808 64 bit System on Chip (SoC), which contains 6 CPU cores (2
x 1.8 GHz, 4 x 1.44 GHz), an Adreno 418 graphical unit, two LPDDR3 memory controller,
and a LTE modem [29]. The RAM size is 2 GB, and for WiFi and Bluetooth it contains
a Qualcomm QCA6174A chip which supports Bluetooth version 4.2 [30].

Because this smartphone can handle both AOSP 7 and Android 8, it is ideal to compare
the same implementation running on both OS.

CHAPTER 2. BACKGROUND 18

Figure 2.12: Samsung Galaxy Tab S3 tablet with Android OS [31].

Samsung Galaxy Tab S3

The Samsung Galaxy Tab S3 [31] is a tablet with Android OS. The OS version on it is
Android 8.0. It has a Qualcomm Snapdragon 820 64 bit SoC. It contains 4 CPU cores
(2 x 1.6 GHz and 2 x 2.15 GHz), an Adreno 530 graphical unit, an LPDDR4 memory
controller, and an LTE and WiFi modem [32]. It contains 4 GB RAM and the Qualcomm
QCA6174A chip, the same as in the LG Nexus 5X, supports Bluetooth version 4.2 and
WiFi [30].

Nordic Semiconductor nRF52840-DK

The nRF52840 development kit (DK) from Nordic Semiconductor is a low-power SoC.
It contains a 32 bit ARM Cortex M4 CPU with 64 MHz, 256 kB RAM and 1MB flash
memory. It also contains support for Bluetooth 5, which is completely backwards com-
patible. Therefore, the nRF5280-DK as node device is interoperable with router devices
that support Bluetooth 4.2 [33]. The used operating system is Zephyr [7], which is an
open source real time OS developed by the Linux foundation for the Internet of Things.
It contains a full IPv6-over-BLE stack, and supports both node and router functionality.

Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B device is used as border router and is treated as reference
concerning the IPv6-over-BLE implementation [34]. It contains a Broadcom BCM 2711

CHAPTER 2. BACKGROUND 19

Figure 2.13: Nordic Semiconductor nRF52840-DK [33].

Figure 2.14: Raspberry Pi 4 Model B with Raspbian OS [34].

SoC, which includes an ARM Cortex-A72 CPU with 4 cores (4 x 1.5 GHz). It has 4 GB
LPDDR4 RAM, and the Broadcom BCM54213PE module contains support for Bluetooth
version 5. The operating system version used in this thesis is Raspbian 10, which includes
an existing IPv6-over-BLE stack, and supports both node and router functionality.

Chapter 3

Related Work

This chapter lists related work to this thesis. It shows already existing solutions of IPv6
over BLE on other operating systems. It also presents studies related to this thesis.

3.1 Existing 6LoWPAN Border Router

The border router functionality is already implemented in some operating systems. How-
ever, most of these operating systems are designed for constrained devices, which are used
as sensor nodes inside the IoT. Examples are Zephyr [7], Contiki [35], or Android Things
[36], where mainly the node functionality is used. In addition, the devices which are using
these OS are usually not well suited as border routers. The major reasons for that are
the restricted connectivity, the constrained power supply, and the low processing power
because of the energy-efficient design.

The Zephyr OS is an open source real time operating system. It is developed by the
Linux foundation for the use inside the Internet of Things. It entails support for IEEE
802.15.4, classic Bluetooth, and Bluetooth Low Energy, which includes also a full IPv6-
over-BLE stack. It supports multiple architectures and is intended for devices with small
memory size and constrained processing power, like system controls or sensor nodes.

Contiki is an open source operating system for constrained devices, and is well suited
for use in the Internet of Things [35]. It is Internet capable, and contains a full 6LoWPAN
stack for both IEEE 802.15.4 and BLE. Although it contains both support for node and
router role, the functionality of using it as border router is not that often used because of
the constrained power supply of the used devices.

Android Things is an Android-based embedded OS [36]. The target systems are low-
power memory-constrained devices intended for the IoT. It supports both Bluetooth Low
Energy and WiFi, and it further entails a LoWPAN API for both. However, the last offical
version with new features and bug fixes was released 2018: after that, only updates with
security patches were released. Also, no newer versions are announced, so I assume it has
been discontinued.

Other OS, where the IPv6-over-BLE implementation is also available, are better suited
as border router devices. The most usable implementation is the one of Linux for the

20

CHAPTER 3. RELATED WORK 21

Bluetooth stack ”BlueZ” [37]. It contains full functionality for node devices, as well as for
router devices.

One of the most popular versions of Linux is Ubuntu, which is usually used on note-
books. Another widespread Linux based operating system, which also contains the IPv6-
over-BLE implementation, is Raspbian, the OS for RaspberryPi devices. These two oper-
ating systems, combined with the device types, have almost the same practical relevance
as the IPv6-over-BLE implementation at a smartphone or tablet.

Table 3.1 summarizes the properties of the software, as well as the properties of the
corresponding hardware, and the usability of the IPv6-over-BLE features.

Ubuntu / Notebook Raspbian / Raspberry
Pi

Node functionality supported supported

Router functionality supported supported

Border router functionality supported supported

Effort of Set-Up low low

Portability of device medium medium

Interoperable devices high medium

Supported BLE versions 4.0 / 4.1 / 4.2 / 5.0 4.0 / 4.1 / 4.2 / 5.0

Table 3.1: Properties of the IPv6-over-BLE implementation in Linux.

The node functionality is available for both devices. In terms of the IoT, the node
functionality means not only the role inside the network, but also the providing of sensor
data. In terms of sensors, both notebooks and Raspberry Pi devices do not have much
offer, but additional sensors can be easily added via USB.

The router and border router functionalities are available at both devices and the
resources of the devices are better suited for these purposes. The energy supply, the
processors, and the RAM are designed for a high data processing rate. The energy supply
also supports a long range and high radio duty cycle of Bluetooth and WiFi. Different to
smartphones and tablets, notebooks and Raspberry Pi devices also contain LAN ports.
Due to the high processing and connectivity capabilities, both devices are well suited as
border routers.

The effort of setting up the devices as nodes or routers is low, because both operating
systems already contain the Bluetooth 6LoWPAN module and do not need to be installed
later. When the devices contain an appropriate BLE hardware chip, the node and router
functionality can be used immediately.

The portability of the devices is a relevant factor, since sensor nodes can be placed at
hardly accessible locations. The notebook with the Ubuntu OS is only partially suitable
to act as mobile border router. The advantages are the compactness of the device, which
includes screen, keyboard, and touchpad. Another advantage is that the energy supply
lasts for several hours, maybe even for days with the right battery, and the use of a reserve
battery is also possible. Because of these characteristics, the rating of Ubuntu running on
a notebook leads to medium portability. For high portability, a device must also be easier
to transport than a notebook and have a battery that lasts at least a few days.

CHAPTER 3. RELATED WORK 22

The Raspberry Pi can be either well or not that well suited. Although the device itself
is very small, if additional devices like a monitor, keyboard, and a mouse are included to
be operable, the equipment is too extensive. Also, the power supply is normally not con-
structed for a mobile use. However, with a battery as power supply, and if the Raspberry
Pi is used as headless border router, it is still very suitable. These conditions result in the
assessment ”medium portability”.

The number of interoperable devices is very high for the Ubuntu version, since the
requirements are very low. Nearly every notebook is suitable for this operating system.
However, to use IPv6 over BLE, the device needs to support Bluetooth Low Energy. The
number of devices which are suitable for using Raspbian OS is quite smaller. Nevertheless,
out of all existing Raspberry Pi devices, everyone is suitable to support IPv6 over BLE.
The main disadvantage of older Raspberry Pi versions (e.g., 1 and 2), is that they do not
have an integrated Bluetooth or WiFi chip. For these, an external BLE and WiFi adapter
is necessary.

Ubuntu supports all BLE versions to enable IPv6-over-BLE communication, although
the versions 4.0 and 4.1 are less efficient due to smaller packet size. There exists a lot of
notebooks that support every version of BLE, which is one of the main advantages of the
nearly everywhere compatible Ubuntu OS. Raspbian also supports all BLE versions for the
IPv6-over-BLE implementation, but it is partially bounded to the integrated BLE chips
inside the Raspberry Pi devices. On the Raspberry Pi 3, the Bluetooth versions 4.1 and
4.2 are integrated, depending on the model version, and beginning with the Raspberry Pi
4 the Bluetooth version 5.0 is integrated. But, of course, it is possible to use an external
BLE adapter, which exists for every available BLE version.

3.2 Related Research Studies

One of the first scientific papers concerning IPv6 over BLE is about adapting the Bluetooth
stack of Linux. Wang et al. [38] implemented the first prototype system to enable the
transmission of IPv6 packets over BLE, with changes in BlueZ, the official Bluetooth stack
of Linux. They have evaluated the optimized communication that means use of context-
based IPv6 header compression, which reduces the number of link layer packets to be
transmitted. This reduction results in lower latency and lower power consumption, so
overall it improves the transmission efficiency.

The experiment executed by Yoon et al. [39] shows that it is possible to use personal
healthcare devices to send emergency data with IPv6 packets over BLE. The limitations are
the standardless communication of the healthcare devices, and the difficulty of ensuring
emergency data transmission due to possibly unpaired smartphones. To handle these
limitations, they are using IPv6-over-BLE communication, which includes the use of IPv6
header compression, and the transfer of the emergency data by using the advertising
process.

Since the network performance of BLE has a high potential, Spörk et al. [40] designed
and implemented an IPv6-over-BLE stack with enhanced control over energy usage and
timeliness, called BLEach. This stack contains new BLE functionality: adaptive radio
duty cycling, IPv6-over-BLE traffic priorization and multiplexing, and indirect link-quality

CHAPTER 3. RELATED WORK 23

monitoring. It was the first open-source stack with full support for IPv6 over BLE, and
the experiments proved that BLEach is interoperable with standard compliant stacks, as
well as portable, modular, and energy efficient.

IPv6 over BLE mainly supports star topology, but the latest Bluetooth specifications
also describe functionalities enabling enhanced topologies as well, so the Internet draft [41]
describes the possibility of IPv6 mesh topology over BLE using Internet Protocol Support
Profile (IPSP).

This draft assumes a mesh network with BLE link layer connections between neigh-
bouring devices that support IPv6 over BLE, since a peripheral can connect to more than
one central, and one device can be both a peripheral and a central device. In addition,
IPSP supports that a device can implement both roles at the same time. The devices
that must forward the packets need to implement node and router roles at the same time,
while leaf-nodes only need the node role. Besides the protocol stack, the draft also entails
descriptions of the subnet and link model, as well as security considerations.

Chapter 4

Creating an IPv6-over-BLE Stack
for Android OS

This chapter describes the creation of an IPv6-over-BLE stack for Android OS. Section
4.1 describes the IPv6-over-BLE stack in general, including all layers and the connection
establishment. Section 4.2 lists the requirements of an ideal implementation of an IPv6-
over-BLE stack. Section 4.3 shows the integration into Android, describing the current
Bluetooth architecture in Android and the structure of the new IPv6-over-BLE stack for
Android. Lastly, Section 4.4 discusses the challenges of the integration of the new stack
into Android.

4.1 IPv6 over BLE Stack

4.1.1 Communication Stack

The Bluetooth low energy stack has already been described in Section 2.1, and is shown
in Figure 4.1. Besides the normal Bluetooth low energy stack, another stack in parallel
enables IPv6-over-BLE support, which is located above the L2CAP layer. Until this point,
both stacks share the same layers, the physical layer, the link layer, and the L2CAP layer.
The exchange of IPv6 packets over a Bluetooth Low Energy connection is specified by the
RFC 7668 standard [6].

In Figure 4.1, the layers that already exist but may have to be adjusted are colored
in orange. The layers which have to be newly created are colored in red. The unchanged
layers are splitted into controller colored blue, and host colored purple.

As already described in Section 2.3, the L2CAP layer needs to be used in credit-
based flow control mode. This mode checks if the communication partner can receive new
packets and then sends all fragmented packets consecutively in the right order. The credit
number states the amount of packets a device can receive. This mode is used to control
the flow of the LE-frames, so that the IPv6 packets are fully transferred. IPv6 packets
may be bigger than the BLE package size. IPv6 has a header length of 40 bytes, and UDP
has also 8 bytes. In BLE specification v4.0 and v4.1 the data field at the L2CAP layer
has a size of 27 bytes, but in v4.2 and above it increases to 251 bytes [25]. In order to
support the mandatory minimum IP packet length of at least 1280 bytes, a fragmentation

24

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 25

Figure 4.1: BLE stack for IPv6 and GATT (adapted from [6]).

and reassemble of the IPv6 packets is necessary. This task will be carried out by the
already integrated features of the L2CAP layer. This enables higher layer protocols to
send bigger data packets, which get split and sent to the controller in appropriate sizes
dependent on the buffers. After reception, the L2CAP layer reassembles the fragmented
data, reconstructs the message, and notifies the upper layers [3].

Above the L2CAP layer stands the 6LoWPAN for Bluetooth low energy layer. It con-
tains the compression and decompression of the IP header and the address configuration.
If the operating system does not already support IPv6 over BLE, this layer has to be cre-
ated completely from scratch. In case the OS already supports IPv6 over IEEE 802.15.4,
the existing 6LoWPAN layer can be adapted for use with BLE.

The header compression results in a header size of 2, 12, or 20 bytes, instead of the full
40 bytes of the IPv6 header. Information is either compressed, or partly / fully elided. The
needed data can be restored by the receiver from internal informations, or reconstructed by
context information. The detailed description of the header compression and the address
configuration is shown in Section 2.3. Besides the IPv6 header compression, it contains
also the compression of the next header of the message, which includes a compression of
the UDP header. The whole compression format is specified in the RFC 6282 standard
[20].

For address configuration, first a link local IPv6-over-BLE address is generated based
on the devices’ BLE address and a standard prefix. This address is used to establish the
connection. After that, to generate and register the public IPv6 addresses, the border
router distributes a shared IPv6 prefix. This prefix can be taken from the Internet service
provider, or can be set by the user. By using this prefix, all nodes register their new public
IPv6 address at the border router and are accessible by that.

Above the 6LoWPAN layer are the IPv6 layer and the UDP or other transport layer

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 26

protocols. A lot of operating systems already entail IPv6 and UDP, so they can either be
used instantly, or must be adapted. IPv6 also entails the neighbor discovery functionality,
and this layer is the highest layer that needs to be supported. Possible layers above (i.e.,
UDP, TCP) are not mandatory and may be required depending on the application.

4.1.2 Communication Setup

The setup of the communication between the border router and the node device is divided
into several steps. It is initiated from the node by sending BLE advertisement packets
to the environment, and the router device selects the node and starts the connection
establishment.

After the node has sent the advertisements, it waits for the router to establish the
connection. If the node wants to connect to a border router, it has to offer the Internet
Protocol Support Service [42] as GATT service. This service is used to recognize the
support of IPv6-over-BLE connections. The node has to include the following connection
parameters within his advertising packets:

� Flags (discoverability and availability of Bluetooth modes);

� Transmission Power (the transmission power level of outgoing packets);

� Device name;

� Service UUIDs (list of UUIDs of the provided services, Internet Protocol Support
Service (IPSS) is one of them);

� Connection Interval (minimum and maximum value of the preferred connection in-
terval).

The router receives the advertising packets and can derive from its properties that the node
wants to connect to a border router for obtaining access to the Internet. After checking
for duplicate link-local addresses, the router sends the connection request at the BLE link
layer. This connection request entails the connection parameters and by receiving it from
the node, the link layer connection is established.

After that, the connection setup goes up to the L2CAP layer. Within the L2CAP
connection, the IPv6 packets get fragmented, sent, and reassembled. At this layer, the
router has to start by sending an L2CAP connection request. The IPSS declares that the
connection-oriented channel with credit-based flow control mode has to be used within the
L2CAP connection. Therefore, the connection request contains also an initial number of
L2CAP credits. Credits are a number of L2CAP packets that the device accepts inside
the L2CAP channel. After the transmission of one L2CAP packet, the credit number is
decremented and, if it reaches zero, no more packets will be accepted. New credits can be
allocated with the L2CAP flow control credit packet. The request from the border router
gets answered with an L2CAP connection response from the node. The L2CAP channel
is then created successfully.

To discover neighbors, IPv6 over BLE uses the neighbor discovery from IPv6, optimized
for 6LoWPAN and standardized in [21]. Because IPv6 over BLE does not support mesh
networking, only the star topology has to be supported by the neighbor discovery. Since

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 27

Figure 4.2: Steps of an IPv6-over-BLE connection setup between border router and node.

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 28

the L2CAP channel is already established, IPv6 packets can already get sent through
this channel. The node sends the router solicitation (RS) message, which is an ICMPv6
message, based on IPv6, to the all-routers multicast address, if a connection to a router
has not yet been established. The node waits for the according response. The router sends
as a response a router advertisement message. The RA contains also the IPv6 prefix of the
subnet with the prefix information option (PIO), and context informations for the IPv6
header compression with the 6LoWPAN context option (6CO).

With the prefix from the RA, the node can create the global address and register it at
the border router. This registration is made with a neighbor solicitation (NS) message,
with the address registration option (ARO). If the node has also another global address,
it can also add it by an additional ARO option inside the NS message. After receiving the
neighbor solicitation, the border router checks the global addresses for duplicates. If no
duplicate error occurs, the border router acknowledges the successful address registration
with the neighbor advertisement (NA) message.

4.2 General Requirements

This section describes the general requirements of an ideal implementation of IPv6 over
BLE into an operating system.

� Portability

An ideal implementation of IPv6 over BLE supports all devices with suitable hard-
ware and the same operating system for which the implementation was developed,
and it should be compatible with newer OS versions. Optionally, an implementation
can be made portable to be used with different operating systems. The implemen-
tation should have an API that is usable by all applications running on the same
operating system.

� Scalability

An implementation should support as many IPv6-over-BLE connections in parallel
as possible, to make the implementation usable by use cases that necessitate of par-
allel connections. Additionally, the implementation should support the simultaneous
usage of both the normal BLE stack and the IPv6-over-BLE stack.

� Efficiency

To guarantee efficiency and the resource availability for other applications in the OS,
the IPv6-over-BLE implementation should consume little energy and little memory.

� Interoperability

The implementation has to be conform to the RFC 7668 standard [6]. This mainly
includes connection establishment and compression formats, and guarantees inter-
operability with other devices that have a standard-compliant implementation.

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 29

� Usability

The implementation should be easily addable to the operating system, in case it is
not already integrated in the OS at the time of installation. It should be installable
without any specific access rights or changes inside the OS.

To support generality of the IPv6-over-BLE implementation, and small effort for set-
ting up, the best solution is to create an own Android application. The application should
be easy to install without having to root the smartphone. Other properties (i.e., scala-
bility, lightweight, standard-compliance) can be supported through the implementation of
this standalone Android application (i.e., supporting several IPv6-over-BLE connections in
parallel, low energy and memory consumption, IPv6-over-BLE communication compliant
to RFC 7668 standard).

4.3 Integration Into Android

Based on the requirements on an IPv6-over-BLE stack, we discuss how such a stack can
be implemented in the Android OS. Since the L2CAP layer of Android does not support
credit-based flow control mode so far, the adaptation of this layer is the first change that
needs to be made on the Bluetooth stack.

Above the L2CAP layer stands the new 6LoWPAN for Bluetooth low energy layer.
The 6LoWPAN layer has to be created completely from scratch, since the provided func-
tionality is nowhere available at Android. This layer contains the compression and decom-
pression of the IP header and the address configuration. IPv6 and the protocols above are
already supported by Android. It is either possible to use the functionality implemented in
Android, or to use other libraries offering these functions. In this thesis, we use the basic
functionality of Android. In case more specialized or sophisticated IPv6 functionality is
needed, existing Android libraries may be used.

4.3.1 Bluetooth Architecture in Android

To support IPv6 messages over BLE communications, the BLE connection needs to sup-
port credit-based flow control mode. To add this mode to the Bluetooth stack, access to
the L2CAP layer is required. Android versions from 1 until 4 are using the same Bluetooth
stack as Linux is using, the BlueZ [43]. With BlueZ, the access to the L2CAP layer from
the Android application layer is possible.

So the L2CAP connection settings can be changed to use a credit-based flow control
mode. However, starting from version 5, Android is using a new Bluetooth stack, called
Bluedroid. Android is supporting a stricter safety policy in each version, so the access
to the L2CAP layer of the Bluetooth stack gets denied from enabling the new Bluedroid
stack from version 5. To enable IPv6 over BLE, the L2CAP layer itself and the interfaces
to access the layer functions have to get changed.

The communication between the Android Application and the Bluetooth Stack is di-
vided into several steps. It crosses several layers of the software stack of Android, which
can be seen in Figure 4.3, and uses different interfaces to communicate between these
layers.

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 30

Figure 4.3: Bluetooth architecture of Android (adapted from [44]).

Vendor Extensions

On the bottom of the Android Bluetooth stack is the vendor extension layer. This layer
is optional and can be used by manufacturers to implement vendor-specific functionality,
extensions, or configuration for the BLE device. Manufacturers of Android devices can
change some configurations, make extensions, or reimplement some functions for a better
use of the product’s own properties. To support the modifications of the manufacturers,
the Android OS has an own location for these modifications with access to necessary
subsystems of the OS, which includes also the Bluetooth communication. An example
for a vendor extension is a so-called attention command for a Bluetooth Headset. This
command causes the Headset to interact with the smartphone, which means that, for
example, the battery level of the headset can be read out in order to show it at the OS
[45].

Bluetooth Stack

The Bluetooth Stack is located as second lowest layer in the Android Bluetooth archi-
tecture, above the optional “vendor extensions” layer. The existing Bluetooth stack of
Android entails an implementation for Classic Bluetooth and BLE. For our purpose we
use Bluetooth version 4.2 [46]. It is 250% faster and enables an up to ten times higher
packet capacity than version 4.1 [47]. The existing BLE stack does not support connection-
oriented channels with credit-based flow control mode. It also does not entail a 6LoWPAN
layer, which needs to be newly created. The stack is fully implemented with the program-
ming language C++. The stack is called from upper layers through the BLE hardware

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 31

abstraction layer, which also contains an interface to make the C++ functions available
from Java.

BLE Hardware Abstraction Layer (HAL)

The BLE HAL is located between the Bluetooth stack and the Bluetooth process. It
contains the interfaces of the Bluetooth stack (Bluetooth HAL interfaces) and of the Blue-
tooth profiles (Bluetooth profile HAL interfaces) inside the Bluetooth process layer. The
interfaces of the profiles get called by the Bluetooth stack, which calls into the Bluetooth
process layer through JNI. The interfaces of the stack get called by the Bluetooth services
and Bluetooth profiles through JNI.

Java Native Interface (JNI)

While the Android Bluetooth process is implemented in Java, the HAL is implemented in
C and C++. In order for these components to communicate, the Java Native Interface
(JNI) is used. JNI is necessary if other programming languages besides Java are used and
they are not provided by the standard Java class library. It is a clearly defined interface and
platform independent. It enables to call functions and can be called by other languages.
It is used to make calls into the HAL, to make calls from the HAL into the Bluetooth
process, and it receives callbacks from the HAL if special Bluetooth operations happen,
for example when devices are discovered.

Bluetooth Process

The Bluetooth process is located between the application framework and the HAL layer.
It communicates with the upper layer through Binder, and with the lower layer through
JNI. It consists of the Bluetooth service and the Bluetooth profiles.

The Bluetooth service communicates with the HAL through JNI and calls functions
from the Android framework. Since the service is a separate process, it has to communicate
with the app through an Android Binder, a component of the Android OS that provides
inter process communication (described below). For our purposes, we adjust the already
existing Bluetooth service. It gets created by the application and runs in the background,
even if the app is closed. It is also possible to start a service when the Android OS boots,
however, this is not necessary for our stack, because the IPv6-over-BLE connections can
only be established through the App, and therefore also the service gets initiated with it.

The service notifies the user about updates to the Bluetooth connection, such as con-
nection establishment and cancellation. The main part of the service is to forward all
received IPv6 packets from the Bluetooth devices to the Internet and vice versa. This can
be achieved by using the already existing implementation of the IPv6 layer in Android.
The service just needs to use it in combination with the existing Internet connection and
pass the IPv6 packets through the network interface.

All available BLE profiles like GATT or GAP are fully implemented in the original
Bluetooth stack. But IPv6 over BLE does not use BLE profiles and therefore no profile
is designated for this kind of application. The IPv6 module (which includes the ICMPv6
protocol) on top of the IPv6-over-BLE stack is sufficient.

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 32

As already mentioned, the Java Native Interface is used for the communication between
components that are implemented using different programming languages. To make calls
into the HAL layer and receive callbacks back from the HAL, the Bluetooth Service and
the Bluetooth Profiles are using JNI. They are also getting called by the Bluetooth Profile
HAL interfaces through JNI. For IPv6 over BLE only the original Bluetooth service uses
JNI, because the existing profiles are not used and no new profiles are created.

Binder

The communication between the application framework and the Bluetooth process takes
place through a Binder. The latter is a component of the Android OS that provides
inter-process communication. It enables different processes to execute procedures in other
processes. One needs to distinguish between client and server process. The server provides
the methods which can be called by the client. But with parameters and return values,
data can be passed in both directions. To make calls from the framework to the Bluetooth
service and vice versa, it is also necessary to use a Binder for these communication tasks.

Application Framework

The highest layer contains the Android application and the framework that entails the
function calls for the whole Bluetooth communication process. The Framework only calls
functions from the underlying layers and processes data which can then be used by the
application, and vice versa. The applications themselves are the top layer and the interface
to the users. They process, forward, and graphically prepare data. User applications, such
as the IPv6-over-BLE application, are installed on this layer only, and access to the lower
layers is restricted.

4.3.2 Structure of IPv6-over-BLE stack

The best structured integration of new layers would be to place them in the same location
as the original Bluetooth stack. This would require changes at nearly all layers of the
whole Bluetooth architecture. However, access to these layers is restricted, and normal
application developers do not have access to it. To make the according changes, full access
to the whole Bluetooth architecture is required.

Besides the official Android factory images, where the source code is restricted, there
exists the Android open source project, where the whole operating system is accessible
and changeable (described in Section 2.4). This project is also officially offered by Android
and contains nearly all functions of the same factory images, but it is open for regular
developers to make changes and add additional functions. However, a big disadvantage
of this changeable operating system is that, after every change to the system, the whole
OS needs to be flashed to the smartphone (or tablet), which resets the whole device. This
process is very time-consuming, especially when different devices other than the official
Google ones are used. Thereby, implementing the functionality of this thesis over the entire
Bluetooth architecture results in a high effort of setting up and using the implementation.
To avoid this effort and enable an easier usage (and thereby the higher spread of the
functionality), the use of an Android application alone to support IPv6 over BLE would
be preferable. This would significantly reduce the effort by simply installing the Android

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 33

application from the store or a third party source, without the need of resetting or rooting
the device.

To make the whole functionality work from the application layer, the Bluetooth L2CAP
layer must be accessible from the application itself. Since the only missing functionality of
the L2CAP layer is the credit-based flow control mode, it is best to implement this mode
directly on the layer, and add according interfaces to the remaining layers of the Bluetooth
architecture. By doing this, the application layer does not need to have access to L2CAP:
instead, it can simply use the providing interface of the application framework. Further
functions of the IPv6-over-BLE communication, starting with the 6LoWPAN layer, are
then easily implementable in the application.

Another reason for designing the whole 6LoWPAN layer and above layer functionality
inside the Android application is that, however, in Android 8 there is a solution for L2CAP
credit-based flow control mode. This solution is also not accessible from the application
layer. With a workaround, it is possible to use this function, if the developer knows where
it is and how to use it. The workaround is the so called

”
Java reflection“, which enables

the access of not public members and functions.
Java reflection is a feature inside the Java programming language, which enables access

to classes, interfaces, functions and members, which are declared private [48]. The purpose
of this feature is that a program can examine itself, also for executing software tests where
some members must be accessed and changed this tool can be used. For the IPv6-over-BLE
implementation this feature is being misused.

4.4 Challenges

This section lists the challenges of integrating an IPv6-over-BLE stack in Android. A
detailed description of how these challenges were tackled is provided in Chapter 5.

1. No support of L2CAP connection-oriented channel in credit-based flow
control mode in Android

The first challenge in creating the new IPv6-over-BLE communication stack in An-
droid is that BLE at Android has no support for L2CAP credit-based flow control
mode. Since the access to this layer is restricted for Android applications, this is the
main hurdle for using only an Android application for the whole IPv6-over-BLE im-
plementation. In order to add this mode to the L2CAP layer and make it accessible
via the application, almost all layers within the Android Bluetooth architecture must
be adapted and supplemented. This causes a lot more effort, because there are not
only different programming languages involved, but also technologies to interoperate
between these languages, layers, and processes, all of which have to be adjusted. To
access all layers of the Bluetooth architecture, the so called Android open source
project is used, where the developer has access to the whole operating system. After
changing, the whole OS has to be flashed on a device. For the version 7 of the AOSP,
which is comparable with the official version 7 of Android, an L2CAP credit-based
flow control mode implementation has been made open source by a developer. This
implementation fulfils the raw purpose of this L2CAP mode and can be used: only
small adaptations have to be made to access it from the Android application.

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 34

2. Access to L2CAP layer interface denied

The next challenge was that the access to the existing L2CAP credit-based flow con-
trol mode implementation was denied, because the function inside the application
framework was not public. There are two ways to solve this. The first way would
be to change the declaration of the corresponding function within the application
framework from private to public. However, with this solution, a normal application
developer would have to import the new application framework to build the applica-
tion code. The second way would be to use the private function with Java reflection.
The building of the application code works instantly, and the usage of the function
works too. If the application gets installed on another operating system, for example
the official Android 7, the Java reflection will throw an error because the required
function does not exist there.

In the official Android 8 operating system also an implementation of the L2CAP
credit-based flow control mode exists. However, this implementation has the same
problem as the implementation in AOSP 7: the function in the application framework
is declared private. The solution of changing the application framework does not
work for official Android versions, since the access to the application framework is
denied. Therefore, only the workaround with Java reflection works for using the
same application in Android 8.

3. Internet access not allowed from main thread

The third challenge is an Android restriction that does not allow the main thread
to access the Internet. In case of the border router functionality to forward packets
from and to the Internet, this restriction is a problem, but it can be solved easily:
creating a new thread to connect to the Internet.

4. Handling several IPv6-overBLE connections at the same time

Challenge number four is the handling of several connections in parallel. The 6LoW-
PAN and above layers are implemented inside the Android application, which means
the handling of the connection and the processing and forwarding of messages and
data is also placed inside it. To guarantee the fastest processing of messages and
handling of connections, each IPv6-over-BLE connection gets opened inside an own
thread. This guarantees no timing and processing problems when several devices are
connected simultaneous, and it implicitly solves the challenge of restricted Internet
access from the main thread.

5. IPv6-supported Internet connection

The last challenge can be the IPv6 connection from the border router device to the
Internet. This is actually not a problem of the design of the application, but rather
of the Internet service provider or the cellular network. When WiFi is used, both
the Internet service provider and the Internet router must support IPv6. If LTE
is used for Internet access, some adjustments of the LTE properties of the Android
device have to be made. Also the mobile radio provider must support IPv6. If there

CHAPTER 4. CREATING AN IPV6-OVER-BLE STACK FOR ANDROID OS 35

is no support for IPv6, there are also some ways to still enable IPv6 communication,
for example by using an IPv6 tunnel.

Table 4.1 summarizes the challenges and lists the possible solutions for two different
Android versions: Android Open Source Project 7 (AOSP 7) and Android 8.

Challenge Possible Solution

1) Missing L2CAP CoC support in
Android

AOSP 7: Offers full access to BLE stack
Android 8: Hidden L2CAP CoC support

2) Access to L2CAP interface denied AOSP 7: Make interface public,
or use Java Reflection to access interface
Android 8: Use Java Reflection to access
interface

3) Internet access not allowed from
main thread

Create new thread to connect to Internet

4) Support several IPv6-over-BLE con-
nections simultaneously

Create new thread for each connection

5) IPv6-supported Internet connection Use appropriate ISP or mobile radio provider
which supports IPv6,
or use IPv6 tunnel

Table 4.1: Challenges of the IPv6-over-BLE integration into Android.

Chapter 5

Implementation

This chapter describes the implementation and all steps that are necessary to enable an
IPv6-over-BLE communication on an Android-based smartphone, as discussed in Chapter
4. Section 5.1 lists the features of the IPv6-over-BLE implementation. Section 5.2 shows
the implemented changes to the Bluetooth stack, both with and without direct changes
inside the Android OS. Section 5.3.2 discusses the Android application itself, which con-
tains the interface to the user and controls the IPv6-over-BLE connection. Section 5.4
describes the challenges that were showing up during all parts of the implementation.
Finally, Section 5.5 presents the possibility to use this implementation on other Android
OS versions, in addition to the two presented in this thesis.

5.1 Features

This section lists the features of the IPv6-over-BLE implementation in Android.

� Re-use of existing Android components

The existing Bluetooth stack of Android does not need to get recreated from scratch,
only up from the L2CAP layer. This layer, and all layers below, can be shared. This
includes the device discovery, connection establishment, and the packet fragmenta-
tion. Also the whole existing Bluetooth stack can be used in parallel by GATT-based
applications.

� Standard - compliant support for IPv6 over BLE

The application is designed to support the standard features of IPv6 over BLE. This
includes the connection establishment, the router functionality, routing, and routing
to the Internet. The support of this functionality includes header compression and
packet fragmentation.

� Compatible with existing Bluetooth functionality

The implementation of this thesis is compliant to the standard RFC 7668 [6]. This
means it contains the functionality for setting up an IPv6-over-BLE connection and
exchanging IPv6 packets through this connection. It is fully interoperable with
compliant node devices and routers.

36

CHAPTER 5. IMPLEMENTATION 37

� No rooting of phone

One approach to make the IPv6-over-BLE application runnable on the smartphone,
is to make the necessary changes inside the Bluetooth stack of the Android operating
system and flash this OS to the phone. The other approach is to use the Android
8 factory image, which supports greater access to the Bluetooth stack from the ap-
plication layer, whereby the application works without changes inside the Bluetooth
stack. For flashing the OS, the bootloader of the smartphone must get unlocked,
which is a straightforward console command. After flashing, the application must
get installed to use the IPv6-over-BLE functionality. For the second approach, only
the application must get installed at a smartphone with Android 8 on it.

5.2 Communication Stack

This section lists the changes and additions to the Bluetooth stack in general, as well as
the changes specific to each version of Android.

5.2.1 Bluetooth Stack

As described in Section 4.1.1, the physical layer and the link layer can be simply reused.
The L2CAP layer must support the credit-based flow control mode. This mode is imple-
mented in Android, which means also the L2CAP layer can be reused. The next layer is
6LoWPAN for BLE, which has to be created from scratch.

Since the fragmentation and reassembly of packets gets executed on the L2CAP layer,
only the compression and decompression of the IPv6 header must be implemented for the
6LoWPAN layer. The header compression is described in detail in Section 2.2.

6LoWPAN receives the reassembled packets from the L2CAP socket. The Bluetooth
socket creation and connection setup is described in Section 5.2.2 below. The first step is
to parse the first two bytes, they contain the IPHC base encoding. If an additional context
encoding is appended, a third byte needs to be parsed. Because of the information gained
from the base encoding, all IPv6 header fields can be restored. Either the field is carried
fully in-line directly behind the base header, the field is partially elided so that only a
part of it is carried in-line, or the field is fully elided. After the IPv6 header fields are
decompressed, the next header fields can be decompressed and processed. In case of
ICMPv6, the next header is not compressed. The handled UDP header is compressed
and, therefore, decompressed and parsed accordingly. The current implementation of
6LoWPAN only supports UDP header compression, which is the most popular transport
protocol for 6LoWPAN applications. Adding support for other transport protocols and
extension header fields is part of future work. No further message types are required for the
experiments in this thesis, but can be enhanced easily inside the decompress and parsing
methods because they are designed for extensions. The remaining part of the message can
be considered as payload. No further decompression is needed, and further processing is
part of the according layers.

CHAPTER 5. IMPLEMENTATION 38

5.2.2 Integration In Android

To integrate the new Bluetooth stack into Android, the binding between the existing, the
reused layers, and the new layers is important. In this case, the binding element is the
L2CAP layer: this layer and all layers below can be reused. The access to this layer is
different between Android Open Source Project version 7 and Android 8.

Android Open Source Project version 7

As already mentioned, the only necessary change in the L2CAP layer is the activation of
the connection-oriented channel in credit-based flow control mode. As mentioned above,
standard Android 7 does not support this feature of L2CAP. The Android Open Source
Project, however, implements this support [15]. Nevertheless, the implementation is hid-
den per default and therefore not accessible from the Android app. There are two possi-
bilities to make the L2CAP connection-oriented channel usable.

The first possibility is to change the accessibility of the L2CAP function and change
it to public, so that it is accessible from Android applications. This function creates an
L2CAP server socket, which entails the connection-oriented channel in credit-based flow
control mode. However, making this function accessible, which is a change in the interface
between Android applications and application framework, results also in additional effort
while programming the application itself. To be able to compile the programmed appli-
cation with the use of this new function, an Android SDK must be used, which includes
this function. Since the official SDK for Android 7 does not include this function, a new
advanced SDK must be generated from the modified Android Open Source Project. This
is then integrated into the development environment and ensures that the application can
compile using the L2CAP Connection Oriented Channel (CoC) socket function and works
on the smartphone with AOSP 7.

The second possibility is to use Java Reflection to access the non public function of the
L2CAP layer. By using this, the Android Open Source Project can be flashed onto the
device directly without any changes. This reduces the effort enormously, not only because
the interface does not have to be changed, but also because the effort of generating and
including the changed SDK is completely eliminated. To use Java reflection, the method
name and parameters of the hidden function must be known, because the function is
not supported by the SDK, and therefore not known by the IDE when programming the
application.

Regardless if the first or the second option gets used, when calling the function in
the Android application, a Bluetooth socket with the parametrization of an L2CAP
connection-oriented channel in credit-based flow control mode is returned. This Blue-
tooth socket gets used to enable a connection to a suitable Bluetooth device, which has to
accept the connection request. A hexadecimal value must also be passed to the function,
which specifies the protocol to be supported. For this implementation, this is the value
0x20023. It results from the L2CAP mask for LE Connection Oriented Channels 0x20000,
and from the value for the Internet Protocol Support Profile 0x0023 [49]. IPSP defines the
communication between nodes and routers with IPv6 over BLE. It helps to find compatible
devices which also support this kind of communication. The protocol service multiplexer

CHAPTER 5. IMPLEMENTATION 39

(PSM) uses this value to distinguish between the protocols. This allows the IPSP data to
be processed in the application.

When scanning for available BLE devices in the environment, also the supported Blue-
tooth profiles are visible. So in this case, it is possible to filter devices which support IPv6-
over-BLE communication, because the IPSP protocol is included in the advertisements.
But it is not absolutely necessary to filter the available devices according to that, because
if they do not support it, the connection establishment fails anyway.

Android 8

In the official factory image of Android 8, the functionality of establishing an L2CAP
connection-oriented channel in credit-based flow control mode is implemented, but it is
also not accessible to the normal Android application. Since the source code of the fac-
tory images is not accessible, this functionality cannot be made visible to the Android
application.

The hidden interface can be accessed using Java reflection, just like AOSP 7, although
the function names differ. In AOSP 7 it is named createL2capSocket, in Android 8
it is called createInsecureL2capSocket. The function parameter is the same, i.e., the
hexadezimal value of the IPSP protocol. This means that the same Android application
can be used like in the Android Open Source Project, and only the function name has
to get exchanged. In Android applications it is possible to check for API levels. Every
Android version and subversion has its own API level. It is not possible to check whether
it is an official factory image, or a version of the open source project, but it is possible to
generally check for the API level. This means it is possible to differ Android version 7 and
Android version 8, and call the corresponding L2CAP function for each Android version.
At the official factory image of Android 7 this would still not work, but, with this, it is
possible to support these different OS versions with just one Android application.

Comparison

Comparing the two used operating systems shows various advantages of the respective
versions. The official factory image of Android version 8 supports more manufacturers
and devices, and the effort of enabling IPv6-over-BLE communication is quite smaller
than when using AOSP 7. With a device supporting Android 8, the user just needs to
install the developed application, provided the device supports at least BLE version 4.0.
There is no need to root the device or to install a modified OS. With AOSP 7, the effort
involved in downloading, changing, building, and flashing the OS is considerably greater.
However, this OS version offers a possibility that is not feasible with Android 8. Since
the entire source code of the operating system is accessible, also additional connection
parameters for the L2CAP CoC are changeable: the maximum payload size and the credit
size. At the implementation at AOSP 7 and Android 8, these parameters cannot be
changed via the interface, and the default values are very low, at 27 bytes MPS and credit
size 1.

CHAPTER 5. IMPLEMENTATION 40

Figure 5.1: Design preview of the Android application with only necessary features, a
scrollable list which gets updated only once at the beginning, and a button to connect to
the selected device.

5.3 Android Application

5.3.1 Design

The main tasks of the Android application are the interface to the user and the control
of connections. The connection handling includes the listing of available devices, the
initiating of the connection establishment, and the automatic connection setup. It also
informs the user about the connection state, and the user can decide how established
connections should be used, or terminate the connections. The application enables also
routing between connected devices, and routing to the Internet. This thesis presents an
app that implements all necessary features to support IPv6 over BLE. Due to the seamless
integration of all IPv6-over-BLE components into Android, other developers can easily use
these components to create more sophisticated apps.

Necessary features (Figure 5.1):

� List of devices: After scanning the Bluetooth signals, the application should generate
a list of available Bluetooth devices in the proximity. Either the application generates
a list with all devices, and the items which support IPSS are denoted separately, or
a list containing only the devices which support IPSS. All listed items are touchable,
to select the device to which the user wants to connect with.

� Connect button: After selecting one device, the user has to push the connect button
to start the connection establishment. Inside this application, only the IPv6-over-
BLE connection is valid. If the connection setup fails, the whole connection so far
gets aborted.

CHAPTER 5. IMPLEMENTATION 41

Optional features (Figure 5.2):

� Refresh button: After starting the application, it automatically searches for Blue-
tooth devices in the proximity. The search duration is about a few seconds. After
that, the resulted device list stays constant and does not change anymore. The re-
fresh button starts a new search for Bluetooth devices, adds new discovered devices
and removes devices that are no longer available.

� Disconnect button: After selecting a device, the user has to push the disconnect
button to terminate the connection to this device. Without this button, either the
node has to terminate the connection, or the whole application must be closed.

� Highlight selected device: After listing the available devices, the user can select one
of them to which the device should connect. By touching the item from the list,
this device gets the current selected one. To show the user that the selection was
successful, and to which device a connection will be established, the item is marked
in color. Before manually starting the connection setup, the user can change his
choice by just touching another item from the list.

� Highlight connection status: To inform the user if the connection is either not estab-
lished, currently established, or the device is already connected. Only IPv6-over-BLE
connections are supported.

� Prefix text field: The used prefix for public IPv6 addresses can be directly set by
the user. For the testcases a hardcoded value would be sufficient, but it is more user
friendly and sustainable to set the prefix directly at the user interface.

� Enabling Bluetooth reminder: If the application starts and Bluetooth is not yet
activated, this is a possible error source, and besides that, also annoying. To avoid
that, a simple dialog should occur after starting the application, if Bluetooth is not
activated. It simply offers the Bluetooth activation and avoids that the user have to
do it manually.

To test the IPv6-over-BLE implementation, also the UDP echo server application has
to be included. The echo server application mirrors received UDP packets, which are
received by the application, and are addressed to this device. If the address belongs to
another device, the router functionality should forward the packets to the real target, if
a connection to it is established by the router. Otherwise, an error message will occur
notifying that the target is not known. The echo server functionality is independent
from the user interface, since it is only automatically used if the node device is using the
corresponding UDP echo client application. If the node sends other IPv6 packets, such as
an ICMPv6 echo request, the router processes it normally and answers with an according
ICMPv6 echo response.

5.3.2 Implementation

This section presents the Android application, more precisely how the user interface and
the connection control have been implemented. The usage of the L2CAP layer and the
implementation of the above layers are already described above in Section 5.2.1 and 5.2.2.

CHAPTER 5. IMPLEMENTATION 42

Figure 5.2: Design preview of the Android application with optional features besides the
necessary ones. The GUI contains a refresh button, a button to disconnect from the
selected device if it is connected, a field for entering IPv6 prefix, and a colored status
information field for the connection: grey means not connected, orange means connection
setup in progress, and green means IPv6-over-BLE connection enabled.

To support AOSP 7 and Android 8 with the exact same application, only the connec-
tion setup needs to differ between Android versions. The layers above L2CAP, the user
interface, the connection handling, threading, routing, and Internet routing are working
equally for both OS versions.

To be able to support all functions, the application needs several permissions [50].
First of all, the BLUETOOTH permission, which allows the application to connect to
paired Bluetooth devices, is needed. Furthermore, the permission BLUETOOTH ADMIN
allows the application to discover and pair with Bluetooth devices. Additional to Blue-
tooth also the ACCESS COARSE LOCATION permission is used, because of the possible
approximate location determination with Bluetooth. Also ACCESS NETWORK STATE
is used to access information about networks, like connection state in Bluetooth. Finally,
the INTERNET permission to access the Internet is necessary.

The main thread of the application creates the user interface and checks if Bluetooth is
switched on. If it is not, the user is asked via a dialog to activate it. The user interface is
constructed with one page and basic functionality to show the feasibility of an IPv6-over-
BLE application on Android. The interface contains a list of available BLE devices in close
proximity. This list is automatically filtered and only shows devices that offer the IPSP
protocol, which means that they support IPv6 over BLE. When scanning available BLE
devices in the proximity, the advertising data contains UUIDs of the supported Bluetooth
GATT services of the advertising devices, including IPSS.

CHAPTER 5. IMPLEMENTATION 43

Figure 5.3: Screenshot of the app’s user interface with two devices in proximity.

If the list contains more items than the screen can show, it becomes scrollable. The
items of the list are selectable: each item shows the device name and Bluetooth device
address, with the currently selected item highlighted in color. If the connection to a device
is established, a green icon occurs besides the according item inside the list. The next
important part of the interface is the Connect button. Pushing this button initiates a
connection setup between the remote device and the smartphone. The only other button
in the interface is the Refresh button. The list of available BLE devices in the proximity
is generated after the launch of the application. The first proximity scanning is executed
right after the launch. After that, the scan for BLE devices, and therefore the update of
the device list, gets only executed when the Refresh button is pressed. The last part of the
interface is the prefix field, which contains the IPv6 prefix that can be entered manually
by the user.

The user interface hence contains basic functionality for establishing IPv6-over-BLE
connections and handling of data received through it. As mentioned in Section 5.3, there
are necessary features and optional features. The necessary features that have been imple-
mented are the list of available devices and the connect button. The interactions regarding
the connections themselves are basic. The connection establishment can be initiated, and
a successful establishment results in showing a green status icon. No further actions on the
connections are necessary. If the connection terminates, the green icon inside the device
list disappears. These features are sufficient for the experiments.

When initiating the user interface, the callback functions of the buttons get assigned.
The callback function of the Connect button does not only initiate an IPv6-over-BLE
connection setup, but it also creates a new thread where this connection initiation takes
place. This thread gets then inserted into the routing table, which is a list of all connected

CHAPTER 5. IMPLEMENTATION 44

Figure 5.4: Screenshot of the app’s user interface with two devices in proximity, one is
selected, and the connection is established.

devices with the according addresses and threads.
This implementation also supports IPv6 routing functionality, both inside the BLE

subnet and between the BLE network and the Internet. After restoring the destination
address of incoming packets, the application needs to differ between messages targeting
the router device itself, or messages with a different destination, using the smartphone as
router. If the target is inside the BLE subnet, the routing table is used to forward the
message through the right Bluetooth socket to the associated Bluetooth device. But if the
target address is not inside the BLE network, the smartphone has to forward the message
to the Internet. Provided there is an active Internet connection that is IPv6 capable, the
message will be forwarded accordingly. Otherwise an error message is sent back.

To ensure the functionality required for the experiments, an UDP echo client program
is implemented using the UDP layer. This program is only used if an UDP packet with
the target address of the smartphone is received. Then the received packet gets answered
with a message targeting the sender of this received packet with the same payload. This
program is implemented encapsulated, which means it can easily be replaced by another
application.

5.4 Implementation Challenges

This section discusses the challenges that were faced while implementing the designed
application. Challenges which already came up when creating the IPv6-over-BLE stack
for Android in Section 4.4 are not entailed. The main challenges that emerged are:

� Lack of Documentation of Android Open Source Project;

CHAPTER 5. IMPLEMENTATION 45

� Configuration of the BLE connection parameters;

Android Open Source Project

Using the Android Open Source Project means using the source code of the whole oper-
ating system of Android. Since the documentation of the operating system itself and the
documentation of the code is very crude, this includes a lot of read-in and testing. During
research and read-in into the code, it became clear that an implementation of an L2CAP
CoC for the AOSP had already been developed by an open source developer. However,
this implementation is not accessible from the application layer, so it is not directly usable
from an Android application. There were two possible solutions for that problem: make
this existing implementation public or use Java reflection. Making it public results in
changes of the interface inside the framework, and therefore inside the software develop-
ment kit. For official Android application development within an intelligent development
environment (IDE), the official application framework for the supported Android version
is used to ease the development and to build the code. So if the framework gets changed,
the IDE also have to include the new changed SDK for developing and building the code
according to the new version. By comparing both possibilities, Java reflection has more
advantages.

The research showed that the official factory image of Android version 8 also contains
an L2CAP CoC implementation, which is also hidden from the application layer. Same
as AOSP 7, the hidden interface can be accessed using Java reflection. So after Android
versions 5, 6, and 7, which were not supporting this functionality to enable IPv6 over
BLE, AOSP version 7 and the official factory image version 8 were suitable to implement
IPv6-over-BLE support.

BLE Connection Parameters

There are several parameters that influence the energy-efficiency and timeliness of the
whole connection. When creating the BLE connection, certain parameters can be set, and
also when setting up the L2CAP CoC connection. The connection interval can be set by
the node device during the BLE connection establishment.

When setting up the L2CAP CoC the credit size and maximum payload size values
are set by the router device. But the interface for creating the L2CAP Bluetooth socket
does not take these parameters to be set at connection establishment, instead always
the standard values of credit size 1 and MPS 27 bytes are used, which are improvable
considering the efficiency. In Android version 8 these values are not changeable, since the
access to the L2CAP layer implementation is restricted. But in the Android Open Source
Project full access to all layers is given, which means that the values are changeable and
the connection can be made more efficient.

5.5 Portability

This section provides an overview on how to use this implementation of the IPv6-over-BLE
communication on other versions of the Android operating system.

CHAPTER 5. IMPLEMENTATION 46

This implementation is working for the Bluetooth architectures of AOSP version 7 and
the factory image of Android 8. The application itself works for both versions, and does
not need to be adapted to work for one or the other. It checks the Android version and
uses the according connection setup with credit-based flow control mode. The application
should continue to run for newer versions of Android, because newer versions support
applications of older API versions.

The application can be divided into several parts: the user interface, the thread han-
dling for the connections, the establishment of an L2CAP CoC in credit-based flow control
mode, the header compression, the tasks of layers above 6LoWPAN like neighbor discov-
ery, router discovery, and the functionality of layers above IPv6 like the UDP echo server
application. The L2CAP connection establishment is important for portability, and it
must be differentiated for each Android version. For the newer Android versions, i.e., ver-
sion 9 and version 10, the L2CAP function call would have to be adapted to establish the
connection. Either this function is implemented in the new versions and is also officially
supported, or it is implemented but not public accessible like in version 8. If this function
is not implemented in the newer versions, only the use of the Android Open Source Project
for these Android versions remains. Either the implementation of version 7 or 8 is reused
in the AOSP, or it has been newly implemented by other open source developers. If this
is not the case, it is possible to implement this functionality from scratch in the newer
versions in the AOSP.

No matter which of these options are used, the application itself only needs to be
adapted to the function call for the L2CAP connection. The other parts of the application
mentioned above should then be able to be used again without any problems.

Chapter 6

Evaluation

This chapter contains the evaluation of the IPv6-over-BLE implementation in Android 7
Open Source Project, as well as in Android 8. It is subdivided into several experiments,
where the first one, Section 6.1, contains the comparison between router devices and OS
versions. One node, for which the round trip time and the average power consumption are
measured, is connected to the router device. In addition, Section 6.2 analyses the effect
of the parameters maximum payload size and credits on the round trip time. Section 6.3
describes the experiment with several nodes connected simultaneous. Section 6.4 describes
the Routing between two nodes inside the BLE subnet. Further measurements are made in
Section 6.5 at a Long-Time Experiment to check energy and memory behaviour, at using
another GATT based application in parallel in Section 6.6, and at connecting a node to
the Internet by using the Android device as a Border Router in Section 6.7.

6.1 Energy Consumption and Timeliness

This connection measurements contain one node device (slave) and one router device
(master). The programs running on these devices are UDP echo server (router) and UDP
echo client (node). The echo server application listens for incoming UDP packets with a
UDP message size of 8 or 512 bytes and sends them back. The echo client application
generates packets and sends them, waits for the packets to be sent back, and verifies if the
data is the same.

6.1.1 Experimental Target

The targets of these tests are the successful connection establishment and data transmis-
sion, and the comparison between the Android versions, different Android devices, and
the existing IPv6-over-BLE solution of Linux. The comparison parameters are the average
power consumption, the round trip time, and the packet reception rate.

6.1.2 Experimental Setup

The setup used for this experiment is shown in Figure 6.1. It contains the node device
Nordic Semiconductor nRF52840-DK with BLE version 5.0 and has the UDP echo client
application on it. The operating system on the node device is Zephyr. As router device,

47

CHAPTER 6. EVALUATION 48

Figure 6.1: Network topology for the connection measurement.

an LG Nexus 5X smartphone with a Bluetooth 4.2 chip is used, which contains the UDP
echo server application as part of the Android application.

The average power consumption gets measured on the nRF52840-DK with a Monsoon
Power Monitor [51]. To get an accurate measurement, all unnecessary features, such as
logging, are deactivated. The round trip time gets also measured at the node device, the
latency between sending and receiving UDP packets gets calculated inside the UDP echo
client application.

As described in Section 5.2.2, in the AOSP 7 implementation, the parameters MPS
and credits can be increased, the default values are 23 bytes maximum payload size and
credit size 1. With the AOSP 7 implementation the standard values (MPS 23, credits
1), as well as the modified values (MPS 123, credits 10) gets compared. For the Android
8 version of the implementation, only the standard values can be used. As additional
Android device, also the Samsung Galaxy Tab S3 tablet with a Bluetooth 4.2 chip and
Android 8 on it gets added to the test set. The maximum link layer packet length of
the smartphone LG Nexus 5X, of the tablet Samsung Galaxy Tab S3, and of the Nordic
Semiconductors nRF52840-DK sensor node is 251 bytes. The maximum link layer packet
length of the Raspberry Pi 4 Model B is 27 bytes. Baseline values for the results from
the Android devices are the measurement results of the IPv6-over-BLE implementation in
Linux, executed on a Raspberry Pi 4 Model B with a Bluetooth 5 chip.

6.1.3 Result and Analysis

Figure 6.3 shows the measured average power consumption of the nRF52 node in milliwatt.
The different bar colors show the different BLE devices used as border router. The node
is connected to one border router at a time (see Figure 6.2). The different payload length
(PL) and connection interval (CI) settings are shown on the x-axis. The figure shows
the average power consumption values over two minutes for every device version and
combination of packet length / connection interval. Each iteration was repeated three
times.

As the values show, a shorter connection interval consumes more power than a longer
connection interval, since it results in a longer active time of the BLE radio in total. Re-
garding the packet length, a shorter packet length consumes less power at the experiments
with the Rasperry Pi, and the AOSP 7 with enhanced connection parameters as border
routers. These two devices have higher MPS and credit values, which results into a higher
data transmission rate, and therefore a higher power consumption. In opposite, the Nexus
5X devices with AOSP 7, Android 8, and the Samsung tablet with Android 8 consume less

CHAPTER 6. EVALUATION 49

Figure 6.2: Connection test setup with Nordic Semiconductors nRF52840-DK as node
device. As router device the LG Nexus 5X, Samsung Galaxy Tab S3 tablet, and the
Raspberry Pi 4 Model B are used. For each experimental session only one router is
connected to the node device.

Figure 6.3: Average Power Consumption of the node device connected to the according
router device.

CHAPTER 6. EVALUATION 50

Figure 6.4: Round trip time of the UDP messages sent by the node device to the according
router device.

power when transmitting longer packets. The reason for that are the low MPS and credit
values. When transmitting packets bigger than the maximum payload size, the fragmen-
tation needs a credit amount higher than 1. When using the flow control credit command
to increase credits, it gets send in the next connection event, and the next fragmented
packet is sent in the connection event after it. This results in a significant longer round
trip time, but also decreases the power consumption.

Figure 6.4 shows the measured round trip time in milliseconds for the same experintal
setting. Combinations of packet length / connection interval, and devices with OS are the
same as in Figure 6.3.

In contrast to the power consumption, the RTT is shorter at smaller packet lengths,
and also shorter at smaller connection intervals, since longer active time increases the
throughput of data. So the minimum RTT occurs at small packet length and short con-
nection interval, and the maximum RTT occurs at big packet length and long connection
interval.

Independently of length of packets and connection intervals, the packet reception rate
is 100% in every testcase.

In the implementation for AOSP 7 and Android 8, all sent packets are mirrored cor-
rectly by the router and received by the node. The UDP echo client program provided by
Zephyr can be seen as RFC7668 compliant and fully functional, so the acceptance of the
mirrored UDP messages is the additional proof of the successful connection setup, receiving
and sending of packets, IP header compression, and next header compression. Therefore,

CHAPTER 6. EVALUATION 51

the Android implementation is fully interoperable with other RFC 7668-conform imple-
mentations.

The same assumption can be made based on the similarities between the measurement
results of this implementation and the IPv6-over-BLE implementation in the Raspberry Pi.
In the testcases with packet length 8 bytes, all implementations are nearly the same with
only a small dispersion of maximum 17 ms. The differences between these implementations
are the credit-size of the packet transmissions, the MPS size, and the link-layer maximum
packet size. But in the testcases with short packet length these differences are not time
relevant. At longer packet lengths or longer connection intervals, the measured RTT is up
to 5 times longer than the RTT at the Raspberry Pi. The only implementation where the
values are lower is the modified AOSP 7 version. The explanation about the differences of
the RTT values is the difference of the credits and the MPS values. With AOSP 7 the credit
size was set to 10 and the MPS to 123 bytes. When using the Raspberry Pi, the credit size
was set to 6 and the MPS was set to 230 bytes. Lower credit values result in additional
requests for more credits, which means more messages need to be transmitted and more
connection intervals are necessary. Lower MPS values or lower link layer packet lengths
result in more packets to transmit: therefore, more connection intervals are necessary.
The comparison between different MPS and credit values are described in Section 6.2.

Furthermore, it can be seen that the use of the same implementation on different
devices (i.e., the Android 8 version on the Nexus 5X and on the Samsung Galaxy Tab S3
tablet) does not make a difference. Also using different OS with the same implementation
(i.e., in the AOSP 7 or the Android 8 version) does not result in different RTT values.

In the average power consumption analysis the results are similar compared with the
results of the RTT measurements. With short packet length the average power consump-
tion is higher than the consumption with the Raspberry Pi, but with long packet length
the average power consumption is lower than with the Raspberry Pi. The reason for that
behaviour is the same: the difference with the credits and MPS values. The proof for that
is again the better measurement results at the improved AOSP 7 version. The highest
value was measured at the improved AOSP 7 version at 512 bytes packet length and 45 ms
connection interval. Because of the high MPS value and the big credit size, more bytes can
be transmitted compared with the other Android versions, i.e., more bytes are transmitted
over the same time. Compared with the Raspberry Pi, the bigger value of the maximum
link layer packet size, 251 instead of 27 bytes, enables a higher data transmission. This
can also be seen in the round trip time values of the same packet length and connection
interval of the improved AOSP 7 version and the Raspberry Pi, which is with 138,76 ms
only a third of the RTT of the Raspberry Pi with 497,88 ms.

Possible differences between devices are also not noticeable, and the same between the
Android OS versions with the same implementation.

6.2 Comparing MPS and Credit Parameters

In AOSP7 and Android 8 the default values of credits and MPS are set to 1 and 23,
and they are not changeable in Android 8. However, by using the AOSP, as described in
Section 5.2.2, these values are changeable.

CHAPTER 6. EVALUATION 52

6.2.1 Experimental Target

The target of this test is to show the differences in the combinations of the MPS and credit
values, and displays which RTT and power consumption values result from the parameter
changes.

6.2.2 Experimental Setup

The setup for this test is the same as for the test in Section 6.1, and can be seen in
Figure 6.1 and 6.2. However, only the Nexus 5X smartphone is used, as it is possible as
a Google device to flash the AOSP on it, and the changes of the MPS and credit values
are only changeable at the AOSP. The used packet length is 512 bytes long, and the used
connection interval measures 125 ms. The maximum link layer packet size of the Bluetooth
low energy version of the LG Nexus 5X is 251 bytes.

6.2.3 Result and Analysis

The results for this experiment can be seen in Figure 6.5 and 6.6. When using a MPS
of 23 bytes, the whole UDP packet with length of 512 bytes gets fragmented into a high
number of fragments. Therefore, the power consumption is higher with credit size 10,
because there are more fragments which gets transmitted in one connection event. When
using credit size two, only two fragments are sent within one connection event.

When using a MPS of 123 bytes, the usage of credit size 2 results in even a higher
power consumption than the credit size 10. The reason for this is the disadvantageous
assignment of the fragmented packets to the connection events. Since the round trip time
when using credit size 2 is almost the same as when using credit size 10, the assignment
of fragments to the connection events is the same. Therefore, the reason for this increased
power consumption when using credit size 2 is the additional flow control credit command.
This command must be sent because the UDP packet length of 512 bytes when using a
MPS of 123 bytes leads to more than 2 fragments.

When using a MPS of 256 or 512 bytes, the power consumption is nearly identical. The
reason for that behaviour is that the fragmentation of the 512 bytes long UDP packet and
the long connection intervals of 125 ms. This is to be expected, as the overall BLE radio
time does not change significantly for different MPS and credit values. With higher credits
and/or MPS, more bytes are sent during a connection event (lower round trip time), but
the average power consumption does not change significantly. The spread amounts at
most 0.16 mW, and is on average very close to each other, between 0.01 and 0.07 mW.
Overall, the similarity of the values is as expected, and the differences are comparable low
and therefore negligible.

Between the credit cases, 2 and 10, there are no significant differences in any testcase,
neither at the round trip time, nor at the average power consumption in this scenario.
But at the average round trip time there is one testcase that strikes: the one with MPS
23 bytes. Since 23 MPS is the original value, the only difference compared to the original
configuration at AOSP 7 is the changed credit value, 2 or 10, instead of 1. As expected,
the RTT value of the original configuration in AOSP 7 (with credit size 1 and 23 bytes
MPS, testcase with PL 512 bytes and CI 125 ms on the right side in Figure 6.4) is about
15 times higher than the RTT value with the same MPS but with a higher amount of

CHAPTER 6. EVALUATION 53

Figure 6.5: Average power ponsumption of the node device connected to the router, with
different MPS and credit values. Results are measured in milliwatt.

Figure 6.6: Round trip time of the UDP messages sent by the node device to the router,
with different MPS and credit values. Results are measured as milliseconds.

CHAPTER 6. EVALUATION 54

Figure 6.7: Network topology for parallel nodes usage measurements.

credits. So the more effective parameter change is the increasing of the credit size. The
increasing of the maximum payload size also decreases the round trip time, but it is not
that effective in this setting. With the higher MPS of 123 instead of 23 bytes, the RTT
decreases about a third, but further increases are not noticeable at the round trip time
values. This can be attributed to the long connection interval of 125 ms and the packet
length of 512 bytes. A longer packet length, or a shorter connection interval would make
a difference in the resulting RTT values with higher maximum payload sizes.

6.3 Scalability

This section describes the simultaneous connection of up to eight nodes to the Android
device used as IPv6-over-BLE router. It shows the limitations of the Bluetooth radio and
the routing implementation, and the possible disadvantages.

6.3.1 Experimental Target

The target of this test session is to prove that connecting several nodes simultaneously is
possible, and to investigate how many devices can be connected. Additionally the workload
of the Bluetooth radio and the application, the limitations of the Android device resources,
as well as the effect on the BLE connections themselves are analysed.

6.3.2 Experimental Setup

Again, the LG Nexus 5X with OS Android 8 is used. The IPv6-over-BLE application is
running on it, and the own version of the UDP echo server program. The node devices

CHAPTER 6. EVALUATION 55

consist of the Nordic Semiconductors nRF52840 DK with the UDP echo client program
on each of them. At each node device, the PRR is measured. To receive a baseline value,
the first tests were run with only one connected node. After that, further tests were run
with two, four, and eight nodes. For each node number, the runs were made three times.

6.3.3 Result and Analysis

The results of this test session can be seen in Table 6.1 and Figure 6.8. The connection
with only one node device can be seen as baseline value for a better comparison with a
higher number of node devices.

The main limitation for parallel connected devices comes from the Android Bluetooth
Stack Bluedroid. Because of the latter, only seven concurrent active synchronous connec-
tions are possible. If the application tries to establish a BLE connection with an eight
device, the most recent connection establishment does not succeed.

1 2 4 8 (7)

PRR 100% 100% 100% 100%

Memory 61.6 - 62.4 MB 62.6 - 66.1 MB 63.4 - 65.3 MB 62.8 - 66.2 MB

Energy 15 - 25% 15 - 30% 30% 30 - 45%

Table 6.1: Results of the usage of several nodes in parallel connected to the same router
inside one BLE subnet. Memory and energy were measured on the Android smartphone.

In relation to the round trip time, the values are only slightly higher if more than one
node is connected. But between 2 and 7 nodes the is no latency increase noticeable. The
PRR stays the same for every number of devices. Even with a large number of devices,
the Bluetooth reliability remains the same which is to be expected, because simultaneous
BLE connections of the same device do not affect each other. The energy consumption
and memory usage are measured at the smartphone. These values indicate the efficiency
of the implementation, and if it contains any memory leaks. The energy usage is measured
by the Energy Profiler, provided by the Android Studio, which is the IDE for Android
development. This profiler does not directly measure the energy consumptions: instead,
it uses a model that estimates the energy consumption for each process running on the
device.

The memory consumption on the smartphone is measured by the Memory Profiler,
provided by the IDE Android Studio. The memory consumption on the smartphone only
slightly increases with the increasing number of devices. The higher number of active BLE
connections, and therefore the bigger routing table, is not that memory consuming.

The measured energy consumption belongs completely to the IPv6-over-BLE applica-
tion, since no other processes are running, neither in the foreground, nor in the background.
The increase in energy consumption can be attributed to the higher performance of the
BLE radio. When communicating with more than one device at once, the active time of
the bluetooth radio increases accordingly. Since the memory usage is only slightly higher,
the power consumption of the memory and the computational power consumption are not
the main reason for the increase.

The low energy and memory consumption do not influence the resource availability of

CHAPTER 6. EVALUATION 56

Figure 6.8: Round trip time of the UDP messages sent by the node devices to the router.
At more than one device in parallel, the mean of all nodes is calculated together. Android
only supports seven Bluetooth connections in parallel, connecting an eight device fails
(shown as 8(7)). Results are measured as milliseconds.

the entire device so strongly that other applications on the Android device are affected,
even with the maximum possible number of connected devices.

Summarising, the maximum number of parallel connected devices does not compromise
the application, the Android OS, nor the IPv6-over-BLE connections.

6.4 Subnet Routing

This section shows the ability of routing packets inside the IPv6-over-BLE subnet, which
includes the ability of being connected to at least two node devices simultaneously.

6.4.1 Experimental Target

The target of this section is to check the routing functionality of the implementation. It
should be possible to parse the received messages, check the target address, and to forward
the message correctly. This includes the correct setup and usage of the routing table inside
the Android router implementation, and the handling of several BLE connections inside
the same application.

6.4.2 Experimental Setup

As router device the LG Nexus 5X smartphone with Android 8 is used. The implementa-
tion is now used to forward received packets to a destination inside the BLE subnet. The

CHAPTER 6. EVALUATION 57

Figure 6.9: Network topology for the BLE subnet routing measurements.

node devices are the Nordic Semiconductors nRF52840 DK with the programs UDP echo
client and UDP echo server.

The first node has the UDP echo client on it. It sends the UDP packets and checks the
received packets if they are equal. This node is used for the RTT and PRR measurements.
The target of the sent packets is the second node, to which the first node does not have
a direct connection. To reach the second node, the first node has to send the packets to
the router. The second node has the UDP echo server applicatin on it. It receives the
packets sent by the first node and forwarded by the router, and sends them back on the
same way. On this node also the PRR is measured, because this rate has to get measured
for every BLE connection. As payload length and connection interval 512 bytes and 45
ms are used, respectively. These values show that the routing works also with packet
fragmentation and a higher number of used connection intervals. The whole experiment
is executed three times.

6.4.3 Result and Analysis

Packet
Reception
Rate

Round Trip
Time Aver-
age

RTT Stand.
Deviation

Memory
Usage

Energy
Consump-
tion

Android8
Nexus 5X

100% 4,958.59 ms 106.76 ms 62.5 - 64.3
MB of
overall
smartphone
memory
usage

15 - 25%
of overall
smartphone
energy
consumption

Table 6.2: Results of the Subnet Routing Test with RTT and PRR from the node device,
memory usage and energy consumption from the router device.

Table 6.2 shows all measurements. The round trip time and the packet reception rate
are measured at the node devices, the memory usage and the energy consumption are
measured at the smartphone. The RTT results from the double way of the packet. Since
the nodes are not connected to each other, the communication runs over the router. The

CHAPTER 6. EVALUATION 58

gained RTT values confirm this route length of the packets.
The overall PRR results from the own PRR of each node-router connection. Therefore,

the overall PRR is 100%, because each sub-connection also does not have any packet
loss. The memory usage stays constantly between 62.5 and 64.3 MB. In all tests, the
implementation does not show any memory leak, nor needs so much memory that other
applications running on the smartphone would be affected. The energy consumption at
the smartphone stays for the routing application between 15 and 25%. This is the same as
when two nodes are connected and the smartphone does not need to route packets between
the connected devices. So the routing application does not consume more energy so that it
would appear in the energy measurement of the Energy Profiler. This energy consumption
value contains the data processing and the Bluetooth low energy connections. Of course,
in the connection setup, the Bluetooth radio consumes more energy than in the connection
state, which is a reason for the variation of 10%.

6.5 Long-Time Experiment

Some program behaviours may change after several hours at runtime, due to smartphone
energy management, process handling, and Android application states. This experiment
should check the application for possible errors that occur after several hours of runtime.

6.5.1 Experimental Target

The very long runtime generates different conditions at which the application runs. Priori-
tisation change of the application, timeout of the screen, or state change of the application
service are possible conditions under which the application must behave constantly.

6.5.2 Experimental Setup

The setup used for this test is the same as in Section 6.1 and shown in Figure 6.1. It
contains the node device Nordic Semiconductors nRF52840 DK with the UDP echo client
application on it. As router device the LG Nexus 5X smartphone with Android 8 is used,
with the the UDP echo server application on it. The packet reception rate and the round
trip time are measured at the node device. The energy consumption and the memory
usage are measured at the smartphone. The duration of the test is over 20 hours.

6.5.3 Result and Analysis

The results of this test are shown in Table 6.3 and 6.4. The memory usage has a variation of
3.4 MB, which implies that no unexpected behaviour occurs. Also the energy consumption
stays between 10 and 25%, which is the normal range of the application connected to one
IPv6-over-BLE node. Because of the memory and energy consumption, the application
does not entail weak spots of the implementation, which would affect the performance
or the battery time of the smartphone. The packet reception rate of 100% proves the
reliability of the application and the BLE connection. So neither the standby state of the
smartphone, the movement of the application to the background, or the parallel usage of
other applications affect the IPv6-over-BLE application, or the BLE connection itself.

CHAPTER 6. EVALUATION 59

Duration Memory Energy PRR

Results 21 h 61.8 - 65.2 MB 10 - 25% 100%

Table 6.3: Results of the long time test of one node connected to the router with UDP
echo client and UDP echo server programs running on them.

AVG
RTT/PRR

90% 95% 99% MAX

RTT 235.19 ms 225.07 ms 281.18 ms 449,93 ms 449.98 ms

PRR 100% 100% 100% 100% 100%

Table 6.4: Analysis of the outliers of the measurement of the usage of one node connected
to the router and sending UDP messages over a long time.

The outliers of this long time test are shown in Table 6.4. The unusual values account
less than 10% of the whole measurement results. The outliers can be affected by possible
small interferences, since the environment is not protected.

6.6 Parallel GATT Sample Usage

This section describes the parallel usage of a GATT-based application, while the IPv6-over-
BLE application runs in the background. It compares the usage of the same connection
setup with and without the parallel GATT application running.

6.6.1 Experimental Target

The target of this test is to check the possible interference of the use of the original
BLE stack with the GATT layer, and the use of the new BLE stack with the IPv6 and
6LoWPAN layers. The IPv6-over-BLE connection should not have more restraints with
the GATT device connected than if an additional IPv6-over-BLE device gets connected.

6.6.2 Experimental Setup

The setup for this test contains the Nordic Semiconductors nRF52840 DK with the UDP
echo client program as the IPv6-over-BLE node device. The LG Nexus 5X smartphone
with OS Android 8 version with the IPv6-over-BLE application acts as the router. For
this experiment the Android 8 version was used because the application running on this
OS is the easiest version for consumers to use. The packet length of the UDP data is 512
bytes, and the connection interval is 125 ms. Additionally, another Nordic Semiconductors
nRF52840 DK with a GATT based heart rate monitor sample acts as the second node.
After the connection setup and packet sending of the UDP echo programs, the IPv6-over-
BLE application gets moved to the background, and a second BLE application gets open.
This one connects to the heart rate monitor node and starts receiving the heart rate data.
The packet reception rate and the round trip time are measured at the UDP echo client
node. The successful connection setup and the successful receiving of the heart rate data

CHAPTER 6. EVALUATION 60

are measured at the heart rate monitor application on the smartphone. The entire test is
repeated three times.

6.6.3 Result and Analysis

Table 6.5 shows the base values without the GATT based application, and the test value
with the GATT based application. It can be seen that the packet reception rate amounts
100% in both cases. The round trip time increases after the connection setup of the heart
rate monitor device. But this increment does not belong to the usage of the GATT layer:
it belongs to the additional BLE connection.

AVG RTT PRR

without GATT 6289,29 ms 100%

with GATT 6374,50 ms 100%

Table 6.5: Results of the average RTT and PRR with and without the usage of a GATT
based heart rate monitor in parallel to the UDP echo server program.

The UDP echo client program records no packet loss nor additional latency because of
the use of a GATT based application, compared to the same amount of connected IPv6-
over-BLE devices. This concludes that the usage of another Bluetooth stack in parallel is
not problematic for the device or the Bluetooth connections.

6.7 Internet Connectivity

This test shows the ability of the application to act as a border router and route IPv6
messages to and from the Internet.

6.7.1 Experimental Target

The target of this experiment is to test if the application can forward IPv6 messages from
the BLE subnet to the Internet and vice versa. This means the application converts the
router into a border router, and communication outside the BLE subnet is possible.

6.7.2 Experimental Setup

The IPv6-over-BLE application forwards a ping-request message from a node inside the
BLE subnet to a server at the Internet, and forwards the response from the server back
to the node. For this test, the Google server with the IPv6 address 2001:4860:4860::8888,
and IPv4 address 8.8.8.8 is used.

For using LTE to send and receive IPv6 messages, the settings at the LTE access
of the smartphone have to be changed. Also the mobile radio provider must offer this
functionality. For using WiFi to send and receive IPv6 messages, the ISP has to offer that
functionality, and the WiFi router must be able and adjusted accordingly to allow IPv6.

For this experiment, WiFi instead of LTE was used, due to additional effort for en-
abling a suitable provider and enabling the IPv6 connection through LTE. For the sake

CHAPTER 6. EVALUATION 61

of simplicity, and since the focus of this thesis is not on the Internet connection, the rout-
ing takes place with WiFi, and with the conversion of the IPv6 address to IPv4. The
address gets converted by requesting the DNS entry of the IPv6 address, and requesting
the according IPv4 address of the resulted DNS entry. To support the general use of IPv6
addresses without a supporting provider, the use of an IPv6 tunnel is a good alternative.
But to keep this experiment simple, a target address with an IPv4 address at the same
domain name is used.

As node device the Nordic Semiconductor nRF52840 DK is used. As border router
device the Nexus 5X with Android 8 is used. The connection to the Internet is established
through WiFi. The node sends an ICMPv6 echo request message to the Google server.
This message is sent via IPv6 over BLE to the border router, and gets forwarded via
WiFi to the Google server. The ICMPv6 echo response from the server, received by the
smartphone, gets forwarded via BLE to the node device. The only important measurement
is the reception of the ICMPv6 echo response from the server at the node device.

6.7.3 Result and Analysis

This test measures only the successful routing of the IPv6 messages. The node receives
the successful ping with IP address and used time.

AVG RTT Standard Devia-
tion

PRR

Google Server 401,97 ms 32,25 ms 100%

Table 6.6: Results of pinging a server through the border router.

The connection of the node device to the server can be split into the Bluetooth Low
Energy connection part from the node to the border router, and the Internet connection
part from the border router to the server. The latency at the Internet connection varies
much stronger, compared to the variation of the latency at the Bluetooth Low Energy
connection. But the results prove that the connection was successful, and the routing of
the IPv6-over-BLE application works.

Chapter 7

Conclusion

IPv6 over BLE provides direct Internet connectivity for smart constrained devices. Un-
fortunately, although smartphones have BLE functionality, no smartphone provides func-
tionality of an IPv6-over-BLE border router. This thesis contributes the design and a
functional solution for the IPv6 communication over BLE connections, using Android de-
vices as border routers. It discusses the advantages of this new functionality, compares
IPv6-over-BLE usage of various devices with each other, and compares the implementation
with an existing solution.

The primary contribution of this thesis is the design and the implementation of an
IPv6-over-BLE communication stack that is interoperable with the existing Android BLE
stack, and that works with the operating systems Android Open Source Project version 7
and Android 8.

The experiments carried out in this thesis show the interoperability with existing so-
lutions, compare the implementation running on different devices and different Android
versions, and show the behaviour in different use cases like subnet routing, up to eight
devices connected in parallel, or the border router functionality for Internet connectivity.

The first two experiments prove the interoperability with RFC 7668 compliant node
devices. They also prove that the application is runnable at two different Android OS
versions and on different devices. With the enhanced connection parameters in AOSP,
the application can even be more efficient than the existing border router implementation
on the Raspberry Pi with Linux. Further experiments show that several nodes can be con-
nected simultaneously without relevant performance loss, even with the maximum number
of multiple BLE connections on Android. Additional experiments prove the routing ca-
pabilities with subnet routing, as well as border routing capabilities with the Internet
test. Finally, the long-time experiment as well as the experiment of using a GATT-based
application in parallel to the IPv6-over-BLE application, show the robustness of the im-
plementation in Android.

Summarizing, the designed, implemented, and tested application in this thesis is com-
petitive with the current available IPv6-over-BLE solutions.

62

Chapter 8

Future Work

8.1 Node functionality

For this thesis only the router functionality of IPv6 over BLE has been implemented in
Android. However, it is also possible to use the smartphone or tablet with the Android OS
as node device. The data of the integrated sensors (e.g., accelerometer, gyroscope, light
sensor, compass, barometer) of the device can be used and sent to a central router device,
or also another hardware can be connected to the device which sends then the data to
another router. The data can be sent periodically or in blocks if the Internet connection
is interrupted.

The node functionality, and the functionality of connecting the device as router to
another router, are standardized in the RFC 7668 standard [6]. For this functionality an
Android application with a background service is necessary. This application needs per-
missions for accessing sensors and Internet. The IPv6-over-BLE connection functionality
created during this thesis can be reused, with adaptation of the L2CAP CoC usage. Also
the Internet connection, WiFi or LTE, must support IPv6, or an IPv6 tunnel is used.

8.2 User Interface

The user interface of the Android application is simply and offers only the minimum
functionality and status information. There is a lot potential of extending the user interface
to increase the user experience and to ease the usage. The status of the connection setup
can be shown in detailed steps, such as router discovery and neighbour discovery. The
status informations of the existing connections can be shown at an own info-screen for
each connection.

Additionally, several devices could get selected and connected simultaneously, instead
of selecting and connecting only one device after another. It can show, for example, the
transfer rate, transferred data, and time of establishment. The available but not connected
devices can either be shown in a list, or in a map which illustrates the approximated
distance and direction of the available devices. User-defined filtering for searching for
devices, especially when a lot of devices are available, would also be useful. Also the
signal strength can be a parameter of the available devices. Existing Android applications
regarding Bluetooth devices already have such maps of available devices implemented.

63

CHAPTER 8. FUTURE WORK 64

8.3 Android versions

The implementation provided by this thesis works for the Android open source project
version 7 and the official system image of Android 8. Based on the spread and the ease of
use, the implementation should primarily work for official system images of the Android
OS. The current newer Android versions are 9 and 10.

To support newer Android versions, the most likely necessary adjustment for the im-
plementation is the setup for establishing an L2CAP connection-oriented channel in credit-
based flow control mode, because of interface changes in Android. The remaining part
of this application can be reused with newer Android operating systems due to backward
compatibility.

8.4 Further Operating Systems

The mobile OS Android is the most used one on the market. But it would make sense to
implement the solution also for other mobile operating systems. The second most mobile
OS is iOS from Apple, and it also does not contain an implementation for using IPv6 over
BLE yet.

To add IPv6-over-BLE support to other operating systems, such as iOS, supporting
L2CAP in credit-based flow control mode is critical. Reuse of the existing Android appli-
cation for iOS is not possible, since including Java files in Swift (programming language
for iOS applications) is not supported. However, the user interface and functionality of
the iOS application for IPv6 over BLE can be based on the user interface of the existing
Android application.

Bibliography

[1] Xia, Yang, Wang, Vinel, “Internet of Things,” International Journal of Communica-
tion Systems, 2012.

[2] C. C. Kevin Townsend, “Getting Started with Bluetooth Low Energy,” O’Reilly Me-
dia Inc, 2014.

[3] N. Gupta, Inside Bluetooth Low Energy. Artech house, 2013.

[4] “Nuki Smart Lock.” https://nuki.io/. Accessed: 2020-06-17.

[5] “Shutter Box.” Accessed: 2020-02-05.

[6] J. Nieminen, T. Savolainen, M. Isomaki, Nokia, B. Patil, AT and T, Z. Shelby, Arm,
and C. Gomez, “RFC 7668 IPv6 over Bluetooth Low Energy,” Internet Engineering
Task Force (IETF), October 2015. https://tools.ietf.org/html/rfc7668.

[7] “Zephyr Project.” https://docs.zephyrproject.org/. Accessed: 2020-01-26.

[8] M. Spörk, “IPv6 over Bluetooth Low Energy using Contiki,” Master’s thesis, Graz
University of Technology, 2016.

[9] “SIG Bluetooth. Radio Versions.” https://www.bluetooth.com/

bluetooth-technology/radio-versions. Accessed: 2020-02-19.

[10] M. Afaneh, “Bluetooth 5 and BLE: Achieving maximum throughput and speed..”
https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/, Septem-
ber 2017. Accessed: 2020-01-10.

[11] “Connection parameters - Introduction to MBED BLE.” https://os.mbed.com/

docs/mbed-os/v6.2/apis/bluetooth.html. Accessed: 2020-01-17.

[12] Carles Gomez, Joaquim Oller, Josep Paradells, “Overview and Evaluation of Blue-
tooth Low Energy: An Emerging Low-Power Wireless Technology,” PubMed Central,
2012.

[13] “Link Layer - How Bluetooth Low Energy works.” https://medium.com/@zpcat/

how-bluetooth-le-works-link-layer-b18475250259. Accessed: 2020-06-10.

[14] “BLE5-Stack User’s Guide - Host Controller Interface (HCI).” http:

//dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/

ble5stack/ble_user_guide/html/ble-stack/hci.html. Accessed: 2020-03-05.

65

https://nuki.io/
https://tools.ietf.org/html/rfc7668
https://docs.zephyrproject.org/
https://www.bluetooth.com/bluetooth-technology/radio-versions
https://www.bluetooth.com/bluetooth-technology/radio-versions
https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/
https://os.mbed.com/docs/mbed-os/v6.2/apis/bluetooth.html
https://os.mbed.com/docs/mbed-os/v6.2/apis/bluetooth.html
https://medium.com/@zpcat/how-bluetooth-le-works-link-layer-b18475250259
https://medium.com/@zpcat/how-bluetooth-le-works-link-layer-b18475250259
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/hci.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/hci.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/hci.html

BIBLIOGRAPHY 66

[15] “LE L2CAP Connection Oriented Channel at Android Open Source Project.” https:

//android.googlesource.com/platform/system/bt/+/6721232. Accessed: 2020-
03-26.

[16] “SIG Bluetooth. Bluetooth 5 Core Specification.” https://www.bluetooth.com/

specifications/bluetooth-core-specification/. Accessed: 2019-11-15.

[17] “Bluetooth Core Specification Version 5.1 Feature
Overview.” https://www.bluetooth.com/bluetooth-resources/

bluetooth-core-specification-v5-1-feature-overview/. Accessed: 2020-
08-26.

[18] “Bluetooth Core Specification Version 5.1 Feature Overview.” https:

//www.bluetooth.com/wp-content/uploads/2020/01/Bluetooth_5.2_Feature_

Overview.pdf. Accessed: 2020-08-26.

[19] G. Montenegro, Microsoft Corporation, N. Kushalnagar, Intel Corp, J. Hui, D. Culler,
Arch Rock Corp, “RFC 4944 Transmission of IPv6 Packets over IEEE 802.15.4
Networks,” Internet Engineering Task Force (IETF), September 2007. https:

//tools.ietf.org/html/rfc4944.

[20] Ed. J. Hui, Arch Rock Corporation, P. Thubert, and Cisco, “RFC 6282 - Compression
Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks,” Internet Engineer-
ing Task Force (IETF), September 2011. https://tools.ietf.org/html/rfc6282.

[21] Z. Shelby, Sensinode, S. Chakrabarti, Ericsson, E. Nordmark, Cisco Systems, C.
Bormann, Universitaet Bremen TZI, “RFC 6775 - Neighbor Discovery Optimization
for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs),” Internet
Engineering Task Force (IETF), November 2012. https://tools.ietf.org/html/

rfc6775.

[22] “SIG Bluetooth. Mesh Model Specification.” https://www.bluetooth.com/

specifications/mesh-specifications. Accessed: 2019-11-16.

[23] Jonas Olsson, “6LoWPAN demystified,” Texas Instruments, October 2014.

[24] “Internet Protocol version 6 (IPv6) Header.” https://

tutorialspoint.dev/computer-science/computer-network-tutorials/

computer-network-internet-protocol-version-6-ipv6-header. Accessed:
2020-08-07.

[25] Gustavo Litovsky, “A look into Bluetooth v4.2 for Low Energy Products,” EDN
Network, May 2015.

[26] “Mobile operating systems’ market share worldwide from January 2012
to December 2019.” https://www.statista.com/statistics/272698/

global-market-share-held-by-mobile-operating-systems-since-2009/.
Accessed: 2020-03-10.

[27] “Android Open Source Project.” https://source.android.com/. Accessed: 2019-
10-10.

https://android.googlesource.com/platform/system/bt/+/6721232
https://android.googlesource.com/platform/system/bt/+/6721232
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-v5-1-feature-overview/
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-v5-1-feature-overview/
https://www.bluetooth.com/wp-content/uploads/2020/01/Bluetooth_5.2_Feature_Overview.pdf
https://www.bluetooth.com/wp-content/uploads/2020/01/Bluetooth_5.2_Feature_Overview.pdf
https://www.bluetooth.com/wp-content/uploads/2020/01/Bluetooth_5.2_Feature_Overview.pdf
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc6282
https://tools.ietf.org/html/rfc6775
https://tools.ietf.org/html/rfc6775
https://www.bluetooth.com/specifications/mesh-specifications
https://www.bluetooth.com/specifications/mesh-specifications
https://tutorialspoint.dev/computer-science/computer-network-tutorials/computer-network-internet-protocol-version-6-ipv6-header
https://tutorialspoint.dev/computer-science/computer-network-tutorials/computer-network-internet-protocol-version-6-ipv6-header
https://tutorialspoint.dev/computer-science/computer-network-tutorials/computer-network-internet-protocol-version-6-ipv6-header
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://source.android.com/

BIBLIOGRAPHY 67

[28] “Google Store - Nexus 5X.” https://store.google.com/product/nexus_5x. Ac-
cessed: 2019-09-21.

[29] “Qualcomm Snapdragon 808 Processor.” https://www.qualcomm.com/products/

snapdragon-processors-808. Accessed: 2019-12-09.

[30] “Qualcomm QCA6174a Wi-Fi/Bluetooth SoC.” https://www.qualcomm.com/

products/qca6174a. Accessed: 2019-12-09.

[31] “Samsung Electronics - Galaxy Tab S3.” https://www.samsung.com/at/tablets/

galaxy-tab-s3-9-7-t825/SM-T825NZKAATO/. Accessed: 2019-09-21.

[32] “Qualcomm Snapdragon 820 Mobile Platform.” https://www.qualcomm.com/

products/snapdragon-820-mobile-platform. Accessed: 2019-12-09.

[33] “Nordic Semiconductor - nRF52840 Bluetooth 5.2 SoC.” https://www.nordicsemi.

com/Products/Low-power-short-range-wireless/nRF52840. Accessed: 2019-11-
16.

[34] “Raspberry Pi Documentation.” https://www.raspberrypi.org/documentation/.
Accessed: 2020-02-06.

[35] “Contiki - The Open Source Operating System for the Internet of Things.” http:

//www.contiki-os.org/. Accessed: 2020-05-28.

[36] “Android Things - Android Developers.” https://developer.android.com/things.
Accessed: 2020-05-28.

[37] “Linux Kernel Configuration Options.” https://core.docs.ubuntu.

com/en/stacks/bluetooth/bluez/docs/reference/enablement/

kernel-configuration-options. Accessed: 2020-05-29.

[38] Haolin Wang, Minjun Xi, Jia Liu, Canfeng Chen, “Transmitting IPv6 packets over
Bluetooth low energy based on BlueZ,” Nokia Research Center, 2013.

[39] Wondeuk Yoon, Kiwoong Kwon, Minkeun Ha, and Daeyoung Kim, “Transfer IPv6
Packets Over Bluetooth Low Energy with Ensuring Emergency Data Transmission,”
Korea Advanced Institute of Science and Technology, 2016.

[40] Michael Spörk, Carlo Alberto Boano, Marco Zimmerling, Kay Römer, “BLEach: Ex-
ploiting the Full Potential of IPv6 over BLE in Constrained Embedded IoT Devices,”
ACM Conference on Embedded Networked Sensor Systems, 2017.

[41] C. Gomez, S. Darroudi, Univeritat Politecnica de Catalunya, T. Savolainen, Dark-
MAtter, M. Spoerk, Graz University of Technology, “IPv6 Mesh over Bluetooth Low
Energy using IPSP,” 6Lo Working Group, 2019.

[42] SIG Bluetooth, “Internet Protocol Support Profile - Bluetooth Spec-
ification version 1.0.0.” https://www.bluetooth.com/specifications/

bluetooth-core-specification/, December 2014.

https://store.google.com/product/nexus_5x
https://www.qualcomm.com/products/snapdragon-processors-808
https://www.qualcomm.com/products/snapdragon-processors-808
https://www.qualcomm.com/products/qca6174a
https://www.qualcomm.com/products/qca6174a
https://www.samsung.com/at/tablets/galaxy-tab-s3-9-7-t825/SM-T825NZKAATO/
https://www.samsung.com/at/tablets/galaxy-tab-s3-9-7-t825/SM-T825NZKAATO/
https://www.qualcomm.com/products/snapdragon-820-mobile-platform
https://www.qualcomm.com/products/snapdragon-820-mobile-platform
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.raspberrypi.org/documentation/
http://www.contiki-os.org/
http://www.contiki-os.org/
https://developer.android.com/things
https://core.docs.ubuntu.com/en/stacks/bluetooth/bluez/docs/reference/enablement/kernel-configuration-options
https://core.docs.ubuntu.com/en/stacks/bluetooth/bluez/docs/reference/enablement/kernel-configuration-options
https://core.docs.ubuntu.com/en/stacks/bluetooth/bluez/docs/reference/enablement/kernel-configuration-options
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/

BIBLIOGRAPHY 68

[43] “BlueZ - Official Linux Bluetooth protocol stack.” http://www.bluez.org/. Ac-
cessed: 2020-04-25.

[44] “Bluetooth — Android Open Source Project.” https://source.android.com/

devices/bluetooth. Accessed: 2020-08-27.

[45] “Android Developers - Bluetooth Overview - Vendor-specific AT commands.”
https://developer.android.com/guide/topics/connectivity/bluetooth. Ac-
cessed: 2020-04-25.

[46] SIG Bluetooth, “Specification of the Bluetooth System - Covered Core
Package version: 4.2.” https://www.bluetooth.com/specifications/

bluetooth-core-specification/, December 2013.

[47] SIG Bluetooth, “Specification of the Bluetooth System - Covered Core
Package version: 4.1.” https://www.bluetooth.com/specifications/

bluetooth-core-specification/, December 2013.

[48] “Java Reflection.” https://www.oracle.com/technical-resources/articles/

java/javareflection.html. Accessed: 2020-08-27.

[49] SIG Bluetooth, “Logical Link Control for protocol/service multiplex-
ers.” https://www.bluetooth.com/specifications/assigned-numbers/

logical-link-control/. Accessed: 2020-06-15.

[50] “Android Developers - Manifest Permissions.” https://developer.android.com/

reference/android/Manifest.permission. Accessed: 2020-05-18.

[51] “Monsoon Solutions.” https://www.msoon.com/. Accessed: 2020-08-27.

http://www.bluez.org/
https://source.android.com/devices/bluetooth
https://source.android.com/devices/bluetooth
https://developer.android.com/guide/topics/connectivity/bluetooth
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.bluetooth.com/specifications/assigned-numbers/logical-link-control/
https://www.bluetooth.com/specifications/assigned-numbers/logical-link-control/
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://www.msoon.com/

	Introduction
	BLE and the Internet of Things
	Problem Statement
	Contributions
	Limitations
	Outline

	Background
	Bluetooth Low Energy
	Fundamentals
	BLE Stack
	BLE version 5

	6LoWPAN
	6LoWPAN for IEEE 802.15.4

	IPv6 over BLE
	Topology
	6LoWPAN for BLE
	IPv6 adaptation
	IPv6 over BLE Stack

	Android Operating System
	Employed Hardware

	Related Work
	Existing 6LoWPAN Border Router
	Related Research Studies

	Creating an IPv6-over-BLE Stack for Android OS
	IPv6 over BLE Stack
	Communication Stack
	Communication Setup

	General Requirements
	Integration Into Android
	Bluetooth Architecture in Android
	Structure of IPv6-over-BLE stack

	Challenges

	Implementation
	Features
	Communication Stack
	Bluetooth Stack
	Integration In Android

	Android Application
	Design
	Implementation

	Implementation Challenges
	Portability

	Evaluation
	Energy Consumption and Timeliness
	Experimental Target
	Experimental Setup
	Result and Analysis

	Comparing MPS and Credit Parameters
	Experimental Target
	Experimental Setup
	Result and Analysis

	Scalability
	Experimental Target
	Experimental Setup
	Result and Analysis

	Subnet Routing
	Experimental Target
	Experimental Setup
	Result and Analysis

	Long-Time Experiment
	Experimental Target
	Experimental Setup
	Result and Analysis

	Parallel GATT Sample Usage
	Experimental Target
	Experimental Setup
	Result and Analysis

	Internet Connectivity
	Experimental Target
	Experimental Setup
	Result and Analysis

	Conclusion
	Future Work
	Node functionality
	User Interface
	Android versions
	Further Operating Systems

	Bibliography

