TU

Grazm

Patrick Pichler, BSc

Dynamic Dependencies for Task
Scheduling on the GPU

Master’s Thesis
to achieve the university degree of
Diplom-Ingenieur

Master’'s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. BSc. Markus Steinberger

Institute of Computer Graphics and Vision
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

Graz, September 2020

This document is set in Palatino, compiled with pdfI4TEX2e and Biber.

The IXTEX template from Karl Voit is based on KOMA script and can be found
online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to Tucrazonline is identical to
the present master’s thesis.

Date Signature

Abstract

Algorithms implemented on the Graphics Processing Unit (GPU) become
more and more complex. We want to split algorithms into simple tasks to
overcome this complexity. However, by splitting an algorithm into tasks,
usually dependencies between these tasks arise. These dependencies arise
depending on the input of the tasks. So these tasks cannot be executed in an
arbitrary order.

In this work, we present an extension to GPU task scheduling that enables the
resolution of dynamic dependencies. We introduce two different approaches
that handle dependencies independently: phases and individual dependen-
cies. The first approach allows us to define an order of execution depending
on the type of task. The second approach is used to define dependencies
between individual tasks. These dependencies can be resolved depending
on the input of the tasks. Both forms of dependency definition are necessary
because, depending on the algorithm, only one of them is applicable.

We evaluated our approaches with two algorithms. The first algorithm is
Reverse Cuthill-McKee (RCM), which is used to reorder a matrix into a
band matrix with small bandwidth. We compared our RCM implementation
with cuSolver showing speedups of up to 15x. The second algorithm is
the Jacobi method, which iteratively determines a solution to a system of
linear equations. Our Jacobi implementation was compared with a kernel-
by-kernel implementation and achieved a speedup of up to 2x. With these
implementations, we show that our framework can be used to implement a
wide range of algorithms and achieve good performance.

Kurzfassung

Algorithmen, die auf einem Grafikprozessor (GPU) implementiert werden,
werden immer komplexer. Um diese Komplexitdt zu bewdltigen, wollen
wir Algorithmen in einfache Tasks aufteilen. Aber durch das Aufteilen der
Algorithmen in Tasks, entstehen Abhdngigkeiten zwischen den Tasks. Diese
Abhiangigkeiten sind nicht einfach aufzulsen, da sie von den Inputs der Tasks
abhdngen. Die Tasks konnen also nicht in beliebiger Reihenfolge ausgefiihrt
werden.

In dieser Arbeit zeigen wir eine Erweiterung von GPU Task Scheduling,
welche die Auflésung von dynamischen Abhidngigkeiten zwischen Tasks
ermoglicht. Wir stellen zwei verschiedene Ansétze vor, die Abhdngigkeiten
unabhéngig voneinander 16sen: Phasen und individuelle Abhdngigkeiten.
Der erste Ansatz erlaubt es uns, eine Ausfiithrungsreihenfolge in Bezug
auf die Tasktypen zu definieren. Der zweite Ansatz wird verwendet, um
Abhiangigkeiten zwischen einzelnen Tasks zu definieren. Diese Abhdngigkeiten
konnen in Bezug auf den Input der Tasks aufgelost werden. Beide Formen
zur Auflésung von Abhingigkeiten sind notwendig, da je nach Algorithmus
nur eine von ihnen anwendbar ist.

Wir haben unsere Ansitze mit zwei Algorithmen getestet. Der erste Algo-
rithmus ist Reverse Cuthill McKee (RCM), welcher verwendet wird, um
eine Matrix in eine Bandmatrix mit kleiner Bandbreite umzuordnen. Wir
verglichen unsere RCM Implementierung mit cuSolver, wobei wir eine bis zu
15-fache Verbesserung der Ausfiihrungszeit feststellen konnten. Der zweite
Algorithmus ist die Jacobi Methode, welche iterativ eine Losung fiir ein
System von linearen Gleichungen bestimmt. Unsere Jacobi Implementierung
wurde mit einer Kernel-by-kernel Implementierung verglichen und erreichte
eine bis zu 2-fache Verbesserung der Ausfithrungszeit. Mit diesen Imple-
mentierungen zeigen wir, dass unser Framework zur Implementierung einer

breiten Palette von Algorithmen geeignet ist, und eine gute Leistung erzielt
wird.

Vi

Contents

Abstract

1. Introduction
1.1. CUDA e e e e e e

2. Related work
21. WorkQueue e
2.2. Task-based Execution of Applications with Dynamic Data
Dependencies,
2.3. GPU Task-Parallel Model with Dependencies

3. MHive
31. General e
3.2. Timesliced Kernel (TSK)
33. Megakernel (MK) o L.
3.4. Persistent Device Controller (PDC)

4. Phases
471, OVerview v v v i e e e e e e e e e e e
42. Cyclicexecution,
43. PhaseQueue e e e

5. Individual Dependencies
51. Overview
52. WaitingStorage o L.
53. Dependency,
5.4. Comparisontophases

6. Scheduling
6.1. Timesliced Kernel (TSK)

Vii

10
10
10
10
11

12
12
13
13

17
17
19
20
22

23

Contents

6.2. Megakernel MK) o oo L.
6.3. Persistent Device Controller (PDC)

7. Test Programs
71, GenericTest e
7.2. Compressed sparse row (CSR) format
7.3. Cuthill-McKee bandwidth reduction
7.3.1. Pseudo-Peripheral node finding
7.3.2. Permutation
73.3. CPU-GPUversiono....
74. Jacobimethod
74.1. Stagesversion
7.4.2. Checkpoints version
74.3. Autonomous version
74.4. Kernel-by-kernel

8. Evaluation
8.1. Cuthill-McKee bandwidth reduction
8.1.1. Reorderquality
8.12. Runtime i i
82. Jacobimethod

9. Conclusion
10. Future Work
A. Bitonic Mergesort

Bibliography

viii

54

57

List of Figures

1.1.
1.2.

2.1.

4.1.
4.2.
4.3.
4.4.

5.1.
5.2.

7.1.
7.2.
7.3.
7.4.

8.1.
8.2.

Al

Grid of thread blocks. [Nvi20a] 3
CUDA memory hierarchy. [Nvi20a] 5
Overview of the framework introduced by Belviranli et al.

[Bel+14]. 8
Example program using phases 13
Overview of task-types grouped into phases 14
Example of cyclic execution with phases 14
Visualization of phase queue structure 16
Overview of individual dependencies 18
Example program using individual dependencies 19
Generic test program with 4 task-types 26
Generic test program with 11 task-types 27
A matrix in CSR format with color-coded rows 28
Example of a sparse matrix-vector product 39

Sparsity pattern of the matrices yielded by the RCM algorithms 44
Execution timesof RCMtasks 45

Graphical representation of Bitonic mergesort. 55

1. Introduction

The developments of the recent years show a clear trend of high-performance
computing towards Graphics Processing Unit (GPU) clusters. GPUs provide
a large number of cores, which can be used for highly parallel execution of
programs. However, it is challenging to implement and optimize algorithms
for GPUs. A complex program is split into simpler parts called task-types
to reduce the complexity and increase maintainability. This approach is
called divide and conquer, and it is widely used in software development.
However, by splitting an algorithm into task-types, dependencies between
these tasks-types arise. These dependencies are difficult to handle since they
are dependent on the input of the task-type. There are multiple options to
resolve dependencies between task-types.

A commonly used technique is called kernel-by-kernel. The application is split
into kernels. Now let us assume there are two kernels with data dependencies,
i.e., kernel A requires data generated by kernel B. However, there is only a
partial dependency. So parts of the input of A depends on parts of the output
of B. Nevertheless, kernel B must be executed before kernel A. This order can
be achieved by issuing the kernel launches in the right order since kernels
can be executed sequentially. The GPU ensures the sequential execution of
kernels in the same stream. This technique introduces a problem with GPU
utilization. The execution of kernel A is delayed until kernel B is completed,
although a part of kernel A may already be executed.

Another way to resolve dependencies but with fewer kernel launches is the
CUDA graph API [Gral9]. This API is used to launch multiple kernels with
a single operation. This is done by recording multiple kernel launches and
CUDA API calls into a CUDA graph. Then the graph can be executed with
a single call from the host. All the kernels and CUDA runtime functions,
including the synchronization between different streams, are then performed

1. Introduction

by the device. Since the setup of the graphs is quite slow, the graph API is
used to launch the same workflow multiple times. This is quite useful if the
same algorithm has to be executed for many iterations or with many different
inputs, for example, neural networks or particle simulations.

This work presents a way to resolve dependencies in a task scheduling
framework. Task scheduling allows us to split an algorithm into task-types. The
input parameters to these task-types are called work items. These work items
are chunks of data that can be processed independently. The combination of
a work item and a task-type forms a task. Task-types are separate functions
of an algorithm. Each task-type defines the type of input (work item), the
number of threads needed per task (worker size), and the amount of shared
memory required. Each task-type implements an execute method that is
processing the work item. The framework provides a queue per task-type
that holds work items. Then it automatically schedules and executes tasks
from the queues.

Here we show two ways of defining dependencies for task scheduling. The
tirst kind is called phases, where multiple task-types are grouped together to
form a phase. Then the tasks are executed according to their phase, meaning
all tasks of the first phase are executed before tasks of the second phase. The
other form of dependency management is to define individual dependencies
between tasks. This technique allows a user to specify dependencies for each
task separately.

The main reason to have two forms of dependency management is to make
the system more flexible and versatile. A user implementing an algorithm
with this framework can choose how to define the dependencies. However,
there are many algorithms that only work with either phases or individual
dependencies. It is generally easier to work with phases because they are
statically defined for the algorithm. Individual dependencies, on the other
hand, are dynamically defined between individual tasks. Since this allows
us to define fine granular dependencies, the number of tasks that can be
executed simultaneously is increased, which also improves performance.

1. Introduction

1.1. CUDA

The GPU architecture is modeled as a manycore system. It consists of multiple
Streaming Multiprocessors (SM), which are capable of executing multiple
Collaborative Thread Arrays (CTA) each. Threads within CTAs are capable of
efficient synchronization and communication. The communication between
CTAs requires global memory, and thus, it is slower. CTAs and threads within
CTAs have identifiers that can be one-, two- or three-dimensional.

Block (0 0) || Blodc (1, 0) || Block (2, 0)

Block (0 1) Blodk (1, 1) ﬁkmn

Block (1, 1)

Figure 1.1.: Grid of thread blocks. [Nvi20a]

Each CTA is split into Single Instruction Multiple Thread (SIMT) groups,
also called warps. Specialized warp-level primitives can be used for fast and
efficient communication and synchronization. Every thread of a SIMT group
has to execute the same instructions to achieve high performance. If threads
within a warp diverge, the individual code paths are executed sequentially.
When all code paths are completed, the threads converge. Therefore, it is
important that the branching within warps is kept at a minimum.

The Volta architecture introduced independent thread scheduling. This allows

1. Introduction

threads to diverge and converge at a sub-warp granularity without sequential
execution. Threads are grouped to sub-warp sized SIMT units, which enables
SIMT execution with higher flexibility. But then threads within a warp are
no longer executed in lockstep, which must be kept in mind when writing
device code.

Another major influence in algorithm performance is memory transfer. The
data transfer often surpasses the computation time. This is why CUDA has a
hierarchy of memory spaces, each with different capacity and access time. The
fastest and smallest memory space are registers, which are only accessible by
the thread itself. The next memory space, which is larger and slower, is shared
memory, which can be accessed by all threads within a CTA. The largest and
slowest memory spaces are global, constant and texture memory, which are
accessible by all threads of the device. Since register space is limited, there is
also local memory. Local memory can only be accessed by the thread itself
but has the same speed and size as global memory. If a thread uses too many
registers, the excess is stored in local memory. [Nvi20a]

1. Introduction

- . Per-thread locl
memory
Thread Block
- » Per-block shared
- » memory
Grd 0
Blode (0, 0) | Block (1, 0) | Black (2, 0)
Blode (0, 1) | Block(1, 1) | Black (2 1)
Grd 1 Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
—
Block (0, 2) Block (1. 2)

Figure 1.2.: CUDA memory hierarchy. [Nvi20a]

2. Related work

This work is built on top of the MHive task scheduling framework. MHive
can schedule a wide range of algorithms. For example, graph processing,
complex recursions and mesh processing. But for many complex algorithms,
dependencies between tasks need to be resolved. In this work, we present a
solution that gives users a simple and efficient way to handle dependencies.

2.1. Work Queue

Many algorithms require generating new work during execution dynamically.
This means that there is a variable number of output data. This is no problem
for CPU execution models since they are flexible enough to adjust to this.
CPU models can allocate new memory and redistribute the work during
execution. The GPU can also allocate new memory during kernel execution.
But this is very slow and thus hardly used. Instead, usually multiple kernels
are launched: first, a kernel to determine the amount of work generated
and the number of threads needed, then a prefix sum to assign the work to
the independent threads, and a final kernel to execute the tasks. Another
approach is to manage the work in work queues [CT08]. Work queues are
shared data objects to store tasks before and during execution. When a worker
finishes its work, it can grab a new task from the work queue. Using these
work queues, algorithms like work-stealing [Cha+13] or work-donation can
be implemented on the GPU.

The work queue does not have the possibility to handle tasks with depen-
dencies. However, it is possible to adopt the dependency models described
in this thesis to the work queue. For this, the dependencies must be checked
before work/threads are removed from the work queue.

2. Related work

2.2. Task-based Execution of Applications with
Dynamic Data Dependencies

The work of Belviranli et al. [Bel+14] introduces a task-based execution
framework running “all-in-GPU”. The framework runs multiple worker
thread blocks (ITB) and a scheduler TB. Each worker TB has a private queue
in global memory. There is also a global task list that is accessed by the
scheduler TB. The execution follows the following steps:

1. The scheduler grabs tasks whose dependency counter is zero from the
task list and puts them into the queues of the worker TBs. The worker
TB is notified by incrementing the Input Queue Size (IQS) counter.
The worker TB executes the task.

3. The worker TB increments the Output Queue Size (OQS) counter to
inform the scheduler that the task is finished.

4. The scheduler continuously checks the worker TBs for finished tasks.
If a task is finished, the scheduler goes over the dependencies via a
provided dependency matrix and checks whether new tasks can be
executed.

N

This process repeats until there are no more tasks to process.

Since the dependency matrix is immutable, it is not possible to change the
dependencies based on the input of the tasks. This is a disadvantage com-
pared to our approach, which supports dynamically changing dependencies.
Moreover, there is no way to define phases. So there are problems where this
task-based execution framework does not work. Another difference is that
this framework only supports one scheduling system, which uses persistent
workers. If the resource requirements of the tasks are varying strongly, then
persistent workers do not perform well.

2. Related work

SM SMy
(3) Retrieve& W k 8 /7 ~(4) Output Task
Execute Task(‘ orker 1 Qs (l)=: """""""""" Worker TBN
1
Quebe, » N\ @ e Queue

(2) Queue Task Ty SM;

I9s (1)=1
——— Scheduler TB

(1). Grab a ready Task T,

5) Resolve Dependent

{6). Grab Tasks of Ty

New Tasks Ty, T3

i' ’ Ty ' T, ‘ T3 [Ta | Ts | Ts ‘ Tasks - :
RN - :
| ' ' = [x |
: W N v o :
: - X[x |
'\ Data Dependency Matrix ,l

User Data

Figure 2.1.: Overview of the framework introduced by Belviranli et al. [Bel+14].

2.3. GPU Task-Parallel Model with
Dependencies

The work of Tzeng, Lloyd, and Owens [TLO12] introduces a persistent
threads model with a global task queue. The worker size is 32 threads (one
warp). Each warp dequeues and executes tasks from the task queue and
puts the output of the task into an output queue. Tasks may also produce
new tasks wich are enqueued into the global task queue. The dependency
resolution scheme ensures that a task can only be enqueued if all dependencies
are resolved. The dependencies are defined using a dependency map. The
framework supports multiple tasks, but the code for all tasks is in one large
Megakernel. Depending on the task, one of the execution paths is selected.

The framework of Tzeng, Lloyd, and Owens [TLO12] is also similar to the
Megakernel of MHive. But the worker size is fixed while MHive allows
a configurable worker size. The dependency resolution is similar to our

2. Related work

individual dependencies. However this framework does not support phases,
which are required to implement many algorithms.

3. MHive

3.1. General

The MHive framework provides a queue per task-type. The scheduler decides
which tasks to execute depending on the queue fill levels and the device
utilization. More details on the different schedulers can be found in the
chapters below. The scheduler launches workers that take elements from the
queues and process them. During the execution of tasks, it is also possible to
generate new work depending on the input.

3.2. Timesliced Kernel (TSK)

This scheduler runs a controller on the CPU. In the beginning, the controller
copies the fill levels of the queues from the device to the host. Then the
number of blocks needed for the kernel launches is calculated. After that, the
kernels which are executing the tasks are launched into different streams;
there is one kernel launch per task-type. If the number of blocks is zero, no
kernel is launched.

3.3. Megakernel (MK)

This scheduler starts a kernel with enough blocks to fill the whole device when
the application is started. The number of blocks depends on the number of
SMs as well as the number of resident blocks on a SM. These blocks contain the
worker threads, which are executing the tasks. Each block is independently

10

3. MHive

dequeueing and executing work-items from the queues. All worker blocks
run until the end of the application. The tasks are not necessarily of the same
size as the worker blocks. So one block is usually executing multiple tasks at
once. Since not all tasks are completed at the same time, there must be a way
for the threads of the worker block to communicate with each other. This
communication is done via status variables in shared memory. There is also
a counter in global memory to know how many blocks are still running. If
this counter reaches zero, all blocks are out of work, and the current phase is
finished.

3.4. Persistent Device Controller (PDC)

Similar to TSK, this scheduler features a controller, which is scheduling
and launching tasks. The main difference is that the controller is executed
on the GPU. The controller performs the following steps in a loop: Each
controller thread checks the fill level of its queue and determines whether
a launch would be efficient. If this is the case, the controller performs the
kernel launch to execute the tasks. The controller is also increasing a global
variable that tracks the number of active warps on the device. Each warp has
to decrease this count before it terminates. When this warp count reaches zero,
the controller finishes execution.

11

4. Phases

The notion of phases is described using a simple example of building a
table. To build a table, one must first make the individual parts: the legs
and the tabletop. So we have two task-types to create the individual parts:
CreateLeg and CreateTabletop. There is also a task-type to assemble the table
called AssembleTable. We can define the following phases to ensure that all
tasks are executed in the correct order:

1. Phase: CreateLeg, CreateTabletop
2. Phase: AssembleTable

It does not matter if the tabletop or the legs are created first so the correspond-
ing tasks are in the same phase. However, the table can only be assembled if
the individual parts are finished, so AssembleTable is in the second phase.

4.1. Overview

The entire execution is split into separate phases, where each phase is a group
of task-types. The next phase is executed after all tasks of the previous phase
are finished. An example program using phases to resolve the dependencies
is visualized in Figure 4.1.

The phases of the application are defined using a phase queue. Each phase
consists of one or more task-types. The order in which these phases are
defined corresponds to the order of execution. All tasks of the specified
task-types are executed in the respective phase. If all tasks of the current
phase are finished, the next phase is executed. It is also possible to specify
task-types, which do not belong to any phase. Tasks of these task-types can

12

4. Phases

be executed at any time. An example of queues grouped into phases is given
in Figure 4.2.

Figure 4.1.: Example program using phases as dependencies. The arrows between the tasks
show enqueue operations. The color of the tasks show the task-type.

4.2. Cyclic execution

Many algorithms require an iterative execution of tasks. This means that
after the last phase was executed, the first phase should be executed again.
So all phases are executed in specified order until all queues are empty. An
example of cyclic execution is shown in Figure 4.3. If a phase has no tasks it is
skipped. This can be used to handle some iterations differently. For example,
the initialization of data is only done in the first iteration.

4.3. Phase Queue

The work items of tasks are stored in queues. There is a separate queue for
each task-type. Each queue is given an index in the order that the queues
are created. This index is automatically assigned at the declaration of each
task-type. Since the task-types which belong to the same phase are declared
together, they have successive indices. This fact can be used to create an
efficient way to check whether a task-type belongs to the current phase. A

13

4. Phases

Phase ([T 11] EIT [[[Tk

Phase2 |1 [1]] enqueue<3>(...)
/_ﬁ enqueue<4>(...)

Phase3 |1 [[][I [1] [[[]]]

Phase4 [| | [[] [[][]

Phase1 [[| | [[] [[[][]

Phase2 |1 1] [|
Phase3 [T [T J T[T LTI T[]

Phase4 || | [[[| [[[[[]

Figure 4.2.: THis overview figure shows how the queues of task-types are grouped into
phases. The current phase is shown in italic. To advance from phase 1 to phase 2,
all queues of phase 1 must be empty.

Iteration 1 Iteration 2 Iteration 3

Prase1 1), || phaser (4): (| pocey T2

Phase 2 Phase 2 Phase 2

Figure 4.3.: Example of cyclic execution with phases. The arrows between the tasks show
enqueue operations. The color of the tasks shows the task-type.

14

4. Phases

Phase index start end Task-type index
Phaseless -1 0 0
TaskTypel 0
Phasel 0 0 2 TaskType2 1
TaskType3 2
Phase2 1 2 5 TaskType4 3
TaskType5 4

Table 4.1.: Calculated indices for example in Listing 4.1.

start and end index for each phase can be calculated. For example, the indices
of the queues for the first phase start with zero and end with the number of
task-types in this phase. The framework automatically creates a phase called
phaseless. This phase is used to handle tasks that do not belong to any phase.
The indices for the phases in Listing 4.1 are listed in Table 4.1. The example
consists of two phases, with five task-types in total.

The calculated indices are then used to determine the phase of a given
task-type. The scheduler keeps track of the current phase and can determine
whether a task belongs to the current phase or not. There is also a special
index for phaseless task-types.

The definition of phases and queues in C++ is done using variadic templates.
These are templates that take a variable number of arguments. There is a
template class called Phase, which takes an arbitrary number of task-types.
These phases are then given to another template class called PhaseQueue. The
order of execution depends on the order of the arguments of the PhaseQueue
class. An example of how to declare phases can be found in Listing 4.1.

Listing 4.1: Example of how to declare phases

using Phasel = Phase<TaskTypel, TaskType2>;
using Phase2 = Phase<TaskType3, TaskType4, TaskType5>;
using Queue = PhaseQueue<Phaseless<>, Phasel, Phase2>;

The PhaseQueue class just holds the parameters like the queue configuration
and the phases. The implementation is in the PhaseQueueImpl template class.
This class template is instantiated once for each phase parameter given to the

15

4. Phases

PhaseQueue. Each PhaseQueueImpl knows the class (instantiated template)
and instance of the next template instantiation. This is used to perform actions
on all phases or task-types. Each method of the PhaseQueueImpl performs
an action and then calls the same method of the next class (template instanti-
ation). The class PhaseQueue is also implementing the first instantiation of
PhaseQueueImpl. A visual representation of this can be found in Figure 4.4

Phase 1 <PhaseQueuelmpl>

Next next

Phase 2 <PhaseQueuelmpl>

Next next

Phase 3 <PhaseQueuelmpl>

Next next

Figure 4.4.: Visual representation of phase queue structure. This example shows three phases.

16

5. Individual Dependencies

Let us come back to the example of building a table described before to
understand the benefits of individual dependencies. Now we want to build
many tables quickly and efficiently. As stated before, we need to make the
legs and tabletop and then assemble the table. Let us assume there are three
kinds of stations needed: a lathe for the legs, a mill for the tabletop and
a workbench to assemble the table. If we resolve the dependencies using
phases, then there are always idle stations. The workbench is idle while we
make the parts. While the table is assembled, the lathe and mill are idle. A
better solution is to define the dependencies for each table individually. Then
the parts for a table can be created while another table is assembled. This
increases the throughput of the workshop compared to the approach using
phases.

5.1. Overview

This form of resolving dependencies, allows the framework to handle different
dependencies. Each task can specify other tasks that must be finished before
it can be executed. So while phases define task-type relations, which is very
coarse, with individual dependencies, we can define fine-grained relations
on the tasks itself. When using phases, a single long-running task delays
the execution of all successive phases. With individual dependencies on the
other hand, only a few dependent tasks are delayed. In such cases, individual
dependencies provide better performance compared to phases.

This form of dependency management is also required for algorithms that
can not be split into phases. Some algorithms might only use one task-type,
which is executed many times with different input data. Then it is not possible

17

5. Individual Dependencies

to define phases since the dependencies depend on the input data and there
is only one task-type. The basic operations of individual dependencies using
the MK scheduler are shown in Figure 5.1.

1. A task T1 that depends on other tasks is created and inserted into the
waiting storage.

2. Other workers (e.g. worker 2) execute tasks that resolve dependencies
of T1.

3. If all dependencies of T1 are resolved, then the task is moved from the
waiting storage to the queue. This is done by the task that resolves the
last dependency and thus reduces the dependencies to zero (e.g. task
executed by worker 3).

4. The workers continuously grab and execute tasks from the queue.

Worker2) (Worker3) -

(1) (3.1) 4)

NP

[Waltmg Storage

Figure 5.1.: Overview figure showing the basic principles of individual dependencies using
the MK scheduler. (1) Enqueue Task T1 with dependencies. (2) Reduce depen-
dencies of T1. (3.1) Reduce dependencies of T1 to zero. (3.2) Move T1 to Queue.
(4) Grab and execute tasks from the queue.

We have to know on how many tasks it depends on to know whether a task
may be executed. This number of dependencies is stored in an atomic counter.
If a task T that this task depends on is finished, then task T reduces the
counter by one. As soon as the counter reaches zero, the corresponding task
can be executed. The initial value of this counter is zero. Since the value of the
counter is checked after reducing it, it can only reach zero after the number
of dependencies have been set by enqueueing the corresponding task. For
example task X is generated that has data dependencies on tasks Y and Z.
After tasks Y and Z have created the data that task X requires, they each
reduce the number of dependencies of task X by one. Since the dependency
counter of task X is back to zero, it can be executed.

18

5. Individual Dependencies

Figure 5.2.: Example of tasks with individual dependencies. The thin arrows between the
tasks show enqueue operations. The thicker dashed arrows show dependencies.
In this example, T7 depends on T2 and T6. Thus it is executed after T2 and T6
are finished.

5.2. Waiting Storage

The work items which are to be executed are stored in a queue. Queues are not
suited for random access, which is required for individual dependencies. So
we introduced an array which buffers tasks with dependencies. Henceforth
this array will be called waiting storage.

There are two types of operations to the waiting storage: writing (insert tasks)
and reading (extract tasks). The insertion of tasks into the waiting storage
is a two-step process. The first step is the reservation of an empty slot (see
Algorithm 5.1). An empty slot is selected by generating a random value
that lies within the size of the array. But the policy to insert new tasks is
encapsulated and configurable as a parameter of the waiting storage. This
allows one to write an application-specific insert policy that possibly yields
better performance. The reservation is made using atomic operations on the
status variable reserved, which reserves a spot for writing. The variable is
initialized with zero. If a thread wants to reserve a position, it sets reserved
to one using an atomicCAS operation. If the spot is already taken, the next
spot is checked. After a slot has been reserved, a task can be written to it
in the second step (see Algorithm 5.2). For this step, no atomic operations
are necessary, since only one thread accesses a slot after reservation. There
is a second status variable called filled, which is set after the work item was
written to the slot. The steps necessary to insert tasks are hidden by a facade
to reduce complexity for the user.

19

5. Individual Dependencies

The extraction of tasks from the waiting storage is done with a single function
(see Algorithm 5.3). First, the location of the data is read from the dependency.
Second, the work item is read from this location. Then the work item is
enqueued. After that the variables are set back to zero in reverse order. So
tirst filled is set to zero, and then reserved.

Algorithm 5.1 Reserve spot in waiting storage

1: function ReSERVE(data)

2 start « insertPolicy(data)

3 idx « start

4: while true do

5: if atomicCAS(reserved[idx],0,1) = 0 then
6: return idx

7 end if

8 idy «— idx+1 > linear probing
9: if idx > STORAGE_SIZE then

10: idx <0

11: end if

12: end while

13: end function

Algorithm 5.2 Write to spot in waiting storage

1: function wriTe(data, spot, &dependency)
2 storage[spot| « data

3: filled[spot] « 1

4 dependency.location < spot

5: end function

5.3. Dependency

The dependencies between tasks are managed by objects of a class called
Dependency. These objects include the atomic counter to store the number
of dependencies as well as the storage location of the corresponding task.
The atomic counter is initialized to zero. The Dependency object provides a
simple interface to manage the dependencies of a task. The primary method

20

5. Individual Dependencies

Algorithm 5.3 Handle tasks where all dependencies are resolved

1: function HANDLEREADYTAsK(dependency)
2 spot « dependency.location

3 data « storage[spot]

4: enqueue(data)

5 filled[spot] « 0

6 reserved|[spot] « O

7: end function

used to manage the dependencies of a task is called reduce, which reduces
the number of dependencies by one. The reduce method also moves the
task from the waiting storage to the queue, if the number of dependencies is
reduced to zero. It is also possible to reduce the number of dependencies of a
dependency object before the corresponding task is enqueued.

Now let us consider an example. A task X depends on two other tasks Y
and Z. The task X is enqueued with the number of dependencies set to three.
It is set to the number of tasks it depends on +1 to avoid race conditions.
After task X was written to the waiting storage, the number of dependencies
is reduced to two. The dependency object is stored in global memory such
that tasks Y and Z can access it. Then task Y is executed and at the end
of the execution it reduces the dependencies of X to one. After that, task
Z is executed and reduces the dependencies of X to zero. By reducing the
dependencies to zero, task Z also removes task X from the waiting storage
and enqueues it. Since task X is now in the queue, it can be executed.

Now let us consider a similar example but with different order of events. We
have again task X that depends on tasks Y and Z. Now task Y is executed
first and reduces the dependencies of X to —1. Next, task Z is executed and
reduces the dependencies of X to —2. After that, task X is enqueued. Since
the dependencies are already resolved (-2 + 2 dependencies = 0), task X is
written directly to the queue instead of the waiting storage.

21

5. Individual Dependencies

5.4. Comparison to phases

We can now compare individual dependencies and phases. Both systems
have benefits and drawbacks depending on the algorithm to implement.
Some algorithms are easily split into phases, while for others, individual
dependencies must be defined. This means that neither one of these systems
is generally better. Both of these systems are required so the user can pick the
one that fits the problem.

22

6. Scheduling

The three execution models discussed here were already implemented in
MHive. However, to increase performance and ensure compatibility with
the newly implemented dependencies, they were modified. The following
sections describe these modifications.

It is not necessary to make changes to the scheduler to support individual
dependencies. Tasks with dependencies are stored in the waiting storage. As
soon as the dependencies of the tasks are resolved, they are moved to the
queue.

6.1. Timesliced Kernel (TSK)

The scheduler executes kernel launches to execute tasks from the queues. If a
task-type is not in the current phase, the number of required blocks for this
kernel launch is set to zero. This ensures that no kernel is launched for this
task-type. Moreover, a variable indicating the current phase was added. This
variable is initialized to zero and incremented when all queues of the current
phase are zero and no warps are running.

6.2. Megakernel (MK)

Several changes were necessary to support the dependency model described
in this work. Task-types that are not in the current phase are skipped. A
variable in global memory was added to keep track of the current phase. This
variable is incremented if all queues of the current phase are empty and no

23

6. Scheduling

blocks are executing tasks. Since the scheduling is done decentralized, only
the first block writes to this variable to avoid race conditions. The original
implementation used only the number of running blocks as exit condition.
This was changed to additionally incorporate the fill levels of the queues,
because we use the number of running blocks to update the current phase
variable.

6.3. Persistent Device Controller (PDC)

Several changes were made to implement our dependency management
but also increase performance. Although the previous implementation used
multiple controller threads (as many threads as queues), only the first thread
was performing the kernel launches. This was changed such that each
controller thread launches the kernel for its queue. The queues for task-types
which are not in the current phase are skipped to adhere to the dependencies.
The current phase is stored in shared memory. Only the first controller thread
increments the variable to avoid race conditions. The other threads may only
read from the variable. If all queues of the current phase are empty and
no warps are running (other than the controller), then the current phase is
finished. Then the current phase variable is incremented.

Although kernels are launched from the device, there is still a launch overhead.
Soitis important that there is not a large number of small kernel launches. The
scheduling implemented here uses metrics to prioritize efficient launches. So if
there are controllers, which can fill multiple blocks, then only those controllers
launch additional workers. Otherwise, all controllers that have non-empty
queues may launch workers. If the GPU is sufficiently oversubscribed, then
no additional kernels are launched. If the warp count falls below a threshold,
additional workers are launched. The number of warps needed to sufficiently
oversubscribe the device is calculated as:

#SMs - max_resident_threads - 1.5
warp_size

maX_-warps =

This yields a good device utilization independent of the used device.

24

7. Test Programs

7.1. Generic Test

This test program provides a toolset to create different test scenarios. It
enables one to define an execution tree. So it is possible to define task-types
and transitions between task-types. The transitions have a configurable
probability. The task-types execute a configurable number of floating-point
operations, which serve as a synthetic workload of the tasks. It is not possible
to define cyclic transitions, because the task-types must be defined before a
transition to it can be defined.

Figure 7.1 shows two execution trees with the corresponding scheduling plots.
In this example, all transitions have a probability of 100%. The scheduling plots
show how the dependencies are uphold for both examples. The scheduling
plot for phases shows, that all tasks of task-type 0 are executed before tasks of
task-types 1 and 2. The same holds for tasks of task-type 3, which are executed
after all tasks of phase 2 are finished. If we compare this to the scheduling
plot for individual dependencies we see, that tasks of task-type 3 may be
executed as soon as its dependencies are resolved, so tasks of task-type 3 may
run concurrent with tasks of task-types 1 and 2. The example with individual
dependencies is still slower because of the additional overhead to manage
the dependencies.

Figure 7.2 shows a larger and more complex example. The scheduling plot for
phases shows a strict separation of the phases. In this example, the execution
of all tasks in phase 1 is delayed, because some tasks of phase 0 are not
scheduled efficiently. The plot for individual dependencies on the other
hand, shows no separation. All tasks are executed as soon as their individual
dependencies are resolved. But the overhead of individual dependencies
increases the runtime of the tasks.

25

7. Test Programs

E-:
—— TT0
z -g'i —m
_g — T2
i; .

SMid

[—— | —]
——
=== =—
— ===
0 1 2 3 a 5 6
tlcycles] le7

m— TT0
2 — TT1
% — TT2
—— TT3

o 1 2 3 4 5 & 7
tlcycles] le7
Figure 7.1.: Example configuration of the generic test program with 4 task-types. The first
row shows an example with phases; in the bottom row, individual dependencies

are used. The left images show the task-types and dependencies, while on the
right a scheduling plot is shown.

26

7. Test Programs

—— TT0
—— TT1
— T2
— TT3
—— TT4
— TT5
s TT6
— TT7
e TT8
—— TT9
— TT10
e TT11

Phaseless

[Phase0
058, 6 Phasel

SMid

m—— TT0
—— TT1
— T2
m— TT3
—— T4
— TT5
e TT6
— TT7
s TT8
— TT9
m— TT10
e TT11

SM id

tlcycles] le6

Figure 7.2.: Example configuration of the generic test program with 11 task-types. The first
row shows an example with phases; in the bottom row, individual dependencies
are used. The left images show the task-types and dependencies, while on the
right a scheduling plot is shown.

27

7. Test Programs

7.2. Compressed sparse row (CSR) format

2 2 5
3 7 1 4 8 6
A= :
1 - 1

val - {2/ 2’ 5/ 3/ 7’ 1/ 4/ 8’ 6/ 7 7 7 1/ 1}
col_id =1{1,5,8,1,3,4,5,8,9,2,6,5,2,8}
row_offsets = {0,3,9,11,12, 14}

Figure 7.3.: A matrix in CSR format with color-coded rows

Since this format is used to store data for the next test programs, it is described
shortly here. The CSR format (see fig 7.3) is a commonly used format to store
sparse matrices. This format consists of three arrays. The first two store the
column indices and values. The third array stores the offset to the first two
arrays for each row. So each entry is an index to the start of a row in the first
two arrays. The third array has one more entry than the matrix has rows.
This last entry holds the number of non zero elements of the matrix and
points after the last entry of the first two arrays. The CSR format provides
fast access to the rows of the matrix.

7.3. Cuthill-McKee bandwidth reduction

Cuthill-Mckee [CM69] is an algorithm to permute a sparse and symmetric
matrix into a band matrix with small bandwidth. The algorithm generates a
permutation R. It starts with a pseudo-peripheral node, and then generates
sets A; until all nodes are visited. The set A; consists of the adjacent nodes of
R; (i-th element of R) that are not in R. Then A; is sorted by ascending degree
(see algorithm 7.1). The permutation R consists of the concatenation of all A;.

28

7. Test Programs

Since the reversed permutation often leads to a better bandwidth reduction,
the algorithm is also called reverse Cuthill-McKee (RCM) [Geo71]. The output
of the RCM algorithm is a permutation vector, which can be applied to the
matrix.

Algorithm 7.1 Cuthill-McKee

1: Rex > x is a pseudo-peripheral node
2: i< 0

3: while |R| < n do

4 Aj « Adj(R;)\R

5. Sort(A;) > Sort with ascending degree
6: R=RUA;
7
8:

ie—i+1
end while

The implementation consists of two parts. The first part is the pseudo-
peripheral node finding to select the starting node. The second part is the
calculation of the permutation.

This implementation uses the CSR format (section 7.2) to store the matrices.
Since the matrices are symmetric, the rows and columns can be accessed
efficiently using this format.

7.3.1. Pseudo-Peripheral node finding

The selection of a suitable starting node is very important for the RCM
algorithm [CM69]. The eccentricity €(v) is defined as the greatest distance
between v and any other node (¢(v) = max,ev d(v, 1)). A node v is pseudo-
peripheral, if for each node u with d(u,v) = €(v) holds e(u) = e(v). For the
pseudo-peripheral node finding, the heuristic described by Kumfert [KumO00]
was implemented. The algorithm implemented here (see algorithm 7.2) is
running multiple breadth first searches (BFS) to find two nodes with the greatest
distance. The start node of the next BFS iteration is one of the nodes with the
greatest distance to the start node of the previous BFS execution. Since the
number of candidates can be very big, only a small number is selected.

29

7. Test Programs

Algorithm 7.2 RCM pseudo-peripheral node finding

1: start < 0

2: end « —1

3: repeat

4 start_dist, candidates < BFS(start)

5 for Node candidate € candidates do

6: end dist, candidates « BFS(candidate)
7 if end_dist > start_dist then

8: start < candidate

9: end « —1

10: break

11: else

12: end « candidate
13: end if

14: end for
15: until end # -1

7.3.2. Permutation

The permutation is created level by level (see Algorithm 7.3). The RCM
implementation presented by Rodrigues, Boeres, and Catabriga [RBC17] and
Karantasis et al. [Kar+14] also computes the permutation level by level. But
they use a prefix sum over the children count to calculate the indices of the
parents. These indices are then used to write the children of the individual
parents into the permutation array:.

At the beginning, the start node is added to the permutation array. Then
for all nodes of the current level, the not yet visited children are stored
in a temporary array. For these children, a key is generated consisting of
the position of the parent in the permutation and the valency of the child
node. The children are then sorted using this key. We use bitonic mergesort
(Appendix A) to sort the keys. Then, the sorted children are appended to the
permutation array. This is repeated until the length of the permutation array
is equal to the number of nodes.

Algorithm 7.3 shows a fixed partition of the key, where the upper half of
the key is used for the parent position, and the lower half is used for the
valency. We used preprocessing to determine the required number of bits for

30

7. Test Programs

the valency and use the rest for the parent position. The preprocessing goes
over all nodes of the graph and finds the largest valency. Then we calculate
the most significant set bit of the largest valency to get the number of bits
required to store all valencies.

The following task-types were used to implement the RCM algorithm:

CreateSortData
CompressSortData
Delegate
SortBlock
SortDelegate
SortGlobal

The dependencies are defined using phases. Each of the task-types above is
in a separate phase, and they are executed in the order they are listed. All
tasks are executed with 256 threads.

CreateSortData This task gets an index for the permutation array as input.
It reads the parent node from this index and goes over the neighbors of the
parent node. For each neighbor that has not been visited, it creates a key.
The key consists of the position of the parent in the permutation and the
valency of the child node. Then the key is written into the d_keys array at the
node id of the parent node using an atomic_min instruction. This atomic_min
is used to determine the child node of the parent that occurs first in the
permutation array. For all nodes on the same level, these tasks are executed
simultaneously.

CompressSortData As described earlier, the keys are stored at specific
indices in the d_keys array. As a result, this array is sparsely filled, so only a
few entries contain valid values. This task goes over the d_keys array, and
compresses the data. It writes the key into d_sort_keys and the array index
of the key into d_sort_values. Each thread checks 8 entries of d_keys, so
enough tasks are executed simultaneously to cover the whole array.

31

7. Test Programs

Delegate This task is used to enqueue the SortBlock tasks. It has to be
executed in a separate phase because the number of required SortBlock tasks
is only available after all CompressSortData tasks are finished.

SortBlock Each thread of this task works on 4 elements. This is one of the
three tasks responsible to sort the keys and values stored in d_sort_keys and
d_sort_values. Bitonic mergesort is creating bitonic sequences by comparing
and swapping elements with increasing stride. Then the bitonic sequences
are merged. This task is used when sorting with a stride smaller than 256 - 4.
Otherwise the SortGlobal tasks are used to sort. When the stride is below
the block size, we use shuffle instructions and shared memory to exchange
elements. The first task of this type enqueues a SortDelegate task.

SoriDelegate This task checks whether the stride is below or above the
block size of 1024 and enqueues the tasks to continue sorting. SortBlock tasks
are enqueued if the stride is below the block size. Otherwise SortGlobal tasks
are enqueued. If the stride is above the size of the array then sorting is complete
and this task appends the values of d_sort_values to the permutation array.
Then it enqueues the CreateSortData tasks and SortDelegate task for the next
level.

SortGlobal Each thread of this task works on 4 elements. It is used to sort
when the stride is larger than the block size. In this case, the elements have
to be exchanged using global memory. The first task of this type enqueues a
SortDelegate task.

7.3.3. CPU-GPU version

This is a hybrid implementation of the RCM algorithm. At the beginning,
the start node is added to the permutation array. Then for all not yet visited
children of the current level, a key-value pair is generated. The key consists
of the position of the parent in the permutation and the valency of the child
node. The value is the node index of the child. Then the key-value pairs

32

7. Test Programs

Algorithm 7.3 Our RCM algorithm

1: permutation[0] « start_node
2: block start « 0
3: block_end < 1
4:
5: keys < {}
6: values « {}
7: while block_end < num_nodes do
8: for i < block_start to block_end do in parallel
9: parent « permutation|i]
10: for nb : neighbours(parent) do in parallel
11: if visited[nb] == 0 then
12: visited[nb] = 1
13: keys « keys U (i << 16 + neighbour_count(nb))
14: values « values U nb
15: count « count +1
16: end if
17: end for
18: end for
19: Sort(keys, values)
20: permutation < permutation U values
21: block_start « block_end
22: block_end « block_end + count

23: count « Q
24: end while

33

7. Test Programs

are sorted by ascending key. This implementation uses DeviceRadixSort
[Nvi20c] for sorting. Then the sorted values are appended to the permutation
array. This is repeated until the length of the permutation array is equal to
the number of nodes. In this implementation, only the sorting is done by the
GPU. Everything else is done by the CPU. We use this implementation to
compare the performance with our GPU implementation.

7.4. Jacobi method

The Jacobi method is an algorithm to iteratively determine a solution to a
system of n linear equations with n unknowns of the form Ax = b where
A € R™" and x,b € R". The matrix A is sparse in the CSR format (see
section 7.2) while x and b are dense vectors. The method starts with an initial
value X’ = 1 and is then iterated until it converges. The iterates x¥) are
obtained via

x®) =D~ (b - (A - D)x®)) (7.1)
xl.(kﬂ) :% (bi - Zaijxﬁk)] fori=1,2,...,n (7.2)
" i#]

Several different versions of this algorithm have been implemented. All
versions are using individual dependencies except the stages version, which
was implemented for phases and individual dependencies. The differences
of the individual implementations are described in detail below.

All versions use preprocessing on the host to determine a good distribution of
work to individual tasks (see algorithm 7.4). This work distribution ensures
a good utilization of the device. The preprocessing goes over all rows of the
matrix and accumulates the NNZ of the rows. If this sum exceeds a threshold
(in our case 64 - 8) then the number of summed up rows is appended to
the rowStarts array. Our implementaion only works for matrices where
no single row exceeds the threshold. After that a prefix sum is used on the
rowStarts array. Then each entry of rowStarts contains the start row for a
task. The number of tasks needed is equal to the size of the rowStarts array.

34

7. Test Programs

This preprocessing is done only once per matrix since the work distribution
only depends on the matrix and thus does not change during execution. The
preprocessing step does not split rows to multiple tasks. So it is not necessary
to use atomic operations to write the results into global memory. For matrices
with long rows, it would be beneficial to split them to multiple tasks. This
would result in a better utilization of the device.

Algorithm 7.4 Preprocessing for the Jacobi method

acc « 0
rows < 0
rowStarts « {}
for row «— 0 ton do
acc « acc + (row_offsets[row + 1] — row_offsets[row])
if acc < NNZ_PER_TASK A rows < ROWS_PER_TASK then
rows <« rows + 1
else
rowStarts « rowStarts U {rows}
rows « 1
acc « row_offsets[row + 1] — row _offsets|row]
end if
: end for
: rowStarts <« rowStarts U {rows}
: rowStarts « prefixSum (rowStarts)
: numTasks « |rowStarts|

RN AN T o

T i G Gy
SR WN = O

All versions have two exit conditions. The first one is the maximum number
of iterations. The second exit condition is the convergence of the vector x.
The convergence is validated using the residuals r = Ix®) — x(k+1)|; which
are calculated using the norm of the difference of two iterations.

The main difference between the implemented versions is the handling of
dependencies. The main part of the algorithm is the same for all versions.

All versions have a task which calculates the iterations of vector x (see
Algorithm 7.5). Each of these tasks calculates multiple rows of A, so the
partial SpMV results ().;,;4ijx;) are stored in shared memory. The threads
sum up multiple entries into a local register to reduce the load of shared
memory. If they process the next row, the local result is written into shared

35

7. Test Programs

Algorithm 7.5 Jacobi method algorithm

1: start « rowStarts[tid]

2: end « rowStarts[tid + 1]

3:

4: prev_row « col_offsets[row_offsets[start] + tid = elements_per_thread]
5: for i < O to elements_per_thread do

6: col_idx « row_offsets[start| + tid * elements_per_thread + i

7 if col_idx > col _offsets|end] then

8

9

break

: end if
10: row « col_offsets|col _idx]
11: col « col_ids[col idx]
12: if prev_row # row then
13: s_sum|[prev_row — start] « sum
14: prev_row <« row
15: sum < 0
16: end if
17: sum « sum + Alidx] - x,4[row]
18: end for
19: s_sum[prev_row — start] « sum
20:
21: for row « start to end do _
2. X [row] - blrow]—sum|row—start]+diag[row]=x,, [row)

diag[row)
23: end for

36

7. Test Programs

memory. As Equation 7.2 shows, the diagonal element is not included in the
sum. But to reduce thread divergence, it is also summed up and subtracted
later. If all entries have been summed up, the sum is subtracted from b and
divided by the diagonal element and written to the vector x.

Since the matrix A is stored in CSR format, it would require an additional
condition that must be evaluated in each step. So the diagonal elements are
written into an array in the preprocessing step. This enables easy and direct
access of diagonal elements.

7.4.1. Stages version

This implementation uses two task-types which are executed alternatingly.
The first task-type (called Jacobi) calculates a new approximation x¥) and is
executed with 64 threads per task.

The second task-type (called CopyAndCheck) uses the current and last approx-
imation to check for convergence and switches the pointers for the current
vector x and the last vector x,;;. This task is executed with 256 threads. Each
thread sums up every 256th value, i.e., the first thread sums up values with
index 0,256,512, The threads sum up their values into a register. If all
threads are finished with the sum, the individual sums are combined with
warp level primitives. Then, an atomicAdd is used to combine the results
of the warps. Each CopyAndCheck task enqueues itself and numTasks Jacobi
tasks.

The alternating execution of the two task-types is resolved in two different
ways. The first one uses phases. Each task-type is in a different phase, so the
MHive framework schedules them such that they are executed alternatingly.
The second way uses individual dependencies. The CopyAndCheck task
is enqueued with numTasks dependencies. Each Jacobi task reduces the
dependencies of the CopyAndCheck task by one. Since numTasks Jacobi tasks
are executed in each iteration, the CopyAndCheck task is executed after all
Jacobi tasks of the current iteration.

37

7. Test Programs

In this version, there is no benefit in using individual dependencies, since the
same order of execution is defined with phases. But it allows us to compare
the overhead of phases and individual dependencies.

This version only needs to store two versions of the vector x. The one that is
currently calculated (x**1)) and the previous one (x(X)). After each iteration,
the pointers to these vectors are swapped.

7.4.2. Checkpoints version

This version defines the dependencies on individual values of the vector x.
Every value of the new approximation x*) depends only on a small number of
values of the last approximation x(*~1). This is because we calculate Y., jijXj,
and when ajj is zero, the value of Xj is irrelevant. Since A is sparse, a lot of
entries are zero (see Figure 7.4). There are again two task-types, but they are
not executed alternatingly.

As before, the Jacobi tasks calculate new approximations. Each Jacobi task is
executed with 64 threads and has as many dependencies as the sum of nnz

entries in the rows it is working on. After the task has calculated the new

value of xfkﬂ), it has to reduce the dependencies of the tasks, that depend on

this value. We have to find the NNZ entries of column i to get the indices of
these tasks. If the matrix is symmetric, we can equivalently go over the row i.
If it is not symmetric, we additionally use the CSC format, which allows easy
access of column entries. Every few iterations, the convergence is checked by
Checkpoint tasks. The Jacobi tasks enqueue themself except for the iterations
where the Checkpoint task runs. In these iterations they reduce the number of
dependencies of the Checkpoint task.

The Checkpoint task is executed with 256 threads. It computes the norm
Ix%) = x(=1)|; similar to the before mentioned CopyAndCheck tasks using
warp level primitives and shared memory. The Checkpoint task enqueues
itself and the Jacobi if x has not yet converged.

Because each task could be at a different iteration, a large array to store all
iterations of x is needed. Since the maximum number of iterations is given,
this array can be allocated to that size. It would also be possible to make

38

7. Test Programs

1 .24 7 46
~ 3 1 8 8
2 6 - 4 :
3 - 8 - 5|-|1]=
: 419 9
6 1 : 5
7 3

Figure 7.4.: Example of a sparse matrix-vector product. Only the blue values are needed to
calculate the first result.

the array a ring-buffer and limit the number of iterations that are worked

on simultaneously. So a new iteration is only started if the ring-buffer is not
full.

7.4.3. Autonomous version

This version is similar to the Checkpoints version, but the convergence is
verified differently. Instead of the Checkpoint tasks, this version uses global
atomic variables to sum up the residuals. Each task sums up the residuals
of the rows it works on using atomiAdd. The last task, that adds its residual
to the global variable also checks if the value is below the threshold. If it
is below, a global flag is set to stop the algorithm (clear queues and stop
enqueues). So in this implementation, there are only Jacobi tasks that are
executed with 64 threads per task.

7.4.4. Kernel-by-kernel

This version is used to compare the performance of MHive with a simple
kernel-by-kernel implementation. This version does not use any MHive
functions. There are two kernels, which are executed alternatingly. The
kernels are called d_jacobi and d_check.

39

7. Test Programs

The d_jacobi kernel is responsible for calculating one iteration of the jacobi
method. The block size of the kernel is 128 threads. The calculation is
done similar as described above. Each block works on multiple rows. The
preprocessing described above is used to assign the rows to the blocks.
The threads sum up multiple values into a local register. If the next row is
processed, the local result is written to shared memory. If all values have
been summed up, the sum is subtracted from b, divided by the diagonal
element and written to the vector x.

The d_check kernel calculates the residuals and returns whether they are
below the threshold. The block size of this kernel is 256 threads. The residuals
are calculated similar to the Checkpoint and CopyAndCheck tasks using warp
level primitives and shared memory.

The host runs a loop which launches the kernels. This loop runs until the
maximum number of iterations is reached or until the residuals are below
the threshold.

40

8. Evaluation

In this section, the results of the implemented examples (Cuthill-McKee and
Jacobi) are shown. The test system used to run the experiments consisted
of an Intel i7-7700K@4.20GHz CPU, 32 GB of host memory and a Nvidia
RTX2080Ti GPU. The test system was running Windows 10 and used the
Cuda Toolkit 11 as well as MSVC 19.4 to compile the examples.

8.1. Cuthill-McKee bandwidth reduction

In this section, the quality of the reorder as well as the performance of the
implemented Cuthill-McKee algorithm is discussed. The reordering quality
is measured by the bandwidth of the matrix. The bandwidth b is calculated
with

b =max(r—c)-min(r—c) +1 (8.1)

where r and c are the row and column indices of the nnz entries of the matrix.
The results were also verified visually by plotting the reordered matrices
using the spy method of the python matplotlib package.

A set of square and symmetric matrices were selected from the University of
Florida Sparse Matrix Collection [DH11]. The tested matrices cover different
types of problems. The properties of the tested matrices are shown in Table 8.1.
The algorithms were performed multiple times for each matrix to calculate
the average execution time. To the best of our knowledge, there is no GPU
implementation of the RCM algorithm available, so we compared the results
of this implementation to the cuSolver RCM implementation [Nvi20b].

41

8. Evaluation

Matrix Dimension non-zeros avg. NNZ/row
bcsstk32 44,609 2,014,701 45
bmw3_2 227,362 11,288,630 50
d_pretok 182,730 1,641,672 9
F1 343,791 26,837,113 78
filter3D 106,437 2,707,179 25
gsm_106857 589,446 21,758,924 37
inline_1 503,712 36,816,342 73
mario001 38,434 206,156 5
msdoor 415,863 20,240,935 49
offshore 259,789 4,242,673 16
5i02 155,331 11,283,503 73
CurlCurl 4 2,380,515 26,515,867 11
dielFilterV2real 1,157,456 48,538,952 42
dielFilterV3real = 1,102,824 89,306,020 81
Dubcova3 146,689 3,636,649 25
G3_circuit 1,585,478 7,660,826 5
nlpkkt80 1,062,400 28,704,672 27
com-Youtube 1,134,890 5,975,248 5
thermomech _TC 102,158 711,558 7

Table 8.1.: Input matrices for the RCM algorithm

42

8. Evaluation

Matrix Final Bandwidth
Name Bandwidth cuSolver CPU-GPU MHive
bcsstk32 86,061 4,811 5,001 5,003
bmw3_2 438,221 10,907 10, 683 10,672
d_pretok 259,835 5,151 5,399 5,900
F1 687,509 20,075 21,011 21,215
filter3D 16,553 7,633 6,525 6,525
gsm_106857 1,177,489 36,995 36,767 36,510
inline_1 1,004, 807 12,005 12,005 12,005
mario001 75,371 735 923 726
msdoor 582,227 16,841 18,000 18,000
offshore 475,477 49,715 50,445 50,501
Si02 110,137 41,587 40,419 40,477
CurlCurl 4 87,363 67,959 64,171 64,171
dielFilterV2real 1,896,065 39,191 36,091 36,013
dielFilterV3real 2,072,951 51,125 50, 836 51,006
Dubcova3 292,713 4,561 4,556 4,556
G3_circuit 1,894,257 10,193 10,199 10,241
nlpkkt80 1,100,963 77,433 77,433 77,433
com-Youtube 2,266,265 1,210,385 1,211,865 1,212,122
thermomech_TC 204,277 525 507 504

Table 8.2.: Bandwidth comparison after reordering

8.1.1. Reorder quality

The bandwidth of the tested matrices before and after applying the permuta-
tion are shown in Table 8.2. As the table shows, there are small differences
between our bandwidth and the values of cuSolver. The reason for this is that
nodes with the same parent and the same degree may be interchanged.

The sparsity pattern of the matrices before and after the reordering is visu-
alized in Figure 8.1. The first row of each group shows the sparsity of the
input matrices. The rows below show the sparsity after application of the
permutation derived by our RCM implementation and the cuSolver RCM

43

8. Evaluation

implementation. The plots in Figure 8.1 confirm that the output of RCM
algorithm is a band matrix.

(a) d_pretok (b) mario001

(c) offshore (d) Si02

iN A

Figure 8.1.: Sparsity pattern of the matrices yielded by the RCM algorithms. From top to
bottom: unordered, MHive RCM, cuSolver RCM.

8.1.2. Runtime

The preprocessing times are less than 0.1 ms and therefore not directly shown
in the tables. The execution times of the implementations are shown in
Table 8.3. As the results show, the PDC model performs better than the
TSK model. This is because PDC runs the scheduler on the device, so no
additional overhead is produced by copying data between the host and the
device. It is also clear that our algorithm performs better than cuSolver since
cuSolver runs on the host only. The MK model performs far worse than TSK
and PDC because this implementation uses too many registers to provide
good utilization. The register usage of this implementation only allows one
resident block per SM.

Comparing our implementation results to cuSolver we see a speedup of up
to 15x. For very small matrices, cuSolver performs better, because there is
not enough parallelism to draw an advantage from the GPU.

44

8. Evaluation

The peak memory consumption (in bytes) can be calculated with the following
equation, which depends on the number of nodes D and the NNZ entries of

the matrix.
peak_memory = 48 MB +8 -NNZ +28-D B (8.2)

The CPU-GPU version performs quite similar to PDC. The sorting of the
keys is a demanding step of the implementation. The performance difference
grows larger for matrices where we have to sort very often. This means
that our sorting algorithm is not as well optimized as RadixSort from cub.
The execution times of the different tasks are visualized in Figure 8.2. These
figures show that sorting is a bottleneck. Especially if there are only a few
hundred elements to sort, then the sorting is executed by only a few SMs.
This does not yield a good utilization of the device.

1e9 Si02 1e9 Dubcova3 1e10 thermomech_TC
4.0 A 1.01

2.5
3.5

2.0 3.0
I ITII |82]

"

o
2.0 A S
o o

cycles
=
w
cle

1.04

0.5 A

Ty

0 20 40 60 0 20 40 60 0 20 40 60
sm_id sm_id sm_id

0.0-

B CreateSortData I CompressSortData B Delegate mmm SortBlock B SortDelegate mmm SortGlobal

Figure 8.2.: Execution times of the different tasks of the RCM algorithm for three matrices.

45

8. Evaluation

CPU-GPU TSK PDC
Matrix cuSolver RCM total RCM total RCM total
bcsstk32 140.02 12.00 19.01 87.12 9413 16.44 23.45
bmw3_2 97820 7230 117.36 252.90 29796 43.11 88.17
d_pretok 133.30 4940 68.14 251.16 26990 4446 63.20
F1 2,330.20 89.00 188.48 329.71 42919 50.80 150.28
filter3D 206.10 3330 59.97 136.66 163.33 23.15 49.82
gsm_106857 2,202.70 161.20 402.87 430.07 671.74 70.17 311.84
inline_1 2,943.60 150.30 293.87 632.84 77641 9795 24152
mario001 15.80 21.30 23.84 240.35 242.89 39.10 41.64
msdoor 1,742.20 115.10 240.02 581.05 70597 7230 197.22
offshore 515.00 55.50 147.50 212.53 304.53 29.86 121.86
Si02 1,060.80 41.00 114.72 126.22 19994 1725 90.97
CurlCurl 4 2,223.80 322.80 703.05 1,298.84 1,679.09 234.69 614.94

dielFilterV2real 3,843.50 171.80 414.90 815.09 1,058.19 126.16 369.26
dielFilterV3real = 7,108.30 188.70 524.12 619.48 95490 107.00 442.42

Dubcova3 297.60 30.10 49.16 194.67 21373 3558 54.64
G3_circuit 864.40 34720 480.80 1,820.98 1,954.58 308.30 441.90
nlpkkt80 2,534.60 193.40 385.34 627.47 819.41 98.72 290.66
com-Youtube 856.90 95.10 423.87 140.82 469.59 40.08 368.85

thermomech_TC 7390 98.20 110.47 460.17 47244 104.24 116.51

Table 8.3.: Execution time of different execution models using phases. All timings in ms. For
our implementations, the RCM times as well as total (RCM + pseudo-peripheral
node finding) times are shown. The cuSolver implementation does not allow to
measure those times separately.

46

8. Evaluation

8.2. Jacobi method

This section presents the performance numbers of the implemented Jacobi
method (which solves the system Ax = b). A set of square and symmetric
matrices were selected from the University of Florida Sparse Matrix Col-
lection [DH11]. The Matrices A3 to A6 are diagonally dominant matrices
generated from random values. The tested matrices cover different types of
problems. The properties of the tested matrices are shown in table 8.4. The
corresponding vectors b were generated from random values such that we
have solvable linear systems.

The following criteria was used to check, whether the Jacobi method converges
for a given matrix:
p(DHA-D)) <1

where p(-) is the spectral radius and D is a matrix containing the diagonal
elements of A.

As described in section 7.4, different versions of the algorithm were imple-
mented. All versions were tested using the different execution models. The
result of the implementations were compared to a reference implementation
in python using SciPy. The results were considered correct if the norm of the
difference was less than 10™:

x — xrefll <107

The preprocessing is done on the host and is thus quite slow. The preprocessing
takes about 180 ms for all tested matrices.

The execution times for the different versions and execution models can
be found in tables 8.5 to 8.7. As these tables show, the best performance
is achieved by the MK and PDC execution models. Smaller matrices run
better with the MK model, while larger matrices run better with the PDC
model. The handoff threshold is at an nnz value of approximately 500, 000.
The reason for this is that there are no kernel launches during the runtime
when the MK execution model is used. The worst performance is achieved
by TSK, which has the additional overhead of copying the queue fill-levels
to the host and launching the kernels from the host.

47

8. Evaluation

Matrix Dimension non-zeros avg. NNZ/row
Chem97ZtZ 2,541 7,361 3
A3 10,000 109,976 11
Ad 10,000 209,876 21
A6 32,000 431,942 14
A5 20,000 539,824 27
finan512 74,752 596,992 8
G2 _circuit 150,102 726,674 5
Andrews 60,000 760,154 13
parabolic_fem 525,825 3,674,625 7
G3_circuit 1,585,478 7,660,826 5
thermal2 1,228,045 8,580,313 7

Table 8.4.: Input matrices for the Jacobi method.

Due to the fine-grained dependencies, the checkpoints and autonomous
versions are able to utilize more parallelism. This is especially noticeable for
matrices with irregular workloads. The performance difference between the
versions with individual dependencies and phases is larger for matrices with
irregular row lengths. Each row is only worked on by one task, since we do
not split up rows to several tasks. This results in a bad load balancing for
matrices with irregular row lengths.

The peak memory consumption (in bytes) can be calculated with the following
equation, which depends on the number of nodes D and the NNZ entries of
the matrix.

peak_memory = 64 MB + 8 -NNZ +1040-D B (8.3)

48

8. Evaluation

Matrix stages (p) stages (id) cp(id) aut(id) kbk(id)
Chem977tZ 218.50 94.85 55,57 5299 29.51
A3 218.98 94.11 5597 51.14 35.75
A4 219.91 93.35 5739 53.82 38.19
A6 232.87 106.07 76.29 72.87 54.96
A5 236.98 106.90 80.50 80.62 57.02
finan512 248.81 118.82 86.17 86.97 86.71
G2 _circuit 306.45 177.30 121.10 120.39 117.11
Andrews 248.06 120.05 95.70 92.66 83.63
parabolic_fem 695.28 559.85 361.29 364.23 451.44
G3_circuit 1,691.58 1,555.78 923.12 908.72 1,220.22
thermal2 1,367.44 1,227.62 81856 775.18 979.47

Table 8.5.: Execution time of different versions of the Jacobi method for the TSK execution
model. All timings in ms. p=phases, id = individual dependencies, cp=checkpoints,
aut=autonomous, kbk = kernel-by-kernel

Matrix stages (id) cp(id) aut(id) kbk(id)
Chem977tZ 8.13 9.79 15.80 29.51
A3 12.66 14.72 19.34 35.75
A4 16.09 19.63 24.78 38.19
A6 32.75 32.89 3347 54.96
A5 32.19 36.47 36.66 57.02
finan512 59.98 58.84 50.72 86.71
G2_circuit 122.77 109.45 75.48 117.11
Andrews 63.03 56.83 49.62 83.63
parabolic_fem 496.88 44517 316.30 451.44
G3_circuit 1,469.36 1,255.75 879.23 1,220.22
thermal2 1,210.80 1,039.89 753.86 979.47

Table 8.6.: Execution time of different versions of the Jacobi method for the MK execution
model. All timings in ms. p=phases, id = individual dependencies, cp=checkpoints,
aut=autonomous, kbk = kernel-by-kernel

49

8. Evaluation

Matrix stages (p) stages (id) cp(id) aut(id) kbk(id)
Chem97ZtZ 39.59 48.53 3341 31.80 29.51
A3 43.80 5227 3845 36.74 35.75
A4 35.80 41.82 41.22 41.03 38.19
A6 55.27 61.04 57.07 56.64 54.96
A5 61.73 6648 6197 61.55 57.02
finan512 80.57 84.63 4750 44.98 86.71
G2 _circuit 148.46 157.64 7218 72.02 117.11
Andrews 89.12 9395 7640 76.25 83.63
parabolic_fem 518.24 502.92 293.25 29947 451.44
G3_circuit 1,451.40 1,379.06 792.84 818.09 1,220.22
thermal2 1,179.87 1,106.22 692.55 717.00 979.47

Table 8.7.: Execution time of different versions of the Jacobi method for the PDC execution
model. All timings in ms. p=phases, id = individual dependencies, cp=checkpoints,
aut=autonomous, kbk = kernel-by-kernel

50

9. Conclusion

In this thesis we presented a dependency resolution for a task scheduling
framework. This dependency resolution allows for two different approaches
to define dependencies. Phases is used to define coarse dependencies on the
task-types. These phases are then executed in a pre-defined order. Individual
dependencies allows us to define fine-grained dependencies on individual
tasks.

We have shown that both approaches to define dependencies are necessary,
because depending on the algorithm, only one of them may be usable. Some
algorithms require phases to be implemented, while others only work with
individual dependencies.

We have also implemented two algorithms with our framework. The first
algorithm is RCM, which allows to reorder a matrix into a band matrix.
The second algorithm is the Jacobi method, which is used to determine the
solution to a system of linear equations. These algorithms require different
dependencies, so it would not have been possible to implement both of them
if we would not have both ways to define dependencies.

For irregular workloads, better performance is achieved when using individ-
ual dependencies. This was confirmed in our Jacobi implementation, where
matrices with irregular row length show better performance when using
individual dependencies compared to phases.

51

10. Future Work

Our implementation consist of two ways to define dependencies. These
two ways already cover a wide spectrum of use-cases. But there is an
extension to individual dependencies, which could increase performance
and usability. Instead of having one dependency for one task, we could use
one dependency for a group of tasks. These so-called grouped dependencies
are coarser than individual dependencies but still more fine-grained than
phases. By using only a single atomic counter for several tasks, this would
reduce the overhead.

The MK scheduler uses a lot of registers, which results in bad utilization.
With this scheduler, there are usually only one or two resident blocks per
SM. As a future improvement, the number of required registers for the MK
scheduler could be reduced.

52

Appendix

53

Appendix A.

Bitonic Mergesort

Bitonic mergesort [Bat68] is a parallel sorting algorithm. The version imple-
mented here is sorting keys with additional values. The input data consists of
arrays of size SIZE where each thread has its own keys and values array. Warp
level intrinsics are used to communicate between threads, so the algorithm
has to be called with a complete warp (i.e. 32 threads).

A bitonic sequence is a combination of two monotonic sequences, one
ascending and the other one descending. Bitonic mergesort creates bitonic
sequences of increasing size. Since the size of the bitonic sequence is doubled
after each step, only k steps are required to sort 2¥ numbers. The bitonic
sequences are created by alternatingly sorting ascending and descending
with different strides (as shown in Figure A.1).

The function swap (Algorithm A.1) is swapping the given keys and values
depending on the sort direction and the values itself. It gets the reference
to the values and keys as parameters so that it can change them. For the
complete algorithm see A.2. A graphical representation of the algorithm is
given in Figure A.1.

54

Appendix A. Bitonic Mergesort

Figure A.1.: Graphical representation of Bitonic mergesort on an input of length 8. The
direction of the arrows specifies where the larger element should be after the
swap.

Algorithm A.1 Bitonic swap

1: function swar(up, keyl, key2, valuel, value2)

2 if (keyl > key2 A up) V (keyl < key2 A —up) then
3 temp < value2

4 value2 «— valuel

5: valuel « temp
6

7
8

9

temp « key2
key2 « keyl
: keyl « temp
10: end if
11: end function

55

Appendix A. Bitonic Mergesort

Algorithm A.2 Bitonic merge sort

1ie2
2: whilei < N do
3: k %
4: while k > 1 do
5: if k > SIZE then > Swap between threads
6: for idx < 0 to SIZE do
7: data_id « tid - SIZE + idx
8: other key «— __shfl xor(flag, keys[idx], <i>=)
9: other_value «— __shfl xor(flag, values[idx], <)
10: up «— —((data_id&i) & (data_id&k))
11: swap (up, keys[idx], other_key, values[idx), other value)
12: end for
13: else > Swap within threads
14: for idx < 0 to SIZE do
15: if idx&k = 0 then
16: data_id « tid - SIZE + idx
17: up « —((data_id&i) @ (data_id&k))
18: swap (up, keys[idx|, keys|idx + k|, values[idx|, values[idx + k])
19: end if
20: end for
21: end if
22: ke k&
23: end while
24: i< 2i

25: end while

56

Bibliography

[Bat68]

[Bel+14]

[Cha+13]

[CM69]

[CTO8]

[DH11]

[Geo71]

K. E. Batcher. “Sorting networks and their applications.” In:
Association for Computing Machinery (ACM), 1968, p. 307 (cit.
on p. 54).

Mehmet E Belviranli et al. “A paradigm shift in GP-GPU com-
puting: Task based execution of applications with dynamic data
dependencies.” In: DIDC 2014 - Proceedings of the 2014 ACM
International Workshop on Data Intensive Distributed Computing,
Co-located with HPDC 2014. 2014, pp. 29-33 (cit. on pp. 7, 8).

Sanjay Chatterjee et al. “Dynamic task parallelism with a GPU
work-stealing runtime system.” In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Vol. 7146 LNCS. 2013, pp. 203-217
(cit. on p. 6).

E. Cuthill and J. McKee. “Reducing the bandwidth of sparse

symmetric matrices.” In: Proceedings of the 1969 24th National
Conference, ACM 1969. 1969 (cit. on pp. 28, 29).

Daniel Cederman and Philippas Tsigas. “On dynamic load balanc-
ing on graphics processors.” In: Proceedings of the SIGGRAPH/Eu-
rographics Workshop on Graphics Hardware. 2008, pp. 57-64 (cit. on

p. 6).
Timothy A. Davis and Yifan Hu. “The University of Florida Sparse

Matrix Collection.” In: ACM Transactions on Mathematical Software
38.1 (Nov. 2011) (cit. on pp. 41, 47).

J. A. George. “Computer implementation of the finite element
method.” In: 1971 (cit. on p. 29).

57

Bibliography

[Gral9]

[Kar+14]

[KumO00]

[Nvi20a]

[Nvi20b]

[Nvi20c]

[RBC17]

[TLO12]

Alan Gray. Getting Started with CUDA Graphs. Sept. 2019. UrL:
https://devblogs .nvidia . com/cuda- graphs/ (visited on
03/26/2020) (cit. on p. 1).

Konstantinos I. Karantasis et al. “Parallelization of Reordering
Algorithms for Bandwidth and Wavefront Reduction.” In: Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, SC. 2014 (cit. on p. 30).

Gary Karl Kumfert. “An Object-Oriented Algorithmic Laboratory
for Ordering Sparse Matrices.” In: Computer Science Theses &
Dissertations (Apr. 2000) (cit. on p. 29).

Nvidia. CUDA Toolkit Documentation. 2020. urL: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html
(visited on 03/26/2020) (cit. on pp. 3-5).

Nvidia. cuSolver Documentation.2020. urL: https://docs.nvidia.
com/cuda/cusolver (cit. on p. 41).

Nvidia. Nvidia CUB library. 2020. urL: https://nvlabs.github.
io/cub/ (visited on 03/26/2020) (cit. on p. 34).

Thiago Nascimento Rodrigues, Maria Claudia Silva Boeres, and
Lucia Catabriga. “A non-speculative parallelization of reverse
cuthill-McKee algorithm for sparse matrices reordering.” In:
Proceedings of the 2017 Federated Conference on Computer Science
and Information Systems, FedCSIS 2017. Institute of Electrical and
Electronics Engineers Inc., Nov. 2017, pp. 527-536 (cit. on p. 30).

Stanley Tzeng, Brandon Lloyd, and John D. Owens. “A GPU
task-parallel model with dependency resolution.” In: Computer
45.8 (2012), pp. 3441 (cit. on p. 8).

58

https://devblogs.nvidia.com/cuda-graphs/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cusolver
https://docs.nvidia.com/cuda/cusolver
https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/

	Abstract
	Introduction
	CUDA

	Related work
	Work Queue
	Task-based Execution of Applications with Dynamic Data Dependencies
	GPU Task-Parallel Model with Dependencies

	MHive
	General
	Timesliced Kernel (TSK)
	Megakernel (MK)
	Persistent Device Controller (PDC)

	Phases
	Overview
	Cyclic execution
	Phase Queue

	Individual Dependencies
	Overview
	Waiting Storage
	Dependency
	Comparison to phases

	Scheduling
	Timesliced Kernel (TSK)
	Megakernel (MK)
	Persistent Device Controller (PDC)

	Test Programs
	Generic Test
	Compressed sparse row (CSR) format
	Cuthill-McKee bandwidth reduction
	Pseudo-Peripheral node finding
	Permutation
	CPU-GPU version

	Jacobi method
	Stages version
	Checkpoints version
	Autonomous version
	Kernel-by-kernel

	Evaluation
	Cuthill-McKee bandwidth reduction
	Reorder quality
	Runtime

	Jacobi method

	Conclusion
	Future Work
	Bitonic Mergesort
	Bibliography

