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Abstract

In recent years graphics processing units (GPUs) have become more and
more programmable. At this point, they can be used as massively-parallel
coprocessors to run arbitrary code. Real-time rendering pipelines are usually
implemented in hardware to achieve the necessary performance and power
efficiency to process the massive amount of data needed to render 3D scenes.
With the ability to execute arbitrary programs on the GPU, software rendering
pipelines emerged. These pipelines offer greater flexibility and compatibility
than hardware renderers at the expense of reduced performance and power
efficiency.

In this work, we show an implementation of a primitive tessellation stage in
a software rendering engine. Tessellation allows subdividing primitives by
creating a new mesh with smaller primitives filling the whole old primitive.
Our tessellation algorithm adheres to the OpenGL specification and thus
allows to create shader programs to influence the subdivision dynamically.
It is possible to use triangles and quads as input primitive type as well as
tessellated primitives. Our renderer also guarantees primitive ordering which
is essential for many rendering techniques. The pipeline uses a persistent
megakernel scheduling approach with dynamic load balancing to maximize
GPU utilization. Although our implementation is less performant than a
hardware renderer, we show that real-time rendering is possible for real-world
scenes.
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Kurzfassung

In den letzten Jahren wurden Grafikprozessoren (GPUs) freier programmier-
bar. Sie können nun als massiv-parallele Coprozessoren verwendet werden,
um beliebige Programme auszuführen. Echtzeit Grafikpipelines wurden zu-
erst direkt in Hardware implementiert, um die nötige Leistung und Effizienz
zu erreichen, um die massiven Datenmengen für die Darstellung von 3D
Szenen verarbeiten zu können. Mit der Möglichkeit beliebige Programme auf
der GPU auszuführen, kamen auch Software-Grafikpipelines zum Vorschein.
Diese Pipelines bieten mehr Flexibilität und Kompatibilität als Hardware-
Pipelines auf Kosten von geringerer Leistung und Energieeffizienz.

In dieser Arbeit stellen wir eine Implementierung eines Tessellierungsalgo-
rithmus in einer Software-Grafikpipeline vor. Tessellierung ermöglicht es
Primitive zu unterteilen, indem neue Dreiecksnetze erstellt werden, die aus
kleineren Polygonen bestehen welche das ursprüngliche Polygon vollständig
ausfüllen. Unser Tessellierungsalgorithmus haltet sich an die OpenGL Spe-
zifikation und erlaubt es daher Shader Programme zu erstellen, die die
Unterteilung der Polygone dynamisch beeinflussen. Es können sowohl Drei-
ecke als auch Vierecke als Primitive verwendet werden. Unsere Pipeline
garantiert die richtige Reihenfolge der Primitive, was für viele Renderver-
fahren essenziell ist. Es wird ein Persistent Megakernel Scheduling Konzept
mit dynamischer Lastverteilung verwendet, um die Ausnutzung der GPU
zu maximieren. Obwohl unsere Implementierung weniger Leistung als ein
Hardware Renderer bietet zeigen wir, dass komplexe Szenen in Echtzeit
gerendert werden können.
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1. Introduction

Real-time rendering applications use hardware rendering pipelines to achieve
high performance and power efficiency. They use modern application pro-
gramming interfaces (APIs) such as Vulkan [Khr20] or Direct3D [Bly06] to
interface with the hardware. As an example, Figure 1.1 [Wik19] shows the ren-
dering pipeline of OpenGL [AS19], which consists of several programmable
and fixed-function stages. These APIs allow programming graphics applica-
tions independent of the underlying hardware. Hardware rendering pipelines
process the primitive data in multiple sequential stages. As many processing
steps are implemented directly in hardware, only some of the stages are
programmable with fixed-function stages in between. These programmable
stages are further limiting the developer with predefined data structures
for input and output as well as a single-thread program model. Due to the
arrangement of the stages, the pipelined processing, and the programming
through an API, adaption to special rendering techniques is usually complex
and imposes a performance overhead. It is also impossible to add new fea-
tures to the pipeline without changing the hardware. Moreover, the graphics
pipeline evolved only slowly. The stages of the pipeline stayed the same, and
over time only a few additional stages have been added.

The performance of graphics hardware continues to increase exponentially,
and specialized interfaces like CUDA [NVI19] or OpenCL [SGS10] have been
created to allow the graphics processing unit (GPU) to be operated in compute
mode. In this mode, the GPU can be programmed as a massively-parallel
general-purpose co-processor, allowing efficient manipulation of large blocks
of data.

By using the GPU in compute mode, it is possible to deploy software rendering
pipelines that sacrifice some performance and power efficiency to implement
sophisticated graphics algorithms that would be difficult to deploy on a

1



1. Introduction

Figure 1.1.: Diagram of the OpenGL rendering pipeline, where the blue boxes represent
programmable shader stages, and the yellow boxes are fixed-function stages.
[Wik19]
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1. Introduction

traditional graphics pipeline. In this way, we can change the functionality
of every stage and change the pipeline composition to create a different
arrangement of stages. Moreover, we can completely change the functionality
of fixed-function stages. As an example, the rasterization algorithm can be
changed to do nonlinear rasterization [Llo+07], which can be useful for
shadow mapping or similar techniques. We could also add features to the
pipeline at a later point without the need to change the hardware.

This thesis contributes to the area of computer graphics. Specifically, we
introduce a real-time software rendering pipeline with primitive tessellation.
We describe the necessary processing structure and scheduling techniques to
reach the required performance and present a primitive ordering approach,
allowing the pipeline to use order dependent rendering techniques. To
benchmark the implementation, we created multiple real-world demo scenes
to ensure the coverage of different use cases.

For an introduction to the targeted software rendering pipeline and the
adapted tessellation code, the previous and related work are shown first. The
next chapters will give details to the tessellation procedure and primitive
ordering. The implementation of the algorithm in a streaming pipeline is
described afterwards in chapter 5. The results and performance evaluation
will be shown in chapter 6.

1.1. Tessellation

One of the stages of a hardware rendering pipeline is called tessellation. It was
the latest extension to the pipeline and is probably one of the most important
techniques for all modern real-time graphics applications. Tessellation allows
to dynamically increase the geometric resolution of primitives by dividing
them into smaller primitives. An example of the tessellation of a single
triangle is shown in Figure 1.2. In this way, we can decrease the quality of
models and increase it dynamically for close by and large objects or objects in
the center of attention of the viewer. As the divisions are done at runtime and
only when intended and needed, the overall memory usage and bandwidth
is reduced, while maintaining the same visual quality.

3



1. Introduction

Figure 1.2.: Illustration of the subdivision of a triangle done by tessellation. A primitive is
replaced with a mesh of primitives filling the whole initial primitive without
overlaps or intersections.

There are several ways to split a primitive into smaller ones. The algorithm
used in this thesis uses the technique specified by OpenGL, which uses a multi-
stage approach. The first stage only determines the amount of subdivision to
be done and may use a provided application-specific shader program. Then,
the actual subdivision is performed, and custom attributes for all vertices
can be computed in another application-specific shader program.

For this thesis, a tessellation stage, that was created for CUDA, is integrated
into a software rendering pipeline. The software rendering pipeline has a
streaming architecture, and therefore, the algorithm must be able to divide
the workload and distribute it on the GPU.

1.2. Nvidia GPU

Graphics cards were initially designed for the sole purpose of rendering
real-time high-resolution 2D and 3D scenes on a computer display, which
requires very efficient manipulation of large blocks of data. As graphics
applications became more and more versatile and applied more special
rendering techniques, graphics pipelines together with the GPUs became
more and more programmable. Therefore, GPUs evolved into highly parallel
many-core systems, which can be used for general-purpose processing.

To make it easier for developers to create general-purpose programs for the
GPU, Nvidia created CUDA [NVI19]. It is a programming API, allowing

4



1. Introduction

Figure 1.3.: Illustration of the distribution of blocks to Streaming Multiprocessors. While
the programmer can choose the number of blocks, the number of Streaming
Multiprocessors only depends on the GPU. A GPU with more multiprocessors
will automatically execute the program faster. Reprinted from “CUDA C Pro-
gramming Guide” by NVIDIA Corporation. Copyright 2007-2020 by NVIDIA
Corporation.

developers to use C++ or Fortran as a high-level programming language for
the GPU. Additionally, it provides an abstraction of the hardware threads and
memory layout as a minimal set of language features. Therefore, programs
can scale from simple main-stream GPUs to high-performance professional
GPUs without any changes, which is illustrated in Figure 1.3 [NVI19].

The programming model allows defining C++ functions, called kernels, that
execute code on multiple threads on the GPU in parallel. The exact number
of threads which execute the kernel can be specified with the kernel launch.
The threads are combined, forming a one-dimensional, two-dimensional or
three-dimensional thread-block. The size of a thread-block is limited as all
threads of the block share the limited resources of the same processor core.
However, it is possible to combine multiple equally-shaped thread-blocks to
a grid that executes a kernel. The hierarchical structure of thread-blocks is
illustrated in Figure 1.4. A variable number of thread-blocks will be assigned

5



1. Introduction

Figure 1.4.: Hierarchical organization of thread-blocks. Reprinted from “CUDA C Pro-
gramming Guide” by NVIDIA Corporation. Copyright 2007-2020 by NVIDIA
Corporation.

to each Streaming Multiprocessor (SM) of the GPU.

The SMs work on groups of 32 parallel threads called warps. All threads
within the warp share the same program counter, start at the same program
address and are scheduled together. To execute code branches with individual
threads, the SM has an active mask to track the individual threads that take the
branch and only threads marked as active execute an instruction. However, as
all threads within a warp share the program counter, all inactive threads are
taken along without executing these instructions which reduces the overall
efficiency. Therefore, branching within warps should be kept to a minimum,
and the workload should be optimized to fit within the boundaries of a
warp.

This architecture is called SIMT (Single-Instruction, Multiple-Thread). It is
an extension of the SIMD (Single-Instruction, Multiple-Data) architecture
which applies a single instruction to all elements in a vector. In contrast to

6
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SIMD machines, SIMT allows programmers to write thread-level parallel
code for single threads as well as data-level parallel code for coordinated
thread groups in the same way.

Threads may access data from different memory spaces which have different
access times and visibilities (see Figure 1.5). Each thread has registers and
local memory only accessible by this thread. All threads within the same
thread-block can access the same shared memory space, which can act as a
programmable cache and to share data within a thread-block. All threads
can access global memory.

Shared memory is very fast, but each SM only has a limited amount available
to split among all active thread-blocks. On the other hand, global memory has
a very high access latency (approx. 100 times slower than shared memory),
but there is much more global memory than shared memory. Local memory
resides in global memory and therefore has the same access time. There
are additional memory types for special use-cases which are not mentioned
here.

Fatahalian and Houston [FH08] and Nickolls et al. [Nic+08] give a more
detailed description of the GPU architecture and programming model.

7



1. Introduction

Figure 1.5.: Different memory spaces in CUDA with different visibilities. Reprinted from
“CUDA C Programming Guide” by NVIDIA Corporation. Copyright 2007-2020
by NVIDIA Corporation.
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2. Related Work

As this work describes the implementation of tessellation in streaming soft-
ware rendering pipelines, we will first give a short overview of developments
in this field. We will describe software rendering pipelines as well as tes-
sellation algorithms and introduce the pipeline and algorithm used in the
implementation of this thesis.

2.1. Software Rendering Pipeline

Rendering pipelines use various processing steps to transform lists of numbers
(which represent primitives) into displayable images. The first rendering
pipelines were implemented in software on the CPU, but specialized hardware
was introduced to overcome the limited parallelism of the CPU and thus speed
up rendering. Parallelism is critical for providing the necessary performance
for real-time rendering as a large amount of data needs to be processed in a
short time frame. Therefore, software rendering pipelines reemerged when
the compute mode for GPUs became available and provided the necessary
computing power.

One of the first software rendering engines on the GPU is Freepipe [Liu+10].
It implements a fully programmable rendering pipeline, which has problems
with high depth complexity due to a non-linear sorting complexity, and
it has a significant memory overhead. CudaRaster [LK11] implements a
highly-optimized rasterizer on the GPU. The stages are executed sequen-
tially, meaning all threads are working on the same stage at the same time.
Piko [Pat+15] is a more recent implementation of a software rendering
pipeline on the GPU using the same sequential execution of the stages.

9



2. Related Work

Stage 1
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Stage 1

Stage 2

Stage 2

Stage 2
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Stage 3

Stage 3
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.....

.....

Time

Figure 2.1.: Sequential execution of stages.

The most straightforward scheduling algorithm on the GPU is sequential
execution of the stages or also called kernel-by-kernel and is illustrated in
Figure 2.1. Consequently, all SMs of the GPU execute the same stage at the
same time. However, this approach requires all data to be passed from one
stage to the next through slow global memory and exploiting data locality
through fast on-chip memory becomes impossible. Moreover, as the amount
of data typically increases from one stage to the next, this also leads to a
significant memory overhead. Another problem is the uneven distribution of
the workload, as processors will be left to idle if a stage cannot fully occupy
the GPU.

These restrictions can be avoided by using more complex scheduling algo-
rithms. A simple yet powerful architecture uses persistent threads [AL09],
which fill the whole GPU and fetch work from a global pool until it is
empty. With further improvements, it is possible to create new work items
dynamically and insert them into the pool [TPO10]. However, the global
queue storing the work items for all tasks is a significant bottleneck as all
threads need to access and modify it.

Steinberger et al. [Ste+14] created an implementation of a persistent megakernel,
which uses persistent worker threads drawing work from task-specific queues.

10



2. Related Work

Consequently, the bottleneck of a global queue which is accessed by all threads
is eliminated. All threads execute the same kernel function in a loop which
contains branches for each stage. An illustration of a megakernel architecture
executing three stages is shown in Figure 2.2. The main limitation of the
persistent-megakernel is that the resource configuration is determined by the
most expensive stage and shared between all multiprocessors.

Stage 1

Stage 1

Stage 1

Stage 2

Stage 3

Stage 3

Stage 3

Stage 2

Stage 1 Stage 3

.....

.....

.....

Time

Figure 2.2.: Scheduling of the stages with a megakernel approach.

In this thesis, we will describe the integration of a tessellation stage into
the pipeline introduced in “A high-performance software graphics pipeline
architecture for the GPU” [Ken+18], which is called CUDA Rendering Engine
(cuRE). It uses the above mentioned persistent-megakernel approach for
scheduling and efficient work distribution. An overview of the pipeline
stages is shown in Figure 2.3 [Ken+18].

The CUDA Rendering Engine is a real-time graphics pipeline implemented
entirely in software to run on a modern GPU. Unlike previous approaches, it
uses a streaming design for the geometry processing and rasterization with
dynamic load balancing and can operate within bounded memory. Moreover,
primitive order is sustained, and it delivers real-time rendering performance
for real-world scenes.

11



2. Related Work

Figure 2.3.: Diagram of the cuRE graphics pipeline for indexed drawing. [Ken+18]

2.2. Tessellation

Before the introduction of tessellation and geometry shaders in hardware
rendering pipelines, mesh refinement (i.e. increasing the detail and polygon
count of models) could only be done on the CPU and introduced a bandwidth
bottleneck on the graphics bus as well as a high load on the CPU. The size
of the models which are transferred to the GPU increase substantially and
complex computations on large amounts of data are performed on the CPU.
To overcome these problems, Boubekeur and Schlick [BS05] introduced a
mesh refinement technique in 2005 which uses the vertex shader to apply a
generic refinement pattern to a polygon. In a later work, Boubekeur and
Schlick [BS08] improved this technique and presented an adaptive mesh
refinement process, which adjusts the refinement level based on the distance
from the camera and is also implemented in the vertex shader. At this
point, GPUs were already able to create new polygons dynamically with
the geometry shading stage. However, due to the limitations of the geometry
shader, only a few levels of refinement can be achieved.

Schwarz and Stamminger [SS09] presented a tessellation algorithm using the
compute mode of a GPU to perform parallelized adaptive tessellation. In
contrast to the previous methods using vertex shaders, this approach is faster
for scenes with low tessellation levels and large numbers of primitives.

As dynamic mesh refinement methods became more and more popular,
tessellation stages were included in the hardware rendering pipelines with
DirectX11 [Mic15] and OpenGL4.0 [Khr10]. With these new additions, it was
possible to perform adaptive dynamic mesh refinement inside the rendering
pipeline. These new stages are simple to operate as it just requires to provide
two new shader programs. The first shader specifies the amount of tessellation
for each primitive and the second computes vertex attributes similar to a

12



2. Related Work

vertex shader. The first shader program can even be omitted if identical
tessellation levels for all primitives suffice.

At this point, research work was focused on using the existing tessellation
stages as efficient as possible instead of creating new implementations for
mesh refinement. An overview of the recent work and challenges, as well as
comparisons of the different techniques in the topic of hardware tessellation,
is given by Nießner et al. [Nie+16].

2.2.1. Mesh Shaders

With Nvidia’s Turing architecture [NVI18], a new programmable geometric
shading pipeline was released in 2018. Mesh shading [Kub18] offers a new
shader model for the vertex, tessellation and geometry shading stages of
the graphics pipeline. With the compute programming model now in the
graphics pipeline, threads can be used cooperatively to generate compact
meshes (meshlets), which are consumed by the rasterizer. In this way, the
entire vertex pipeline consists only of two stages: a Task shader followed by a
Mesh shader; it is shown in Figure 2.4. This flexible approach allows efficient
pre-culling, current tessellation scenarios and other level-of-detail (LOD)
techniques as well as procedural generation. Thus, the approach reduces the
workload on the CPU and allows the GPU to be used more parallel.

The new geometry processing pipeline contains only two shader stages.
The mesh shader produces the primitives (triangles, lines, points) for the
rasterizer using a cooperative thread model. Before the mesh shader in the
pipeline is the optional task shader stage. It operates similar to the tessellation
control stage, meaning it generates work dynamically, but uses a cooperative
thread model and has user-defined input and output (meshlets).

A meshlet represents a variable number of vertices and primitives, which also
may not be connected. Of course, there is a hardware limit to the maximum
size of the meshlets, but their maximum size must also be specified in the
shader code.

The mesh shading pipeline is showcased in the Asteroids demo, which uses
extremely efficient culling and LOD techniques to reduce the number of

13
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Figure 2.4.: Comparison of the traditional rendering pipeline with the new mesh shading
pipeline. Reprinted from Introduction to Turing Mesh Shaders — NVIDIA Developer
Blog by NVIDIA Corporation. Copyright 2018-2020 by NVIDIA Corporation.

rendered triangles by several magnitudes, keeping only those necessary to
show a high level of image fidelity. The use of the mesh shading pipeline
in this demo drastically reduces the workload of the GPU and CPU for the
culling and LOD operations.

However, the integration of mesh shaders into a graphics application requires
developers to refactor their geometry toolchain by separating geometry
into compact meshes (optimally with maximal vertex re-use within the
meshlets) and create own LOD algorithms instead of using the geometry and
tessellation stages.

14
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2.2.2. Used Algorithm

It makes sense to use an algorithm that is already implemented in CUDA
and contains a work distribution, to include a tessellation stage into the
software rendering pipeline as mentioned above. Consequently, we used the
tessellation procedure described by Stadlbauer [Sta19].

His algorithm performs dynamic mesh refinement, as specified by OpenGL,
for triangles and quads. The algorithm is organized in stages similar to
OpenGL, which are executed consecutively. Between the stages, the algorithm
returns to the CPU and performs dynamic memory allocations and the work
distribution with prefix sums. Consequently, most parts of the algorithm must
be adapted to work in a streaming software rendering pipeline, especially
since we cannot return to the CPU between stages nor allocate memory of
dynamic size.
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3. Tessellation Procedure

This chapter will focus on the tessellation procedure, which divides primitives,
in our case, only triangles and quads, into smaller sections. The generated
primitives are always triangles to simplify the processing in later stages of
the pipeline, especially in the rasterizer.

3.1. Existing Algorithm

We use an existing tessellation algorithm for CUDA, which was presented by
Stadlbauer [Sta19]. The details of the algorithm are described in his work.
Therefore we will only highlight the modifications and additions to use the
algorithm in a streaming rendering pipeline in this chapter.

3.2. Primitive Sections

Tessellation allows each primitive to be subdivided into an arbitrary number
of triangles (up to a specified maximum). The amount of subdivision is
controlled with multiple tessellation levels, which specify how many seg-
ments an edge is split into. For triangles, there is only one inner tessellation
level and three outer levels; one for each outer edge. For quads, there are
two inner levels, one for the horizontal and one for the vertical tessellations
and four outer levels; one for each outer edge. It is possible to displace the
newly generated vertices by assigning them arbitrary positions in a shader
program.

Each primitive is split into an inner and outer section, which is illustrated for
a triangle in Figure 3.1. The inner section forms either a quad or a triangle, and

16



3. Tessellation Procedure

(a) Inner triangle section (b) Outer triangle section

Figure 3.1.: Inner and outer sections of a triangle.

the outer section is a triangle strip connected to form a circle. Both sections
have their individual tessellation levels allowing to create a mesh without
cuts or holes in it. In this way, it is possible to control the geometric resolution
with the inner tessellation levels and use the outer tessellation levels to
specify the number of vertices on each outer edge. The outer primitive section
then connects the inner section which has an arbitrary number of vertices
(determined by the desired geometric resolution) on its outer edges to the
outer edges of the patch with a fixed number of triangles (controlled by the
neighbouring patches). This makes it possible to properly connect multiple
patches, with each having different tessellation levels within the patch and
thus different numbers of triangles, but the same number of vertices on the
shared edges. In this way, we obtain a mesh without holes or cuts. Figure 3.2
shows how we can have different numbers of vertices on each outer edge with
the outer subpatches connecting the outer edge to the inner subpatches.

3.3. Subpatches

As already mentioned, the primitives are split into subpatches for the tessella-
tion, which is illustrated in Figure 3.2. The subpatches are pieces of the mesh
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3. Tessellation Procedure

with a specific maximum number of triangles and vertices to match the warp
size of CUDA, which is 32. In this way, each thread can process one vertex and
one triangle while a whole subpatch is always processed by the same warp
and therefore at the same time. Moreover, we can exploit the most efficient
synchronization and data sharing methods. The subpatches are also used to
simplify the work distribution, as we only have to manage the subpatches
instead of individual triangles. Same as with the primitive sections, we also
have the distinction of inner subpatches and outer subpatches.

Inner Subpatches have the shape of squares or rectangles of up to 32 triangles.
Due to the reuse of vertices, a full subpatch can have 32 triangles with only 25
vertices. Hence, each thread of the warp will create a triangle. However, not
all threads will participate in vertex processing, which may add an overhead,
especially in the execution of the tessellation evaluation shader. The number
and size of the inner subpatches are only determined by the inner tessellation
levels.

Outer Subpatches, on the other hand, form triangle strips, which have poor
vertex reuse. Here, the subpatches have a maximum of 28 triangles and 32
vertices. It would be possible to form 30 triangles with 32 vertices in a triangle
strip, but we also have to consider a special case in the triangle tessellation
where the outer subpatch consists of two triangle strips. The number and
size of the outer subpatches are determined by both the inner and outer
tessellation levels.

3.4. Index Computations

In the algorithm described by Stadlbauer [Sta19], global indices for triangles
and vertices are used. Consequently, global arrays (one for each primitive) of
dynamic size are needed to store the vertices. In this way, the vertices only
have to be calculated once and can be reused to form multiple triangles. How-
ever, this approach requires to allocate memory dynamically and compute
prefix sums to index these arrays, which would add latency and reduce the
performance. To avoid this, we use individual arrays for each subpatch. The
size of each array is 32, which is equal to the maximum number of vertices in
a subpatch. Therefore, we may waste memory if a subpatch is small, but there
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3. Tessellation Procedure

Figure 3.2.: Illustration of the division of a quad into subpatches. Each subpatch is marked
with a different color and the only subpatches with the maximum size are the
dark blue and light blue ones. The inner tessellation levels are 8 and 7, and
the outer levels are 2, 3, 4 and 5 beginning with the bottom edge and going
counterclockwise.

is no performance overhead for dynamic memory management. Moreover,
the arrays can be stored in fast shared memory instead of global memory,
and no prefix sums are required. On the other hand, we need to change the
algorithms that compute and use the vertex indices to use the local indices in
the range [0, 31].

3.5. Inner Tessellation

The tessellation of the inner section differs for triangles and quads and is
therefore described in separate subchapters.

3.5.1. Quad Inner Tessellation

The process for the inner tessellation of quads is illustrated in Figure 3.4.
The inner tessellation of quads ignores the outer tessellation levels and
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(a) Global enumeration of triangles (blue) and vertices
(black) of the whole primitve.
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(b) Local enumeration of trianles and vertices within each
subpatch. The local triangle ids are in black whereas
the local vertex ids are colored with the subpatch color.

Figure 3.3.: Local and global enumeration of triangles and vertices.
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Figure 3.4.: Inner quad tessellation with tessellation levels inner0= 7 and inner1= 6.

applies the inner level 0 to both horizontal outer edges and level 1 to
both vertical edges. Then we build a series of concentric rings (blue in the
figure). The neighbouring vertices of each corner vertex of the outer ring are
selected (orange). A vertex for the inner ring is created at the intersection of
perpendicular lines (orange dashed) of the selected vertices. The edges of the
inner ring are then subdivided at the intersection with perpendicular lines
from the remaining vertices.

The process is repeated with the new ring to generate the remaining inner
quads until any side of the new quad has either exactly one or two segments.
In the example in the figure, the second ring has two segments on both
vertical sides, so the algorithm only creates the last ring, which is a line with
two vertices and then stops.

Vertices

The vertex positions are computed as Barycentric coordinates as described
in chapter 3.4.1 of “Streaming Primitive Tessellation for High-Performance
Software Rendering Pipelines” [Sta19].
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Triangle and Vertex Indices

The triangles are indexed row-by-row starting with the edge that connects the
first and second vertex of the original primitive as the first row. The indices
of the vertices are local indices that are only unique within a subpatch and
restart with every new subpatch. In this way, the indices are in the range
[0, 31] and can be used to index into subpatch local arrays. Figure 3.3 shows
how the triangles and vertices of a patch are indexed.

The algorithm for the computation of the vertex indices that form each
triangle is shown below. The calculation differs depending on the quadrant
the triangle is in, to create symmetric patches.

Algorithm 3.1 CalculateQuadInnerTriangle
1: pointingDown← idx mod 2
2: row← threadIdx

2·subpatchSize . threadIdx is the index of the thread within a warp

3: globalRow← idx
2·numColumns

4: x←
(

idx
2 + globalRow

)
mod numRows

5: y←
(

idx
2 + globalRow

)
·

1
numRows

6: startIdx← threadIdx
2 + row

. Different calculations depending on the quadrant ensures symmetric tessellation
7: if

(
x < numRows

2 ∧ y < numColumns
2

)
∨

(
x ≥ numRows

2 ∧ y ≥ numColumns
2

)
then

8: vertex.x← startIdx
9: vertex.y← startIdx + (subpatchSize + 1) + 1− pointingDown · (subpatchSize + 1)

10: vertex.z← startIdx + (subpatchSize + 1) + pointingDown
11: else
12: vertex.x← startIdx + pointingDown
13: vertex.y← startIdx + 1 + pointingDown · (subpatchSize + 1)
14: vertex.z← startIdx + (subpatchSize + 1)
15: end if

3.5.2. Triangle Inner Tessellation

The inner tessellation of triangles is done in the same way as quads and
is illustrated in Figure 3.5. Meaning, the outer tessellation levels are again
ignored, and the inner tessellation level is applied to all edges. We build a
series of concentric rings (blue in the figure) and select the two neighbouring
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3. Tessellation Procedure

Figure 3.5.: Inner triangle tessellation.

vertices (orange) of each corner vertex. A vertex for the inner ring is created at
the intersection of perpendicular lines (orange dashed) of the selected vertices.
Perpendicular lines from the remaining vertices are used to subdivide the
edges of the inner ring. This process is repeated until the inner ring is only a
single vertex, or it has no subdivided edges.

Vertices

The vertex positions are computed as Barycentric coordinates as described
in chapter 3.5.1 of “Streaming Primitive Tessellation for High-Performance
Software Rendering Pipelines” [Sta19].

Triangle and Vertex Indices

We reuse the L-shaped grid as described by Stadlbauer [Sta19] for simpler and
more efficient computations. However, we changed the vertex indexing from
global indices to local indices which are only unique within the subpatch to
use them as an index in local arrays. Therefore, the triangles and vertices
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3. Tessellation Procedure

are indexed as shown in Figure 3.3, but the patch is L-shaped instead of
rectangular.

The algorithm that computes the indices of the vertices that form the triangles
is shown below.

Algorithm 3.2 CalculateTriangleInnerTriangle
1: pointingDown← idx mod 2
2: subpatchRow← threadIdx

subpatchSizeX∗2 . threadIdx is the index of the thread within a warp.

3: vStartLower← threadIdx
2 + subpatchRow . subpatchRow is the local row within the

subpatch.
4: vStartUpper← threadIdx

2 + subpatchRow + (subpatchSizeX + 1)

5: vertex.x← vStartLower
6: vertex.y← vStartLower + 1
7: vertex.z← vStartUpper + ¬(row ≥ numRings∨ column ≥ numRings)
8: if ¬pointingDown then
9: vertex.x← vStartUpper + 1

10: vertex.y← vStartUpper
11: vertex.z← vStartLower + ¬(row ≥ numRings∨ column ≥ numRings)
12: end if

3.6. Outer Tessellation

The outer tessellation is done similar to chapter 3.6 of “Streaming Primitive
Tessellation for High-Performance Software Rendering Pipelines” [Sta19],
but we changed the computation of the triangle indices again, so they are
local indices within each subpatch. Therefore, we use the indices from the
CalculateOuterTriangle algorithm [Sta19], which returns the local indices
within each side. We then add the vertices from the other sides processed
which are in the same subpatch as offset and subtract the vertices from
already processed vertices of the same side, i.e. if the subpatch does not start
at the beginning of the side. We then obtain continuous vertex indices in the
range [0, 31].

An example is shown in Figure 3.6, where the different subpatches are
marked with colors and the segments for the individual sides are marked
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Figure 3.6.: Illustration of the outer tessellation of a quad. In this example, the size of the
subpatches is reduced to 8 triangles instead of the normal size of 28 triangles
to simplify the presentation. Each subpatch is filled with a different color, and
the individual segments for each side of the outer section are marked with bold
lines.

with bold lines. The vertex indices for subpatch 2 are marked as an example.
The black numbers are the local indices within each side returned from
the CalculateOuterTriangle function, and the blue numbers inside are the
corrected ids.
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4. Primitive Order

Hardware rendering pipelines such as OpenGL guarantee primitive ordering,
which means, that primitives are drawn in the fragment buffer in the same
order they were received in the pipeline. This guarantee is essential for
order-dependent rendering techniques such as transparency. The primitives
are ordered based on the order of their vertices in the vertex buffer. However,
as rendering pipelines rely heavily on parallel processing, the order cannot be
maintained throughout the pipeline, which is shown in Figure 4.1. Triangles
start in the correct order with geometry processing, but take different amounts
of time and thus end up in the wrong order. Therefore, primitives are
processed out-of-order, and reordering is performed at some point before
drawing the fragments. [MB05, chapter 8.5.5]

There are different possibilities to restore fragment order. A simple approach
would be to keep the primitives ordered throughout the pipeline by perform-
ing a reordering step after each stage. This approach would reduce GPU
utilization since we have to synchronize after each stage and add a large
overhead due to the many sorting operations.

Another approach would buffer all fragments and then sort the individual
fragments instead of primitives. In this way, there is no synchronization
between the stages necessary, allowing for more efficient scheduling algo-
rithms. However, we would have to store all possible fragments and sort
them after all primitives have been processed, which adds a large memory
and processing overhead.

The most efficient approach, which is also used in current hardware graphics
pipelines reorders the primitives between geometry processing and rasteriza-
tion stages. This approach requires the rasterizers to be split between disjoint
regions of the screen. Thus, we remove the ordering constraint between
rasterizers, since triangles processed by different rasterizers cannot overlap.
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Figure 4.1.: Illustration of multiple triangles being processed in parallel in multiple instances
of the geometry processing stages. The triangles take different amounts of time
within the stage which is illustrated with the timestamp annotations T1 to T7
where T1 < T2 < ... < T7.
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However, triangles crossing the region boundaries also need to be processed
by multiple rasterizers.

We use a similar approach, as described by Kenzel et al. [Ken+18] and collect
the triangles in the triangle buffer, which is located right before the rasterizer.
The triangle buffer caches the primitives to allow the rasterizer to work with
full utilization and guarantee the correct order of primitives. The utilization
of the rasterizer is provided by dequeuing primitives in batches of a specific
minimum size. Before dequeuing the buffer is sorted, to ensure the order
of the primitives. However, to prevent skipping primitives that did not yet
arrive at the triangle buffer, a progress queue is used. Moreover, this queue also
improves performance because it can track the number of primitives that
are ready for sorting. Then we will only sort the triangle buffer if it contains
enough primitives.

To distinguish between the primitives that enter the pipeline and the ones
that have been subdivided by the tessellation stage, we will use the following
terms in the remainder of this chapter: primitives describe patches entering
the pipeline whereas triangles and quads describe subdivided primitives.

4.1. Progress Tracking

There are different approaches to implement a progress queue. If the pipeline
does not use tessellation or geometry stages, no new primitives are generated
in the pipeline. Therefore, each primitive can be indexed upon entering
the pipeline, and a bitfield can be used to track the primitives. When a
triangle is enqueued in the triangle buffer or discarded, the corresponding
bit is set by the geometry processing thread. In this way, each triangle
corresponds to a bit in the bitfield, where the position of the bit is equal
to primitiveID mod bit f ieldSize. Checking the number of triangles that can
be sorted and rasterized is then simply done by finding the position of the
first unset bit. This is always done by the rasterizer before sorting the input
queue.

However, this approach cannot be used with tessellation or geometry stages,
since arbitrary numbers of new primitives are generated dynamically. Conse-
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quently, bitfields of variable size would have to be allocated and managed
dynamically, which adds significant overhead. A static version of the bitfield
would have one bit for each triangle that could be created by the tessellation
stage, which would need more than 6000 bits for each primitive, and therefore
add an unmanageable memory overhead.

Instead of using a bitfield for the triangles, we implemented two different
versions of the progress tracking with tessellation, which are described
subsequently.

4.1.1. Counter for each primitive

The tessellation stage works on subpatches in a synchronized manner, mean-
ing that all triangles within a single subpatch are processed at the same
time. In consequence, we can track just the subpatches instead of individual
triangles.

A simple way of tracking the subpatches is using a counter for each primitive
that enters the pipeline. Thus, we use a large global ring buffer containing
8-bit counters, which are initially set to −1. At the end of the tessellation
control stage, we can calculate the number of subpatches a primitive is split
into and set the corresponding counter to that number. We can then reduce
the counter by one every time the triangles of a subpatch are enqueued in
the triangle buffer or discarded.

The maximum number of subpatches for a triangle is 208, while a quad
can have up to 272 subpatches. To be able to use 8-bit counters for quad
tessellation, at least two subpatches are combined to packets that are then
used for the work distribution. In this way, the overall maximum number of
subpatches for a primitive is 208. Therefore, each counter only needs to have 8-
bit, thus adding an overhead only for very small tessellation levels. Checking
for finished primitives is simply done by finding the first byte containing
a nonzero bit, which is then the first unfinished primitive. However, this
approach only allows for tracking the completion of the initial primitives
that enter the pipeline and may be split into several thousands of triangles.
This approach reduces the granularity of the rasterizer as the triangle batches
that the rasterizer waits on may contain several thousand triangles.
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4.1.2. Bitfield for subpatches

It is also possible to use a static bitfield in a large global ring buffer with
one bit for each possible subpatch of the primitives entering the pipeline.
Consequently, we need 208 bits for each primitive, which adds a significant
memory overhead to the progress tracking. Moreover, we have to set all
unused bits (i.e., 208− numSubpatches) at the end of the tessellation control
stage for each primitive, so we get a continuous range of ones for finished
primitives. Whenever the triangles of a subpatch are enqueued in the triangle
buffer or discarded we simply set the corresponding bit in the bitfield.

In this way, we gain the ability to track individual subpatches instead of
whole primitives. Thus, the rasterizer can wait on much smaller batches of
triangles, which is beneficial if the subpatches and primitives are already
processed partially in the correct order.

4.2. Sorting

Tracking the progress of primitives is only one part of guaranteeing primitive
order. The primitives also need to be sorted before entering the rasterizer,
which is done similar to [Ken+18]. The process is illustrated in Figure 4.2.
First, we check the progress queue to ensure that enough primitives are ready
to fill the rasterizer. Then we store the largest primitive id of the triangles
that are ready as pprog. The bits or counters for all primitives below pprog are
reset and can be reused. We use a block-wide radix sort for reordering. As
only a certain number of primitives (more specifically, only primitives with
id smaller than pprog) need to be delivered to the front of the queue, a moving
sorting window is used. The window of size w starts at the back of the queue
and moves w/2 primitives towards the front in each step. When the window
reached the front, we search for the largest id smaller than pprog, which is
the end of the part of the queue that is ready for consumption; it is marked
as prdy. The sorting is repeated while the id of all sorted primitives is below
pprog. We only need to sort primitives with id less than pprog correctly and
thus, we can remap the ids from the range [prdy, pprog] to [0, pprog − prdy]. In
this way, we limit the number of bits that radix sort has to consider.
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bitmask: 0011 1111 0101 0110 0001 pprog = 6
4 8 12 16 20

23 18 32 13 15 11 17 5

prdy = 5

(1)

bitmask: 0000 0000 0101 0110 0001 pprog = 12
4 8 12 16 20

(2)

23 18 32 13 15 11 17 5

32 23 18 13 15 11 17 5

32 23 18 15 13 11 17 5

(3)

32 23 18 15 17 13 11 5

prdy = 11

(4)

Figure 4.2.: Illustration of the sorting process. In this example, we use the progress tracking
with a bitmask. (1) pprog = 6 indicates that all subpatches up to id 6 have been
accounted for. prdy marks the end of the queue currently known to be complete
and in order. (2) Since all bits from pprog up to 12 are now set, the block updates
pprog and clears the bits. (3) It then sorts the queue by moving a sorting window
from the back to the front. (4) The first two elements are ready to be processed
and prdy is updated.
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This section describes the added pipeline stages for tessellation.

5.1. Tessellation Control Stage

The first stage for the tessellation algorithm is the tessellation control stage.
This stage calls the tessellation control shader (TCS), which is application-
specific and returns the tessellation levels for a primitive. Similar to OpenGL,
the shader is executed once for every vertex of the primitive. A simple
example is shown in listing 5.1. The TCS sets the tessellation levels and
returns the spacing, which is used to convert the decimal tessellation levels
to integers. The spacing also determines if and how the fractional part of the
levels influences the locations of the generated vertices. With the levels, the
stage also computes the number of subpatches the primitive will be split
into.

Listing 5.1: Simple example of a tessellation control shader in cuRE. The constant

variable is set once for the whole draw call and sets the tessellation levels for all
primitives.

1 __constant__ float tessLevel[6];
2
3 int tcs(int invocationID , int patch_vertices , const math::float4* pos,

4 const VS_Out* in, float* tess_level_outer ,

5 float* tess_level_inner , TCS_Out* out)

6 {

7 tess_level_inner[0] = tessLevel[0];

8 tess_level_outer[0] = tessLevel[2];

9 tess_level_outer[1] = tessLevel[3];

10 tess_level_outer[2] = tessLevel[4];

11
12 return 0;

13 }
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5.1.1. Execution Context

The execution context for the tessellation control stage is threads, meaning
that each thread is not aware of any other threads to exchange data with or
synchronize. Each thread processes one primitive at a time.

5.1.2. Input

The input to this stage is the primitive generated after the execution of the
vertex shader in the vertex processing stage, which can be a triangle or quad.
The primitive data contains its primitive id as well as vertex positions, and
all triangle attributes defined as output in the vertex shader.

5.1.3. Shader

First of all, the stage executes the TCS, which provides the data for all further
processing steps. The TCS is executed once for each vertex of the primitive.
As we have only one thread for the whole primitive, the TCS is executed in a
loop. Listing 5.1 shows an example of a TCS for a triangle. The only input
parameter that changes for the executions of vertices of the same primitive
is the invocationID , which is just the loop counter. The parameters of the
function are:

• invocationID: Index of the vertex in the patch, starting with 0
• patch vertices: Number of vertices in the patch
• pos: Array containing the vertex positions
• in: Array containing the user-defined attributes from the vertex shader
• tess level outer: Output of the outer tessellation levels
• tess level inner: Output of the inner tessellation levels
• out: Output of user-defined attributes, which will be passed to the TES

The function returns the selected spacing for the vertex placement, where
0 means equal spacing, 1 sets fractional even spacing and 2 specifies fractional
odd spacing. The spacing controls how the fractional tessellation levels are
converted to integers and the position of the newly generated vertices.
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After the shader has been executed for all vertices, we convert the fractional
tessellation levels to integers and compute the number of subpatches which
will be emitted for this primitive. We do not need to compute the number
of triangles or vertices generated, since it is not needed in this or any later
stages.

5.1.4. Subdivision

For efficient computations after the tessellation control stage, the workload
is combined into subpatches. Each thread of the tessellation control stage
creates between 0 and 208 subpatches for each primitive depending on its
tessellation levels. The subpatches are smaller patches of the subdivided
primitive that can be computed individually and have a maximum size that
matches the warp size of CUDA. Consequently, the number of triangles and
vertices is less or equal than 32, which is the warp size. In this way, a whole
subpatch is always processed simultaneously. Therefore, we can manage
subpatches instead of individual triangles in the work distribution stages,
which reduces the overhead. The subpatches are constructed in a way to take
advantage of the largest possible vertex reuse. The inner and outer sections
are divided into individual subpatches, because of a different processing
procedure which results from the different layout.

The inner subpatches are squares or rectangles. This subdivision scheme is
easy to compute and results in an excellent triangle to vertex ratio. At the
maximum size, the number of triangles is the limiting factor, as it is possible
to reach 32 triangles with only 25 vertices.

The outer sections are triangle strips, and therefore the subpatches are also
just triangle strips. The size is again chosen to match the warp size. Therefore,
the maximum size is limited by the number of vertices as it is possible to
build a triangle strip with 30 triangles using 32 vertices. However, there is
a special case to be considered for triangles, which limits the size of outer
subpatches to 28 triangles with 32 vertices.
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5.1.5. Subpatch Redistribution

For the redistribution of the subpatches, they need to be buffered in queues.
Therefore, each thread in the tessellation control stage adds all generated
subptaches to a subpatch buffer. There are multiple buffers to reduce the work
distribution overhead. Each multiprocessor has a buffer in shared memory
which is implemented as a stack. Shared memory is only visible within the
same multiprocessor, which is why each multiprocessor has its own buffer
where only the threads of this multiprocessor will add subpatches. However,
the amount of available shared memory is quite small. In consequence, not
all subpatches will fit into the shared memory buffers, especially when using
large tessellation levels. The remaining subpatches will be added to a queue
in global memory, which threads of all multiprocessors can access. This queue
has much larger access times and must be handled with atomic operations to
avoid data races.

We can reduce the overhead for the work distribution further by combining
multiple subpatches of the same primitive into a package because except for
the subpatch id all subpatches of a primitive have identical data. In this way,
we also reduce the data passed between the stages by a factor of the number
of combined subpatches because the data only needs to be transferred once
per package instead of once for each subpatch. This approach is implemented
by emitting the combined subpatches in the tessellation control stage and
repeating the execution of the subpatches in the tessellation evaluation stage
with the different subpatch ids.

5.2. Tessellation Evaluation Stage

The Tessellation Evaluation Stage computes the Barycentric coordinates
of the vertices, creates the triangle layout and executes the Tessellation
Evaluation Shader (TES) which is application-specific and computes per-
vertex attributes.
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5.2.1. Execution Context

The execution context for the tessellation evaluation stage is blocks, meaning
that the threads within a block can exchange data and synchronize with all
other threads of the block. Each warp (consisting of 32 threads) within a block
processes one subpatch. Therefore, the block dequeues as many subpatches
at a time as it has warps. Since the block has access to a local queue in fast
shared memory and a global queue, it will prioritize pulling elements from
the local queue, to free up space in the faster memory first.

5.2.2. Input

The input to this stage are the subpatches or combined subpatches generated
in the tessellation control stage. The subpatch contains the primitive id and
subpatch id, the number of subpatches of the primitive, the fractional and
integer tessellation levels and the attributes which are defined as outputs in
the tessellation control shader.

The stage contains an input processing step which is implemented as a
wrapper, to handle the packages of combined subpatches. This wrapper
executes the stage for each subpatch in the package after computing the
correct subpatch id. This is done by iterating over the number of subpatches
in the package and multiplying the subpatch package id with the number of
subpatches in the package and then adding the current loop counter.

5.2.3. Tessellator

The first processing step in this stage is the computation of an internal vertex
id, which determines if a thread participates in vertex processing and if so,
which vertex it processes. Then the Barycentric coordinates for each vertex
in the subpatch are calculated, and the TES is executed. The vertex position
returned by the shader is stored in shared memory so it can be reused by
the other threads processing the same subpatch. In this way, vertices can be
reused for multiple triangles, and each vertex only has to be processed once.
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The last step is the creation of triangles using all vertices and filling the whole
subpatch.

Listing 5.2: Simple example of a tessellation evaluation shader in cuRE. We only
interpolate the vertex position and apply the view and projection transformations in
this example.

1 math::float4 tes(const math::float3& v1, const math::float3& v2,

2 const math::float3& v3, const math::float3& uvw,

3 const TCS_Out* in, TES_Out& out)

4 {

5 math::float3 coords;

6 coords.x = v1.x * uvw.x + v2.x * uvw.y + v3.x * uvw.z;

7 coords.y = v1.y * uvw.x + v2.y * uvw.y + v3.y * uvw.z;

8 coords.z = v1.z * uvw.x + v2.z * uvw.y + v3.z * uvw.z;

9
10 return camera.PV * math::float4{coords, 1.0f};

11 }

Shader

The TES is executed once for each existing and newly generated vertex of the
subpatch. It is executed in parallel for all vertices since we have one thread
for each vertex. Listing 5.2 shows an example of a simple TES for a triangle.
The parameters of the function are:

• v1-v3: Positions of the original vertices.
• uvw: Barycentric coordinates of the vertex within the original triangle.
• in: Array containing the user-defined attributes passed from the TCS.
• out: Output of user-defined attributes, which will be passed to the

fragment shader.

The function returns the screen-space coordinates for the vertex.

The stage outputs between 1 and 32 triangles for each subpatch, meaning that
each thread emits zero or one triangle. The generated triangles are directly
forwarded to the primitive processing stage, which performs clipping and
culling and computes values needed for the rasterizer such as the edges or
the screen-space bounding box.
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This chapter will focus on the implementation of the algorithm described in
the previous chapters. First, we will describe the framework used to develop
the algorithm as well as the demos to test the implementation. The next
sections will describe the implementations in OpenGL and cuRE, respectively,
in more detail.

6.1. Framework

This section will describe the framework used to develop and test the
pipelines. The framework uses C++templates to adapt to different hardware
and pipeline configurations without influencing the runtime computations
because in C++templates are evaluated and instantiated at compile time.

6.1.1. Testbed

The Testbed allows comparing different rendering engines in various scenes in
an easy way. The renderer can be changed at runtime, and it has a navigator
to traverse the scene as desired. Each renderer is provided with the same
input models and render targets, and the frame time is measured. It allows to
register keyboard inputs and forward them to the active renderer. Moreover,
it can store the frame times and other events in a CSV file for profiling. We
also record the number of clock cycles spent in each individual stage.
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6.1.2. cuRE

cuRE contains all the components necessary to build the stages and work
distribution of a rendering pipeline. Moreover, it provides an easy to use
interface to specify the pipeline and data exchange interface between the
stages. Different stream buffers and schedulers are available to control the
work distribution. Shared memory can be specified for each stage individually
and independent from the execution context. The execution context can be
chosen individually for each stage and changed within the stage or between
stages in the work distribution.

6.1.3. Rasterpipe

The Rasterpipe defines the rendering pipeline itself as well as the specification
of all the stages. Some specialized work distribution stages that require
structures and concepts from the rasterpipe are also defined there. The
pipeline .h file contains the complete pipeline composition and configurations

for the individual stages. Following parameters can be configured in this
file:

• TESSELLATION: Enables or disables the tessellation stages.
• USE PRIMITIVE ORDER: Specifies if primitive order shall be enforced or

not.
• USE FRAGMENT SHADER: Determines if the color is computed by a pro-

vided fragment shader or by the primitive id.
• USE RANDOM TESS LEVEL: Can be set to bypass the tessellation control

shader and compute the tessellation level based on the primitive id as
primitiveID mod 64 + 1.

• SUBPATCHES PER THREAD: Sets the number of subpatches, which are
combined into a package for the work distribution. The tessellation
evaluation stage then iterates over the actual subpatches within this
package. Increasing this number will reduce the cost for the work distri-
bution, but may lead to an unbalanced utilization for small tessellation
levels.
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• PROGRESS TRACKING: Select the used progress tracking approach for the
primitive order. A value of 0 uses the version described in chapter 4.1.1
and a value of 1 the version of chapter 4.1.2.

The stages are defined in multiple files where each stage is an individual
class. Therefore, the stages could be developed separately, if the interfaces
between the stages matched.

6.1.4. Demos

Several test cases, which are described in the following sections, were created
to check the correctness and compare the performance of the software
rendering engine with OpenGL.

All demos have the same rather simple fragment shader, which computes a
diffuse reflection by performing Lambertian shading. The light is static with
a position far up the z-axis. The renderer can be switched to wireframe mode,
to see the individual triangles and check the resolution of the mesh.

Simple Demo

This test applies uniform tessellation levels to provided models. More pre-
cisely, all primitives have the same tessellation levels. There is no displacement
applied to the new vertices, which results in a flat tessellation, which is not
noticeable without the wireframe mode. It is possible to change the tessella-
tion levels and spacing mode at runtime with keyboard inputs or load them
from a config file. Moreover, it is also possible to change between triangle
and quad rendering, if the model specifies both. As a complete uniform
tessellation is a rather unusual case, this test is mainly designed to check the
basic functionality of the tessellation algorithm and model loading.

Terrain

A procedurally generated mountain range as shown in Figure 6.1 is rendered
in the terrain demo. The input to the pipeline is a plane in the XY-plane

40



6. Implementation

Figure 6.1.: Screenshot of the terrain demo rendered with cuRE.

composed of quads with a coarse resolution. As each quad can be divided
into more than 8000 triangles with tessellation, it would suffice to have
only 250 quads on the screen to create pixel-sized triangles for a Full HD
screen. The user can modify the size of the terrain as well as the resolution
of the coarse input mesh either at runtime with keyboard inputs or load
the parameters from a config file. The geometric resolution of the plane is
then increased dynamically with tessellation based on the distance to the
camera to create triangles with approximately the same size on the screen. It
is essential that the following computations are performed on the already
displaced vertices, since the vertical offset may significantly affect the distance
to the camera. The tessellation levels are computed by encapsulating each
edge in a sphere (so the sphere has the same diameter as the edge length).
Then the sphere is projected into screen-space, which gives us the projected
edge length in pixels which is equivalent to the screen-space diameter of the
sphere. This length is used to compute the tessellation level for the edge. In
this way, we can render as few triangles as possible while maintaining high
visual quality and good geometric detail. The targeted triangle size can be
tuned (at runtime or in the config file) to achieve the best performance/detail
trade-off.
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The height of the terrain is computed procedurally using noise as displace-
ment in the y-axis. The noise is generated with a fractal Brownian motion
(fBm), which is a popular method for mixing samples obtained from Perlin
noise to create more pleasing results. We can achieve this by taking several
noise samples with different frequencies and summing them together. The
samples with increasing frequency are scaled-down more and more before
the summation. The sum is then returned as a noise sample and in our case
used as height value of the terrain.

PN Triangles

This demo uses the point-normal triangle algorithm as described by Vlachos
et al. [Vla+01] to calculate a cubic Bézier triangle from the vertex positions
and normals of a regular flat triangle. In this way, we can smooth out a
triangle mesh without any additional information like displacement maps.
A Bézier triangle is a smooth and continuous surface described by a cubic
polynomial function.

The construction of the Bézier triangle is done by calculating the positions of
10 control points bi jk with the condition i + j + k = 3. The vertex positions
of the triangle are given as P1, P2, P3 and the normals at the vertices are
N1, N2, N3. Three of the control points are just the positions of the original
vertices and remain unchanged:

b300 = P1

b030 = P2

b003 = P3

Six control points are related to the edges of the original triangle and are
calculated as follows:
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b210 =
1
3
(2P1 + P2 −ω12N1)

b120 =
1
3
(2P2 + P1 −ω21N2)

b021 =
1
3
(2P2 + P3 −ω23N2)

b012 =
1
3
(2P3 + P2 −ω32N3)

b102 =
1
3
(2P3 + P1 −ω31N3)

b201 =
1
3
(2P1 + P3 −ω13N1) with wi j = (P j − Pi) ·Ni

The remaining control point is in the interior of the triangle and computes
to

b111 = E +
1
2
(E−V) with

E =
1
6
(b210 + b120 + b021 + b012 + b102 + b201) and

V =
1
3
(P1 + P2 + P3)

The position of any point b in this Bézier triangle can then be computed by
interpolating between the control points with the Barycentric coordinates[
u v w

]T
:

b(u, v, w) =
∑

i+ j+k=3

bi jk
3!

i! j!k!
uiv jwk (6.1)

The vertex positions of the tessellated triangles can now be calculated with
equation 6.1.

The vertex normals can be either a linear interpolation of the original normals
or a quadratic function of the original positions and normals. In this demo,
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we choose a quadratic function for the normals, as linearly interpolated
normals will ignore inflections. Similar to the calculations for the positions,
we also need control points for the normals. Three control points are again at
the original vertices and remain unchanged:

n200 = N1

n020 = N2

n002 = N3

Three additional control points are related to the edges and defined as
follows:

vi j = 2 ·
(P j − Pi) · (Ni + N j)

(P j − Pi) · (P j − Pi)

n110 =
h110

||h110||
, h110 = N1 + N2 − v12(P2 − P1)

n011 =
h011

||h011||
, h011 = N2 + N3 − v23(P3 − P2)

n101 =
h101

||h101||
, h101 = N3 + N1 − v31(P1 − P3)

The normal vector of each vertex of the tessellated triangle can then be
calculated as a linear interpolation of the control points with the Barycentric
coordinates:

n(u, v, w) =
∑

i+ j+k=2

ni jkuiv jwk

The above-described calculations for the vertex positions and normals are
performed in the tessellation evaluation shader.

The calculation of the tessellation levels uses the orientation of the triangle
relative to the camera. The tessellation level is minimal for triangles which are
perpendicular to the camera and maximal for triangles parallel to the view
direction. In this way, the contour of the object appears even smoother, while
the geometric resolution is not unnecessarily increased where it is not needed.
An example of the adaptive tessellation levels is shown in Figure 6.2.

44



6. Implementation

Figure 6.2.: Screenshot of the PNtriangles demo with enabled wireframe mode rendered in
cuRE.

6.2. OpenGL

In OpenGL, the developer can control the tessellation with two shader
programs. Between the two shaders, a fixed-function stage performs the
actual tessellation. This stage can only be configured with a handful of
parameters. The TCS allows the developer to specify how much subdivision
should be done by choosing appropriate tessellation levels. This shader is
optional and can be replaced with static tessellation levels that are valid for
the whole draw call. If the shader is present, it is executed for each vertex of
the primitive. A simple example of a TCS for triangles is shown in listing 6.1.
In this example, we only set the tessellation levels with values from uniform
variables and forward the vertex positions.
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Listing 6.1: Simple example of a tessellation control shader in OpenGL. The
tessellation levels are set with uniform variables and are identical for all primitives
of the draw call.

1 #version 450

2
3 layout(vertices = 3) out;

4
5 uniform float tessLevel[6];

6
7 void main()

8 {

9 gl_TessLevelInner[0] = tessLevel[0];

10 gl_TessLevelOuter[0] = tessLevel[2];

11 gl_TessLevelOuter[1] = tessLevel[3];

12 gl_TessLevelOuter[2] = tessLevel[4];

13
14 gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].←↩

gl_Position;

15 }

The tessellation levels and additional information such as the spacing mode
are then used in the tessellator. The tessellator is a fixed-function stage which
subdivides the primitive according to predefined rules. The only way to
influence these rules is by modifying the parameters of the input layout in
the tessellation evaluation shader (cf. listing 6.2 line 5).

The TES allows the developer to compute per-vertex data since the shader
is executed for each existing and newly generated vertex. The Barycentric
coordinates of the vertex are input into the shader and allow the developer
to interpolate the attributes of the existing vertices and perform other com-
putations. A simple example of a TES for triangles is shown in listing 6.2.
The shader only interpolates the original vertex positions to compute the
position of a new vertex and applies the view and projection transforms to
the computed position.
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Listing 6.2: Simple example of a tessellation evaluation shader in OpenGL. The
program only interpolates the position and applies the view and projection
transformations.

1 #version 450

2
3 #include <camera>

4
5 layout(triangles , equal_spacing , cw) in;

6
7 void main()

8 {

9 vec4 pos = (gl_TessCoord.x * gl_in[0].gl_Position +

10 gl_TessCoord.y * gl_in[1].gl_Position +

11 gl_TessCoord.z * gl_in[2].gl_Position);

12
13 gl_Position = camera.PV * pos;

14 }

OpenGL requires the developer to use GL PATCHES as the primitive type
to enable tessellation. It is a general-purpose primitive type that can only
be used with tessellation, and the number of its vertices is user-defined.
However, we limited the patch size to three and four in all tests to render
triangles and quads respectively, because the pipeline in cuRE only supports
these two sizes.

6.3. cuRE Implementation

Geometry Processing

Tessellation

Vertex Pro-
cessing

Tessellation
Control Stage

Tessellation
Evaluation

Stage

Primitive
Processing

Figure 6.3.: Structure of the tessellation stages in the pipeline
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The tessellation phase is included between the vertex processing stage,
which executes the vertex shader and performs the triangle setup, and
the primitive processing stage performing computations necessary for the
rasterizer such as clipping, culling and calculating triangle edges. There
are two stages needed for tessellation, the Tessellation Control Stage, and
the Tessellation Evaluation Stage, which are described in chapter 5.1 and
chapter 5.2, respectively. Between these two stages, there is also a work
distribution stage. The setup is illustrated in Figure 6.3.

In contrast to the OpenGL pipeline, the shaders are programmed in C++
instead of GLSL.

To guarantee primitive order, we need to track the progress of primitives
throughout the pipeline. Since tessellation creates new primitives dynamically
within the pipeline, we do not register primitives when they enter the pipeline,
but after the tessellation control stage. The tessellation control stage registers
a primitive at the progress queue before forwarding its subpatches to the work
distribution, to initialize the counters or bitfield. Then after the subpatch
of a primitive reached the end of the geometry processing and is stored in
the triangle buffer or discarded, the primitive processing stage informs the
progress queue to mark the subpatch as finished.

The progress queue should return the number of ready triangles when we
check the progress. However, the queue only manages the subpatch packets,
and we need to convert this number to the number of triangles. For the
progress tracking with counters as described in section 4.1.1, we just multiply
the number of counters that are zero (ready primitives) with the maximum
number of triangles a primitive can be split into. For the progress tracking
with a bitfield as described in section 4.1.2, we multiply the number of set
bits (ready subpatch packets) with the maximum number of triangles per
subpatch packet, meaning the number of triangles per subpatch multiplied
with the number of subpatches per packet.

The numbers computed by both progress queue methods which we call pprog
do not represent the actual number of triangles which are ready, but the
largest possible triangle id of the ready primitives. Computing the exact
number of ready triangles would be extremely costly and therefore add a
high overhead. However, we only need a triangle id which is less than the id
of the first triangle which is not ready for the sorting, and the id does not
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need to belong to a valid triangle, because the sorting process only outputs
valid triangles whose id is less or equal than pprog.

49



7. Evaluation

To evaluate the correctness and performance of our approach, we tested it
on the three demos mentioned in section 6.1.4. As test platform, we used an
Intel Core i7-7700k CPU @ 4.5 GHz with 32 GiB of RAM running Windows
10. Experiments were performed on an NVIDIA GeForce RTX 2080 Ti. We
used Cuda version 10.1, and the OpenGL reference implementation is based
on OpenGL 4.5 core profile.

For a shorter notation, we use shorthands for different configurations of cuRE
in tables and plots, i.e. w/o indicates that primitive order is deactivated, w/1
is with primitive order and progress tracking with counters as described
in section 4.1.1 and w/2 with primitive order and progress tracking with a
bitfield for subpatches as described in section 4.1.2.

7.1. Results

To enable a comparison with OpenGL, we execute the tests of each demo
with enabled rasterizer and fragment shading stage. However, as these stages
take a significant amount of rendering time, we also provided rendering
times with disabled rasterization and fragment shading. For these tests, we
disabled the rasterizer in the frontend, so the timings still contain the triangle
buffer and primitive ordering.

We use multiple models with different numbers of triangles for the demos.
The exact number of triangles for each model with different tessellation levels
is shown in Table 7.1.
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Sphere Suzanne Bunny

TL 1 320 967 5, 120
TL 2 1, 920 5, 802 30, 720
TL 4 7, 680 23, 208 122, 880
TL 8 30, 720 92, 832 491, 520
TL 16 122, 880 371, 328 1, 966, 080
TL 32 491, 520 1, 485, 312 7, 864, 320
TL 64 1, 966, 080 5, 941, 248 31, 457, 280

Table 7.1.: Number of triangles for different models and tessellation levels. Tessellation
is applied uniformly, meaning that the inner and outer tessellation levels are
identical.

7.1.1. Simple Demo

With this demo, we mainly compare the relative overhead of tessellation in
cuRE with OpenGL. Therefore, we just divided the frame times at different
tessellation levels through the times with tessellation levels equal to 1 to obtain
overhead factors. The absolute frame times for all three models are shown
in Table 7.2, whereas the relative overhead for the Sphere and Bunny model
are shown in Figure 7.1 and Figure 7.2, respectively. For the larger models,
we could not measure the times with tessellation levels 64 in cuRE, because
the test timed out. The demo was executed with an active rasterizer and
fragment shader, to compare the results of cuRE with OpenGL. As expected,
the software approach cannot reach the performance of the hardware pipeline.
As this demo uses extremely simple shader programs, OpenGL is more than
100 times faster than cuRE. This performance overhead is partially a constant
overhead which explains the massive overhead of OpenGL for small models
and small tessellation levels. The performance edge of OpenGL over cuRE
can be attributed mostly to the better optimization and the implementation
of stages, such as the rasterizer, in hardware. For complex scenes with large
numbers of triangles, most of the performance overhead can be attributed to
the sorting of the triangle buffer for restoring the primitive order.

Depending on the test case, restoring primitive order costs 15 % (for simple
scenes with low triangle counts) to 1200 % (for very complex scenes) additional
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performance, due to the increasing sorting complexity. The type of progress
tracking for the primitive ordering has only a small influence on the rendering
time for most scenes. Only for very complex scenes with a large number of
primitives before tessellation, the difference becomes larger until about 30 %
with the Bunny model. The reason for this is the larger overhead from the
atomic operations in the progress tracking method with counters.

OpenGL cuREw/o cuREw/1 cuREw/2

Sp
he

re

TL 1 0.007 0.898 1.038 1.024
TL 2 0.008 0.987 1.131 1.102
TL 4 0.009 0.983 1.134 1.132
TL 8 0.014 1.101 1.322 1.326
TL 16 0.022 1.471 1.843 1.820
TL 32 0.042 2.860 4.177 4.174
TL 64 0.162 7.218 18.485 18.565

Su
za

nn
e

TL 1 0.006 0.972 1.083 1.093
TL 2 0.009 1.078 1.304 1.341
TL 4 0.016 1.431 1.609 1.635
TL 8 0.026 2.348 2.916 2.934
TL 16 0.043 5.393 9.280 9.255
TL 32 0.110 14.955 70.621 70.110
TL 64 0.391 53.037 — —

Bu
nn

y

TL 1 0.008 0.983 1.118 1.123
TL 2 0.017 1.246 1.534 1.515
TL 4 0.024 1.796 2.328 2.119
TL 8 0.050 3.561 6.087 4.970
TL 16 0.132 9.396 32.862 23.346
TL 32 0.314 29.190 353.454 242.257
TL 64 1.666 110.585 — —

Table 7.2.: Rendering time in ms of a few models of the simple demo. We compare OpenGL
with different configurations of cuRE with different uniform tessellation levels.

We can also measure the time consumption or more precisely the number of
elapsed clock cycles of each individual stage. We used these numbers to create
stacked bar charts for the bunny model with and without primitive ordering
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Figure 7.1.: Rendering time overhead (i.e. rendering time divided through the respective
rendering time of tessellation level 1) of the Sphere model. We compare OpenGL
with different configurations of cuRE with different tessellation levels.
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Figure 7.2.: Rendering time overhead (i.e. rendering time divided through the respective
rendering time of tessellation level 1) of the Bunny model. We compare OpenGL
with different configurations of cuRE with different tessellation levels.
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which are shown in Figures 7.3 and 7.4, respectively. The rasterizer takes a
considerable amount of the rendering time, but only uses about half of the
multiprocessors, because of a fixed rasterizer pattern. Each rasterizer renders
a fixed disjoint area of the image, and if there are no triangles in this area,
the rasterizer does not take any time. The rasterizers lead to a suboptimal
utilization, which is even more extreme with enabled primitive ordering
since the sorting of the triangle buffer is done by the same multiprocessor that
dequeues data. Moreover, without primitive order constraints, the rasterizers
can start working as soon as any tringles finished geometry processing, which
is also shown in Figure 7.4, where rasterizers start almost immediately in
contrast to Figure 7.3.
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Figure 7.3.: Elapsed clock cycles for each stage of the simple demo with the Bunny model
and primitive ordering. We used the progress tracking method with counters.

54



7. Evaluation

0 10 20 30 40 50 60
multiprocessor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

clo
ck

 c
yc

le
s

1e9

Vertex Processing
Tessellation Control

Tessellation Evaluation
Primitive Processing

Primitive Order
Rasterizer

Fragment Shader
Pipeline

Figure 7.4.: Elapsed clock cycles for each stage of the simple demo with the Bunny model
and without primitive ordering.

7.1.2. Terrain

We use the terrain demo to evaluate the performance of non-uniform and more
commonly used scenes. Moreover, we are using quads as input primitives
and for the tessellation instead of triangles. This demo uses tessellation levels
depending on the distance of a triangle to the camera. Since the viewing angle
is very flat, a wide range of tessellation levels will be present in the scene
at the same time. Moreover, the demo also uses more complex shaders. The
dynamic tessellation levels are computed in the tessellation control shader,
and procedural noise for the displacement mapping is computed in the
tessellation evaluation shader.

Table 7.3 shows frame times for the terrain demo rendered in cuRE and
OpenGL. Surprisingly, increasing the size of the subpatch batches does
not gain any performance but decreases it. We suspect that it may be due
to unbalanced utilization of the hardware. Because of the large variety of
different tessellation levels used simultaneously, warps processing a smaller
batch of triangles and which are finished earlier have to wait on warps
that take longer before they can get new data. Consequently, the overall
utilization of the hardware is reduced, and the rendering time increases. The
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Batch Size cuREw/o cuREw/1 cuREw/2

2 9.128 10.650 10.680
4 11.050 12.486 12.526
8 14.848 16.009 15.956
12 17.570 18.696 19.138
16 20.549 21.698 21.374
20 22.012 22.919 23.522
24 23.810 24.669 24.859
32 26.873 28.117 28.242

Table 7.3.: Rendering time in ms of the terrain demo. We test different sizes of subpatch
batches in cuRE and compare the rendering times to OpenGL which takes 0.509 ms.

work distribution between the tessellation control and evaluation stage is
relatively simple, especially compared to the work performed in the stages.

With the more complex shader programs, the difference between OpenGL
and cuRE also decreases, because the shaders are just programs running
on the processor and are therefore equally fast in OpenGL and cuRE. In
contrast to the simple demo, here OpenGL is only about 20 times faster. If we
would also use more complex fragment shaders, we could further reduce the
rendering time difference.

For this demo we also measured the number of elapsed clock cycles of each
individual stage and created stacked bar charts with and without primitive
ordering which are shown in Figures 7.5 and 7.6, respectively. In this demo,
the rasterizer takes less of the rendering time than in the simple demo, and
more of the multiprocessors are used since the scene fills the whole screen
with triangles. Figure 7.6 shows again that the scheduler tries to equalize
the rendering time across the multiprocessors by offloading the tessellation
evaluation stage to multiprocessors which do little to no rasterization. Most
of the rendering time is consumed by the tessellation evaluation stage, which
makes sense since the shader is more complex than in the simple demo.
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Figure 7.5.: Elapsed clock cycles for each stage of the terrain demo with primitive ordering.
We used the progress tracking method with counters.
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Figure 7.6.: Elapsed clock cycles for each stage of the terrain demo without primitive ordering.
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7.1.3. PN Triangles

The PN Triangles demo again provides a more complex and praxis-relevant
test scene using triangles. We compute adaptive tessellation levels in the
tessellation control shader and Bézier coefficients in the tessellation evaluation
shader, which increases their complexity. The overall complexity of the demo
can be adjusted easily by using different models. However, it is also possible
to influence the amount of tessellation at runtime with keyboard inputs.

Table 7.4 shows frame times for this demo with different models rendered
in cuRE and OpenGL.We tested different subpatch batch sizes in cuRE and
compared the results to OpenGL. The results are quite similar to the terrain
demo: increasing the batch size does not improve the performance but
decreases it. This behaviour can again be attributed to suboptimal utilization
with larger batch sizes. Depending on the model, OpenGL is 3 to 15 times
faster in this demo. The rendering time difference to OpenGL decreases with
more complex scenes which have more triangles. Restoring primitive order
increases the rendering time by 12 % - 46 %, depending on the model. The
overhead is larger for models with more triangles which is again attributed
to the sorting complexity.

The number of elapsed clock cycles for each stage with and without primitive
ordering is shown in Figures 7.7 and 7.8, respectively. Again not all multipro-
cessors are used for rasterization since the model does not completely fill the
screen. Moreover, the density of triangles varies strongly across the screen,
which leads to different time consumption of different rasterizers. With
primitive ordering enabled, the tessellation evaluation stage is distributed
evenly across all multiprocessors since the rasterizers have to wait until the
triangles in the correct order are ready until they can start. Without primitive
ordering, the rasterizers with high work loads start almost immediately.

7.2. Summary

Overall, the work distribution for the tessellation stages is excellent in all
demos, but the rasterizer and especially primitive ordering add significant
overhead and suboptimal utilization. The performance is acceptable, but some
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Batch Size cuREw/o cuREw/1 cuREw/2

Sp
he

re

1 1.030 1.158 1.165
2 1.358 1.533 1.253
4 1.643 1.696 1.313
8 1.876 1.970 1.397
16 1.860 1.990 1.397
20 1.893 2.021 1.374
30 1.304 1.429 1.415

Su
za

nn
e

1 1.410 1.627 1.676
2 1.541 1.954 1.807
4 1.637 1.999 1.773
8 1.735 2.205 1.858
16 1.825 2.281 1.885
20 1.877 2.301 1.914
30 1.466 1.901 1.845

Bu
nn

y

1 1.824 2.667 2.261
2 2.002 2.743 2.904
4 2.035 2.703 2.716
8 1.997 2.629 2.659
16 2.082 2.795 2.772
20 2.092 2.786 2.787
30 1.835 2.569 2.605

Table 7.4.: Rendering time in ms of different models of the PN triangles demo. We test
different sizes of subpatch batches in cuRE and compare the rendering times to
OpenGL which takes 0.102 ms, 0.108 ms and 0.958 ms for the Sphere, Suzanne
and Bunny model, respectively.

59



7. Evaluation

0 10 20 30 40 50 60
multiprocessor

0.0

0.2

0.4

0.6

0.8

1.0

clo
ck

 c
yc

le
s

1e9

Vertex Processing
Tessellation Control

Tessellation Evaluation
Primitive Processing

Primitive Order
Rasterizer

Fragment Shader
Pipeline

Figure 7.7.: Elapsed clock cycles for each stage of the PN-triangles demo with the Bunny
model and primitive ordering. We used the progress tracking method with
counters.
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Figure 7.8.: Elapsed clock cycles for each stage of the PN-triangles demo with the Bunny
model and without primitive ordering.
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models with high tessellation levels show large rendering times. However,
these cases generate an enormous amount of triangles which may not be
viable for real-time applications anyway.
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8. Conclusion

This thesis shows an implementation of a scalable tessellation stage in a
streaming software rendering pipeline. The algorithm is fully parallelized
on the GPU and adapts to different hardware configurations. We explained
the subdivision and work distribution methods between the stages to make
the process streamable. The tessellation algorithm adheres to the OpenGL
specification and allows to define custom shader programs. We support
triangles and quads as input primitives, and shaders can be programmed in
C++.

We have shown that this implementation runs in real-time with praxis-
relevant scenes, but some models with high tessellation levels show large
rendering times. However, these cases generate an enormous amount of
triangles which may not be viable for real-time applications.

8.1. Future Work

The compliance with the OpenGL specification adds additional overhead
to the tessellation algorithm. Therefore, it may be possible to improve the
performance of the algorithm by deviation from the specification. For special
rendering techniques, it may also be beneficial to change the tessellation
algorithm to achieve more pleasing results, improve the performance or
simplify the implementation.

Patches are used as input primitive type for tessellation. In OpenGL, the
size of the patches can be chosen arbitrarily with 1 to 64 vertices per patch.
Our implementation, however, only supports patch sizes of three or four
vertices per patch for triangle and quad rendering, respectively. Supporting
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8. Conclusion

additional patch sizes allows the implementation of more intricate tessellation
techniques.

Our tessellation algorithm works exclusively on the GPU and processes the
data in compact meshes (subpatches). Therefore, it is possible to implement
the tessellation stage in the shaders of the new shading pipeline [Kub18] of
the Turing architecture [NVI18].
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Appendix A.

Algorithms

Algorithm A.1 CalculateOuterTriangle
1: pointingDown← idx mod 2
2: row← threadIdx

subpatchSizeX∗2 . threadIdx is the index of the thread within a warp.

3: vStartLower← threadIdx
2 + subpatchRow . subpatchRow is the local row within the

subpatch.
4: vStartUpper← threadIdx

2 + subpatchRow + (subpatchSizeX + 1)

5: vertex.x← vStartLower
6: vertex.y← vStartLower + 1
7: vertex.z← vStartUpper + ¬(row ≥ numRings ‖ column ≥ numRings)
8: if ¬pointingDown then
9: vertex.x← vStartUpper + 1

10: vertex.y← vStartUpper
11: vertex.z← vStartUpper + ¬(row ≥ numRings ‖ column ≥ numRings)
12: end if
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Appendix B.

List of control keys

Key Action

General:
’Tab’ Switch the Renderer
’F8’ Screenshot
’Esc’ Exit the program

General Rendering control:
’W’ Toggle wireframe rendering

Simple demo controls:
’N’ Toggle triangle/quad rendering
’M’ Switch the tessellation spacing mode

’Left’ Increase inner tessellation level 0
’Right’ Decrease inner tessellation level 0

’Up’ Increase inner tessellation level 1
’Down’ Decrease inner tessellation level 1
’Num 7’ Increase outer tessellation level 0
’Num 1’ Decrease outer tessellation level 0
’Num 8’ Increase outer tessellation level 1
’Num 2’ Decrease outer tessellation level 1
’Num 9’ Increase outer tessellation level 2
’Num 3’ Decrease outer tessellation level 2
’Num +’ Increase outer tessellation level 3
’Num -’ Decrease outer tessellation level 3

Continued on next page
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Appendix B. List of control keys

Continued from previous page
Key Action

PN Triangles demo controls:
’M’ Switch between PN/flat tessellation
’Up’ Increase mesh resolution

’Down’ Decrease mesh resolution
Terrain demo controls:

’Up’ Increase mesh resolution
’Down’ Decrease mesh resolution
’Num 7’ Increase terrain size
’Num 3’ Decrease terrain size
’Num 8’ Increase input mesh resolution
’Num 2’ Decrease input mesh resolution
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Appendix C.

Configuration file options

Option Value Description

renderer
module
simple demo

model path
renderer

mode
tessellation

mode
inner (0,1)
outer (0-3)

terrain
size (x,y)
tile size (x,y)
triSize

pn triangles
model path

str
str

str

int [0, 1]

int [0,1,2]
float
float

float
float
float

str

Set the used Rendering system (OpenGL or cuRE)
Set the used demo

Path to the OBJ-file to render

Quad (1) or triangle (0) rendering

Spacing mode for tessellation
Inner tessellation levels
Outer tessellation levels

Terrain size
Size of each quad composing the terrain
Refinement factor for LOD calculation

Path to the OBJ-file to render
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