
Dzambic Maid, Bsc

Development and Integration of a Rapid
Prototyping System Utilising XCP

Protocol

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Electrical Engineering

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Georg Macher

Institute for Technical Informatics
Head: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH. Kay Römer

Graz, September 2020

Statuary Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Acknowledgement

The work that is culminating with this thesis was carried out at the Insti-
tute of Technical Informatics at the Technical University of Graz and in
cooperation with AVL List GmbH.

At first, I would like to express my gratitude and appreciation to Dr. Omar
Veledar from AVL List for the opportunity to cooperate with AVL List and
for great support and guidance throughout the whole thesis process.

Furthermore, I would like to thank DI Christoph Kreuzberger from AVL
List for great technical support and continual provision of useful directions
to overcome encountered technical issues.

I also wish to thank my supervisor Dipl.-Ing. Dr.techn. Georg Macher from
the Institute of Technical Informatics for support and a plethora of useful
guidelines and suggestions throughout the whole thesis work.

Last but not least, a big thank you also to my family, girlfriend, and friends,
who provided me with great moral support throughout my whole Master’s
Degree study program.

v

Abstract

The thesis covers the development of a low-cost, versatile Rapid Prototyping
System (RPS) based on a lower-performance micro-controller platform and
XCP Calibration Protocol. The system is accompanied by an ”Intelligent
Watchdog”, and a gateway for transmitting Ethernet-based XCP messages
to the CAN bus and vice-versa. It is applicable to the real-world automotive
environment, which demands extensive testing of software that runs on
ECUs sourced from a range of providers. The RPS minimizes development
delays caused by a lack of costly commercial RPSs. It expands development
flexibility and returns an increase in productivity for minor investments.

The application considers usage of the universal calibration protocol XCP
and its contribution to the RPS, an intelligent watchdog, and an Ethernet-
CAN interface. For this purpose, an XCP-Master controller is developed.
An XCP-Slave driver enables access for other calibration tools, such as
CANape.

Automotive embedded systems are also introduced in the thesis. The intro-
duction includes specific challenges encountered by embedded automotive
software development, rapid prototyping methods, and development tools
and processes. As measurement and calibration play a crucial role, the uni-
versal calibration protocol XCP and its functionalities are detailed. The uti-
lized CAN and Ethernet communication protocols are briefly presented.

The implementation is evaluated by measurements and validation. The DAQ
and Polling measurement modes bypass a function within an external ECU,
while the watchdog is evaluated by monitoring a specific variable in the
same ECU. The Ethernet-CAN interface is evaluated through bus bandwidth
measurements for different data volumes on a standard automotive ECU. A
configuration tool is also developed to provide an easy configuration of the
RPS platform.

vii

Kurzfassung

Die Arbeit befasst sich mit der Entwicklung eines kostengünstigen, viel-
seitigen Rapid Prototyping Systems (RPS), dass auf einer Mikrocontroller-
Plattform mit geringerer Leistung und dem XCP-Kalibrierungsprotokoll
basiert. Das System beinhaltet auch einen ”Intelligenten Watchdog“ und
einen Gateway zur Übertragung von Ethernet-basierten XCP-Nachrichten an
den CAN-Bus und zurück. Weiters ist das System für reale Automobilumge-
bung anwendbar, in der umfangreiche Tests von Software erforderlich sind,
die auf Steuergeräten verschiedener Anbieter ausgeführt wird. Das RPS min-
imiert Entwicklungsverzögerungen, die durch das Fehlen kostenintensiver
kommerzieller RPS verursacht werden. Es erweitert die Entwicklungsflexi-
bilität und bringt eine Produktivitätssteigerung für kleinere Investitionen.

Die Anwendung berücksichtigt die Verwendung des universellen Kalib-
rierungsprotokolls XCP und dessen Beitrag zum RPS, einem intelligenten
Watchdog und einer Ethernet-CAN-Schnittstelle. Zu diesem Zweck wurde
ein XCP-Master-Controller entwickelt. Ein XCP-Slave-Treiber ermöglicht
den Zugriff für andere Kalibrierungswerkzeuge wie CANape. In der Arbeit
werden auch eingebettete Automobilsysteme vorgestellt. Die Einleitung
enthält spezifische Herausforderungen für die Entwicklung eingebetteter
Automobilsoftware, Rapid Prototyping-Methoden sowie Entwicklungstools
und -prozesse. Da Messung und Kalibrierung eine entscheidende Rolle
spielen, werden das universelle Kalibrierungsprotokoll XCP und seine
Funktionen detailliert beschrieben. Die verwendeten CAN- und Ethernet-
Kommunikationsprotokolle werden kurz vorgestellt.

Die Implementierung wird durch Messungen und Validierung bewertet.
Die Messmodi DAQ und Polling umgehen dabei eine Funktion innerhalb
einer externen ECU, während der Watchdog durch Überwachen einer bes-
timmten Variablen in derselben ECU ausgewertet wird. Die Ethernet-CAN-

ix

Schnittstelle wird durch Busbandbreitenmessungen für verschiedene Daten-
mengen auf einer Standard-ECU ausgewertet. Ein Konfigurationstool wurde
ebenfalls entwickelt um eine einfache Konfiguration der RPS-Plattform zu
ermöglichen.

x

Contents

Abstract v

1 Introduction 1
1.1 Motivation and Goal . 1

1.2 Objectives . 3

1.3 Master Thesis Structure . 3

2 State of the Art 5
2.1 Embedded Systems . 5

2.1.1 Embedded Automotive Systems 5

2.1.2 Electronic Control Unit - ECU 6

2.1.3 Embedded Automotive Software 9

2.1.4 Rapid Prototyping . 11

2.2 Communication Protocols . 11

2.2.1 Controller Area Network CAN 12

2.2.2 Ethernet . 16

2.3 Calibration of Electronic Control Units 21

2.3.1 CAN Calibration Protocol - CCP 21

2.3.2 Universal Calibration Protocol - XCP 21

2.3.3 ECU Interfaces . 21

2.4 XCP Protocol . 22

2.4.1 XCP Protocol Layer . 22

2.4.2 XCP Transport Layer . 23

2.4.3 Command Transfer Objects - CTO 26

2.4.4 Data Transfer Objects - DTO 28

2.4.5 Data Polling with XCP 28

2.4.6 Synchronous Data Acquisition with XCP - DAQ 29

2.4.7 Calibration with XCP 32

2.4.8 Stimulation with XCP 33

xi

Contents

2.4.9 Flashing with XCP . 34

2.5 Intelligent Watchdogs . 34

3 Design and Implementation 37
3.1 Concept . 37

3.2 Implementation . 40

3.2.1 Toolchain Selection . 40

3.2.2 Software Architecture 42

3.2.3 XCP-Slave Implementation 43

3.2.4 XCP-Master Implementation 46

3.2.5 Rapid Prototyping System 50

3.2.6 Intelligent Watchdog . 60

3.2.7 Ethernet to CAN Interface 60

3.3 Application Configuration . 61

4 Test Environment and Evaluation 65
4.1 Test Environment . 65

4.1.1 Rapid Prototyping System 65

4.1.2 Intelligent Watchdog . 67

4.1.3 Ethernet-CAN Interface 68

4.2 Evaluation Results . 69

4.2.1 Measurement 1: RPS with DAQ 69

4.2.2 Measurement 2: RPS with Polling 73

4.2.3 Intelligent Watchdog . 75

4.2.4 Ethernet-CAN Interface 77

5 Conclusion and Recommendations for Future Work 81
5.1 Conclusion . 81

5.2 Future Work . 82

Bibliography 95

xii

List of Figures

2.1 Microcontroller architecture . 7

2.2 Semiconductor memories . 8

2.3 V-Model for automotive software development 10

2.4 CAN node structue . 13

2.5 Bit field of a standard CAN frame 15

2.6 Ilustration of the OSI model . 18

2.7 UDP Datagram format . 20

2.8 Pseudoheader with the UDP datagram 20

2.9 XCP frame . 23

2.10 XCP on CAN message format 24

2.11 XCP on CAN block transfer . 25

2.12 XCP on Ethernet . 26

2.13 XCP protocol modes . 27

2.14 Allocation of RAM addresses to DAQ DTO 30

2.15 DAQ lists with three ODTs . 30

2.16 Dynamic DAQ lists . 32

3.1 Proposed platform usability . 37

3.2 RPS concept . 38

3.3 Intelligent Watchdog concept 39

3.4 Ethernet-to-CAN interface concept 40

3.5 Toolchain during development 40

3.6 Software Architecture Overview 42

3.7 XCP communication model . 44

3.8 CAN data bytes handling . 48

3.9 Handling of incoming CAN messages 49

3.10 Rapid prototyping system concept 51

3.11 State Machine of the XCP Master Controller 52

3.12 DAQ configuration sequence 56

xiii

List of Figures

3.13 Ethernet-to-CAN message sequence 61

3.14 DAQ Configuration tool GUI 62

4.1 Bypass Concept for Evaluation 66

4.2 Direct bypass of a variable by using DAQ 69

4.3 Bypass of a variable with a scaling factor of 1.1 by using DAQ 70

4.4 Comparison of the Oil temperatures sent and received via
CAN during DAQ . 71

4.5 Direct bypass of a variable by using Polling 73

4.6 Comparison of the Oil temperatures sent and received via
CAN during Polling . 74

4.7 Watchdog signal monitoring . 76

4.8 CAN and Ethernet Bandwidth measurements with DAQ . . . 77

4.9 CAN and Ethernet Bandwidth measurements with Polling . . 78

.1 OS Task loop flow chart . 89

.2 Connection process flow chart 90

.3 DAQ configuration process flow chart 91

.4 Measurement process flow chart 92

.5 DAQ Measurement process flow chart 93

.6 Calibration process flow chart 94

xiv

1 Introduction

1.1 Motivation and Goal

The development of specialized embedded software is a complex process,
limited by constraints unseen by the general-purpose computers. Embedded
systems must often rely on limited resources, yet perform complex functions
within systems of systems.

Within the automotive domain, the embedded systems face additional safety
and security challenges, many of which are resulting from interactions
with the outside world. Consequently, the optimal embedded software
quality dictates the usage of extensive additional tests and adjustments
during its development process. The automotive embedded systems mostly
demand testing of software components in a real-world environment, where
interaction with other ECUs is possible.

However, as the ECUs are sourced from a range of providers, the timing
constraints limit the possibility of directly integrating new software com-
ponents into the systems. Even minimal changes require several days for
integration into the actual ECUs. Rapid Prototyping Systems (RPS) are
developed and used to minimize this risk of developmental delays in the
automotive domain. The usage of RPSs enables connection to the existing
systems to perform measurements and calibration of internal ECU parame-
ters. It also allows bypassing of complete functions, which is beneficial for
development and testing. Thus, the RPSs and their ability to rapidly deploy
and test software functions are inevitable during the development phase of
software components, if the development time and time-to-market are to be
minimized.

1

1 Introduction

The available RPSs utilize special ECU interfaces and calibration protocols
for direct access to the memory of the target ECU. These extremely powerful
systems come at a considerable cost. Consequently, the availability of RPSs
is not widespread amongst software function developers. Available RPSs are
shared amongst developers, hence not fully utilizing the available human
capacity as well as adding to the waiting times and causing prolongation
of the development process. Frequently, the functions under test do not
even require the high computation power of RPSs, but only their available
functionalities. A microcontroller platform, which would have the possibility
of accessing other ECUs and performing measurement and calibration,
would fully suffice in some cases. Furthermore, utilizing a microcontroller
platform as an RPS brings into play real hardware restrictions of ECUs.
This gives an insight into how the function to be tested will perform on
real hardware and thus discover problems not detectable with professional
RPS systems. Having such a system would provide valuable flexibility for
the developers and would return an increase in productivity for minor
investments.

This triggers the goal of this thesis: deliver an implementation that uti-
lizes the XCP Calibration Protocol (Universal Calibration Protocol) and
provides a Rapid Prototyping System with satisfactory functionalities on a
lower-performance microcontroller platform. Furthermore, an ”Intelligent
Watchdog” functionality will also be implemented, as well as a gateway for
transferring XCP messages from an Ethernet-based communication protocol
to the CAN bus and the other way around.

Thus, this work will provide tools for automotive embedded system de-
velopers in the form of a low-cost and versatile rapid prototyping system,
which can pose a satisfactory substitute for scenarios where professional
rapid prototyping systems or CAN-adapters are required but are unavail-
able or when there is a need to closely monitor internal parameters of an
ECU. To reach this goal, Infineon’s Aurix TC277 evaluation kit is used as
the development platform.

2

1.2 Objectives

1.2 Objectives

The crucial aspect of the thesis is based on the implementation of an XCP-
Master Controller for the target platform and its correct implementation.
Besides that, to provide a configurable rapid prototyping system, the target
platform must also integrate a configured XCP-Slave driver. To achieve this
goal, the following objectives must be accomplished:

• Integration of the XCP-Slave driver on the target platform
• Implementation and integration of the XCP-Master Controller on the

target platform
• Utilization of the XCP-Master Controller to provide a rapid prototyp-

ing system with the ability to bypass functions in a target ECU
• Utilization of the XCP-Master Controller to provide an ”Intelligent

Watchdog”
• Implementation of an Ethernet-CAN Gateway - transferring XCP

messages received via Ethernet to the CAN bus and vice versa

1.3 Master Thesis Structure

The thesis is broken into five distinctive chapters, each focusing on a spe-
cific aspect of the conducted work. This, introductory, chapter provides
the reasoning behind the work and outlines the target of the thesis. The
reasoning is further supported by the review of the state of the art, which is
presented in chapter 2. That review is also reinforcing the understanding
of the fundamentals of automotive embedded systems and communication
protocols. It describes the requirements, challenges, and methodologies re-
garding automotive embedded system development. Furthermore, common
automotive bus systems and communication protocols are also described.
The main focus is placed upon CAN and Ethernet communication. These
are the main communication busses used for this thesis. Additionally, cali-
bration concepts of ECUs are described, with a broad overview of the XCP
protocol and its functionalities.

3

1 Introduction

Chapter 3 provides an insight into the conceptualization and the physical
implementation that targets the completion of the thesis goals. The chapter
also considers the deployed toolchain and the integration and implementa-
tion of the XCP protocol for the purposes of utilizing a master and a slave.
Furthermore, details about rapid prototyping functionalities, intelligent
watchdog, and Ethernet-CAN interface are also described.

Chapter 4 describes and evaluates the physical setup and the measurement
campaign. It also provides a representative selection of the measurement re-
sults. This chapter includes a description of the test methods and setups for
evaluating the RPS, intelligent watchdog, and Ethernet-CAN interface im-
plementations, followed by observation and discussion of the measurement
results.

Chapter 5 scrutinizes the findings and yields conclusions based on the
evaluation and discussion of the measurement results from chapter 5. Fur-
thermore, it provides an outlook for possible future work based on the
outcomes of this thesis.

4

2 State of the Art

2.1 Embedded Systems

The world is flooded with a vast range of diverse computer systems, ranging
from general-purpose computers, such as laptops and tablets, to computer
systems, which are ”invisible”, but contribute to a larger system, e.g. vehi-
cles.

Those computer system types are called embedded systems. While general-
purpose computers contribute to solutions of a wide range of scientific,
technical, economic, and similar challenges, embedded systems are designed
to carry out functions of monitoring and control. [7] Therefore, an embedded
system could be defined as:

a computer system with a dedicated function incorporated into a larger
mechanical or electrical system for control of this larger system.[7]

There are a multitude of important application fields for embedded systems,
one of which is automotive electronics.

2.1.1 Embedded Automotive Systems

Embedded automotive systems are responsible for controlling various ve-
hicle processes, such as the operation of the engine, airbags, anti-braking
systems, and others. [7] Modern vehicles of today would not be achievable
without the thoughtful integration of embedded systems. Their dynamic
evolution has been a long and continuous process. In the early stages of au-
tomotive electronics, every vehicle function was controlled by a stand-alone

5

2 State of the Art

ECU. An ECU is a form of a ”mini-computer” which utilizes microcon-
troller(s), sensors and actuators, in order to carry out a specific set of tasks.
[18] However, having a dedicated ECU for every single vehicle function
proves to be an inefficient use of resources, while also providing a disjointed
overall control. [7] Hence, in recent years, there has been a departure from
this development strategy for automotive electronics. With the emergence of
ever so more complex functions, there is a need for a new approach, where
functions are distributed over several ECUs and are able to communicate
with each other. The complexity of modern vehicles can be grasped in the
fact that they contain up to 100 ECUs and countless sensors and actuators,
as well as up to 5 different bus systems for exchanging up to 2500 signals.
[18] In fact, modern vehicles are equipped with more hardware and com-
puting power than the Apollo spaceship was when it flew to the moon. [18]
Utilization of embedded systems has made modern vehicles considerably
safer and more comfortable to use. The increased effort invested into the
development of automotive embedded systems is demonstrated in the an-
ticipated rise of the contribution of the automotive electronics to the vehicle
price. The prediction is that the 35 percent contribution from 2010 is to rise
to as high as 50 percent in 2030. [10]

As the usage of embedded automotive systems demands their integration
into vehicles, these machines with special operational conditions are exposed
to a special set of requirements and challenges. Limited resources of ECUs
such as memory, timing, and speed, pose a great technical challenge for the
design and implementation of automotive-specific applications, especially
for safety-critical operation. Software bugs can, in the worst-case scenario,
cause life-threatening situations, but also be very costly for the manufactur-
ers because of recalls. Therefore, it is very important to guarantee a high
safety factor during all stages of a vehicle’s life cycle. [9]

2.1.2 Electronic Control Unit - ECU

For optimal control of the vehicle behavior, ECUs measure large amounts of
parameters and include them in the control calculation process. The heart
and brain of every ECU is the microcontroller, which is responsible for
coordinating processes. A Microcontroller structure is shown in figure 2.1.

6

2.1 Embedded Systems

In order to control specific processes, ECUs receive electrical sensor signals
which are measuring the relevant data. Then, to act in accordance with
user expectations and based on the measured values, ECUs determine the
behavior of the processes and send triggering signals to actuators, which
directly influence the physical processes.

Figure 2.1: Microcontroller architecture[25]

As already mentioned, the fact that ECUs are integrated into the vehicles
exposes them to very harsh conditions. Those include[25]:

• Extreme ambient temperatures (from -40 to +65...125 degree C)
• Extremely dynamic temperature changes
• Indirect Materials and supplies (fuel, oil)
• Vibrations and other mechanical stress

Besides that, the ECU operation must not be affected by the level and fluctua-
tions of the battery supply voltage. Since ECUs are also prone to electromag-
netic and high-frequency interference, the requirements for Electro-Magnetic
Compatibility (EMC) are also very strict. [25]

7

2 State of the Art

Besides the microcontroller, ECUs also utilize semiconductor memories for
data storage.

The main microcontroller components are [25]:

• Central Processing Unit (CPU) - consists of a control unit (executes
instructions stored in the program memory), a logic unit, and an
arithmetic unit (execute logical and arithmetical operations).

• Input and Output devices (I/O) - handle the data exchange with
connected peripheral devices.

• Program Memory - Memory for storing the operating program (ROM,
EPROM, etc.)

• Data Memory - Memory for reading and writing data during program
execution (RAM)

• Bus System - System which connects all individual components of the
microcontroller

• Clock Generator - Makes sure that all microcontroller operations are
executed within a defined time window.

• Logic Circuits - Integrated into the individual I/O units and execute
special tasks (e.g. Interrupts)

Figure 2.2: Semiconductor memories [25]

8

2.1 Embedded Systems

As already mentioned, memories are used for storing the program code
and the data which is handled during the execution of a microcontroller
application. They can be divided into two main parts: volatile and non-
volatile memories. They differ in the sense that volatile memories lose
stored data if the electric power is removed, while non-volatile memories
retain stored information. Figure 2.2 contains a diagram of common memory
forms that are combined with microcontrollers.

2.1.3 Embedded Automotive Software

The software of modern cars performs a wide range of tasks, starting with
simple ones, such as seat height adjustment, to very complex tasks, such
as predictive chassis or fuel consumption optimization. It is not unusual
that software, the main innovator in the automotive industry today, contains
up to 100 million lines of code in premium vehicles. [9] Approximately
60 percent of ECU development time is spent on creating the software. In
order to provide the best quality, it is essential to use modern tools and
processes. The most commonly used software development platforms in
the automotive domain are Matlab/Simulink and SysML. The developed
models are typically converted into C programming code. However, there is
also a practical need for some software to be implemented directly in the C
programming language. [9]

Embedded Automotive Development Process

The development process of embedded automotive software follows the
so-called V-model. This model separates the concern and development
steps, and thus allows explicit focus on a dedicated activity during the
development process.

The development process is initiated with the analysis of the system require-
ments. That step is followed by the system design and software/hardware
requirements analysis. It is common in this phase to implement a prototype
software in order to test the concept before moving further in the develop-
ment process. This step enables early error detection and thus uses resources

9

2 State of the Art

Figure 2.3: V-Model for automotive software development [23]

more effectively than it would be the case when allowing the propagation
of errors and their discovery in the later development stages. For testing
of these prototype implementations, Rapid Prototyping Systems (RPS) are
used for fast integration of the prototype. When a prototype fulfills all the
specified requirements, the development process proceeds with detailed
software design (modules and functions) and finally to the software imple-
mentation. This concludes the verification of the system requirements. The
next step is the validation of the implemented software. During validation,
the software implementation is first tested without being deployed in the
real hardware environment (Software-in-the-Loop). If the software performs
its intended functionality, it is then integrated into real hardware and tested
for faultless performance (Hardware-in-the-Loop). Any errors detected in
these phases trigger a return to an earlier step of the V-model and modifica-
tion of the software accordingly. The further steps are repeated, but with the
improved components. Thus, the development process could involve many
iterations trough the V-model, until all requirements are accomplished. Once
the software’s intended functionality is proved in the test hardware, it is
then integrated into a real environment (f.e. a Vehicle) for final tests.

10

2.2 Communication Protocols

2.1.4 Rapid Prototyping

Since automotive subsystems are of critical nature, testing during the de-
velopment of automotive subsystems has become a very important activity.
Rapid prototyping is a very powerful method for identifying problems in the
early stages of software development. It enables developers to test and verify
new ideas and concepts efficiently before proceeding with the development
process and implementation on the target ECU [14]. For this purpose, special
rapid prototyping systems have been developed and are available on the
market. They are equipped with very powerful hardware, thus having a few
restrictions regarding computing power, memory storage, etc. This enables
easy integration and testing of software functions, which are developed for
much less powerful ECUs, without any hardware-specific considerations
[26]. Furthermore, rapid prototyping systems are equipped with standard
automotive communication interfaces such as CAN and FlexRay, providing
them with various connection possibilities. By employing bespoke plug on
devices (PODs), they are also able to connect to specific microcontroller
families over the debug port, which enables direct memory access and very
high transmission rates. If an RPS needs to access a signal which is not
directly available in an ECU, it can acquire the necessary data by directly
connecting to a sensor via appropriate interfaces [12]. However, the high
performance and convenience that is provided by rapid prototyping systems
are reflected in their high financial costs.

2.2 Communication Protocols

Automotive electronics are continually evolving in a search for the most
appropriate solutions for the given time and user expectations. This made it
possible to increase the complexity of the ECU functions. ECUs became more
interrelated and dependant on information available from other ECUs in the
system. To enable interaction between ECUs, the first solution was to use
signal lines and exchange data between them. However, with rapid increase
in the demand and volume of information that needs to be exchanged, this
approach proved to be insufficient. In order to solve this problem, serial bus
systems have been developed. They enable the exchange of large amounts

11

2 State of the Art

of data between all ECUs connected to the bus with a high transmission
rate. The first bus system which was introduced to motor vehicles in mass
production was the Controller Area Network (CAN) [25]. Since then, the
CAN bus was established as the standard system in not only the automotive
sector, but also in the majority of automation appliances.

Furthermore, as an alternative to CAN, the Local Interconnect Network
(LIN) was developed in 1998. It specializes in data exchange between sensors
and actuators. LIN has a simple protocol and simple sequence control,
making it usable even in low-capability ECUs with no additional hardware
required. This protocol is suitable for low data rates (up to 20 kBit/s) and
has a limited number of possible participants (maximum is 16).[25]

Another commonly implemented protocol is FlexRay. It was developed in
1999 by BMW and DaimlerChrysler. Its purpose is to provide high transfer
rates and a deterministic and fault-tolerant working manner while being
easy to use and is simply expandable. During its evolution, a focus was
set on its suitability for use in active safety systems. Hence, the domain
where FlexRay is used the most is active safety systems, but also drivetrain
systems. [25]

However, the development of more advanced functions in vehicles requires
higher bandwidth than CAN, LIN, and FlexRay can offer. For this purpose,
Ethernet has been identified as a very promising candidate for the auto-
motive industry of the future. Automotive manufacturers tend to deploy
Ethernet as a network backbone, but this approach is still in development.
Today, Ethernet is used mostly for Diagnostics purposes, ECU flashing,
Rear-view cameras, Infotainment, and Driver Assistance Systems. [17]

2.2.1 Controller Area Network CAN

During the development of CAN, one of the main goals was to eliminate the
need for a central control element for communication. All devices should
be able to connect to a bus and receive all information sent on the bus. A
topology like this does not only provide favorable electrical properties, but
it also ensures that the failure of one device in the network would not affect
the functionality of the whole system. Furthermore, it enables easy network

12

2.2 Communication Protocols

extensions. New devices can be connected to the system with a little extra
effort. [25]

CAN Nodes and Signals

The participants of a CAN network communication are referred to as net-
work nodes. The nodes consist of three main components: a microcontroller,
a CAN controller, and a CAN transceiver. The microcontroller is responsible
for controlling the CAN controller, preparing data to be sent, and evaluating
the received data.

Figure 2.4: CAN node structue [25]

The CAN controller is responsible for managing the transmit and receive
modes, while the transceiver takes care of providing the required voltage
levels for transferring the messages over the bus.

Depending on the transmission speed, CAN networks can be divided into
low-speed and high-speed buses. High-speed CAN uses transmission rates

13

2 State of the Art

from 125 kBit/s to 1 MBit/s while low-speed Can uses speeds from 5 kBit/s
to 125 kBit/s.

In order to have a reflection-free communication, the communication lines
must not have open ends. For this purpose, the bus lines are terminated at
each end with a 120 Ohm resistor. Commonly, the terminating resistors are
integrated into ECUs themselves.

Furthermore, the delay caused by the signal transit time across the lines also
needs to be taken into account. This limits the maximum length of the signal
lines for different transmission speeds.[25] The following recommendations
are in place:

• 1 Mbits/s for 40 m
• 500 kBits/s up to 100m
• 250 kBits/s up to 250m
• 125 kBits/s up to 500m
• 40 kBits/s up to 1000m

CAN Protocol

In a CAN network, addressing does not occur by the individual network
nodes, but by the sent messages. Each message has a unique identifier,
which classifies the content of the message. Therefore, a node is able to
broadcast a message to all other nodes (multicast). The receiving nodes read
only those messages which are meant for them, so those whose identifiers
are configured in their acceptance list. This ensures that every node decides
for itself whether or not to accept a message sent on the bus. [25]

CAN Bus Access

Every node in a CAN network can try to send messages at any time. If
this attempt is going to be successful or not, depends on the status of
the bus. If the bus is in the ”recessive” state (it is unoccupied), each node
is free to initiate the transmission of its messages. The message begins
with a dominant bit (start-of-frame-bit), followed by the identifier. When

14

2.2 Communication Protocols

several nodes begin transmission at the same time, the system responds
by employing ”wired-and” arbitration (arbiter = logical AND operator) in
order to resolve the conflict. Every node sends the identifier of its message
onto the bus one data bit at the time, with the most significant bit first. Each
node that wants to send a message then compares the level present on the
bus with the level it actually has. This way, a node that attempts to send
a ”recessive” bit but encounters a dominant bit, will lose the arbitration
process and stop the transmission. Thus, the message which has the lowest
identifier also has the highest priority and is able to send the data first,
without any data loss or delay (non-destructive protocol). The other nodes
automatically become recipients of the message, and they try to resend their
message as soon as the bus is free again. Without such access control, bus
collisions would result in faults. To guarantee explicit bus arbitration, it
is not allowed for more than one node to send messages with the same
identifier. [25]

The consequence of such an arbitration process is that besides identifying
the frame content, the identifier also has the role of prioritizing the frame
during transmission.

Message format

The bit field of a standard CAN message frame is shown in figure 2.5.

Figure 2.5: Bit field of a standard CAN frame[8]

15

2 State of the Art

The meaning of the bit fields are:

• SOF (Start Of Frame) - This bit marks the start of a message and is
always a single dominant bit. It is used to synchronize all nodes on
the network after being idle.

• Identifier - Unique identifier of a message and also establishes the
priority of the message (lower identifier means higher priority).

• RTR (Remote Transmission Request) - If data is required from another
node, this bit is set to be dominant. Even though all nodes receive this
message, only the one specified in the identifier will respond.

• IDE (Identifier Extension) - set as a dominant bit in case a standard
CAN identifier with no extension is being transmitted.

• r0 - A reserved bit
• DLC (Data Length Code) - These four 4 contain information about the

number of data bytes to be transmitted.
• Data - Here is the Data stored, and it can contain up to 64 bits.
• CRC (Cyclic Redundancy Check) - these 15 bits contain the checksum

of the preceding application data for error detection.
• ACK (Acknowledgment) - If a node successfully receives a message, it

overrides this recessive bit with a dominant one. In case that an error
occurs and this bit does not get into the dominant state, the message
gets discarded, and the sending will be repeated.

• EOF (End Of Frame) - This 7-bit long field marks the end of a message.
• IFS (Interframe Space) this 7-bit long field contains information about

the time needed by the controller to move a successfully received
message to its proper position in the message buffer.

2.2.2 Ethernet

The development of more advanced and complex software components in
vehicles increased requirements for the communication protocols. As data
volumes are increasing across the network, the demand for a communication
protocol with a high bandwidth arose. CAN, LIN, and FlexRay were simply
not designed to meet this requirement. As a good candidate for solving
this problem, the automotive industry chose Ethernet. Ethernet is an open

16

2.2 Communication Protocols

LAN standard and defines the two lower layers of the OSI reference model
(Physical and Data link). [17]

OSI model

The Open Systems Interchange (OSI) model provides a theoretical frame-
work for a better understanding of data communications between two
networked systems. The communication process is represented by seven
layers that interact with each other [1]. The layers include:

Application Layer

The Application layer provides an interface for the end-user who is operating
a device on the network. This is basically what the end-user sees.

Presentation Layer

The Presentation layer is responsible for how the data to be sent onto the
network is formatted. It enables encryption and decryption of messages,
compression and expansion, graphic formatting, etc.

Session Layer

The session layer provides services such as byte tracking, synchronization of
data flow, acknowledgment of data received during a session, retransmission
of data if it is not received by a device, etc.

Transport Layer

The Transport layer provides end-to-end communication between devices in
a network. The most commonly used transport layers are TCP and UDP.

Network Layer

The Network layer provides an end-to-end logical addressing system, en-
abling routing of packets across several layer 2 networks. IP addresses are
used in this layer for addressing the packets.

17

2 State of the Art

Data Link Layer

The Data link layer allows the device to access the local network (LAN)
and send/receive messages. It provides a unique MAC address for packet
addressing, which is physically connected with the hardware.

Physical Layer

The Physical layer is responsible for placing the bits on the media (wire,
WIFI...) and also retrieving them. It defines the connector, interface specifi-
cations, and cable requirement.

Figure 2.6: Ilustration of the OSI model[24]

When a device in a network receives a message, it first comes to the lowest
layer (physical layer) in the form of an electrical signal and is then forwarded
to all other layers in the chain. Thereby, the lower layers are more hardware-
oriented while the upper ones are more software-oriented [19]. In case of

18

2.2 Communication Protocols

sending a message, it travels all the way down from the application layer
to the physical layer, where it is going to be prepared for sending over a
media. During the travel of the message through all the layers, every layer
adds its own information (headers) to the front of the data it receives from
a layer above it [24]. This process is called encapsulation.

Even though the network and transport layer are theoretically separate, in
practice, they are very closely linked to each other. The well-know protocol
used for the internet called Transmission Control Protocol/Internet Protocol
(TCP/IP) comes from the transport layer protocol (TCP) and the network
layer protocol (IP) [24].

TCP/IP and UDP/IP

Transmission Control Protocol (TCP) is one of the two most used transport
protocols for communication over Ethernet. It is a connection-oriented
protocol, which supports a packet retransmission mechanism and message
acknowledgment. In the case of lost packets, TCP retransmits the data until
either a connection timeout has occurred or a successful delivery [24]. This
however, can cause high transmission latency. For this thesis, UDP/IP has
been used and explained in more detail.

User Datagram Protocol (UDP) is another protocol that provides transport
services to applications. Unlike TCP, this transport protocol does not have
flow control or acknowledgment of received data. This however, ensures
minimal overhead. Messages which do not pass the checksum test are simply
dropped. Besides the logical addressing with IP, UDP provides additional
addressing in the form of port numbers. Using port numbers, multiple
applications and services are able to set up a connection on the same end.
[22]

A UDP frame is also called a UDP datagram. It consists of an 8-byte header
and a Data field.

The header consists of a source port number field, destination port number,
total length, and checksum. Each of those fields is 16 bits long. Additionally
to the UDP datagram, an IP pseudo-header is appended.

19

2 State of the Art

Figure 2.7: UDP Datagram format[22]

It contains five fields: source IP address, destination IP address, zeros,
protocol field, and UDP length.

Figure 2.8: Pseudoheader with the UDP datagram[22]

20

2.3 Calibration of Electronic Control Units

2.3 Calibration of Electronic Control Units

2.3.1 CAN Calibration Protocol - CCP

The CAN Calibration Protocol (CCP) is the predecessor of the Universal
Calibration Protocol (XCP) and was developed and introduced in 1992 by
the manufacturer of calibration systems Ingineurbüro Helmut Kleinknecht.
It utilizes the Controller Area Network (CAN) for communication and is a
very often used calibration protocol in the automotive industry. CCP was
taken over by the Standardization of Application/Calibration Systems task
force (ASAP) in 1995. The conceptual idea of the CAN Calibration Protocol
was to permit read and write access to internal parameters of an ECU over
the Controller Area Network (CAN). The working principle of CCP is the
same as XCP on CAN, and more information can be found in section XCP
on CAN.[3]

2.3.2 Universal Calibration Protocol - XCP

The Universal Calibration Protocol (XCP) is an ASAM standard, which was
first introduced in 2003 and is mainly based on the experience gained from
working with the CAN Calibration protocol. ASAM stands for ”Association
for Standardisation of Automation and Measuring Systems” and represents
a working group that includes vehicle OEMs, tool manufacturers, and
suppliers. This Standard defines a generalized measurement and calibration
protocol, which is independent of the specific transport medium, unlike
CCP, which supported only CAN as the transport layer. This was achieved
by dividing XCP into a Protocol layer and a Transport layer. Depending on
the Transport layer, one can refer to XCP on CAN, XCP on Ethernet, etc. The
”X” in XCP stands for the variable and interchangeable transport layer.[6]

2.3.3 ECU Interfaces

Another method for measurement and calibration of ECUs, which is often
used, is utilizing a physical ECU interface in the form of a Plug On Device

21

2 State of the Art

(POD). By connecting this POD to the debug port of the ECU, it provides
direct access to its memory for calibration tools [16] [11]. Companies that
offer rapid prototyping and calibration tools also develop PODs for their
products. However, PODs are not universal for all microcontroller families,
thus depending on the microcontroller of the ECU, a different POD has to
be considered [16] [11]. Some of the manufacturers of such products are
ETAS, dSpace, and Vector. From stand-alone rapid prototyping units such
as ES910 from Etas or MicroAutoBox from dSpace to measurement and
calibration interfaces such as VX1000 from Vector can all be found on the
market. The usage of PODs enables those devices data transmission with
very high speeds. The obtained data is then processed within the device
itself, or forwarded to another calibration tool [15][12][28]. Devices used
as measurement and calibration interfaces provide the data they obtain
from ECUs over an XCP on Ethernet interface to another calibration tool
(CAPane, INCA, etc.). They rely on other calibration tools and cannot
work independently[28]. RPS devices however, are able to work in stand-
alone mode and do not need to be connected to another calibration tool,
but they also have this option available [15][12]. For applications where
high data throughput is not needed, those devices also provide standard
interfaces such as CAN and FlexRay for connecting to ECUs and performing
measurement and calibration operations with XCP.

2.4 XCP Protocol

2.4.1 XCP Protocol Layer

The mechanism which enables measurement and calibration of ECUs is
defined in the Protocol layer of XCP. Since XCP is based on the master-slave
principle, data between a master and a slave is exchanged in a message-
oriented way. The whole XCP message (XCP frame) is embedded into the
data field of the underlying transport layer (in case of Ethernet, for example,
in a UDP packet). As with many communication protocols, the XCP frame
consists of three parts: XCP header, XCP packet, and XCP tail, as shown in
the figure 2.9.

22

2.4 XCP Protocol

Figure 2.9: XCP frame [2]

The XCP header and XCP tail depend on the used transport layer, while
the XCP packet is independent of it. The XCP packet also consists of three
components: Identification Field, Timestamp Field, and Data Field.

The Identification field always starts with the Packed Identifier (PID), which
identifies the packet and ensures that both the master and slave are able to
determine the meaning of the message. Based on the data exchange method
(Command Transfer Object (CTO) or Data transfer Object (DTO), explained
later), the structure of the Identification Field can vary. In the case of CTOs,
it is fully sufficient to use only the PID in the Identification Field to identify
the message. In the case of DTOs, the Identification Field can also contain
other elements (FILL and DAQ), which will be described in a later chapter.
Furthermore, DTO packets can also utilize the optional timestamp fields
for providing the time information alongside the measurement values. The
Data Field of the XCP packet is used to provide the measurement data from
the slave, but also specific parameters required for the different commands
in case of CTOs.[2]

2.4.2 XCP Transport Layer

XCP protocol was designed to support many different transport layers. As
of today, the following layers have been defined: XCP on CAN, FlexRay,
Ethernet, SxI, and USB [6]. This chapter will focus on XCP on CAN and
XCP on Ethernet since these transport layers have been used in the imple-
mentation. In order to find implementation descriptions of other transport

23

2 State of the Art

layers, one can refer to the website of ASAM and download the Standard
documents1.

XCP on CAN

Since XCP is the successor to CCP, it is natural that it satisfies the require-
ments for the CAN bus. As multiple CAN nodes can be connected to a
network, CAN identifiers are used for controlled transmission of messages
between them.

Figure 2.10: XCP on CAN message format [2]

The XCP communication uses at least two CAN identifiers for each unique
slave [4]. One CAN identifier is used for transferring XCP frames from
master to slave (CMD, STIM), and the other identifier is used for transferring
XCP frames from slave to master (RES, ERR, EV, SERV, DAQ). The CAN
identifiers used for XCP communication must not be used for any other
purpose on the CAN bus. The configuration of CAN messages and XCP
objects is normally defined in the slave description file (A2L), which is then
used for configuration of the master. The messages sent from master to slave
should be configured to have a higher priority than the response from the
slave. XCP on CAN supports the standard and block transfer communication
model, while interleaved communication is not allowed.[2]

Since XCP frames are encapsulated into the data field of the transport layer,
it is limited to 8 bytes in the case of CAN. The first byte of the XCP frame is

1https://www.asam.net/standards/detail/mcd-1-xcp

24

2.4 XCP Protocol

always used for the identification of XCP commands, thus only seven useful
bytes are available for transporting useful data.

Figure 2.11: XCP on CAN block transfer [2]

XCP on Ethernet

XCP on Ethernet can either be used with TCP/IP or UDP/IP. The main
difference is the ability to detect packet losses. TCP/IP uses a handshake
method and organizes repetitions in case of a packet loss, while UDP/IP
does not have this mechanism, and packet losses are being ignored. UDP/IP
has, therefore, a minimal overhead and is suited for sending measurement
data, where a measurement gap caused by a packet loss is not that crit-
ical [2]. In case that the measurement data is to be used as the basis for
fast control, TCP/IP is recommended. XCP on Ethernet uses the standard
communication model, while block transfer and interleaved are optional
[5].

Figure 2.12 shows the message format of XCP on Ethernet.

25

2 State of the Art

Figure 2.12: XCP on Ethernet [2]

As with all transport layers, the XCP frame is embedded into the data field.
The header fo the XCP frame consists of a LEN and CTR field. LEN contains
information about the number of bytes in the XCP packet, while CTR is used
as a counter for detecting packet losses. The CTR value gets incremented
every time a message is sent. The master and slave increment their counter
independent of each other. This way, packet losses are easily detected.[2]

The XCP packet comes after the XCP header. With XCP on Ethernet, there
is also no tail. The maximum size of the XCP packet is again limited by the
size of the UDP/IP packet.

2.4.3 Command Transfer Objects - CTO

CTOs are used for transferring commands from the master to the slave, but
also the Response from the slave to the master. Each time the slave receives
a command from a master, it has to provide either a positive or a negative
Response. The first Byte of the Response in hexadecimal form is 0xFF in case
of a positive response, and 0xFE in case of a negative response. Other Bytes
of the positive or negative Response are used for specific parameters that
provide some additional information. For example, when a master sends
the command to connect to a slave and it sends back a positive response,
alongside the positive response, it also provides additional information
about which features it supports, maximum packet length, etc. The full
details can be found in the ASAM Standard. During an XCP session, the

26

2.4 XCP Protocol

exchange of commands and reactions between master and slave can happen
in three different modes: Standard, Block, and Interleaved.[2]

Figure 2.13: XCP protocol modes [2]

In the standard mode, after each request from a master comes only a
single response from a slave. Hence, transmitting a large amount of data
(DOWNLOAD, UPLOAD, FLASHING) with the standard mode would
take a lot of time. To speed up the transmission of a large amount of data,
the Block mode can be used [2]. It enables sending multiple messages in
one direction at once. However, this mode is heavily reliant on system
performance. It is necessary to limit the total number of commands which
can be sent (MAX BS) and to maintain the minimum times between two
commands (MIN ST). Another mode that enables faster communication than
standard mode is the interleaved mode. In this mode, requests can be sent
consecutive, without waiting for a response. The slave stores the requests
and sends the corresponding responses. However, the slave can store only a
limited amount of requests, and the master has to take care that this limit is
not crossed. [2] A master can send the GET COMM MODE INFO command
to obtain information about which mode is supported by a slave [6].

27

2 State of the Art

2.4.4 Data Transfer Objects - DTO

DTOs are used for synchronous data transfer between a master and a slave.
For synchronous data transfer, two different modes are available with XCP.
One mode is for synchronous data transfer from a slave to a master (DAQ
mode), and the other mode is for synchronous data transfer from a master
to a slave (STIM mode). For using any of those modes, the first step is
configuring the data which needs to be synchronously measured/calibrated.
After the configuration phase, the master sends the command for the start
of data transfer. Hereby, the slave uses internal events for triggering the data
transfer.[2]

2.4.5 Data Polling with XCP

Polling is the simplest measurement method that is solely based on CTOs
[2]. The XCP-Master uses a CTO command (SHORT UPLOAD) to request
a parameter value from an XCP-Slave, and the XCP-Slave responds with
a CTO which contains the value of interest. The simplicity of this method
brings drawbacks which limit its practical usefulness. The XCP specification
defines that every measurement parameter has to be polled individually.
This means that for every single measurement parameter, two messages
need to travel over the bus. One message is the request from the master, and
the other messages are the Response from the slave. This causes the busload
to be increased. Furthermore, another drawback of this method shows itself
when multiple measurement parameters are being polled. The tendency is
usually that all measurement parameters correlate to each other. However,
since every single measurement parameter has to be polled sequentially,
the measurement values will not necessarily be in correlation with each
other. The time needed for sending all poll requests is much higher than
the computational cycle of the ECU. Hence, the measurement values will all
be from different computational cycles. From this, the two main drawbacks
of this method can be seen [2]:

• Unnecessarily high bus traffic
• Measurement values are not evaluated in relation to the process flows

in the ECU

28

2.4 XCP Protocol

To overcome these drawbacks, the Synchronous Data Acquisition (DAQ)
measurement method is used.

2.4.6 Synchronous Data Acquisition with XCP - DAQ

Synchronous Data Acquisition DAQ solves the problems present in data
acquisition with polling. The most significant advantage with DAQ is that
the busload is much more decreased, as no requests from the master have
to be sent after the configuration phase. The bus is loaded just by the DAQ
data from the slave. Furthermore, since the DAQ data from a slave is linked
to an internal slave event, the correlation of the measured values is also
achieved [2].

For example, if an event is set to be triggered at the end of the computation
cycle, each time the slave reaches the ”Computational cycle completed”
event, it will gather all the measurement parameters, save them in a buffer
and send them to the master. These XCP events in the slave can be cyclic as
in the example before but do not have to be. For instance, in the case of an
engine controller, an XCP event can be dependant on the rpm of the engine
(angle-synchronous) and therefore be asynchronous.[2]

For starting a DAQ measurement, it first needs to be configured. The
configuration is performed by the master by sending a defined message
sequence to the slave. During the configuration, the master tells the slave
which signals should be measured, how to distribute the measurement data
into messages the master can interpret, and to which event the measurement
data should be linked. For describing the sequence in which the slave should
assemble the bytes into messages, Object Description Tables (ODTs) are
defined. They contain addresses and object lengths of all parameters which
need to be measured, assembled into a message on the bus. This message is
transmitted as a DAQ DTO (Data Transfer Object) [2].

After the configuration is completed successfully, the slave waits for the
master to send the ”START MEASUREMENT” command. After the master
sends this command, it starts to listen to the bus. The slave then begins to
send the DAQ data when an event occurs. Since the master defined the
allocations of all individual objects itself, it can interpret the individual data

29

2 State of the Art

Figure 2.14: Allocation of RAM addresses to DAQ DTO [2]

it receives from the slave. The slave stops the transfer when the master sends
the ”STOP MEASUREMENT” command. The number of entries an ODT
can have is limited by the used transport medium. For example, in the case
of CAN, the maximum number of useful bytes is seven.[2]

Figure 2.15: DAQ lists with three ODTs [2]

When more data needs to be sent in this case, one ODT is not sufficient,
and more have to be defined. The slave must then be able to copy the data
into the correct ODT and the master to correctly identify the received ODTs.
The ODTs are then combined into DAQ lists, which are assigned to an

30

2.4 XCP Protocol

XCP-event. This means that one DAQ list can contain only the ODTs which
are assigned to the same event.[2]

If, for example, two ODTs are defined for measuring data in two different
measurement intervals (two separate events), then also two DAQ lists have
to be defined. Per event used, one DAQ list is needed. Furthermore, DAQ
lists can be defined as static or dynamic.

Static DAQ lists

Static DAQ lists are permanently defined within the ECU code and cannot
be changed by the user [6]. The content of the ODTs and DAQ lists is
still configurable, but the framework that can be filled is unchangeable.
If an ECU has multiple static DAQ lists defined and an attempt is made
to measure more signals with an event than it fits a DAQ list, it will be
terminated with an error. It does not matter that other DAQ lists are not
even used and available. In contrast to this, there are also Predefined DAQ
lists. They have not only the framework but also the content of all ODT
entries defined. This method is rarely used in practice since it does not
provide any flexibility to the user[2].

Dynamic DAQ lists

Dynamic DAQ lists are a special aspect of the XCP protocol. In this case,
DAQ lists and ODTs are not permanently defined in the ECU code, but
only parameters of the memory area that can be used for the DAQ lists [6].
The XCP-Master has the freedom to define the DAQ lists and ODTs in an
XCP-Slave ECU according to its needs. There are various functions defined
in the XCP standard, which can be used by an XCP-Master for configuring
dynamic DAQ lists.[2]

31

2 State of the Art

Figure 2.16: Dynamic DAQ lists [2]

2.4.7 Calibration with XCP

The process of changing the value of a parameter in an XCP-Slave is called
calibration. Hence, in order to calibrate a parameter in an XCP-Slave, the
XCP-Master must send the parameters memory location address and the
new value itself to the slave [2]. The addresses in XCP are always defined
with five bytes. Four of those bytes are used for the actual address and
the remaining byte for the address extension. When CAN is used as the
transportation medium, there are only 8 bytes at disposal for encapsulating
XCP messages. One byte is reserved for the PID, which makes only seven
useful bytes available. If one would try to calibrate a 4-byte value, it would
need nine useful bytes to transfer this message. Therefore, the calibration is
performed with two commands from the master: SET MTA and DOWN-
LOAD. The first message to be sent is SET MTA from the master. SET MTA
is used for sending the address to which a new value should be written.
Afterward, the slave responds with an acknowledgment or error message.
The third message in the chain is the command DOWNLOAD from the

32

2.4 XCP Protocol

master. DOWNLOAD specifies the length of the value to be written (number
of bytes), as well as the value itself (HEX format). The slave must again send
a positive or negative response, which concludes the calibration process. As
the calibration process changes the value of a parameter in the ECUs RAM,
the new value will be used by the application. However, if the ECU should
reboot, the calibrated value in RAM would again be overwritten with the
original value from the flash. To ensure that the calibrated value is stored
permanently, there are two possibilities[2]:

• The new parameter could be saved in the ECUs EEPROM automati-
cally when ramping down the ECU or manually by the user. In order
for this to work, it must be ensured that data can be saved in a non-
volatile memory of the slave (EEPROM or Flash). This method is
however, rare, since ECUs usually do not have memory space to spare.

• The parameters could be saved in the form of a file on a PC. This
method is the preferred one. The calibration values can be saved in
different file formats, with the simplest to be an ASCII text file.

Furthermore, calibrated parameters can also be flashed into the ECU. This
process will store the values permanently into the flash memory of the
ECU. The easiest way would be to transfer the set file, which contains the
new calibrated values into a C or H file, and to perform a compiler/link
run to generate a new flash file. However, this method requires access to
the source code of the ECU, which is often not available. Furthermore, it
could also take a considerable amount of time to perform this, depending
on the parameters of the code. If, alternatively, the original Flash file of the
ECU is available, it could be modified with the new calibration set file. The
possibility to do this is provided by CANape. CANape takes the addresses
and values from the parameter set file and updates those values in the flash
file, generating a new modified flash file with updated values.[2]

2.4.8 Stimulation with XCP

Stimulation with XCP works on the same mechanism as DAQ, but now in
the opposite direction. While DAQ mode is used for synchronous trans-
mission of measurement data from slave to master, Stimulation is used for

33

2 State of the Art

synchronous transmission of calibration data from master to slave. Com-
munication during Stimulation is therefore synchronized to an event in
the slave. It is necessary for the master to know, to which events in the
slave it can synchronize at all. For the slave, it is important to know the
location in the packets at which the calibration parameters can be found.
This information must be contained in the A2L file [2].

2.4.9 Flashing with XCP

Flashing is a process of updating the software that runs in an ECU. This
is done by changing the data in the area of flash memory. For successful
flashing, it is vital to know how the memory of the ECU is laid out. Flash
memory consists of multiple sectors, which are described by a start address
and a length [2]. In order to distinguish them, every sector gets a consecutive
identification number. As for this number only one byte is available, there
can be a maximum of 255 sectors. Before the process of flashing can begin,
an executable code, which is referred to as flash-kernel, is sent to the slaves
RAM. This code handles the communication with the XCP master during
the flashing process, as well as erasing the flash memory before it can begin.
The whole flashing process with XCP is subdivided in three phases:

• Preparation
• Execution
• Post-processing

During the preparation phase, things such as version control (checking if
new contents can even be flashed) can be performed. During the execution
phase, the new contents are sent to the ECU. During the Post-processing
phase, things such as checksum checking are performed.[2]

2.5 Intelligent Watchdogs

All computer systems are prone to errors. Embedded systems are no excep-
tion. Faults in a system can be caused by various factors, from radiation
influence coming from the environment, to bit flips randomly happening

34

2.5 Intelligent Watchdogs

during the writing of data into RAM. While some faults are only temporary,
others can cause the system to fail permanently. In order to detect such
faults, system monitors and general fault detection schemes such as watch-
dogs are being used. They are systems much less complex than the system
they are monitoring and can be implemented on the board of the monitored
system itself, or connected to it as an external device. After detecting a
fault, watchdogs take action and try to restore the system to its former, fully
functional state. [20]

In order to monitor a system, watchdogs require input data about the
system states. This data is evaluated by the watchdog, and in case of
unexpected behavior of the system, the watchdog acts accordingly. Those
actions could be setting an alert, trigger some signals, but also resetting the
whole system.

When watchdogs perform more complex actions than just triggering a signal
or executing a command, we talk about intelligent watchdogs. They usually
have more advanced algorithms for evaluating the system states and a
more complex approach of deciding what action to take. In the automotive
industry, watchdogs are often used in safety-critical applications where
faults can not be tolerated at all.

One area where fail-operational behavior is essential and where a lot of
focus is set today is automated driving. For users to accept autonomous
vehicles, it has to be trustworthy, safe, and secure. It must be capable of
independently handling safety-critical situations [21]. To ensure this, the
safety-critical components of a vehicle must have redundant systems and
a watchdog, which will monitor everything and take actions if any faults
should occur.

For gathering data from an ECU that needs to be monitored, Watchdogs
could utilize the XCP protocol and thus have direct access to its memory.

35

3 Design and Implementation

3.1 Concept

This work is based on the utilization of the XCP protocol and the implemen-
tation of an XCP-Master Controller for the chosen platform. As a result, the
platform has three aspects of its usage: its implementation aids communica-
tion with other XCP-Slave devices as a rapid prototyping system, it acts as
an intelligent watchdog, and also provides an Ethernet-CAN interface for
situations where an adapter is not available.

Figure 3.1: Proposed platform usability

For having RPS functionalities, the platform has to utilize an XCP-Slave
driver and an XCP-Master Controller. The purpose of the XCP-Slave driver
is to provide access to other calibration tools such as CANape and enable

37

3 Design and Implementation

configuration of the RPS parameters during run-time. The XCP-Master
Controller provides functions for connecting to an XCP-Slave and perform
measurements and calibration, and with the combination of those two, by-
pass of functions. This bypass functionality enables the testing of functional
changes without having to perform a flash update directly on the target
ECU. Instead, it is flashed to the RPS and used to bypass the corresponding
function in the target ECU.

Figure 3.2: RPS concept

For storing information about the signals and parameters to be measured
and calibrated in target ECU, two buffers with the same structure are defined
in the RPS. They contain information about the memory address of the
parameter, size in bytes, and the value of the parameter which is measured
or going to be sent for calibration.

One buffer is used for storing measurement-related data, one for storing
calibration-related data, including calibration-enabling switch variables of

38

3.1 Concept

the target ECU. A more detailed explanation is given in the RPS section.
Figure 3.2 shows the concept of the RPS functionality.

The XCP-Master Controller can also be utilized as an intelligent watchdog
for monitoring other ECUs’ behavior. By having direct access to its memory,
it is able to obtain and evaluate any required data. Safety-critical data must
be faultless during the whole operation of the ECU. The monitoring of such
data is crucial for guaranteeing system dependability.

The intelligent watchdog can ensure that the values are in allowed bound-
aries, and if violations occur, it could act by sending proper commands.
Furthermore, an Intelligent watchdog could be configured to execute the
same functions as the target ECU and with the same input values. By com-
paring the output values of the target ECU and the values it calculated itself,
it can ensure the consistency of the data.

Figure 3.3 shows the concept of intelligent watchdog functionality.

Figure 3.3: Intelligent Watchdog concept

The utilization of UDP/IP and CAN transport layers sets the foundation
for the implementation of an Ethernet-CAN interface. With proper message
handling, the payload of UDP/IP messages can easily be extracted, format-
ted, and forwarded to the CAN bus. Figure 3.4 shows the concept of the
Ethernet-to-CAN interface.

39

3 Design and Implementation

Figure 3.4: Ethernet-to-CAN interface concept

3.2 Implementation

3.2.1 Toolchain Selection

Tools used during the development phase of this project are listed and
described in table 3.1.

Figure 3.5: Toolchain during development

40

3.2 Implementation

item description
Chosen as the platform for

the implementation of this work.
Aurix TC277 evaluation kit This evaluation kit if

fully equipped for demonstration of
all relevant hardware components.

”AURIX TC277x TFT the basis for the software development.
Application Kit Firmware V1.1”

Hightec Free Tricore IDE for developing software in the
Entry Toolchain C programming language

Calibration tool from Vector GmbH
CANape utilized for performing XCP communication

with the platform as an XCP-Slave
Trace32 Debugging tool from Lauterbach used for

with adapter debugging during development
PCAN CAN communication tool from Peak Systems

with adapter used for tracing and debugging CAN messages
MultiCAN Library from Infineon for utilizing

the CAN module on the board
lwIP Open-source Ethernet stack for utilizing

the Ethernet adapter on the board
Spyder 4.1.1 IDE for developing the configuration tool

using Python 3.7

Table 3.1: Toolchain Description

Figure 3.5 shows which tools are used on the side of the development PC
and which tools are deployed and running directly on the target platform.
Besides Ethernet for communication between those two, adapters from
PCAN and Trace32 have also been used for debugging purposes.

41

3 Design and Implementation

3.2.2 Software Architecture

Figure 3.6 shows the overview of the software architecture, indicating the
implemented and integrated software modules and how they are linked.

Figure 3.6: Software Architecture Overview

The application includes three different working modes: RPS, watchdog,
and Ethernet-CAN interface. The application layer is communicating with
the XCP-Master Controller, which is responsible for coordinating the process
and CAN/Ethernet message flow. Furthermore, the XCP-Master Controller
uses the MultiCAN and lwIP drivers for receiving and transmitting mes-
sages over the CAN and Ethernet bus, respectively. The XCP-Slave driver is
linked to the XCP-Master Controller, which provides access to the transport
layers, and to the Application layer. This ensures that the XCP commands
for application configuration, which may come from another XCP-Master
device, can be received, interpreted, and applied.

42

3.2 Implementation

3.2.3 XCP-Slave Implementation

In order to have an online-configurable RPS, it has to contain an XCP-
Slave driver implementation. Vector GmbH provides a basic version of
this driver as free-to-use software with limited functionalities compared
to the professional version, but enough for this work. All mandatory XCP
Commands are available. The source files containing the XCP protocol
layer implementation can be downloaded from the official Vector GmbH
website. However, no transport layer implementation is provided. Therefore,
a transport layer implementation is needed in order to integrate the XCP
driver into the project. The configuration tool for the RPS is going to be
CANape, so that the transport layer for the XCP-Slave implementations has
been chosen to be Ethernet, with UDP/IP as the underlying transport layer.
This is because of the following reasons:

• Both the ECU and the PC have an Ethernet interface and do not require
any additional hardware

• Most calibration tools use XCP over Ethernet by default [12][15]
• It is easily configurable

UDP/IP has been chosen since it provides minimal overhead, and the
mechanisms of TCP/IP are not really needed for this project. An Ethernet
transport layer implementation already exists in a project, which is available
on Github1. This implementation was integrated into the master thesis
project with additional adaptions and configurations.

Communication

As XCP supports a variety of transport layer protocols, the XCP protocol
layer provides three generic API calls for interaction between them. Those
API calls are:

• XCPCommand
• XCPSendCallback
• ApplXCPSend

1https://github.com/shreaker/OpenXCP

43

3 Design and Implementation

The XCPCommand function is called within the transport layer when data
has been received from a master. This function forwards the XCP payload to
the protocol layer, so that it can be interpreted and evaluated. The XCPSend-
Callback function is used by the transport layer to inform the protocol
layer about a successful transmission of an XCP packet. The ApplXCPSend
function is called by the protocol layer for transmitting an XCP packet to
the transport layer. After this, the transport layer needs to embed this XCP
packet into the specific frame which it uses.

Furthermore, there are also API calls for the interaction of the protocol
and the application layer. Figure 3.7 illustrates the principle and API calls
used for communication between the protocol layer, transport layer, and the
application.

Figure 3.7: XCP communication model[27]

The application layer is responsible for managing and integrating both the
XCP transport and protocol layers. It has to initialize the lwIP stack for
enabling the transport layer, but also initialize the XCP protocol layer by
calling the XCPInit function.

44

3.2 Implementation

XCP Protocol Driver

The XCP protocol driver is integrated into the project with the following
files:

• XCP cfg.h
• XCP def.h
• XCP par.h/.c
• XCPBasic.h/.c

The configuration file XCP cfg.h contains the preprocessor directives for
configuring the driver and XCP settings. The Parameter files XCP par.h/.c
and Default settings file XCP def.h are fine by default and do not have to be
changed. The transport layer UDP/IP is implemented in the udpXCP.h/.c
files. ipStackAurix.c/.h contains functions for the initialization of the lwIP
stack and polling of received Ethernet packets. iXCPTargetPlatform.c is
used by the protocol layer to call specific ECU, application, and transport
layer functions. It contains specific callback functions, which implement
the stub functions from the protocol driver [29]. XCPTask.h/.c files contain
functions for the initialization of the complete XCP driver.

lwIP Stack

As mentioned, the basis of the Ethernet driver in this project is the lwIP
stack, which is specially developed for embedded systems. It is open source
and included in the ”AURIX TC277x TFT Application Kit Firmware V1.1”.
It uses the consumer-producer paradigm for communication. Thereby, the
producer is the Ethernet IRQ, which puts the received Ethernet packets into
a queue. A function that is called cyclically in an OS task consumes this
queue by polling it for received packets [13].

The lwIP stack is initialized in the main.c file at startup. This process
includes setting the MAC- and IP-addresses. In the next step, the network
stack is configured for a UDP/IP connection, and a Protocol Control Block
(PCB) is being allocated in the memory. This PCB is then linked to a local
IP address and a port. In the next step, a callback function for the PCB is
registered, which will be executed if the PCB receives a UDP datagram.

45

3 Design and Implementation

For receiving Ethernet packets, the lwIP queue is begin polled in an OS
Task. In the case of an incoming packet, the registered ”receive-function” is
called. In this function, the remote IP address and port are saved, and the
UDP payload is mapped on a data-structure, that represents the XCP-packet
structure [29]. The XCP payload is then forwarded to the XCP protocol
layer by calling the function XCPCommand. This function evaluates the
XCP packet and interprets the XCP command [27].

For sending Ethernet packets, the XCP protocol layer calls the ApplXCPSend
function. The ECU and transport layer specific implementation of this stub
function is the udpXCPSend function. The input for this function is the XCP
payload and the size of the payload. It then adds the Ethernet specific XCP
header to the XCP payload and copies both the header and payload in an
XCP-Ethernet-frame data structure [29].

For sending CTO commands, the XCP-Ethernet-frames have to be sent in a
single UDP datagram each. This is needed because the slave must send a
response to every master request individually. Therefore, the protocol layer
calls the function ApplXCPSendFlush to send each XCP packet separately.

3.2.4 XCP-Master Implementation

In order to access other ECUs memory and manipulate its data, the RPS
needs to have an XCP-Master Controller. This is the core functionality of
this project. With the XCP-Master Controller, the RPS is able to connect to
any XCP-Slave ECU and perform measurements and calibration of vari-
ables in its memory, as well as bypass whole functions for testing of new
implementations.

For this project, not all functionalities of a full XCP-Master implementation
are needed. Only those which are required are implemented in the driver.
Those functionalities include connection, polling, calibration, and DAQ mea-
surement configuration. This set is enough for having RPS functionalities
enabled.

For communication between the RPS and a target ECU, CAN has been
chosen. CAN is still the standard communication interface in vehicle ECUs,

46

3.2 Implementation

and most of the ECUs have an XCP-Slave on CAN implementation in them.
Following this, a CAN transport layer for the XCP-Master Controller has
also been implemented.

CAN Transport Layer

The CAN transport layer is implemented in CanXCP.h/.c files. For interac-
tion with the CAN module of the Aurix TC277 Evaluation Kit, Infineon
provided the Basic Software within the firmware framework. The files MUL-
TICAN 1.h/.c include everything needed for initializing the whole CAN
module, including the baud rate, CAN nodes, CAN message objects, and
Interrupts. It also includes a function for triggering the transmission of CAN
messages over the bus.

For setting up the CAN node, it is necessary to define the Rx and Tx Pins for
connecting to the CAN bus. The pins for CAN communication are defined
in the Aurix TC277 user manual, and they have been accordingly mapped
in CAN node settings of this file. Afterward comes the configuration of
the CAN message objects. One message object is defined for the outgoing
messages and one for the incoming messages. For successful communication,
the baud rate and message IDs have to be configured to comply with the
target ECU. The baud rate is configured within the CAN node configuration,
while the message IDs are configured within the CAN message object
configuration. The message IDs for transferring XCP messages over the
CAN bus in this project are 610 for the messages from master to slave and
61A for the messages from slave to master. The interrupts which will be
triggered in case of a successful message transfer or receipt are also defined
within the CAN message object configuration. For this project, the interrupt
for successful message transmission is not needed, but the interrupt for
receiving CAN messages is of great importance. The role of the CAN RX
interrupt is explained in later sections.

For handling of the data bytes to be sent/received over the CAN bus, there
are two 8-byte message structures defined: one for the received messages
(rxMsg) and one for the transmitted messages (txMsg). The structures
are further divided into two 4-byte variables: data[0] and data[1]. Data[0]
represents the four higher significant bytes of the data field, while data[1]

47

3 Design and Implementation

represents the four lower significant bytes. Figure 3.8 shows this concept for
transmitting messages. Thereby, g multican is the global handler variable
for the CAN module.

Figure 3.8: CAN data bytes handling

The state machine of the XCP-Master Controller is managed by an OS
Task and the CAN RX interrupt handler. All functions of the driver are
implemented in the XCP Can Master.h/.c files. It includes functions for
connecting to an XCP-Slave, sending poll and calibration commands, as
well as configuring a DAQ transfer from slave to master. The initialization
of the XCP-Master Controller is performed within an OS task by invoking
the function for sending the command for connection to the slave. This is
always the first step. Afterward, based on what working mode is selected,
further commands are sent. Data acquisition can either be in the DAQ mode,
or by polling every individual variable.

The function CanIsrRxHandler in MULTUCAN 1.c contains the main code
for controlling the state machine of the XCP-Master. Since XCP works based
on the command-response mechanism, after each command the master
sends, it has to wait for a response from the slave before sending a new one.
In order to have minimal overhead and fastest possible communication, the
CAN RX interrupt handler is used for triggering the processing of receiving
responses from the slave and control of the program flow. Each time the
RX interrupt is triggered, it also triggers the next step in the program. The
program flow is controlled by a switch-case statement and proper flags.

48

3.2 Implementation

Message Handling

CAN message sending is triggered by XCP-Master Controller functions.
For that purpose, they embed the data to be transmitted into the two struc-
tures g multican.txMsg.data[0] and g multican.txMsg.data[1] and invoke
the transmitCanMessage function. Thereby, it is necessary to embed the
bytes in the correct order, so that the XCP-Slave receiving the message can
interpret it.

Figure 3.9: Handling of incoming CAN messages

In case of receiving CAN messages, the CAN RX interrupt handler is
responsible for handling the messages. The activation of the interrupt trig-
gers storing of the incoming CAN message payload into two structures
g multican.rxMsg.data[0] and g multican.rxMsg.data[1]. Afterward, all in-
dividual bytes of those two structures get mapped into an 8-byte structure,

49

3 Design and Implementation

thus enabling easy handling and interpretation of each individual byte.
Based on the application, this structure is then forwarded accordingly to
specific software functions for interpretation. Figure 3.9 shows this pro-
cess.

Initialization of XCP-Master Controller

The XCP-Master Controller gets initialized in the OS Task by calling of
the XCPM Connect and XCPM start functions. Prior to that, it is necessary
that the CAN module is initialized and operational, which is performed
during the startup of the board.

The XCPM Connect function is used for establishing a connection with
an XCP-Slave by sending the three default connection commands. After a
successful connection, the OS Task will trigger the XCPM start function.
This function initializes the buffers for storing information about the signals
to be measured and parameters to be calibrated.

In order to access a variable in an XCP-Slave for measurement/calibration,
it is necessary to know the memory address location and the size in bytes
of that variable. Therefore, there are two buffers defined which contain
information about the memory address, length in bytes, and value of the
variable: They are named Signal and Parameter. The Signal buffer contains
information about the signals to be measured in an XCP-Slave and the
values of those signals. The Parameter buffer contains the same information
but about the parameters to be calibrated and calibration-enabling switches
in an XCP-Slave. Those ”switch” variables need to be set accordingly in
order to enable the usage of the calibrated variables within the target ECU.
If they are not enabled, the calibrated values in the target ECU will be
ignored. After the initialization of the buffers, a specific function is executed,
which will trigger the next step based on the application.

3.2.5 Rapid Prototyping System

The XCP-Master Controller provides the possibility to connect to an XCP-
Slave and read/write to its memory. The combination of measurement and

50

3.2 Implementation

calibration processes over XCP enables bypass of functions in XCP-Slaves
and thus the usage of the platform as a rapid prototyping system. The
inputs of the function to be bypassed are being ”measured” by the RPS and
fed to a bypass function that is running on the RPS itself. The outputs which
the bypass function produces in the RPS are then used for calibration of
the output values of the function to be bypassed. The target ECU can now
use the calibrated values and not those calculated by its internal function.
This way, new algorithms can easily be integrated into a real system and
evaluated. Figure 3.10 shows the concept of RPS utilization.

Figure 3.10: Rapid prototyping system concept

The header file XCP CAN master.h configures the working mode of the
platform by preprocessor directives. In order to have RPS functionalities,
XCP MASTER RPS has to be defined there. This will activate all necessary
components in other software modules during compiling, which are needed
for RPS functionality. After the initialization of the XCP-Master Controller
(connecting and buffers initialization), the next step is to configure the
measurement process. There are two available measurement options: polling
and DAQ.

If polling should be used as the measurement process, no additional config-
uration is needed. Measurement commands are sent right after the initializa-
tion of the XCP-Master Controller. If DAQ should be used, the next step is

51

3 Design and Implementation

to configure the XCP-Slave to send the required data via DAQ. The process
of DAQ configuration includes sending a significant amount of commands,
which is described in the DAQ Configuration subsection below. When the
measurement process is configured and all measurements are received by
the RPS, a flag indicating successful measurement reception gets set.

Figure 3.11: State Machine of the XCP Master Controller

An OS Task is monitoring this flag, and in case it is activated, it forwards the
measurement signals to the bypass function and executes it. The algorithm

52

3.2 Implementation

of the OS Task is shown in figure .1 in the appendix. After the bypass
function has produced the output parameters for calibration, those values
need to be transferred to the target ECU. Thus, the calibration process is
being started.

For calibrating a value over XCP on CAN, two commands have to be sent.
One commands sets the memory address of the variable to be calibrated,
and the other command sends the size in bytes and value of the variable.
After the calibration is performed, the RPS goes back to waiting for the next
measurements and repeats the cycle with each new measurement set.

The state machine is shown in figure 3.11. The red lines indicate the process
flow when DAQ is chosen as the measurement method, while the blue
dashed lines indicate the process flow with Polling as the measurement
method.

For controlling the program flow, a switch-case statement in the CAN RX
interrupt is being used. The variable used in the switch-case statement is
called ProcessPhase. This variable can be in 5 different states:

• XCP CONNECT
• DAQ CONFIGURATION
• MEASUREMENT
• DAQ MEASUREMENT
• CALIBRATION

Based on what operating mode is selected, the ProcessPhase variable
changes its value to ensure the appropriate program flow.

Calibration Switch-Variables

Automotive ECUs have a software mechanism that enables the usage of
bypass variables instead of internal calculated ones. Based on the status of
the corresponding switch-variable, the internal program flow uses either
the bypass or the calculated variable. Therefore, in order to calibrate any
values in the target ECU, the corresponding switch-variables have to be set
to enable the bypass variables. This is performed by sending calibration
commands to the target ECU for setting those switch-variables to be TRUE.

53

3 Design and Implementation

The commands for enabling the switch-variables are going to be sent during
the first calibration phase.

Calibration

After the bypass function has generated the output variables which have
to be transmitted into the target ECU, the calibration process is started.
The variables are calibrated one by one in a sequence of commands. In
order to calibrate a variable, an XCP-Slave needs to know the address of
the variable, its size, and its value. Since one CAN message can transfer
only eight useful bytes, it is not possible to transfer all the information
with one message. Therefore, for calibration of a parameter, two messages
are sent. Each message encapsulates a different XCP command. The first
one is the XCP command SET MTA and the second one is DOWNLOAD.
SET MTA informs the XCP-Slave about the address of the variable to be
calibrated, while DOWNLOAD informs about the size and value of the
variable. After successful transmission of those two commands, the variable
will be calibrated in the memory of the XCP-Slave.

Thereby, the CAN RX interrupt is acting as a loop. This is because, after
every sent command from master to slave, a response has to be received
from slave to master before proceeding to send the next command. Using
the RX interrupt here as a loop ensures the fastest possible communication.
For controlling the order of the messages, two counters are being used:
CalibCounter and MessageBuffer. CalibCounter counts all sent messages,
and its value is going to be twice as high as the number of calibration
variables. This is because, as mentioned, every calibration variable needs
two messages to be successfully calibrated. When all calibration messages
are sent, ProcessPhase switches to another phase, and the counters get
reset. MessageBuffer counter is used for ensuring the consistency of the two
messages for calibrating one variable. Both messages need to embed data
from the same Parameter buffer location. This counter gets increased after
the successful calibration of one variable.

Before sending a calibration command, it is checked if the value to be
calibrated is changed compared to the previous step. If so, then it will be
sent for calibration, but if it has not changed, then the MessageBuffer counter

54

3.2 Implementation

increases, and the next variable in the Parameter buffer is checked. This way,
unnecessary bus load is avoided. Furthermore, the switch-variables are also
only set during the first calibration iteration and afterward, only if they are
changed during run-time.

The algorithm of this implementation is shown in figure .6 in the ap-
pendix.

Connection

In order to communicate with an XCP-Slave using the XCP-Protocol, first,
a connection has to be established. This is performed by sending three
default commands from master to slave. If the connection is successful, the
slave will send a positive response for every command, but also additional
information about the capabilities of the XCP-Slave.

For controlling the order of the connection commands, the counter Connect-
Counter is used. After each connection command, the XCP-Slave sends a
response and activates the RX interrupt again. If the response is positive, the
program flow gets into the loop again, increments the counter, and sends
the next connection command. When all connection commands are sent,
thus the counter reached its maximum value, the connection status flag
XCPConnectStatus is set to CONNECTED, and the counter is reset. This
indicates a successful connection, and the program flow can proceed to the
next step based on the application.

The algorithm of this implementation is shown in figure .2 in the ap-
pendix.

DAQ Configuration

For configuring an XCP-Slave to send DAQ packets, a sequence of specific
XCP commands has to be sent from master to slave. This way, dynamic DAQ
lists are being generated and configured in the XCP-Slave. The command
sequence is shown on figure 3.12.

55

3 Design and Implementation

Figure 3.12: DAQ configuration sequence

56

3.2 Implementation

The proper order of the commands is ensured with another switch-case
statement and proper flag utilization.

The Counter DAQCounter is used as the variable for the switch-case state-
ment and incremented accordingly to proceed to the next steps. In some
cases, a function needs to be executed more than once. Those functions
decrease the counter by one and keep it at the same value until the function
is executed the needed amount of time.

The DAQ configuration sequence is started after the calibration configura-
tion sequence is finished by calling the XCPM Start DAQ() function. This
function sets the ProcessPhase to DAQ CONFIGURATION and sends the
first command in the chain (FREE DAQ). During configuration of DAQ lists
in an XCP-Slave, this command must always be sent first in order to clear
all existing DAQ lists in the slave and make it ready for the configuration of
new ones.

The next command to be sent is ALLOC DAQ, which allocates a defined
number of new DAQ lists in the slave. Following this is the ALLOC ODT
command. This command allocates Object Description Tables in the DAQ
lists defined by the previous command. For each DAQ list, one command
has to be sent, which defines the number of ODTs in that specific DAQ
list.

Afterward, ODT entries are defined for every ODT in the previous step with
the command ALLOC ODT ENTRY. For every ODT, one command has to
be sent, which defines the number of ODT entries for that specific ODT of a
specific DAQ list.

The command SET DAT PTR initializes the DAQ list pointer for subsequent
operation with WRITE DAQ or REA DAQ. This command basically selects
the DAQ list to be configured in the next step.

Following this, comes the WRITE DAQ command. This command is used
for configuring the size and addresses of all variables to be read from the
slave. For Each Variable (ODT entry), one command is sent from master to
slave. After configuring one DAQ list and proceeding to configure the next
one, SET DAT PTR command is sent again to set the pointer to the next
DAQ list. Then again, by the usage of WRITE DAQ command, the size and

57

3 Design and Implementation

addresses of variables of the next DAQ list are configured. This process is
repeated until all DAQ lists are configured.

Afterward, the SET DAT LIST MODE command is sent from master to
slave. This command defines the DAQ list priorities and to which internal
event number of the XCP-Slave a specific DAQ list will be linked. Those
events are usually defined to trigger every 5 ms, 10 ms, etc. If a DAQ list is
linked to a 10 ms event, the slave will gather all data defined within that
DAQ list and sent it to the master every 10 ms.

The START STOP DAQ LIST command is used to start, stop, or prepare
a synchronized start of the specified DAQ list number. This command
is sent for each DAQ list individually. If a synchronized start is chosen,
then the next command in line will start the DAQ transmission. The
START STOP SYNCH command is used to start and stop synchronized
DAQ list transmission. All DAQ lists which have been configured in the pre-
vious step for a synchronized start will start when this command is received
by the slave. The transmission can also be stopped using this command.

In this project, one DAQ list is defined, which contains all variables to be
measured. For every signal to be measured, one ODT with one ODT entry
is defined. This ensures that every signal will be sent in one CAN message.
This approach makes it much easier to interpret the incoming messages and
track which message contains which signal value.

The algorithm of this implementation is shown in figure .3 in the ap-
pendix.

DAQ Measurement

After DAQ configuration is finished, DAQ data transfer is started by sending
the START STOP SYNCH command from master to slave. From this point
on, the slave will send DAQ data according to the configured DAQ lists.
Every signal to be measured is sent by one CAN message. The first byte of
the DAQ payload is the relative number of the message, while the rest of
the bytes represent the value of the signal. The first message always starts
with 00, and all next messages will have this value incremented by one
compared to the previous one. This makes it convenient to handle the data

58

3.2 Implementation

of the messages since the first byte identifies every message, and the order
of Signals to be sent via DAQ is known.

Each message of the DAQ packet triggers the CAN RX interrupt, which
stores the current payload it has received by executing the XCPM StoreResult()
function. This process is repeated for every DAQ message. The first byte
of the payload is also used as a counter variable to handle the storing of
message data. When the complete DAQ data is received by the RPS, a flag
named SignalsReceived is set to TRUE. The 1 ms OS Task is checking this
flag with every iteration, and if it is true, it disables interrupts and executes
the Bypass function with the received DAQ data as the input. When the By-
pass function is executed, and the output values (calibration data) are ready,
the calibration phase is started by executing XCPM Calibrate() function.

The algorithm of this implementation is shown in figure .5 in the ap-
pendix.

Measurement by polling

Unlike DAQ, measurement by polling does not require any additional
configuration. With this method, every signal is polled for its value by an
XCP command, called SHORT UPLOAD. This command sends information
about the address to be read, and the length of the variable. When an XCP-
Slave receives this command, it gathers the data defined by the message
and sends the value back with a message. This approach, therefore, requires
constant message exchange between master and slave and loads the bus
heavily compared to DAQ. However, it does not have any requirements on
the XCP-Slave side, such as events with DAQ.

The principle of storing message data and calibration is the same as with
DAQ. The only difference is how measurement data from the slave is
obtained (the ProcessPhase variable switches to MEASUREMENT mode
instead of DAQ MEASUREMENT mode).

59

3 Design and Implementation

3.2.6 Intelligent Watchdog

For intelligent watchdog functionality, the first steps are the same as with
the RPS: connect via XCP and configure the measurement. For a watchdog,
it is very important that the measurement data is consistent. Therefore,
only DAQ measurement method is suitable for watchdog functionality. This
ensures data consistency. If polling would be used, we have no guarantee
that the measurement data is from the same computation cycle of the
ECU.

The configuration process is the same as with RPS. After the data is received,
it is being evaluated according to the watchdog criterion. If the data seems
to be faulty, an algorithm can be implemented in the watchdog to perform
actions that will ensure that the process is still operational. It could either ac-
tivate another redundant system or take over the execution of compromised
functions in the target ECU.

3.2.7 Ethernet to CAN Interface

The UDP/IP and CAN transport layer provide the basis for the implemen-
tation of an Ethernet-CAN interface. Messages which are received in one
layer can easily be processed in such a way, that the payload of the incoming
message is extracted and embedded into the data frame of the outgoing
message in the other transport layer. This way, messages are ”converted”
from one to the other transport layer within the platform. Thus, an XCP
session between a device with XCP over Ethernet can be established with a
device with XCP over CAN.

This mode is activated by the defining the preprocessor directive
ETH TO CAN INTERFACE. This configures the UDP/IP message handling
in udpXCP.c to execute the function Eth2Can() when a UDP packet has
been received. This function receives the payload as an argument and
embeds the payload bytes into the CAN specific frame. Afterward, the
transmitCanMessage() function is called to transfer the message to the CAN
bus.

60

3.3 Application Configuration

Figure 3.13: Ethernet-to-CAN message sequence

On the other way, when a CAN message is received, the CAN RX interrupt
gets activated. In the Interrupt handler, the payload of the CAN message is
being extracted and passed to the function udpXCPSend(). This function
prepares the UDP/IP message with the defined payload to be sent via
Ethernet. Figure 3.13 shows this process for Ethernet-to-CAN conversion.
The principle of CAN-to-Ethernet is the same.

3.3 Application Configuration

For configuring the RPS to work with a specific ECU, a configuration tool
in python has been developed. This application provides a graphical user
interface (GUI) for setting up all required settings and generating .c and .h
configuration files. It is shown in figure 3.14.

The basis for the configuration is the A2L file of the ECU. This file includes
information about all functions and variables, as well as communication

61

3 Design and Implementation

Figure 3.14: DAQ Configuration tool GUI

interfaces and XCP settings of the ECU. Hence, the first step is loading the
ECU specific A2L file into the configuration application. After a successful
A2L load, the first list box in the GUI will show all available functions
which are found in the A2L file, hence the ECU. The user can now select a
function of interest and load all variables connected to that function into
the second list box. This is performed by selecting the desired function and
pressing the ”Load Variables” button. In the second list box, the user can
select multiple variables and add them to one of the next two list boxes
representing the input Signals and output Calibration parameters. This is
performed by either pressing the ”Add to Inputs” or ”Add to Outputs”
button.

Those two list boxes represent all variables that will be included in the
final configuration .c and .h files and linked to the buffers explained in
section 3.2.4. Thereby, the Output variables include not only the calibration
variables but also the switch-variables of the ECU, which enable usage of
calibration variables and are explained in chapter 3.2.4. If some variables

62

3.3 Application Configuration

have been added by mistake, they can be selected and removed from the list
by clicking the ”Remove Variable” button underneath the list box. When
all variables of interest are imported into these two list boxes, the button
”Create Configuration File” will trigger the process of creating the .c and .h
files for configuration.

These files are generated in two steps. The first step after the ”Create
Configuration File” buttons is pressed, is the generation of an excel file.
This excel file contains two sheets, one for input Signals, one for output
Calibration parameters. Every sheet contains information about the variables
which are selected by the user during the configuration process in the GUI.
That information is the name of the signals, data types, memory addresses,
and sizes in bytes. After this step, this excel file is used to generate the
final .c and .h files. This approach provides the possibility to skip the GUI
configuration process if the user already has all the information required in
the excel file. The user can simply add all variables manually into the excel
sheets and generate configuration files based on that.

The files which are generated are:

• RPS configuration.c
• RPS configuration.h
• RPS interface.h

RPS configuration.c contains declarations of the input and output signals
as global variables, as well as the declaration of functions for initializing
the buffers, and for linking them with the input and output variables.
RPS configuration.h contains the declarations of function prototypes from
RPS configuration.c. RPS interface.h is the file which the user should use to
establish the interface between the RPS and his bypass function. It contains
an external declaration of the input and output signals so that the user can
link them with his bypass function variables. Furthermore, it includes the
prototype of the function RPS Bypass 10ms(). RPS Bypass 10ms() is used for
linking the measured input signals from the RPS with the input signals of
the bypass function, execution of the bypass function, and afterward linking
the output variables of the bypass function with the output variables of the
RPS, which will be sent for calibration. This function should be defined by
the user, and an example of how it should look is provided in comments at

63

3 Design and Implementation

the end of the RPS interface.h file. All the configuration files are stored in
the same folder as the python script.

64

4 Test Environment and
Evaluation

This chapter evaluates the project implementation and discusses the ob-
tained measurement result. It describes the test setup and methods used for
proving the implemented concepts, as well as the obtained measurement
results. Furthermore, it also provides descriptions and observations of the
measurement result figures and CAN message logs. As the test subject, a
real automotive ECU is used from an AVL project. It offers an XCP on CAN
support.

4.1 Test Environment

4.1.1 Rapid Prototyping System

For evaluating the RPS implementation, the ECUs A2L file is the entry
point. It is used together with the configuration tool to configure the RPS
accordingly, as described in chapter 3.3. For RPS demonstration purposes, a
function for regulating the duty cycle of a pump is chosen to be the bypass
function. As the source code of the ECU is available, the same function is
integrated into the RPS.

As both the RPS and the test ECU execute the same function, measurements
show a comparison between the RPS-calculated values and the internal ECU-
calculated values. The function’s main input signal is the oil temperature.
For simulating the rise in oil temperature, a for-loop is implemented in the
RPS, which generates temperature values from 0°C to 100°C in a cyclically
defined step.

65

4 Test Environment and Evaluation

The oil temperature is then written into the ECU via XCP calibration so
that it can be used as the input of the duty cycle function within the ECU
(Number 1 in figure 4.1). Furthermore, as the RPS gathers signals from
the ECU, it will also obtain and use the oil temperature value, which was
calibrated into the ECU by the RPS itself (Number 2 in figure 4.1). This
ensures that the RPS uses only signals obtained from the ECU as input to
its functions.

Based on those input signals, the RPS executes the bypass function and
generates the function outputs (Number 3 in figure 4.1). Those outputs are
then written to their corresponding memory locations into the ECU (Num-
ber 5 on figure 4.1). During the first calibration cycle, the corresponding
calibration switch-variables in the ECU are set to be enabled, as described
in chapter 3.2.4 (Number 4 in figure 4.1). This ensures that the internal
algorithm of the ECU uses the calibrated values of a variable instead of the
internally calculated one.

Figure 4.1: Bypass Concept for Evaluation

A debugger is connected to the ECU for signal logging needed to compare
the internally calculated values of the ECU and the values calculated and

66

4.1 Test Environment

calibrated by the RPS. Besides the calculated and calibrated duty cycle
values, it also logs the oil temperature stimulated in the ECU. Measurements
are performed with both the DAQ and the polling method.

For evaluating the RPS with DAQ implementation, two measurements
are performed. During the first measurement, the RPS executes the same
function as the test ECU and calibrates the output variables it calculates
into the ECU. The ECU also calculates the same output variables, but those
values are bypassed by the calibrated ones since the calibration switch-
variables are enabled.

During rapid prototyping, sometimes it can happen that only a signal value
within the ECU needs to be corrected by a factor. In order to demonstrate
this use-case too, the bypassed duty cycle value is set to be 1.1 times higher
than the internal value of the ECU.

The setup for evaluating the RPS with Polling implementation is the same
as with DAQ, but only that Polling is used as the data acquisition method.
The bypassed variable is scaled by a factor of 1.1, and the bypass is enabled
at a point of time during the measurement.

4.1.2 Intelligent Watchdog

The intelligent watchdog functionality is evaluated with the same hardware
setup as for the RPS evaluation. The Watchdog-implementation is configured
to execute the same function as the ECU. In order to check if any errors
or faults occurred during the ECU operation, it reads the variables to be
monitored from the ECU. For that purpose, the data to be monitored by
the watchdog is configured for a DAQ transfer from the ECU. This setup-
initialization is performed during the startup of the platform.

For the demonstration, the variable to be monitored by the watchdog is
chosen to be the cooling pump duty cycle. As the duty cycle depends on
the input oil temperature, it is again simulated by the platform and written
into the ECU via XCP calibration. After receiving the measurement data
from the ECU, the watchdog executes the same function as the ECU and
calculates the duty cycle on its own. Afterward, it executes a comparing

67

4 Test Environment and Evaluation

function in order to determine if the values from the ECU differ from the
values calculated by the Watchdog itself. If the difference of those two values
exceeds a predefined limit, a counter (see Watchdog Counter on Figure 4.7)
is increased and keeps increasing for every cycle that the allowed difference
is exceeded. If this counter reaches a critical value, the watchdog triggers a
fault reaction. Furthermore, if the value difference goes back to normal, the
counter gradually decreases until it reaches the critical value again, after
which the watchdog fault reaction is reset.

In order to simulate a fault in the ECU, the signal value which is obtained by
the ECU is held at a constant value at a point of time. At a later point, this
behavior is again reset, so that the watchdog recovery could be observed.

4.1.3 Ethernet-CAN Interface

For evaluation of the Ethernet to CAN interface, bus load measurements
on both CAN and Ethernet side are performed. To establish high message
traffic on the CAN bus, a transfer of a high amount of data is configured.
This is performed with CANape as the XCP master and the project ECU as
the XCP slave. For measuring the CAN busload, ”bus master”1 software
is used, and for measuring the Ethernet busload, ”WireShark”2 software
is used. Two measurement sets are performed, each including 4-byte and
1-byte signals.

One set is performed with DAQ transfer mode while the other set is per-
formed with Polling. The amount of signals to be transferred is gradually
increased in each measurement step so that a correlation between the num-
ber of signals and the thereby caused bus load could be observed. DAQ
and Polling measurements are configured to occur cyclically at the 10 ms
intervals.

1www.etas.com/en/applications/applications busmaster.php
2www.wireshark.org

68

4.2 Evaluation Results

4.2 Evaluation Results

4.2.1 Measurement 1: RPS with DAQ

Figure 4.2 depicts a comparison between the RPS values and ECU values
without any scaling.

Figure 4.2: Direct bypass of a variable by using DAQ

The measurement results during bypass of the function and scaling of the
duty cycle are shown in figure 4.3. Furthermore, the calibration switch for
enabling bypass of the duty cycle is triggered at a point in time during
the measurement process in order to observe the switch to the calibrated
value.

69

4 Test Environment and Evaluation

The CAN messages exchanged during the whole process are logged with
a PCAN adapter and software. The messages of one measurement and
calibration cycle between the RPS and the ECU are shown in table .1 in the
appendix.

Figure 4.3: Bypass of a variable with a scaling factor of 1.1 by using DAQ

In order to check the consistency of the data sent via CAN bus and measured
data on the ECU side, the CAN messages that contain the oil temperature
values are extracted from the PCAN message log and shown in figure 4.4.

As a real-world automotive ECU is used from an AVL project, it provides
a sound test object for measurements. Since the RPS implementation is
limited to tasks with a minimum cycle time of 10 ms, the test function to be
bypassed is chosen to be a temperature handling one. After researching this

70

4.2 Evaluation Results

particular ECUs documentation, a pump duty cycle calculation function
that uses the oil temperature as the main input is selected as the test bypass
function.

The data gathering method of the first RPS measurement is set to be DAQ.
As the source code of the ECU is available, it is easy to integrate the ECU-
function into the RPS. Figure 4.2 shows the measurement of the stimulated
oil temperature (blue), the duty cycle calculated by the ECU (green), and
the final output duty cycle value (red). The final output of the function can
either obtain the ECU-calculated value or a calibrated value, depending on
the state of the corresponding calibration switch variable inside the ECU.

Figure 4.4: Comparison of the Oil temperatures sent and received via CAN during DAQ

Since the calibration switch variable for this signal is set to be enabled at the

71

4 Test Environment and Evaluation

very beginning of the measurement, the final output value of the function is
also the duty cycle value calibrated by the RPS. It can be observed in figure
4.2, that two duty cycle values of the ECU and the calibrated values from
the RPS are overlapping. The oil temperature is set to increase linearly from
0 to 100

◦C, as observable in the same figure, after which it restarts. The duty
cycle also increases linearly with the oil temperature, but with a different
scaling factor. The last plot of figure 4.2 shows the ratio between the final
output value of the duty cycle function and the internally calculated duty
cycle value. It can be observed that the ratio is in the range of 0.998 to 1.004.
This deviation is caused by floating-point arithmetic and rounding errors.

The second test utilizes the same test setup but with a slight modification
of the RPS bypass function. The duty cycle value to be calibrated by the
RPS is set to be scaled by a factor of 1.1 compared to the default value,
and the calibration is enabled at a point of time during the measurement.
Figure 4.3 shows the measurement results obtained during this test. The
oil temperature rises again from 0 to 100

◦C in a linear manner. At the very
beginning of the measurement, the ECU-calculated duty cycle values and
the final function output have the same value, as calibration is still not
enabled (calibration switch variables not set). A short amount of time upon
start, calibration is enabled, and now the final output takes the value of the
RPS-calibrated one. It can be observed that the value is higher by a factor of
1.1 than the ECU-calculated one, as is expected. When the oil temperature
value changes from 100 to 0, the internally calculated duty cycle obtains a
new value before the new RPS value gets calibrated, and hence the ratio
gets much higher during that process.

The CAN messages during one calibration and measurement cycle from
table .1 show the speed of each message on the CAN bus. Since DAQ mode is
configured as the data gathering method, all signals are sent cyclically by the
ECU itself, as described in the ”DAQ Measurement” section of the chapter
3.2.4. It can be observed that 12 DAQ CAN messages containing 12 signal
values are obtained within a time window of 0.9 ms. After obtaining the
last DAQ value, the bypass function is executed, and calibration is started.
More information about the exact sequence and XCP on CAN message
meaning used in this example can be found in chapter 3.2.3 and 3.2.4. Since
only the changed values are being sent for calibration, in the cycle shown
here, there are two signals present: the stimulated oil temperature and the

72

4.2 Evaluation Results

RPS-calculated duty cycle. It can be observed that the calibration of the two
variables takes 0.8 ms.

Figure 4.4 shows the oil temperature values which are sent and received via
CAN bus. The red signal is the oil temperature obtained via DAQ from the
ECU, and the green signal is the stimulated value from the RPS. The figure
shows that the signals are overlapping with each other.

4.2.2 Measurement 2: RPS with Polling

Figure 4.5 shows the obtained signal values during the measurement.

Figure 4.5: Direct bypass of a variable by using Polling

73

4 Test Environment and Evaluation

For checking the consistency also during polling, the Oil temperature values
sent and received via CAN are extracted from the PCAN message log and
shown in figure 4.6.

The CAN messages exchanged during one calibration and measurement
cycle by using polling are shown in table .2 in the appendix. The test setup
remains the same, and only the data acquisition mode is changed. Figure
4.5 shows the measurement results of the oil temperature (blue), ECU-
calculated duty cycle (green), and the final function output (red). During
this measurement, a scaling factor of the calibrated duty cycle value is also
used, and calibration is enabled at a point of time.

Figure 4.6: Comparison of the Oil temperatures sent and received via CAN during Polling

The figure shows that the final function output value and the ECU-calculated

74

4.2 Evaluation Results

duty cycle value remains the same until the point where calibration is
enabled. At this point, the final function output obtains the RPS-calibrated
duty cycle value again, and this increases to a 1.1 times bigger value than
the ECU-calculated one.

The CAN message flow during this measurement is shown in table .2.
The data gathering process of 12 signals with polling takes 2.7 ms. The
calibration process is the same as with the previous measurement, and it
lasts again a total of 0.8 ms. In this case too, the oil temperature values are
extracted from the CAN message log and plotted in figure 4.6. As evident
from the figure, the two signals, in this case, are also overlapping each
other.

The communication speed between the RPS and target ECU sets the limita-
tion of this implementation. For proper usage of this RPS implementation,
one must consider how many signals need to be read, how long it takes for
the RPS to execute the function to be bypassed and how many signals need
to be calibrated. Thereby DAQ provides much faster measurements, with
12 signals being measured within 0.9 ms, while with polling, it took 2.7 ms
to measure the same signals. The measurement, bypass function execution,
and calibration must all be performed within the cycle time of the function
to be bypassed.

4.2.3 Intelligent Watchdog

Figure 4.7 shows the signal flows during the measurement.

The watchdog is configured to act as a redundant system for the duty cycle
function and hence executes the same function as the ECU. This way, the
watchdog evaluates the proper execution of the function in the ECU. Figure
4.7 shows the measurement results of the calculated (red) and the monitored
(green) duty cycle in the upper plot. The lower plot shows the watchdog
counter variable (blue), the watchdog trigger variable (red), and the variable
for simulating the fault (orange).

The fault is simulated by setting the stop transfer variable. When the
stop transfer variable is set, the ECU-obtained duty cycle is held at a constant

75

4 Test Environment and Evaluation

value, which indicates a fault such as, for example, break of communica-
tion.

Figure 4.7: Watchdog signal monitoring

This leads to an increased deviation between the two duty cycle values,
and when it reaches a predefined limit, the watchdog counter begins to
rise. When the counter reaches a limit value (in this case, the value of 10),
the watchdog trigger variable gets set and thus triggers the watchdog fault
detection. Afterward, when the fault is disabled and the duty cycles are
of the same value again, the watchdog counter begins to decrease. After it
reaches a limit value again, it indicates that the fault is not present anymore,
and the watchdog trigger gets deactivated. This represents the watchdog
recovery stage.

76

4.2 Evaluation Results

For watchdog purposes, only DAQ transfer mode is viable since it obtains
data within the same computation cycle.

4.2.4 Ethernet-CAN Interface

The busload measurements for 4-byte signals and 1-byte signals are shown
in figures 4.8 and 4.9, respectively.

Figure 4.8: CAN and Ethernet Bandwidth measurements with DAQ

The implementation of the UDP and CAN transport layers make it possible
to exchange the data from one bus to another easily. For testing the limits of

77

4 Test Environment and Evaluation

this implementation, bus load measurements are performed and evaluated.
The baud rate, hence the maximum bandwidth of the CAN bus is 1 Mb/s.

Figure 4.9: CAN and Ethernet Bandwidth measurements with Polling

Figure 4.8 shows the measurements obtained during a DAQ transfer of
4-byte and 1-byte signals. The x-axis represents the number of signals
transferred over the bus while the y-axis represents the bandwidth caused
by those signals in kb/s. As can be observed, the bus bandwidth rises
linearly with the number of signals. The left-hand side of the figure shows
the bandwidth of the 4-byte signals. It can be observed that the CAN bus
load reaches its maximum when 140 signals are configured for transmission.
The Ethernet bus load is higher than the CAN bus load because Ethernet

78

4.2 Evaluation Results

messages have much higher overhead than CAN messages. The right-hand
side of the figure shows the bandwidth of the 1-byte signals. It can be
observed that the maximum CAN bus load is now caused by 560 signals,
which is exactly four times higher compared to the 4-byte signals. This
behavior is ensured by the definition of the DAQ transfer as described in
chapter 2.4.6. DAQ lists have 4 data bytes available for transferring in one
message. In this case, CANape configured the DAQ transfer to send four
1-byte signals with one DAQ message, while in the previous configuration,
it could only be sent one 4-byte signal per message. Hence, with the same
amount of CAN messages it is possible to measure four times more 1-byte
signals with the DAQ configuration compared to 4-byte signals.

Figure 4.9 shows the measurements obtained during data transfer with
Polling of 4-byte and 1-byte signals. The left-hand side of the figure shows
that the CAN bus load reaches its maximum value at 30 signals now.
Furthermore, the maximum CAN bus bandwidth is around 500 kb/s now.
Since polling requires a message from XCP-Master for every measurement
signal, it causes a much higher bus load compared to DAQ, as described
in chapters 2.4.5. and 2.4.6. The average time between two poll requests
from master to slave is 0.5 ms. Hence, in a 10 ms interval, only 20 signals
could be reliably measured with polling. This idle time between two poll
requests causes the bus bandwidth not to be used at its maximum capacity
of 1 Mb/s. The same is also true for the 1-byte signals. With polling, a poll
request is sent for every signal, regardless of the signal size. Hence, the same
message traffic is required for 1-byte signals as well as for 4-byte signals.
However, it can be observed that the maximum CAN busload with 1-byte
signals is slightly smaller compared to the 4-byte signals. This is due to the
fact that the message from slave to master, which contains the signal value,
is smaller in size when only 1 data byte is sent back. Hence, three fewer
bytes are sent back from slave to master in case of measurement of a 1-byte
signal compared to the measurement of 4-byte signals.

The maximum busload of the CAN bus is the main limitation of this im-
plementation. Furthermore, the chosen measurement transfer mode also
impacts the performance significantly. With DAQ mode and 10 ms cycle
time, 140 4-byte signals or 560 1-byte signals could be successfully trans-
ferred, while with Polling mode, only 20 signals could be successfully
transferred.

79

5 Conclusion and
Recommendations for Future
Work

5.1 Conclusion

The evaluation of the implementations described in chapter 3 has shown
that the XCP protocol provides very good performance and a good basis for
performing measurements and calibration for bypassing purposes. The RPS
implementation in this thesis provides satisfactory results, in line with the
expectations. Since it is based on real ECU hardware, it gives insight into
how the tested functions perform hardware-near to a real ECU. This can
show problems with resource limitations early on.

The performance of this RPS implementation is mainly limited by the
CAN communication. The larger the number of signals which need to be
calibrated and measured, the more time is necessary for transferring CAN
messages. The total time required for transferring CAN messages needs to
be shorter than the bypass function cycle time so that the RPS can perform
the bypass in a timely manner. The time required for a CAN message
transfer depends mainly on the chosen method of data gathering. With
DAQ, this time is minimized since the test ECU sends all signals by itself
and minimizes the busload. Polling requires commands from the RPS for
every signal and increases the busload and time needed for message transfer.
Therefore, DAQ should always be used as the data gathering method, if
possible. If the test ECU should have no DAQ transfer enabled, then polling
should be used. This implementation has shown to perform well for 10 ms
functions.

81

5 Conclusion and Recommendations for Future Work

Furthermore, the performance of this implementation also depends on the
performance of the target ECU. Since the RPS is waiting for a response
from the target ECU every time it sends a message, a delay from the ECU
side also causes a delay of the RPS, and this can thus lead to a cycle being
skipped.

XCP also proves to be useful for watchdog purposes. Utilizing the DAQ
measurement method to monitor variables in a target ECU shows to be very
reliable. For watchdog functionality, only DAQ transfer is viable since it
ensures data consistency. All signals sent via DAQ are guaranteed to be
from the same computation cycle of the ECU. With polling, this would not
be the case, and the values received by the watchdog would be inconsistent,
which could lead to wrong conclusions.

The Ethernet-to-CAN interface is also performing according to the expec-
tations. Since CAN has eight useful bytes per message, Ethernet messages
must also be limited to 8 data bytes per message for this implementation.
Ethernet has a much higher bandwidth than CAN and, therefore, this imple-
mentation is mainly limited by the maximum busload of the CAN bus. The
measurement transfer mode has a significant impact on the performance of
the interface. Hence, when DAQ with a cycle time of 10 ms is configured,
the maximum number of signals which can be transferred is 140 for 4-byte
signals and 560 for 1-byte signals. When Polling is used as the measurement
method, the signal size has a slight impact on the busload, but the number
of signals to be reliably transferred is limited to 20 signals.

5.2 Future Work

As the foundation of an XCP-Master implementation on a standard micro-
controller platform with a basic functionality has been laid with this thesis,
further extension of the supported XCP-Master commands would lead to
increased usability of the platform. For example, with all necessary XCP-
Commands implemented in the XCP-Master Controller, on-board flashing
of ECUs in a vehicle could be performed.

82

5.2 Future Work

Furthermore, the performance of the RPS functionality could further be
improved by utilizing the STIM XCP-Command for Stimulation. This would
enable event-based calibration and thus speed up and improve the calibra-
tion process.

Since Ethernet is the most future-proof communication bus for vehicles,
extending the transport layer of the XCP-Master Controller to also support
measurement and calibration over Ethernet would be a reasonable next
step.

The development of an RPS configuration tool that would be able to connect
to the platform over XCP on Ethernet and enable the configuration of the
RPS parameters during runtime would also be a useful extension. This
would make commercial XCP-Master applications such as CANape not
needed.

83

Appendix

85

Time [ms] CAN-ID Message
10763.6 061A 01 00

10763.6 061A 02 00

10763.7 061A 03 00

10763.8 061A 04 01

10763.8 061A 05 00

10763.9 061A 06 00

10764.0 061A 07 00 00 00 00

10764.1 061A 08 00 00 20 C2

10764.2 061A 09 02

10764.3 061A 0A CD FF CC 3D
10764.4 061A 0B 00 00 00 00

10764.9 610 F6 00 00 00 90 11 34 80

10765.0 061A FF
10765.1 610 F0 04 9A FF 99 3E 00 00

10765.3 061A FF
10765.4 610 F6 00 00 00 08 10 34 80

10765.5 061A FF
10765.6 610 F0 04 8D FF 5C 42 00 00

10765.7 061A FF

Table .1: CAN messages during one measurement and calibration cycle using Polling

87

Time [ms] CAN-ID Message
18495.3 0610 F4 01 00 00 F7 46 00 70

18495.4 061A FF 00

18495.5 0610 F4 01 00 00 EB 46 00 70

18495.6 061A FF 00

18495.8 0610 F4 01 00 00 2F 4C 00 70

18495.8 061A FF 00

18496.0 0610 F4 01 00 00 2E 4C 00 70

18496.1 061A FF 00

18496.2 0610 F4 01 00 00 9A 7F 35 80

18496.3 061A FF 01

18496.4 0610 F4 01 00 00 33 4B 00 70

18496.5 061A FF 00

18496.6 0610 F4 01 00 00 37 4C 00 70

18496.7 061A FF 00

18496.9 0610 F4 04 00 00 A8 14 00 70

18497.0 061A FF 00 00 00 00

18497.1 0610 F4 04 00 00 98 14 00 70

18497.3 061A FF 00 00 20 C2

18497.4 0610 F4 01 00 00 F8 4B 00 70

18497.5 061A FF 02

18497.6 0610 F4 04 00 00 64 20 00 70

18497.7 061A FF CD FF CC 3D
18497.9 0610 F4 04 00 00 98 23 00 70

18498.0 061A FF 00 00 00 00

18501.4 0610 F6 00 00 00 90 11 34 80

18501.5 061A FF
18501.6 0610 F0 04 CD FF 4C 3E 00 00

18501.7 061A FF
18501.8 0610 F6 00 00 00 08 10 34 80

18501.9 061A FF
18502.0 0610 F0 04 8D FF 5C 42 00 00

18502.1 061A FF

Table .2: CAN messages during one measurement and calibration cycle using Polling

88

Figure .1: OS Task loop flow chart

89

Figure .2: Connection process flow chart

90

Figure .3: DAQ configuration process flow chart

91

Figure .4: Measurement process flow chart

92

Figure .5: DAQ Measurement process flow chart

93

Figure .6: Calibration process flow chart

94

Bibliography

[1] Mohammed Alani. “OSI model.” In: Mar. 2014, pp. 5–17. isbn: 978-3-
319-05151-2. doi: 10.1007/978-3-319-05152-9_2 (cit. on p. 17).

[2] Patzer Andreas and Zaiser Rainer. “XCP - The Standard Protocol for
ECU Development.” In: (2016) (cit. on pp. 23–34).

[3] ASAM. “ASAM MCD-1 (CCP) CAN Calibration Protocol.” In: (1999)
(cit. on p. 21).

[4] ASAM. “ASAM MCD-1 (XCP on CAN) Universal Measurement and
Calibration Protocol - CAN Transport Layer.” In: (2017) (cit. on p. 24).

[5] ASAM. “ASAM MCD-1 (XCP on Ethernet) Universal Measurement
and Calibration Protocol - Ethernet Transport Layer.” In: (2017) (cit. on
p. 25).

[6] ASAM. “ASAM MCD-1 (XCP) Universal Measurement and Calibra-
tion Protocol - Protocol Layer Specification.” In: (2017) (cit. on pp. 21,
23, 27, 31).

[7] Alexander Barkalov, Larysa Titarenko, and Małgorzata Mazurkiewicz.
“Introduction into Embedded Systems.” In: Foundations of Embedded
Systems. Cham: Springer International Publishing, 2019, pp. 1–22.
isbn: 978-3-030-11961-4. doi: 10.1007/978-3-030-11961-4_1. url:
https://doi.org/10.1007/978-3-030-11961-4_1 (cit. on pp. 5, 6).

[8] Steve Corrigan. “Introduction to the Controller Area Network (CAN).”
In: (2002/2016) (cit. on p. 15).

95

https://doi.org/10.1007/978-3-319-05152-9_2
https://doi.org/10.1007/978-3-030-11961-4_1
https://doi.org/10.1007/978-3-030-11961-4_1

Bibliography

[9] Yanja Dajsuren and Mark van den Brand. “Automotive Software
Engineering: Past, Present, and Future.” In: Automotive Systems and
Software Engineering: State of the Art and Future Trends. Ed. by Yanja
Dajsuren and Mark van den Brand. Cham: Springer International
Publishing, 2019, pp. 3–8. isbn: 978-3-030-12157-0. doi: 10.1007/978-
3-030-12157-0_1. url: https://doi.org/10.1007/978-3-030-
12157-0_1 (cit. on pp. 6, 9).

[10] Deloitte. “Semiconductors – the Next Wave.” In: (2019) (cit. on p. 6).

[11] dSpace. “Additional ECU Interface Solutions.” In: (2020). doi: https:
//www.dspace.com/shared/data/pdf/2020/dSPACE-Additional-

ECU-Interface-Solutions_Product-Information_2020-01_EN.pdf

(cit. on p. 22).

[12] dSpace. “MicroAutoBox II Brochure.” In: (2020). doi: https://www.
dspace . com / shared / data / pdf / 2020 / dSPACE - MicroAutoBoxII _

Product-Brochure_2020-02_EN.pdf (cit. on pp. 11, 22, 43).

[13] A. Dunkels. Lightweight IP stack2.0.2.2017. url: https://www.nongnu.
org/lwip/2_1_x/group__callbackstyle__api.html (cit. on p. 45).

[14] Martin Eckmann and Frank Mertens. “Close-to-ptoduction prototyp-
ing.” In: ATZelectronics Worldwide (2006). doi: 10.1007/BF03242303
(cit. on p. 11).

[15] ETAS. “ES910 Prototyping and Interfacing Module.” In: (2018). doi:
https://www.etas.com/download-center-files/products_ES900/

ES910_05-18_EN.pdf (cit. on pp. 22, 43).

[16] ETAS. “FETK User Interfaces Brochure.” In: (2018). doi: https://
www.etas.com/download-center-files/products_ETK/FETK_05-

18_EN.pdf (cit. on p. 22).

[17] Peter Hank, Thomas Suermann, and Steffen Müller. “Automotive
Ethernet, a Holistic Approach for a Next Generation In-Vehicle Net-
working Standard.” In: Advanced Microsystems for Automotive Applica-
tions 2012. Ed. by Gereon Meyer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 79–89. isbn: 978-3-642-29673-4 (cit. on pp. 12,
17).

96

https://doi.org/10.1007/978-3-030-12157-0_1
https://doi.org/10.1007/978-3-030-12157-0_1
https://doi.org/10.1007/978-3-030-12157-0_1
https://doi.org/10.1007/978-3-030-12157-0_1
https://doi.org/https://www.dspace.com/shared/data/pdf/2020/dSPACE-Additional-ECU-Interface-Solutions_Product-Information_2020-01_EN.pdf
https://doi.org/https://www.dspace.com/shared/data/pdf/2020/dSPACE-Additional-ECU-Interface-Solutions_Product-Information_2020-01_EN.pdf
https://doi.org/https://www.dspace.com/shared/data/pdf/2020/dSPACE-Additional-ECU-Interface-Solutions_Product-Information_2020-01_EN.pdf
https://doi.org/https://www.dspace.com/shared/data/pdf/2020/dSPACE-MicroAutoBoxII_Product-Brochure_2020-02_EN.pdf
https://doi.org/https://www.dspace.com/shared/data/pdf/2020/dSPACE-MicroAutoBoxII_Product-Brochure_2020-02_EN.pdf
https://doi.org/https://www.dspace.com/shared/data/pdf/2020/dSPACE-MicroAutoBoxII_Product-Brochure_2020-02_EN.pdf
https://www.nongnu.org/lwip/2_1_x/group__callbackstyle__api.html
https://www.nongnu.org/lwip/2_1_x/group__callbackstyle__api.html
https://doi.org/10.1007/BF03242303
https://doi.org/https://www.etas.com/download-center-files/products_ES900/ES910_05-18_EN.pdf
https://doi.org/https://www.etas.com/download-center-files/products_ES900/ES910_05-18_EN.pdf
https://doi.org/https://www.etas.com/download-center-files/products_ETK/FETK_05-18_EN.pdf
https://doi.org/https://www.etas.com/download-center-files/products_ETK/FETK_05-18_EN.pdf
https://doi.org/https://www.etas.com/download-center-files/products_ETK/FETK_05-18_EN.pdf

Bibliography

[18] Rajeshwari Hegde, Geetishree Mishra, and Gurumurthy Kargal. “Soft-
ware and Hardware Design Challenges in Automotive Embedded
System.” In: International Journal of VLSI Design Communication Sys-
tems 2 (Sept. 2011). doi: 10.5121/vlsic.2011.2314 (cit. on p. 6).

[19] Gerry Howser. “The OSI Seven Layer Model.” In: Computer Networks
and the Internet: A Hands-On Approach. Cham: Springer International
Publishing, 2020, pp. 7–32. isbn: 978-3-030-34496-2. doi: 10.1007/978-
3-030-34496-2_2. url: https://doi.org/10.1007/978-3-030-
34496-2_2 (cit. on p. 18).

[20] Beningo Jacob. “A Review of Watchdog Architectures and their Ap-
plication.” In: (Apr. 2010) (cit. on p. 35).

[21] Georg Macher et al. “Safety and Security Aspects of Fail-Operational
Urban Surround perceptION (FUSION).” In: Oct. 2019, pp. 286–300.
isbn: 978-3-030-32871-9. doi: 10.1007/978-3-030-32872-6_19 (cit. on
p. 35).

[22] Alexander Malinowski and Bogdan M. Wilamowski. “User Datagram
Protocol - UDP.” In: Industrial Communication Systems. Boca Raton:
CRC Press, 2019. doi: https://doi.org/10.1201/9781315218434.
url: https://doi.org/10.1201/9781315218434 (cit. on pp. 19, 20).

[23] S. et al. Otten. “Automated Assessment and Evaluation of Digital Test
Drives.” In: Zachäus C., Müller B., Meyer G. (eds) Advanced Microsystems
for Automotive Applications 2017. Cham: Springer, 2017. isbn: 978-3-
319-66972-4. doi: https://doi.org/10.1007/978-3-319-66972-4_16
(cit. on p. 10).

[24] A. Rayes and S. Salam. “The Internet in IoT—OSI, TCP/IP, IPv4, IPv6

and Internet Routing.” In: Internet of Things From Hype to Reality. Cham:
Springer, 2017. isbn: 978-3-319-44860-2. doi: https://doi.org/10.
1007/978-3-319-44860-2_2 (cit. on pp. 18, 19).

[25] “Automotive Software Engineering: Past, Present, and Future.” In:
Automotive Mechatronics. Ed. by Konrad Reif. Wiesbaden: Springer
Vieweg. isbn: 978-3-658-03975-2. doi: https://doi.org/10.1007/978-
3-658-03975-2. url: https://doi.org/10.1007/978-3-658-03975-
2 (cit. on pp. 7, 8, 12–15).

97

https://doi.org/10.5121/vlsic.2011.2314
https://doi.org/10.1007/978-3-030-34496-2_2
https://doi.org/10.1007/978-3-030-34496-2_2
https://doi.org/10.1007/978-3-030-34496-2_2
https://doi.org/10.1007/978-3-030-34496-2_2
https://doi.org/10.1007/978-3-030-32872-6_19
https://doi.org/https://doi.org/10.1201/9781315218434
https://doi.org/10.1201/9781315218434
https://doi.org/https://doi.org/10.1007/978-3-319-66972-4_16
https://doi.org/https://doi.org/10.1007/978-3-319-44860-2_2
https://doi.org/https://doi.org/10.1007/978-3-319-44860-2_2
https://doi.org/https://doi.org/10.1007/978-3-658-03975-2
https://doi.org/https://doi.org/10.1007/978-3-658-03975-2
https://doi.org/10.1007/978-3-658-03975-2
https://doi.org/10.1007/978-3-658-03975-2

Bibliography

[26] Hans-Christian Reuss et al. “Efficient Automatic Application in Rapid
Prototyping Software Development.” In: ATZelectronics Worldwide
(2019). doi: 10.1007/s38314-019-0059-8 (cit. on p. 11).

[27] F. Triem. “XCP Protocol Layer, Technical Reference.” In: (2005) (cit. on
pp. 44, 46).

[28] Vector. “VX1000 Product Information.” In: (2018). doi: https://

assets.vector.com/cms/content/products/vx1000/Docs/VX1000_

ProductInformation_EN.pdf (cit. on p. 22).

[29] Michael Marvin Wolf. “Master Thesis: An open source XCP based
measurement and calibration system for automotive ECUs.” In: (2018)
(cit. on pp. 45, 46).

98

https://doi.org/10.1007/s38314-019-0059-8
https://doi.org/https://assets.vector.com/cms/content/products/vx1000/Docs/VX1000_ProductInformation_EN.pdf
https://doi.org/https://assets.vector.com/cms/content/products/vx1000/Docs/VX1000_ProductInformation_EN.pdf
https://doi.org/https://assets.vector.com/cms/content/products/vx1000/Docs/VX1000_ProductInformation_EN.pdf

	Abstract
	Introduction
	Motivation and Goal
	Objectives
	Master Thesis Structure

	State of the Art
	Embedded Systems
	Embedded Automotive Systems
	Electronic Control Unit - ECU
	Embedded Automotive Software
	Rapid Prototyping

	Communication Protocols
	Controller Area Network CAN
	Ethernet

	Calibration of Electronic Control Units
	CAN Calibration Protocol - CCP
	Universal Calibration Protocol - XCP
	ECU Interfaces

	XCP Protocol
	XCP Protocol Layer
	XCP Transport Layer
	Command Transfer Objects - CTO
	Data Transfer Objects - DTO
	Data Polling with XCP
	Synchronous Data Acquisition with XCP - DAQ
	Calibration with XCP
	Stimulation with XCP
	Flashing with XCP

	Intelligent Watchdogs

	Design and Implementation
	Concept
	Implementation
	Toolchain Selection
	Software Architecture
	XCP-Slave Implementation
	XCP-Master Implementation
	Rapid Prototyping System
	Intelligent Watchdog
	Ethernet to CAN Interface

	Application Configuration

	Test Environment and Evaluation
	Test Environment
	Rapid Prototyping System
	Intelligent Watchdog
	Ethernet-CAN Interface

	Evaluation Results
	Measurement 1: RPS with DAQ
	Measurement 2: RPS with Polling
	Intelligent Watchdog
	Ethernet-CAN Interface

	Conclusion and Recommendations for Future Work
	Conclusion
	Future Work

	Bibliography

