
Daniel Metzner, BSc

Automating the Software Development
Life Cycle using GitHub Actions

A practical approach on Catrobat’s
Share Community Platform

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr. Wolfgang Slany

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr. Wolfgang Slany

Graz, September 2020



This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template


Affidavit

I hereby declare that I have authored this thesis independently, that I have
not used any other sources/resources than the declared ones, and that I have
explicitly indicated all material that has been quoted either literally or by
content from the sources used. The text document uploaded to tugrazonline
is identical to the present master‘s thesis.

Date Signature

iii

08.10.2020





Abstract

Software development involves various challenges and is prone to human er-
rors. Especially in free and open-source software (FOSS), such as Catrobat’s
Share community platform, contributors often lack the necessary expertise
in the project’s domain, rules, and principles to develop high-quality soft-
ware. Automating tasks throughout the software development life cycle and
following best practices such as continuous integration can significantly re-
duce development costs and improve a software’s quality. This thesis offers
insights into the challenges and applied measures to develop an efficient
and maintainable continuous integration system without high acquisition
costs using GitHub Actions. Automated software tests that verify every con-
tribution and provide immediate feedback help developers write clean and
error-free code. Moreover, from continuous delivery to an automatic code
generation and a daily synchronization with a third-party platform, various
workflows have been optimized and automated to reduce the complexity
and cost throughout the software development life cycle.

v





Kurzfassung

Softwareentwicklung ist mit den verschiedensten Herausforderungen ver-
bunden und anfällig für menschliche Fehler. Insbesondere bei Free and
Open-Source Software (FOSS) wie der Share Community Plattform von
Catrobat fehlt den Mitwirkenden häufig das erforderliche Fachwissen in
Bezug auf den Bereich, die Regeln und die Prinzipien des Projekts, um
qualitativ hochwertige Software zu entwickeln. Durch die Automatisierung
von Aufgaben während des gesamten Lebenszyklus der Softwareentwick-
lung und die Befolgung von empfohlenen Vorgehensweisen wie der kon-
tinuierlichen Integration können die Entwicklungskosten erheblich gesenkt
und die Qualität einer Software verbessert werden. Diese Arbeit bietet
Einblicke in die Herausforderungen und angewandten Maßnahmen, um
mit GitHub Actions ein effizientes und wartbares kontinuierliches Integra-
tionssystem ohne hohe Anschaffungskosten zu entwickeln. Automatisierte
Softwaretests, die jeden Beitrag überprüfen und unmittelbare Rückmeldung
geben, helfen Entwicklern sauberen und fehlerfreien Code zu schreiben.
Darüber hinaus wurden die verschiedensten Arbeitsabläufe wie der Soft-
wareauslieferungsprozess, die automatische Generierung von Code bis hin
zur täglichen Synchronisierung mit einer Plattform eines Drittanbieters
optimiert und automatisiert, um die Komplexität und Kosten während der
Softwareentwicklung zu reduzieren.

vii





Contents

Abstract v

1 Introduction 1
1.1 Catrobat project . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Catrobat . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Pocket Code . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Share community platform . . . . . . . . . . . . . . . . 5

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Software quality 9
2.1 Defintion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Functional software quality . . . . . . . . . . . . . . . . 10

2.1.2 Structural software quality . . . . . . . . . . . . . . . . 10

2.1.3 Process quality . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Software quality assurance . . . . . . . . . . . . . . . . . . . . 11

2.3 Code quality in a learning environment . . . . . . . . . . . . . 11

2.4 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Software testing 13
3.1 Defintion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Manual or automation testing . . . . . . . . . . . . . . 14

3.2.2 Static, dynamic or passive testing . . . . . . . . . . . . 15

3.2.3 White-box or black-box testing . . . . . . . . . . . . . . 15

3.2.4 Testing levels . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Test-first development . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Test-driven development . . . . . . . . . . . . . . . . . 19

3.3.2 Behavior-driven development . . . . . . . . . . . . . . . 20

ix



Contents

4 Web development 21
4.1 World Wide Web . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Fundamental technologies . . . . . . . . . . . . . . . . 22

4.1.3 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.4 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Web framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Version Control Systems 29
5.1 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Git workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.1 Single branch workflow . . . . . . . . . . . . . . . . . . 32

5.3.2 Feature branch workflow . . . . . . . . . . . . . . . . . 32

5.3.3 Git-flow workflow . . . . . . . . . . . . . . . . . . . . . 33

5.3.4 Forking git-flow workflow . . . . . . . . . . . . . . . . 35

6 CI/CD 37
6.1 Continuous integration . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.3 Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Continuous delivery and deployment . . . . . . . . . . . . . . 40

6.3 Benefits and drawbacks . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4.1 Jenkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4.2 GitHub Actions . . . . . . . . . . . . . . . . . . . . . . . 43

6.4.3 Comparison between Jenkins and GitHub Actions . . 44

7 CI - Build automation 53
7.1 Package manager . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Automate the process . . . . . . . . . . . . . . . . . . . . . . . . 55

8 CI - Static analysis 59
8.1 Static analysis of interpreted languages . . . . . . . . . . . . . 60

8.1.1 Type hinting in a dynamic weakly-typed language . . 61

x



Contents

8.2 Coding standard . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.2.1 Consistent formatting . . . . . . . . . . . . . . . . . . . 65

8.3 Static analysis tools . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3.1 Customization . . . . . . . . . . . . . . . . . . . . . . . 67

8.3.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.3.3 Analyze PHP files . . . . . . . . . . . . . . . . . . . . . 68

8.3.4 Analyze JavaScript and CSS files . . . . . . . . . . . . . 69

8.3.5 A baseline to optimize initial results . . . . . . . . . . . 69

8.3.6 From a baseline to a solid base . . . . . . . . . . . . . . 70

8.4 Continuous integration of static analysis . . . . . . . . . . . . 71

8.4.1 Automate the process . . . . . . . . . . . . . . . . . . . 72

8.4.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 73

8.5 Code review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 CI - Dynamic analysis 77
9.1 Test automation frameworks . . . . . . . . . . . . . . . . . . . 78

9.2 Continuous integration of dynamic analysis . . . . . . . . . . 79

9.2.1 Automate the process . . . . . . . . . . . . . . . . . . . 80

9.2.2 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.2.3 Parallel testing . . . . . . . . . . . . . . . . . . . . . . . 83

9.2.4 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.2.5 Flaky tests . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.6 Code coverage . . . . . . . . . . . . . . . . . . . . . . . 89

10 Continuous delivery 93
10.1 Continuous test deployments . . . . . . . . . . . . . . . . . . . 93

10.1.1 Automate the process . . . . . . . . . . . . . . . . . . . 94

10.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.2 Continuous release deployment . . . . . . . . . . . . . . . . . . 96

10.2.1 Automate the process . . . . . . . . . . . . . . . . . . . 96

10.2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11 Workflow automation 99
11.1 API code generation . . . . . . . . . . . . . . . . . . . . . . . . 99

11.1.1 Automate the process . . . . . . . . . . . . . . . . . . . 100

11.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xi



Contents

11.2 Synchronize Crowdin translations . . . . . . . . . . . . . . . . 104

11.2.1 Automate the process . . . . . . . . . . . . . . . . . . . 104

11.2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.3 Checking for new bricks . . . . . . . . . . . . . . . . . . . . . . 108

11.3.1 Automate the process . . . . . . . . . . . . . . . . . . . 109

11.3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.4 Dependency management . . . . . . . . . . . . . . . . . . . . . 111

11.4.1 Dependabot . . . . . . . . . . . . . . . . . . . . . . . . . 112

12 Conclusion and future work 115
12.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 121

xii



List of Figures

1.1 Catrobat logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Pocket Code UI . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Share community platform . . . . . . . . . . . . . . . . . . . . 5

1.4 Catroweb’s API . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Source code analysis . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Contribution timeline from GitHub . . . . . . . . . . . . . . . 8

3.1 Software testing classification . . . . . . . . . . . . . . . . . . . 14

3.2 Testing pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Testing levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Test-first development . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Client-server model . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Basic Git workflow . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Feature branch Git workflow . . . . . . . . . . . . . . . . . . . 33

5.3 Git-flow workflow . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 CI/CD software development life cycle . . . . . . . . . . . . . 37

6.2 Jenkins feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 GitHub Actions dashboard . . . . . . . . . . . . . . . . . . . . 44

6.4 GitHub secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.5 Jenkins integration on GitHub . . . . . . . . . . . . . . . . . . 48

6.6 GitHub Actions pull request integration . . . . . . . . . . . . . 49

6.7 GitHub Actions pull request feedback . . . . . . . . . . . . . 49

7.1 Docker verification feedback . . . . . . . . . . . . . . . . . . . 58

9.1 Failing test suite feedback (Behat) . . . . . . . . . . . . . . . . 81

9.2 Download artifacts . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiii



List of Figures

9.3 Codecov GitHub comment . . . . . . . . . . . . . . . . . . . . 91

10.1 Catroweb’s test deployments . . . . . . . . . . . . . . . . . . . 95

11.1 Code generation pull request . . . . . . . . . . . . . . . . . . . 101

11.2 Manual workflow trigger . . . . . . . . . . . . . . . . . . . . . 103

11.3 Translation file revisions . . . . . . . . . . . . . . . . . . . . . . 105

11.4 User project’s code statistics . . . . . . . . . . . . . . . . . . . 108

11.5 Dependabot pull request . . . . . . . . . . . . . . . . . . . . . 113

xiv



Listings

3.1 PHPUnit test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Behat scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Behat context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.1 Verify Docker build . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Test shared volumes . . . . . . . . . . . . . . . . . . . . . . . . 57

8.1 Java type error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2 PHP type conversion . . . . . . . . . . . . . . . . . . . . . . . . 62

8.3 JavaScript type conversion . . . . . . . . . . . . . . . . . . . . . 62

8.4 Another PHP type conversion . . . . . . . . . . . . . . . . . . . 62

8.5 Lousy JavaScript code . . . . . . . . . . . . . . . . . . . . . . . 64

8.6 Clean JavaScript code . . . . . . . . . . . . . . . . . . . . . . . . 64

8.7 Static analysis feedback (PHPStan) . . . . . . . . . . . . . . . . 72

8.8 Static analysis workflow . . . . . . . . . . . . . . . . . . . . . . 73

8.9 Static analysis workflow job alternative . . . . . . . . . . . . . 73

8.10 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.1 Dynamic analysis workflow . . . . . . . . . . . . . . . . . . . . 81

9.2 Upload artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.3 Matrix build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.4 Save Docker image . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.5 Load Docker image . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.6 BDD feature description . . . . . . . . . . . . . . . . . . . . . . 86

9.7 Rerun failed Behat tests . . . . . . . . . . . . . . . . . . . . . . 88

9.8 Filter output for critical issues . . . . . . . . . . . . . . . . . . . 89

9.9 Codecov action . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.1 Trigger a workflow for a specific branch . . . . . . . . . . . . . 96

10.2 Establish a VPN connection . . . . . . . . . . . . . . . . . . . . 97

xv



Listings

10.3 Set up private credentials using secrets . . . . . . . . . . . . . 97

10.4 Initiate deployment from inside a Docker container . . . . . . 98

11.1 Code generation workflow . . . . . . . . . . . . . . . . . . . . . 102

11.2 Crowdin synchronization workflow . . . . . . . . . . . . . . . 106

11.3 Job condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.4 Check for new bricks workflow . . . . . . . . . . . . . . . . . . 110

xvi



1 Introduction

Developing and maintaining a software product of high quality is a tedious
task. With the always increasing and changing demands of users, a typical
software product can be very complicated. More and more features are
pushed into projects every day. In addition to that, developers are often
under pressure to deliver just in time. Thus, code quality and documenta-
tion are repeatedly postponed until it is almost impossible to work with
the existing codebase. Hence, a very error-prone and time-consuming code
refactoring is necessary to re-implement an existing feature with reduced
complexity. Every new update could break an application in unexpected
ways. Without proper testing, it can be challenging to develop large applica-
tions.

There are seldom any real software products fully developed and maintained
by a single person. Efficiently working in a team requires developers to
operate in parallel and regularly merge their work. Since developers may
change the same code lines differently, merging can be challenging, mainly
if applied only in irregular, too long time intervals. Studies even show that
large teams of developers compared to small groups often only bring a slight
improvement in delivery time, while drastically increasing the development
cost (Brooks, 2020).

A counteract to these drawbacks is called continuous integration (CI). CI
requires developers to integrate their changes in small patches and short
time frames. Besides, CI is all about detecting and preventing issues before
the integration. A CI system automatically provides the developers with
the necessary feedback about their proposed changes to verify that every
contribution achieves a certain quality. Therefore, developers do not need
to manually run tests and software metrics whenever they contribute to a
project.

1



1 Introduction

This thesis aims to significantly reduce development costs and increase the
Catrobat’s Share community platform’s software quality. Therefore, a CI
system is implemented using GitHub Actions to check every contribution
to the project thoroughly. Moreover, several workflows throughout the
software development life cycle have been automated to reduce the amount
of manual work that has to be done by developers repeatedly.

1.1 Catrobat project

People of all ages and social backgrounds should have easy access to educa-
tion. Consequently, back in 2010, the International Catrobat Association was
initiated by the Institute of Software Technology at the Technical University
of Graz to provide children and teenagers with free educational resources.
Their main focus centers around tools and courses about programming in a
playful environment. (Slany, 2020)

The Catrobat project1 (Figure 1.1) is inspired by the Scratch project2 de-
veloped by the Lifelong Kindergarten Group at the MIT Media Lab. All
products associated with the International Catrobat Association follow the
philosophy of independent free, open-source software (FOSS). FOSS implies
that in addition to the free of charge usage of software, everyone can access,
contribute, and modify its source code. All repositories are hosted open to
the public on a code sharing and publishing service named GitHub3.

Figure 1.1: Catrobat logo.

1. https://www.catrobat.org/ visited on 9 Sep. 2020

2. https://scratch.mit.edu/ visited on 9 Sep. 2020

3. https://github.com/Catrobat visited on 9 Sep. 2020

2

https://www.catrobat.org/
https://scratch.mit.edu/
https://github.com/Catrobat


1.1 Catrobat project

1.1.1 Catrobat

Similar to Scratch, Catrobat is a visual programming language. Visual pro-
gramming languages provide users with the possibility to create and modify
programs graphically. Instead of using conventional textual languages, this
approach simplifies the coding process to a bare minimum. Users do not
need to learn any complex syntax. Hence, typing errors can be prevented.
Visual programming languages lower the learning curve and increase ac-
cessibility to the exciting world of coding for beginners. Users can focus
on their creativity and create programs very fast - The perfect baseline to
promote computational thinking skills to children, as the Developer website
of Catrobat (2020) describes it.

1.1.2 Pocket Code

Visual programming languages require a different set of tools for efficient
usage compared to traditional approaches. Catrobat’s corresponding inte-
grated development environment (IDE) is called Pocket Code. An IDE is a
collection of programs to ease the software development process. A small
selection from the user interface (UI) can be seen in Figure 1.2.

Projects created in Pocket Code consist of a background and optional objects.
By tapping on an object in the project overview, scripts, looks, and sounds
can be assigned to the object. The looks and sounds can be created by users
or downloaded from a media library. Scripts animate objects and bring
life into interactions. Dragging predefined bricks from various categories
together forms a script to implement any logic. Their functionality ranges
from control bricks to sensor bricks. Already during development, projects
can be executed directly in Pocket Code at any time.

While Scratch is developed only for the Web, the Pocket Code apps concen-
trate on the mobile market. A market with 3.5 billion potential users that
is growing every year (Turner, 2020). Besides, many children and teachers
in third world countries can not afford a PC, while many have access to
smartphones. Pocket Code supports more than 75 different languages and

3



1 Introduction

(a) (b) (c) (d) (e)

Figure 1.2: Pocket Code Android version 0.9.74: The landing page in (a) provides users
with an overview of its functionalities. The projects’ overview is given by (b).
A Pocket Code project is build using objects (c). Each object can have scripts,
looks, and sounds assigned. Scripts are created by connecting various bricks
(d). A snapshot of the project during its execution is shown in (e).

already has more than one million users in 180 countries. It is available to
everyone and can be download for free on Android4 and iOS5.

The Android and iOS versions have been developed by individual teams to
utilize the underlying operating system entirely. Due to a different velocity
in the development between the teams, it is practically impossible to provide
the same features and possibilities in both apps. Additionally, the teams
must follow specific guidelines defined by Google and Apple, leading to
further differences. For this reason, the Catrobat language version was
introduced to determine what features must be implemented to support
projects of a specific version. As a result, projects created using any Pocket
Code app can be shared among themselves as long as they support the
same minimum language version.

Apart from Pocket Code, Catrobat has many sub-projects and services
tightly coupled to Pocket Code. For example, a converter from Scratch to

4. https://catrob.at/gp visited on 9 Sep. 2020

5. https://catrob.at/ca visited on 9 Sep. 2020

4

https://catrob.at/gp
https://catrob.at/ca


1.1 Catrobat project

Catrobat, an image manipulation app, and the Share community platform
to publish projects.

1.1.3 Share community platform

The Share community platform is a web application developed under the
name of Catroweb and is responsible for hosting dynamic user data, includ-
ing more than 180 thousand Pocket Code projects. Storing data in a central
place enables Catrobat to provide a cloud-like service to its users. Examples
of Catroweb’s website are given by Figure 1.3.

Projects created in Pocket Code can be uploaded to the platform with a few
taps in the app. Once a project is uploaded, it can be shared, downloaded,
and remixed by users worldwide. A remix project emerges if an existing
project is copied and modified. Additionally, Pocket Code users have access

Figure 1.3: Share community website: Its landing page can be seen in (a), a profile page in
(b), a project page in (c), and the media library in (d).

5



1 Introduction

to hundreds of graphics and sounds in the community platform’s media
library. Assets from the media library ease and speed up the project creation
process. Furthermore, the platform provides users with recommendations,
tutorials, statistics, and social features typical of a social network. An inte-
grated building service even enables users to generate an Android Package
(APK) from Catrobat projects. APKs can be installed on any Android mobile
devices, independent of the Pocket Code app.

The Share community platform’s website6 can be included as a web-view
in the apps or accessed using any browser with access to the internet. As
an alternative, all data and services can be accessed directly via a RESTful
application program interface (API). An API is described as RESTful when
it implements the representational state transfer (REST) pattern. REST indi-
cates the design and architecture constraints on how distributed systems
can communicate with each other. A section of the publicly available API
documentation written with the free and open-source Swagger7 toolset can
be seen in Figure 1.4.

Figure 1.4: Swagger API: Catroweb’s API specification is written in Swagger and rendered
in a Swagger editor to ease the communication with other teams.

6. https://share.catrob.at visited on 9 Sep. 2020

7. https://swagger.io/ visited on 9 Sep. 2020

6

https://share.catrob.at
https://swagger.io/


1.2 Motivation

Catroweb is developed in an agile test-first environment, relying on the
repetition of short iterative development cycles that require developers to
write software tests before implementing a new feature. Furthermore, the
Share community platform is mainly developed in the back-end and uses a
web framework called Symfony to reduce development costs significantly.
An indication of the work distribution is given by Figure 1.5. Software tests
and test-first development are described in more detail in chapter 3. Chapter
4 provides more details about web development.

Figure 1.5: Source code analysis: 51.5% of Catroweb’s code is written in PHP for the back-
end. Only 14.1% is responsible for the front-end, namely JavaScript, CSS, and
HTML. The remaining 34.3% empower Catroweb’s software tests. Third-party
modules, translation files, and configurations files are excluded from these
statistics. (Source code analysis of Catroweb 2020)

1.2 Motivation

Apart from a handful of employed product owners and volunteers from all
around the globe, mainly students of the TU Graz develop the software at
Catrobat. Typically, those students only work on the project during their
university courses. Contributions are made in irregular intervals by teams
with constantly switching members (Catrobat/Catroweb contributors 2020).
Figure 1.6 shows Catroweb’s contribution timeline from GitHub.

During transition phases of old and new team members, expertise can get
lost, especially when a team has no active members from the old guard left.
Precisely this problem happened to Catrobat’s Share community platform
during 2018. Due to almost no documentation and the sheer size of the

7



1 Introduction

Figure 1.6: Contribution timeline from GitHub: The timeline shows Catroweb’s irregular
contributions intervals. The X-axis presents the years from 2014 to 2020, while
the Y-axis indicates the number of commits to the project. (Catrobat/Catroweb
contributors 2020)

project, it was unclear to new contributors which feature existed and how
to set up and test the project properly. Developers had to invest many
resources to maintain and extend the project.

Since then, Catrobat’s web team has intensively worked on improving
the documentation, test coverage, and code quality. However, without a
CI system, every contribution to the project has to be checked by hand.
Manual checks cost valuable time and are prone to errors. Using CI, every
contribution must fulfill a particular standard since tests run automatically
on a server. While a manual check is still necessary to ensure that every new
feature is appropriately designed and tested, most redundant monotonous
processes that elongate the reviewing process can be automated and checked
independently from a human code reviewer.

Apart from automating processes during the review, development costs
can be further reduced by automating various additional workflows, from
continuous delivery to daily synchronizations with third-party platforms.
Automating tasks removes their complexity and saves valuable time for
developers. Besides, automated tasks require explicit instructions to work
and produce implicit documentation about all project workflows, making
them more accessible for future developers.

Therefore, introducing CI/CD combined with several automated workflows
during this thesis, is a long-needed step to improve further and retain the
Catroweb project’s quality while also reducing the overhead for developers
and code reviewers.

8



2 Software quality

The success of software products is directly related to their quality. How
customers feel about a software product depends on a high degree on its
quality. The better the quality of the software is, the more satisfied the
customers are. However, typically customers care about other aspects than
product owners or the development team. The software quality depends
on the code’s structure and how easy it is to maintain for developers.
Maintainability is an essential factor in keeping the development going over
a long period without exponential development costs. However, since the
code itself is not visible to users, it is of no importance to customers. On
the other hand, it matters to users that the software has high usability and
works as intended and bug-free.

As one can see, quality is a subjective property that is highly conditional
based on its receiver and domain. Banking applications, for example, must
prioritize their security and reliability at all costs. A gaming application, on
the other side, can neglect its security and focus on efficiency. Consequently,
there exist various slightly different definitions and notations.

2.1 Defintion

The ISO 8402-1986 standard (2020) defines software quality as ”the totality
of features and characteristics of a product or service that bears its ability to
satisfy stated or implied needs.”

High-quality software satisfies all requirements and expectations of its
customers while being secure, reliable, efficient, and easy to maintain. It is
essential to translate the requirements and criteria of software quality into
measurable characteristics. In a fast-paced world, needs and expectations

9



2 Software quality

continuously change. Dietmar Winkler (2018) realized that without adapting
to the changes and the context of a domain, quality measurements only
have limited value. Chappell (2020) defines software quality in three distinct
but related aspects: functional, structural, and process quality.

2.1.1 Functional software quality

Software products of high functional quality imply that software works in
the way it is intended to and meets various criteria to fulfill all expectations
and requirements. Excellent performance and clean design with a focus on
its usability are high prioritized. The usability defines rules to smooth the
human-computer interactions and make them feel as natural as possible.
A high usability product should be easy to use, provide feedback at all
times, and allow its efficient usage. Functional software quality requires
the product to be reliable and defect-free. While it is impossible to produce
perfect software, it must be a high priority to prevent critical issues.

2.1.2 Structural software quality

Structural software quality defines how well the code itself is structured
and, therefore, is often referred to as the code quality. The consortium for IT
software quality (CISQ1) measures code quality based on security, reliability,
performance, and maintainability.

2.1.3 Process quality

Process quality significantly affects the values received by customers and
the development team. The process quality defines how well a project sticks
to its delivery times and provided budget (Chappell, 2020). Various tools
and methods enable developers to monitor and measure their development
process. A high-quality process should be repeatable and continuously
produce a reliable output.

1. https://www.it-cisq.org/standards/ visited on 9 Sep. 2020

10

https://www.it-cisq.org/standards/


2.2 Software quality assurance

2.2 Software quality assurance

Tantawy (2009) describes software quality assurance (SQA) as a planned
and systematic approach to improve software quality and ensure that the
development adheres to established standards, processes, and procedures.
SQA defines various models, such as the total quality management approach
or capability maturity model integration.

2.3 Code quality in a learning environment

A team full of experienced developers may produce software of high quality
even without a solid foundation. The development of new features is done
in the highest possible quality, independently of the existing code. On
the contrary, the quality of the existing code profoundly influences junior
developers. At Catroweb, the main contributors are students trying to learn
and improve, often lacking knowledge in the necessary domain and used
technologies. Besides, they are easily overwhelmed by the sheer size of the
project.

Observations among new contributors have shown that software quality is
highly irrelevant to first-time contributors. Inexperienced developers learn
from their environment and usually have trust in the existing codebase.
Hence, corrupt coding practices are very likely to be adapted and copied by
them. Their only focus aims to produce a somehow working implementation
of the specifications.

Keeping a minimum level of quality at all times provides an environment
where new team members can learn from the existing code. Contributors
can be proud of their team, and the achieved work. Therefore, it is vital
to keep the code quality as high as possible, even when this enforces
slower development progress. The perfect mediocracy may be hard to find.
However, for projects developed by inexperienced developers, it is better to
be on the safe side and invest enough resources into the code quality and
its assurance.

11



2 Software quality

2.4 Refactoring

Developing a clean code of high quality can be a lingering process taking
up many valuable resources. Typically, resources are limited, and whatever
industry is concerned, every business attempts to maximize its investment.
Up to a certain point, neglecting code quality can reduce development
time and costs. Therefore, in the beginning, the output rate of features
increases when code quality is not focused. Fixing flaws in the internal
implementation, often hidden and not directly visible to users, tend to be
postponed to the future until they fall into oblivion. In 2007, even the term
”Later == Never,” known as LeBlanc’s law, was coined for this phenomenon
(Cooper, 2020).

Nevertheless, code quality implicitly affects the overall software quality.
Once a project reaches a specific size and complexity, without a certain
minimum level of code quality, there is a high chance that the software is un-
reliable and challenging to maintain, debug, and extend, which significantly
increases the development costs and time. At this point, it is necessary to
refactor the existing codebase.

A refactoring can improve the code quality, but it comes with its risks and
costs. A code refactoring aims to increase the readability and maintainability
of a code section without changing the functionality. However, many new
code lines have usually been added to a project since the implementation
of problematic code sections. It is no rarity that old flawed code sections
profoundly influenced the development of newer features. Therefore, it is
typically a lot harder and cost-intensive to fix issues in hindsight.

12



3 Software testing

Software systems worldwide play an essential role in almost every aspect of
our lives. From phones to medical devices and airplanes, software systems
are everywhere. High-quality software is vital to provide users with a flaw-
less experience and meet their expectations. However, it is highly unlikely
that software is 100 percent bug-free. Nonetheless, at least mission-critical
parts must not fail at any time. Already small bugs can result in severe
issues. The recent history shows various examples of how extensive and
costly the impact of bugs and vulnerabilities in software can be, ranging
from crashed space rockets and airplanes to pipeline explosions and billions
of stolen money (Harley, 2020).

A method to reduce the risks of software issues and increase its quality is
called software testing. Extensive software testing is expensive. However,
it is necessary to develop high-quality software products. It is essential
to test the software before releasing it to the public and meet customers’
expectations. Besides, in the long term, software testing significantly reduces
the costs of development. Apart from preventing critical security issues that
could damage a whole company’s image, software tests significantly reduce
maintenance costs.

3.1 Defintion

Software testing is a process to verify and validate a computer program
to ensure high software quality products by providing means to reduce
errors and cut overall software costs. Software testing assures that software
is defect-free and meets all requirements by analyzing the software item
(Isha, 2014).

13



3 Software testing

The “Guide for Software Verification and Validation Plans” (1994) defines
software testing as the process to detect differences between existing and
required conditions. The testing process evaluates the features by checking
for bugs, reliability, security, performance, and missing requirements.

In software testing, each independent test is referred to as a test case and
describes a unique scenario to evaluate software functionality. A test suite is
a collection of test cases, usually focused on a particular software aspect.

3.2 Classification

Software testing is a vast topic in software development, with several count-
less approaches of subdividing software tests into more specific categories
based on various criteria. Figure 3.1 shows a common classification of soft-
ware testing. However, there also exist different classifications with different
granularity.

Figure 3.1: Software testing classification: A common approach classifies software testing
into static, dynamic, or passive testing.

3.2.1 Manual or automation testing

Manual testing describes the process of verifying and validating by hand
that software meets all requirements and is detect-free. Manual testing is a

14



3.2 Classification

time-intensive task prone to human errors. It can be done from a customer’s
perspective as well as a developer’s perspective.

On the other hand, automation testing uses tools and test scripts to automate
the verification and validation processes to reduce testing costs significantly.
However, not all aspects of software testing can be easily automated. For
example, usability testing depends on real users’ reactions that can not be
automated.

3.2.2 Static, dynamic or passive testing

Static testing verifies a software product’s form and structure by only looking
at its source files without executing them. It evaluates the implementation
of all possible paths in a program. However, it can not test the behavior of
the software. Chapter 8 describes static analysis in more detail.

In opposition to static testing, dynamic testing is responsible for evaluating
software behavior while the software is running. No access to the source
code is necessary. In return, dynamic analysis is more expensive than static
analysis and requires developers to write test cases to cover all test paths.
Chapter 9 describes dynamic analysis in more detail.

An additional category describes passive testing, in which no direct interac-
tion between the software and testers exists. Testers only evaluate log files
and other monitored traces. (Andrés, Cambronero, and Núñez, 2011)

3.2.3 White-box or black-box testing

A software test is called a white-box test, or structural test, if it is designed
to fit the system’s internal perspective. White-box tests require access to the
software’s internal structure and source code. Therefore, white-box testing
can be efficiently designed to cover all possible program paths. However,
white-box tests require a high technical skill set and must be adapted if the
internal implementation changes. (White-Box Testing 2020)

15



3 Software testing

On the other hand, black-box testing, or behavioral testing, evaluates soft-
ware behavior without knowing its inner livings. Black-box tests do not
require programming language knowledge and can be independent of the
developers. Therefore, black-box testing can avoid bias and expose dis-
crepancies in specifications. However, black-box tests can be challenging to
design. There is a high chance that a program path will remain untested or
is tested multiple times at once. (Black-Box Testing 2020)

A combination of both black and white-box, called gray-box testing, can
help develop overall better test cases.

3.2.4 Testing levels

To optimize dynamic software testing and reduce its costs, Cohn (2009)
came up with a concept called the testing pyramid (Figure 3.2). The basic
concepts of his work state that developers should write tests with different
granularity. High-level categories must only consist of a few test cases,
while most test cases should be low-level tests. Compared to high-level tests,
low-level ones are usually more isolated and less complex, and cheaper to
run. Higher-level categories, on the other hand, can be slow and complex
and should be executed infrequently. (Fowler, 2020c)

Grouping software tests into levels empowers a systematic approach of
applying software testing to a project. Developers and testers can identify

Figure 3.2: Testing pyramid: Cohn (2009) points out that developers should focus on writing
many simple unit tests and only a few complex tests to reduce testing costs.

16



3.2 Classification

all possible test cases at a particular level quickly since it is strictly defined
what a test must and what it must not contain to be part of a particular
category. Based on a software test level, it is defined who is responsible
for performing the test. Apart from that, the level indicates when the test
should be executed during the software development life cycle. (Levels of
Testing in Software Testing 2020)

The most common approach is to subdivide dynamic software tests into
unit, integration, system, and acceptance tests (Figure 3.3). However, various
additional testing types and approaches exist that usually can be subor-
dinated to one of those groups. For example, usability testing, regression
testing, stress testing, scalability testing, and functional testing are part of
system testing.

Figure 3.3: Testing levels: Software tests are grouped based on their level of details into
unit, integration, system and acceptance tests.

Unit testing

Unit testing defines the process of testing the smallest possible ”units” of
testable code. Every component is considered a single system and tested
isolated from other features to ensure that individual parts are working. A
unit test must not depend on any other systems. A unit usually is either a
function, method, or class. Unit tests are white-box tests that require access
to the source code. They should be done by developers to detect bugs early
during development. (Radcliffe, 2020)

Integration testing

Integration testing is done to check the interactions between unit tested
components. While unit tests ensure that every module is working inde-
pendently, integration tests ensure that the components fit together with

17



3 Software testing

no defects in their interfaces and produce the expected results. Typically,
software testers perform integration testing after unit tests. (Itti Hooda,
2015)

System testing

System testing is part of black-box testing and requires a complete and fully
integrated system to run the tests to verify that a software item matches
its expected requirements by providing inputs and verifying the output.
System tests evaluate overall interactions, usability, performance, reliability,
and security. Based on the use case of software and provided tested budget,
the applied system testing methods can vary. However, software testers
usually perform system testing after the integration testing. (Itti Hooda,
2015)

Acceptance testing

The final layer in software testing, called acceptance testing or end-user
testing, is responsible for guaranteeing that all requirements meet the cus-
tomer’s specifications and contracts. While members of the developing
software organization perform internal acceptance testing, acceptance test-
ing is usually done externally by end-users and customers. (Itti Hooda,
2015)

3.3 Test-first development

Software tests can be developed independently of new features. However,
software testing can only detect bugs and issues if there are sufficient tests
to cover all possible program paths and specifications. A best practice to
develop software tests is called test-first development. A test-first approach
requires developers to write tests before actually implementing a new
feature. Figure 3.4 shows an abstraction of the workflow during test-first
development.

18



3.3 Test-first development

The most significant benefit of test-first development is that projects are
easier to maintain and extended due to high test coverage. Apart from
high coverage, a test-first approach forces developers to clearly define the
problem and specify the requirements in a detailed fashion before starting
to work on a new feature.

Figure 3.4: Test-first development: Developers write tests before implementing a feature.
Code is only developed as long as tests fail.

3.3.1 Test-driven development

As Beck (2002) summarizes test-driven development (TDD), new code lines
must only be written if an automated test fails. TDD is a test-first approach
relying on short development cycles to write software tests to satisfy devel-
opers’ needs and reduce maintenance costs. TDD tests are written using
regular code and can be easily automated using automation frameworks
like PHPUnit (Listing 3.1). Automation frameworks are described in more
detail in section 9.1.� �

1 public function testNameMustNotContainARudeWord (): void

2 {

3 $user = $this ->createMock(User:: class)

4 ->expects($this ->atLeastOnce ())

5 ->method(’getName ’)

6 ->willReturn(’rudeword ’);

7 $this ->expectException(RudewordInNameException :: class);

8 $this ->validator ->validate($user);

9 }� �
Listing 3.1: PHPUnit test: In TDD, tests are created using regular code.

19



3 Software testing

3.3.2 Behavior-driven development

Behavior-driven development (BDD) evolved from TDD and is also a test-
first approach. BDD tests are explicitly designed to satisfy both developers
and customers. Customers do not care about the details of implementation.
Therefore, BDD checks the actual behavior from the end-user perspective
rather than the implementation (Nair, 2020).

BDD features are written in human-readable sentences by introducing an
additional layer of abstraction to increase software tests’ accessibility to
non-developers. Listing 3.2 shows an example of a BDD feature description
using Behat, which is a framework for auto testing business expectations.
The real logic to test a feature description is hidden in separated files using
regular code. An example is given by Listing 3.3. However, not all tests have
to be relevant to customers. Therefore, it can be quite useful to use both
TDD and BDD in a project to get the most benefits.� �

1 Scenario: Welcome section

2 Given I am on the homepage

3 Then I should see the welcome section� �
Listing 3.2: Behat scenario: In BDD, tests are written in a business readable language.� �
1 /**

2 * @Then /^I should see the welcome section$/

3 */

4 public function iShouldSeeTheWelcomeSection (): void

5 {

6 Assert :: assertTrue(

7 $this ->getSession ()

8 ->getPage ()

9 ->findById(’welcome -section ’)

10 ->isVisible ()

11 );

12 }� �
Listing 3.3: Behat context: Logic is hidden and written using regular code.

20



4 Web development

Software Development refers to all activities dedicated to the process of
creating, designing, deploying, and supporting software (IBM, 2020).
The development of web applications, web services or websites, is usually
referred to as web development. Web development is tightly connected to
the World Wide Web (WWW) and shaped by its client-server architecture.
Therefore, web development is generally divided into back-end and front-
end. In a nutshell, the front-end is all about the look and feel of a web page.
On the other hand, the back-end is responsible for the machinery in the
background to make a website work.

4.1 World Wide Web

The Internet is a global network of networks connecting billions of comput-
ers that enables users worldwide to access various services. Like emails and
file transfers, the WWW, also known as the web, is one of those services
provided over the Internet. The WWW is a massively distributed informa-
tion system that stores information in hypertext documents referred to as
web pages.

A website is a collection of web pages grouped and linked together under
the same domain name. Each web page has a unique identifier (ID) assigned
to it and is connected to other web pages. Websites are hosted on computers,
called web servers, that are dedicated to receiving, processing, and respond-
ing to requests from clients on the Internet. Clients can navigate the web
and access web pages that are served by any web servers connected to the
network using a web browser.

21



4 Web development

4.1.1 History

Back in 1989, there were already millions of computers connected through
the fast-developing Internet. However, there was no way to share the infor-
mation which was distributed between multiple computers easily. A fact
that was driving Tim Berners-Lee to invent the WWW. Everything started
with his vision proposal, to easily share information between computers, in
a document called ”Information Management: A Proposal.”
By the end of 1990, Tim Berners-Lee already developed the WWW’s funda-
mental technologies, resulting in the first web page served by a web server
and the first web browser to visit the page. Nevertheless, at the beginning
of the year 1993, there were only 50 web servers online. First, to reach its
full potential, it was necessary to release the underlying code for free to the
public, resulting in a global boom of the WWW with more than 500 web
servers that were already online at the end of the year. (Foundation, 2020)

Today the WWW counts more than 4.5 billion users (Group, 2020). At its
first stage, between 1991 and 2004, the WWW was mainly filled with static
pages. Few content creators controlled a web page, and rarely changed its
content. Over time, web pages became more and more dynamic, and the
term web 2.0 became popular. Dynamic web pages allow active participation
by embedding user-generated content, like comments, directly on a web
page. Building dynamic and responsive web applications require more effort
than static pages. However, it provides customers with better experiences.

4.1.2 Fundamental technologies

Modern web applications are crammed with as many features as possible.
With the steadily increasing users’ expectations, even small websites are
built on a large complex codebase, relying on millions of code lines for the
underlying architecture. Still, even 30 years later, today’s web is built on the
same fundamental technologies (Foundation, 2020).

22



4.1 World Wide Web

Uniform Resource Identifier

A Uniform Resource Identifier is a string of characters to identify a resource.
The most used form, the Uniform Resource Locator (URL), is typically
referred to as a web address. URLs contain information about how a resource
can be accessed and where it is located in the network. For example, the
URL pointing to the Catroweb repository on GitHub is defined as follows.

https:︸ ︷︷ ︸
Scheme

// github.com︸ ︷︷ ︸
Domain name

/ Catrobat/Catroweb︸ ︷︷ ︸
Resource identifier

The first part of an URL is called the Scheme. The Scheme defines the
protocol and methods used to localize and process the resource requested
by the remaining URL parts behind the colon. In the Catroweb repository
example, the Scheme requires the transmission to use HTTPS, which stands
for Hypertext Transfer Protocol Secure. The next section describes this
fundamental communication protocol in more detail.

Each device connected to the Internet has a unique Internet Protocol (IP)
address. The IP is a commonly used state-less communication protocol to
address computers, like web servers, in a network, and send IP-packets.
Since IP addresses are hard to remember for humans, domain names can
replace a unique IP address assigned to the domain. For example, the IP
address behind the domain name ’github.com’ is ’140.82.114.3’1. A domain
name system does the conversion between a human-friendly domain name
and a computer-friendly IP address in the background. Hence, users only
need to type and remember a human-readable name. Moreover, security
certificates are only generated for a hostname and not an IP address. Conse-
quently, most browsers provide a warning if IP addresses are used rather
than domain names.

The final part of the URL, ’Catrobat/Catroweb,’ defines the path to the
resource on the web server and is necessary when a specific page of a
website is requested. Typically, a website is under one domain but provides
access to many different web pages.

1. checked on 4 Sep. 2020

23



4 Web development

Hypertext Transfer Protocol

”The Hypertext Transfer Protocol (HTTP) is an application-level protocol
for distributed, collaborative, hypermedia information systems.” (RFC2616
2020)

Every HTTP interaction consists of a request and a response. A client,
typically a web browser, requests data and services from a web server by
sending a request message to the server. Once the server processes a client’s
request, the web server sends a response message back to the client who
initiated the request (Figure 4.1).

Figure 4.1: Client-server model: A client requests information from a server. A server
provides the response to the client.

HTTPS is an extension of HTTP, in which the communication is encrypted
to protect users and their data from malicious third parties eavesdropping
on sensitive information.

Hypertext Markup Language

The Hypertext Markup Language (HTML) is a markup language to structure
the content of a website. A markup language uses tags to define elements
within a document in a human-readable format. For example, HTML defines
which part of the content represents the title of a web page.

Apart from standards and protocols to ease the transmission process,
browsers require specifications to render the content of billions of inde-
pendent web pages uniformly. HTML is under continuous development to
comply with web developers’ needs since its release. Therefore, there exist
numerous different versions. Since 1994, the World Wide Web Consortium2

2. https://www.w3.org/ visited on 9 Sep. 2020

24

https://www.w3.org/


4.1 World Wide Web

(W3C) has developed specifications and guidelines around the WWW. (W3C,
2020)

A web server can send any content to the client. However, using standards
ensures that browsers can understand and interpret the received information.
Due to HTML specifications, browsers precisely know how to process the
provided information of HTML web pages to present them to a client.
However, HTML does only define the structure of a web page and not its
style. Therefore, web servers usually also deliver images, Cascading Style
Sheets (CSS), and client-side scripts.

Nevertheless, the content could be in any of the countless HTML versions
or even entirely different formats. Different browsers and different versions
of browsers can support different standards. Only as long as a browser can
interpret the response correctly, the information can be rendered.

4.1.3 Back-end

A web server is a computer program that stores, processes, and distributes
requested web pages using HTTP. However, the back-end defines more
than just the web server itself, namely everything that runs directly on
a server, such as server-side scripts and the database. That is also why
the development in the back-end is often referred to as the server-side
development.

Database

The back-end usually includes a database to store dynamic data, like user
names and encrypted passwords. It enables web servers to remember and
structure information that needs to be accessed later on. A database and its
stored data can be easily accessed, managed, modified, updated, controlled,
and organized (Oracle, 2020).

25



4 Web development

Server-side scripting

Server-side scripts are responsible for the communication between the server,
the application, and the database. As the name suggests, server-side scripts
are executed directly on a web server. Server-side scripts are responsible
for processing and validating requests from clients forwarded by the web
server. The resulting response is passed on to the web server to send it back
to the client. Server-side scripts enable a web server to create a dynamic
response for its clients. For example, the scripts can fill templates with data
from the database, such as user names, optimized to any region, language,
or time.

There are many different server-side languages available, each with its
unique characteristics. Catroweb’s server-side scripts, for example, are
mainly written in PHP. Originally PHP was the abbreviation for Personal
Home Pages. Nowadays, it stands for Hypertext Pre-processor. While PHP
is a general-purpose scripting language, it is especially suited for web devel-
opment where it serves static or dynamic content to clients. Based on PHP
usage statistics for websites (2020), PHP is by far the most used server-side
programming language with a usage of over 75% of all sites on the web. The
code written in PHP is wholly processed on the server. Instead of transmit-
ting the source code to the client, an interpreter processes all instructions at
runtime on the server before the web server serves the client’s response.

4.1.4 Front-end

The front-end, or client-side, defines everything directly visible to a user. A
client only interacts with the front-end, empowered by the back-end running
in the background. In a best-case scenario, the back-end is invisible to a
client. The front-end is responsible for structuring the content delivered
to the client using HTML. A web page’s content can be styled using CSS
and brought to life using client-side scripts to keep a page responsive and
vivid.

26



4.1 World Wide Web

Cascading Style Sheets

Amongst other things, CSS is responsible for layouts, fonts, colors, and
element sizes. The strict separation of concerns between style (CSS) and
structure (HTML) has many positive side effects. For example, CSS files
enable different presentations for the same content, optimized for different
output devices, from small screens on smartphones to large desktop screens.
The same style sheet can also be applied to multiple web pages, highly
reducing the overhead of defining the same styles repeatedly.

Client-side scripting

In contrast to server-side scripts, a web server does not execute client-side
scripts. Instead, they are transmitted to a client, usually embedded in a
web page. Client-side scripts are executed directly in a client’s web browser,
working independently from web servers once a web page is loaded. The
most used client-side programming language, also used by the Catroweb
project, is called JavaScript.

Client-side scripts, like JavaScript, provide the basis of building fast and
responsive web pages. They enable a web page to change its content and
design dynamically or even create animations and complex calculations.
With client-side scripts, a web page can dynamically reload data in the
background. Therefore, it is possible to update only parts of a web page
instead of reloading the whole page. Client-side scripts can provide users
with immediate feedback about their actions and increase user experience.

Nevertheless, client-side scripts do not perform well in all scenarios. For
example, validation can be done on the client-side to give users the first
feedback about their inputs. However, validation must be implemented on
the server-side to ensure that the validation is not bypassed. Since client-
side scripts are executed on the client-side, a client can easily modify the
scripts.

27



4 Web development

4.2 Web framework

While web applications can be very different, they are very similar at
their core. Developers could implement every line of code by themselves.
However, reusing existing code is improving development speed and is
reducing the risks of repeatedly reintroducing bugs for the same problems.
Hence, developers can focus on actual business-related requirements and
concerns.

A framework does not provide a complete application, but a starting point
to any project to speed up its creation and maintenance. There exist many
different frameworks for all kinds of domains and languages, from mi-
croframeworks to fully-featured ones. A framework has a strong influence
on how a project is developed and can determine a project’s architecture
and used tools. For example, the Share community platform is built with
the Symfony3 framework, designed to do most of the work in the back-end
using PHP. Other frameworks may use different languages or are optimized
for the work in the front-end. Therefore, choosing an appropriate framework
for a project is essential.

Symfony is a high-performance web framework for the development of
websites and applications. It is a set of reusable PHP components to en-
able developers to quickly create flexible and reusable web applications
following best practices and standards on top of the Symfony components.
Furthermore, the Symfony framework has an active community with over
600.000 developers. (Symfony, 2020)

3. https://symfony.com/ visited on 9 Sep. 2020

28

https://symfony.com/


5 Version Control Systems

Software is in constant change. New lines are added to the source code,
while old sections get modified or removed. Being able to switch and main-
tain multiple versions of a project is inevitable. In a typical software project,
various developers work on the same source code simultaneously. Specific
tools and mechanics have been invented to tackle all kinds of problems
while maintaining large software projects to ensure smooth collaboration
and software maintenance.

A version control system (VCS) tracks and stores every modification of a
file system with additional metadata, like version number, author, notes,
and timestamps in a database. Moreover, it provides a complete long-term
history of all changes. It is possible to revert any recent changes and rollback
to older versions of the software without a hitch in case of mistakes.
Furthermore, a VCS offers countless tools to enable efficient teamwork
while developing and maintaining software products, such as branching
and merging. Therefore, software development teams of all sizes benefit
from a VCS.

”While it is possible to develop software without using any version control,
it subjects the project to a huge risk that no professional team would be
advised to accept. So the question is not whether to use version control but
which version control system to use.” (Atlassian, 2020)

5.1 Git

There exist several different VCSs with their unique pros and cons. One
of them is Git, a free and open-source VCS widely used in professional
software teams due to its ease of use and efficiency.

29



5 Version Control Systems

In contrast to other VCSs, like Apache Subversion, Git is a distributed
system and not centralized. Every developer, who uses Git, owns a local
copy of a project, including its whole history of changes. To put it differently,
every developer operates on their clone of a project. Hence, most actions can
be applied without an active Internet connection. A network connection is
only needed when developers push their changes or fetch other developers’
changes from a repository hosted on a server.

Git only saves the current state of a project when changes are committed.
Therefore, developers are encouraged to regularly commit their work, even
if it is still work in progress. The history of a Git project keeps track of
every commit. A commit is a snapshot of a project, including additional
metadata. The required space is kept at a minimum since Git only stores the
differences between two commits while also applying powerful compression
algorithms (Scott Chacon, 2020).

Maintaining a detailed project history comes with many benefits. For exam-
ple, it is possible with specific techniques and commands1 to find the exact
version which introduced a bug. Developers can rollback to any commit at
any time by removing all subsequent commits. Commits are only pushed
to the server after an explicit push command. When pushing commits to
the server, other developers can pull those changes into their local repos-
itories. Once commits are pushed, they should not be deleted anymore
because other developers could rely on them. A better alternative for de-
velopers is to revert a specific commit without tampering with history. Git
can automatically create a new commit inverting all changes of the targeted
commit.

Amongst other things, Git supports non-linear development using a branch-
ing system. Non-linear development encourages developers to modularize
their development process and utilize powerful workflows. For example,
multiple branches allow developers to keep a stable version, also referred
to as mainline, throughout the development. Hence, developers branch
away from the stable version to start working on new features, instead of
working on the mainline. By that, multiple different features can be worked
on and experimented with, even by various developers, at the same time
without getting influenced by the work on other branches. Finished feature

1. https://git-scm.com/docs/git-bisect visited on 9 Sep. 2020

30

https://git-scm.com/docs/git-bisect


5.2 GitHub

branches are then integrated back into the mainline, where the branch once
originated. Section 5.3 describes the benefits of workflows in more detail.

Furthermore, Git provides all the necessary tools to merge contributions.
From time to time, automatically merging two different branches is impossi-
ble. For these so-called merge conflicts, a code merger can manually pick
the changes which should be applied. Fortunately, the differences can be
explicitly highlighted, which is a huge time saver during reviews.

5.2 GitHub

Git itself is just a command-line tool. GitHub, on the other hand, is a Git
repository hosting service to share code and publish services. It is basically
like a cloud but optimized for software projects. There are many similar
services, such as GitLab and Bitbucket, but with unique strengths and
business models. This thesis only focuses on GitHub since all Catrobat
teams already use it.

A repository defines the location of all hosted files of a specific project
and can be accessed over a unique URL2. It can be either public or private.
While public repositories are visible to everyone, private repositories can
only be seen and found by users explicitly invited by the owner. Private
repositories can cost quite some money, depending on the claimed services.
Public repositories, on the other hand, can use most services without addi-
tional costs. GitHub attaches great importance to supporting open-source
projects. Further, a repository can be configured as required. For example,
a repository owner can manage access rights, enable branch protection for
important branches, or set up project secrets.

GitHub also provides developers and their teams with many features. For
example, a web-editor with syntax highlighting, task management tools
like a project board and an issue tracker, and a wiki. Somehow it is even a
social network for programmers. One of their newest features, called GitHub
Actions, will be extensively discussed in section 6.4.2.

2. https://github.com/Catrobat/Catroweb visited on 9 Sep. 2020

31

https://github.com/Catrobat/Catroweb


5 Version Control Systems

To ease the review process before merging, developers can create pull
requests containing their modifications. A pull request is visible to anyone
who has access to the project’s repository. While every developer can review
the changes, only those with write access can merge them. A pull request is
a perfect place to discuss proposed changes and request additional changes
if necessary.

5.3 Git workflows

Over the years, powerful Git workflows have been enforced using the VCS
Git. Based on the project type and team size, it can alternate which one fits
the best.

5.3.1 Single branch workflow

For small projects, a basic workflow where developers push all their changes
consecutively on the same branch can be sufficient. A basic single branch
workflow is given by Figure 5.1. Primarily when developers work alone on a
project, there is often no need to introduce the complexity of more powerful
workflows.

Figure 5.1: Single branch Git workflow: A basic Git workflow is using a single branch,
typically called the master branch. In this example, the master branch consists
of four consecutive commits. Each commit represents a snapshot of the project.

5.3.2 Feature branch workflow

However, more complicated workflows can have various benefits. For ex-
ample, they can prevent the integration of bugs and unfinished features

32



5.3 Git workflows

into a stable version, highly increasing the quality of life for developers.
Figure 5.2 shows a feature branch workflow, which encourages developers
to only work on feature branches instead of the master branch. Through
multiple branches, developers can work in parallel and do not block each
other during development.

A feature branch is created for every new issue and merged back into
the master branch when its development is finished. The code written
in one feature branch is independent of the code written in a different
feature branch. Therefore, developers can regularly commit and push their
changes to a feature branch, even if their work is not finished. Possible
new errors will not affect other feature branches. The same feature even
can be implemented and experimented with in different ways on different
branches. Due to its simplicity and efficiency, this workflow is very common
in software teams of all sizes.

Figure 5.2: Feature branch Git workflow: Developers do not work on the master branch.
Every new feature is developed in its separate feature branch. Finished features
are merged back into the master branch.

5.3.3 Git-flow workflow

While there are several additional complex workflows to fit large project’s
requirements with many contributors, Driessen (2020) describes a commonly
accepted workflow in large projects. This Git-flow takes advantage of two
long-running parallel branches extended by multiple short-lived branches.
Its representation can be seen in Figure 5.3.

33



5 Version Control Systems

A stable version of the project is available through a branch typically called
the master or main branch. Developers must not directly work on this
branch. Therefore, it is essential to protect the master branch and remove
developers’ write permissions to prevent commits to this branch. This stable
version usually represents the state of the deployed production services
and must only be updated during a new release or with a hotfix branch if
necessary.

Serious problems, like security problems that somehow were integrated into
a stable version, can be patched independently from the current develop-
ment state with a so-called hotfix. A hotfix branch branches off from the

Figure 5.3: Git-flow workflow: This Git workflow utilizes its power of various branches.
The master branch represents a stable version of the project at any time. The
develop branch reflects the current state of development. With a hotfix branch,
severe problems can be directly patched to the master branch. New features
are developed in independent feature branches until their development is
finished. Finished feature branches can be integrated back into the develop
branch. When enough features are implemented, a release branch can be created.
After excessive testing, a release branch is merged into the master and develop
branches.

34



5.3 Git workflows

master branch, and as soon as the patch is implemented, the hotfix branch
can be integrated back into the master branch. A hotfix allows developers
to react immediately to severe problems, without the chance of introducing
new issues due to new features currently in development.

Furthermore, new features are often still in progress and are not ready to
be shipped to the public. Instead, all new features are hosted in the develop
branch. As the name indicates, this branch reflects the current state of the
development. Still, developers should not directly work on this branch.
Instead, every new feature is developed in its unique branch or branches,
similar to the described feature branch workflow. A feature branch branches
off from the develop branch and is only integrated back into the develop
branch when a feature is done. To ensure the quality of the work, developers
usually do a code-review before the merging process.

5.3.4 Forking git-flow workflow

Catrobat teams use a forking workflow optimized for open-source projects in
extension to the described git-flow workflow. Only a handful of developers,
so-called maintainers, need write access to the repository. Technically, one
maintainer per repository is sufficient. Controlled rights ensure that a
repository structure is kept clean and protect a project from unwanted
modifications while still being publicly accessible by anybody. Usually, this
public repository is called the official repository.

Every developer must fork the project first instead of directly cloning it
to a local machine. Forking creates a personal copy of the repository on
the server, which then can be cloned onto a local machine. Having forked
repositories ensures that one developer’s work does not interfere with the
work of others. Developers have no write permission to the official repository.
However, they can still create their feature branches or experiment freely
in the codebase. When a feature is finished, developers commit and push
the changes to their forked repository. As a next step, they can create a pull
request from the feature branch in their repository to the develop branch on
the public repository.

35



5 Version Control Systems

Finally, a maintainer of the official repository can review this pull request
to request changes, decline it, or merge it into the official repository. Devel-
opers can pull the changes of newly merged contributions into the official
repository, into their forked repositories.

36



6 CI/CD

In software engineering, CI/CD, short for continuous integration (CI) and
continuous delivery and deployment (CD), is a collection of methods, tools,
and practices to develop and deliver high-quality software continuously.

Throughout the software development life cycle, CI/CD builds a bridge
between development and operation activities to reach the highest possible
degree of automation (Figure 6.1). Once successfully introduced and set up
in a project, CI/CD highly reduces the development time and costs.

Figure 6.1: CI/CD software development life cycle: CI automates the build and test work-
flows at every integration step. Subsequently, CD extends the automation to the
release and development process.

37



6 CI/CD

CI aims to lower the number of integration problems by requiring developers
to frequently integrate their changes into a shared repository. A dedicated
system and its tools verify every contribution by building and testing the
project before its integration. CD adds additional methods to release and
deploy new software versions to customers automatically.

The automated CI and CD workflows usually are connected and are referred
to as CI/CD-pipeline. This chapter describes the theoretical background to
CI/CD and its tools, while chapters 7, 8, 9 describe the steps of implementing
a CI pipeline in the Catroweb project using GitHub Actions. Chapter 10

describes the second part of the pipeline responsible for CD. Further, chapter
11 automates various additional workflows.

6.1 Continuous integration

In software projects, developers work independently and simultaneously
on different features of the same product. At some point, the components
must be reunited to form a single product. CI defines various methods and
requirements to reduce software integration costs. The following sections
briefly summarize the criteria specified by Fowler (2020a).

6.1.1 Integration

CI requires every part of a project to be stored in a single repository. All
developers must have immediate access to all features. Traditionally there
exist no rules about the merging process. However, a VCS eases a rational
development and integration process and is an essential requirement for
every project to apply CI. The main branch is the access point to check-out
the most recent version of the project. After developers finish the work on a
feature, their feature branch is merged back into the main branch.

Nevertheless, even with a VCS, the integration progress can be a lengthy
and error-prone task. The chance of conflicts rises proportionally to the time
passed. Every day many different lines of code are added and modified by
simultaneously working developers. CI reduces the risk of conflicts during

38



6.1 Continuous integration

merging. Instead of a few extensive integrations, the merging process is
divided into multiple small integrations. Following the spirit of divide
and conquer highly reduces the complexity and time expenditure of the
integration task. Developers can quickly detect conflicts and issues. Hence,
they can react to them early while they are still easy to resolve. As a
positive side-effect, developers break their work down into smaller junks,
which are more comfortable to debug. Besides, the development process is
continuously communicated between developers.

6.1.2 Verification

Another important aspect of CI requires the main branch to be in a healthy
state at all times. Every contribution must be verified automatically before its
integration. Automating the verification steps is necessary to save valuable
resources and prevent human mistakes. A single command should be
sufficient to build and launch a system. Building a system can be done with
or without testing code. However, working builds do not guarantee that the
software is working as intended. Hence, every contribution must be able to
test itself.

Software tests do not ensure that software is perfect. However, even imper-
fect tests can catch many problems when executed properly and regularly.
Test suites should be automated to check large parts of the codebase by
running a single command. Besides, an automated test must indicate its
failure. To increase the informative value of tests, they should be executed
in an environment identical to the production environment.
Automated dynamic software tests require developers to develop test cases
manually since features without corresponding tests can not be checked for
their functionality. Therefore, CI requires a test-first development to force
developers to integrate new changes and their tests simultaneously. Code
coverage metrics presented in the feedback can assure that developers stick
to test-first development.
Furthermore, CI requires test cycles to be kept short. Developers are not
willing to wait hours for the tests to be finished. Too long test runs result
in infrequent integrations by developers. It is essential to find a balance

39



6 CI/CD

between quality assurance and run time. In some cases, it can be useful to
execute certain unimportant test cases only after the integration.

6.1.3 Accessibility

Non-developers, like product owners, require easy access to the results of
the software development. They rarely find use in the source code itself.
Instead, it is preferred to provide an automatically generated report about
the quality of the contribution. The feedback result should contain every
failing issue and various metrics of all kinds. It should be easily possible to
compare the quality of the software before and after an integration.

6.2 Continuous delivery and deployment

CD extends CI with methods and principles to automatically and reliably
deliver new software releases to customers in short cycles. A project’s
delivery process has to be fully automated. Otherwise, too short release
cycles waste valuable resources.

A CI/CD server to automate software delivery and deployment removes
the necessity of complicated setups and processes. Hence, the required
knowledge and time to deploy a new release is significantly reduced. Even
non-developers like product owners can quickly release new versions within
seconds. A click is enough to initiate the release process. Furthermore,
CI/CD requires all CI tests to pass to initiate CD, and therefore a failing
CI prevents a new release. Hence, a reliable CI system combined with
a high enough code coverage in software tests is essential to apply CD
successfully.

Both continuous delivery and deployment are very similar approaches.
However, continuous deployment takes automation one step further than
continuous delivery. In continuous deployment, a release is initiated without
direct human interaction. Every integration is automatically deployed to
production. Continuous delivery, on the other side, provides a manual
trigger to start the automated workflow.

40



6.3 Benefits and drawbacks

As a result of using continuous deployment, new releases are shipped daily
instead of once every month. There is no need to pause the development for
a new release. Continuously pushing small releases to the public provides
a higher frequency of user feedback. However, for this approach to work,
automated tests must be of the highest possible quality. Only a failing test in
the pipeline stops the deployment process. On the other hand, continuous
delivery still allows developers to control what should be released and
when.

6.3 Benefits and drawbacks

To successfully apply CI/CD’s principles to a project, developers must
adjust their practices and workflows. Also, a CI/CD pipeline requires
dedicated infrastructure and tools to be set up and maintained. In return,
CI/CD significantly lowers the risk of software development and its costs.
Therefore, in large projects, the upfront investment to use CI/CD is usually
worth it. The following key points define the main benefits:

Continuously integrating small patches prevents hasty stressful merging
processes of incompatible versions shortly before a new release. Issues can
be easier tracked down and isolated in small patches. Besides, the frequent
commits build a granular history, clearly communicating the progress in
development.

Several metrics measure every contribution’s quality and provide exten-
sive feedback, allowing developers to quickly react to issues and conflicts.
Thoroughly checking every contribution prevents integration problems and
issues from being merged. Therefore, there exists a stable build of the
software at all times.

Automated workflows increase accessibility by removing complexity and
reduce the overhead to developers. Developers can do more in less time
and focus on the creation of new business-relevant features. Furthermore,
shorter release cycles result in more frequent feedback from users and allow
software teams to react more quickly to marketing conditions.

41



6 CI/CD

6.4 Tools

Theoretically, CI/CD can be managed without any additional tools. Nev-
ertheless, manually setting up the CI/CD infrastructure from scratch can
be a cumbersome task. Fortunately, there already exists a broad set of au-
tomation tools. Several lists on the internet try to rank and describe tools
and programs in the field of CI/CD. For example, Stackify1 alone lists more
than 50 tools. However, describing all of them is beyond the scope of this
work.

The Android and iOS Catrobat teams have already successfully applied
CI/CD using a tool called Jenkins. However, this thesis’s practical imple-
mentations are built using a new tool to realize CI/CD, namely GitHub
Actions.

6.4.1 Jenkins

Jenkins2 works as a self-hosted open-source CI/CD server with hundreds of
plugins to provide a quick and robust chain of build, test, and deployment
tools. Stackify (2020) lists Jenkins as the number one open-source project
to automate a project. The tool is a self-contained platform-independent
Java-based program ready to run out of the box. Developers can build
and configure jobs with scripts to automate any process. Additional plu-
gins extend the possibilities of Jenkins without the need to create custom
scripts.

A built-in web-interface and RESTfull API provide access to the services. The
web-interface contains valuable feedback about running and finished tasks.
Besides, developers can adapt configurations and rerun pre-defined tasks
through the interface. Catrobat’s Jenkins web-interface3 is publicly available
and provides access to detailed feedback for every CI/CD task. Figure4

6.2
provides an example of the feedback from Catrobat’s iOS development.

1. https://stackify.com/top-continuous-integration-tools/ visited on 9 Sep. 2020

2. https://www.jenkins.io/ visited on 9 Sep. 2020

3. https://jenkins.catrob.at/ visited on 9 Sep. 2020

4. https://jenkins.catrob.at/view/catty visited on 9 Sep. 2020

42

https://stackify.com/top-continuous-integration-tools/
https://www.jenkins.io/
https://jenkins.catrob.at/
https://jenkins.catrob.at/view/catty


6.4 Tools

Figure 6.2: Jenkins feedback: The feedback provided by the Jenkins web-interface gives a
clear indication about passed and failed CI/CD tasks.

6.4.2 GitHub Actions

GitHub Actions5 were released by GitHub in 2020 to automate any workflow
during the software development life cycle. GitHub Actions are directly
integrated into source repositories on GitHub. Figure 6.3 shows the GitHub
Actions dashboard6 of the Catroweb repository. Workflows to build, test,
and deploy are directly located in the repository. Even the pipeline feedback
is directly integrated into GitHub’s web interface, and GitHub Actions are
optimized to work with events specific to GitHub.

GitHub Actions are still new on the market. However, the tool and its
community are snowballing, especially since it is free to use for open-source
projects. On the other hand, each GitHub account only receives a certain
amount of free minutes and storage for private repositories. No additional

5. https://github.com/features/actions visited on 9 Sep. 2020

6. https://github.com/Catrobat/Catroweb/actions visited on 9 Sep. 2020

43

https://github.com/features/actions
https://github.com/Catrobat/Catroweb/actions


6 CI/CD

Figure 6.3: GitHub Actions dashboard: GitHub Actions are directly integrated into a repos-
itory on GitHub. A dashboard provides access and feedback to all running and
finished workflows.

software and self-hosted infrastructure are required. Nevertheless, it is
possible to self-host GitHub Actions if necessary.

Workflows can be created from scratch or build using shared actions. A
marketplace provides access to thousands of actions. The practical chapters
of this thesis provide several examples of how to create and use GitHub
Actions.

6.4.3 Comparison between Jenkins and GitHub Actions

While it is possible to use GitHub Actions in a self-hosted environment, the
following comparisons between GitHub Actions and Jenkins only refer to
the free provided services hosted by GitHub. Apart from that, the following
comparisons are tailored to the needs and requirements of the Catroweb
project.

44



6.4 Tools

Costs

For projects and primarily non-profit open-source projects, it is essential
to reduce all costs to a minimum. Paid services like GitHub Actions are
usually paid per minute, moving their usage out of the question for projects
like Catrobat. Self-hosting a service is usually more challenging but cheaper
than monthly payments to a third-party service. Therefore, former Catrobat
team members decided to use Jenkins and self-host all CI/CD services.

Self-hosting a service gives a project full control of every minor detail,
from explicitly defining the hardware for the tasks to run, up to every
little configuration of the services. However, the required infrastructure
and knowledge to build and maintain a CI/CD server, even with a tool
like Jenkins, still produces noticeable acquisition and development costs.
To keep the CI/CD system alive, Catrobat team members regularly have to
invest valuable resources.

A turning point in this situation can be GitHubs current politics about
open-source. GitHub, which is owned by Microsoft, highly values every
contribution to the open-source community. As a result, they offer their
services entirely free for open-source projects like Catrobat. Therefore, the
costs to maintain and acquire the necessary infrastructure can be reduced
to almost zero.

Response time

Catrobat has explicit teams to manage the Jenkins services and the infras-
tructure. However, developers at Catrobat only have limited time and rarely
work full time on the project. In case of errors, it usually takes multiple
weeks for the issues to be investigated and fixed. Usually, teams depending
on the Jenkins’ services have to wait or investigate issues by themselves.
Instead, they could better use their time to work on business-relevant sto-
ries.

GitHub Actions are not perfect either and have problems as well as only
limited availability from time to time (GitHub Status Incident History 2020).
However, on the other side, GitHub has a dedicated team of developers

45



6 CI/CD

working around the clock to improve and maintain the services provided by
GitHub. Issues usually are resolved within hours. The crucial point is that
projects like Catrobat do not have to invest their resources to investigate and
fix the issues. On the other side, if the GitHub team does not immediately
fix particular issues, the projects using their services can only wait and
provide feedback. So there is always a certain amount of risk given by the
dependency on a third-party service.

Environment

Out of the box, Jenkins services run all jobs in the same environment. A
shared environment between independent jobs can speed up processes
but may result in unforeseen issues depending on a particular order of
execution. However, Jenkins has plugins to support a strict separation of
the environment between different jobs.
On the other hand, GitHub Actions run every job on an independent ma-
chine using the desired operating systems, namely Linux, Window, macOS.
Moreover, jobs can run inside a Docker container. In return, the caching and
sharing possibilities with GitHub Actions are still quite limited.

Both Jenkins and GitHub Actions support parallelism to run numerous
tasks simultaneously. Nevertheless, GitHub limits the parallel jobs to 20

machines in their free services. Besides, the maximum number of jobs per
workflow is limited to 256, and no workflow can run longer than 72 hours.
On the other hand, only the available resources limit a self-hosted service.

GitHub Actions support multi-platform matrix builds, which allow a job to
be created to run parallel in different environments. A Plugin can achieve
the same results for Jenkins.

Workflow creation and configuration

Single access to all files and features is an essential requirement by CI and
reduces the costs of developing and maintaining any software or service.
Besides, it lowers the feeling of inhibition for team members, especially
junior developers, to inspect, optimize, or extend any services responsible

46



6.4 Tools

for CI/CD, even if that is not part of their usual task area. GitHub Actions
provide a central point to build and configure any workflow. Every line
of code and configuration required to run the GitHub Actions is included
directly in a project repository. The Jenkins services at Catrobat, on the other
hand, are shared between the project repository requiring the services and
an explicit Jenkins repository used by all teams.

Self-hosting a service like Jenkins enables developers to set up any required
credentials hidden from the public by directly including them on the CI/CD
server. However, the setup process requires a developer to update the
private credentials. GitHub, on the other hand, allows project owners to
create so-called secrets directly in their web-interface (Figure7

6.4). Secrets
secure and hide any information, like production credentials, from the
public. Only a running workflow can access the information hidden in
secrets. Nevertheless, using a plugin, Jenkins can also manage secrets in its
web-interface.

Since all GitHub Actions are directly hosted in the project’s repository,
developers could modify a workflow before its execution. Therefore, GitHub

Figure 6.4: GitHub secrets: Production secrets can be hidden from the public in a secure
storage integrated on GitHub. A workflow can access the hidden information.

7. https://github.com/dmetzner/Catroweb/settings/secrets visited on 9 Sep. 2020

47

https://github.com/dmetzner/Catroweb/settings/secrets


6 CI/CD

Actions running on forked repositories can not use secrets in the current
state. On one side, this is necessary to protect the secrets, but on the other
side, it complicates the usage of GitHub Actions in projects using a forking
workflow. Moreover, developers could disable CI checks as they please. Only
a manual review can prevent this issue.

Feedback

Both tools provide valuable feedback and access to pre-defined actions in
their web-interfaces, where jobs can be initiated or rerun. The feedback
ranges from an immediate indication of a failed pipeline to execution logs
and a detailed report. The main difference between the tools is the location
of their interfaces.

Jenkins reports are not directly integrated on GitHub but a website hosted by
Catrobat. A plugin is necessary to integrate the Jenkins results into GitHub
(Figure8

6.5). On the other hand, GitHub fully integrates the GitHub Actions
feedback. Issues can be quickly detected and investigated without the need
to leave the GitHub repository. Every pull request contains a summary of
all checks (Figure9

6.6) and provides access to detailed logs (Figure10
6.7).

Besides, generated content can be downloaded as artifacts.

Figure 6.5: Jenkins integration on GitHub: Jenkins results can be integrated into GitHub’s
pull request interface using a plugin. Therefore, CI/CD results are immediately
visible.

8. https://github.com/Catrobat/Catroid/pull/3768 visited on 9 Sep. 2020

9. https://github.com/Catrobat/Catroweb/pull/883 visited on 9 Sep. 2020

10. https://github.com/Catrobat/Catroweb/pull/883/checks visited on 9 Sep. 2020

48

https://github.com/Catrobat/Catroid/pull/3768
https://github.com/Catrobat/Catroweb/pull/883
https://github.com/Catrobat/Catroweb/pull/883/checks


6.4 Tools

Figure 6.6: GitHub Actions pull request integration: Every pull request summarizes the
results of all GitHub Actions in the merge interface of a pull request.

Figure 6.7: GitHub Actions pull request feedback: The whole GitHub Actions feedback is
fully integrated into the GitHub interface of a pull request, and developers have
access to detailed execution logs.

In exchange, the Jenkins web interface contains multiple options to cus-
tomize the feedback’s look and feel. At the same time, GitHub provides
no possibilities to tweak the appearance of the integrated GitHub Actions
feedback. External third-party services are necessary to reach similar cus-
tomizability with GitHub Actions as with Jenkins.

49



6 CI/CD

Plugins and support

Over the years, countless plugins and tutorials have been written by the
Jenkins community. Usually, for every occurring problem, there already
exists a solution. On the other hand, GitHub Actions are still very new
and have significantly less information on the web. Moreover, even though
GitHub provides documentation, the available information is limited and
contains little to none practical examples. Nevertheless, the community
is proliferating, and more and more content is produced by developers
worldwide.

GitHub’s counterpart to Jenkins plugins is provided in the form of pre-
defined actions that can be used to build a workflow. Developers worldwide
develop new, freely accessible actions every day and provide them in a
marketplace11. Various hackathons12 accelerate the creation of new actions
to catch up with other CI/CD tools.
In addition to GitHub Actions, projects can include various GitHub Apps
to automate their workflows. While most apps are independent of GitHub
and developed by some other companies, they are usually free of charge
for open-source projects. However, to run successfully, they require various
permissions for a project. Providing read and write access to a third-party
application leaves a project at a certain risk. Therefore, it is recommended
to only use apps verified by GitHub.

Nevertheless, limitations and restrictions in GitHub Actions often still re-
quire complicated workarounds to implement specific workflows. For ex-
ample, projects following the fork-workflow have limited access to secrets
and no write permissions on GitHub Actions that run on a pull request.
Therefore, many existing actions can not be used without several adaptions
first.

11. https://github.com/marketplace visited on 9 Sep. 2020

12. https://githubhackathon.com/ visited on 9 Sep. 2020

50

https://github.com/marketplace
https://githubhackathon.com/


6.4 Tools

Conclusion

”Custom scripts and bespoke systems prevented many of our users from
fully realizing the benefits of CI/CD. GitHub Actions gave us a platform
to deliver intelligent pipelines with minimal up-front investment and no
ongoing maintenance.” (Dan Belcher, 2020)

After intensive testing of GitHub Actions, the service was chosen to auto-
mate all workflows at Catroweb. The main reasons are the zero acquisition
costs and simplicity in creating and maintaining any workflow automation.
With GitHub Actions, the Catroweb team is in full control of its CI/CD ser-
vices and does not depend on other Catrobat teams to accomplish CI/CD.
Although some basic features are still missing, and the documentation is
pretty sparse, all of Catroweb’s requirements have sufficient support. Also,
there already exist thousands of actions to automate any workflow. Fur-
thermore, the GitHub team provides a detailed roadmap about the support
of future features. Their constant aim to improve their services should
allow future developers of the Catroweb team to optimize the workflows
implemented in this thesis further.

In case it is necessary to switch to a self-hosted service again in the future,
developers do not need to create the automation workflows from scratch.
GitHub Actions can be self-hosted.

51





7 CI - Build automation

Building an executable software product from its source code often requires
various steps and different tools. However, automating the build reduces the
complexity and needed time to create an executable significantly. A single
command is sufficient to initiate an automated build process. Besides, an
automated build eliminates variations throughout the building process and
provides a foundation for the CI/CD pipeline.
Every contribution must be tested in the same environment. Even minor
differences can result in various issues. For example, if developers use and
require an updated dependency during development, their code might not
work for developers that still use an older version. Therefore, the code
working on one machine does not imply it will work on others.
Thorough documentation about all dependencies and their exact version
can reduce such issues. However, that requires every developer to stick to
the same specifications strictly. On the other hand, automating the build
on a CI server removes this hurdle altogether. If one developer updates
the environment, the dependencies are automatically updated for every-
one resulting in a uniform system and implicit documentation about all
requirements.

However, Catroweb’s source code is interpreted and must not be compiled
beforehand to run. Hence, no build actions are required, and most issues
can only be detected by running the Share community platform and its
software tests. This problem is described in more detail in section 8.1.
Nevertheless, a specific environment with various installed and configured
programs is required for the application to run. To ease the project’s setup
process, Catroweb uses Docker to build its development and testing environ-
ments automatically and uses package managers that support developers
to maintain and include additional third-party code into the project. There-
fore, the Share community platform’s Docker containers must be built and

53



7 CI - Build automation

tested to ensure that all developers can access a working development en-
vironment. Furthermore, both Docker and package managers provide the
foundation for running static and dynamic analysis checks on the CI server,
as described in chapters 8 and 9.

7.1 Package manager

A package, also often referred to as a library or module, is a software
component that provides the code to solve a problem. Developers can
include and rely on packages for all kinds of use cases. Packages enable
developers to share functionality between different projects in a quick but
maintainable fashion.

Large projects like Catroweb are built using hundreds of packages and
modules. A package manager can be used to ease the integration and
segregation process of such third-party components. Package managers
automate the processes around installing and removing packages to a
project to reduce developers’ workload. Composer1, for example, is the
name of the package manager responsible for all PHP packages in the
Catroweb project. Npm2, on the other hand, handles all modules for the
front-end.

7.2 Docker

Docker3 is a software to build, run, and deploy applications using containers
that run in isolation. A containerized development approach allows switch-
ing between dependencies, without modifying the host system, quickly.
Moreover, Docker removes the necessity of expensive manual installation
and configuration processes. A single command is sufficient to set up a
project on a new machine fully. Besides, all dependencies and configurations

1. https://getcomposer.org/ visited on 9 Sep. 2020

2. https://www.npmjs.com/ visited on 9 Sep. 2020

3. https://www.docker.com/ visited on 9 Sep. 2020

54

https://getcomposer.org/
https://www.npmjs.com/
https://www.docker.com/


7.3 Automate the process

are implicitly documented in a single Dockerfile that must be modified to
update the environment. A Dockerfile is a text document that specifies
exact instructions to build a Docker image. A Docker image can be seen
as a blueprint of an application to build a container. In contrast, a Docker
container is a transient and temporary instance of an image to run the
application. A Docker container can be stopped and restarted.

Best practices for Docker require each service to be in an independent
container. Nevertheless, Docker containers can communicate with each
other. Since the Share community platform requires various services to
run, namely, a web server, a database, a browser, and the application itself,
Catroweb runs every service in a unique container. Therefore, multiple
Docker containers must be configured, connected, and started to develop
and test the Share community platform using Docker. However, all contain-
ers can be started at once with a single command using Docker Compose, a
tool optimized to run multi-container Docker applications.
Catroweb’s testing environment is slightly different from the development
environment. Therefore, the project has two different Docker setups, either
for the development or the testing environment. A third one for the pro-
duction environment is already planned but does not exist yet. The main
difference between the settings is the detail of logging and the number of
attached tools.

7.3 Automate the process

On every creation and merge of a pull request in the Catroweb repository,
a workflow to build and verify Catroweb’s Docker containers is initiated
using GitHub Actions to ensure that developers have access to a working
environment using Docker. In case a Docker container crashes, or the envi-
ronment and the Share community platform do not harmonize, developers
get immediate feedback. Therefore, developers know an integration can not
be accepted without further modifications, either in the Dockerfile or the
source code.

First, the workflow checks-out the source code. Then the job starts to build
and run all containers using Docker Compose. As soon as the containers

55



7 CI - Build automation

are up and running, various additional health checks are performed to
ensure that their most basic features are working. Therefore, as a next
step, the Docker environment is filled with dummy data to provide a livid
development environment. Next, the job runs a few shell commands to
check the website’s availability and response code. Once it is ensured that
the Share community platform responds, a few dynamic tests guarantee all
automation testing frameworks are set up and working.

Listing 7.1 provides the truncated and simplified code for the GitHub Ac-
tions’ workflow written using YAML4. YAML is a human-readable data
serialization language commonly used for configuration files.

� �
1 name: Build

2 on: [push , pull_request]

3 jobs:

4 container_checks:

5 name: Docker container checks

6 runs -on: ubuntu -latest

7 steps:

8 - uses: actions/checkout@v2

9

10 - name: Build and start all containers

11 run: docker -compose -f compose -file up -d

12

13 - name: Create dummy data

14 run: docker exec container creation -command

15

16 - name: Check local share website

17 run: |

18 install -and -configure -tools

19 send -request

20 check -web -page -response

21

22 - name: Run a few software tests

23 run: docker exec container test -command� �
Listing 7.1: Verify Docker build: Catroweb’s Docker containers’ essential functionalities are

built and verified on every integration.

4. The simplified code is marked red.

56



7.3 Automate the process

Finally, the functionality of shared volumes is checked. Using shared vol-
umes, developers do not need to rebuild the whole container after every file
change. Hence, the build frequency and development costs can be signifi-
cantly reduced.
A file must be modified and its impact evaluated to verify the functionality
of shared volumes. One way to do so requires the GitHub Actions job to
write invalid code into a source file. Once a test using the corrupt source
file is executed, the test case fails. However, requiring a step to fail without
failing the whole pipeline is not possible out of the box using GitHub Ac-
tions. Therefore, a little workaround is required (Listing 7.2).

� �
1 - name: Test shared volumes

2 id: s1

3 continue -on -error: true

4 run: |

5 echo ::set -output name=status::failure

6 echo ’invalid code’ > source -file

7 echo ::set -output name=status::success

8 - if: steps.s1.outputs.status == ’success ’

9 run: |

10 exit -1� �
Listing 7.2: Test shared volumes: Testing the impact inside a Docker container after

changing a file’s content outside of the container is necessary to verify that
files are shared between the container and the host. Unfortunately, steps in
GitHub Actions can not expect failure out of the box. A second step to verify
the previous step’s output is required to set up a job that only passes if a step
has failed. The step that must fail is set to a state where it can not fail. A second
step would stop the job with failure if the first step did not fail.

The workflow’s step required to fail must be configured to a state where it
continues on errors. At the beginning of the step, a variable for the status
must be created and set to failure. Next, the tests are executed, and only if
the tests pass, the status variable is set to success. However, in case of an
error, the status variable will remain set to failure. In an additional step, the
status variable can then be checked. Since an error is expected, the job must
only fail in case of no failures. Therefore, a condition checking the status
variable is bound to the next step, and only if it is fulfilled, the GitHub
Actions job exits with an error code.

57



7 CI - Build automation

The final workflow file to thoroughly check the Share community platform
Docker containers is available on GitHub5. In case of any issues during the
workflow, developers have access to detailed logs of every step directly in
the GitHub web-interface. Figure6

7.1 shows the execution logs while the
GitHub Actions are still running.

Figure 7.1: Docker verification feedback: Catroweb’s Docker container test logs are accessi-
ble directly in the GitHub interface. The logs are updated immediately while
the job is running.

5. https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/
container_tests.yml visited on 9 Sep. 2020

6. https://github.com/Catrobat/Catroweb/pull/883/checks?check_run_id=
1091453671 visited on 9 Sep. 2020

58

https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/container_tests.yml
https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/container_tests.yml
https://github.com/Catrobat/Catroweb/pull/883/checks?check_run_id=1091453671
https://github.com/Catrobat/Catroweb/pull/883/checks?check_run_id=1091453671


8 CI - Static analysis

Static analysis is a method to test and debug software without actually run-
ning the program. Methods to statically analyze an application, thoroughly
evaluate the source code itself. Static analysis checks cover every possible
execution path, which is very cost-intensive to achieve with dynamic tests.
Besides, compared to dynamic tests described in chapter 9, static tests find
a different set of errors.

In addition to manual code reviews, static analysis tools highly reduce the
risk of overlooked errors and vulnerabilities. Automated tools are high-
speed and less prone to errors compared to humans. Executing them con-
tinuously throughout the development provides developers with a constant
stream of feedback, allowing them to react quickly to any found issues.
However, static analysis tools can detect false positives, and it is often not
possible to strictly follow all rules. A static analysis tool should only be an
addition to manual code reviews and not a replacement.

Static analysis can find various static issues such as syntax violations, coding
standard violations, typing errors, parameter miss matches, and undefined
variables. Moreover, there exist tools that can detect previously unknown
vulnerabilities in PHP web applications (Jovanovic, Kruegel, and Kirda,
2006). The type of discovered issues heavily depends on the tool itself. There
exist many different tools, optimized for specific languages and domains, to
find everything from simple programming errors to a more sophisticated
detection of issues and vulnerabilities.

This section describes various measures taken to integrate numerous static
analysis tools into a project like Catroweb successfully. On the one hand,
to spot and fix issues in the existing code base and, on the other hand, to
provide developers with continuous feedback while preventing static code
issues from being integrated into the codebase.

59



8 CI - Static analysis

8.1 Static analysis of interpreted languages

A significant part of computer programs is written using higher-level pro-
gramming languages like Java or PHP. Higher-level programming languages
provide substantial abstractions about the details necessary to run a pro-
gram on a computer. Therefore, such languages are easy to read, write,
and maintain by human developers. However, to execute programs written
in high-level languages, they must first be translated into a lower-level
language. Low-level languages are optimized for the underlying hardware
and have little or no abstraction.

A compiler is a computer program that translates a programming language
into another. It usually translates a high-level programming language into
a low-level one. During the conversion, the source code is analyzed and
processed. A compiler must know about the complete source code before
a program’s execution to generate and optimize the code used to run the
program. Errors, such as syntax violations, immediately stop the compilation
process. Less invasive issues are typically shown as a warning. Hence,
compiled languages like Java have an implicit static analysis check included
through their compilers. Programs with syntax errors can not be executed
and ensure a certain level of reliability.

On the other hand, Catroweb is mainly built with PHP and some JavaScript.
Both are interpreted languages, which means that no source code compila-
tion is necessary before running a program. An interpreter translates and
executes a program at the same time. With the resulting gained flexibility,
interpreters increase the responsiveness during the development process.
There is no necessity to wait for the compilation process to finish. It is
possible to update a script within seconds without the need to recompile
a whole application. In return, the execution is usually slower and less
reliable. With an interpreter, the static compiler checks are missing. Many
errors found by static analysis remain unnoticed in the codebase and are
shown only during run-time.
Several static analysis tools are explicitly integrated into the project to
prevent issues detectable by static analysis. The tools and the integration
process are described in section8.3.

60



8.1 Static analysis of interpreted languages

8.1.1 Type hinting in a dynamic weakly-typed language

Programming languages usually have different types of variables. A variable
is a named memory to store information on the computer. The type of a
variable determines properties like its size in memory and the possible
range of values. For example, an integer stores a whole number, while a
float stores a floating-point number. Both types are typically stored using 32

bits in memory. On the other hand, a char can store letters and only needs
eight bits to be stored.

Moreover, the type provides the necessary information on how the data in
memory can be interpreted. Different types support different operations,
and not all types are compatible out of the box. When adding two integers,
it makes perfect sense that the result will be an integer, too. However, what
about adding an integer with a float or a char? The result heavily depends
on the used programming language. Some implicitly convert the result to
one of the types. Others may fail with an error.

Statically-typed languages must know the types of a variable at compile-
time, while dynamically-typed languages check the types during run-time.
Besides, a strongly-typed language prohibits variables from changing their
data type during their lifetime. Variables in a weakly-typed language, on
the other hand, can change their type.

Java is a strongly-typed language. Therefore, the Java code defined in Listing
8.1 results in an type error. The variable must not change its type from a
string to an integer. Also, Java is a statically-typed language, meaning the
error already appears during the compilation process. PHP, on the other
hand, is a dynamically- and weakly-typed language. Therefore, the PHP
code defined in Listing 8.2 results in no type error since the variable can
change its type.� �

1 String x = "2"; //

2 x = 2; // error: incompatible types� �
Listing 8.1: Java type error: Assigning values of incompatible types to a variable of a

different type in a statically and strongly-typed language like Java will result
in a type error during compilation.

61



8 CI - Static analysis

� �
1 $x = "2"; // x is a string

2 $x = 2; // type changed: x is an integer� �
Listing 8.2: PHP type conversion: Variables can change their type in weakly-typed

languages.

Since PHP is dynamically-typed, possible errors will only occur at run-
time. Nevertheless, there are no type errors. In weakly-typed languages, the
compiler or interpreter tries to convert the types implicitly. The results can
be surprisingly different between various languages. Listing 8.3 and Listing
8.4 show the different result of the same calculation in the weakly-typed
languages JavaScript and PHP.� �

1 3 * "3" // = 9

2 1 + "2" + 1 // = "121"� �
Listing 8.3: JavaScript type conversion: Different mathematical operations between different

types in JavaScript may result in different types.� �
1 3 * "3"; // = 9

2 1 + "2" + 1; // = 4� �
Listing 8.4: Another PHP type conversion: PHP converts numbers in string format to

integers.

Removing the constraint to check every type can ease the programming
process and provide an even higher abstraction. However, it allows devel-
opers to develop bad habits and make code more challenging to read and
understand. Besides, detecting errors quickly and consistent is a good thing.
Imagine that a function is called with a variable of the correct type in 99

percent of all cases. The remaining one percent provides an incompatible
type to the function, resulting in an unexpected output. Such issues can be
tricky to find and debug.

PHP 7 started to introduce typed properties into the language. In the past,
developers had to write annotation comments explicitly to hint static ana-
lyzers about the types. The program execution, however, ignores annotation.
The validity of annotations only depends on the developers. Typed proper-
ties enforce the supported types at run-time. In combination with a stricter
typed language, the static analysis tools presented in the next sections

62



8.2 Coding standard

can develop a deeper understanding of the source code and provide bet-
ter analysis reports. Therefore, the code base has been refactored to use
typed properties wherever possible. Nevertheless, some features like union
types are still missing and can not be type-hinted yet. However, PHP 8 has
planned to introduce additional stricter typing features. To further increase
the readability and maintainability, refactoring the source code to utilize the
new type hints is recommended as soon as PHP 8 is released.

8.2 Coding standard

Efficient teamwork is all about communication. A crucial component of this
communication between developers is the code itself. Giving functions and
variables meaningful names, while consistently formatting and documenting
the code where necessary can significantly increase code readability. Every
line of code should be easy to understand, extend, or debug by others
because there is a high chance it will be maintained by someone else. A
large code base should look just as if it was written by one developer even
if hundreds of developers have contributed to the project. In the worst-case
scenario, code is tough to read. Like other aspects of development, with a
lack of proper communication, the cost of development increases.

Every programming language has its own rules to define the syntax of a
program. Some have stricter rules than others, but generally, developers
have some freedom to define their instructions. In that sense, code style
does not impact the code’s performance, nor is it responsible for the code
to work. However, on a large codebase with multiple team members, a
well-formatted clean and consistent code style can be the key to success.
Using a lousy code style is more prone to errors and, all in all, hard to read
for developers.

For example, the code in Listing 8.5 is very sloppy formatted compared
to Listing 8.6, thus making it challenging to understand this small code
snippet right off even though the logic is not complicated. Writing the same
functionality in a clean and meaningful way, like in listing 8.6, one can easily
understand what the code should do.
Clean code allows developers to understand code faster and without the

63



8 CI - Static analysis

need to decipher it character by character. Thoughtful naming gives a clear
indication of the intentions and usage of every variable and function.� �

1 function foo(

2 length

3 )

4

5 {

6 let a = ’abcdefghijklmnopqrstuvwxyz0123456789 ’ ;

7 let b = ’’;;;for (

8 let

9 i=0;i<length;

10 ++i

11 ) {

12 ri

13 = Math.floor( Math.random ( )* a.

length);

14 b +=

15 a.

16 charAt(ri)}return b}

17 console.log(foo(

18 32

19 ))� �
Listing 8.5: Lousy JavaScript code: Bad formatted code is hard to read and understand.� �

1 function generatePassword(length) {

2 let charset = ’abcdefghijklmnopqrstuvwxyz0123456789 ’

3 let password = ’’

4 for (let i = 0; i < length; ++i) {

5 randomIndex = Math.floor(Math.random () * charset.length

)

6 password += charset.charAt(randomIndex)

7 }

8 return password

9 }

10

11 console.log(generatePassword (32))� �
Listing 8.6: Clean JavaScript code: Applying the right code style makes code easy to

understand and read.

It is hoped that developers do not write code as unreadable as the exagger-
ated example in Listing 8.5. However, most of the time, developers have their

64



8.2 Coding standard

unique preferences about code style, which will result in inconsistencies all
over the place over time. Some use style A, some style B, while others do
not care and use none. These inconsistencies increase the complexity, lower
the quality, and increase the chance of merging conflicts between multiple
developers.
Additionally, these inconsistencies do not go well with the human ego of
some developers. Those developers who focus more on a clean code regu-
larly reformat and refactor the code of others. On one side, this might offend
the original author of the changed code. On the other side, every minute of
refactoring is time lost for features that could benefit real customers.
A team should be a unit working together, and a uniform style is a way
to strengthen the alliance between developers. It does not matter what the
exact code style is, but it is vital to apply the same style consistently.

8.2.1 Consistent formatting

Since many slightly different code styles are equally good, and developers
have unique preferences, best practices may differ for different languages
and even projects. Therefore, a developer teams’ primary goal should be to
come to an agreement about a binding code style to apply and enforce on
every contribution. The thing that matters the most is consistency across all
files. Typically, code style issues can be fixed automatically. Still, if that is
not the case, enforcing an exact code style may result in additional overhead
for developers, increasing the development costs even more than a lousy
code style.

Unfortunately, at Catroweb, developers in the past did not care a lot about
the code style. The documentation only slightly mentioned a few basic
coding style rules. Nevertheless, no uniform rule sets have been enforced
over many years. The code happened to be a mix up of almost every
imaginable coding style.

The first step in the right direction was to define the coding style rules
and carve them in stone. Considering that Catroweb is written in multiple
languages, it is more efficient to use different configurations optimized for
every corresponding language. Thereby, those rules are based on industry

65



8 CI - Static analysis

standards, with only minor modifications to fit the existing codebase better.
Every developer can look up the specifications in the official documentation
if necessary.

Even with all those rules specified, without additional tools to automatically
test and apply the definitions, the code style would depend entirely on the
developers and code reviewers. Therefore, human errors are not avoidable.
Besides, reading documentation is a time-consuming process. Luckily, a
handful of proven tools developed by the open-source community already
exist and are used by thousands of projects free of charge to enforce a
specific code style. Instead of writing tools to check the style from scratch,
they only need to be included and configured. Typically, a few lines of
configuration are enough to overwrite default values to fit the requirements
better. Code style checker tools analyze the source code and test every line
against defined rules and report all found issues. Some tools even support
the automatic fixing of code style issues. Typically, a single command is
sufficient to initiate the code style fixing and checking actions. Hence, tools
to control the code style are highly reducing the overhead of writing clean
and consistent code to a bare minimum. Developers do not have to waste
their valuable time on minor code style issues. Besides, the tools provide
valuable feedback about what has changed. So if developers care, they can
quickly learn to improve their code style with every contribution without
the explicit need to read the documentation.

At Catroweb, the project was anything but consistent in its code style.
It was necessary to refactor multiple thousand lines of code to match
the chosen styles. Luckily the tools have been able to fix most code style
errors automatically. The few remaining errors were corrected by hand
to provide an error-free baseline for future contributions without existing
inconsistencies.

8.3 Static analysis tools

Instead of creating a static analysis tool from scratch, this section describes
various open-source software tools that can be used free of charge to analyze
any PHP, JavaScript, or CSS files statically. Besides, the Symfony framework

66



8.3 Static analysis tools

already has built-in support to lint configuration and template files to ensure
their correct syntax. It is worth mentioning that there exist many more static
analyzers. Nevertheless, the following tools were chosen due to their active
community and development and their power and ease of use.

8.3.1 Customization

All of the following tools can be customized with a configuration file in
the project’s root directory to adapt the applied rules to the requirements.
Nevertheless, default configurations ensure that the tools already work
out of the box. In the Catroweb project, the configurations were chosen to
mainly stick to the default values with minor exceptions to fit the codebase’s
existing style.

8.3.2 Installation

There exist different possibilities to install the tools to analyze the project.
Using the package managers, composer, and npm, which already handle
all the Share community platform’s dependencies, all tools can be easily
integrated. However, this approach comes with the drawback of depending
on various tools that are not necessary to run the production software. Such
artificial dependencies could block dependencies that are required to run
the Share community platform. Section 11.4 describes this problematic in
more detail. A further possibility is to integrate the tools only as a pre-built
executable version, independent of the project dependencies. However, to
utilize the benefits of the automatic update process described in section
11.4.1, most of the tools are integrated into the Catroweb project using a
package manager. In case there will be breaking dependencies at one point
in time, it is necessary to switch to executables.

67



8 CI - Static analysis

8.3.3 Analyze PHP files

PHP builds the foundation of the Share community platform. Since there is
no perfect single tool to find every kind of issue, combining multiple tools
is necessary to detect as many problems as possible.

PHPStan1 and Psalm2 are two well-known static analyzers in the PHP com-
munity. Although both tools try to achieve similar results, they have unique
strengths and can spot slightly different problems. Hence, the combination
of both tools detects more issues than just one of them alone. PHPstan and
Psalm support the prevention of most type-related runtime errors and check
for issues like passing too many arguments to functions, referenced code
that does not exist, uninitialized variables, typing errors, and many more.
However, they do not check the code style.

PHP-cs-fixer3 is a code style checker with support to automatically fix code
style issues. With thousands of active users and more than 200 contribu-
tors, the tool’s development seems to be stable for the next years to come.
Henceforth, PHP-cs-fixer is responsible to automatically check and fix all
coding-standard issues in the Share communities platform’s PHP files. The
tool is configured to use all rules defined by the Symfony framework with a
few overrides to fit the code style of the existing codebase.

Supplementary, a PHP copy-paste detector4 is introduced to prevent devel-
opers from copying the same code repeatedly. Instead, developers should
use functions and methods to reuse the same logic to reduce duplicated
code and increase maintainability. Extending or modifying the same logic
must only be done in one central place.

PHPCodeFixer5 detects deprecated functionality that will no longer be
supported in newer PHP versions. Removing deprecated functionality in
a project eases the upgrading process in the future and reduces the risk of
failure during an upgrade.

1. https://phpstan.org/ visited on 9 Sep. 2020

2. https://psalm.dev/ visited on 9 Sep. 2020

3. https://github.com/FriendsOfPHP/PHP-CS-Fixer visited on 9 Sep. 2020

4. https://github.com/sebastianbergmann/phpcpd visited on 9 Sep. 2020

5. https://github.com/wapmorgan/PhpCodeFixer visited on 9 Sep. 2020

68

https://phpstan.org/
https://psalm.dev/
https://github.com/FriendsOfPHP/PHP-CS-Fixer
https://github.com/sebastianbergmann/phpcpd
https://github.com/wapmorgan/PhpCodeFixer


8.3 Static analysis tools

PHPloc6 provides information about the project’s size and complexity. This
tool can not fail the CI pipeline but provides various statistics as feedback.

8.3.4 Analyze JavaScript and CSS files

ESLint7 supports the detection of similar issues like PHPstan and Psalm.
Besides, ESLint can detect and fix code style issues. The tool’s configuration
is set to adapt to the npm standard8 JavaScript coding style.

For Sass and CSS files, StyleLint9 was introduced to detect errors and enforce
conventions in the style files.

Both standards enforced through the tools are no real web standards but
understand the latest syntax with hundreds of rules to catch errors. Besides,
they are used by many major companies, like GitHub.

8.3.5 A baseline to optimize initial results

Introducing static analysis into a large legacy codebase can be an overwhelm-
ing experience. Integrating the static analysis tools into the CI pipeline does
not require much work. However, it can be a very time-consuming process
to include them effectively into a project. For example, summing up all
PHPstan and Psalm errors in the Catroweb repository showed more than 10

thousand static issues that can not be resolved automatically. Immediately
fixing all problems is a highly unrealistic goal, requiring way too many
resources.

Adding the checks to CI would result in a failing pipeline over a long period.
A failing pipeline contradicts the principles of CI. Further, a pipeline that
is regularly failing tends to be ignored by developers, ruining the benefits
provided by CI. New errors easily find their way into the project. The same
issue applies when configuring workflow steps to a state where they cannot

6. https://github.com/sebastianbergmann/phploc visited on 9 Sep. 2020

7. https://eslint.org/ visited on 9 Sep. 2020

8. https://www.npmjs.com/package/standard visited on 9 Sep. 2020

9. https://stylelint.io/ visited on 9 Sep. 2020

69

https://github.com/sebastianbergmann/phploc
https://eslint.org/
https://www.npmjs.com/package/standard
https://stylelint.io/


8 CI - Static analysis

fail and only report bugs. Developers and also code reviewers will ignore the
error messages, rendering the static analysis pipeline checks ineffective.

Therefore, as a first step, the tools were set up using a baseline. A baseline
empowers test results to filter and highlight only newly introduced errors
by remembering the results of a previous run and removing them from the
output. Hence, developers can spot their issues instead of overlooking them
in an ocean of error messages.

Psalm has already built-in support to create a baseline. PHPStan, on the
other hand, is missing a baseline feature. Luckily, it was possible to use
a third tool called SARB10 to create the baseline for both tools. Thanks
to a baseline, developers are not flooded with legacy issues on their new
contributions. Therefore, to provide a minimum quality level, static analysis
can be quickly and still effectively integrated into the pipeline right from
the start.

8.3.6 From a baseline to a solid base

Nevertheless, later on, to increase the project’s maintainability and eliminate
the endless stream of errors and warnings in the project, it was decided to
fix as many errors as possible.

Both Psalm and PHPstan have eight different levels. Low levels only high-
light critical vulnerabilities. In contrast, stricter levels even show less prob-
lematic errors. First, the accuracy was set to the lowest possible level to
reduce the sheer amount of errors. Level by level, refactorings of the code
base fixed thousands of errors. Only a few issues have been fixed auto-
matically by Psalm, and it was necessary to resolve the majority manually.
Luckily many errors had the same pattern. Thus, it was possible to fix them
with the tools provided in modern code editors quickly.

Using the highest level of accuracy produces the safest possible code. How-
ever, it forces developers to watch every minor detail. Besides, working
with third-party libraries can be very challenging. For Catroweb, the final
configuration uses a high but not the maximal level of strictness, which

10. https://github.com/DaveLiddament/sarb visited on 9 Sep. 2020

70

https://github.com/DaveLiddament/sarb


8.4 Continuous integration of static analysis

seems to be the right balance between spotting those critical errors and not
taking up many resources to fix them.

All static analysis tools in the Catroweb project can now be executed without
a baseline and still show an error count of zero. There only remain a couple
of errors in the project’s source code that are not fixable. Those exceptions are
explicitly specified in the configuration files and therefore are not reported
by the tools anymore. For example, such an exception is necessary when
working with the API’s auto-generated code, since the OpenApi generator
has not been producing 100 percent perfectly clean code yet. The API
generation is briefly described in section 11.1.

8.4 Continuous integration of static analysis

Automated static analysis feedback ensures contributions to be well-formatted
and free of static errors, requiring a minimum level of quality at all times,
with fewer errors in the codebase. Besides, developers get immediate feed-
back from the CI system, independent of a reviewer. Consistently getting
notified by static analysis tools about possible issues, developers learn to
write better code. Especially junior developers with little knowledge and
experience benefit the most.

Developers could run the tools locally and fix all issues before creating
a pull request. Nevertheless, all tools described in the previous sections
are integrated into Catroweb’s CI system. If developers do not care about
their code quality errors or make some mistakes, the automated tests still
catch the errors. No time-consuming manual reviews by other developers
are necessary to highlight the issues. Developers can quickly react to the
problems and update their pull requests before a code reviewer manually
checks the code.

Automatically fixing code style issues during the CI workflow would be
possible. However, the CI system only validates the contributions style but
does not fix it. Hence, developers have to run the commands to fix the
problems manually. Implicitly modifying contributions can result in higher
overhead and create more problems than it would solve.

71



8 CI - Static analysis

8.4.1 Automate the process

Every pull request created on the Catroweb repository triggers a static
analysis workflow. In case that developers update their pull requests, the
workflow is started again. Besides, to ensure the quality, contributions
are tested a second time right after merging the changes. In case a static
analyzer detects any issues, the job fails. Developers can click on the failed
step definition and look at the logs containing detailed information about
all code style issues. For example, a part of the output of a failed PHPStan
job can be seen in Listing 8.7.� �

1 ----- ---------------------------------------------------

2 Line src/Admin/AllProgramsAdmin.php

3 ----- ---------------------------------------------------

4 70 PHPDoc tag @var for variable $model_manager

5 contains unknown class App\Admin\ModelManger.

6 ----- ---------------------------------------------------

7 Line src/Catrobat/Controller/Web/DefaultController.php

8 ----- ---------------------------------------------------

9 29 Method App\Catrobat\Controller\Web\

10 DefaultController :: indexAction () has no return

11 typehint specified.

12 61 Method App\Entity\FeaturedProgram :: getUrl () invoked

13 with 1 parameter , 0 required.

14 63 Parameter #3 $featured of method

15 App\Catrobat\Services\ImageRepository :: getWebPath ()

16 expects bool , string given.� �
Listing 8.7: Static analysis feedback (PHPStan): Contributions with static issues result in a

failing pipeline. The log of a failed step provides detailed information about all
detected issues.

Using GitHub Actions to execute a static analysis tool only requires a few
lines of configuration. While static analysis tools require access to the source
code, no complicated setups are needed since it is unnecessary to run the
Share community platform. The workflow runs every static analysis tool in
an independent job. First, a job checks-out the code and sets up the required
dependencies to run the tools using Catroweb’s package manager (Listing
8.8). In case a tool is not integrated into a package manager, the workflow
downloads the latest pre-built executable (Listing 8.9). Finally, the tool can
be executed.

72



8.4 Continuous integration of static analysis

� �
1 name: Static analysis

2 on: [push , pull_request]

3 job -name:

4 name: static -analysis -tool

5 runs -on: ubuntu -latest

6 steps:

7 - uses: actions/checkout@v2

8 - run: |

9 package -manager install

10 run -static -analysis -tool� �
Listing 8.8: Static analysis workflow: Executing a static analysis tool with GitHub Actions

does not require a complicated setup, since the tools only analyze the source
code and no program execution is required. It is enough to install the
dependencies and run the tool on the project files.� �

1 job -name:

2 name: static -analysis -tool

3 runs -on: ubuntu -latest

4 steps:

5 - uses: actions/checkout@v2

6 - run: |

7 wget url -to-pre -built -executable

8 run -static -analysis -tool� �
Listing 8.9: Static analysis workflow job alternative: Tools that are not available through

the package manager can be downloaded from the web instead. After the
download finishes, the tools can be executed.

8.4.2 Optimizations

The static analysis workflow consists of various independent jobs. However,
the jobs themselves are almost all identical to Listing 8.8. Unfortunately,
there is no way to reduce the duplicated code in the current state of GitHub
Actions. Therefore, the logic must be updated on multiple locations in the
same file if the setup process changes. Luckily, GitHub is already working
on a solution to this issue, called composites, that enable developers to
reuse parts of a workflow. Hence, it is planned to switch to a solution
built on composites as soon as possible to increase the workflow files’
maintenance.

73



8 CI - Static analysis

On the other hand, caching is already possible, with a few minor modi-
fications to the workflow job template (Listing 8.10). Instead of installing
all dependencies from scratch, dependencies can be cached with an action
explicitly created to improve the performance of repeatedly setting up envi-
ronments. This action requires developers to specify the files to be cached
and a unique key used to store and restore the dependencies. The key is
created using the package managers’ lock-files since these files change only
if a dependency is updated. As a final step, a condition is added to the
installation command to execute the installation process only if there was no
cache-hit. Therefore, each job tries to restore all dependencies at first. Only
if no dependencies have been restored, the package managers’ installation
process is initiated and cached. In the case of a cache-hit, the workflow
finishes within a fraction of time and regularly saves valuable computation
time.� �

1 - uses: actions/cache@v2

2 with:

3 path: path -to-files -to -store

4 key: hash -lock -file

5 - if: steps.composer -cache.output.cache -hit != ’true’

6 run: package -manager install� �
Listing 8.10: Caching: Adding a caching action to store and restore dependencies saves

valuable computation time.

The most recent static analysis workflow file, containing additional opti-
mizations and verification checks, is available in Catroweb’s GitHub reposi-
tory11.

8.5 Code review

Ensuring the quality of every contribution is an essential but cost-intensive
goal. A code review is a systematic manual investigation of source code to
detect issues and code smell in the source code to enhance the quality.

11. https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/
code_quality.yml visited on 9 Sep. 2020

74

https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/code_quality.yml
https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/code_quality.yml


8.5 Code review

A so-called code reviewer checks the source code written by another de-
veloper during a code review and marks all found issues and problems.
The thorough inspection ensures that new contributions meet all require-
ments and work as intended. Besides, developers can learn from each other
through code reviews and strengthen their teamwork. Typically, develop-
ers do a code review before integrating new contributions to a project.
Nevertheless, it could be done at any time, by any number of reviewers.

A code review is an essential practice to increase the quality of new contri-
butions. However, a manual review is limited by the skills and invested time
of the code reviewer and entirely depends on how the developer handles
the review. A reviewer must spot all problems. However, this is highly
unlikely to manage, even for experienced developers or reviewers in a team
with continually switching members. Hence, relying only on manual code
reviews is prone to errors.
In open-source projects like Catroweb, every contribution counts. Resources
are limited. Therefore, most of the time, minor issues are ignored at code
reviews for simplicity to prevent a never-ending back and forth between the
reviewer and contributor. If a feature is working as expected, it is usually
accepted and merged. It is essential to avoid such abbreviated code reviews
whenever possible, to ensure software of high quality.

Nevertheless, mostly students’ first contributions are highly error-prone and
regularly contain code smells and anti-patterns. Clean and precise code that
is easily understandable by other developers is the exception rather than the
norm. It is a tedious and time-intensive task for code reviewers to explain
and highlight every little detail to new contributors over and over again.
Besides, senior developers and code reviewers at Catroweb are just students
of higher classes and only have limited time and knowledge. Code reviews
that require multiple hours to work up all problems in a pull request are no
rarity.

A CI system strives to support code reviewers by automating as many
checks as possible. Using CI, every contribution must fulfill a particular
standard since tests run automatically on a server for every contribution
and automate the most redundant monotonous processes which elongate
the reviewing process. Developers get feedback from a CI system almost
immediately instead of waiting days for a human code review. However, all

75



8 CI - Static analysis

automated tests and checks only have limited value if a manual code review
is missing. Therefore, an honest and detailed code review is still essential to
improve and maintain the quality of a project continuously and ensure that
every new feature is appropriately designed and tested.
Nevertheless, a reviewer can use the gained time to focus on other aspects,
like giving tips on more important topics like design patterns instead of
checking every line of code for issues that can be auto-detected. Therefore,
developers can achieve better reviews in less time.

In addition to automated tests, manual reviews significantly reduce the
risk of integrating contributions that break existing features. Therefore, at
Catroweb, multiple stages assure the quality of a contribution. After the code
of a developer has passed the CI checks, a code review is first done by any
developer, followed by a product owner. In case there are any modifications
in the front-end, the UX-team is also doing a review of the design.

76



9 CI - Dynamic analysis

Dynamic analysis defines methods to test and evaluate software while it is
running. Compared to static analysis, dynamic analysis does not evaluate
every line of source code, but only those parts of the executed code. While
static tests verify the source code to prevent defects, dynamic tests validate
a program during its execution.
Using dynamic analysis, developers have to think about every possible
scenario to test and develop tests for it. Hence, dynamic testing is expensive.
In return, dynamic tests are capable of uncovering subtle flaws that are
too complicated for static analysis. For example, only dynamic tests can
evaluate the behavior of the software. Therefore, dynamic analysis is usually
performed after static analysis checks to achieve the best possible results.

Dynamic testing can be classified into two categories, namely, functional
and non-functional testing.
Non-functional tests are performed to evaluate and monitor the environment
during a program’s execution, such as memory and CPU usage. However,
non-functional tests are currently only done manually in the Catroweb
project and will not be integrated into the CI system.
On the other side, Catroweb heavily uses functional testing throughout the
development to ensure that the results of predefined inputs, thrown into
the application, match the expected outputs.

Noteworthy, Catroweb’s test suites are not strictly separated into partic-
ular levels, nor do they follow the testing pyramid’s principles. Without
strict planning and the missing knowledge in the project over the years,
Catroweb’s test development has fallen apart. What once started with a thor-
ough plan to test the Share community platform, utilizing BDD and TDD
with all their benefits, left the project only with tests that are challenging to
maintain. Sooner than later, developers started to mix principles and testing

77



9 CI - Dynamic analysis

levels, or even completely forgot to test new features. Catroweb’s test suites
rely on three different test automation frameworks, even while almost all
tests are a mix-up between UI and integration tests, with nearly no unit
tests.

The following sections describe how the existing test suites in the Catroweb
project have been refactored and integrated into a CI system, written using
GitHub Actions, to provide a starting point to improve the testing quality
and, as a result also the overall software quality.

9.1 Test automation frameworks

Test automation frameworks can significantly reduce software testing’s
maintenance costs and effort by increasing the speed and efficiency to
develop software tests. They define guidelines and provide methods to
handle and process test-data. A single command is sufficient to execute
whole test suites. Typically, different frameworks are optimized for different
domains and languages to utilize all possible benefits.

The Catroweb project is a web application mainly written in PHP and relies
on testing tools and frameworks developed for PHP and web development.
The majority of tests are written as Behat1 tests and only a small number is
either a PHPUnit2 or PHPSpec3 test.

PHPUnit is the leading framework to write unit tests for PHP. With PHPUnit,
developers can write any tests without limitations, from complex functional
tests to simple unit tests. On the other hand, Behat and PHPSpec explicitly
focus on certain types of tests. With Behat being a tool for StoryBDD, only
functional tests should be written. In return, they support developers to
think about the software’s external quality, clarify the domain, and specify
all feature requirements. Furthermore, PHPSpec is a SpecBDD tool that
forces developers to think about PHP classes’ design and behavior first,
rather than just writing unit tests. (SymfonyCasts, 2020)

1. https://docs.behat.org/ visited on 10 Sep. 2020

2. https://phpunit.de/ visited on 10 Sep. 2020

3. http://www.phpspec.net/ visited on 10 Sep. 2020

78

https://docs.behat.org/
https://phpunit.de/
http://www.phpspec.net/


9.2 Continuous integration of dynamic analysis

”StoryBDD and SpecBDD used together are an effective way to achieve
customer-focused software.” (Introduction to SpecBDD and StoryBDD 2020)

While each framework could provide its benefits, they are currently not
effectively utilized in the Catroweb project. The Share community platform
is mainly developed by students who miss the knowledge and time to learn
three test automation frameworks at once because, at the same time, they
also have to learn various aspects of web development. Without proper
knowledge about their differences and how to efficiently create software
tests with them, a tool may be misused, and hence, the usage differs from
the intended use case. The past years of the Catroweb project have shown
that many students stick to one framework to rule them all. For example,
many failing PHPSpec and PHPUnit tests have not been fixed or extended.
Developers have only written Behat tests for every possible use case, slowly
drifting away from its StoryBDD principles.

As long as developers do not utilize each testing framework’s benefits,
developers only enjoy the drawbacks of maintaining three different frame-
works. Therefore, the least used framework, PHPSpec, is removed from the
project to reduce the complexity of writing and maintaining software tests
to counteract this issue. All existing PHPSpec tests have been refactored
to PHPUnit tests. Having only two different frameworks to learn should
be less daunting, and a clear assigned purpose for each framework should
highlight the difference between unit and functional tests. Summarized,
this should facilitate inexperienced developers the entry into the world of
testing. In the future, developers should write the majority of all tests as
unit tests using PHPUnit and a few functional tests with Behat to reduce
testing costs. A more granular separation of testing types and levels does
not seem to be feasible at the moment.

9.2 Continuous integration of dynamic analysis

Automated dynamic analysis feedback in the Catroweb project aims to im-
mediately detect issues and broken features due to integrating incompatible
new contributions. Therefore, before, but also after every integration, a pull
request is tested to match the expected outcome of various predefined test

79



9 CI - Dynamic analysis

cases. In return, developers get immediate feedback if a new feature changes
or breaks the existing feature specifications. However, all features must be
sufficiently tested to ensure that the tests can detect problems automatically.
Hence, to motivate developers to write enough tests, code coverage metrics
are added to the feedback to indicate insufficiently tested features.

Like static analysis, all dynamic checks could be run locally by developers
before creating a pull request. However, the tests require multiple hours to
finish and a fully configured environment to run the testing frameworks.
Apart from that, flaky tests, as well as caching issues, can distort the real
results. With automated dynamic analysis in the CI system, code reviewers
do not need to trust developers to run the tests or run them by them-
selves, significantly reducing the required time of a code review. Looking at
Catroweb’s history, it can be seen that developers tend to forget to run all
tests, especially on small patches. However, in a complex system with many
dependencies, this regularly resulted in broken features that required an
immediate hotfix later on.

9.2.1 Automate the process

Every creation, update, and merge of a pull request in the Catroweb repos-
itory triggers a dynamic software testing workflow. While previous static
analysis checks only required access to the source code and a few installed
dependencies, Catroweb’s dynamic analysis checks require a running ap-
plication in a fully set up environment. Installing and configuring various
programs during the workflow would be possible but challenging to main-
tain. However, using Docker, setting up the environment for software testing
is significantly simplified.

After checking out the source code, the workflow uses Docker Compose to
start all of Catroweb’s Docker containers. Docker Compose automatically
downloads and builds all missing images first. Once the containers are
up and running, the tests are executed in the Share community platform
Docker container (Listing 9.1).
If a test case fails, also the workflow step fails. However, like the static
analysis workflow jobs, all tests finish even after failures and do not stop

80



9.2 Continuous integration of dynamic analysis

testing in the middle of the process. As a result, the CI system provides
developers with full feedback at all times. Every failed job provides logs
that contain useful details on which tests failed (Figure4

9.1).� �
1 name: Dynamic analysis

2 on: [push , pull_request]

3 jobs:

4 job -id:

5 name: name -of -the -testing -framework

6 runs -on: ubuntu -latest

7 steps:

8 - uses: actions/checkout@v2

9 - run: docker -compose -f compose -file up -d

10 - run: docker exec container test -framework� �
Listing 9.1: Dynamic analysis workflow: Dynamic analysis requires a program to be

running. Using Docker, the environment setup process is simplified to a single
command. The test automation frameworks are then executed in the running
container.

Figure 9.1: Failing test suite feedback (Behat): The GitHub Actions interface provides an
immediate indication of failed jobs and provides detailed information about
each failing test case.

4. https://github.com/Catrobat/Catroweb/runs/1036079860 visited on 9 Sep. 2020

81

https://github.com/Catrobat/Catroweb/runs/1036079860


9 CI - Dynamic analysis

The logs are immediately available and do not require the whole workflow
to finish. Therefore, developers can already fix the first issues while the
remaining tests finish.

Still, several optimizations described in the following sections are necessary
to increase the workflow’s usability, reliability, and performance. The final
resulting workflow file is available on GitHub5.

9.2.2 Artifacts

GitHub Actions can upload any files as artifacts, which is crucial to share
content between workflows and jobs. Besides, an uploaded artifact can
also be downloaded directly from the GitHub Actions interface on GitHub.
Therefore, generated content like feedback reports or debugging information
like screenshots of the browser of failed scenarios can be easily accessed
and downloaded from GitHub (Figure6

9.2).

Figure 9.2: Download artifacts: Uploaded artifacts can be used in other jobs or downloaded
from the GitHub interface.

5. https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/tests.
yml visited on 9 Sep. 2020

6. https://github.com/Catrobat/Catroweb/actions/runs/226844591 visited on 30

Aug. 2020

82

https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/tests.yml
https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/tests.yml
https://github.com/Catrobat/Catroweb/actions/runs/226844591


9.2 Continuous integration of dynamic analysis

The action to upload an artifact requires only two configuration parameters:
a name for the artifact and the file’s path to upload. However, in case the
artifacts should be uploaded after a failed step, it is crucial to binding the
step to a condition that ensures that the step is always executed even if
the job failed (Listing 9.2). The associated action to download an artifact is
almost identical to use.� �

1 - uses: actions/upload -artifact@v2

2 if: always ()

3 with:

4 name: name -of -artifact

5 path: path -to -file(s)� �
Listing 9.2: Upload artifacts: Files can be uploaded during GitHub Actions as an artifact.

The uploaded artifacts can be shared between various jobs in a workflow.

9.2.3 Parallel testing

Catroweb has written many of its tests in Behat. To be specific, currently,
there exist approximately 15.000 steps that form 900 test cases. Unfortunately,
Behat tests do not support the parallel running of multiple tests out of the
box. Trying third-party packages to do so only results in various issues.
Most Behat tests in the Catroweb project require a particular setup of the
environment and database. Usually, the database is filled in the first steps of
a scenario. Running multiple test cases at the same time results in numerous
race conditions and invalid data fixtures. Preventing those issues would
require a very time-consuming refactoring of all test suites.

However, GitHub Actions have support to run multiple parallel jobs at once.
Splitting the Behat tests into numerous test suites with a few configuration
lines is sufficient to achieve parallelism. There is no need for a costly
refactoring and modification of the existing tests and framework. With a
matrix build in GitHub Actions, a workflow spawns a new job for every
test suite (Listing 9.3). Each of these jobs runs independently from others.
While this does not reduce the overall computation costs, it significantly
reduces the time until the workflow is finished. The distributed test suites
finish their test runs in under half an hour instead of two.

83



9 CI - Dynamic analysis

� �
1 tests_behat:

2 name: Behat

3 needs: build

4 runs -on: ubuntu -latest

5 strategy:

6 fail -fast: false

7 matrix:

8 testSuite:

9 - admin

10 - api

11 - projects

12 - user

13 - ...

14 steps:

15 - uses: actions/checkout@v2

16 - run: docker -compose -f compose -file up -d

17 - name: Behat ${{ matrix.testSuite }} tests

18 run: docker exec container path -to -behat --suite ${{

matrix.testSuite }}� �
Listing 9.3: Matrix build: GitHub Actions support a matrix build to spawn several similar

jobs in a workflow. Running every Behat test suite parallel in its independent
job reduced the workflow’s required time to finish.

Since the tests still run quite long, developers should get full feedback at all
times. Providing developers with only one issue per run is not very efficient.
Therefore, it is vital to turn off the fail-fast workflow strategy to ensure that
all tests get a chance to finish, even if others fail.

9.2.4 Caching

Starting Catroweb’s Docker containers, especially building the Share com-
munity platform image, requires much time since it is built numerous times
throughout various jobs. Unfortunately, GitHub Actions yet do not support
layered caching for Docker Compose. Therefore, each job requires around
15 minutes to build the image. However, it is possible to significantly reduce
the building time by repeatedly reusing the same image throughout the
workflow file. Therefore, the build is performed in its independent job to
accomplish this task. Once the image is built, it is saved and uploaded to

84



9.2 Continuous integration of dynamic analysis

GitHub as an artifact (Listing 9.4). The artifact is then downloaded and used
in other jobs (Listing 9.5). Instead of building the same image several times,
the jobs depending on it can wait for the build job to finish and load the
image into Docker before initiating the Docker Compose process to start all
containers. Hence, the overall build time is significantly reduced.

� �
1 build:

2 name: Build image

3 runs -on: ubuntu -latest

4 steps:

5 - uses: actions/checkout@v2

6 - run: |

7 docker -compose -f compose -file build image

8 docker save image > image -name.tar

9 - uses: actions/upload -artifact@v2

10 with:

11 name: image -name

12 path: docker -path/image -name.tar� �
Listing 9.4: Save Docker image: After building an image, Docker can save and compress

the image to store it in the filesystem. The saved image then can be uploaded
and shared as an artifact.

� �
1 <job -id:

2 needs: build

3 name: name -of -the -testing -framework (test -suite)

4 runs -on: ubuntu -latest

5 steps:

6 - uses: actions/checkout@v2

7 - uses: actions/download -artifact@v2

8 with:

9 name: image -name

10 path: docker -path

11 - run: |

12 docker load < docker -path/image -name.tar

13 docker -compose -f compose -file up -d

14 - run: docker exec container path -to -testing -framework� �
Listing 9.5: Load Docker image: Instead of building a Docker image from scratch in every

job, it can be downloaded as an artifact. Docker can load a saved image in a
fraction of the time it would require to build it.

85



9 CI - Dynamic analysis

9.2.5 Flaky tests

Software tests should be reliable, scalable, and reusable. However, not all
code in software is deterministic. Random aspects like the timing can have a
significant impact on the result of an action. Therefore, software testers try
to remove as many randomnesses as possible from a test-case and produce
zero entropy environments.

A flaky test is a non-deterministic test that sometimes fails, but some times
not. Especially UI tests are very prone to fail with regard to concurrency and
timing issues. Flaky tests are even worse than no tests since they reduce the
trust in the automated test system. In the worst-case scenario, developers
accept a failing test thinking it is a flaky test, while the feature is broken.
Besides, developers want immediate feedback about failed scenarios without
manually verifying the results because of false negatives. However, from
time to time, flaky tests are usually integrated into a project. Even large
companies like Google point out that 1.5% of all their tests are continually
reporting a flaky result. (Micco, 2020)

Unfortunately, half of Catroweb’s Behat tests are fragile UI tests that control
a browser where the result depends on the exact timing. Approximately
450 out of 900 test cases are exposed to the danger of being flaky. Running
those 450 tests 100 times results in an average of 73 failed test cases per run,
leaving the test suites with a rate of false negatives of over 15 percent.

Therefore, the Behat scenarios have been refactored to wait for a web page
and its content to be loaded explicitly before starting the validation process
to reduce the flakiness (Listing 9.6).� �

1 Scenario: Welcome section

2 Given I am on the homepage

3 And I wait for the page to be loaded

4 Then I should see the welcome section

5 And I wait for the sign -in button to be visible� �
Listing 9.6: BDD feature description: A statement to wait for the page to be loaded is

added to every single test and page transition. This approach is significantly
cheaper than refactoring every unique method to wait for a particular element
to prevent flaky tests. However, some elements may still require polling.

86



9.2 Continuous integration of dynamic analysis

Furthermore, dynamic elements are checked several times to ensure that a
test did not fail because of bad timing until they run into a timeout after a
few seconds. The performance drop in overall speed was only minimal and
can be neglected. However, with this modification, a test run only contains,
on average, five tests out of 450 with flaky results. Therefore, the flakiness
of the tests has been reduced to around one percent. To further reduce
the flakiness, specific measures optimized for the particular test case must
be applied. Still, even with all the modifications, flaky tests cannot be 100

percent prevented. Besides, the provided measures are only successful if
developers keep to utilize them while developing new tests.

Manually rerunning test suites multiple times to ensure that a test case
did not just fail because of bad timing is very cost-intensive. Instead, the
workflow is modified to rerun a failed test case three times automatically.
If a test case still fails, there is a high chance the issue is real and was not
caused by bad timing. Luckily, Behat has already built-in support to rerun
only failed scenarios. However, the GitHub Actions job must only fail if
there is still a failing test after all reruns. Therefore, it is essential to explicitly
configure each of the previous test run steps so that they must not fail by
setting them to continue on error. Only the last rerun must not continue on
an error but fail.
However, if no test case fails, the rerun command reruns all test cases again.
Therefore, it is important to execute the rerun steps only if necessary. In
their current state, steps in GitHub Actions can not access the result of a
previous step. However, a variable can be explicitly set to failure at the
beginning of a step. Next, the tests are executed, and if a test fails, the step
stops before executing the remaining command to set the variable to success.
It is essential to provide each step with a unique ID to access the variable
from another step. By binding a condition to an additional step based on
the previous steps’ variables, the workflow job can decide if it should run a
step or not. (Listing 9.7)

Unfortunately, this approach is limited. Since only the last test run can fail,
issues in the first run may be missed. For example, tests with undefined or
pending step definitions are not included in the tests that must be rerun.
Apart from that, severe issues can crash the browser in which the tests run.
If something like that happens, it is not useful to rerun the tests. Therefore,
the first test run is again modified to prevent those issues. The output is

87



9 CI - Dynamic analysis

logged into a file, and additional steps parse the output to ensure that the
log does not contain any of the breaking issues. In case they detect one of
those issues, the workflow fails immediately without rerunning the tests.
(Listing 9.8)� �

1 - name: Test run

2 id: test -run

3 continue -on-error: true

4 run: |

5 echo ::set -output name=status::failure

6 docker exec container path -to -framework

7 echo ::set -output name=status::success

8

9 - name: 1. rerun

10 if: steps.test -run.outputs.status != ’success ’

11 id: test -rerun -1

12 continue -on-error: true

13 run: |

14 echo ::set -output name=status::failure

15 docker exec container path -to -framework --rerun

16 echo ::set -output name=status::success

17

18 - name: 2. rerun # (Similar to 1. rerun)

19 if: steps.test -run.outputs.status != ’success ’ && steps.

test -rerun -1. outputs.status != ’success ’

20 id: test -rerun -2

21 continue -on-error: true

22 run: |

23 echo ::set -output name=status::failure

24 docker exec container path -to -framework --rerun

25 echo ::set -output name=status::success

26

27 - name: 3. rerun

28 if: steps.test -run.outputs.status != ’success ’ && steps.

test -rerun -1. outputs.status != ’success ’ && steps.test

-rerun -2. outputs.status != ’success ’

29 run: |

30 docker exec container path -to -framework --rerun� �
Listing 9.7: Rerun failed Behat tests: All failing Behat scenarios must be rerun three times.

Only the last iteration should decide if a test fails. This approach reduces the
risk of a flaky test result in the final feedback.

88



9.2 Continuous integration of dynamic analysis

� �
1 - run: |

2 cat path -to -log -file;

3 if grep -q "error -ID" < path -to -log -file; then

4 false;

5 fi� �
Listing 9.8: Filter output for critical issues: Since the first test run can not fail, the output

must be thoroughly checked for errors that should immediately fail a job
instead of rerunning the test suite.

9.2.6 Code coverage

Code coverage is a collection of metrics computed by various tools during
the execution of test suites to describe the degree of tested source code lines
to assess software tests’ quality. Usually, many test automation frameworks
support code coverage metrics out of the box to automatically generate code
coverage reports during a test suite’s execution.

There is a high chance that software with high code coverage is better tested
than software with low coverage. However, code coverage can only hint at
the quality of software tests without guaranteeing it. Test quality can only
be assured by including various additional metrics that have to be evaluated
manually by static reviews, such as efficiency and effort (Swati Seela, 2020).
Without quality testing, as Fowler (2020b) points out, high code coverage
numbers can be easily accomplished. Nevertheless, software teams should
strive for a code coverage between 80 and 90 percent.

PHPUnit has already built-in support to measure the code coverage. How-
ever, for Behat, code coverage is not supported. Kudryashov (2020), a main-
tainer of Behat, points out that code coverage is nonsense for storyBDD,
especially in Behat, since feature descriptions are not tests about the code
itself but the behavior. Nevertheless, in many projects, such as Catroweb,
developers do not draw such a strict distinction between the description
in feature files and the hidden logic in context files (Wright, 2020). Fortu-
nately, there are plugins for Behat to support code coverage, requiring only
a minimum of configurations.

89



9 CI - Dynamic analysis

Providing developers with continuous feedback about the coverage metrics
helps them ensure that enough tests have been written. In the current
state of Catroweb, the code coverage is still meager, and developers at
Catroweb should focus on increasing it. Therefore, the test automation
frameworks have been configured to generate code coverage reports during
their execution. However, since the tests are split into numerous independent
test suites, it is essential to combine the reports first, rather than uploading
countless independent coverage reports as artifacts. Therefore, a tool, free
to use for open-source projects, called Codecov, is added to the project to
accomplish this task.

Codecov

Codecov7 can be configured through a single file in a project’s repository.
After initializing Codecov in a project, the official Codecov action (Listing
9.9) is used to upload every report created by the parallel and independently
running test suites of this workflow. Codecov automatically merges all
coverage reports of the same pull request and provides developers with a
single feedback report.� �

1 - uses: codecov/codecov -action@v1

2 with:

3 file: path -to-code -coverage -file� �
Listing 9.9: The official Codecov action is used to upload code coverage reports to Codecov.

Codecov is integrated seamlessly into GitHub. Once the report is fully
assembled, a summary of the code coverage metrics is added as a comment
to a pull request, giving a clear indication about the increase or decrease of
code coverage due to this new contribution (Figure8

9.3). A more detailed
report with access to inspect every line of code is not included in GitHub
but on the Codecov web-interface. Codecovs web-interface also provides
various additional charts to analyze the code coverage metrics further.

7. https://codecov.io/ visited on 9 Sep. 2020

8. https://github.com/Catrobat/Catroweb/pull/883 visited on 9 Sep. 2020

90

https://codecov.io/
https://github.com/Catrobat/Catroweb/pull/883


9.2 Continuous integration of dynamic analysis

Furthermore, this tool can be configured to fail the CI pipeline if the code
coverage falls below a certain threshold. This threshold can be absolute or
relative to the changed files of a pull request. Since Catroweb’s current code
coverage is still under 50%, using the relative coverage measurements seems
more suitable. The relative code coverage is only concerned about files that
are modified in the pull request.

Figure 9.3: Codecov GitHub comment: The code coverage reports are uploaded and merged
through GitHub Actions using Codecov. Then, Codecov comments a summary
to the pull request.

91





10 Continuous delivery

Apart from a reliable CI system, it is crucial to automate the release process
required by CD to establish CI/CD in a project. Short release cycles require
a well-tested codebase to prevent releasing critical bugs and issues to the
public. While the code coverage of the Share community platform could be
higher, the CI system implemented in this thesis should provide a strong
foundation to use continuous delivery in production at Catroweb.

On the other hand, applying continuous deployment in the project’s current
state would be of high risk. Without any human interaction, it is necessary
to improve the tests’ quality and coverage first. Besides, it would be required
to rework the currently used workflow to use continuous deployment. In
contrast, Catroweb’s workflow perfectly fits a development using continuous
delivery. However, continuous deployment is already used for deployments
in the test environment.

This chapter describes test deployments of pull requests during develop-
ment, followed by an automated release to production.

10.1 Continuous test deployments

It is essential to test new features before releasing them to production. To
manually test a contribution, it is necessary to set up the project and check-
out the pull request. Without knowledge of the project and the deployment
process, it can be challenging to accomplish this task. Automatically deploy-
ing the changes to a public server improves the accessibility and removes the
hurdle for non-developers. Therefore, new features can be accessed using
only a browser without a complex local environment to host the project.

93



10 Continuous delivery

However, in the past, this deployment process was done manually by
developers and required valuable time. Additionally, it was only possible to
deploy one pull request per server at once. With limited available servers,
developers were in the constant need to switch the deployed versions.

10.1.1 Automate the process

At the same time, when this thesis started, a member of the Catroweb team
developed a program to deploy every open pull request to the Catroweb
repository automatically. This auto-deploy program utilizes a wild card
domain to deploy multiple pull requests on the same server at once, which
reduces the needed number of servers in use by the Catroweb team. A
scheduled task on a test server runs a python script to check for new pull
requests on GitHub every few minutes. The script deploys a new pull
request to the test server shortly after its creation on GitHub. In case a pull
request is updated, the system redeploys the pull request. After merging
or closing a pull request, the auto-deployer removes all the pull request
data from the test server. Figurer1

10.1 shows the web-interface of the auto-
deploy program that allows users to navigate between the different deployed
versions. The script is available as an open-source project on GitHub2.

In projects that apply CD, a passing pipeline is usually the baseline to
initiate the deployment process. However, this script works independently
of the CI system. Even a failing pipeline deploys a pull request. The checks
are ignored by intention to enable a pull request to be manually tested while
it is still work in progress. Especially in a test-first development, unfinished
features have new tests that fail during the development. This approach does
not fit the production environment but works well during development.
Hence, non-developers, such as the usability team and product owners, can
react quickly if a feature development went wrong.

1. https://web-test-1.catrob.at/ visited on 31 Jul 2020

2. https://github.com/Catrobat/Catroweb-AutoDeploy visited on 9 Sep. 2020

94

https://web-test-1.catrob.at/
https://github.com/Catrobat/Catroweb-AutoDeploy


10.1 Continuous test deployments

Figure 10.1: Catroweb’s test deployments: Catroweb’s auto-deploy system provides an
interface to navigate between pull requests from GitHub that have been auto-
matically deployed onto a test server by a scheduled script which runs on a
test server.

10.1.2 Challenges

Implementing GitHub Actions to initiate test deployments is impossible
using the pull request event as a trigger. Several secrets are necessary to
configure the deployment process. Due to the git fork workflow used by the
web team, GitHub Actions triggered by forked repositories have no access
to the secrets defined in the official repository. However, a similar imple-
mentation via GitHub Actions using scheduled events would be possible.
Still, no such workflow has been implemented during this thesis since the
existing approach works perfectly fine and does not require many resources
to maintain. Implementing scheduled GitHub Actions that can be used to
access secrets without the security risks of sharing secrets is described in
chapter 11.

95



10 Continuous delivery

10.2 Continuous release deployment

As already mentioned in section 5.3, there exists a master branch in the
Catroweb repository that should represent a direct reflection of the currently
deployed Share community platform. Hence, the master branch can also be
referred to as the production branch. However, in its current state, deploying
a new release is possible without the need to integrate the changes into
this branch or vice versa. There exists nothing to enforce this one-to-one
relationship. When comparing the latest versions of the production branch
on GitHub with the versions deployed to the server, some differences can be
seen. Apart from that, manually deploying a release still requires a developer
with access to all credentials and a fully set up development environment.
The need for a fully configured environment makes it complicated for non-
developers like product owners to quickly deploy a new release. This section
describes a workflow that automatically deploys the newest release to the
production server to meet the technical requirements of using CD in the
Catroweb project.

10.2.1 Automate the process

The workflow described in this section automatically deploys a new version
as soon as the production branch changes. Consequently, developers do
not need to care about releasing the latest version anymore. As soon as a
new release is merged into the production branch, the delivery process is
initiated. A merge into other branches, such as the develop branch, does not
trigger the process because other branches usually contain new features that
may not be ready to be released yet. Therefore, as a first step, it is critical
to define that the job must only react to a push into the production branch
(Listing 10.1).� �

1 on:

2 push:

3 branches: [ master ]� �
Listing 10.1: The workflow is only initiated on a push to the master branch.

96



10.2 Continuous release deployment

Next, the workflow checks-out the source code and installs a program
called OpenConnect. Using OpenConnect, a virtual private network (VPN)
connection to the server’s location in the network of TU Graz is established,
which is necessary because the server is only reachable using SSH within
the university network for security reasons. SSH, short for Secure Shell,
is a cryptographic network protocol to secure connections in an insecure
network, like the internet. The OpenConnect VPN connection is configured
with credentials piped into the process as parameters. (Listing 10.2)� �

1 - run: |

2 sudo apt -get --yes --force -yes install openconnect

3 printf "${{ secrets.VPN_PASSWD }}" | sudo openconnect

vpn.tugraz.at --user=${{ secrets.VPN_USER }} &

disown� �
Listing 10.2: Establish a VPN connection in GitHub Actions using secrets.

It is important to note that the credentials are stored as secrets on GitHub
instead of directly including them in the workflow file. For simplicity,
the workflow reuses Catroweb’s existing deployment script from here on.
However, setting up the environment requires even more credentials. Most
required credentials, hidden in the secrets’ storage, must be written into the
local environment files. (Listing 10.3)� �

1 - run: printf "key=${{ secrets.key> }}\n" >> .env.local� �
Listing 10.3: Set up private credentials using secrets: Various secrets must be piped into

the configuration files.

Catroweb’s deployment script is built within the Symfony framework and
its packages. Therefore, Docker is used to set up the necessary environment.
Next, inside the Docker container, SSH must be installed and configured
with a private SSH key. The corresponding public key is registered on the
server. Setting up the server must be done once manually and independently
of this workflow. Finally, the script initiates the deployment. The script is
responsible for updating the server’s code, clearing the cache, installing new
assets and dependencies, migrating the database, and restarting all services.
(Listing 10.4)

97



10 Continuous delivery

Although this workflow’s complexity compared to previously defined work-
flows, less than 50 lines are sufficient to create the workflow. The code is
available in the Catroweb GitHub repository3.� �

1 - run: docker -compose -f compose -file up -d

2 - run: docker exec container -name install -ssh

3 - run: docker exec container -name configure -ssh

4 - run: docker exec container -name deploy -command� �
Listing 10.4: Initiate deployment from inside a Docker container: The deployment is done

inside a Docker container. Therefore, SSH must be installed and configured
before initiating the deployment script.

10.2.2 Challenges

With the need for five different secrets, it is essential to keep them up-to-date
for the GitHub Actions to work flawlessly. An invalid or missing secret
results in a failing deployment process. Some secrets must be updated
from time to time. For example, the university credentials are only valid
for a maximum of 450 days. In case of a failing deployment process, it is
necessary to update the secrets and rerun the workflow.

During the development, from time to time, not only the code changes but
also its environment. Environmental changes, like a new PHP version, must
still be done manually. Therefore, before starting the deployment, a devel-
oper must connect to the server and upgrade all necessary dependencies.
To prevent this manual interaction, the deployment process at Catroweb
requires a fundamental change. Instead of a native setup of the environment,
Docker containers will be responsible for hosting the production services,
similar to the testing and development environment. Instead of only deploy-
ing a Docker image, Kubernetes4 will be used to cluster multiple containers.
The transition to Kubernetes is not part of this thesis. However, it is already
a work in progress by the Catrobat team.

3. https://github.com/Catrobat/Catroweb-API/blob/develop/.github/workflows/
deploy.yml visited on 9 Sep 2020

4. https://kubernetes.io/ visited on 10 Sep. 2020

98

https://github.com/Catrobat/Catroweb-API/blob/develop/.github/workflows/deploy.yml
https://github.com/Catrobat/Catroweb-API/blob/develop/.github/workflows/deploy.yml
https://kubernetes.io/


11 Workflow automation

Apart from CI/CD, several other software development tasks are applicable
to be automated. Automating workflows removes the risk of human errors
and highly reduces their complexity, even allowing non-developers to take
care of those tasks. Less manual work drastically reduces the workload on
developers and hence reduces the development costs.

The workflows to automate can be entirely independent of the code in
the project. From sending out notifications or creating meeting notes once
a week, almost everything is possible. The GitHub Actions marketplace
provides access to all kinds of pre-defined workflows. In case no appropriate
GitHub Actions exist, writing one from scratch has almost no limitations.
However, this chapter describes how workflows can be automated using
GitHub Actions in the Catroweb project.

11.1 API code generation

Until 2020 unstructured routes without any standards nor documentation
were the weak fundament of Catroweb’s API. Other teams could not use
the API effectively. Every small detail had to be reverse-engineered by
manually searching through the Share community platform’s codebase.
Besides, the web team communicated no changes to other teams, which
resulted in problems too often. Therefore, based on an explicitly defined
REST OpenAPI specification, the development of a new API system has
started during the last year. The OpenAPI1 specification is a broadly adopted
standard in the industry for describing modern APIs. This approach defines

1. https://www.openapis.org/ visited on 9 Sep. 2020

99

https://www.openapis.org/


11 Workflow automation

Catroweb’s API specifications in a single Swagger file2. The specifications
describe in a detailed fashion how to construct a request and what responses
to expect, providing a clear contract between the web team and everyone
using the API. Any Swagger editor can render the specifications to create a
pleasant and precise representation of the API.

Catroweb uses an OpenAPI code generator3, with configurations, enabled
to support PHP and Symfony, to generate a significant part of the code
necessary to implement the described API. Catroweb uses a repository on
GitHub to host the auto-generated code as a package. Therefore, a depen-
dency manager like Composer can include the package into the Catroweb
project. Developers only need to implement the remaining missing logic, like
database queries, to satisfy the API requirements. Such an automated pro-
cess highly reduces the work that must be done by the developers. Moreover,
generated routing configurations, interfaces, models, and controllers ensure
the consistency between the actual implementation and the specifications.

11.1.1 Automate the process

The API code itself is auto-generated, but the process of generating the
code still requires manual work. The code must be up-to-date with the
specifications at all times. This section implements a workflow using GitHub
Actions to automate the code generation process to reduce developers’
workload.

Whenever the specification is updated, developers must set up the generator,
delete the old files, re-generate the code, fix its style, and push it to the
repository. From now on, the development team only has to click a button
on GitHub to trigger the generation whenever the content of the Swagger
file changes. The generation process using this workflow is fast and does not
need any local setup. Therefore, it can be done even by non-developers, like
product managers. As a result, the workflow creates a pull request during
its execution containing all updates (Figure4

11.1).

2. https://github.com/Catrobat/Catroweb-API/blob/develop/catroweb.yaml visited
on 9 Sep. 2020

3. https://github.com/OpenAPITools/openapi-generator visited on 9 Sep. 2020

4. https://github.com/Catrobat/Catroweb-API/pull/34 visited on 29 Jul. 2020

100

https://github.com/Catrobat/Catroweb-API/blob/develop/catroweb.yaml
https://github.com/OpenAPITools/openapi-generator
https://github.com/Catrobat/Catroweb-API/pull/34


11.1 API code generation

After being manually triggered, the workflow checks-out the code and re-
moves all old auto-generated files. Removing all files first prevents code that
is not used anymore from living in the package as dead code. After the dele-
tion, the workflow pulls the latest OpenAPI generator Docker image from
the network. As soon as the download ends, the generator is configured and
executed to produce a Symfony compatible code. In the post-processing, the
code style is fixed with the PHP-cs-fixer to match Catroweb’s project style.
Finally, the new files are automatically committed and pushed to the reposi-
tory. In case of changes, the workflow creates a pull request into the develop
branch. Instead of implementing the whole interaction with the GitHub API
from scratch, the workflow utilizes an action5 already written by other devel-
opers to create and update pull requests using GitHub Actions. Using this
action reduces the needed code for this step to a few lines of configuration.

Figure 11.1: Code generation pull request: The code generation workflow creates a pull
request during its execution. The pull request contains all automatic generated
code updates in one commit with additional information in the description.
The author of the commit is a GitHub bot.

5. https://github.com/peter-evans/create-pull-request visited on 9 Sep. 2020

101

https://github.com/peter-evans/create-pull-request


11 Workflow automation

Less than 30 lines of code define the resulting workflow file. A short version
can be seen in Listing 11.1 while the complete and fully configured workflow
is available on GitHub6.� �

1 name: Code Generation Pull Request

2 on:

3 workflow_dispatch:

4 jobs:

5 createPullRequest:

6 name: Code Generation Pull Request

7 runs -on: ubuntu -latest

8 steps:

9 - uses: actions/checkout@v2

10 - run: |

11 remove -old -files

12 docker run openapi -generator -with -config

13 - uses: docker:// oskarstark/php -cs -fixer -ga:latest

14 - uses: peter -evans/create -pull -request@v2� �
Listing 11.1: Code generation workflow: After removing all files, new code is generated

using Docker. Once the code style is fixed using PHP-CS-Fixer, a shared action
is used to create a pull request.

11.1.2 Challenges

Automatically merging is no option with the workflow used by Catroweb.
Before a merge, the new changes must be reviewed by at least two different
developers. Therefore, pull requests have been chosen to integrate the
updated code into the repository while keeping the four-eyes principle to
maintain quality. Besides, it is impossible to merge into the develop branch
without a pull request, since the develop branch is protected.

Different types of events to initiate the workflow have their unique benefits
and drawbacks. A manual trigger has proven to be the most efficient one to
use for this automatic code generation. Figure 11.2 shows the interface of
this trigger directly integrated on GitHub. Using an event triggered by a pull
request’s creation has the same integration overhead as if developers would

6. https://github.com/Catrobat/Catroweb-API/blob/develop/.github/workflows/
create_pull_request.yml visited on 9 Sep. 2020

102

https://github.com/Catrobat/Catroweb-API/blob/develop/.github/workflows/create_pull_request.yml
https://github.com/Catrobat/Catroweb-API/blob/develop/.github/workflows/create_pull_request.yml


11.1 API code generation

create the code themselves. Pull requests would have changes in many
different files. However, having only one modified file instead of many files
reduces the risk of merge conflicts between multiple pull requests. Resolving
fewer merge conflicts reduces development costs.

Using a trigger on the merge of a pull request prevents merge conflicts in
auto-generated files. Nevertheless, a trigger like this is not perfect either.
Typically, there exist multiple open pull requests to change the specification
at once. There is a chance that developers merge pull requests in a short
interval from time to time. With GitHub Actions in their current state, it
is impossible to prevent multiple parallel executions of a workflow. Hence,
race conditions might appear while working with a single branch for the
code generation pull request. The only way to bypass this risk is to use a
new branch accompanied by a new pull request for every new run. Since
only the latest pull request contains the most recent changes, this wastes the
CI system’s computation time by generating pull requests with outdated
content. All outdated pull requests must be closed and deleted manually,
leaving developers at risk to remove the wrong pull request and merge an
obsolete version. A human error like this might break a new release.

Figure 11.2: Manual workflow trigger: A click on the manual trigger button initiates the
code generation workflow. It is possible to configure the workflow’s execution
branch in hindsight.

103



11 Workflow automation

A workflow utilizing a scheduled job at regular intervals prevents the
parallel execution. However, it is still essential to use large enough time
frames to avoid overlaps. Due to the mentioned restrictions, the manual
trigger provides various benefits. The manual workflow trigger must be
used once after integrating the specification changes before releasing a new
API version. This approach prevents code generation spam in the repository
due to outdated pull requests. It also keeps the git history shorter and saves
valuable computation time of the CI/CD server.

11.2 Synchronize Crowdin translations

The Catrobat project, including its Share community platform, attaches great
importance to reaching users worldwide. An essential aspect of achieving
this is the internationalization and localization of all its services. While
automatic translation continuously improves, it still lacks accuracy based
on the context (Voita, Sennrich, and Titov, 2019). Therefore, to effectively
manage all of the multilingual content, Catrobat uses Crowdin and manual
translations.

Crowdin is a platform where projects, like those from Catrobat, regularly
upload their translation source files. Catroweb provides its strings, which
build the base for all other languages exclusively in English. Every transla-
tion pair consists of an ID, and the text requiring translations. At Crowdin,
volunteers worldwide are allowed to translate the uploaded strings into any
language. For every different language and even dialect, the translations
can then be downloaded from Crowdin and included in the project. Thanks
to Crowdin’s service, the Share community platform can provide its users
content in more than 100 languages and dialects. In case a translation is
missing, the English base is available as a fallback alternative at all times.

11.2.1 Automate the process

New contributions frequently introduce new strings to the project. However,
developers must upload them manually to the platform, and as soon as new

104



11.2 Synchronize Crowdin translations

translations are available at Crowdin, they must be downloaded and pushed
into the Catroweb project. The upload and download process requires au-
thentication, access to the correct configurations, and a developer’s precious
time. Even if this synchronization process only takes up a few minutes, it
sums up high amounts of wasted resources over a more extended period.
Therefore, the synchronization process was done at a maximum once a
month to prevent the manual overhead (Figure7

11.3).

Consequently, newly released features are typically missing their transla-
tions for the first few weeks. However, by running this process daily, there
is plenty of time between creating a new string and its release. Therefore,
this continuous updates highly increase the chances of already providing
fully localized and translated features on the day of release.

Figure 11.3: Translation file revisions: The history of Catroweb’s translation source file
(catroweb.en.yml) shows the infrequent uploads to the Crowdin platform done
by the Catroweb team in the past. Since the automated synchronization was
introduced in July, the file is updated more frequently with smaller patches.

7. https://crowdin.com/project/catrobat/settings#files visited on 20 Aug. 2020

105

https://crowdin.com/project/catrobat/settings#files


11 Workflow automation

The introduced synchronization workflow (Listing 11.2) process runs every
24 hours and can be triggered manually if necessary. Whenever the project
contains new strings, they are uploaded to Crowdin8. If there exist new
translations, the workflow automatically creates a pull request containing
all updates from Crowdin to Catroweb’s repository. An already open pull
request updates itself with the latest changes every day.� �

1 name: Synchronize Crowdin

2 on:

3 workflow_dispatch:

4 schedule:

5 - cron: ’0 0 * * *’

6 jobs:

7 synchronize -with -crowdin:

8 runs -on: ubuntu -latest

9 steps:

10 - uses: actions/checkout@v2

11 - uses: crowdin/github -action@1 .0.9

12 with:

13 upload_translations: true

14 download_translations: true

15 config: ’crowdin.yml’

16 env:

17 key: ${{ secrets.key }}� �
Listing 11.2: Crowdin synchronization workflow: Translation resources are synchronized

daily with Crowdin. The workflow uses an official action from Crowdin.
GitHub secrets hide the credentials from the public.

The steps to implement the mentioned procedure are all handled by an
official action developed by Crowdin. In the past, the Crowdin configuration
file was never publicly available. Now, these configurations are directly
located in the project. However, it is essential not to commit any credentials
to the project, like the secret project ID and token. Hence, the configuration
file only contains placeholders for those values, and GitHub secrets set up
those private credentials during the process.

The workflow is triggered automatically every day at midnight, using the
scheduled event of GitHub Actions. The Crowdin project ID and token are
stored in GitHub’s secure storage for secrets and provided to the workflow

8. https://crowdin.com/project/catrobat visited on 9 Sep. 2020

106

https://crowdin.com/project/catrobat


11.2 Synchronize Crowdin translations

only as environment variables. The settings enable the upload and down-
load process and define the path to the configuration file. The Crowdin
action works out of the box, and further tweakings are not necessary. The
workflow file defines the synchronization process with less than 30 lines
and is available on GitHub9.

Nevertheless, to prevent unnecessary runs of scheduled GitHub Actions in
forked repositories, a condition is added to the job to ensure that it will only
be executed in the official repository (Listing 11.3).� �

1 synchronize -with -crowdin:

2 if: github.repository == ’Catrobat/Catroweb ’

3 runs -on: ubuntu -latest� �
Listing 11.3: Job condition: A job can have a condition on which the workflow decides if a

job should be executed or not.

11.2.2 Challenges

Bearing in mind the need for secrets and the git fork workflow used by
Catroweb, it is impossible to trigger this workflow on a pull request. Contri-
butions from a forked repository have no access rights to the secrets defined
in the central repository. It would also not make any sense to prepare trans-
lations for strings before they get integrated into the project’s mainline.
There is a chance they will be changed during the review process.

Initiating the workflow on a merge event would be possible. However, it was
decided to run the task on schedule. This approach provides the benefit of
being independent of pull requests. After all, the download process of new
translations has nothing to do with new project contributions. Therefore,
synchronization is done once a day, which should be often enough for all
use cases. Furthermore, it prevents possible issues during multiple parallel
executions of the same workflow. Additionally, there is a manual trigger
available to initiate the workflow in case of problems.

9. https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/sync_
crowdin.yml visited on 9 Sep. 2020

107

https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/sync_crowdin.yml
https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/sync_crowdin.yml


11 Workflow automation

11.3 Checking for new bricks

Figure 11.4: User project’s code statistics: Users of the Share community platform have
access to a project’s code view and its statistics on a project’s detail page. The
Catblocks team is responsible for the code view. The web team only remains
to maintain an old version of it.

The Share community platform hosts projects from users all around the
world. Projects uploaded to the platform are analyzed to fill the detail
page of a project. Amongst other things, the provided content includes
information about the objects and bricks used to create the project. Figure
11.4 shows the code statistics10 and code view11 of a project. To parse the
information and calculate the correct numbers, Catroweb must know about
all existing bricks. However, the Catroid team, responsible for the Android
implementation of Pocket Code, regularly implements new bricks and
releases them to the public. Therefore, the web team should already register
those bricks in the Share community platform before their public release.
Else, the bricks fall into an unknown category, and correctly rendering the
bricks is impossible.

10. https://share.catrob.at/app/project/32577/code_statistics visited on 9 Sep. 2020

11. https://share.catrob.at/app/project/32577/code_view visited on 9 Sep. 2020

108

https://share.catrob.at/app/project/32577/code_statistics
https://share.catrob.at/app/project/32577/code_view


11.3 Checking for new bricks

In the past, the Catroid team had to communicate new bricks to the
Catroweb team so that the web-team could set up the new bricks for the
Share community platform. However, the communication was missing from
time to time, and Catroweb was not supporting all existing bricks. Hence, to
check which bricks are exactly missing, it is necessary to manually compare
the files in the Catroid and the Catroweb repository.

11.3.1 Automate the process

A scheduled workflow using GitHub Actions compares the bricks registered
in Catroweb with all bricks from Catroid once a day. Missing bricks in
the Share community platform fail the workflow. The failing step contains
detailed information explaining developers the steps needed to implement
a missing brick. The automatization of the brick comparison prevents that
information gets lost in team overlapping communication. The workflow
reminds the web team daily until the problem is solved.

A PHP script12 downloads all files containing information about the imple-
mented bricks from the Catroid repository. The files are from the develop
branch, and therefore, the Catroweb team can be notified even before the
Android team releases the bricks to the public. Once the download finishes,
the script parses the files for information about the implemented bricks.
A similar process parses the file responsible for registering bricks in the
Share community platform. In the end, the program compares all gained
information from both repositories. If there are differences, the workflow
fails and displays information on how to proceed.

The GitHub Actions specific code requires a minimal set up of a few lines
to execute the script. The workflow must install PHP and set up the per-
missions to execute the script. However, from there on, the only remaining
thing to do is to run the script. The workflow is provided in Listing 11.4
and is available on GitHub13.

12. https://github.com/Catrobat/Catroweb/blob/develop/bin/
checkCatroidRepositoryForNewBricks visited on 9 Sep. 2020

13. https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/
check_for_new_bricks.yml visited on 9 Sep. 2020

109

https://github.com/Catrobat/Catroweb/blob/develop/bin/checkCatroidRepositoryForNewBricks
https://github.com/Catrobat/Catroweb/blob/develop/bin/checkCatroidRepositoryForNewBricks
https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/check_for_new_bricks.yml
https://github.com/Catrobat/Catroweb/blob/develop/.github/workflows/check_for_new_bricks.yml


11 Workflow automation

� �
1 name: Check for new bricks

2 on:

3 schedule:

4 - cron: ’0 0 * * *’

5 workflow_dispatch:

6 jobs:

7 check_bricks:

8 runs -on: ubuntu -latest

9 steps:

10 - uses: actions/checkout@v2

11 - run: install -php

12 - run: check -bricks -command� �
Listing 11.4: The Pocket Code apps are checked for new bricks once a day.

11.3.2 Challenges

Automating the checks for new bricks requires several assumptions about
the project structures and concrete implementation details. The URLs to
the required files have to be constant and can not change. Also, the parser
depends on specific patterns in the files. Since this workflow is scheduled in-
dependently from changes in the Catroweb team, and especially the Catroid
team, breaking changes could be integrated into one of the repositories. If
that is the case, it is necessary to adapt the workflow in retrospect. Until a
developer fixes the script, the workflow will not provide any useful infor-
mation and fail.
However, it would be of no advantage to trigger the workflow on every pull
request. In almost all cases, a new contribution has nothing to do with the
failure of this check. Typically, this workflow will only fail after the Android
team includes a new brick. Therefore, Catroweb contributions should be
entirely independent of this check. If this workflow fails, it should not
concern a pull request and its developer.

Initiating the process after the merge of a pull request is possible but not
necessary. Developers usually merge in irregular intervals. Therefore, it
is better to keep a fixed schedule to check for updates. In case additional
checks are required, it is possible to dispatch the workflow manually with a
click on a button.

110



11.4 Dependency management

11.4 Dependency management

Instead of building every little detail in a project from scratch, developers
often rely on frameworks and include certain functionality with third-
party libraries. Using a library prevents developers from writing the same
code repeatedly and allows them to share functionality between different
projects.

In the Catroweb project, package managers handle all the included third-
party code. While it would be possible to manually integrate all libraries,
it can be challenging, especially managing all the additional interrelated
dependencies. A developer can require specific versions of libraries to
include the project. The package manager implicitly installs all other needed
dependencies needed for the library to work.

However, having too many dependencies on libraries has unique risks and
problems. For example, it can be necessary to use a specific version of
package A to use package B with an outdated version. Consequently, the
usage of a library can prohibit the usage of another. From time to time,
libraries even get abandoned and are no longer maintained and updated. A
single dependency can block all other dependencies from upgrading, which
leaves the project at risk of security breaches. The necessary refactoring can
be cost-intensive or require the development team to find an alternative or
entirely remove the functionality. Apart from resolved security issues and
bugs, newer versions typically have improved performance and functionality.
Therefore, keeping dependencies up-to-date is essential to a project.

Nevertheless, the only possibility to entirely avoid such a technical debt
is to stop using third-party libraries. Instead of building a project on a
framework, or include certain functionality, projects must write every little
detail from scratch. In reality, software projects do not have the resources
to accomplish this task. In its current state, the Share community platform
has way more than 100 dependencies (Catrobat/Catroweb dependencies 2020).
Instead, teams must aim to find the right balance and evaluate a library
before integrating the new dependencies to the project. Google even has
its dedicated Fixit days and teams to measure and pay down the debts
continuously (Morgenthaler et al., 2012).

111



11 Workflow automation

To upgrade dependencies, developers have to manually increase the version
number of a package and run the update process. Checking all libraries
for their newest version and getting hold of the release notes requires valu-
able time. Far too often, projects are not updating their dependencies until
months after their integration. Regularly updating the dependencies usually
requires only small patches to keep the project up to date. Instead, there
typically exist many updates after an extended period, and it is necessary
to apply a large patch, highly increasing the upgrade’s complexity. Based
on the principles of CI, it is essential to enforce continuous updates. With
limited project maintainers, the only possibility of achieving continuous
updates is to automate the process and almost leave no work for the devel-
opers.

11.4.1 Dependabot

GitHub has an integrated tool, named Dependatbot14 to automate depen-
dency updates. The tool is free of charge and can be configured with a
configuration file directly in a project’s repository. Dependabot analyses
dependency manifest files in a GitHub repository to filter insecure and
outdated requirements. In the event of outdated dependencies, Dependabot
opens an individual pull request for each available update (Figure15

11.5).

Explicitly upgrading dependencies has multiple benefits. For example, it
eases debugging in case of an error, since developers can test each upgrade
independently. Besides, Dependabot appends the release notes of the new
dependency version to the commit message of the pull request. Therefore,
code reviewers can quickly check the changelog and the tests provided by
the CI system and confidently merge the updates within seconds. Without
automated tests, the overhead of manually testing and checking every
update would be impossible to carry out.

Dependabot reacts to specific comments of a pull request and interprets
them as commands. In case a dependency must not be updated for any

14. https://dependabot.com/ visited on 9 Sep. 2020

15. https://github.com/Catrobat/Catroweb/pull/807 visited on 11 Aug 2020

112

https://dependabot.com/
https://github.com/Catrobat/Catroweb/pull/807


11.4 Dependency management

reason, a command is enough to close the pull request and prevent Depen-
datbot from re-opening it again in the future.

New updates in dependencies regularly contain breaking changes. From
changed to removed functionality, in any case, it may require adaptions
throughout the codebase. Dependabot does not search and fix such issues.
Instead, developers have to fix them manually. Luckily, in most cases, this
can be done within a few minutes, mainly since the commit message already
contains the exact changelog. After fixing the dependency issues, developers
push the changes to the pull request. Dependabot will not overwrite any
manual modifications.

Figure 11.5: Bump dependency pull request: Dependabot creates an individual pull re-
quest to update an outdated dependency. The pull request’s commit message
contains a changelog of the new version. The CI system runs its tests like for
every other pull request.

113





12 Conclusion and future work

CI/CD describes a philosophy and best practices to deliver software prod-
ucts more frequently and reliably. This work’s focus has been to develop a
CI/CD system and various additional automated workflows for Catrobat’s
Share community platform Catroweb using GitHub Actions.

As a result of this thesis, the Share community platform’s software quality
has increased in maintainability and reliability. Apart from enforcing exact
code styles, every project’s contribution must pass various automated static
and dynamic analysis checks before its integration into the official codebase.
Hence, combined with a well-tested codebase, the risk of unintentionally
breaking existing features is remarkably low. Furthermore, Dependabot
resolves security issues in third-party code quickly, while static analysis
checks detect deprecated and unsafe methods. Therefore, the project’s risk
of security breaches is reduced.
On the other hand, the project’s efficiency and usability only implicitly
benefit from the CI system. The CI system currently contains no checks
that explicitly target the design or performance of the software. However,
developers save vast amounts of resources due to the automation of all
kinds of workflows handled by the implemented system - Resources can
now be better distributed throughout the project. Besides, the automated
workflows reduce the complexity and implicitly create documentation for
every task. Consequently, even non-developers can carry out the tasks, such
as starting a new release.

However, Vasilescu et al. (2014) points out that many development teams
introduce CI without using it. In case developers and code reviewers ignore
its feedback and principles, the implemented system’s actual benefits drop
to zero. It is crucial that code reviewers manually ensure the quality of new
features and their tests. A pull request has to pass all CI tests before being

115



12 Conclusion and future work

merged. Besides, the system does not cover every aspect of a useful review.
Additional feedback is still required do be done manually. Hence, qualitative
code reviews are still necessary. Moreover, new contributors must be taught
the principles of CI/CD.

Furthermore, the costs of the introduced GitHub Actions are close to zero.
The services are free to use for open-source projects and do not require any
self-hosted hardware. While there are limitations, they are small enough
and do not impact the Catroweb project’s development. Besides, the GitHub
Actions defined in this thesis do not require many resources to maintain
and can be modified directly by the Catroweb team. There is no need for
additional teams to handle any infrastructure nor CI/CD system. All GitHub
Actions are developed directly in the Catroweb repository using a common
syntax, and the whole system is built with only a few hundred lines of code.
Besides, Dependabot will automatically upgrade any dependencies in the
workflows.

12.1 Future work

The implemented system is fully working and already covers many aspects.
Still, there is room for improvements and optimizations1.

On the one hand, GitHub Actions are pretty new, and GitHub releases new
improvements continuously. The systems maintainability and efficiency will
highly benefit once further optimizations can be used.

On the other hand, the CI system could be improved by adding additional
software tests, such as performance tests. However, Catroweb should first
aim for higher code coverage and utilize the testing pyramid principles in
the existing test suites.

Moreover, various additional workflows could be automated over time to
reduce development costs further. The GitHub marketplace is filled with
creative ideas to automate the software development life cycle.

1. All described GitHub Actions remain accessible unaltered in a protected GitHub reposi-
tory (https://github.com/dmetzner/AutomatingSDLC).

116

https://github.com/dmetzner/AutomatingSDLC


Appendix

117





Acronyms and Abbreviations

APK Android Package
BDD Behavior-driven development
CI Continuous integration
CD Continuous delivery and deployment
CSS Cascading Style Sheets
FOSS Free and open-source software
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ID Identification/Identity/Identifier
IDE Integrated development environment
IP Internet Protocol
PHP Hypertext Preprocessor
REST Representational state transfer
SSH Secure Shell
SQA Software quality assurance
TDD Test-driven development
UI User interface
URL Uniform Resource Locator
VCS Version control system
VPN Virtual private network
WWW World Wide Web

119





Bibliography

Andrés, César, M. Emilia Cambronero, and Manuel Núñez (2011). “Passive
Testing of Web Services.” In: Web Services and Formal Methods. Ed. by
Mario Bravetti and Tevfik Bultan. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 56–70. isbn: 978-3-642-19589-1 (cit. on p. 15).

Atlassian (Apr. 2020). What is version Control. url: https://www.atlassian.
com/git/tutorials/what-is-version-control (cit. on p. 29).

Beck, Kent (2002). Test Driven Development. By Example. Addison-Wesley
Longman, Amsterdam. isbn: 0321146530 (cit. on p. 19).

Black-Box Testing (Sept. 2020). url: https://softwaretestingfundamentals.
com/black-box-testing/ (visited on 01/09/2020) (cit. on p. 16).

Brooks, Fred (Mar. 2020). More People – More Bugs. url: https://www.
projectmanagement.com/articles/227526/More-People--More-Bugs

(visited on 04/03/2020) (cit. on p. 1).
Catrobat/Catroweb contributors (Sept. 2020). url: https : / / github . com /

Catrobat/Catroweb/graphs/contributors (visited on 04/09/2020) (cit.
on pp. 7, 8).

Catrobat/Catroweb dependencies (Aug. 2020). url: https://github.com/
Catrobat/Catroweb/network/dependencies (cit. on p. 111).

Chappell, David (Aug. 2020). The three aspects of software quality: functional,
structural, and process. url: http://www.chappellassoc.com/writing/
white_papers/The_Three_Aspects_of_Software_Quality_v1.0-

Chappell.pdf (visited on 08/08/2020) (cit. on p. 10).
Cohn, Mike (2009). Succeeding with Agile: Software Development Using Scrum.

1st. Addison-Wesley Professional. isbn: 0321579364 (cit. on p. 16).
Cooper, Ryan (July 2020). Why You Won’t Fix It Later. url: http://on-

agile.blogspot.com/2007/04/why-you-wont-fix-it-later.html

(cit. on p. 12).

121

https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://softwaretestingfundamentals.com/black-box-testing/
https://softwaretestingfundamentals.com/black-box-testing/
https://www.projectmanagement.com/articles/227526/More-People--More-Bugs
https://www.projectmanagement.com/articles/227526/More-People--More-Bugs
https://github.com/Catrobat/Catroweb/graphs/contributors
https://github.com/Catrobat/Catroweb/graphs/contributors
https://github.com/Catrobat/Catroweb/network/dependencies
https://github.com/Catrobat/Catroweb/network/dependencies
http://www.chappellassoc.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
http://www.chappellassoc.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
http://www.chappellassoc.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
http://on-agile.blogspot.com/2007/04/why-you-wont-fix-it-later.html
http://on-agile.blogspot.com/2007/04/why-you-wont-fix-it-later.html


Bibliography

Dan Belcher, mabl Co-Founder (Apr. 2020). Automate your workflow from idea
to production - What our community is saying. url: https://github.com/
features/actions (cit. on p. 51).

Developer website of Catrobat (Apr. 2020). url: https://developer.catrobat.
org/ (visited on 09/04/2020) (cit. on p. 3).

Dietmar Winkler Stefan Biffl, Johannes Bergsmann (2018). Software Quality:
Methods and Tools for Better Software and Systems: 10th International Confer-
ence, SWQD 2018, Vienna, Austria, January 16–19, 2018, Proceedings. ebook.
Springer International Publishing (cit. on p. 10).

Driessen, Vincent (June 2020). A successful Git branching model. url: https:
//tex.stackexchange.com/questions/109940/citing-author-or-

year-only-without-natbib (cit. on p. 33).
Foundation, World Wide Web (Apr. 2020). History of the Web. url: https:

//webfoundation.org/about/vision/history-of-the-web/ (visited
on 06/05/2020) (cit. on p. 22).

Fowler, Martin (Apr. 2020a). Continuous Integration. url: https://martinfowler.
com/articles/continuousIntegration.html (visited on 05/04/2020)
(cit. on p. 38).

Fowler, Martin (Aug. 2020b). TestCoverage. url: https://martinfowler.
com/bliki/TestCoverage.html (cit. on p. 89).

Fowler, Martin (Aug. 2020c). The Test Pyramid. url: https://martinfowler.
com/articles/practical-test-pyramid.html (cit. on p. 16).

GitHub Status Incident History (Sept. 2020). url: https://www.githubstatus.
com/history (visited on 08/09/2020) (cit. on p. 45).

Group, Miniwatts Marketing (Apr. 2020). Internet growth statistics. url:
https://www.internetworldstats.com/emarketing.htm (visited on
06/05/2020) (cit. on p. 22).

“Guide for Software Verification and Validation Plans” (1994). In: IEEE Std
1059-1993, pp. 1–87 (cit. on p. 14).

Harley, Nick (Aug. 2020). 11 of the most costly software errors in history. url:
https://raygun.com/blog/costly-software-errors-history/ (vis-
ited on 10/08/2020) (cit. on p. 13).

IBM (June 2020). Software Development. url: https://researcher.watson.
ibm.com/researcher/view_group.php?id=5227 (cit. on p. 21).

Introduction to SpecBDD and StoryBDD (Aug. 2020). url: http : / / www .

phpspec.net/en/stable/manual/introduction.html (cit. on p. 79).

122

https://github.com/features/actions
https://github.com/features/actions
https://developer.catrobat.org/
https://developer.catrobat.org/
https://tex.stackexchange.com/questions/109940/citing-author-or-year-only-without-natbib
https://tex.stackexchange.com/questions/109940/citing-author-or-year-only-without-natbib
https://tex.stackexchange.com/questions/109940/citing-author-or-year-only-without-natbib
https://webfoundation.org/about/vision/history-of-the-web/
https://webfoundation.org/about/vision/history-of-the-web/
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://www.githubstatus.com/history
https://www.githubstatus.com/history
https://www.internetworldstats.com/emarketing.htm
https://raygun.com/blog/costly-software-errors-history/
https://researcher.watson.ibm.com/researcher/view_group.php?id=5227
https://researcher.watson.ibm.com/researcher/view_group.php?id=5227
http://www.phpspec.net/en/stable/manual/introduction.html
http://www.phpspec.net/en/stable/manual/introduction.html


Bibliography

Isha, Sunita Sangwan (2014). “Software Testing Techniques and Strategies.”
In: Isha Int. Journal of Engineering Research and Applications (cit. on p. 13).

ISO 8402-1986 standard (Aug. 2020). url: https://www.iso.org/standard/
15570.html (visited on 07/08/2020) (cit. on p. 9).

Itti Hooda, Rajender Singh Chhillar (2015). “Software Test Process, Testing
Types and Techniques.” In: IEEE Std 1059-1993 International Journal of
Computer Applications (0975 – 8887) (cit. on p. 18).

Jovanovic, N, C Kruegel, and E Kirda (2006). “Pixy: a static analysis tool
for detecting Web application vulnerabilities.” eng. In: IEEE, 6 pp.–263.
isbn: 0769525741 (cit. on p. 59).

Kudryashov, Konstantin (Aug. 2020). Does Behat generate Code Coverage? url:
https://github.com/Behat/Behat/issues/92#issuecomment-3719726

(cit. on p. 89).
Levels of Testing in Software Testing (Aug. 2020). url: https://www.guru99.

com/levels-of-testing.html (cit. on p. 17).
Micco, John (Aug. 2020). Flaky Tests at Google and How We Mitigate Them. url:

https://testing.googleblog.com/2016/05/flaky-tests-at-google-

and-how-we.html (cit. on p. 86).
Morgenthaler, J. D. et al. (2012). “Searching for build debt: Experiences

managing technical debt at Google.” eng. In: 2012 Third International
Workshop on Managing Technical Debt (MTD), pp. 1–6 (cit. on p. 111).

Nair, Jithin (July 2020). TDD vs BDD – What’s the Difference Between TDD
and BDD? url: https://blog.testlodge.com/tdd-vs-bdd/#:~:text=
In%20TDD%20(Test%20Driven%20Development, from%20the%20end%

20users%20perspective. (cit. on p. 20).
Oracle (Sept. 2020). Database. url: https://www.oracle.com/database/

what-is-database.html (visited on 03/09/2020) (cit. on p. 25).
PHP usage statistics for websites (June 2020). url: https://w3techs.com/

technologies/details/pl-php (visited on 04/06/2020) (cit. on p. 26).
Radcliffe, Matthew (Aug. 2020). Unit Test Your Code With PHPUnit. url:

https : / / softpixel . com / ~mradcliffe / files / columbusphp - unit -

testing.pdf (cit. on p. 17).
RFC2616 (Sept. 2020). url: https://tools.ietf.org/html/rfc2616 (visited

on 04/09/2020) (cit. on p. 24).
Scott Chacon, Ben Straub (2020). Pro Git book (cit. on p. 30).

123

https://www.iso.org/standard/15570.html
https://www.iso.org/standard/15570.html
https://github.com/Behat/Behat/issues/92#issuecomment-3719726
https://www.guru99.com/levels-of-testing.html
https://www.guru99.com/levels-of-testing.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://blog.testlodge.com/tdd-vs-bdd/#:~:text=In%20TDD%20(Test%20Driven%20Development,from%20the%20end%20users%20perspective.
https://blog.testlodge.com/tdd-vs-bdd/#:~:text=In%20TDD%20(Test%20Driven%20Development,from%20the%20end%20users%20perspective.
https://blog.testlodge.com/tdd-vs-bdd/#:~:text=In%20TDD%20(Test%20Driven%20Development,from%20the%20end%20users%20perspective.
https://www.oracle.com/database/what-is-database.html
https://www.oracle.com/database/what-is-database.html
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://softpixel.com/~mradcliffe/files/columbusphp-unit-testing.pdf
https://softpixel.com/~mradcliffe/files/columbusphp-unit-testing.pdf
https://tools.ietf.org/html/rfc2616


Bibliography

Slany, Wolfgang (June 2020). Founder of Catrobat - Wolfgang Slany. url: https:
//www.linkedin.com/in/wolfgangslany/?originalSubdomain=at (cit.
on p. 2).

Source code analysis of Catroweb (Aug. 2020). url: https://github.com/
Catrobat/Catroweb (cit. on p. 7).

Stackify (Apr. 2020). Top Continuous Integration Tools. url: https://stackify.
com/top-continuous-integration-tools/ (cit. on p. 42).

Swati Seela, Ryan Yackel (Aug. 2020). 64 Essential Testing Metrics for Measur-
ing Quality Assurance Success. url: https://www.tricentis.com/blog/
64-essential-testing-metrics-for-measuring-quality-assurance-

success/ (cit. on p. 89).
Symfony (Sept. 2020). What is Symfony. url: https://symfony.com/what-

is-symfony (visited on 03/09/2020) (cit. on p. 28).
SymfonyCasts (Aug. 2020). phpspec? PHPUnit? BDD? TDD? Buzzwords? url:

https://symfonycasts.com/screencast/phpspec/unit-integration-

functional (cit. on p. 78).
Tantawy, Alshaimaa (Sept. 2009). “Software Quality Assurance Models: A

Comparative Study.” PhD thesis (cit. on p. 11).
Turner, Ash (Apr. 2020). How many smartphones are in the world? url: https:

//www.bankmycell.com/blog/how-many-phones-are-in-the-world

(visited on 09/04/2020) (cit. on p. 3).
Vasilescu, Bogdan et al. (Dec. 2014). “Continuous Integration in a Social-

Coding World: Empirical Evidence from GitHub.” In: doi: 10.1109/
ICSME.2014.62 (cit. on p. 115).

Voita, Elena, Rico Sennrich, and Ivan Titov (May 2019). When a Good Transla-
tion is Wrong in Context: Context-Aware Machine Translation Improves on
Deixis, Ellipsis, and Lexical Cohesion (cit. on p. 104).

W3C (Aug. 2020). The history of the Web. url: https://www.w3.org/wiki/
The_history_of_the_Web (cit. on p. 25).

White-Box Testing (Sept. 2020). url: https://softwaretestingfundamentals.
com/white-box-testing/ (visited on 01/09/2020) (cit. on p. 15).

Wright, Doug (Aug. 2020). behat-code-coverage. url: https://github.com/
dvdoug/behat-code-coverage/blob/master/README.md (cit. on p. 89).

124

https://www.linkedin.com/in/wolfgangslany/?originalSubdomain=at
https://www.linkedin.com/in/wolfgangslany/?originalSubdomain=at
https://github.com/Catrobat/Catroweb
https://github.com/Catrobat/Catroweb
https://stackify.com/top-continuous-integration-tools/
https://stackify.com/top-continuous-integration-tools/
https://www.tricentis.com/blog/64-essential-testing-metrics-for-measuring-quality-assurance-success/
https://www.tricentis.com/blog/64-essential-testing-metrics-for-measuring-quality-assurance-success/
https://www.tricentis.com/blog/64-essential-testing-metrics-for-measuring-quality-assurance-success/
https://symfony.com/what-is-symfony
https://symfony.com/what-is-symfony
https://symfonycasts.com/screencast/phpspec/unit-integration-functional
https://symfonycasts.com/screencast/phpspec/unit-integration-functional
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://doi.org/10.1109/ICSME.2014.62
https://doi.org/10.1109/ICSME.2014.62
https://www.w3.org/wiki/The_history_of_the_Web
https://www.w3.org/wiki/The_history_of_the_Web
https://softwaretestingfundamentals.com/white-box-testing/
https://softwaretestingfundamentals.com/white-box-testing/
https://github.com/dvdoug/behat-code-coverage/blob/master/README.md
https://github.com/dvdoug/behat-code-coverage/blob/master/README.md

	Abstract
	Introduction
	Catrobat project
	Catrobat
	Pocket Code
	Share community platform

	Motivation

	Software quality
	Defintion
	Functional software quality
	Structural software quality
	Process quality

	Software quality assurance
	Code quality in a learning environment
	Refactoring

	Software testing
	Defintion
	Classification
	Manual or automation testing
	Static, dynamic or passive testing
	White-box or black-box testing
	Testing levels

	Test-first development
	Test-driven development
	Behavior-driven development


	Web development
	World Wide Web
	History
	Fundamental technologies
	Back-end
	Front-end

	Web framework

	Version Control Systems
	Git
	GitHub
	Git workflows
	Single branch workflow
	Feature branch workflow
	Git-flow workflow
	Forking git-flow workflow


	CI/CD
	Continuous integration
	Integration
	Verification
	Accessibility

	Continuous delivery and deployment
	Benefits and drawbacks
	Tools
	Jenkins
	GitHub Actions
	Comparison between Jenkins and GitHub Actions


	CI - Build automation
	Package manager
	Docker
	Automate the process

	CI - Static analysis
	Static analysis of interpreted languages
	Type hinting in a dynamic weakly-typed language

	Coding standard
	Consistent formatting

	Static analysis tools
	Customization
	Installation
	Analyze PHP files
	Analyze JavaScript and CSS files
	A baseline to optimize initial results
	From a baseline to a solid base

	Continuous integration of static analysis
	Automate the process
	Optimizations

	Code review

	CI - Dynamic analysis
	Test automation frameworks
	Continuous integration of dynamic analysis
	Automate the process
	Artifacts
	Parallel testing
	Caching
	Flaky tests
	Code coverage


	Continuous delivery
	Continuous test deployments
	Automate the process
	Challenges

	Continuous release deployment
	Automate the process
	Challenges


	Workflow automation
	API code generation
	Automate the process
	Challenges

	Synchronize Crowdin translations
	Automate the process
	Challenges

	Checking for new bricks
	Automate the process
	Challenges

	Dependency management
	Dependabot


	Conclusion and future work
	Future work

	Bibliography

