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Introduction

Closed curves are familiar items of everyday human life as we make use of their topological

and geometrical properties to wear necklaces, bind objects together, and bound territories.

This clearly makes closed curves a very natural mathematical class of objects and possibly

the most elementary one to require an analysis able to handle the global character of

their defining property. In the simplest scenario, this is the condition for the curve to

start and end at the same point. Formally, for real numbers a < b, a closed curve γ is a

continuous function from the interval [a, b] to Rn such that γ(a) = γ(b). Especially in

dimension 2, such a simple definition on one hand is so insidiously general that it requires

some efforts even when it comes to prove “apparent” properties like the Jordan curve

theorem [28], guaranteeing that a simple closed curve splits the plane into two connected

components. On the other one it is rich enough to allow surprising conjectures such as

the inscribed square problem, asking whether every Jordan curve admits an inscribed

square, which has indeed been confirmed only under stronger hypotheses [44]. Often

prolific branches of literature have been motivated by extremely practical problems, as

the legendary task of queen Dido [20], whose problem of maximizing the area enclosed

by a curve of given length is solved by the isoperimetric inequality, which in itself is the

starting point of a rich theory [35].

If we require the curve to be Ch, with ‖γ′‖ 6= 0 and matching derivatives at the

two coinciding ends, then global differential geometry of regular closed curves is just

born. The 4-vertex theorem, which bounds the number of local maxima/minima of the

curvature function of a simple planar curve, is an iconic result here. It is one of the

earliest contributions to this field and has a fascinating story, which starts with its proof

at the beginning of the 20th century [33], [25] and culminates in the the establishment

of a full converse in 2005 [4], with a truly simple proof obtained only in 1985 [34] (see

[9] for an overview). Also in this case, several analogous problems have been studied

and generalizations to space curves keep coming with an increasing degree of refinement

[16], [15]. One cannot end a paragraph about global differential geometry of curves

without mentioning Milnor’s results about the total curvature of knots [30] and their

predecessor, Fenchel’s theorem [11], which in its most basic formulation states that the

average curvature of a closed space curve of length L is at least 2π/L and that the
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INTRODUCTION

equality holds only for convex planar curves.

A leitmotiv can be identified in the unexhaustive inventory above: all the listed results

rely on simple definitions and can be stated in a few lines, but require very different

proof techniques. In [12], Fenchel himself argues on the nature of research outcomes

involving the differential geometry of closed space curves. Although we deal also with

planar curves, the content of the present work is well represented by his comment:

The results are often comparatively elementary and seem to be isolated. On

the other hand, the intuitive character of the statements and the lack of a

general method of approach make the field attractive.

The first two chapters of this thesis are characterized by results whose nature clashes

with intuition, making it sort of hard to believe the statements before reading the proofs,

an aspect which is especially surprising given the simplicity of the objects involved. The

first chapter is about the possibility of closing a smooth planar curve by splitting and

rearranging its arcs, while the second one analyzes the problem of linear interpolation of

curvature functions with the constraint of mantaining closedness. The last chapter is

set in three-dimensional Euclidean space and looks at curves as a tool to characterize

curved-creased origami. Even if we do not discuss only closed constructions, the main

motivation of the chapter is the longstanding problem of existence of the so-called

folded annulus with multiple creases [5]. Besides, developable surfaces themselves can be

regarded as unidimensional objects if one looks at their dual representation, making the

whole contribution a good fit for the present dissertation.

Contributions of this thesis

In this work we study several properties related to the differential geometry of closed

curves in Euclidean space of dimension 2 and 3. The sequence of chapters is roughly

organized in increasing order of technical complexity and, by chance, of smoothness

degree of the curves involved (Chapter i deals with curves of regularity Ci).

(1) L. Alese. Closing curves by rearranging arcs. Submitted: May 2020, arXiv:2002.05422.

(2) L. Alese. Affine subspaces of curvature functions from closed planar curves. Sub-

mitted: May 2020, arXiv:2006.09678.

(3) L. Alese. Propagation of curved folding: The folded annulus with multiple creases

exists. Submitted: August 2020, arXiv:2008.02660.
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Figure 0.1: A smooth planar curve with total turning number a non-zero integer multiple of 2π

can always be split into 3 arcs rearrangeable to a closed smooth curve.

The three chapters which constitute the present dissertation essentially coincide with

the corresponding journal articles itemized in the list above. Thus, throughout this work

the terms “chapter” and “paper” are to be considered synonyms. To avoid redundancy,

the respective bibliographies have been merged into the one at the end of the thesis.

We provide a more detailed overview of the content of each chapter in the following

subsections.

Chapter 1: Closing curves by rearranging arcs

The core result of the chapter is that a C1-smooth planar curve, whose tangent fully

turns a non-zero number of times, can always be split into 3 arcs rearrangeable to a

closed smooth curve (Fig. 0.1). Such a result, which we called the 2-cut theorem is

proven with elementary topological methods reminescent of the topological proof of the

fundamental theorem of algebra.

Moving from the 2-cut theorem, generalizations are considered, both by weakening the

requirements on the total turning angle, and by looking at curves split into several arcs

of non-zero length with the additional constraint of using a given permutation to achieve

the objective of closing the curves. In the latter case, we provide a full classification,

showing that for a smooth planar curve with total turning number 2kπ, k ∈ Z and k 6= 0,

there are always cuts allowing such a rearrangement unless the chosen permutation is a

cyclic shift. The proof technique is heavily based on the one we use for the simpler 2-cut

theorem and relies on its robustness to small perturbations; we mention a few examples

from the literature where similar approaches have been succesful, e.g. the converse of the

4-vertex theorem [9].

Finally comments are made about how the tools used in the paper could possibly be

applied to address the problem of rearranging arcs of framed curves in higher dimensions.

5



INTRODUCTION

Figure 0.2: A curve is deformed by adding real multiples of a given function to its curvature. If

such a function is chosen properly, then all the curves of the family are closed.

Chapter 2: Affine subspaces of curvature functions from closed

planar curves

In the second chapter, given a pair of real functions k, f on an interval [a, b] we study

the conditions that they must satisfy for k + λf to be the curvature, as a function

of arc-length, of a closed planar curve for all real λ (Fig. 0.2). We observe that the

closedness constraint involves a function analytic in λ and thus we are are able to prove

a series of sufficient and necessary conditions, including
∫ b
a eiθ · φn = 0, ∀n ∈ N, where θ

and φ are the turning angle functions associated respectively to k and f . Possibly the

most surprising consequence, obtained by way of the Weierstrass approximation theorem,

is that the curves associated to the curvature functions on the affine line k + λf are all

closed if and only if the curves associated to k + λfg′(φ) are all closed, where g is any

differentiable function with a bounded and integrable derivative. This entails that a

single direction suitable for the interpolation implies the existence of an affine space of

infinite dimension with the same property. Leveraging this characterization, we also show

that the respective behaviour of k and f on the boundary is strongly related, translating

into analagous features of the associated family of curves, whose elements turn out to be

more regular than originally required.

In the second part of the paper, the same questions we ask for smooth curves are

asked again for closed polylines, drawing a strong analogy between the set of conditions

obtained in the two cases.

Finally, using the results from previous sections, we provide some insights on the

complexity of detecting the closedness of a curve by looking at its curvature. We formally

show that it is impossible to develop a sufficient analogue of the 4-vertex theorem,

meaning that it is not possible to come up with a procedure that tells whether the curve

associated to a curvature function k is closed or not by accessing finitely many evaluations
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Figure 0.3: Regular developables meeting at curved creases and providing instances of folded

annuli with multiple folds.

and/or level sets of k, its derivatives and antiderivatives.

Chapter 3: Propagation of curved folding: The folded annulus

with multiple creases exists

In the final chapter we work in three-dimensional Euclidean space and consider curved

folds, i.e. continuous surfaces locally isometric to a planar domain, which are piecewise

differentiable and exhibit creases along curves. The main goal of the paper is to achieve

a better understanding of how creases interact when multiple foldlines are prescribed.

We pay special attention to those patterns that present non-trivial combinatorics, such

as the annulus folded along concentric circles [5]. Our strategy is to move the attention

from the developables involved (the differentiable parts) to the curves bounding them

(the ridges) and their relation with the singular points of the surface (the regression

curve). This allows a more convenient approach to providing explicit constructions and

analyzing their regularity.

With the intent of making the chapter self-contained, we recall how developables admit

a ruled parametrization, pointing out how its regularity is the best possible for those

surfaces involved in a curved fold. Rephrasing [13], local curved folding is characterized

in terms of the geodesic curvature, normal curvature and relative torsion of the ridge

with respect to the developables on its two sides, whose dependency can be conveniently

expressed by these descriptors with formulae enjoying a nice degree of symmetry.

We describe then how a fold propagates when an additional foldline is prescribed,
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INTRODUCTION

proving the relation between the normal curvature and relative torsion at the endpoints

of a ruling on consecutive ridges. Although such relations are not simple, they describe

the phenomenon in its full generality. On the one hand this can be employed to provide

explicit parametrizations of annuli folded along multiple concentric circles (Fig. 0.3). On

the other hand this can be used to obtain existence and non-existence results of broad

applicability, although of somewhat technical nature. More specifically, on the existence

side we show that any fold can be propagated to an arbitrary fixed number of additional

foldlines, provided that they are close enough to each other, and on the non-existence

one that any sequence of folds can be artificially engineered to look armless till a certain

ridge and then turn singular in an arbitrarily abrupt manner, pointing out that a possible

argument about the foldability of a pattern with infinitely many prescribed foldlines

should involve a control mechanism on the derivative of all orders.
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1 Closing curves by rearranging arcs

Abstract

In this paper we show how, under surprisingly weak assumptions, one can split a planar

curve into three arcs and rearrange them (matching tangent directions) to obtain a closed

curve. We also generalize this construction to curves split into k arcs and comment what

can be achieved by rearranging arcs for a curve in higher dimensions. Proofs involve only

tools from elementary topology, and the paper is mostly self-contained.

1.1 Introduction

In this chapter we study the problem of splitting a given planar curve into arcs and

rearrange them (matching tangent directions) in order to make the curve closed. The

interest of our result lies in the counterintuitive nature of the statement and in the

simplicity of the proof. Using an argument very similar to that involved in the topological

proof of the fundamental theorem of algebra, we will show that a one time differentiable

curve with total turning angle a nonzero integer multiple of 2π can always be split into

three arcs that are rearrangeable to a closed curve.

The operation of joining arcs of curves matching frames at junction points has been

considered in various settings, mainly with the goal of constructing closed curves with

certain properties. In [2] multiple copies of the same planar curve are joined one after

another; if the arc-length integral of the curvature is a rational non-integer multiple of

2π then gluing finitely many copies of the curve will eventually close up the construction

to the starting point. In [26] and [31] arcs of helices resp. so-called Salkowski curves

are joined to obtain a family of closed space curves of constant curvature which are

curvature-continuous (C2) resp. C3. In [29] all types of knots and links are realized as

C2 curves of constant curvature by joining arcs of helices.

As for an outline of the contents, in §1.2 we set the notation and recall an elementary

topology lemma. In §1.3 we prove that, under very natural assumptions, a C1 planar curve

can be split into 3 arcs that can be rearranged to obtain a closed C1 curve. In §1.4 this

construction is extended to permutations of any number of arcs. In §1.5 generalizations to
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CHAPTER 1. CLOSING CURVES BY REARRANGING ARCS

higher dimensions are discussed and some possible directions for future work are pointed

out.

1.2 Notation

We start by settling the language about some natural topological objects. For any a, b ∈ R
with a ≤ b, we call path a continuous function w(t) over [a, b] to R2 and loop a path l such

that l(a) = l(b). A contraction of a loop l : [a, b]→ R2 to a point Q is a continuous family

H(h, t) defined for h, t ∈ [a, b] with h ≤ t such that H(a, t) = l(t), H(h, h) = H(h, b) for

all h ∈ [a, b] and H(b, b) = Q: in particular, each path t 7→ H(h, t) is a loop defined over

[h, b]. A loop l is said to be contractible in a subset A of R2 if there exists a contraction

of l whose image is contained in A.

A path w(t) over [a, b] that does not contain P ∈ R2 can be expressed as w(t) =

P + ρ(t)(cosφ(t), sinφ(t)) where (ρ(t), φ(t)) are its polar coordinates with respect to P .

Since w is continuous, we will always assume ρ(t) and φ(t) are continuous as well. We

call winding number of w with respect to P the value φ(b)− φ(a). The next is a result

from elementary homotopy theory and the proof given here is the usual one contained in

topology textbooks; for more on homotopy theory see for example the first chapter of

[19].

Lemma 1.2.1. Let l(t) be a loop on [a, b] whose image does not contain P ∈ R2. Let

(ρ(t), φ(t)) be polar coordinates with respect to P and φ(b)− φ(a) = 2kπ, k ∈ Z. If k 6= 0,

i.e. l has winding number with respect to P different from 0, then l is not contractible in

R2 \ {P}.

Proof. Assume for a contradiction that a contraction H(h, t) exists. For each loop

H(h, t) we consider polar coordinates (ρh(t), φh(t)) and the integer kh that satisfies

φh(b) = φh(a) + 2khπ. Since a contraction is a continuous function, φh(t) can be chosen

to be continuous also in h and such that φa(t) = φ(t) for all t (we continuously extend

the polar coordinates we already have for l). This entails that kh is also continuous and

therefore constant as a function whose image is contained in Z. This implies kh = k 6= 0

for all h. But this is a contradiction since the image of H(b, t) is a single point and

therefore kb = 0.

We formalize now what is meant by joining arcs of curves matching frames at junction

points. To do that we introduce the concept of framed curve (γ,F)(s) of Rn, a pair

consisting of a C1 curve γ(s) of Rn with constant speed c, namely a differentiable function

from some interval [a, b] to Rn such that ‖γ′‖ ≡ c > 0, and a positive orthonormal basis
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1.3. TWO-CUT THEOREM

F(s) = {f1(s), f2(s), ..., fn(s)} of Rn, continuous in s and such that f1(s) = γ′(s)/c. An

example of a frame for n = 3 and γ ∈ C2 with everywhere nonzero curvature is the

Frenet-Serret frame, obtained by taking f2 as γ′′/‖γ′′‖ and f3 as the vector product of

f1 and f2.

If (γ1,F1)(s1) and (γ2,F2)(s2) are two framed curves parametrized over [a1, b1] and

[a2, b2] with the same constant speed c, denoting with Ta2,b1 the rigid motion of Rn that

shifts the point γ2(a2) to γ1(b1) and rotates the frame F2(a2) to F1(b1), we define the

concatenation of the two curves, for s ∈ [0, b1 − a1 + b2 − a2], as

γ1 ∗ γ2(s) :=

γ1(s+ a1), s ≤ b1 − a1

Ta2,b1γ2(s̄(s)), s > b1 − a1,

where s̄(s) = s − (b1 − a1) + a2 is the reparametrization achieving s̄(b1 − a1) = a2.

Operation ∗ rigidly glues γ2 to the end point of γ1 by matching frames. It is easy to see

that this operation is associative.

1.3 Two-cut theorem

In the following section let γ(s) be a C1 planar curve with constant speed c, parametrized

over [0, 1] and framed with F(s) = {f1(s), f2(s)} where f2(s) is obtained by rotating

f1(s) = γ′(s)/c counter-clockwise by π
2 . For convenience we assume without loss of

generality γ(0) = (0, 0) and f1(0), f2(0) aligned with the axes of the coordinate system.

For any choice of cuts c1, c2 with 0 ≤ c1 ≤ c2 ≤ 1, we split the curve into three arcs γ1, γ2

and γ3 respectively parametrized over [0, c1],[c1, c2] and [c2, 1]. We define the rearranged

curve r(c1,c2) : [0, 1]→ R2 as

r(c1,c2) := γ1 ∗ γ3 ∗ γ2.

Figure 1.1 visualizes this construction for different cuts c1, c2. Intuitively this is the

curve obtained by swapping the middle arc between parameters c1 and c2 and the tail

of the curve between c2 and 1. The rearrangement is well defined also if one or more

arcs γi degenerate to a point since they still inherit from γ the information of a tangent

direction.

In Theorem 1.3.1 and Lemma 1.3.2 we will continuously move the two cuts, while

tracking the end point of the rearranged curve, defining this way a family of loops whose

properties with respect to contractibility imply the existence of cuts such that γ1 ∗ γ3 ∗ γ2

is a closed curve. Two main observations will be needed to follow such a construction

and it is worth stressing them before moving to the proofs.

11



CHAPTER 1. CLOSING CURVES BY REARRANGING ARCS

γ1

γ2

γ3

Figure 1.1: Rearrangements of a curve for different cuts. Arcs γ2 and γ3 are swapped and tangent

directions matched.

• For any c1 ∈ [0, 1] it holds r(c1,c1)(1) = r(c1,1)(1) = γ(1), i.e. c2 7→ r(c1,c2)(1) is a

loop defined over [c1, 1].

• If c1 = 0, the rearrangement just swaps the only two arcs in which the curve has

been split. Under the hypothesis of Theorem 1.3.1, ‖r(0,c2)(1)− r(0,c2)(0)‖ will not

depend on the choice of c2.

We consider a function θ(s) such that γ′(s) = c (cos θ(s), sin θ(s)) and call it turning

angle function for γ. We also call θ(1)− θ(0) the total turning angle of γ. Besides, we

denote with Rθ the counter-clockwise rotation of angle θ and center in the origin.

Theorem 1.3.1 (Two-cut theorem). Let γ(s) be a C1 constant speed planar curve over

[0, 1] and θ(s) a turning angle function for γ. If θ(1)− θ(0) = m2π with 0 6= m ∈ Z then

there exist cuts c1, c2 such that the rearranged curve r(c1,c2) is a closed C1 curve.

Proof. Let us consider the loop e(t) := r(0,t)(1). Explicitly,

e(t) = Rθ(1)−θ(t)(γ(t)− γ(0)) +Rθ(0)−θ(t)(γ(1)− γ(t)) + γ(0)

= Rθ(1)−θ(t)(γ(t)) +R−θ(t)(γ(1)− γ(t))

= R−θ(t)
(
Rθ(1)(γ(t))− γ(t) + γ(1)

)
= R−θ(t)

(
γ(1)

)
,

where we have used the equaliy Rθ(1) = Rθ(0), which follows directly from the hypothesis

on the total turning angle, and the assumptions γ(0) = (0, 0), γ′(0) = (c, 0). This equation

provides polar coordinates (‖γ(1)‖,−θ(t)) for e(t) whose image turns out to be a circle of

radius ‖γ(1)‖ centered in the origin. By hypothesis we have θ(1)−θ(0) = m2π with m 6= 0

and therefore Lemma 1.2.1 guarantees e is not contractible in R2 \ {(0, 0)} = R2 \ {γ(0)}.
Varying h ∈ [0, 1] we obtain a continuous family of loops r(h,t)(1), t ∈ [h, 1], which is in

fact a contraction of e(t) to γ(1), an operation not possible in R2 \ {(0, 0)}. Hence it

12



1.3. TWO-CUT THEOREM

e = r(0,t)(1)

r(h,t)(1)

γ

γ1

γ2

γ3

r(c1,c2)

γ(c1)

γ(c2)

Figure 1.2: For any choice of the first cut h, tracking in t the endpoint of the rearranged curve

r(h,t) provides a loop. If the total turning angle of γ is a nonzero multiple of 2π loops

in this family start as a circle and contract to γ(1), therefore passing through the

origin and guaranteeing the rearrangeability to a closed curve.

Figure 1.3: More closed rearrangements for curves whose total turning angle is a nonzero integer

multiple of 2π.

must be a contraction in R2 whose image contains (0, 0), which means there exist (h, t)

such that r(h,t)(1) = (0, 0), starting point of the curve. Since the total turning angle did

not change and it is still an integer multiple of 2π, tangents at the beginning and at the

end of the curve match.

Examples of rearrangements are given in Figure 1.3. As mentioned in the introduction,

the proof of Theorem 1.3.1 is similar to the topological proof of the fundamental theorem

13



CHAPTER 1. CLOSING CURVES BY REARRANGING ARCS

of algebra. Given a polynomial p(z) = zn + an−1z
n−1 + ... + a1z + a0 with n > 0, for

ρ ∈ R large enough the loop p(ρeit), t ∈ [0, 2π] winds around the origin n times. If now ρ

continuously decreases to 0 such a loop contracts to a0, which entails the existence of ρ, t

such that ρeit is a root of p. A detailed proof can be found in [19].

We conclude the section with a lemma, which, using the same techinques of the proof

of Theorem 1.3.1, generalizes the previous result at the price of a (much) less expressive

hypothesis.

Lemma 1.3.2. Let γ(s) be a C1 constant speed planar curve over [0, 1] and θ(s) a

turning angle function for γ. If |θ(1)− θ(0)| ≥ 2π and

‖γ(1)‖ ≥
√

2
(
1− cos θ(1)

)
max
s∈[0,1]

‖γ(s)‖,

then there exist cuts c1, c2 such that r(c1,c2) is closed, i.e., r(c1,c2)(0) = r(c1,c2)(1) (not

necessarily smooth at the end point).

Proof. Again we look at e(t) = R−θ(t)
(
Rθ(1)(γ(t)) − γ(t) + γ(1)

)
. After computing

‖Rθ(1)(γ(t))− γ(t)‖ =
√

2(1− cos θ(1))‖γ(t)‖ our hypothesis entails that Rθ(1)(γ(t))−
γ(t) + γ(1) is contained in a ball centered in γ(1) which does not contain the origin.

If (ρ(t), φ(t)) are polar coordinates for e(t) with respect to the origin this implies

φ(1)− φ(0) ∈ (θ(0)− θ(1)− π
2 , θ(0)− θ(1) + π

2 ). Since e is a loop and |θ(1)− θ(0)| ≥ 2π

we get φ(1)− φ(0) = 2meπ with 0 6= me ∈ Z and Lemma 1.2.1 guarantees again that e

is not contractible in R \ {γ(0)}. Varying h ∈ [0, 1] we define again a continuous family

of loops r(h,t)(1), t ∈ [h, 1], which contracts to γ(1), and we conclude as in the proof of

Theorem 1.3.1.

Note that the argument of Theorem 1.3.1 and Lemma 1.3.2 still works if we want to

reach, as the end point of the rearranged curve, any point “inside” the loop e(t), that

is any point with respect to which e has winding number different from 0. Moreover,

the winding number itself provides a lower bound on the number of possible different

rearrangements.

Remark 1.3.3. The conditions we used on the turning angle are sufficient but not necessary

for rearrangeability. It is easy to find examples of curves with total turning angle 0,

whose associated loop e is not surjective onto the circle in which it is contained, but

that, in spite of the failure of the contraction argument, can still be rearranged to closed

curves. On the other hand, surjectivity of γ′/c onto S1 is not sufficient to guarantee that

a curve is rearrangeable to a closed one; if arcs of circles and line segments are arranged

as in Figure 1.4, the end point r(h,t)(1) does not coincide with the origin for any choice

of cuts.
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1.4. MORE PERMUTATIONS

r(h,t)(1)

Figure 1.4: In bold a curve whose tangent is surjective onto S1 but no 3 arcs can be rearranged to

obtain a closed curve. The four images show loops in the family r(h,t)(1) for different

values of h. Such a family opens up without passing through the origin.

1.4 More permutations

We break now the curve into k ≥ 2 arcs by chosing cuts in the set

Dk := {(c1, c2, ..., ck−1) ∈ [0, 1]k−1, 0 ≤ c1 ≤ c2 ≤ ... ≤ ck−1 ≤ 1}.

In the following, for notation convenience we will refer a few times also to the 0th and

k-th component of a string of cuts C ∈ Dk, which we define by setting c0 := 0 and ck := 1.

Given C ∈ Dk, we split a framed curve (γ,F) over [0, 1] into γ1, γ2, ..., γk respectively

defined over [0, c1], [c1, c2], ..., [ck−1, 1]. For any element σ of the permutation group Sk

of the indices {1, 2, ..., k}, we define

rσ,C := γσ(1) ∗ γσ(2) ∗ ... ∗ γσ(k).

In order to compare more easily rearranged curves from different permutations, in the

following we will implicitely assume that rσ,C is also shifted and rotated such that its

starting point and frame coincide with the origin and the axes of the coordinate system.

We also define

eσ : Dk → Rn, eσ(C) := rσ,C(1),

which is the (continuous) map from the space of admissible cuts to the end point of

the rearranged curve. We call a curve (k, j)-rearrangeable with respect to a permution

σ ∈ Sk if there exist cuts C ∈ Dk such that rσ,C is a Cj closed curve. Theorem 1.3.1

and Lemma 1.3.2 from §1.3 give conditions that guarantee a curve is (3, 1)-rearrangeable

resp. (3, 0)-rearrangeable with respect to the permutation (23) of S3. Note that asking

for higher regularity, i.e. j > 1, greatly restricts the set of admissible cuts.

We now want to move towards a full characterization of the permutations σ ∈ Sk with

respect to which a planar curve can be rearranged. In particular, we will see that this

15



CHAPTER 1. CLOSING CURVES BY REARRANGING ARCS

characterization is the same as that of permutations σ ∈ Sk with respect to which a

curve can be properly rearranged, meaning with this that no arc of the rearranged closed

curve rσ,C degenerates to a point (in other words in a proper rearrangement we ask for

C to be contained in the interior of the set of admissible cuts Dk, denoted with int(Dk)

in the following). A major role will be played by the subgroup of cyclic shifts of Sk,

Zk := {zh}h∈{0,1,...,k−1} ⊆ Sk with zh(i) =

i+ h, i ≤ k − h

i+ h− k, i > k − h.

By the end of the section we will have proven the following theorem.

Theorem 1.4.1. Let γ(s) be a C1 constant speed non-closed planar curve over [0, 1],

whose turning angle function θ(s) satisfies θ(1)− θ(0) = m2π with 0 6= m ∈ Z. If σ ∈ Sk
with 3 ≤ k, then there exist cuts C ∈ int(Dk) such that the rearranged curve rσ,C is closed

C1 if and only if σ ∈ Sk \ Zk, i.e. σ is no cyclic shift.

The next two lemmas explain how Zk is relevant to our purposes. For the rest of

the section, as in the hypothesis of Theorem 1.4.1, we will always assume γ(s) is a C1

constant speed non-closed planar curve defined over [0, 1], whose turning angle function

θ(s) satisfies θ(1)− θ(0) = m2π with 0 6= m ∈ Z.

Lemma 1.4.2. Let γ be a curve as described in the previous paragraph. If zh ∈ Zk then

there exist no cuts C ∈ Dk such that rzh,C is closed.

Proof. For any cuts, rzh,C is the same curve as the one obtained by swapping just two

arcs partitioning the curve. More precisely, if C = (c1, c2, ..., ck−1), it holds rzh,C = r(12),C̄

with C̄ = (ch), and we have already observed in §1.3 that the distance from the origin

of the end point of such a curve is independent from the choice of the cut and different

from 0.

Lemma 1.4.3. Let γ be a curve as described above. If σ ∈ Sk and zh ∈ Zk, then γ is

(k, 1)-rearrangeable with respect to σ if and only if γ is (k, 1)-rearrangeable with respect

to the composition σ · zh of these two permutations.

Proof. As already pointed out, zh cyclically shifts all elements by the same integer h.

Once the curve is rearranged to a closed one, it remains closed if the sequence of arcs is

cyclically shifted and the same cuts C ∈ Dk are used.

Observing that (123), (132) ∈ Z3 and that (13) = (23) · (123), (12) = (23) · (132) we

conclude the following characterization of (3, 1)-rearrangeability.
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1 2 3 4 5

2 4 5 1 3

F2

1 2 3 4

2 4 1 3

1 2 3 4 5 6

5 1 2 4 6 3

F4

1 2 3 4 5

4 1 2 5 3

Figure 1.5: When the arc in position i of the rearranged curve degenerates, k − 1 arcs are left

and a permutation on Sk−1 is induced.

Proposition 1.4.4. Let γ(s) be a C1 constant speed non-closed planar curve over [0, 1],

whose turning angle function θ(s) satisfies θ(1)− θ(0) = m2π with 0 6= m ∈ Z. Let also

σ be a permutation of {1, 2, 3}, then γ is (3, 1)-rearrangeable with respect to σ if and only

if σ is a transposition.

At this point we can make clear how we want to tackle the proof of Theorem 1.4.1. The

plan is to first drop the properness constraint and show that some arcs can be collapsed

to reduce the problem to a permutation on S3. After that we will conclude by observing

that the topological argument we used for S3 is robust to perturbations and can be

adapted to cuts where the degnerate arcs are inflated a little bit to guarantee properness.

When two cuts in Dk coincide and an arc degenerates we can relabel the indices,

inducing a permutation on Sk−1. For i ≤ k, σ ∈ Sk, we define Fi(σ) ∈ Sk−1 by

Fi(σ)(j) =



σ(j), j < i, σ(j) < σ(i)

σ(j)− 1, j < i, σ(j) > σ(i)

σ(j + 1), j ≥ i, σ(j + 1) < σ(i)

σ(j + 1)− 1, j ≥ i, σ(j + 1) > σ(i),

where j ∈ {1, 2, ..., k − 1}. This definition by cases might be not particularly expressive,

while Fig. 1.5 is the better tool to understand the combinatorial meaning of this

relabelling. Fi’s are not group homomorphisms as shown for example in S5 by taking

i = 2, σ1 = (124)(35), σ2 = (134)(25) for which F2(σ2) · F2(σ1) 6= F2(σ2 · σ1).

We now need to prove a combinatorial lemma, which will be the core of the inductive con-

struction used in Proposition 1.4.6 to prove the characterization of (k, 1)-rearrangeability,

when cuts are allowed (actually forced) to degenerate.

Lemma 1.4.5. For σ ∈ Sk \ Zk with k ≥ 4 and σ(1) = 1, there exists i ∈ {1, 2, ..., k}
such that Fi(σ) ∈ Sk−1 \ Zk−1.

Proof. Let us consider the smallest r ∈ {1, 2, ..., k} such that σ(r) 6= r, which exists since

σ is not the identical permutation. We set i to the following values, distinguishing 3
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cases:

i :=


1, r > 2 Fi(σ)(r − 1) = σ(r)− 1 6= r − 1

σ−1(k), r = 2, σ(2) 6= k ⇒ Fi(σ)(2) = σ(2) 6= 2

3, r = 2, σ(2) = k, Fi(σ)(2) = σ(2)− 1 = k − 1 > 2.

Since for all three cases Fi(σ)(1) = 1, this concludes the proof.

Proposition 1.4.6. Let γ(s) be a C1 constant speed non-closed planar curve over [0, 1],

whose turning angle function θ(s) satisfies θ(1)− θ(0) = m2π with 0 6= m ∈ Z. If σ ∈ Sk
with 4 ≤ k, then there exist cuts C ∈ ∂(Dk) such that the rearranged curve rσ,C is closed

C1 if and only if σ ∈ Sk \ Zk.

Proof. Lemma 1.4.2 rules out permutations in Zk from the picture. By Lemma 1.4.3

proving rearrangeability with respect to σ · zh for zh ∈ Zk implies also rearrangeability

with respect to σ. We can therefore assume, by possibly applying some cyclic shift,

that σ(1) = 1. By Lemma 1.4.5 we can find i such that by taking cuts on ∂Dk with

cσ(i)−1 = cσ(i) a permutation in Sk−1 \ Zk−1 is induced. The statement follows by

induction, once we observe that the base k = 4 is guaranteed by Proposition 1.4.4 after

one last contraction.

We can finally prove Theorem 1.4.1 by discussing the robustness of the argument we

used in §1.3.

Proof of Theorem 1.4.1. The case k = 3 is implied by Proposition 1.4.4 after observing

that cuts must be in the interior of D3 since the curve we want to rearrange is not

closed. If k > 3, by Proposition 1.4.6 we can find q1 < q2 < q3 ∈ {0, 1, 2, ..., k − 1} such

that there exist cuts C̄ = (c̄1, c̄2, ..., c̄k−1), satisfying c̄j < c̄j+1 for j ∈ {q1, q2, q3} and

c̄j = c̄j+1 otherwise, and such that rσ,C̄ is closed C1 (recall that we agreed on c̄0 = 0 and

c̄k = 1). We want now to inflate degenerate arcs, making them proper again, without

undermining the contraction argument we used for S3. For (l1, l2) ∈ D3 we let δ(l1, l2) =
1

k−2 min{l1, l2 − l1, 1− l2} and define the inflated cuts I[l1, l2] = (c1, ..., ck−1) ∈ Dk as

cj =



jδ(l1, l2), j ≤ q1

l1 + (j − (q1 + 1))δ(l1, l2), q1 < j ≤ q2

l2 + (j − (q2 + 1))δ(l1, l2), q2 < j ≤ q3

1− (k − j)δ(l1, l2), j > q3.

Figure 1.6 visualizes the inflation operation. Note that if (l1, l2) ∈ int(D3) then

I[l1, l2] ∈ int(Dk). Further, no inflation happens if (l1, l2) ∈ ∂(D3). What we are doing

18



1.4. MORE PERMUTATIONS

1 2 3 4 5 6

2 5 1 6 4 3

F2 · F3 · F5

1 2 3

1 3 2

l1 l2

δI

c1 c2 c3c4c5

Figure 1.6: Indices are repeatedly contracted from a permution in S6 to obtain a permutation in

S3. Such indices determine how degenerate cuts are inflated and turned into proper

ones.

here is to push the interior of the triangular face cj = cj+1 for j /∈ {q1, q2, q3}, which can

be thought as a copy of D3, towards the interior of Dk. Because of Proposition 1.4.3

we can assume the permutation induced on S3 is the one swapping arc 2 and 3. We

proceed as in §1.3, by considering the loop eσ(I[0, t]) defined on [0, 1]. Since no inflation

is happening on ∂D3, this is exactly the same loop contained in a circle and with winding

number m2π we described in the proof of Theorem 1.3.1, which we know being contained

and not contractible in R2 \ {(0, 0)}. For h ∈ [0, 1] the family of loops eσ(I[h, t]) defined

on [h, 1] is a contraction to a point different from (0, 0), which implies the existence of

(h, t) ∈ int(D3) such that eσ(I[h, t]) = (0, 0).

Figure 1.7 shows how a curve split into 6 arcs can be properly rearranged. One can

be a bit more precise about the maximum magnitude of the inflation factor δ exploiting

uniform continuity of eσ on Dk. Nevertheless, we preferred the slightly less informative

but leaner proof we gave above.

The proof of Theorem 1.4.1, in the way we made sure that the perturbation of our

starting cuts would not undermine the features of the loop eσ(I[0, t]), presents one further

analogy with the topological proof of the fundamental theorem of algebra. If p̄(z) = zn

then it is apparent that the loop p̄(ρeit) for ρ > 0 winds around the origin n times, which

is a property of little use since it is obvious where the roots of such a polynomial are.

If p̄ is changed to p(z) = zn + an−1z
n−1 + ... + a1z + a0 though, the property about

the winding number remains unalterd if ρ is chosen large enough to make negligible the

contribution of the terms of lower degree and therefore the contraction argument can

still be used. The idea of exploiting the robustness of a topological argument, proven

to work for a degenerate case, is also reminescent of the proof of the converse of the so

called 4-vertex theorem by Gluck [17], generalized on the same line some 30 years later by

Dahlberg [4]. A nice survey on this theorem and its proof(s) can be found in [9], where
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γ1 γ2

γ3

γ4
γ5

γ6

γ1
γ2

γ5
γ6

γ4

γ3

eσ(I[h, t])

Figure 1.7: Proper rearrangement of a curve split into 6 arcs. The topological argument is the

same as in §1.3: eσ(I[h, t]) defines a family of loops starting as a circle centered in

(0, 0) and contracting to γ(1) 6= (0, 0), which implies the starting point of the curve is

contained in one of the intermediate loops of this family.

also the above observation about the fundamental theorem of algebra is pointed out.

1.5 Some comments on higher dimensions and future work

A viable technique for showing (k, 0)-rearrangeability in Rn would be to proceed in

a manner analogous to the 2D case by assessing the contractibility in Rn \ {O} of

the image of ∂Dk through eσ. If eσ(∂Dk) contains the starting point O then we have

already achieved (k − 1, 0)-rearrangeability. Otherwise, up to homeomorphism a map

∂Dk
∼= Sk−2 → Rn \ {O} is induced. If this map is not contractible (it represents a

non-trivial element in the (k − 2)-th homotopy group of Rn \ {O} ' Sn−1) then there

exist cuts in the interior of D that provides (k, 0)-rearrangeability. Nevertheless, in

this setting the current lack of nice criteria to detect contractibility of the map induced

by a certain permutation makes it hard to translate such considerations into explicit

statements about rearrangeability.

We conclude with pointing out a few possibilities for future work. A full characterization

of planar curves that are (k, 0)-rearrangeable or (k, 1)-rearrangeable is an obvious next

step. For higher dimensions it would be relevant to better understand the combinatorics

of the image of eσ(∂Dk) and to develop at least some neat sufficient conditions which

guarantee that a curve is (k, j)-rearrangeable. C2 curves in R3 whose curvature is constant
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are a promising family to study in this direction; in such class, if the curve is framed with

the Frenet-Serret frame, the rearrangement procedure described in §1.4 would provide

C2 regularity also at junction points.

Acknowledgments

The author acknowledges the support of the Austrian Science Fund (FWF): W1230,

“Doctoral Program Discrete Mathematics” and of SFB-Transregio 109 “Discretization in

Geometry & Dynamics” funded by DFG and FWF (I2978).

The author would also like to thank Thilo Rörig and Johannes Wallner for helpful

discussions and the Institut für Mathematik at TU Berlin for kind hospitality at the time

this work was begun.

21





2 Affine subspaces of curvature functions

from closed planar curves

Abstract

Given a pair of real functions (k, f), we study the conditions they must satisfy for k+ λf

to be the curvature in the arc-length of a closed planar curve for all real λ. Several

equivalent conditions are pointed out, certain periodic behaviours are shown as essential

and a family of such pairs is explicitely constructed. The discrete counterpart of the

problem is also studied. Finally, the characterization obtained is used to show that a

sufficient analogue of the 4-vertex theorem cannot be developed.

2.1 Introduction

The natural and complete geometric descriptor we associate to a curve is its curvature. If

γ ∈ C2([0, 2π],R2) is an arc-length parametrized planar curve, i.e., a twice differentiable

function from the interval I := [0, 2π] to the real plane such that the norm of its first

derivative ‖γ′‖ is constantly equal to 1, we can define a turning angle function θ that

satisfies γ′(t) = (cos θ(t), sin θ(t)) = eiθ(t), where R2 has been identified with the complex

plane C. The curvature k of γ is defined as the first derivative θ′ of the turning angle

function. The other way round, given a continuous curvature k ∈ C0(I,R) we can

reconstruct by integration, uniquely up to rigid motions, the curve it comes from. In

fact, θ(t) =
∫ t

0 k(s)ds+ C and γ(t) =
∫ t

0 eiθ(s)ds+ V . For a more extensive treatment of

the subject the reader may refer to [10].

Given another function f ∈ C0(I,R), the main question we are interested in this

chapter is:

What are the conditions on k and f for k+λf to be the curvature of a closed

curve for all λ ∈ R?

Here and in the following with closed we just mean that starting and end point of the

curve coincide (we will see though that the nature of the problem entails much stiffer
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relations also on the derivatives at the extreme points of the curve). Figure 2.1 visualizes

the objects we are going to study.

Interpolation of curvature functions is a tool used in computer graphics to gradually

transform one curve into another, while mantaining the length of the curve [45]. This

method does not perform well when it comes to deform closed curves, since there is

no guarantee that the intermediate curves are closed as well; from the point of view of

computer graphics this problem can be fixed by approximating the transition curves with

closed ones that are not too far away from them [38]. In this paper we approach the

problem from the theoretical perspective, exploring the conditions guaranteeing that all

the curves are closed over the interpolation of the curvature functions.

In the more general framework of deformations, the evolution of curves under the action

of different flows has been studied: in [3] a curvature-based flow is used to transform

a shape into another while preserving the length; the closedness of the curve over the

process is guaranteed by an extra projection step to the hyperspace of L2 defined by the

constraint
∫ 2π

0 k′(s)γ(s)ds = 0 relating the position of the curve and the first derivative

of its curvature, which is interestingly proven as a necessary and sufficient condition for

a curve to be closed.

As for an outline of the contents, §2.2 presents the main characterization theorem,

proving also that the existence of a single affine line of curvature functions from closed

curves is equivalent to the existence of an infinite dimensional affine space of such

functions. In §2.3 periodicity properties of k and f are shown. On the existence side,

§2.4 deals with the explicit construction of pairs of analytic function (k, f) that satisfy

our constraints. In §2.5 we discuss the discrete case. Finally, in §2.6 a hardness result

on the task of telling whether a curve is closed by looking at its curvature k is obtained.

We show that it is not possible to develop a procedure that tells whether the associated

curve is closed or not by accessing finitely many evaluations and/or level sets of k, its

derivatives and its antiderivatives.

2.2 Equivalent characterizations of closedness

Let γ be a closed C2 curve defined on the interval I = [0, 2π], θ its associated turning

angle function and k = θ′ its curvature. For f ∈ C0(I,R), we want to answer the question:

what are the conditions on f for k + λf to be the curvature of a closed curve for all

λ ∈ R? Calling φ(t) :=
∫ t

0 f(s)ds, this is equivalent to∫ 2π

0
ei(θ(t)+λφ(t))dt = 0, ∀ λ ∈ R.
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Affine line of

curvature functions

Family of

closed curves
k

k + λf

Figure 2.1: An ellipse is deformed by adding multiple of f to its curvature k. If, as in this case, f

is chosen properly, then all the curves of the family are closed. We want to study the

constraints k and f must satisfy to present such a behaviour.

The function F (λ) :=
∫ 2π

0 ei(θ(t)+λφ(t))dt is analytic in λ. This can be seen for example

by giving the following explicit entire expansion for the real part of F (the imaginary

part is analogous):

F1(λ) =
∞∑
c=0

cn
λn

n!
, with cn =

(−1)
n
2

∫ 2π
0 φ(t)n cos θ(t)dt, if n is even,

(−1)
n+1
2

∫ 2π
0 φ(t)n sin θ(t)dt, if n is odd.

This observation alone is enough to conclude the first of our equivalent conditions.

Lemma 2.2.1. Let k, f ∈ C0(I,R). Then the curve with curvature k + λf is closed

∀ λ ∈ R ⇔ we have the equality∫ 2π

0
eiθ(t)φ(t)ndt = 0, ∀ n ∈ N0, (2.1)

where θ(t) =
∫ t

0 k(s)ds and φ(t) =
∫ t

0 f(s)ds.

Proof. An analytic function is everywhere 0 if and only if all of its derivatives vanish in

at least one point. We conclude by computing the n-th derivative of F and evaluating

it in λ = 0, obtaining 0 = F (n)(0) = in
∫ 2π

0 eiθ(t)φ(t)ndt. Note that we could take the

derivative within the integral thanks to the Leibniz integral rule.

We want now to better understand this condition, by discussing some of its implications.

Our main tool will be an approximation argument based on the observation that, if φ
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satisfies the condition above, then for any N ∈ N0 and (cj)j∈{1,...,N} ∈ RN+1, also the

sum
∑N

j=0 cjφ
j does.

Lemma 2.2.2. θ, φ ∈ C1(I,R) satisfy condition (2.1) ⇔ θ, g(φ) (composition of func-

tions) satisfy condition (2.1), for any g bounded and integrable.

Proof. The ‘if’ part is trivial. For the ‘only if’ we use a density property of polynomials

in our class of functions to approximate g. More explicitely, for any n ∈ N0 and ε > 0,

there exists a polynomial pn,ε of degree N(n, ε) such that∫ 2π

0

∣∣g(φ(t))n − pn,ε(φ(t))
∣∣dt < ε,

which implies

|
∫ 2π

0
eiθ(t)g(φ(t))ndt|

≤|
∫ 2π

0
eiθ(t)

(
g(φ(t))n − pn,ε(φ(t))

)
dt|+ |

∫ 2π

0
eiθ(t)pn,ε(φ(t))dt|

≤
∫ 2π

0

∣∣g(φ(t))n − pn,ε(φ(t))
∣∣dt ≤ ε.

By Lemma 2.2.2, the existence of φ satisfying (2.1) implies the existence of an infinite-

dimensional affine space through θ whose elements satisfy (2.1) as well. From the

perspective of the curvature, what we are saying here is that, choosing g to be C1, we can

pass from f to fg′(φ) and still have that the curves with curvature functions k + λfg′(φ)

are closed for all λ.

Before moving to the next lemma, which provides a much more local characterization

of our constraint, it is convenient to recall that a level set φ−1(a) = {t | φ(t) = a} consists

of isolated points, if φ′(t) 6= 0 for all t ∈ φ−1(a). For φ defined on a compact interval I,

level sets of such regular values are therefore finite.

Lemma 2.2.3. If θ, φ ∈ C1(I,R) satisfy condition (2.1), then we have the implication

a 6= φ(0), φ(2π) is a regular value of φ⇒
∑

b∈φ−1(a)

eiθ(b)

|φ′(b)|
= 0. (2.2)

Proof. In Lemma 2.2.2 we select g = χ[a,a+δ], that is the characteristic function of the

interval [a, a+ δ], and obtain∫
φ−1([a,a+δ])

eiθ(t)φ(t)dt = 0, ∀ δ ≥ 0, a ∈ R.
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We can find δ > 0 such that the restrictions {φj} of φ to the finitely many components

of φ−1([a, a+ δ]) are invertible. Calling R(δ) :=
∫
φ−1([a,a+δ]) eiθ(t)φ(t)dt, we compute its

derivative with respect to δ

R′(δ) =
∑
j

eθ(φ
−1
j (a+δ))φ(φ−1

j (a+ δ)) · |(φ−1)′(a+ δ)|,

and then, since R is a constant,

0 = R′(0) = a
∑

b∈φ−1(a)

eiθ(b)

|φ′(b)|
.

The reason we excluded the level sets φ(0) and φ(2π) from the constraint on the sum

is to avoid to distinguish cases depending on the sign of the derivative at extreme points

of the interval: all relevant information is already in the condition for the sum over inner

points.

Remark 2.2.4. In order to have the equivalence (2.1)⇔ (2.2), in addition we must require∫
φ−1(a) eiθ = 0, for all a ∈ R. If φ is analytic this requirement is always met.

We collect in one theorem all the conditions we have proven equivalent.

Theorem 2.2.5. Let k, f ∈ C0(I,R) and θ(t) =
∫ t

0 k(s)ds, φ(t) =
∫ t

0 f(s)ds. The

following conditions are equivalent.

0. The curve with curvature k + λf is closed ∀ λ ∈ R,

1.
∫ 2π

0 eiθ(t)φ(t)ndt = 0, ∀ n ∈ N0,

2.
∫ 2π

0 eiθ(t)g(φ(t))ndt = 0, ∀ n ∈ N0 and any g bounded and integrable.

Moreover, they imply

a 6= φ(0), φ(2π) is a regular value of φ⇒
∑

b∈φ−1(a)

eiθ(b)

|φ′(b)|
= 0.

We also point out the following corollary, which rules out the possibility of vector

spaces of curvatures of closed curves.

Corollary 1. For f ∈ C0(I,R), there exists λ such that the curve that has λf as

curvature is not closed. More precisely, the set Λ = {λ ∈ R : λf is the curvature of a

closed curve} does not have accumulation points.

Proof. Setting k ≡ 0, condition (1) of Theorem 2.2.5 becomes
∫ 2π

0 φ(t)ndt = 0 for all

n ∈ N0, which for n even can only be satisfied by φ ≡ 0. On the other hand, the presence

of accumulation points in Λ is enough to guarantee Λ = R by the analiticity argument

from the beginning of the section, hence entailing the same conclusion.
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2.3 Conditions on the boundary

In this section we discuss some periodicity properties that θ and φ must satisfy if the

curve with turning angle function θ+λφ is closed for all λ ∈ R. We will show that, under

the conditions of Theorem 2.2.5, the respective behaviour of θ and φ on the boundary is

strongly related.

Proposition 2.3.1. If θ, φ ∈ Ch(I,R) satisfy condition (2.2) and φ(0) is not a critical

value, then φ(0) = φ(2π) and the derivatives of φ, θ obey either

θ(2π)− θ(0) ≡ 0 mod 2π, θ(k)(0) = θ(k)(2π), 1 ≤ k ≤ h− 1,

φ(k)(0) = φ(k)(2π), 1 ≤ k ≤ h

or

θ(2π)− θ(0) ≡ π mod 2π, θ(k)(0) = (−1)kθ(k)(2π), 1 ≤ k ≤ h− 1,

φ(k)(0) = (−1)kφ(k)(2π), 1 ≤ k ≤ h.

Proof. Setting a = φ(0), we consider δ > 0 such that φ is invertible on the finitely

many components of φ−1([a− δ, a+ δ]). We then look at the connected components of

φ−1([a, a+ δ]) and we use the symbol pj for the restriction of φ to the j-th component,

numbered from the left (j = 1, ..., N+, see Figure 2.2). Similarly, functions mj ’s are the

restriction of φ to the connected components of φ([a− δ, a]). Rewriting condition (2.2)

we have

lim
ε→0+

∑
j

eiθ
(
p−1
j (a+ε)

)
|φ′(p−1

j (a+ ε))|
= lim

ε→0−

∑
j

eiθ
(
m−1
j (a+ε)

)
|φ′(m−1

j (a+ ε))|
= 0.

Since limit contributions coming from the restrictions to intervals in the interior of I

are equal in the two sums, we have no other choice than φ(0) = φ(2π), otherwise the

contribution from p1 in the first sum could not be balanced in the limit by any terms of

the second sum. Without loss of generality we can assume φ′(0) > 0. We distinguish two

cases, depending on the sign of φ′(2π). If φ′(2π) > 0, just by rewriting again condition

(2.2) while keeping contributions from the two extreme intervals on the left-hand side of

the equalities, we have , for 0 < ε < δ

eiθ
(
p−1
1 (a+ε)

)
φ′(p−1

1 (a+ ε))
= −

∑
1<j

eiθ
(
p−1
j (a+ε)

)
|φ′(p−1

j (a+ ε))|
,

e
iθ
(
m−1
N−

(a−ε)
)

φ′(m−1
N−

(a− ε))
= −

∑
j<N−

eiθ
(
m−1
j (a−ε)

)
|φ′(m−1

j (a− ε))|
.
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φ

2π0

a
a+ δ

a− δ

p1 p2 p3 p4 pN+

m1 m2 m3 mN−

Figure 2.2: The functions {pj}j∈{1,...,N+} are the invertible restrictions of φ to the finitely many

components of φ−1([a, a+ δ]) and analogously {mj}j∈{1,...,N−} are the restrictions of

φ to φ−1([a− δ, a]).

The sums on the right-hand side of the equations are equal for ε = 0, entailing

eiθ(0)

φ′(0)
=

eiθ(2π)

φ′(2π)
,

which proves θ(2π)− θ(0) ≡ 0 mod 2π and φ′(0) = φ′(2π). Analogously, taking the first

derivative of the equations with respect to ε and considering the limit ε→ 0, we conclude

ieiθ(0)θ′(0)− eiθ(0)φ′′(0) 1
φ′(0)

φ(0)2
=
ieiθ(2π)θ′(2π)− eiθ(2π)φ′′(2π) 1

φ′(2π)

φ(2π)2
,

which, already knowing the respective relations of θ, φ and φ′ at extreme parameters, and

noticing that eiθ(0) and ieiθ(0) are orthogonal, implies θ′(0) = θ′(2π) and φ′′(0) = φ′′(2π).

For the derivatives of higher order, the statement follows analogously by induction.

If φ′(2π) < 0, we get

eiθ
(
p−1
1 (a+ε)

)
φ′(p−1

1 (a+ ε))
− e

iθ
(
p−1
N+

(a+ε)
)

φ′(p−1
N+

(a+ ε))
= −

∑
1<j<N+

eiθ
(
p−1
j (a+ε)

)
|φ′(p−1

j (a+ ε))|
,

0 = −
∑
j

eiθ
(
m−1
j (a−ε)

)
|φ′(m−1

j (a− ε))|
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and we conclude again by taking derivatives term by term with respect to ε and using

induction.

Remark 2.3.2. Note that the constraint on the curves associated to k + λf to be closed

for all λ just means that starting and end point coincide. Proposition 2.3.1 proves that

in this case the function k and f enjoy much stronger periodicity.

Remark 2.3.3. In the hypotheses of Proposition 2.3.1, we obtain an additional constraint

on the integral over I of the function f , in fact
∫ 2π

0 f(s)ds = φ(2π) = φ(0) = 0. This

means that along the affine line k + λf the total turning angle of the associated curve is

constant and equal to 0 or π up to multiples of 2π.

2.4 Explicit families of closed curves

In §2.2 and §2.3 we characterized pairs of functions (k, f) such that the curve obtained by

integrating the curvature k+λf is closed for all λ ∈ R. In this section we are interested in

the existence of such pairs. We show how one can explicitly construct curvature functions

with the desired properties.

Lemma 2.4.1. If θ ∈ C1(I,R), then

∃φ ∈ C1(I,R) :

∫ 2π

0
eiθ(s)φ(s)nds = 0, ∀n ∈ N

⇔

∃ψ ∈ C1(I,R) :

∫ 2π

0
eiθ(s)einψ(s)ds = 0, ∀n ∈ N.

Proof. The first existence statement implies the second just by taking ψ = φ and recalling

condition (2) of Theorem 2.2.5, guaranteeing that the composition with a function that

is bounded and integrable mantains the desired property. The other way round we pick

for example φ = cos(ψ) and conclude by observing that cos(ψ)n can be rewritten as a

linear combination of terms of the form cos(h · ψ).

We now consider curves allowing a periodic regular parametrization that can be

expressed as a Fourier series with periodic gaps in the coefficients

γ(t) =

( ∞∑
j=0

aj cos(j · t) + bj sin(j · t),
∞∑
j=0

āj cos(j · t) + b̄j sin(j · t)

)
,
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that is aj = bj = āj = b̄j = 0 whenever j is an integer multiple of M ∈ N. The asymptotics

of the coefficients for j going to infinity determines periodicity and differentiability of the

function (see for example [23]). From now on we assume that γ is a closed analytic curve,

which, in the most trivial case, can simply be obtained by truncating the series and

considering a trigonometric polynomial; in this case all the harmonics with index larger

than the degree of the polynomial are 0 and therefore there exists always M satisfying

the conditions above. By the orthogonality relations between elements of a Fourier basis

we have ∫ 2π

0
γ′(t) cos(n ·M · t)dt = (0, 0), ∀n ∈ N.

Using complex notation, we write γ′(t) as v(t)eiθ(t) where v(t) = ‖γ′(t)‖ is the speed of

γ and θ is the turning angle associated to the parametrization. After reparametrizing

with respect to the arc-length (always possible as long as the curve is regular) we obtain,

possibly scaling our curve to a length of 2π,∫ 2π

0
eiθ(t(s)) cos(n ·M · t(s))ds = 0, ∀n ∈ N.

Note that if γ is analytic than also γ′, ‖γ′‖,
∫ t

0 ‖γ
′‖ and its inverse are analytic and

therefore arc-length parametrization preserves analyticity. By Lemma 2.4.1, φ(s) =

cos(l · t(s)) and θ(t(s)) satisfy condition (1) of Theorem 2.2.5 and therefore the analytic

curve obtained by integrating ei(θ+λφ) is closed for all real λ’s (note that the functions φ

and θ constructed this way are in general not periodic of any period smaller than 2π).

It is enough to take the derivative with respect to s to get the correspondent curvature

functions. Figure 2.1 and Figure 3.8 show families of curves obtained by such a linear

modification of the turning angle (or equivalently of the curvature).

2.5 The discrete case

In this section we look at a discretization of the problem we studied in the smooth

setting. Consider an arc-length parametrized polyline, that is a finite sequence of vertices

(vj)j∈{1,2,...,N} ⊂ C with ‖vj+1−vj‖ = 1 for 1 ≤ j ≤ N −1. We define the curvature kj at

a non-extreme vertex vj as the counter-clockwise angle between vj − vj−1 and vj+1 − vj .
The turning angle θj at an interior vertex vj is the sum

∑j
r=2 kj . Also in this setting we

can reconstruct, up to rigid motions, a polyline from its curvature, first computing the

turning angle (θj) and then defining

v1 = 0, v2 = 1, vj = vj−1 + eiθj−1 for j ≥ 3.
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Figure 2.3: The turning angle θ of a trigonometric curve of degree 3 is linearly changed to θ+ λφ

with φ(t) = ecos(4t) +2 cos(4t) while the curve remains closed. From top left to bottom

right λ goes from 0 to 0.7 by 0.1 increments.

We consider now a polyline with N vertices, which is closed (v1 = vN ) and whose

curvature is (kj). Given another discrete function (fj)j∈{2,...,N−1} ∈ RN−2, we ask what

are the conditions on (fj) to guarantee that the polyline with curvature (kj) + λ(fj) is

closed for all λ ∈ R. The following theorem answers this question, drawing a strong

analogy to Theorem 2.2.5.

Theorem 2.5.1. Let (kj) and (fj) be two discrete functions and (θj), (φj) the turning

angles obtained as their respective partial sums. The following conditions are equivalent

0. The polyline with curvature (kj) + λ(fj) is closed ∀λ ∈ R,

1.
∑

1<j<N eiθjφnj = 0, ∀n ∈ N0,

2.
∑

j∈φ−1(a) eiθj = 0, ∀a ∈ R.

Proof. The equivalence (0)⇔ (1) is deduced as in §2.2 by taking the n-th derivative with

respect to λ of the constant function 1 = −
∑

1<j<N ei(θj+λφj). Condition (1) is easily

implied by (2), while for the opposite direction we observe that for all n ∈ N, a ∈ R \ {0},

∑
1<j<N

eiθj
(
φj
a

)n
=

1

an

∑
1<j<N

eiθjφnj = 0.
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If all φj ’s are equal to 0, we are done since the polyline associated to the turning angles

θj is closed. Otherwise, letting A = maxj{|φj |},

0 = lim
n→∞

∑
1<j<N

eiθj
(
φj
A

)2n

=
∑

j∈φ−1(A)

eiθj +
∑

j∈φ−1(−A)

eiθj ,

0 = lim
n→∞

∑
1<j<N

eiθj
(
φj
A

)2n+1

=
∑

j∈φ−1(A)

eiθj −
∑

j∈φ−1(−A)

eiθj ,

which entails
∑

j∈φ−1(A) eiθj =
∑

j∈φ−1(−A) eiθj = 0. For A′ = maxj{|φj | | |φj | < A}, it

holds analogously

0 = lim
n→∞

∑
1<j<N

eiθj
(
φj
A′

)n
= lim

n→∞

∑
j 6∈φ−1(±A)

eiθj
(
φj
A′

)n
+

(
±A
A′

)n ∑
j∈φ−1(±A)

eiθj

=
∑

j∈φ−1(A′)

eiθj ±
∑

j∈φ−1(−A′)

eiθj + 0,

and we conclude by iterating the same argument until we exhaust all the finitely many

vertices of the polyline.

In order to find non-trivial pairs such that the polyline associated to (kj) + λ(fj) is

closed for all λ, by Theorem 2.5.1 the polyline associated to (kj) must possess at least

one proper subset V̄ ⊂ {2, ..., N − 1} of indices that is balanced, meaning
∑

j∈V̄ eiθj = 0.

A visualization of this behaviour is given in Figure 2.4.

Note that it is easy to construct polylines with no balanced proper subsets of edges.

Consider for example n copies of the pair of unit vectors summing up to (1/n, 0) and

either the vector (−1, 0) for a polyline with an odd number of edges or the two unit

vectors whose sum is (−1, 0) for an even number. Any proper subset of vectors from

the “copies” part either consists of a single vector or its elements sum up to a non-unit

vector different from 0. In both case it is not possible to counterbalance the sum with

the vector(s) on the other side of the y-axis.

2.6 There is no “sufficient” 4-vertex theorem

The 4-vertex theorem provides a necessary condition for a function to be the curvature

of a closed planar curve without self-intersections (see [10] or [9] for a comprehensive

survey). In this section we use the results from §2.2 to show in a rigorous way that it
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v1, v10

v2v3

v4
v5

v6

v7

v8

v9

Figure 2.4: The discrete curvature (kj) of a polyline is modified linearly in λ to (kj) + λ(fj),

with (fj) = (0, 0, φ1,−φ1, φ1, −φ1, φ1, 0). Such a curvature vector sums up to the

turning angle (0, 0, φ1, 0, φ1, 0, φ1, φ1), which rotates, as λ varies, only the dashed

edges corresponding to a balanced subset of indices.

is not possible to develop a sufficient condition of the same nature, namely it is not

possible to tell whether a curvature function k belongs to an arc-length parametrized

closed curve by computing finitely many level sets and evaluations of k, its derivatives

and its antiderivatives. The way we want to do this is by first assuming that in the class

of analytic functions on I such a procedure exists, and to show afterwards that it is

always possible to construct an instance for which such a procedure yields the wrong

answer.

We need to formalize what we mean with procedure; this is done by first introducing

the objects involved one by one, pointing out at the same time their high level meaning.

We consider the set of sequences A =
{
{aj}j∈N

}
, such that aj ∈ R ∪ Σ, with Σ a finite

alphabet of symbols; sequences of this type will be used to store the progress of our

procedure. Then we fix L = {lj}, a countable set of analytic functions on I; this family

will generalize the concept of level sets and finite linear combinations of its elements will

be considered, selecting coefficients in C =
{
{cj}j∈N0

}
, set of real sequences whose terms

are 0 for j big enough and c0 ∈ I (this is a special term used for evaluating functions at

a certain parameter).

Given the real analytic function k that we want to test, our procedure is determined
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by three functions M,Hk, G.

M : A→ {E,∩} × Z× C,

Hk : {E,∩} × Z× C → {E,∩} × Z×A,

G : A× {E,∩} × Z×A→ {YES,NO} ∪A,

where M and G can be chosen arbitrarily and represent the functioning of the procedure

while Hk depends on the input k and is the only tool we have to extract information

about k in the way we are going to specify in the next paragraph.

For {aj} ∈ A, initialized to aj = � with � ∈ Σ for all j, we compute iteratively

G
(
{aj}, Hk

(
M({aj}

))
until an answer YES, the curve with curvature k integrates in the

arc-length to a closed curve, or NO, it does not, is output. Concerning the function Hk,

for (σ, n, {cj}) ∈ {E,∩} × Z× C, we have

Hk(σ, n, {cj}) = (σ, n, {aj}),

with {aj} storing

{
the evaluation k(n)(c0), if σ = E,

the solution(s) of k(n) =
∑

j≥1 cjlj , if σ = ∩,

where k(n) denotes the n-th derivative of k for n positive, k itself for n = 0 and the n-th

antiderivative of k for n negative, meant as the result of taking −n times the operation∫ t
0 . With storing we mean just sequentially writing the result of the evaluation or the

solution(s) of the equation if they exist and are finitely many, or using special symbols

from Σ if there are no solutions or the two functions coincide (these are the only remaining

possibilities in an analytic regime as ours). Unused terms of the sequence are just filled

with the blank symbol �.

To summarize, M looks at the current sequence {aj} and determines what is the

informations Hk should extract from k or one of its antiderivatives/derivatives. Then, G

considers the result output from Hk together with a copy of {aj} and either decides an

answer to the problem or rather merges the new information updating the sequence in A.

As anticipated, in the following we assume for a contradiction that there exist functions M ,

G and a set L such that the procedure T they define in the sense above is correct, meaning

that, for any analytic functions k on I, it decides an answer T(k) ∈{YES,NO} after

finitely many iterations and that T(k) =YES if and only if the arc-length parametrized

curve with curvature k is closed.

Our strategy is to perturbate the function k of a closed curve to k+λp, with p another

analytic function on I and λ a real number such that still T(k+λp) =YES, but this time

the associated curve is not closed anymore, entailing a contradiction.
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k

Finitely

many

times

Compute an evaluation or a level

set of either k, one of its deriva-

tives or one of its antiderivatives.

YES

NO

Figure 2.5: High level diagram of the decision procedure. Given a curvature function k, finitely

many evaluations and/or level set of k, its derivatives and its antiderivatives are

computed to output the answer YES, the associated curve is closed, or NO, it is not.

Lemma 2.6.1. If T is a correct procedure, then there exist k, P non-constant analytic

functions on I and N ∈ N such that T
(
k + λ(ψ · P )(N)

)
=YES for any ψ analytic on I

and for all λ ∈ R.

Proof. We start by considering the curvature function k of a closed curve such that k,

its derivatives and its antiderivatives are independent from the set L, i.e. there is no

finite combination of elements in L that equals to any of them. Calling θ =
∫
k, this can

be done for example by observing that the condition
∫

eiθ = 0 for a curve to be closed

allows a family with the cardinality of the continuum of independent functions or, more

explicitely, by using the existence result from §2.4 and condition (2) of Theorem 2.2.5

to construct a closed curve with turning angle θ + g(φ) with g an appropriate analytic

function that guarantees the independency from L.

We construct then the set of triples S = {(tj , dj , nj)} ⊂ I × N× Z, where the tj ’s are

the single roots of the equations involving k(nj) that the procedure solved to conclude

the answer YES, and the dj ’s the respective degrees of such roots. At the same time,

we put in S also the triples (t, 1, n) if an evaluation of k(n) has been computed at t over

the run. Since k has been chosen independent from L, the set S is the complete record

of what information has been extracted from k by Hk. Calling D := maxj{dj} and

N := maxj{|nj |}, we define the polynomial

P (t) = tN
∏
j

(t− tj)2N+D.

By construction, k and P as above satisfy, for all ψ and all λ small enough, T
(
k +

λ(ψ · P )(N)
)
=YES; in fact, for small perturbations, T performs exactly the same

sequence of iterations and therefore ouputs the same result. In §2.2 we saw that
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F (λ) =
∫ 2π

0 e

(
i(k+λ(ψ·P )(N)

)
is analytic in λ and therefore, if the procedure is correct as

we assumed, it actually holds T
(
k + λ(ψ · P )(N)

)
=YES for all λ ∈ R.

We are ready to prove the theorem promised at the beginning of the section.

Theorem 2.6.2. There is no sufficient 4-vertex theorem, i.e. there is no correct procedure

to determine with finitely many iterations whether the curve associated to the curvature

function k is closed by computing finitely many evaluations and/or generalized level sets

of k, its derivatives and its antiderivatives.

Proof. Let k and P be chosen as in Lemma 2.6.1. We construct ψ for which it is

apparent that condition (2.2) cannot hold for the pair
(
k, (ψ ·P )(N)

)
, therefore obtaining

a contradiction. We choose t̄ where P (t̄) 6= 0 and consider the family of triangle functions

Tδ, attaining the value 0 outside the interval [t̄− δ, t̄+ δ] and linearly interpolating the

value Tδ(t̄) = 1/δ. By the Stone-Weierstrass theorem, for ε > 0, we can find a polynomial

hε,δ such that

sup
I
|hε,δ − Tδ| < ε and hence sup

I

∣∣h(−j)
ε,δ − T

(−j)
δ

∣∣< ε(2π)j , ∀j ∈ N,

where the superscript (−j) means the j-th antiderivative
∫ t

0 of a function. For j ≥ 1, it

holds

sup
I
h

(−j)
ε,δ < (2π)j−1 + ε(2π)j .

We consider now (
h

(−N)
ε,δ · P

)(N)
= hε,δP +

∑
1≤j≤N

(
N

j

)
h

(−j)
ε,δ P (j). (2.3)

With M = max1≤j≤N supI P
(j), we see that the second term of (2.3) is bounded by∑

1≤j≤N
(
N
j

)
(2π)j(1 + ε)M , which does not depend on δ. Choosing ψ = hε,δ with ε and

δ small enough, the maxima on I of
(
h

(−N)
ε,δ · P

)(N)
are all contained in an arbitrarily

small neighborhod of t̄. This makes it impossible to satisfy condition (2.2), which is the

contradiction we needed to conclude the theorem.

Remark 2.6.3. Showing the impossibility of a sufficient analogue of the 4-vertex theorem

cannot be reduced to a cardinality argument. For example, if we are just interested

in constructing a procedure as the one described at the beginning of the section for

curvature functions over I that are π-periodic and such that |k(−1)(s)| ≤ π for s ≤ π,

then the associated curve is closed if and only if k(−1)(π) = π and it is therefore enough

to compute such an evaluation to conclude the correct answer. The interplay between

closed curves and periodic curvature functions has been characterized in [2].
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Future work.

Given the curvature function k of a closed curve, when is it possible to find f such

that the curve associated to k + λf is closed for all λ? In §2.4 we identified a class of

pairs of functions that satisfies this condition and the next obvious step would be a full

characterization in the Ch and analytic setting. Thinking in terms of the turning angle

θ =
∫
k, a possible way of approaching the problem could be by synthesizing a Fourier

series for φ that would satisfy the family of orthogonality relations
∫

eiθφn = 0 in L2.

The ugliness of the convolution formula for the Fourier coefficients of a product prevented

the author from succeeding.

Another nice improvement would be the generalization of the periodicity result from

§2.3 to the case φ(0) being a critical value. This would also make the proof of the

non-existence of a “sufficient” 4-vertex theorem in §2.6 more agile.
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3 Propagation of curved folding: The

folded annulus with multiple creases

exists

Abstract

In this paper we consider developable surfaces which are isometric to planar domains

and which are piecewise differentiable, exhibiting folds along curves. The paper revolves

around the longstanding problem of existence of the so-called folded annulus with multiple

creases, which we partially settle by building upon a deeper understanding of how a

curved fold propagates to additional prescribed foldlines. After recalling some crucial

properties of developables, we describe the local behaviour of curved folding employing

normal curvature and relative torsion as parameters and then compute the very general

relation between such geometric descriptors at consecutive folds, obtaining novel formulae

enjoying a nice degree of symmetry. We make use of these formulae to prove that any

proper fold can be propagated to an arbitrary finite number of rescaled copies of the first

foldline and to give reasons why problems involving infinitely many foldlines are harder

to solve.

3.1 Introduction

In recent years growing attention has been paid to the field of mathematical origami. The

process of folding paper with the intent of crafting objects of art dates back to ancient

China and Japan; although the earliest hard evidence of such an exercise is from the 16th

century, it is possible that paper folding has been already practiced shortly after paper

arrived in Japan via Buddhist monks in the 6th century [27]. As objects of combinatorics

and kinematics, origami have been studied by many authors over a broad and diverse

literature [8], [46].

Moving from the seminal paper [21], the scientific community has also investigated the

differential geometry of origami obtained by folding along curves, rather than straight

lines. This is due not just to a theoretical interest but also to the role that surfaces

39



CHAPTER 3. PROPAGATION OF CURVED FOLDING

obtainable by bending a flat foil (developables) have acquired in the interdependent fields

of design, manufacturing and architecture in recent years [7], [24], [36], [40], [41], [42].

Even if the local geometry of folding along a single curve is well understood [13], the

case of a nontrivial pattern of foldlines is challenging and may require ad hoc solutions [6]

or numerical optimization [22]. The main intention of the present paper is to approach

the propagation of a curved fold to the next prescribed foldline from a broad perspective,

highlighting the role played by the regression curve of developables and providing formulae

that describe the phenomenon in its full generality and complexity but that can still

be employed to get new insights on its specificities. Also, we want to address the well

known problem concerning the foldability of patterns involving concentric closed convex

foldlines and contribute to the issue raised at the very end of [5]:

. . . we conjecture that the circular pleat indeed folds, and that so too does

any similar crease pattern consisting of a concentric series of convex smooth

curves. Unfortunately a proof remains elusive. Such a proof would be the

first proof to our knowledge of the existence of any curved-crease origami

model, beyond the local neighborhood of a single crease.

Some existence results were obtained [6] but to the knowledge of the author no progress

has been made in constructing examples of folds along multiple concentric curves. We

here finally provide explicit instances of such a kind (Fig. 3.1, 3.2), present arguments

that guarantee the existence of folds involving any finite number of concentric foldlines

and give reasons why the proof still remains elusive when it comes to patterns with

infinitely many foldlines. We want to stress that in this paper we tackle the curved

folding subject from the perspective of isometric maps, without addressing the issue of

continuous deformations, which is nevertheless another interesting and relevant topic. In

our setting, folds as the one in Fig. 3.2 are legitimate while they would not be possible

if one requires the existence of a continuous deformation: in our example the linking

number of any two curves bounding a developable strip, which is invariant under isotopy,

is different from the linking number of two concentric circles [37].

As for an outline of the content, §3.2 settles the notation about some natural geometric

descriptors for curves and surfaces of Euclidean space and recalls how a surface isometric

to the plane admits a ruled parametrization. In §3.3 we describe how paper locally

folds along a curve by discussing its behaviour in terms of the normal curvature and

relative torsion of the ridge; the degree of symmetry of the formulae obtained points

out how such parameters are to some extent the natural ones to describe the problem.

In §3.4, three methods for folding along a circle and, more in general, along a closed

convex curve are described. In §3.5, the formulae describing the relations between two
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Figure 3.1: Fold along two concentric circles of an annulus with inner radius 0.905 and outer radius

1.19. The two inner developables (green) are obtained by extending the isometry

between the unit circle and the rescaled intersection of the unit sphere with the

hyperbolic paraboloid of equation z − 3xy = 0. The outer developable (white) is

induced once the second concentric foldline is prescribed. On the right, we show

the ruled structure of one of the circular sectors of the annulus (equivalent up to

reflection).

consecutive curved foldlines are presented. In §3.6 we prove that any fold along one

foldline can be propagated to any number of rescaled copies of itself, if the scaling factor

is small enough. Finally, in §3.7 we discuss how the propagation of a fold can turn

singular in an arbitrarily abrupt manner, implying that an existence proof of foldability

on any pattern with infinitely many prescribed foldlines must involve a control mechanism

on the derivative of all orders. The appendix contains a more thorough discussion of

the examples in Fig. 3.1, 3.2, employing the formulae from §3.5 to make apparent the

regularity of the developables involved.

41



CHAPTER 3. PROPAGATION OF CURVED FOLDING

Figure 3.2: Fold along three concentric circles of an annulus with inner radius 0.86 and outer

radius 1.14. The two middle developables (green) are obtained by extending the

isometry between the unit circle and the toroidal unknot ω3,(9,2) (see §3.4). The outer

and the inner developables (white) are induced once two additional concentric foldlines

are prescribed. On the right, we show the ruled structure of one of the circular sectors

of the annulus (equivalent up to rotation).

3.2 Space curves and parabolic developables

If γ is an arc-length parametrized C3 curve, denoting the derivative with respect to

the arc-length parameter with a prime, we define the Frenet frame of γ as the triple of

orthonormal vectors {T,N,B} :=
{
γ′, γ′′

‖γ′′‖ , γ
′ × γ′′

‖γ′′‖

}
. At the same time, if the curve is

known to be lying on a surface of R3 whose unit normal at γ(s) is n(s), we can define

also the Darboux frame as {T, u, n} := {γ′, n× γ′, n}. The coefficients that express the

first derivative of such bases with respect to the basis itself have significant geometric

meanings,T
′

N ′

B′

 =

 0 k 0

−k 0 τ

0 −τ 0


TN
B

 ,

T
′

u′

n′

 =

 0 kg kn

−kg 0 τr

−kn −τr 0


Tu
n

 .

The nonnegative function k is called curvature of the curve. The geodesic curvature kg

with respect to the given surface is the length of the projection of the curvature vector

k ·N to the tangent plane of the surface, spanned by T and u, and signed with respect to

u. The normal curvature kn is the signed length of the projection of the same curvature
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3.2. SPACE CURVES AND PARABOLIC DEVELOPABLES

vector to the normal direction n. The function τ is called torsion of the curve, while τr

is the relative torsion with respect to the given surface.

For our purposes it will be useful to express the geometric descriptors above as a

function of the angle α between the osculating plane, spanned by T and N , and the

tangent plane of the surface. We measure α anticlockwise by looking at the angle between

B and n from the tip of T . Then

kg = cos(α)k, kn = − sin(α)k, τr = τ + α′.

For a more extensive treatment and additional insights about the quantities and formulae

above the reader may refer to [10, §1-5 and exercise 19 in §3-2].

If a regular surface is of class C2, we can compute at each point and in each tangent

direction v its normal curvature, that is the curvature of the section obtained by in-

tersecting the surface with the plane spanned by the tangent v and the normal to the

surface n. Varying v, we call principal curvatures the maximum k1 and the minimum

k2 among the normal curvatures. The product K := k1 · k2 is the Gaussian curvature

of the point. The Theorema Egregium by Gauss guarantees that its value is preserved

under C2 isometries ([18, pp. 759–760] or [10, §4-3] assuming C3 regularity). A surface

that locally can be obtained as image of a planar domain by a Ch isometry is called a

Ch developable. If h ≥ 2, because of the invariance just discussed, its Gaussian curvature

must be everywhere 0; we call a point of such a surface parabolic if the two principal

curvatures satisfy (up to relabelling) k1 6= k2 = 0 and flat if instead k1 = k2 = 0.

If parabolic points are dense on the surface, it can be shown that a unique straight line

(a ruling) passes through any of its points and that the tangent plane of the surface along

this line is constant. In the rest of the paper we will be interested in developable surfaces

that have only parabolic points; in this case its representation as a family of rulings

(ruled parametrization) enjoys useful regularity properties. In the following, adapting [18,

pp. 769-770], we give a self-contained proof of such a characterization theorem, without

making direct use of any concepts other than the geodesic and normal curvature of a

curve.

Theorem 3.2.1. [18] Let S be a Ch developable surface with h ≥ 2 and no flat points.

For any point p ∈ S there exist a Ch arc-length parametrized curve γ : [−ε, ε]→ R3 and

a Ch−1 function r : [−ε, ε]→ R3, with ‖r‖ ≡ 1, such that, in a neighbourhood of p, S can

be parametrized as a(u, t) = γ(u) + t · r(u). Moreover, fixed ū, the tangent plane of the

surface is constant along the ruling a(ū, t).

Proof. We consider a Ch isometry σ : Dε := [−ε, ε]2 → S, (u, v) 7→ σ(u, v). Being an
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CHAPTER 3. PROPAGATION OF CURVED FOLDING

isometry in this case simply means that

〈σu, σu〉 = 〈σv, σv〉 ≡ 1, 〈σu, σv〉 ≡ 0,

where we denoted with a subscript the derivative with respect to a certain parameter

and with 〈., .〉 the Euclidean inner product between two vectors. As we did above, also

in the following we will often omit the dependency on the parameters. Taking one more

derivative with respect to u and v of the relations above, we obtain

〈σuu, σu〉 = 〈σuu, σv〉 = 〈σvv, σu〉 =

〈σvv, σv〉 = 〈σuv, σu〉 = 〈σuv, σv〉 ≡ 0,

which implies that σuu, σuv and σvv are all equal to the unit normal to the surface

n := σu × σv up to a respective signed coefficient L,M and N . We finally observe that

0 = 〈σuu, σv〉v − 〈σuv, σv〉u = LN −M2. (3.1)

From this condition we see that L and N have the same sign, which we can assume, up to

reversing one coordinate, being positive. We now want to find the condition for a curve

on the surface to be asymptotic, that is to have constant vanishing normal curvature.

If (u(t), v(t)) is an arc-length parametrized curve in Dε, then γ := σ(u(t), v(t)) is an

arc-length parametrized curve on S and

γ′ = u′σu + v′σv,

γ′′ =
(
L(u′)2 + 2Mu′v′ +N(v′)2

)
n+ u′′σu + v′′σv.

The conditions of vanishing normal curvature becomes

0 = kn = 〈γ′′, n〉 =
(
L(u′)2 + 2Mu′v′ +N(v′)2

) (3.1)
=
(√
Lu′ +

√
Nv′

)2
.

Since all points of S are parabolic, in Dε we can assume 〈σuu, n〉 = L 6= 0 (which for ε

small enough guarantees also 〈σuu, n(0, 0)〉 6= 0). The Cauchy problem
√
Lu′(t) +

√
Nv′(t) = 0

(u(0), v(0)) = (s, 0)

plus the extra constraint (u′)2 + (v′)2 = 1 defines for each s a unique arc-length

parametrized asymptotic curve ls(t) = σ(u(t), v(t)). Such a curve satisfies v′ 6= 0.

By observing that

(σu)′ = (Lu′ +Mv′)n
(3.1)
=
√
L(
√
Lu′ +

√
Nv′)n = 0,

(σv)
′ = (Mu′ +Nv′)n =

√
N(
√
Lu′ +

√
Nv′)n = 0,
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3.2. SPACE CURVES AND PARABOLIC DEVELOPABLES

we also have proven that a curve is asymptotic if and only if the tangent plane to the

surface and therefore its normal are constant along it. Hence asymptotic curves are

planar, the normal to the plane on which they lay being such that 〈nu(s, t), n(0, 0)〉 is

monotone in s for fixed t.

Locally S must be the envelope of the tangent planes orthogonal to n(s, 0), which

makes it is easy to see that its asymptotic curves must actually be lines. In fact

ls+h ⊆ {x ∈ R3 | 〈x, σu × σv(s+ h, 0)〉 = 0},

ls ⊆ {x ∈ R3 | 〈x, σu × σv(s, 0)〉 = 0},

and in the limit, by continuity, ls must lay also on another plane:

ls ⊆
{
x ∈ R3 | 〈x, lim

h→0

σu × σv(s+ h, 0)− σu × σv(s, 0)

h
〉 = 0

}
=

=
{
x ∈ R3 | 〈x, Lσu +Mσv〉 = 0

}
.

The ruled parametrization we were looking for is finally given by setting γ(u) = σ(u, 0)

and r(s) as the unit direction of the line ls. The Cauchy problem we have solved to

construct r(s) just implies that r enjoys Ch−2 regularity. To show that it is actually

Ch−1, we need to observe that under our assumptions the implicit function theorem

guarantees for s and v small enough the existence of a Ch−1 solution u(s, v) to the

equation constraining σu to be constant along the parameter v

〈σu(s, 0), n(0, 0)〉 = 〈σu
(
u(s, v), v

)
, n(0, 0)〉,

and that it holds σ(s, 0) + σ(u(s, v), v) = γ(s) + v · r(s).

Remark 3.2.2. For those readers more familiar with the language of fundamental forms, the

functions we named as L,N,M are the coefficients of the matrix representing the second

fundamental form of the developable surface with respect to the isometric parametrization

σ. In our setting the Gaussian curvature can simply be computed as the determinant of

such a matrix, which is in fact an equivalent way of obtaining equation (3.1) if one knows

that Gaussian curvature is preserved under isometries. Our derivation, which is also the

only step of the proof where we use that the regularity of the surface is at least C3, can

be considered an ad hoc proof of the Theorema Egregium for developable surfaces. Since

the invariance of the Gaussian curvature under isometries can be proven in the more

general C2 case, if we assume this fact, then Theorem 3.2.1 holds for C2 surfaces as well.

Before moving to the next section we recall the elementary fact at the core of the local

geometry of curved folding.
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Lemma 3.2.3. [10, §4-2] The geodesic curvature of a planar curve is preserved under

isometries of the planar domain in which it is contained.

Proof. In analogy with the notation used in the proof of Theorem 3.2.1, let u(t) be the

arc-length parametrization of the curve contained in the planar domain D and σ an

isometry from D to a developable surface. Calling γ(t) := σ(u(t)), we project its second

derivative to the tangent plane spanned by σu and σv, obtaining

kg = ‖u′′σu + v′′σv‖ =
√

(u′′)2 + (v′′)2,

which is the curvature of the planar curve we started with (for planar curves, curvature

and geodesic curvature coincide).

3.3 Local curved folding

In the following, folding along a foldline, which is a curve contained in an open domain

of R2, means the isometric mapping of such a planar domain onto two C1 good surfaces

(decomposable as a finite complex of C2 regions joined by vertices and C2 edges, [5]) that

meet with C0 regularity (and not more) along the image of the foldline. With folding the

foldline onto a space curve we mean folding along the foldline in such a way that its image

under the isometry is the given space curve, which we call the ridge. A visualization of a

curved fold about a point of a C2 ridge is given in Fig. 3.3. In [6], where local curved

folding onto good surfaces is thoroughly studied, it is shown that, in order to construct

an isometry on both sides of the foldine, the regularity of the ridge cannot be C1 while

not being C2 so, unless the ridge is kinked, its Frenet frame is well-defined. In the rest of

the paper we will be mainly interested in folding along foldlines and onto ridges whose

regularity is at least C3.

In order to fix the notation and to explain why Fig. 3.3 is substantially the only way a

local curved fold can look like we recall a couple of formulae from [13]. These describe

how paper locally folds along a given C3 foldline with curvature kg > 0 once a C3 ridge

is prescribed. We call n+ the normal to the developable such that the angle α+ between

the binormal vector B of the Frenet frame of γ and n+, measured anticlockwise with

respect to T = γ′, has value 0 < α+ < π
2 . Analogously, the normal n− and the angle α−

are defined for the other developable to satisfy 0 > α− > −π
2 . Since geodesic curvature

is preserved by Lemma 3.2.3, denoting with k the curvature of the ridge γ, we have

cos(α+)k = kg = cos(α−)k,

and therefore α+ = −α− if, as in our definition of folding, the transition from one side to

the other must be just C0. More precisely, a fold is called proper when the above relation
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T

N

B

α−
n−

u−

r−

β−

γ

Figure 3.3: {T,N,B} is the Frenet frame of the ridge, while {T, u−, n−} its Darboux frame with

respect to the outer green surface oriented by n−. The tangent plane to the surface is

spanned by T and u− and the the ruling direction r− lies on it. The Darboux frame

of the inner white surface can be obtained by simply rotating {T, u−, n−} by −2α−

about T .

is well defined and α+ 6= 0, π2 which is the case iff k > kg and kg 6= 0. For intuition,

α+ 6= 0 ensures some folding is actually happening and α+ 6= π
2 that the developables on

the two sides do not overlap each other.

Lemma 3.3.1. [13] Given a C3 foldline γ̄ and a C3 ridge of the same length γ with

curvatures 0 < kg < k, then, on the two sides of the osculating plane of γ, two different

proper folds are possible along γ̄ onto γ and the unit directions of the rulings of the

developables are given by

rS =
τ(r,S)T − k(n,S)

(
cos(αS)N + sin(αS)B

)√
τ2

(r,S) + k2
(n,S)

, S ∈ {+,−},

where {T,N,B} is the Frenet frame of γ. The symbols τ(r,+), k(n,+) denote the relative

torsion resp. the normal curvature of γ with respect to the developable whose normal

n+ forms with B the angle 0 < α+ < π
2 , when measured anticlockwise with respect to

T . Analogous notation is used for τ(r,−), k(n,−), −π
2 < α− < 0 and n− for the second

developable.
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Proof. Since kg < k two C1 continuous families of planes can be defined along γ by

rotating its osculating plane about T by the angles α+ and α− with 0 < α+ = −α−,

such that kg = cos(α+)k for S ∈ {+,−}. It is well known that the envelope of such a

family of plane locally defines a C1 developable surface whose rulings can be obtained by

intersecting the planes orthogonal to nS := − sin(αS)N + cos(αS)B and n′S , where the

derivation is taken with respect to the omitted arc-length parameter (a way of seeing

this is by doing reverse engineering on the proof of Theorem 3.2.1). Setting τ as the

curvature of γ, we have

nS = − sin(αS)N + cos(αS)B,

n′S = k sin(αS)T −
(
τ cos(αS) + α′S cos(αS)

)
N −

(
α′S sin(αS) + τ sin(αS)

)
B.

and the two planes orthogonal to such vectors intersect at a line with direction

nS × n′S = (τ + α′S)T + k sin(αS) cos(αS)N + k sin(αs)
2B

= τ(r,S)T − k(n,S)

(
cos(αS)N + sin(αS)B

)
,

which, after normalizing, provides the expression for the unit direction rS . If we want to

extend the isometry on the two sides of γ̄ to obtain a proper fold we have two possibilities:

for v positive, the ruled parametrizations γ + v · rS describes the developables on the

same side as B of the osculating plane of γ, while for v negative, the one on the opposite

side.

The next lemma relates the normal curvature and relative torsion of a ridge with

respect to one developable to the normal curvature and relative torsion of the same ridge

with respect to the developable on the opposite side.

Lemma 3.3.2. In the notation of Lemma 3.3.1, we have the equalities

k(n,S) = −k(n,S̄),

τ(r,S) = τ(r,S̄) − 2α′S̄ = τ(r,S̄) − 2
k′gk(n,S̄) − kgk′(n,S̄)

k2
g + k2

(n,S̄)

,

where S ∈ {+,−} and S̄ is the opposite sign of S.

Proof. By direct computation,

τ(r,S) = τ + α′S = τ(r,S̄) − α′S̄ − α
′
S̄ = τ(r,S̄) − 2α′S̄

= τ(r,S̄) + 2
(cos(αS̄))′

sin(αS̄)
= τ(r,S̄) − 2

(
kg/
(√

k2
g + k2

(n,S̄)

))′
k(n,S̄)/

(√
k2
g + k2

(n,S̄)

)
= τ(r,S̄) − 2

k′gk(n,S̄) − kgk′(n,S̄)

k2
g + k2

(n,S̄)

.
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By calling βS the functions measuring, anticlockwise with respect to B, the angle

between T and rS , direct computations provide the following lemma.

Lemma 3.3.3. Given a proper fold along the C3 foldline γ̄ onto the C3 ridge γ, the

angles βS between T and rS, for S ∈ {+,−}, satisfy

cos(βS) =
τ(r,S)√

τ2
(r,S) + k2

(n,S)

, sin(βS) =
−k(n,S)√

τ2
(r,S) + k2

(n,S)

, cot(βS) = −
τ(r,S)

k(n,S)
=: fS ,

and

β′S = −(cos(βS))′

sin(βS)
=
τ ′(r,S)k(n,S) − k′(n,S)τ(r,S)

τ2
(r,S) + k2

(n,S)

= −f ′S
1

1 + f2
S

.

Lemma 3.3.4. The developable surfaces on the two sides of a proper curved fold have

no planar points.

Proof. By knowing the normal curvature k(n,S) of the ridge with respect to the developable

surface and the angle βS its tangent forms with the ruling direction, we can retrieve the

nonzero principal curvature k(p,S) by using Euler’s formula [10, §3-2],

k(p,S) =
k(n,S)

sin(βS)2
.

Since we are considering proper folds, this expression is well defined and nonzero. Finally,

it is a classical result that if a ruling contains a parabolic, resp. a flat point, then all of

its points must be parabolic, resp. flat [43, Cor. 6, Chap. 5].

Although in general the regularity of the ruled parametrization of a developable surface

is not greater than C0 (see [47] for an explicit analysis of this phenomenon), if the

developable presents no planar rulings as in the case of a proper fold then the regularity

of the surface passes over to the ruled parametrization in the way described in Theorem

3.2.1. In particular, if the foldline and the ridge are of regularity class Ch then the ruled

parametrization is Ch−2.

The last task we tackle in this section is concerned with locating singular points of the

developables of a proper fold, that is identifying the so called regression curve, obtained

as the envelope of the family of rulings of the developable:

RS = γ −
〈γ′, r′S〉
〈r′S , r′S〉

rS = γ +
sin(βS)

β′S + kg
rS .

This expression is easy to obtain by computing the limit intersection of two rulings

approaching each other in the developed state (the formula can for example be found in
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[39], where developables of low smoothness are investigated in relation to their regression

curve). In the setting of proper folding, if we assume the developable is C2 then r is C1

and the regression curve must be projectively continuous, that is it can possibly have

points at infinity. If r is just piecewise C1, the expression above is still well-defined if

one allows jump discontinuities to occur.

3.4 Local folding along closed convex curves

In this short section we provide three ways one can construct closed space curves onto

which it is locally possible to fold along closed convex foldlines. The fact that the

curvature of the ridge must everywhere be strictly greater then the curvature of the

foldline (Lemma 3.3.1) implies a necessary condition to proper fold along a closed curve

[13]: the total curvature of the ridge must be strictly greater than 2π, preventing it from

lying in a plane by Fenchel’s theorem [11].

Ridges on a sphere

If a curve on the unit sphere is longer than 2π then, by adequate rescaling, it is possible

to fold onto the curve along the unit circle, i.e. it is possible to extend the isometry

between the two curves to a local curved fold.

Lemma 3.4.1. Let ω be a closed C3 curve of length L > 2π on the unit sphere, then it

is possible to proper fold along the unit circle onto γ := 2π
L ω.

Proof. Since ω lies on the unit sphere, its curvature is greater or equal to 1, the normal

curvature with respect to the sphere being everywhere 1. Therefore, the curvature k of γ

satisfies k > 1. This guarantees that the unit circle and the ridge γ satisfy the hypotheses

of Lemma 3.3.1.

The two inner developables of Fig. 3.1 (in green) are an example of a proper fold along

the unit circle obtained by such a construction.

Ridges on a torus

Toroidal curves are another interesting class of space curves suitable for proper folding

along any convex closed foldline. For a ∈ R, p, q ∈ N and λ := q/p, we consider the

family of curves on [0, p2π] given by

ωa,(p,q)(t) :=
((
a+ cos(λt)

)
cos(t),

(
a+ cos(λt)

)
sin(t), sin(λt)

)
.
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For any fixed value of a, the curvature of the curve can be made arbitrarily close to

1 everywhere by picking a large value of q. Since the length of the curve is monotone

in a, by rescaling the curve to be of length 1, we can obtain ridges of arbitrarily large

minimum curvature. These are therefore suitable to proper fold along any closed convex

foldline. By writing down the expression for the torsion one can additionally observe

that in this regime its value tends to be 0 everywhere. Since the first derivative with

respect to t of the curvature function can be made everywhere arbitrarily small and with

that the angle α between the osculating and the tangent planes close to constant, we can

even force the rulings emanating from the ridge to be about orthogonal to the tangent

direction everywhere along the curve. Self-intersections of the developables obtained may

occur.

The idea of employing a toroidal curve as the ridge of a curved fold was already

mentioned as an example in [48]. Moreover, in [14] it is shown that in the isotopy class of

any C2 knot of the space there exists a C∞ knot of constant curvature which is arbitrarily

close to the first one both in trajectory and tangent direction. Since the curvature of the

approximating knot can be chosen to be any value larger then the maximum curvature of

the starting knot, constructions as the one we described for toroidal curves are possible

in a much broader setting.

Figure 3.4: Fold along the unit circle of an annulus of width 2/10 onto the rescaled toroidal knot

ω3,(9,2).
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Salkowski curves as ridges

As pointed out in [32] it is possible to proper fold along a circle on Salkowski curves;

in the following we provide the definition of this family and shortly discuss how the

developables obtained are just of regularity C1, the lowest allowed in a proper fold, and

how this impacts their regression curve.

It was originally shown in [31] how to join together arcs of Salkowsky curves and

possibly circular helices to get a C3 closed curve of constant curvature and non-constant

continuous torsion. More explicitely, for r ∈ R, q = r√
1+r2

, r /∈ {0,± 1√
3
}, we consider the

family of curves given by

γr(t) :=
q

r

− 1−q
4(1+2q)

sin((1 + 2q)t)− 1+q
4(1−2q)

sin((1− 2q)t)− 1
2
sin t

1−q
4(1+2q)

cos((1 + 2q)t) + 1+q
4(1−2q)

cos((1− 2q)t) + 1
2
cos t

1
4r

cos(2qt)

−
 0

q2

1−4q2

1
4r

 .
Such curves are regular in (− π

2q ,
π
2q ), their curvature and torsion are respectively k ≡ 1,

τ = tan(rt) and the arc-length between 0 and t is 1
r sin(qt). The translation factor on

the very right of the expression makes the curve defined in the limit while r approaches

a value in {0,± 1√
3
}.

C3 closed curves obtained by joining four branches of Salkowski curves are depicted in

Figure 3.5. For different choices of r, curves are scaled down to match the length of the

unit circle, which is the curve obtained in the limit as r goes to 0. Because of this scaling,

their curvature is everywhere greater then 1, which guarantees one can proper fold along

the unit circle consistently on the whole closed curve as the local construction of Lemma

3.3.1 is everywhere well defined. The developables obtained are of regularity C1 allowing

a C0 ruled parametrization and presenting a discontinuous regression curve (Fig. 3.6).

3.5 Propagation to the next foldline

In this section we look at folds involving two foldlines. In particular we first fold along the

first foldline by prescribing a ridge as we did in §3.3 and then we induce, if the isometry

on one of the two sides extends suitably till the second foldline, a proper fold (consistent

with the first one) along such a curve as well.

Let γ̄1 and γ̄2 be two non-intersecting planar curves of nonzero curvature in an open

domain D of R2. We construct a proper fold along γ̄1 onto the ridge γ1 and assume that

the isometries on the two sides of it extend to the whole domain D; this means that

exactly one ruling passes through any of the point of D different from those of γ̄1 and

that the preimage of the regression curve of the developable is not reached within the
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r = 1

r = 0.75

r = 0.38

r → 0

Figure 3.5: C3 closed curves obtained by joining four branches of Salkowski curves for different

choices of r.

Figure 3.6: Regression curve of one of the developables of a proper fold along a circle on a ridge

obtained by joining two Salkowski curves. The regression curve is not even continuous

at the junction point.

domain along the ruling. We also assume that no rulings coming out of γ̄1 are tangent

to γ̄2 where they intersect it for the first time. Under these premises, the restriction of

the isometry of D to the second foldine induces a ridge γ2 onto which it is possible to

proper fold along γ̄2. We guarantee this by arguing that all points of the developables

of a proper fold are parabolic by Lemma 3.3.4 and that no rulings are tangent to γ2;
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D

γ̄1(s1)

β(1,S)β(1,S̄)
β(2,S)γ̄2

(
s2(s1)

)

γ̄1

γ̄2

Figure 3.7: One of the two isometries obteined after proper folding along γ̄1 extends to the foldline

γ̄2. The domain has possibly been trimmed to guarantee a bijection provided by the

rulings between the foldlines.

therefore, its normal curvature with respect to the developable must be different from

zero, ensuring that also γ̄2 and γ2 satisfy the hypotheses of Lemma 3.3.1.

Note that our assumptions do not imply that all the rulings emanating from γ1

interesect γ2. Nevertheless, by possibly restricting D we can force a bijection between

the two curves mediated by the family of rulings, associating to a point γ1(s1) the point

γ2

(
s2(s1)

)
, obtained as the first intersection of the ruling emanating from γ1(s1) with γ2,

s1 and s2 being the respective arc-legth parameters (Fig. 3.7).

If we want now to propagate the proper fold along γ̄2 onto γ2 and we want it to

be consistent with the first one, we have only one choice, since by Lemma 3.3.1 the

developables of a proper fold lie on the same side of the osculating plane of the ridge and

one of them is already prescribed by the first fold.

In the next lemma we express the normal curvature and the relative torsion of γ2 with

respect to the developable obtained by proper folding onto γ1, in function of the normal

curvature and the relative torsion of γ1.

Lemma 3.5.1. Let γ1 and γ2 be two non-intersecting curves on a C2 developable surface

whose points are all parabolic. We assume that the two curves have nonzero geodesic

curvature, nonzero normal curvature (their tangents are never parallel to the rulings) and
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that a bijection γ1(s1)←→ γ2

(
s2(s1)

)
is induced by considering the first intersection point

between γ2 and the ruling through γ(s1). If δ is the angle between the tangent vectors at

correspondent points γ′1(s1) and γ′2
(
s2(s1)

)
, measured anticlockwise with respect to the

surface normal n, then(
k2,n

τ2,r

)
=

1

s′2

(
cos(δ)k1,n + sin(δ)τ1,r

− sin(δ)k1,n + cos(δ)τ1,r

)
=

1

s′2
R−δ

(
k1,n

τ1,r

)
=

k2,g

δ′ + k1,g
R−δ

(
k1,n

τ1,r

)
,

where ki,g,ki,n and τi,r respectively are the geodesic curvature, the normal curvature and

the relative torsion of γi with respect to the developable, for i ∈ {1, 2}. Rω denotes the

anticlockwise rotation by the angle ω.

Proof. Let n1, n2 be the restriction of the surface normal n to the curves γ1, γ2 and

{γ′1, u1, n1}, {γ′2, u2, n2} the respective Darboux frames. Since the surface normal is

constant along the ruling we have

s′2(s1)
(
− k2,n(s2(s1))γ′2

(
s2(s1)

)
−τ2,r(s2(s1))u2

(
s2(s1)

))
= s′2(s1)n′2

(
s2(s1)

)
=
(
n2

(
s2(s1)

))′
=
(
n1(s1)

)′
= −k1,n(s1)γ′1(s1)− τ1,r(s1)u1(s1).

The vectors γ′2 and u2 can be obtained rotating respectively γ′1 and u1 by δ about the

surface normal n and thus, interpreting k1,n, τ1,r and k2,n, τ2,r as coordinates of the same

vector in different bases we get(
k2,n

τ2,r

)
=

1

s′2
R−δ

(
k1,n

τ1,r

)
.

To express the velocity s′2 we look at the developed state γ̄1, γ̄2 of the two curves and

exploit the relation γ̄′2 = Rδγ̄
′
1 at correspondent points. By taking the derivative with

respect to s1 we obtain

s′2γ̄
′′
2 = δ′RδRπ

2
γ̄′1 +Rδγ̄

′′
1 ,

which provides s′2 = (δ′ + k1,g)/k2,g.

We want now to point out an additional way of computing the normal curvature and

the relative torsion of the second ridge once a proper fold is prescribed for the first one.

This expression will highlight the role played by the regression curve in the propagation

and provide a direct formula for computing the velocity of the parametrization of the

second ridge induced by the rulings correspondence.

Lemma 3.5.2. Let γ1, γ2 be two curves on a developable surface as in Lemma 3.5.1.

Let also β(1,S) be the angle between the tangent γ′1(s1) and the ruling direction and β(2,S)
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the one between γ′2
(
s2(s1)

)
and the same ruling direction (Fig. 3.7). If v̄ is the distance

between γ1(s1) and γ2

(
s2(s1)

)
, then

k(2,n,S) =

(
sin(β(2,S))

sin(β(1,S))

)2 k(1,n,S)

1− v̄
β′
(1,S)

+k(1,g)

sin(β(1,S))

,

τ(2,r,S) =−
(

cos(β(2,S))

sin(β(1,S))

)(
sin(β(2,S))

sin(β(1,S))

)
k(1,n,S)

1− v̄
β′
(1,S)

+k(1,g)

sin(β(1,S))

.

Proof. As shown in Lemma 5, Chap. 5 of [43], the nonzero principal curvature along a

parabolic ruling γ + v · r can be written as

k(p,S)(v) =
1(

sin(β(1,S))
)2 k(1,n,S)

1− v ·
β′
(1,S)

+k(1,g)

sin(β(1,S))

.

This expression has been constructed by requiring the reciprocal of a linear function to

attain the value k(1,n,S)/
(
sin(β(1,S))

)2
at v = 0 and being indeterminate at the parameter

v corresponding to the intersection with the regression curve. Evaluating at v̄, applying

Euler’s formula and recalling that cot(β(2,S)) = −τ(2,r,S)/k(2,n,S), we obtain the desired

formulae for k(2,n,S) and τ(2,r,S).

Lemma 3.5.3. Let γ1, γ2 be two curves on a developable surface as in Lemma 3.5.1. With

v̄ as in Lemma 3.5.2, the velocity of the parametrization of the second ridge γ2

(
s2(s1)

)
can be expressed as

s′2 =
sin(β(1,S))

sin(β(2,S))

(
1− v̄

β′(1,S) + k(1,g)

sin(β(1,S))

)
.

Proof. By Lemma 3.5.1, we have

s′2 =
cos(δ)k(1,n,S) + sin(δ)τ(1,r,S)

k(2,n,S)
.

We conclude the claim of the lemma by observing that β(2,S) = β(1,S) − δ and hence

cos(δ)k(1,n,S) + sin(δ)τ(1,r,S) = k(1,n,S)(cos(δ)− sin(δ) cot(β(1,S)) = k(1,n,S)

sin(β(2,S))

sin(β(1,S))
.

For what concerns the propagation of a curved fold, we can use Lemma 3.3.2 and

Lemma 3.5.1 to compute, as a function of the normal curvature and relative torsion

of the ridge γ1, the normal curvature and relative torsion of the second ridge γ2 with

respect to the developable obtained after proper folding also on the other side of γ2.

56



3.5. PROPAGATION TO THE NEXT FOLDLINE

Although the formulae are not simple, such a construction can possibly be iterated to

further propagate the fold when several foldlines are prescribed, the propagation being

uniquely determined by the chosen foldlines together with the normal curvature and

relative torsion of the first ridge. Fig. 3.1 and 3.2 show two examples of a pleated annulus

with multiple folds, drawn via their explicit parametrizations, which have been obtained

by the propagation process just described. The details on how to guarantee the regularity

of such a construction are given in the appendix.

Proposition 3.5.4. Let γ1, γ2 be two curves on a developable surface M as in Lemma

3.5.1, then there is a unique way to propagate the fold onto γ2. In more detail, there is

a unique way to properly fold onto γ2 (along the foldline with the correspective geodesic

curvature) in a consistent way with the pre-existing developable M . The normal curvature

and the relative torsion k(2,n,S), τ(2,r,S) of γ2 with respect to the new developable can be

expressed as

k(2,n,S) =− k(2,n,S̄),

τ(2,r,S) =τ(2,r,S̄) −
2

(s′2)2
(
k2

(2,n,S̄)
+ k2

(2,g)

) · (s′′2k(2,n,S̄)k(2,g)

+ s′2

(
k(2,n,S̄)k

′
(2,g) − τ(2,r,S̄)k(2,g)

(
s′2k(2,g) − k(1,g)

))
− k(2,g)

(
cos
(
β(1,S) − β(2,S)

)
k′(1,n,S̄) + sin

(
β(1,S) − β(2,S)

)
τ ′(1,r,S̄)

))
,

where k(1,g), k(1,n,S̄), τ(1,r,S̄) and k(2,g), k(2,n,S̄), τ(2,r,S̄) respectively are the geodesic

curvature, the normal curvature and the relative torsion of γ1 and γ2 with respect to M .

Finally, β(1,S), β(2,S) are the angles between the tangents γ′1, γ′2 and the ruling direction

rS at corresponding points γ1(s1), γ2

(
s2(s1)

)
.

Proof. Direct computation by Lemma 3.3.2 and Lemma 3.5.1.

Corollary 2. We can employ δ = β(1,S) − β(2,S) to rewrite the formula for the relative

torsion from Proposition 3.5.4 in a slightly more compact way,

τ(2,r,S) =τ(2,r,S̄) −
2

k2
(2,n,S̄)

+ k2
(2,g)

(
k(2,g)

δ′ + k(1,g)

)2

·
(
k(2,n,S̄)

(
δ′′ + k′(1,g)

)
− τ(2,r,S̄)

(
δ′ + k(1,g)

)
δ′ − k(2,g)

(
cos(δ)k′(1,n,S̄) + sin(δ)τ ′(1,r,S̄)

))
.

Remark 3.5.5. By Lemma 3.5.1 and Lemma 3.5.3, k(2,n,S̄), τ(2,r,S̄) and s′2 depend only on

the prescribed foldlines and on the values of k(1,n,S̄) and τ(1,r,S̄) and their first derivative
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at the point of interest. By this, s′′2 depends on the derivatives of k(1,n,S̄) and τ(1,r,S̄) up

to the second order.

Observation 1. If the two foldlines γ̄1 and γ̄2 are very close to each other, for example

γ̄2 being a very gentle offset of γ̄1 in the direction of γ̄′′1 , we can approximate k(1,g) ∼ k(2,g),

k(2,n,S̄) ∼ k(1,n,S̄), τ(2,r,S̄) ∼ τ(1,r,S̄) and δ ∼ 0 to obtain

τ(2,r,S) ∼ τ(1,r,S̄) − 2
k(1,n,S̄)k

′
(1,g) − k

′
(1,n,S̄)

k(1,g)(
k2

(1,n,S̄)
+ k2

(1,g)

) ∼ τ(1,r,S).

This, matching the expression for the relative torsion from Lemma 3.3.2, shows that in

this extreme setting the developable on the other side of M with respect to γ2 (the new

one we want to define) is approximately a continuation of the developable on the other

side of M with respect to γ1. A more formal discussion of this behaviour will be given in

§3.6.

3.6 Propagation to several foldlines

In this section we discuss how for any natural number N , by choosing a family of uniformly

rescaled foldlines close enough to each other, it is possible to propagate the proper fold

along the first foldline onto an arbitrary ridge to the remaining N − 1 foldlines in the way

we described in §3.5. Fig. 3.8 provides a visualization of what we mean with uniformly

rescaled ; the rigorous definition of such a family is given directly in Theorem 3.6.1.

Theorem 3.6.1. Let γ̄1 be a C∞ foldine with nonzero curvature along which a proper

fold onto the C∞ ridge γ1 is locally well defined. Let p ∈ R2 be such that no ray

γ̄1 − p is parallel to γ̄′1 then, for any N ∈ N, there exists a scaling factor c̄ > 0 such

that for all 0 < c < c̄ the proper fold along γ̄1 propagates to the family of foldlines

γ̄j = (1 + (j − 1) · c)(γ̄1 − p) + p for 1 < j ≤ N , possibly restricting the definition domain

[aj , bj ] of γ̄j to [aj + ρj(c), bj − ρj(c)] with limc→0 ρj(c) = 0.

For the sake of clarity, we proceed by presenting a technical lemma before providing the

actual proof of the theorem, which is essentially obtained as a consquence of Observation

1 plus some work to make the argument rigorous. Given a scaling factor c, in the following

we will always assume the family γ̄j defined as in the statement of the theorem. If s1 is

the arc-length parameter of γ̄1 then the arc-length parameter sj of γ̄j can be expressed

as lj(s1) = s1/(1 + (j − 1) · c).
Although the statements of Theorem 3.6.1 and Lemma 3.6.2 are given for a positive

value of c, this is just for convenience, and analogous conclusions hold for rescaled copies

of γ̄1 on the same side of p (c < 0).
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γ̄1

γ̄j

p

Figure 3.8: Family of foldlines obtained by rescaling γ̄1 with respect to the center p.

Lemma 3.6.2. Let γ̄1 be a C∞ planar curve with nonzero curvature parametrized by

arc-length over the interval I. Assume that p ∈ R2 is such that no ray γ̄1 − p is parallel

to γ̄′1. If r̄ is a C∞ family of ruling directions defined on I, such that no direction r̄ is

parallel to γ̄′1, then for any open interval A ⊂ I and any j ∈ N there exists c̄ > 0 such

that for any 0 < c < c̄ the family of rulings direction r̄ identifies a bijection between

γ̄j
(
lj(A)

)
and γ̄j+1

(
sj+1

(
lj(A)

))
, constructed by considering the intersection of the line

γ̄j
(
lj(s1)

)
+v · r̄(s1) with the curve γ̄j+1 on the side pointed by γ̄j − p.

Moreover, if βj and βj+1 are the angles between r̄ and γ̄′j and γ̄′j+1 respectively, then

lim
c→0

∣∣∣β(h)
j+1

(
sj+1(sj)

)
−β(h)

j (sj)
∣∣∣ = 0, ∀ 0 ≤ h ∈ N, and

lim
c→0

∣∣s′j+1 − 1
∣∣ = lim

c→0

∣∣∣s(h)
j+1

∣∣∣ = 0, ∀ 2 ≤ h ∈ N,

Here all derivatives are taken with respect to sj and r̄ is considered as the function

r̄
(
l−1
j (sj)

)
.

Proof. By the definition of γ̄j , since by continuity limc→0 γ̄
′
j+1

(
lj+1(s1)

)
= limc→0 γ̄

′
j

(
lj(s1)

)
=

γ̄′(s1) we have

lim
c→0

∣∣βj+1

(
sj+1(sj)

)
−βj(sj)

∣∣ = 0.

By the expression for the velocity given in Lemma 3.5.3 we obtain, for v(c, s1) such that

γ̄j
(
lj(s1)

)
+v(c, s1) · r̄(s1) = γ̄j+1

(
sj+1

(
lj(s1)

))
,

lim
c→0

s′j+1 = lim
c→0

sinβj
sinβj+1

(
1− v(c, s1)

β′j + kj

sin(βj)

)
= 1,
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where kj is the curvature of the j-th foldline. For the derivatives of higher order of

sj+1, βj+1 and βj we recall from Lemma 3.5.1 that s′j+1 =
(
kj + (β′j − β′j+1)

)
/kj+1 and

therefore

lim
c→0

β′j+1 = lim
c→0

β′j − s′j+1kj+1 + kj = lim
c→0

β′j .

The statement follows by alternately taking the derivatives with respect to sj of the

expressions for s′j+1 and β′j+1 (induction on the derivatives of lower order).

We are now ready to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. We proceed by induction, assuming the existence of c̄ such that

the proper fold along γ̄1 onto γ1 propagates to the first N foldlines for all 0 < c < c̄. More

precisely, the inductive hypothesis we want to iterate claims that for 0 < c < c̄ a bijection

between γ̄j(sj) and γ̄j+1

(
sj+1(sj)

)
(or equivalently between γj and γj+1) is identified

by the rulings of the developable between the curves for j < N , possibly restricting to

suitable open sets. Besides, fixed any ε > 0 and H ∈ N we also ask that in the same

range of c the normal curvature and the relative torsion of the ridge γj with respect to

the developable on the opposite side of the scaling center p satisfy∣∣∣k(h)
(j,n,Sj)

(
sj(sj−1(...s2(s1)))

)
−k(h)

(1,n,Sj)
(s1)

∣∣∣ < ε,∣∣∣ τ (h)
(j,r,Sj)

(
sj(sj−1(...s2(s1)))

)
− τ (h)

(1,r,Sj)
(s1)

∣∣∣ < ε, ∀ j ≤ N,h ≤ H,

where Sj has been assumed without loss of generality being + or − if j is respectively

odd or even. The derivatives are taken with respect to the arc-length parameter sj of

the ridge of interest. Finally, still in the inductive hypothesis we ask for guarantees that

the speed of the reparametrization mediated by the ruling sj+1(sj) does not deviate too

much from the arc-length, requiring also∣∣s′j+1 − 1
∣∣ < ε,∣∣∣s(h)

j+1

∣∣∣ < ε, ∀ j < N, 1 < h ≤ H.

Assuming the inductive hypothesis for N ≥ 1, whose basis is simply provided by the

knowledge that we can properly fold along γ̄1 onto γ1, we show that it also holds for

N + 1. We carry over the proof for N odd, the even case being analogous. Since the angle

between a ruling and the tangent to the ridge is a continuous function of k(N,n,+) and

τ(N,r,+) and their derivatives, for any ε > 0 and H ∈ N, we can choose c̄ small enough to

guarantee that∣∣∣β(h)
(j,+)

(
sj(sj−1(...s2(s1)))

)
−β(h)

(1,+)(s1)
∣∣∣ < ε, ∀ j ≤ N,h ≤ H.
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The fold along γ̄1 being proper, the regression curve of the two developables on which γ1

lies is at nonzero distance from the ridge along the ruling. If ε is small enough, such a

property passes over to the regression curves of the developables on the two sides of γN .

We can require c̄ to be small enough to have γ̄N+1 within the minimum of such distances

and hence obtain the desired bijection γN+1

(
sN+1(sN )

)
up to restriction of the definition

domains.

Next step is to control the normal curvature and the relative torsion of γN+1 with

respect to the developable on the negative side. By making use of the inductive hypothesis

on the speed of the bijections sj and possibly further decreasing c̄, we have for lj(s1) =

s1/(1 + (j − 1) · c) ∣∣∣β(h)
(j,+)

(
lj(s1)

)
−β(h)

(1,+)(s1)
∣∣∣ < ε, ∀ j ≤ N,h ≤ H.

Hence, for r̄ chosen to be the development of the rulings direction from γ1 to γ2, Lemma

3.6.2 together with the triangular inequality allows us to conclude the desired condition

on the speed of the reparametrization sN+1(sN ) and the following bounds on the angle

β(N+1,+) and its derivatives∣∣∣β(h)
(N+1,+)

(
sN+1(sN (...s2(s1))

)
−β(h)

(1,+)(s1)
∣∣∣ < ε.

Finally, Proposition 3.5.4 provides expressions for k(N+1,n,−) and τ(N+1,r,−) which contin-

uously depend on the values of β(N,+) and β(N+1,+) and their derivatives up to degree 2.

For c̄ small enough we can therefore guarantee that∣∣k(N+1,n,−)

(
sN+1(...s2(s1)))

)
−
(
−k(1,n,+)(s1)

)∣∣ < ε,∣∣∣∣∣∣τ(N+1,r,−)

(
sN+1(...s2(s1)))

)
−

(
τ(1,r,+) − 2

k(1,n,+)k
′
(1,g) − k

′
(1,n,+)k(1,g)(

k2
(1,n,+) + k2

(1,g)

) )
(s1)

∣∣∣∣∣∣ < ε,

where k(1,g) is the geodesic curvature of γ̄1. Again exploiting the condition on the speed

of the bijections sj up to j = N+1, the inductive hypothesis on the derivative of β(N+1,+)

and possibly making c̄ smaller enough, for any H we conclude the desired bounds∣∣∣k(h)
(N+1,n,−)

(
sN+1(sj−1(...s2(s1)))

)
−k(h)

(1,n,−)(s1)
∣∣∣ < ε,∣∣∣ τ (h)

(N+1,r,−)

(
sN+1(sj−1(...s2(s1)))

)
− τ (h)

(1,r,−)(s1)
∣∣∣ < ε, ∀h ≤ H − 2.

This completes the inductive step and with that the proof of the theorem.

Observation 2. If γ̄1 is a closed convex curve then the scaling center p must be in its

interior and no restriction of the definition domains is ever needed, once a scaling factor

c small enough to guarantee the propagation has been found.
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Observation 3. If we are not interested in mantaining a constant scaling factor c, then

it is easy to propagate a proper fold onto an arbitrary ridge to infinitely many additional

foldlines. We can in fact just proceed by induction: once the n-th proper fold is determined

we prescribe the (n+ 1)-th foldline by scaling the previous one by a factor small enough to

make the curve contained in the interior of the domain on which the isometry identifying

the next developable is well-defined.

3.7 Why the propagation to infinitely many prescribed foldlines

is hard

In this section we show that the propagation of a proper fold can turn singular with

an arbitrarily abrupt behaviour. More precisely, we will show that for any proper fold

involving N foldlines in the sense of §3.6, we can construct a proper fold over the first

N − 1 foldlines whose ridges are arbitrarily close to those of the first fold up to the

derivative of order 3 but such that a non-singular isometry between the (N − 1)-th and

the N -th foldline cannot be consistently constructed. This will provide evidence that

in general inductive strategies taking into account only derivatives up to a finite order

cannot be employed to guarantee the propagation of a curved fold to a prescribed infinite

family of foldlines.

Proposition 3.7.1. Let γ̄j be a family of N non-intersecting C2N foldlines such that

the proper fold along γ̄1 onto the C2N ridge γ1 propagates sequentially to the foldlines 2

to N identifying bijections between ridges γj(sj)↔ γj+1(sj+1(sj)) induced by the rulings

correspondence. Then, there exists a ridge γ̃1 such that a proper fold along γ̄1 onto γ̃1

propagates, possibly up to restriction of the definition domains, to the foldlines 2 to N −1,

inducing ridges γ̃j, but not to the N -th foldline, some of the rulings emanating from γ̄N−1

on the side of γ̄N crossing the regression curve before hitting the last foldline. Moreover,

for any ε > 0, γ̃1 can be chosen such that

max
∣∣∣k(j,n,Sj) − k̃(j,n,Sj)

∣∣∣ < ε,

max
∣∣∣ τ(j,r,Sj) − τ̃(j,r,Sj)

∣∣∣ < ε, ∀ 1 ≤ j ≤ N − 1.

where k(j,n,Sj), τ(j,r,Sj) and k̃(j,n,Sj), τ̃(j,r,Sj) are the normal curvature and relative torsion

respectively of γj and γ̃j with respect to the developable emanating from the ridge j on

the side of j + 1.

Again, we first provide a technical lemma.
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Lemma 3.7.2. In the hypotheses of Theorem 3.7.1, with the notation k1 := k(1,n,S1) and

τ1 := τ(1,r,S1), for j > 1 we have the equalities

τ(j,r,Sj) = τ
(2j−2)
1 ·fj

(
s1, k1, k

′
1, ..., k

(2j−3)
1 , τ1, τ

′
1, ..., τ

(2j−3)
1

)
+gj

(
s1, k1, k

′
1, ..., k

(2j−2)
1 , τ1, τ

′
1, ..., τ

(2j−3)
1

)
, and

k(j,n,Sj) = qj

(
s1, k1, k

′
1, ..., k

(2j−3)
1 , τ1, τ

′
1, ..., τ

(2j−3)
1

)
.

Here fj, gj and qj are C∞ functions depending only on the family of foldlines, and such

that fj never attains the value 0 if evaluated as above (the argument s1 of k1 and τ1, and

sj(sj−1(...s2(s1)) of τ(j,r,Sj), k(j,n,Sj) have been omitted for brevity).

Proof. We proceed by induction, the basis step being provided by Proposition 3.5.4,

where s′′2 is rewritten making use of the expressions for s′2 from Lemma 3.5.3 and

for β′(1,S1) from Lemma 3.3.3. We employ a similar strategy to prove the inductive

step, applying Proposition 3.5.4 between ridges j and j + 1. The characterization for

k(j+1,n,Sj+1) = −k(j+1,n,S̄j+1) is easily obtained after observing that by Lemma 3.5.1 it

depends only on k(j,n,S̄j)
and τ(j,r,S̄j)

and their first derivative, and concluding by the

inductive hypothesis. We look then at the term s′′j+1k(j+1,n,S̄j+1)k(j+1,g) containing the

derivative of highest order of the expression for τ(j+1,r,S̄j)
. Further decomposing s′′j+1, by

Lemma 3.5.3 and Lemma 3.3.3 we end up looking at

−τ ′′(j,r,Sj)
v̄k(j,n,Sj)

τ2
(j,r,Sj)

+ k2
(j,n,Sj)

k(j+1,n,S̄j+1)k(j+1,g),

as the term of highest differential order in τ(j,r,Sj), where v̄ is the distance function

between γj and γj+1 along the ruling. Again we conclude by induction after observing

that the factor multiplying τ ′′(j,r,Sj) is nonzero.

Proof of Proposition 3.7.1. Without loss of generality in the proof argument, we assume

S1 = + and N even with SN−1 = S̄N = +.

For any s1 and M ∈ R, we can locally perturbate τ
(2N−3)
1 to τ̃

(2N−3)
1 , for example with

a very steep bump function, to have τ̃
(2N−3)
1 (s1) = M , but still for any ρ > 0, taking the

antiderivatives of τ̃
(2N−3)
1 with suitable boundary conditions

max
∣∣∣τ (h)

1 − τ̃ (h)
1

∣∣∣ < ρ, h < 2N − 3,

which is possible because we are constraining finitely many antiderivatives defined on

compact domains. We define γ̃1 as the ridge having k̃1 := k1 and τ̃1 as normal curvature

and relative torsion and propagate the fold along γ̄1 onto such a ridge. By Lemmma
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3.7.2 if ρ is small enough, again by continuity and compactness, the normal curvature

and the relative torsion of the new ridges γ̃1 to γ̃N−1 are arbitrarily close to those of the

original ridges γ1 to γN−1, which proves the second part from the claim of the theorem.

It remains to show that we can exploit the perturbation freedom we have on τ̃
(2N−3)
1

to (heavily) modify the behaviour of the regression curve of the developable between the

ridges N − 1 and N . We do that by recalling that the distance of such a curve from the

ridge along a ruling emanating from γ̃N−1 is given by

sin(β̃(N−1,+))

β̃′(N−1,+) + k(N−1,g)

and β̃′(N−1,+) =
τ̃ ′(N−1,r,+)k̃(N−1,n,+) − k̃′(N−1,n,+)τ̃(N−1,r,+)(

τ̃2
(N−1,r,+) + k̃2

(N−1,n,+)

) ,

where β̃(N−1,+) is the angle function between the ruling and the tangent γ̃′N−1 and

k(N−1,g) is the curvature of the respective foldline. By Lemma 3.7.2, τ̃ ′(N−1,r,+) can be

made arbitrarily large/small while keeping all the other functions almost unchanged, and

with that, since k̃(N−1,n,+) 6= 0, the same behaviour translates to β̃′(N−1,+), hence forcing

the point of the regression curve to be arbitrarily located along the ruling and preventing

the isometry to be extended to the final foldline.

3.8 Future work

The construction of §3.6 is artificial in the measure it forces the existence of finitely many

folds by exploiting the local guarantees provided by the properness of the first one. It

would be nice to see in future years an existence proof that would work on infinitely

many uniformly rescaled foldlines. Proposition 3.7.1 makes it clear that such a proof

would depend on the development of an inductive tool allowing a suitable control not

only on the local propagation but also on the derivatives of arbitrary order of the curves

involved.
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Appendix. Folding the annulus

This appendix is devoted to an explicit application of the formulae obtained in §3.5 to

the annulus folded along conentric circles.

Lemma 3.8.1. Let γ̄ be a circle of radius R and center in the origin traversed counter-

clockwise and r a unit vector forming with the tangent of the circle at γ̄(s) the angle

−π < β < +π (measured counter-clockwise). The signed distance v̄ between γ̄(s) and the

closest intersection point between the line γ̄(s) + v · r and the scaled circle (1 + c)γ̄ with

c ∈ R, whenever well defined, obeys the formula

v̄ = R
(

sin(β)− sgn
(
sin(β)

)√
sin(β)2 + c2 + 2c

)
.

Besides, the angle δ between γ̄′(s) and the tangent with the second circle at the intersection

point satisfies

sin(δ) =
v̄ · cos(β)

R · (1 + c)
,

cos(δ) =
R− v̄ · sin(β)

R · (1 + c)
.

Proof. The lemma follows from elementary computations.

Given a sequence of concentric circles of radius Rj and a ridge suitable to fold along

the j̄-th one, formulae from §3.3, §3.5 and Lemma 3.8.1 can be iterated to compute

explicit parametrizations of the developables involved in the propagated curved fold. In

the notation of §3.5, two conditions must be met to guarantee the regularity of such

surfaces.

• Setting c(j,±) = Rj±1/Rj − 1, the function

v̄(j,Sj) = Rj

(
sin(β(j,Sj))− sgn

(
sin(β(j,Sj))

)√
sin(β(j,Sj))

2 + c2
(j,±) + 2c(j,±)

)
must be well defined, meaning the ruling intersects the next foldline.

• Let d(j,Sj) = sin(β(j,Sj))/(β
′
(j,Sj)

+ k(j,g)) be the signed distance of the regression

curve along the ruling, then either

sgn
(
d(j,Sj) · v̄(j,Sj)

)
< 0 or

∣∣∣v̄(j,Sj)

∣∣∣ ≥ ∣∣∣d(j,Sj)

∣∣∣,
meaning the regression curve is not intersected before the ruling reaches the next

foldline.
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The regularity of the two folds represented in Fig. 3.1, 3.2 is guaranteed by comparing

the values of v̄(j,Sj) and d(j,Sj) computed with the Mathematica code available at [1] (Fig.

3.9, 3.12). For the intersection between the unit sphere and the hyperbolic paraboloid

z − 3xy = 0 we provide the plots for one of the four arcs equivalent up to reflection,

which can be parametrized as(
t,

√
1− t2
1 + 9t2

, 3t

√
1− t2
1 + 9t2

)
on

[
−
√

(−1 +
√

10)/9,

√
(−1 +

√
10)/9

]
.

For the toroidal curve we use the parametrization from §3.4 and restrict the plot to

[0, 2π], which corresponds to one of the five arcs equivalent up to rotation. In both cases

the parametrizations are not arc-length and rather than scaling down the starting ridge

to match the length of the unit circle, equivalently to our purposes we have scaled up

the unit circle (and accordingly all the concentric foldlines) to match the length of the

ridge. It is worth mentioning that in the hyperbolic paraboloid case, although the ruling

structure of the outer strip is rather well-behaved, it is not possible to further propagate

the folding to an additional strip of the same width, since some of the rulings would cross

the regression curve of the induced developable before they could reach the new outer

boundary (Fig. 3.10).

The plots of the normal curvature and those of the relative torsion of the ridges are

also provided (Fig. 3.11, 3.13).
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v̄(1,+)

d(1,+) v̄(2,−)

d(2,−)

v̄(1,−)

d(1,−)

Figure 3.9: For the three developables of Fig. 3.2, comparison of the signed distance along the

ruling between concentric circles d(j,S) and between the ridge and the regression curve

v̄(j,S). The surfaces are regular since the rulings reach the next foldline without first

crossing the regression curve.

v̄(3,+)

d(3,+) Figure 3.10: The isometry of a possible

third outer strip induced by

the propagation would turn

singular before reaching the

boundary.

k(1,n,+)

k(1,n,−)

k(2,n,−)

τ(1,r,+)

τ(2,r,−)
τ(1,r,−)

Figure 3.11: In the notation from §3.5, normal curvature and relative torsion of the two ridges in

the fold of Fig. 3.1. Note that k(1,n,+), τ(1,r,+) and k(1,n,−), τ(1,r,−) are respectively

the normal curvature and relative torsion of the first ridge (the one from which the

propagation starts) w.r.t. the developables on its two sides.
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v̄(1,+)

d(1,+)

d(2,−)

v̄(2,−)

v̄(1,−)

d(1,−)

v̄(0,+)d(0,+)

Figure 3.12: For the four developables of Fig. 3.2, comparison of the signed distance along the

ruling between concentric circles d(j,S) and between the ridge and the regression

curve v̄(j,S). The surfaces are regular since the rulings reach the next foldline without

first crossing the regression curve. We refer to the inner ridge as the 0-th one.

k(1,n,+)

k(1,n,−)

k(2,n,−)

k(0,n,+)

τ(1,r,+)

τ(2,r,−)τ(1,r,−)

τ(0,r,+)

Figure 3.13: In the notation from §3.5, normal curvature and relative torsion of the three ridges in

the fold of Fig. 3.2. Note that k(1,n,+), τ(1,r,+) and k(1,n,−), τ(1,r,−) are respectively

the normal curvature and relative torsion of the first ridge (the one from which the

propagation starts) w.r.t. the developables on its two sides. We refer to the inner

ridge as the 0-th one.
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[24] Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J Mitra, Alla Sheffer, and Helmut

Pottmann, Curved folding, ACM Trans. Graphics (TOG) 27 (2008), 75:1–9.

70



Bibliography

[25] Adolf Kneser, Bemerkungen über die Anzahl der Extreme der Krümmung auf
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