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Abstract

In this thesis we consider the set of all plane perfect matchings on 2n points in

convex position. We define several disjoint compatibility graphs such that each

matching is a vertex in these graphs. Two such vertices are connected, if their

matchings are both disjoint compatible to the same graph G of a given class,

that is, the union of the matching and G is plane and edge-disjoint.

For the class of all plane spanning trees, we show that the disjoint compatibility

graph of all matchings on a set of at least ten points is connected with constant

diameter. The second approach is to define disjoint compatibility via plane

Hamiltonian paths. In that case, the graph is not even connected when

restricting to matchings with at least one disjoint compatible Hamiltonian path.

Finally, we prove that all plane perfect matchings on at least ten points in

convex position are connected via disjoint compatible caterpillar trees with

maximum degree 3. The diameter for this compatibility graph is of size O(n).
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Kurzfassung

In dieser Arbeit betrachten wir die Menge aller planen perfekten Matchings

auf 2n Punkten in konvexer Lage. Wir definieren verschiedene disjunkte

Kompatibilitätsgraphen, wobei jedes Matching einen Knoten bildet. Zwei

Knoten sind dabei verbunden, wenn die entsprechenden Matchings disjunkt

kompatibel zum selben Graphen G einer gegebenen Klasse sind, das heißt, die

Vereinigung eines Matchings mit G ist plan und kantendisjunkt.

Für die Klasse aller planen Spannbäume zeigen wir, dass der disjunkte Kompa-

tibilitätsgraph aller Matchings auf einer Menge von mindestens zehn Punkten

zusammenhängend mit konstantem Durchmesser ist. Als zweiten Ansatz definie-

ren wir disjunkte Kompatibilität über plane Hamiltonpfade. In diesem Fall ist

der Graph auch dann nicht zusammenhängend, wenn wir uns auf Matchings mit

zumindest einem disjunkt kompatiblen Hamiltonpfad beschränken. Schließlich

beweisen wir, dass alle planen perfekten Matchings auf zumindest zehn Punkten

in konvexer Lage über disjunkt kompatible Raupenbäume mit Maximalgrad 3

zusammenhängend sind. Der Durchmesser für diesen Kompatibilitätsgraphen

ist O(n).
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1 Introduction

In this thesis we study different concepts of geometric compatibility between

two plane perfect matchings, or to be more precise, compatibility between all

plane perfect matchings on the same set S of points in the plane in general

position. General position means that no three points are collinear. To begin

with, we consider versions of compatibility, where the two matchings are directly

compared with each other.

1.1 Compatibility

We only consider geometric graphs, that is, all edges are straight lines. We

focus on matchings on our given point set S, more precisely, on (plane) perfect

matchings.

Definition 1.1. A set of (plane) edges M on S is called matching, if every

vertex in S is incident to at most one edge in M . If every vertex is incident to

exactly one matching edge, then M is a perfect matching.

Definition 1.2. Two plane perfect matchings M and M ′ on S are called

compatible if their union is also plane.

Definition 1.3. The compatibility graph M(S) of a point set S is defined as

follows:

• the set of vertices consists of all possible plane perfect matchings on S

8



1 Introduction

• two vertices are connected by an edge if and only if the respective

matchings are compatible.

In [6], Hernando et al. consider a variation M∗(S) of the compatibility graph

M(S), where two vertices are adjacent if the symmetric difference of the re-

spective matchings is a non-crossing cycle of length 4 in S. They prove that

for a set S of 2n points in convex position, M∗(S) is connected with diameter

n− 1. As a consequence, we can deduce that M(S) is connected as well.

In 2005, Houle et al. extended the problem to point sets in general position

and showed that M∗(S) and therefore also M(S) are connected for point sets

in general position [7]. Furthermore, in [2] the diameter of M(S) has been

upper bounded by O(log n). A lower bound of Ω(log n/ log log n) was obtained

by Razen in [9].

1.2 Disjoint compatibility

Definition 1.4. Two plane perfect matchings M and M ′ on S which are com-

patible and in addition have no edge in common are called disjoint compatible.

The disjoint compatibility graph D(S) can now be defined in the same way as

the compatibility graph M(S).

Definition 1.5. The disjoint compatibility graph D(S) of a point set S is

defined as follows:

• the set of vertices is made up of all possible plane perfect matchings on S

• two vertices are connected by an edge if and only if the respective

matchings are disjoint compatible.

9



1 Introduction

Aichholzer et al. give examples of isolated vertices in D(S) for sets S of 2n

points where n is odd, namely those plane perfect matchings on convex point

sets S consisting of only parallel matching edges as depicted in Figure 1.1 [2].

Figure 1.1: Plane perfect matchings on 10 and 14 points, respectively, with no dis-
joint compatible plane perfect matching.

For even n, the authors pose the conjecture that no such isolated vertices

exist. Indeed, this was confirmed by Ishaque et al. in [8]. They show that

every plane perfect matching on a set of 2n points in general position obtains

a disjoint compatible matching for all even n. However, in 2015 Aichholzer

et al. could prove that for n ≥ 3, the disjoint compatibility graph is always

disconnected [1].

1.3 Compatibility via other graph classes

We next define alternative concepts of compatibility. The idea is to use a

different graph class as an intermediate step in the following way: Two plane

perfect matchings are considered compatible in that case if they are both

disjoint compatible to the same graph of a fixed graph class. Note that they

do not necessarily have to be disjoint compatible or even compatible to each

other.

For the second graph class it makes sense to only consider classes of plane

spanning graphs. Disjoint compatibility for two different graph classes is defined

analogously to disjoint compatibility between two (plane perfect) matchings.
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2 Disjoint tree-compatible

matchings

This chapter is based on the paper ’Disjoint tree-compatible plane perfect

matchings’ presented at EuroCG 2020 [3].

2.1 Basic definitions

From now on let S be a set of 2n points in the plane in convex position if not

mentioned otherwise.

To begin with, we extend the definition of disjoint compatibility to arbitrary

graphs.

Definition 2.1. Two plane graphs X and X ′ on S are called disjoint compatible

if they have neither common nor crossing edges.

Definition 2.2. Let M , M ′ be two plane perfect matchings on S. If there

exists a plane spanning tree T on S such that both M and M ′ are disjoint

compatible to T , then M and M ′ are called disjoint tree-compatible.

Definition 2.3. The disjoint tree-compatibility graph G2n is defined as follows:

• the set of vertices is made up of all possible plane perfect matchings on S

11



2 Disjoint tree-compatible matchings

Figure 2.1: Two plane perfect matchings on the same set of twelve points in con-
vex position (drawn in blue) which are disjoint tree-compatible. The
complying disjoint compatible spanning tree is drawn in green.

• two vertices are connected by an edge if and only if the respective

matchings are disjoint tree-compatible.

Definition 2.4. Edges spanned by two neighbouring points on the boundary

of the convex hull of S are called perimeter edges ; all other edges spanned by

S are called diagonals.

Definition 2.5. A perimeter matching is a matching containing no diagonal.

We label the sides of the convex hull of S alternately ’odd’ and ’even’. Then

the perimeter matching consisting of only odd perimeter edges is called odd

perimeter matching, the one consisting of only even perimeter edges is likewise

called even perimeter matching, see Figure 2.2.

2.2 Upper bound for the diameter of the disjoint

tree-compatibility graph

In this chapter we show that for convex point sets S of at least ten points, the

disjoint compatibility graph G2n is connected and we further prove that the

diameter is upper bounded by 5. The idea is that any matching on S has small

12



2 Disjoint tree-compatible matchings
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Figure 2.2: The two perimeter matchings on a set of twelve points. The odd perime-
ter matching is drawn in blue and the even perimeter matching is drawn
in red.

distance to one of the two perimeter matchings and those themselves are close

to each other in G2n.

First we introduce key notions of a semicycle, a cycle of edges and a rotation.

X1

X2

M M ′ = rot(X̄)

Figure 2.3: Left: A matching M with two semicycles X1 (red edges) and X2 (blue
edges) and their convex hulls. The corresponding cycle X̄1 is an inside
4-cycle, since the boundary of the red shaded area contains at least two
(in fact three) diagonals. The cycle X̄2 is a 4-ear. Right: The matching
M ′ resulting from rotating the cycle X̄1.

Definition 2.6. Let M be a plane perfect matching on S.

• A set X of k ≥ 2 matching edges is called a k-semicycle if the interior of

the convex hull of X does not intersect any edges of M .

• Given a k-semicycle X, the boundary of its convex hull (including the

non-matching edges) is called its k-cycle and denoted by X̄.

13



2 Disjoint tree-compatible matchings

• A k-cycle X̄ is called an inside k-cycle (or just an inside cycle) if X̄ con-

tains at least two diagonals, otherwise it is called a k-ear (or just an ear).

• Finally, given a semicycle X in a matching M , we can obtain a matching

M ′ = rot(X̄) by rotating the cycle X̄, that is, by removing from M the

edges in X and adding the edges in X̄ \X.

We will now show that arbitrary many inside cycles can be simultaneously

rotated in one step.

Lemma 2.7. Let M and M ′ be two matchings whose symmetric difference is

a union of disjoint inside cycles. Then M and M ′ are disjoint tree-compatible

to each other.

Proof. Let M and M ′ be two matchings and first assume that their symmetric

difference is a single inside cycle C (such that C1 is a semicycle of M and

C2 = C \ C1 is a semicycle of M ′; cf. Figure 2.4(a)). We need to show that

there exists a tree disjoint from M ∪M ′ and compatible with both matchings.

By assumption, C has at least two diagonals (which do not necessarily lie in

M or M ′). Pick two endpoints u, v on two different diagonals of C such that u

and v are not adjacent vertices of C. Triangulate the inside of C such that u

and v are the only ears of the triangulation (this is possible since C is convex

and u, v are not consecutive). The set D of diagonals in this triangulation is a

spanning tree of all the points of C except u and v (see Figure 2.4(b)).

Now, for each outside part Pi determined by C (containing the corresponding

boundary diagonal of C as in Figure 2.4(c)), extend the set of edges in Mi :=

(M ∪ C) ∩ Pi to a triangulation, call it Ti (Figure 2.4(d)). We claim that the

added edges Ai span the whole part Pi: Indeed, the whole Ti is connected and

each edge e ∈Mi is a side of a triangle whose other two edges were added (no

two edges in Mi share an endpoint), hence removing e does not disconnect

Ti. Moreover, D ∪ Ai is connected, since Ai connects to both endpoints of the

shared diagonal and D misses at most one of them. This is true for all outside

parts Pi, hence D ∪
⋃

iAi is a planar spanning graph that is edge-disjoint from

14



2 Disjoint tree-compatible matchings

(a)

C1 C2

M M ′ (b)

C

M ∪M ′

D

(c)

v

u M1

M2 M3

(d)
A1

A2

A3

(e) (f)

D ∪
⋃

iAi

D ∪
⋃

iAi

M ∪M ′ M ∪M ′

Figure 2.4: (a) Two plane perfect matchings on the same convex point set differing
at a single inside cycle (shaded in red). (b) Triangulation of the cycle
C such that u and v are the only two ears. The added diagonals D are
drawn in purple. (c) Three outside parts P1, P2 and P3 (shaded) and
the respective edge sets M1, M2 and M3 (coloured). (d) Triangulation
Ti = Mi ∪ Ai of the outside parts; the added edges Ai are drawn in
purple. (e) The union of D and all Ai results in a planar spanning graph
which contains a spanning tree (depicted in (f) in pink).

M ∪ C and compatible with it (Figure 2.4(e)). Breaking cycles one by one we

eventually obtain a spanning tree (Figure 2.4(f)).

When the symmetric difference consists of multiple disjoint inside cycles, in the

first step we triangulate each of them separately. The second step then works

in the same way.

As we covered all inside cycles, we now consider ears and show that sufficiently

large ears can be rotated in at most three steps.

15



2 Disjoint tree-compatible matchings

Lemma 2.8. Let M and M ′ be two matchings whose symmetric difference is

a k-ear with k ≥ 6. Then M and M ′ have distance at most 3 (in G2n).

Proof. The idea of the proof is to perform three rotations of inside cycles. We

proceed as in Figure 2.5:

· · ·A

D C

B · · ·A

D C

B · · ·A

D C

B · · ·A

D C

B

Figure 2.5: Intermediate steps for the rotation of a k-ear with k ≥ 6.

First we find 4 points A, B, C, D on the ear such that each of the four arcs

ÂB, B̂C, ĈD, D̂A of the ear contains a positive even number of points in

its interior. W.l.o.g. the points A, B are matched inside ÂB and C, D are

matched inside ĈD. We do the following three steps: Rotate ÂBĈD, rotate

a 2-cycle ABCD, rotate B̂CD̂A. Since each arc initially contained at least

two points, each step rotates an inside cycle and it is easily checked that this

transforms M into M ′.

. . . . . . . . . . . .

Figure 2.6: Rotation of a 6-ear in 3 steps (in each step we rotate the grey inside
cycle).

Theorem 2.9. For 2n ≥ 10, the disjoint compatibility graph G2n is connected

and diam(G2n) ≤ 5.
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2 Disjoint tree-compatible matchings
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0 , r
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−3 , r

2

r 0
, r 5

r
0
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5
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Figure 2.7: Schematic depiction of the whole graph G10. The letter r stands for a
possible rotation by 2π/10. Going against the arrows rotates in opposite
direction. Next to each vertex, the number of different matchings result-
ing from rotations is indicated. The edges indicate either the rotation of
an inside cycle (in gray), or a compatible spanning tree (red).

Proof. For 2n = 10, this is essentially depicted in Figure 2.7: If we want to

find a path between rotated version of some nodes, we just need to find a walk

in the picture along which the rotations compose to the desired value.

Now assume 2n ≥ 12. The idea is the following: between each matching and

either one or both perimeter matchings as well as between the two perimeter

matchings itself we find short sequences of disjoint tree-compatible matchings

with a symmetric difference of only disjoint inside cycles.

We colour the perimeter alternately in blue and red and refer to the odd

(resp. even) perimeter matching as the blue perimeter matching B (resp. red

perimeter matching R). Moreover, for a fixed matching M , let dmin(M) =

min{dist(M,B), dist(M,R)} and dmax(M) = max{dist(M,B), dist(M,R)} be

the distance from M to the closer and the further perimeter matching, respec-

tively. Since by Lemma 2.8 we have dist(B,R) ≤ 3, it suffices to show that the

non-perimeter matchings can be split into three classes S1, S2, S3 with the

17



2 Disjoint tree-compatible matchings

following properties (see Figure 2.8):

1. ∀M ∈ S1 we have dmin(M) ≤ 1 (and hence dmax(M) ≤ 1 + 3 = 4);

2. ∀M ∈ S2 we have dmin(M) ≤ 2 and dmax(M) ≤ 3;

3. ∀M ∈ S3 we have dmax(M) ≤ 3 and ∀M,M ′ ∈ S3 we have dist(M,M ′) ≤ 4.

1 13

2 3

3
2

S1

S2

S2

S1

B R

3

4

S3

Figure 2.8: All matchings are sufficiently close to the blue (odd) perimeter matching
B and/or to the red (even) perimeter matching R.

Fix a matching M . It consists of a number (possibly zero) of diagonals, odd

perimeter edges (shown in blue), and even perimeter edges (shown in red). The

convex hull of S is split by the diagonals into several polygons, each of them

corresponding to a cycle. The dual graph D(M) of these polygons is a tree.

Its leaves correspond to ears and the interior nodes correspond to inside cycles.

Since the diagonals of M split the perimeter into (possibly empty) arcs that

alternately consist of only red and only blue sides, the nodes of the tree can be

properly two-coloured in blue and red by the colour of the perimeter edges of

the corresponding polygons (see Figure 2.9).

Now we distinguish four cases based on what the dual tree D(M) looks like. Let

b and r be the number of leaves in D(M) coloured blue and red, respectively.

Wlog assume b ≥ r.

• b ≥ 1, r = 0: If b = 1 then M = B. Otherwise, we simultaneously rotate

all red inside cycles. This removes all diagonals, we reach B in 1 step

and we put M into S1.

18



2 Disjoint tree-compatible matchings

Figure 2.9: For a fixed matchingM , we colour the perimeter edges alternately in blue
(odd edges) and red (even edges). The colouring extends to a proper
colouring of a tree D(M) that is dual to M . In the shown example,
rotating the inside cycle corresponding to the blue interior node of D(M)
creates a tree which leaves all have the same colour.

• b ≥ 2, r ≥ 2: We can get to B in 2 steps: First, simultaneously rotate all

blue inside cycles (this removes all diagonals except the ones separating

blue leaves of D(M)). Then rotate the (only, red) inside cycle. Similarly,

we can reach R in 2 steps, hence M can go to S2. (This case can only

occur when 2n ≥ 16.)

• b ≥ 2, r = 1: See Figure 2.10. In the first step, rotate all blue inside cycles

to get b ≥ 2 blue leaves and one (red) inside cycle. To get to B, rotate

the inside cycle (≤ 2 steps total). To get to R, note that the original

diagonal that cut off the red leaf disappeared in the first step. Thus it

was rotated out and we must now have at least 1 + 1 + 1 ≥ 3 consecutive

red sides, say e, f , g. Rotate the inside without e and g and then rotate

B

e

f
g

e

g

R

B

Figure 2.10: When b ≥ 2 and r = 1 we can get to B in 2 steps and to R in 3 steps.

19



2 Disjoint tree-compatible matchings

the inside. This gets to R in 3 steps, hence M can go to S2. (This case

can only occur when 2n ≥ 14.)

• b = 1, r = 1: In the first step, rotate all blue inside cycles. If the diagonal

that cuts off the blue leaf is not there yet, push it to a side by rotating

the whole blue ear without one blue perimeter edge (see Figure 2.11(a)).

Note that this is simply a rotation of an inside cycle. Since 2n ≥ 10, we

have at least 3 consecutive red edges and, as in the previous case, we can

thus reach R in two more steps (for a total of 3 steps). For B, we can

proceed in the same way, therefore we aim to put M into S3.

ei ei ei

(a) (b)
MiN

Figure 2.11: Intermediate steps for the case b = 1 and r = 1.

For that, we need to check that any two such matchings are in distance

at most 4 apart. To that end, it suffices to check that any two matchings

N , N ′ with one diagonal that cuts off a single blue perimeter edge are in

distance at most 4− 1− 1 = 2 apart. This is easy (see Figure 2.11(b)):

Label the n red perimeter edges by e1, . . . , en and for each i = 1, . . . , n,

denote by Mi the matching with one diagonal that cuts off the perimeter

edge ei. We claim that some Mi is adjacent to both N and N ′. In fact,

we claim that N is adjacent to at least n − 2 of the n matchings Mi.

Indeed, for any of the n− 2 red sides ei present in N , we can rotate the

(inside) cycle consisting of the red leaf of D(N) without ei. The same

holds for N ′. Since for 2n ≥ 10, we have (n− 2) + (n− 2) > n, there is a

matching Mi adjacent to both N and N ′.
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2 Disjoint tree-compatible matchings

2.3 Lower bound for the diameter of the disjoint

tree-compatibility graph

Since the diameter of G2n has a constant upper bound, it seems reasonable to

also ask for a best possible lower bound.

As for the upper bound, we start with some definitions as we introduce notions

of inside semicycles and semiears for semicycles in the same way as we defined

inside cycles and ears for cycles in 2.6:

Definition 2.6. Let M be a plane perfect matching on S.

• A set X of k ≥ 2 matching edges is called a k-semicycle if the interior of

the convex hull of X does not intersect any edges of M .

• Given a k-semicycle X, the boundary of its convex hull (including the

non-matching edges) is called its k-cycle and denoted by X̄.

• A k-cycle X̄ is called an inside k-cycle (or just an inside cycle) if X̄ con-

tains at least two diagonals, otherwise it is called a k-ear (or just an ear).

• Finally, given a semicycle X in a matching M , we can obtain a matching

M ′ = rot(X̄) by rotating the cycle X̄, that is, by removing from M the

edges in X and adding the edges in X̄ \X.

Definition 2.10. Let M be a matching on S. A k-semicycle X is called an

inside k-semicycle (or just an inside semicycle) if X̄ contains at least two

diagonals, otherwise it is called a k-semiear (or just a semiear).

Definition 2.11. Let M and M ′ be two matchings in S. A boundary area

with k points is an area within the convex hull of S restricted by edges in M

and M ′ such that the matching edges intersect at least once and the points on

the boundary of the area are adjacent on the boundary of the convex hull of S;

see Figure 2.12.
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2 Disjoint tree-compatible matchings

Figure 2.12: Boundary areas with five points (left) and four points (middle). The
drawing on the right does not show a boundary area; not all points are
neighbouring on the convex hull of S.

Definition 2.12. A matching M on a set of 4k points is called a 2-semiear

matching if it consists of exactly k 2-semiears and an inside k-semicycle. A

matching M on a set of 4k + 2 points is called a near-2-semiear matching if it

consists of exactly k 2-semiears and an inside (k + 1)-semicycle.

Figure 2.13: Left: A 2-semiear matching. Right: A near-2-semiear matching.

Remark 2.13. Analogous to perimeter matchings we can distinguish between

odd and even 2-semiear matchings, according to the values taken by the

respective perimeter edges.

Lemma 2.14. Let M , M ′ be two matchings whose symmetric difference is an

ear or a boundary area with at least three points. Then M and M ′ are not

disjoint tree-compatible to each other.
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2 Disjoint tree-compatible matchings

Proof. We consider two matchings M and M ′ creating a k-ear and we call the

respective polygon P (cf. Figure 2.14). The proof for a boundary area with at

least three points works in a similar way.

If the two matchings are disjoint tree-compatible, we can draw an edge-disjoint

tree in S. Let p1 and p2 be the two endpoints of the diagonal in the ear. Any

other point in P cannot be directly connected to a point outside P via a tree

edge, therefore at least k − 2 tree edges need to lie within P (if p1 and p2 are

connected to each other outside P ; otherwise even k− 1 tree edges are needed).

However, by planarity there can be at most k − 3 edges in a polygon spanned

by k points, which leads to a contradiction.

Pp1

p2

Figure 2.14: Two matchings M and M ′ (depicted in red and blue) creating an ear.
The points p1 and p2 might be connected by a spanning tree outside
the ear.

Lemma 2.15. Let M be a matching disjoint tree-compatible to an even

2-semiear-matching. Then M contains no odd perimeter edge.

Proof. We prove the statement by contradiction and assume that there exists a

disjoint tree-compatible matching M which contains at least one odd perimeter

edge. This matching edge connects one endpoint of a perimeter edge with its

neighbouring vertex (matched by a diagonal in the 2-semiear matching), see

Figure 2.15. We distinguish between the cases where the other endpoint of the

perimeter edge is matched to (in M). If it is matched with the same diagonal of

the 2-semiear, the two matchings create an ear, a contradiction to Lemma 2.14

(cf. Figure 2.15 on the left). Otherwise, this matching edge intersects with the
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2 Disjoint tree-compatible matchings

diagonal of the 2-semiear matching. Therefore it creates a boundary area with

three points, which is a contradiction to Lemma 2.14 (cf. Figure 2.15 on the

right).

e e e e

e
oo o

e

Figure 2.15: An (even) 2-semiear matching drawn in red and a blue matching with
at least one odd perimeter edge; on the left the blue matching creates
a cycle with the red matching, on the right a boundary area with three
points occurs.

Lemma 2.16. Let M be a matching disjoint tree-compatible to a near-2-

semiear-matching M ′ consisting of k even and one odd perimeter edge. Then

M contains at most one odd perimeter edge (the one in M ′).

Proof. Let M ′ be a matching disjoint tree-compatible to a near-2-semiear

matching M as defined in the statement. All but one of the odd perimeter

edges would connect an even perimeter edge with its diagonal in a 2-semiear,

therefore they cannot be contained in M ′ as shown in the proof of Lemma 2.15.

Consequently, there is at most one odd perimeter edge in M ′ (which is exactly

the odd perimeter edge in M).

Lemma 2.17. Let M and M ′ be two disjoint tree-compatible matchings. Then

M and M ′ have at least two perimeter edges in common.

Proof. Let M ′ be a matching disjoint tree-compatible to M . First of all, we

consider the case that M is a perimeter matching, w.l.o.g. M is the even

perimeter matching. Our claim is that M ′ has no odd perimeter edge. This is
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2 Disjoint tree-compatible matchings

easy to see since any number of odd perimeter edges in M ′ creates an ear with

M . Thus the two matchings cannot be disjoint tree-compatible to each other,

which is a contradiction to the assumption. Therefore we can conclude that

our statement holds for perimeter matchings since every matching contains at

least two perimeter edges. (Consider the dual graph where the areas defined

by matching edges correspond to points and two points are connected if and

only if the two areas are separated by a matching edge. This graph forms a

tree where semiears in the matching correspond to leaves in the tree.)

All other matchings have at least two semiears and we distinguish different

cases.

Case 1: There exist two semiears of size ≥ 3 in M

Our claim is that at least one of the perimeter edges of each semiear lies

in M ′. We consider one semiear and assume to the contrary that none of

the perimeter edges of this semiear lies in M ′.

W.l.o.g. we assume that the semiear is even. Thus by assumption, every

vertex of this semiear is either matched by an odd perimeter edge or by a

diagonal in M ′. If all points in the semiear are matched by odd perimeter

edges in M ′, we get an ear contradicting Lemma 2.14 (cf. Figure 2.16

(a)).

If two points in the semiear are matched with each other by a diagonal (in

M ′), the other points (in the semiear) are separated into two sets. Those

on the side with just perimeter edges have to be matched with each other

in M ′, otherwise M ′ would intersect itself. We can iteratively shrink this

side, until the remaining points are all matched by odd perimeter edges.

This again creates an ear (cf. Figure 2.16 (b)).

Otherwise, at least one diagonal in M ′ intersects the diagonal (in M) of

the semiear, starting at an endpoint of an even perimeter edge. If the

other endpoint of this edge is matched by an odd perimeter edge in M ′,

we get a boundary area with at least four points. Therefore, no spanning

tree can be drawn and the matchings are not disjoint tree-compatible

(cf. Figure 2.16 (c)).

If the other endpoint of the even perimeter edge is also matched by

a diagonal in M ′, we get a so-called ’blocking structure’, that is, the
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two endpoints of the perimeter edge cannot be connected directly by a

spanning tree. Since we already excluded diagonals within the semiear,

the vertex neighbouring this perimeter edge also has to be matched by

a diagonal in M ′. This vertex exists since we assumed that the size of

the semiear is at least 3. We again consider the other endpoint of this

even perimeter edge and either construct a boundary area with at least

three points (cf. Figure 2.16 (d)), which again leads to a contradiction.

Otherwise we get a second blocking structure (cf. Figure 2.16 (e)). How-

ever, this concludes this case as well, since the points in between the two

blocking structures are separated from the other points and cannot be

connected with them by any spanning tree.

(b) (c)

(d) (e)

(a)

Figure 2.16: All possible cases for a semiear of size k ≥ 3 in a matching M (depicted
in red) and a second matching M ′ (depicted in blue) which does not
use any of the perimeter edges in M .

It follows that at least one of the perimeter edges in the semiear of M

also lies in M ′. Analogously we can apply the argument for the other

semiear.
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Case 2: All but one semiear in M is of size 2

For simplicity we assume w.l.o.g. that there exists an even 2-semiear in

M . Matching the points of this semiear by odd perimeter edges yields an

ear, a contradiction by Lemma 2.14 (cf. Figure 2.17 (a)). If one of the

endpoints of the even perimeter edge is matched by an odd perimeter

edge in M ′ and the other one is matched by a diagonal, we get a boundary

area with three points, contradicting Lemma 2.14 (cf. Figure 2.17 (b)).

Otherwise, both endpoints of the even perimeter edge are matched by

diagonals intersecting the diagonal of the 2-semiear (cf. Figure 2.17 (c)).

As in the proof of Theorem 2.17 we get a blocking structure, which

means that the two endpoints of the perimeter edge cannot be con-

nected directly by a spanning tree. We can assume that this holds for all

semiears of size two in M , otherwise we apply one of the arguments above.

(b) (c)(a)

Figure 2.17: All possible cases for a 2-semiear in a matching M (depicted in red)
and a second matching M ′ (depicted in blue) which does not use the
perimeter edges in M .

Out of those 2-semiears we choose the one with no further semiear of

M (also not the one of larger size) on one side of a diagonal d in M ′.

This is possible since the number of semiears is finite and the diagonals

in M ′ cannot intersect each other, therefore there is an ordering of the

2-semiears in M (and only one semiear of larger size). It is easy to see

that the diagonal d induces a semiear in M ′ on this side of the graph.

If this semiear is of size 2 and two diagonals in M are intersecting the

diagonal of the semiear, we get another blocking structure. (Otherwise

we can apply one of the other arguments above to the semiear in M ′ and

again end up with a perimeter edge lying in both matchings.) It follows
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2 Disjoint tree-compatible matchings

that both diagonals in M have to intersect the diagonals in M ′ (those

which also intersect the even 2-semiear), otherwise we induce another

semiear in M on this side, a contradiction. However, this separates at

least three points from the rest and it is not possible to find a common

compatible spanning tree (cf. Figure 2.18).

· · ·u v

d

e o
M

M ′

· ·
·· · ·

Figure 2.18: An even 2-semiear in M (red matching edges) intersected by two di-
agonals in M ′ (blue edges) (on the left) and an odd 2-semiear in M ′

intersected by two diagonals in M (on the right). The vertices u and v
might coincide. The grey areas are blocked, that is, the spanning tree
cannot pass them. Therefore, at least three points (if u = v) are not
reachable from the rest of the vertices (marked by white crosses).

Case 3: All semiears in M are of size 2

This case works similar to the second case. If the cases (a) or (b) in

Figure 2.17 can be applied to two 2-semiears, we are done since both

perimeter edges also lie in M ′. If we can apply one of those cases to at

least one 2-semiear, we treat this semiear like the semiear of larger size

in Case 2 and proceed as before.

Otherwise, all 2-semiears, thus all semiears in M are as depicted in

Figure 2.17 (c). Again there is an ordering of those 2-semiears and now

we can choose two of them such that there is no further semiear of M on

one side of a diagonal in M ′. (In one case there is no further semiear on

the ’left’ side, in the other case there is no semiear on the ’right’ side.) It

follows that two distinct semiears in M ′ are induced. The arguments in
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2 Disjoint tree-compatible matchings

Case 2 can be applied separately to both of them, therefore we end up

with at least two perimeter edges which lie in both M and M ′.

Corollary 2.18. Let S be of size 2n ≥ 10. For even n, the distance between

an even 2-semiear matching and an odd 2-semiear matching is at least 4.

For odd n, let M be a near-2-semiear matching with a single odd perimeter

edge and M ′ be a near-2-semiear matching with a single even perimeter edge

such that those two edges are incident in S. Then the distance between M and

M ′ is at least 4.

o1 e1

L. 2.15 L. 2.15 L. 2.16 L. 2.16

L. 2.17 L. 2.17 L. 2.17 L. 2.17

Figure 2.19: Illustrations, that the distance between two special 2-semiear matchings
(left) and between two special near-2-semiear matchings (right) is at
least 4. Even perimeter edges are drawn in red, odd ones are drawn in
blue. The numbers next to the edges indicate which Lemma is applied.
Crossed out edges indicate that this type of edge (even or odd) cannot
appear in that matching.
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Proof.

n is even:

By Lemma 2.15 we know that for every matching disjoint tree-compatible to an

even 2-semiear matching all perimeter edges are even. Now by Theorem 2.17

all matchings which are disjoint tree-compatible to them contain at least two

of their even perimeter edges.

Analogously, in every matching disjoint tree-compatible to an odd 2-semiear

matching all perimeter edges are odd, and all matchings disjoint tree-compatible

to those contain at least two odd perimeter edges (in particular any matching

with no odd perimeter edge is not disjoint tree-compatible).

Combining these results shows that there are at least three intermediate

matchings between an even and an odd 2-semiear matching in the disjoint

tree-compatible graph.

n is odd:

By Lemma 2.16 every matching disjoint tree-compatible to M contains at most

one odd perimeter edge, namely the same as in M , say o1. Analogously, every

matching disjoint tree-compatible to M ′ contains no even perimeter edge other

than the one in M ′, say e1.

As before we can apply Lemma 2.17 and deduce that all matchings disjoint tree-

compatible to those with at most one odd or even perimeter edge, respectively,

contain at least two perimeter edges. However, since o1 and e1 are incident,

they cannot both appear in any of the disjoint tree-compatible matchings at the

same time, thus the two sets of all disjoint tree-compatible matchings is disjoint

which implies a total lower bound of four for the distance of M and M ′.

Remark 2.19. The Corollary above states that G2n is lower bounded by 4.

Now it seems reasonable to consider more restricted graph classes and check

whether the disjoint compatibility graph is still connected. It is easy to observe

that we cannot exclude those graphs containing a path of size Θ(n) (all paths

are obviously of size O(n) since there are exactly 2n vertices): Consider a

matching on S consisting of only parallel matching edges. Starting at one of

the two perimeter edges, one can obtain a path in any disjoint compatible

spanning tree going from one diagonal to the next one until we reach the other
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perimeter edge. This is since the diagonals split the inside of the convex hull

in adjacent faces and we cannot cross them and skip any face along the path.

Since there is a linear number of faces, the path is of linear size in n as well.
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3 Disjoint path-compatible

matchings

Research on this topic was initiated during the 16th European Geometric

Graph-Week 2020 held near Strobl, Austria [4].

3.1 Basic definitions and special cases

Again we consider only graphs, more precisely plane perfect matchings and

Hamiltonian paths, which are disjoint to each other. This is because the

Hamiltonian path along the perimeter is compatible to all perfect matchings

and all other paths. Therefore the case for not necessarily disjoint compatible

matchings and paths is rather trivial.

For disjoint path-compatibility, instead of the disjoint path-compatibility graph

with all plane perfect matchings as vertices, we consider the bipartite graph

B2n where all plane perfect matchings together with all Hamiltonian paths on

a point set S form the set of vertices. We do so since the matchings are far

less connected in this setting and we are rather interested if there even exist

disjoint compatible paths and if yes, how many of them.

Definition 3.1. The bipartite graph B2n is defined as follows:

• the two independent and disjoint partitions of vertices are made up of

all possible plane perfect matchings and all possible Hamiltonian paths

on S, respectively
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3 Disjoint path-compatible matchings

• two vertices (on different sides of the partition) are connected by an edge

if and only if the respective matching and the respective path are disjoint

compatible.

First, we want to find and characterize potentially isolated matchings in B2n.

Therefore we recall how semicycles and semiears were defined in 2.10.

Definition 2.10. Let M be a matching on S. A k-semicycle X is called an

inside k-semicycle (or just an inside semicycle) if X̄ contains at least two

diagonals, otherwise it is called a k-semiear (or just a semiear).

Lemma 3.2. Let M be a plane perfect matching on S with at least three

semiears. Then there is no Hamiltonian path on S which is disjoint compatible

to M , that is, M is an isolated vertex in B2n.

v1

v2k

v2

v2k−1

vi

vi−1

vi+1

··
·

· · ·

Figure 3.1: A k-semiear in a plane perfect matching with a possibly disjoint
compatible path drawn in green entering the ear at v1 and leaving it
at v2k. If the path reaches vertex vi, it can only traverse vertices with
index either smaller or larger than i afterwards.

Proof. We claim that any semiear in a matching M has to contain an end of

a disjoint compatible path. By contradiction, we assume the contrary. We

33
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consider a k-semiear and label the 2k vertices of the semiear along the boundary

of the convex hull by vi, that is, the path enters the semiear at vertex v1 and

leaves it at v2k.

Observe that once the path reaches vertex vi, it can only visit either vertices

with smaller or larger index (cf. Figure 3.1). Therefore we need to go along

them in ascending order. However this is not possible since we demand disjoint

compatibility. This proves that in every semiear of M any disjoint compatible

path has to start or end there, thus no matching with three or more semiears

contains such a path.

Now we consider plane perfect matchings with exactly one semiear, i.e., perime-

ter matchings, and show that they have exponentially many disjoint compatible

paths.

Lemma 3.3. Let M be a perimeter matching on a set S of 2n points. Then

there are n
3 (2n−1+(−1)n) plane Hamiltonian paths which are disjoint compatible

to M .

Proof. First, we pick a fixed starting point p and denote by f(n) the number

of paths which are disjoint compatible to M and start in p. For the second and

third vertex along the path, there is only one possibility to chose if we want to

cover all 2n points.

Therefore we consider all possibilities for our path to go along until we hit a

further yet unvisited matching edge to deduce a recursion. There are in total

three possible ways to do so, depicted in Figure 3.2. For the first case, moving

along corresponds to a disjoint compatible path on n− 1 perimeter matching

edges and for the other two cases the second part of the path corresponds to a

disjoint compatible path on n− 2 perimeter matching edges. This equivalence

is depicted in the bottom row of Figure 3.2.

The latter two path starts only work for at least four matching edges, thus

for n ≥ 4 we obtain the recursive formula f(n) = f(n− 1) + 2f(n− 2) on the
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· · ·

p

· · ·

p

· · ·

p

· · ·

p

· · ·

p

· · ·

p

Figure 3.2: For a fixed point p there are three possible starts for a path on n perime-
ter matching edges (top row). They can recursively be continued on sets
with n− 1, n− 2, and again n− 2 matching edges, respectively.

number of disjoint compatible paths for 2n matching edges starting in p. For

two or three matching edges, only the first starting case is possible. Therefore,

there is only one such disjoint compatible path. For one single matching edge,

no such path exists. This yields the recursion start f(1) = 0, f(2) = f(3) = 1.

Solving this recurrence, which is known as Jacobsthal sequence (cf. [10]) with

an index shift by one, we obtain f(n) =
2n−1+(−1)n

3 . Our starting point p was

chosen arbitrarily out of 2n points, we however do not distinguish between

starting and ending points. Therefore we need to multiply the result by 2n
2

which eventually yields the result n
3 (2n−1 + (−1)n) for n ≥ 1.

We covered all plane perfect matchings with either one or at least three semiears.

Therefore, the only matchings left are those with exactly two semiears. This

case is by far the most comprehensive one.
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3.2 Plane perfect matchings with two semiears

To analyse matchings with exactly two semiears, we introduce the notion of

(k, l)-faces.

F1 F2

M

Figure 3.3: A plane perfect matching M on S with two semiears, two faces and their
convex hulls. A (0, 2)-face F1 is drawn in blue and a (2, 3)-face F2 is
depicted in red.

Definition 3.4. Let M be a plane perfect matching on S with two semiears.

We define a (k, l)-face for 0 ≤ k ≤ l to be an inside (k + l + 2)-semicycle with

exactly two diagonals, k perimeter edges on one side of the convex hull and l

perimeter edges on the other side.

Remark 3.5. (k, l)-faces could also be defined for general plane perfect match-

ings on S, however this is not needed here.

We observe that every plane perfect matching with two semiears consists of

a chain of faces, starting and ending with a semiear. The diagonals are used

twice, respectively, and separate either two faces or a face and a semiear. Note,

however, that the number of faces could be zero.

Any Hamiltonian path which is disjoint compatible to a matching with two

semiears has to traverse this chain of faces from one end to the other, starting
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and ending in a semiear, respectively. We therefore can check for any plane

perfect matching of this type by scanning from left to right if there exists such

a path.

When traversing from one face to another (or from/to a semiear), the path

crosses at one endpoint of the respective diagonal. The other point incident

to this diagonal has to be visited either before (in the first face/semiear) or

afterwards (in the second face/semiear). This yields in total four different

possibilities for any diagonal as shown in Figure 3.4.

(a) (b) (c) (d)

· · ·

· · ·

· · ·

· · ·

Figure 3.4: The four different ways of a path visiting the two endpoints of a diagonal,
here drawn in black. In the two figures on the left, the path meets one of
the points before crossing to the second face, that is, within the first face.
In the two figures on the right, the path first traverses to the second face
and only afterwards visits the second incident point of the diagonal.

Our next step is to consider which faces locally admit a disjoint compatible

path and if they do, how many different of these paths are there. We are

furthermore interested in the possible ways of processing the diagonals of the

respective face. First of all, for too ’unbalanced’ faces, i.e., (k, l)-faces with k

and l being far off, there is no disjoint compatible Hamiltonian path.

Lemma 3.6. Any (k, l)-face with l ≥ 2k + 3 does not admit a disjoint com-

patible Hamiltonian path. In particular, every plane perfect matching on S

with two semiears and such a face is isolated in the bipartite graph B2n.
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· · ·

· · ·
2k + 3

k

E· · ·

Figure 3.5: There is no disjoint compatible Hamiltonian path meeting all points of
a (k, 2k+ 3)-face: even if we try to visit as many point on the upper arc
of the convex hull as possible, the path (drawn in red) misses at least
two points and therefore cannot leave the face.

Proof. We will show that in a (k, 2k+ 3)-face, not all 2k+ 3 edges on the larger

side of the face can be visited by a disjoint compatible path. This implies our

statement also for all (k, l)-faces with l even larger.

First, we observe that any path has to switch between the two sides of the face

(for simplicity, we refer here to the larger side with 2k + 3 edges by above and

to the k edges on the other side by below). After passing at most two points

on one side (not adjacent by a matching edge), we have to go to the other side.

Above there are in total 4k + 8 points to visit (including those incident to the

diagonals) and below there are 2k + 2 points overall.

If we want to saturate as many points above as possible, it is easy to see that

we have to apply option (d) as depicted in Figure 3.4 for the first diagonal and

option (b) for the second diagonal (when going from left to right). By doing so,

we can visit the first two points above without using any of the points below,

and afterwards for every point below we can meet two further points above.

However, after we passed all 2k + 2 points below, the path visited only 4k + 6

points above and cannot reach the last two points above to leave the face.
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Corollary 3.7. Any (k, 2k + 2)-face with k ≥ 0 admits a unique disjoint

compatible Hamiltonian path. In particular, the way how the two respective

diagonals are visited is fixed.

Figure 3.6: A (2, 6)-face as an example for a (k, 2k + 2)-face with a unique disjoint
compatible Hamiltonian path drawn in red. The circles indicate which
point on the smaller side with 2k + 2 = 6 points saturates which two
points on the larger side. The leftmost and rightmost points are those
where the path is entering and leaving the face, respectively.

Proof. The statement immediately follows from the proof of Lemma 3.6 where

a Hamiltonian path was constructed such that it visits as many points on the

larger side of the face as possible. This path is unique and visits exactly 4k + 6

points on one side and 2k + 2 points on the other side as required.

Lemma 3.8. For any (k, 2k + 1)-face with k ≥ 0 there are three different

possibilities for a disjoint compatible Hamiltonian path w.r.t. the interaction of

the path with the two diagonals (up to symmetry).

Proof. To find all possibilities we again consider a (k, 2k + 2)-face as in Corol-

lary 3.7 which admits one unique disjoint compatible Hamiltonian path. Every
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point on the smaller side satisfies exactly two points on the larger side and the

path has to enter and leave at the larger side.

(a) (b) (c)

Figure 3.7: A (k, 2k + 2)-face with its unique disjoint compatible Hamiltonian path
depicted in red (dashed). Deleting one matching edge on the upper arc
(crossed in blue) yields a (k, 2k+ 1)-face. There are three different ways
for a disjoint compatible Hamiltonian path to run in this face as depicted
in green. The points encircled in green are visited by the path outside
of the face.

If we now remove one matching edge, that is, two points on the larger side,

there are several possibilities. One way is to interact with the diagonals in the

same way and two vertices below only saturating one point above, respectively,

as seen in Figure 3.7 (a). Another way is to enter and leave the face again on

the larger side, but leave out one of the lower points incident to the diagonal

and meet it outside the face, cf. Figure 3.7 (b). Then the path has to continue

as for the (k, 2k + 2)-face. The third option is to enter (or leave) the face

at one diagonal on the smaller side. In that case, the adjacent point on this

diagonal has to be left out, otherwise it is not possible to meet all inner points

of the face. The rest of the face is processed again as in the (k, 2k + 2)-face, cf.

Figure 3.7 (c).

Combining the preceding results we can now obtain an algorithm to decide

whether there is a disjoint compatible Hamiltonian path for a given plane

perfect matching on S with exactly two ears.

As we already observed earlier, each such matching forms a chain, starting
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with a semiear, followed by (possibly zero) (k, l)-faces and ending with another

semiear. The idea is to pass through this chain with a scanline going from

diagonal to diagonal. There are four possibilities for each diagonal to be

traversed by a disjoint compatible path as depicted in Figure 3.4.

We start with one semiear and identify the disjoint compatible Hamiltonian

paths for it. Here, two paths are considered to be different if the diagonal

is processed differently, therefore there are at most four possible options. As

shown in Figure 3.8 it is easy to see that there are two feasible paths for a

2-semiear, namely options (a) and (b) in Figure 3.4 for the ear ”on the left”

(which is treated first) and options (c) and (d) for the ear ”on the right” (visited

at the end of the algorithm). For any k-semiear with k ≥ 3 all four options are

valid.

··
·

··
·

··
·

··
·

(a) (b) (a) (b) (c) (d)

(I) (II)

Figure 3.8: (I) Two different disjoint compatible paths for a 2-semiear. They meet
both endpoints of the diagonal within the semiear and leave either above
or below. (II) For a semiear with at least three perimeter edges, any
variant of a disjoint compatible path is feasible.

Now at each diagonal crossover following a (k, l)-face, we identify the possible

ways for a Hamiltonian path to pass, given as input the feasible paths of the

previous diagonal. Therefore we have to check the size of the respective face,

more precisely, the parameters k and l. (W.l.o.g. we assume that 0 ≤ k ≤ l,

where k is the number of matching edges below and l is the number of matching

edges above. Otherwise we just need to reflect the interaction possibilities of a

path with the diagonal across the horizontal axis, that is, exchange the role
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of (a), (b) and (c), (d), respectively.) We distinguish between the following

cases:

• l ≥ 2k + 3: Regardless of the input, the set of feasible paths as output is

empty. This case is treated in Lemma 3.6.

• l = 2k + 2: If possibility (d) is part of the input, the output contains

possibility (b). Otherwise, the output is empty. This case is treated in

Corollary 3.7.

• l = 2k + 1: If the input contains possibilities (a) or (b), we get (b) as

feasible option in the output. For input (d), the output contains (b), (c)

and (d). If the input consists of only (c) or is empty, then the output set

is also empty. This case is covered by Lemma 3.8 considering symmetry.
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3 Disjoint path-compatible matchings

• l = 2k, k ≥ 1: Similar to the above cases we obtain the following implica-

tions by checking all combinations: If (c) is a feasible input, (b) is in the

output. If (a) or (b) are part of the input, the output contains (b), (c)

and (d). Input (d) implies that all four possibilities are feasible. A proof

by picture is given in Figure 3.9.

E

(b)(a) (a) (a)(a) (c) (d)

(b)(b) (b) (b)(b) (c) (d)

E

(b)(c)

(d) (d) (d) (d)(a) (d)(c)(b)

Figure 3.9: All possible kinds of disjoint compatible paths in a (k, 2k)-face, depicted
for k = 1.
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3 Disjoint path-compatible matchings

• l = 2k − 1, k ≥ 1: If the input contains (c), then (b), (c) and (d) are in

the output set. If any other option is in the input, again all possibilities

are feasible. A proof by picture is given in Figure 3.10.

(Note: This case includes (1, 1)-faces.)

(b)(a) (a) (a)(c) (d)(a)(a)

(b)(b) (b) (b)(c) (d)(a)(b)

(b)(c) (c) (c)(c) (d)(c)

(b)(d) (d) (d)(c) (d)(a)(d)

E

Figure 3.10: All possible kinds of disjoint compatible paths in a (k, 2k − 1)-face,
depicted for k = 2.
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3 Disjoint path-compatible matchings

• 2 ≤ k ≤ l ≤ 2k − 2: As long as the input is not empty, the output contains

all four possibilities. Those are depicted for the extreme case l = 2k − 2

in Figure 3.11.

(b)(a) (a) (a)(c) (d)(a)(a)

(b)(b) (b) (b)(c) (d)(a)(b)

(b)(c) (c) (c)(c) (d)(c)

(b)(d) (d) (d)(c) (d)(a)(d)

(a)

Figure 3.11: All possible kinds of disjoint compatible paths in a (k, l)-face for
2 ≤ k ≤ l ≤ 2k − 2, depicted for k = l = 2.
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3 Disjoint path-compatible matchings

• l = 0, k = 0: If the input contains (a) or (b), it follows that (c) and (d)

are in the output set. If the input contains (c), then (b) is a feasible

output and (d) in the input set implies that (a) is a valid possibility for

the output. A proof by picture is given in Figure 3.12.

(c)(a) (d)(a) (b) (c) (b) (d) (b)(c) (d) (a)

Figure 3.12: All possible kinds of disjoint compatible paths in a (0, 0)-face.

An overview of all different output cases is depicted in Table 3.1.

input

case (a) (b) (c) (d)

l ≥ 2k + 3 ∅ ∅ ∅ ∅
l = 2k + 2 ∅ ∅ ∅ (b)

l = 2k + 1 (b) (b) ∅ (b),(c),(d)

l = 2k, k ≥ 1 (b),(c),(d) (b),(c),(d) (b) (a),(b),(c),(d)

l = 2k − 1, k ≥ 1 (a),(b),(c),(d) (a),(b),(c),(d) (b),(c),(d) (a),(b),(c),(d)

2 ≤ k ≤ l ≤ 2k − 2 (a),(b),(c),(d) (a),(b),(c),(d) (a),(b),(c),(d) (a),(b),(c),(d)

l = k = 0 (c),(d) (c),(d) (b) (a)

Table 3.1: All valid output cases of the algorithm for a given (k, l)-face with the
respective input case. If the input contains several cases, then the output
is the union of the corresponding entries in the table.

For a matching on 2n points (with two semiears), there are at most n − 3

faces. Each of them, as well as the semiears, can be treated in constant time.

Therefore the running time for the algorithm is of order O(n).

Figure 3.13 gives an example of how the algorithm works.
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3 Disjoint path-compatible matchings

l̃ = 2k̃ + 2

l = 2k

l = 2k − 1

l = 2k + 2

l = 2k + 1

(a), (b)

(b), (c), (d)

⇒ (ã), (d̃), (c̃)

(b̃)⇒ (a)
(a), (b), (c), (d)

(b), (c), (d)

(b)

Figure 3.13: A plane perfect matching with two semiears on a set of 44 points in con-
vex position. The semiears and faces are depicted in different colours.
For each diagonal, it is indicated which options for a disjoint compatible
Hamiltonian path are feasible. All values provided with a tilde refer to
the reflection of the respective face across the horizontal axis. The set
of feasible interactions of a path with the diagonals is not empty at any
point. For a 3-semiear as in this example on the right, any option is
valid. Therefore a (not necessarily unique) disjoint compatible Hamil-
tonian path exists; one of them is indicated in grey and the respective
options chosen at the diagonals are highlighted in blue. If the semiear
on the right was a 2-semiear, then no disjoint compatible path would
exist since this would require either option (c) or (d) for the rightmost
diagonal.
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3 Disjoint path-compatible matchings

Lemma 3.9. Any plane perfect matching consisting of an odd number of

parallel matching edges (that is, only (0, 0)-faces and two 2-ears) obtains no

disjoint compatible Hamiltonian path, i.e., those matchings are isolated vertices

in B2n.

E· · ·

· · ·

· · ·

Figure 3.14: A plane perfect matching consisting of an odd number of parallel match-
ing edges. The faces have to be treated alternatingly, therefore a parity
conflict arises and there is no possibility to draw a disjoint compatible
Hamiltonian path.

Proof. For both ears, the path has to visit both endpoints of the diagonal

within this ear to reach both points of the perimeter edge. For a (0, 0)-face,

there are two possibilities. Either the path visits all four points within the face

or only two of them, one of each diagonal.

Since the path meets both points of the first diagonal within the ear, it only

meets two in the adjacent first face. This again implies that it has to saturate

all four points in the second face, therefore the path only meets two vertices

in the third face, etc. If we number the faces (but not the ears) from left to

right, we observe that within all faces of odd index, two vertices are visited

and within all faces of even index, four vertices are visited. However, we have

an even number of (0, 0)-faces, thus in the last of those faces, which is adjacent

to the second 2-ear, all four vertices are met and it is impossible to reach both

points incident to the second perimeter edge.
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3 Disjoint path-compatible matchings

Definition 3.10. Let M , M ′ be two plane perfect matchings on S. If there

exists a plane Hamiltonian path P on S such that both M and M ′ are disjoint

compatible to P , then M and M ′ are called disjoint path-compatible.

We recall a Lemma about disjoint tree-compatible matchings:

Lemma 2.14. Let M , M ′ be two matchings whose symmetric difference is an

ear or a boundary area with at least three points. Then M and M ′ are not

disjoint tree-compatible to each other.

By this statement we can easily conclude the following statement about disjoint

path-compatible matchings:

Lemma 3.11. Let M and M ′ be two matchings whose symmetric difference is

an ear or a boundary area. Then M and M ′ are not disjoint path-compatible

to each other.

· · ·

···

Figure 3.15: Two matchings creating a boundary area with two points.

Proof. Every path is a tree, therefore the only case left to consider is a pair

of matchings creating a boundary area with two points. This situation is

depicted in Figure 3.15. The red matching creates a 2-semiear, thus has at

least one further semiear. However, the only way for a disjoint compatible

Hamiltonian path to visit the two upper points is to start and end at those

points, respectively. This is a contradiction to the fact that every semiear has

to contain the start or end of any disjoint compatible path.
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3 Disjoint path-compatible matchings

Unlike for disjoint tree-compatible matchings, the set of all plane perfect

matchings on S is not connected w.r.t. disjoint path-compatibility for sufficiently

large n as the values in Table 3.2 suggest, even when restricting to only non-

isolated matchings in B2n. This statement can be proven by considering the

two perimeter matchings.
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4 2 8 2 components in total: 4

• 2x: 1 matching, 2 paths

6 5 48 5 components in total: 42

• 2x: 1 matching, 3 paths

• 3x: 1 matching, 0 paths

8 14 256 10 components in total: 192

• 2x: 3 matchings, 16 paths

• 8x: 1 matching, 4 paths

10 42 1280 27 components in total: 1140

• 2x: 6 matchings, 35 paths

• 5x: 2 matchings, 6 paths

• 5x: 1 matching, 8 paths

• 15x: 1 matching, 0 paths

12 132 6144 54 components in total: 5328

• 2x: 16 matchings, 156 paths

• 12x: 5 matchings, 34 paths

• 24x: 1 matching, 4 paths

• 16x: 1 matching, 0 paths
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3 Disjoint path-compatible matchings

14 429 28672 219 components in total: 26488

• 2x: 36 matchings, 406 paths

• 7x: 11 matchings, 70 paths

• 7x: 7 matchings, 86 paths

• 14x: 3 matchings, 8 paths

• 14x: 1 matching, 12 paths

• 175x: 1 matching, 0 paths

16 1430 131072 678 components in total: 121344

• 2x: 97 matchings, 1504 paths

• 16x: 24 matchings, 288 paths

• 32x: 7 matchings, 54 paths

• 96x: 1 matching, 4 paths

• 532x: 1 matching, 0 paths

18 4862 589824 2936 components in total: 560880

• 2x: 217 matchings, 4239 paths

• 9x: 60 matchings, 694 paths

• 9x: 40 matchings, 810 paths

• 18x: 20 matchings, 129 paths

• 18x: 9 matchings, 176 paths

• 18x: 4 matchings, 8 paths

• 72x: 2 matchings, 6 paths

• 36x: 1 matching, 6 paths

• 36x: 1 matching, 8 paths

• 2718x: 1 matching, 0 paths

20 16796 2621440 10746 components in total: 2509120

• 2x: 556 matchings, 14330 paths

• 20x: 123 matchings, 2472 paths

• 40x: 40 matchings, 587 paths

• 40x: 9 matchings, 72 paths

• 20x: 9 matchings, 60 paths

• 20x: 7 matchings, 60 paths

• 40x: 5 matchings, 34 paths

• 40x: 4 matchings, 46 paths
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3 Disjoint path-compatible matchings

• 20x: 4 matchings, 9 paths

• 20x: 1 matching, 24 paths

• 20x: 1 matching, 8 paths

• 360x: 1 matching, 4 paths

• 10104x: 1 matching, 0 paths

22 58786 11534336 43023 components in total: 11181984

• 2x: 1266 matchings, 42064 paths

• 11x: 306 matchings, 6440 paths

• 11x: 225 matchings, 7280 paths

• 22x: 120 matchings, 1525 paths

• 22x: 61 matchings, 1953 paths

• 22x: 32 matchings, 234 paths

• 22x: 32 matchings, 178 paths

• 44x: 27 matchings, 271 paths

• 22x: 11 matchings, 308 paths

• 22x: 11 matchings, 292 paths

• 22x: 5 matchings, 8 paths

• 88x: 3 matchings, 6 paths

• 264x: 2 matchings, 6 paths

• 88x: 1 matching, 20 paths

• 88x: 1 matching, 12 paths

• 132x: 1 matching, 8 paths

• 110x: 1 matching, 4 paths

• 42031x: 1 matching, 0 paths

Table 3.2: Key values for the bipartite graph B2n such as the number of match-
ings and paths in total (which is the number of vertices in B2n) as
well as the number of components with matchings and isolated paths
for n = 1, . . . , 11 obtained by computer calculations.
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3 Disjoint path-compatible matchings

Theorem 3.12. The two perimeter matchings are not connected in B2n.

Proof. Consider the even perimeter matching. It is easy to see that every

disjoint path-compatible matching only has semiears with even perimeter edges,

otherwise the union of the two matchings would contain an ear, contradicting

Lemma 3.11. We call this semiears even semiears for short.

Our claim is now that any matching which is disjoint path-compatible to a

matching with only even semiears has only even semiears itself. Since we

already covered the perimeter matching, we only have to consider matchings

with exactly two (even) semiears. By contradiction, assume that there exists a

disjoint path-compatible matching with an odd semiear. If the interior of this

semiear intersects with the interior of an even semiear in the first matching, this

creates either an ear or a boundary area, which is a contradiction. Otherwise,

the union of the two matchings has at least three semiears, therefore no disjoint

compatible Hamiltonian path can exist.

Thus we can conclude that any matching in the same connected component

as the even perimeter matching only has even semiears and analogously any

matching in the same component as the odd perimeter matching obtains only

odd semiears. Consequently, those sets are disjoint in the graph B2n.
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4 Disjoint caterpillar-compatible

matchings

Research on this topic is based on joint work in [5].

4.1 Basic definitions and general case

In the previous chapters, we have seen that the set of all plane perfect matchings

on S is connected via disjoint compatible spanning trees (for n sufficiently

large) but not connected for Hamiltonian paths which are just a special case of

spanning trees.

Therefore the natural question arises whether we can do better, that is, restrict

spanning trees in a way that the underlying disjoint compatibility graph is still

connected. In fact, we will show that all plane perfect matchings on S for large

enough n are disjoint compatible via caterpillar trees of maximum degree 3.

Definition 4.1. A caterpillar tree (or caterpillar for short) is a tree consisting

of a path and vertices directly connected to this path. We refer to the path as

the spine of the caterpillar and to the edges connecting the leaves of the tree

to the path as the legs of the caterpillar.

A caterpillar that includes all vertices on the point set S is called a spanning

caterpillar.
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4 Disjoint caterpillar-compatible matchings

Figure 4.1: A (spanning) caterpillar on a convex set of 14 points. The spine is
depicted in red, the legs are drawn in blue.

Definition 4.2. Let M , M ′ be two plane perfect matchings on S. If there

exists a plane spanning caterpillar C on S such that both M and M ′ are disjoint

compatible to C, then M and M ′ are called disjoint caterpillar-compatible.

Definition 4.3. The disjoint caterpillar-compatibility graph C2n is defined as

follows:

• the set of vertices is made up of all possible plane perfect matchings on S

• two vertices are connected by an edge if and only if the respective

matchings are disjoint caterpillar-compatible.

The first step is now to show that all plane perfect matchings on S are indeed

connected via disjoint compatible caterpillars.

Theorem 4.4. For 2n ≥ 10, the disjoint caterpillar-compatibility graph C2n

is connected and diam(C2n) = O(n).

Proof. We will make use of the proof of Theorem 2.9. There it was shown that

we can get from any plane perfect matching on S to any other plane perfect

matching in at most four steps via matchings differing in only a set of disjoint

inside cycles.

For caterpillars, we will show that each of these steps can be done in linearly

many steps in the graph C2n, that is, between two matchings with a symmetric
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4 Disjoint caterpillar-compatible matchings

difference consisting of disjoint inside cycles we can find a sequence of O(n)

disjoint caterpillar-compatible matchings.

In contrast to general spanning trees, the inside cycles are not treated all at

once, but one after the other. The number of disjoint inside cycles is at most

linear in the size of the point set S. Therefore it suffices to show that we can

rotate one single inside cycle in one step via a disjoint compatible caterpillar.

First, we observe that for any matching edge AB in an arbitrary matching,

we can find a disjoint compatible caterpillar going from A to B in a greedy

way. Starting with the spine at point A, we always go to the next possible

point along the perimeter. If a point is skipped, the next one is reachable for

sure and we connect the skipped point by a leg to the newly added point on

the spine. By this procedure we get a caterpillar from A to B such that the

degree of A is 1, the degree of B is either 1 or 2 and the maximum degree of

the caterpillar is at most 3, cf. Figure 4.2.

· · ·

A

B

Figure 4.2: A disjoint compatible caterpillar from A to B with maximum degree 3.
The spine is depicted in red, the legs are drawn in blue.

Now assume that we are given two plane perfect matchings on S such that their

symmetric difference is a single inside cycle. For simplicity we first assume that

this cycle contains exactly two diagonals, say A1B1 and A2B2 in the sense that

A1 and A2 are neighboured if we order those four points along the circle as

depicted in Figure 4.3. We start by creating a disjoint compatible caterpillar
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4 Disjoint caterpillar-compatible matchings

going from A1 to B1. Then connect all points on the cycle between A1 and

A2 to B1 (those edges are legs of the caterpillar) and add an edge between B1

and A2 as part of the spine. All points on the cycle between B1 and B2 are

attached to A2 via legs again. Finally, create a caterpillar going from A2 to B2.

A1

B1

B2

A2 M ∪M ′

Figure 4.3: Union of two plane perfect matchings M and M ′ drawn in black with
a symmetric difference of a single inside cycle containing two diagonals
(shaded in gold) and a disjoint compatible caterpillar with red spine and
blue legs.

If the inside cycle contains more than two diagonals, say A1B1, . . . , AkBk

for k ≥ 3, we can generalise this approach easily: the diagonals are labelled

alternately such that the ordering along the inside cycle is in the following way:

A1A2B2B3A3A4 . . . B1, cf. Figure 4.4. The spine again starts going from A1

to B1 as before, then within the cycle reaches A2, continues outside the cycle

to B2 and connects B2 again within the inside cycle to A3 and so on until we

reach Ak and finally finish the spine by going to Bk. All other vertices are

connected to the spine via legs in the same way as before.

Although the upper bound for the diameter of the graph is no longer constant

as for disjoint compatible spanning trees, this statement is somehow stronger
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A1

B1

A2

B2

A3

B3

M ∪M ′

Figure 4.4: Union of two plane perfect matchings M and M ′ drawn in black with a
symmetric difference of a single inside cycle containing three diagonals
(shaded in gold) and a disjoint compatible caterpillar with red spine and
blue legs.

in the sense that caterpillars are much more restricted than general spanning

trees. Indeed, we can restrict them even further and demand that every vertex

in those caterpillars has degree at most 3.
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4 Disjoint caterpillar-compatible matchings

4.2 Disjoint compatibility via one-legged

caterpillars

Definition 4.5. A caterpillar with maximum degree 3 is called a one-legged

caterpillar. In the same way as before two plane perfect matchings M and

M ′ on S are defined to be disjoint compatible via one-legged caterpillars if

there exists a one-legged caterpillar C which is disjoint compatible to both M

and M ′.

Definition 4.6. The graph C∗2n is defined as follows:

• the set of vertices is made up of all possible plane perfect matchings on S

• two vertices are connected by an edge if and only if the respective

matchings are disjoint compatible via one-legged caterpillars.

Theorem 4.7. For 2n ≥ 10, the graph C∗2n is connected and diam(C∗2n) = O(n).

Proof. This proof works similarly to the proof for general caterpillars. For any

two plane perfect matchings, we first consider the intermediate steps in the

spanning tree setting, which number is bounded by four from above. Again, for

each of those steps, we treat each inside cycle (which occurs in the symmetric

difference of the two matchings) individually. However, we also need to break

up each of those inside cycles into several 2-cycles.

This is done in the following way: Let A1B1 and A2B2 be two diagonals of the

inside cycle. We assume for the moment that those are the only two diagonals

of the inside cycle. By adding temporary diagonals starting in B1 as long as we

do not exceed the diagonal A2B2, we create a ’fan’ of 2-cycles as depicted in

Figure 4.5. The rest of the inside cycle is divided by a similar fan of temporary

diagonals emerging from the endpoint of the last diagonal added from B1 (this

is either A2 or its adjacent point along the inside cycle). By following this

procedure, we obtain a chain of inside 2-cycles starting and ending at a diagonal.
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4 Disjoint caterpillar-compatible matchings

If we have more than two diagonals on the inside cycle, we proceed as in the

proof of Theorem 4.4 to generalise this procedure by considering all subcycles

obtained by the spine separately and dividing them into 2-cycles in the same

way.

··
·

· ·
·

A1

B1

A2

B2

Figure 4.5: Subdivision of an inside 6-cycle into five inside 2-cycles.

Treating each occurring 2-cycle of each inside cycle on its own, we obtain in

total again at most linearly many cycles. Therefore it is only left to show that

there is a disjoint compatible one-legged caterpillar for any pair of matchings

which obtains as symmetric difference exactly one inside 2-cycle.

As already mentioned, each 2-cycle is in fact an inside 2-cycle by construction

of the chain, therefore the caterpillar can enter and leave the 2-cycle. All points

outside the 2-cycle can be treated by the greedy approach described in the

proof of Theorem 4.4. For the 2-cycle, several cases can occur as depicted in

Figure 4.6.

If there are only two adjacent diagonals as in (a), the spine goes from the shared

endpoint A of both diagonals in both directions to the respective endpoints

B1 and B2. The fourth point of the inside cycle is reached by a leg emerging

from A.

If the only two diagonals are opposing as in (b), the spine goes from A1 to B1,

connects B1 to A2 within the cycle and continues until it reaches B2.
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B1

B2
A

B1

A2A1

B2

(a) (b)

(d)(c)

Figure 4.6: All possibilities for an inside 2-cycle (drawn as black square) with a
disjoint compatible caterpillar sketched in colours (spine in red and legs
in blue). (a) Two diagonals, they are adjacent. (b) Two diagonals,
they are not adjacent, but opposing. (c),(d) There are three and four
diagonals, respectively.

If the inside 2-cycle is surrounded by either three or four diagonals, the spine

of the caterpillar goes around the inside cycle but never enters it, as shown in

(c) and (d), respectively.

As shown for Theorem 4.4, the caterpillar obtained from the greedy approach

has a maximum degree of at most 3, the degree of the starting vertex A is one

and the degree of the endvertex B is at most 2. For each of the above cases,

the total degree of the diagonals’ endpoints is increased to at most 3. Therefore

the total maximum degree of the disjoint compatible caterpillar is bounded by

3 as well.
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5 Conclusion

In this Master’s thesis we considered different disjoint compatibility graphs on

the set of all plane perfect matchings on S, where S is a set of 2n points in

convex position.

In Chapter 2, two plane perfect matchings are considered to be compatible

if there exists a plane spanning tree which is disjoint compatible to both of

them. We defined the notion of ears and inside cycles and showed that for two

matchings with a symmetric difference of only inside cycles, the distance in

the disjoint compatibility graph is 1. Furthermore, if the symmetric difference

consists of a k-ear with k ≥ 6, the distance is at most 3.

As the two main results we first proved in Theorem 2.9 that for at least ten

points, the disjoint compatibility graph is connected and the diameter is upper

bounded by 5. Second, in Theorem 2.18 we found two special matchings on

the point set S of at least ten points, namely the two 2-semiear matchings for

even n and the two near-2-semiear matchings for odd n, and showed that their

distance in the disjoint compatibility graph is at least 4, thus the diameter of

the graph is lower bounded by 4.

One open problem is to close the gap between 4 and 5.

In the third chapter, we analysed the disjoint compatibility of plane perfect

matchings via plane Hamiltonian paths. It is an easy observation that not all

matchings are connected via those paths. More precisely, many matchings –

as those with at least three semiears – do not obtain any disjoint compatible

Hamiltonian path. We defined a bipartite disjoint compatibility graph with

all plane perfect matchings on one side and all plane Hamiltonian paths

on the other side. We showed that both perimeter matchings have exactly
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n
3 (2n−1 + (−1)n) disjoint compatible Hamiltonian paths. For matchings with

exactly two semiears, if and how many disjoint compatible paths exist depends

on the size of the faces in between. If any face is too unbalanced, the matching

is isolated in the compatibility graph, as well as all matchings consisting of

only an odd number of parallel edges.

In Theorem 3.12 we finally showed that the two perimeter matchings themselves

are not connected in the bipartite disjoint compatibility graph, therefore this

graph is disconnected even when restricting to only non-isolated vertices.

Finally, in the fourth chapter, we restricted the intermediate disjoint compatible

trees again, but in a way that the underlying compatibility graph is still

connected for sufficiently many points. In detail, it was proven that all plane

perfect matchings on at least ten points are connected via disjoint compatible

caterpillar trees with maximum degree 3, also called one-legged caterpillars.

The diameter of the respective disjoint compatibility graph is at most linear

in n.
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compatible geometric matchings. Discrete & Computational Geometry,

49(1):89–131, 2013.

[9] Andreas Razen. A lower bound for the transformation of compatible

perfect matchings. Proceedings of EuroCG, pages 115–118, 2008.

[10] Neil J. A. Sloane. The On-Line Encyclopedia Of Integer Sequences. URL:

http://oeis.org/A001045.

72

http://oeis.org/A001045

	Introduction
	Compatibility
	Disjoint compatibility
	Compatibility via other graph classes

	Disjoint tree-compatible matchings
	Basic definitions
	Upper bound for the diameter of the disjoint tree-compatibility graph
	Lower bound for the diameter of the disjoint tree-compatibility graph

	Disjoint path-compatible matchings
	Basic definitions and special cases
	Plane perfect matchings with two semiears

	Disjoint caterpillar-compatible matchings
	Basic definitions and general case
	Disjoint compatibility via one-legged caterpillars

	Conclusion
	List of Figures
	List of Tables
	Bibliography

