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Abstract

Nowadays, cloud-based data storages are heavily used in a vast number of
fields. This includes, among others, storing business-related data, medical
records, or pictures of friends and family. Of course, the confidentiality,
integrity, and availability of the data have to be ensured. Services use
dedicated safeguards to provide these security aspects. One possible solution
is to use cryptography and store the key material on the client’s devices.
Nevertheless, there is an obvious downside with this approach, namely the
complete loss of access to the documents if all of the user’s devices are
lost.

This thesis proposes a novel key management system that solves said
downside utilizing Multi-Use Proxy Re-Encryption (MUPRE) while still
keeping the key material unextractable if it was created within the secure
hardware of the client’s device. The key management approach is embedded
in a data sharing system that enables users to register multiple devices.
Every device creates an own MUPRE key pair, stores potentially sensitive
data, synchronizes these data on all devices, and shares the data with
distinct users. The underlying cryptosystem is a hybrid approach, where the
asymmetric part is a MUPRE scheme. For the symmetric part, we use AES.
Furthermore, we evaluate multiple MUPRE schemes concerning specific
properties that are relevant for our use case. Additionally, we discuss how
to translate a scheme that relies on type 1 bilinear pairings into a type 3

pairing scheme.

As a result, we solved a common problem that cloud-based systems face,
which rely on client-based keys, namely recovery from device-loss. We
showcased how Multi-Use Proxy Re-Encryption can be used to share data
between users in a secure and user-friendly manner.

Keywords— cloud-based, data storage, key management, Multi-Use Proxy Re-
Encryption
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Kurzfassung

Heutzutage werden cloud-basierte Datenspeicher in vielen verschiedenen Gebieten
verwendet. Diese Gebiete beinhalten unter anderem das Speichern von geschäfts-
bezogenen Daten, medizinischen Daten oder Fotos von Freunden und Familie.
Selbstverständlich müssen diese Datenspeicher die Vertraulichkeit, Integrität und
Erreichbarkeit der Daten gewährleisten. Dienste verwenden eine Vielzahl an Mech-
anismen, um diese Sicherheitsaspekte anzubieten. Kryptografie ist eine mögliche
Lösung für dieses Problem, wobei die verwendeten Schlüssel am Endgerät der
BenutzerInnen erstellt und verwaltet werden. Bei diesem Ansatz führt der Verlust
aller Endgeräte von BenutzerInnen zu einem offensichtlichen Nachteil, nämlich zu
einem kompletten Zugangsverlust von allen Dokumenten.

Diese Masterarbeit stellt eine neuartige Schlüsselverwaltung vor, welche die be-
sagten Nachteile von cloud-basierten Datenspeichern löst. Dies wird durch die
Verwendung von Multi-Use Proxy Re-Encryption (MUPRE) ermöglicht, wobei
Schlüssel, die in der sicheren Hardware eines Endgeräts erstellt wurden, weiterhin
nicht extrahierbar bleiben. Die Schlüsselverwaltung ist in einem System zur Daten-
speicherung eingebettet, welches BenutzerInnen ermöglicht, mehrere Endgeräte
zu registrieren, wobei jedes Endgerät ein eigenes MUPRE Schlüsselpaar erzeugt.
Des Weiteren ist es möglich, potenziell sensible Daten zu speichern, besagte Daten
über alle Endgeräte zu synchronisieren und die Daten mit Dritten zu teilen. Das
verwendete hybride Kryptosystem nutzt ein MUPRE Schema und AES. Des Weit-
eren evaluieren wir mehrere MUPRE Schemen mit speziellem Augenmerk auf die
Anforderungen für unsere Schlüsselverwaltung. Zusätzlich diskutieren wir, wie es
möglich ist, ein Schema, welches bilineare Pairings des Typs 1 verwendet, in ein
Schema zu übersetzen, welches Typ 3 Pairings verwendet.

Zusammenfassend wird mit unserer Arbeit ein Problem von cloud-basierten Syste-
men gelöst, die kryptografische Schlüssel auf den Endgeräten ihrer NutzerInnen
speichern. Mit unserer Lösung ist es möglich, nach dem Verlust aller Endgeräte den
Zugriff auf verschlüsselte Daten wieder zu erlangen. Außerdem zeigen wir, wie es
möglich ist, mit Multi-Use Proxy Re-Encryption ein System zu erstellen, welches
NutzerInnen ermöglicht, Daten mit Dritten in sicherer und nutzerInnenfreundlicher
Art zu teilen.

Keywords— cloud-basiert, Datenspeicher, Schlüsselverwaltung, Multi-Use Proxy
Re-Encryption
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1 Introduction

Nowadays, a vast amount of services utilize cloud storages due to their usefulness.
Such storages enable to persistently store data in a way such that users are not
burdened with, among others, the inconvenience of availability and backing-up
their data. Due to these systems’ inherent design, availability is no longer that
much of an issue as users can register multiple devices and synchronize their data
on each device. Furthermore, it is also possible to share documents conveniently
with distinct users. In contrast to conventional ways of storing data on a physical
hard drive, users also outsource backing-up their data, as the cloud storage stores
data redundantly. However, storing sensitive data in cleartext places high trust
requirements on the cloud storage. By incorporating cryptographic primitives, it is
also possible to protect data integrity and confidentiality, enabling to store sensitive
data.

When using cryptography, data availability and sharing of data fundamentally rely
on managing and distributing keys on the system’s users’ devices. Conventionally,
if users lose their devices and, therefore, their key material, this could lead to
specific problems and, in the worst-case, even complete data loss. For that reason,
cloud services rely on dedicated strategies to recover from device-loss. If users
register multiple devices, access to their data is still intact after losing a single
device. However, there may be users who registered only a single device. cloud
services have to offer data-access recovery strategies also for these users.

cloud services use various approaches to recover from device-loss with different
advantages and disadvantages. The simplest way to tackle the problem is to
redundantly store the key material, e.g., on a flash drive or physically print the
key on paper. An obvious disadvantage is that users have to have a secure location
where they put the key and remember this location after a possibly long time when
recovery becomes necessary. More sophisticated approaches may use password-
protection or biometric access control, as proposed by Kaliski, 2000 and Dodis
et al., 2004, respectively, and store the key in the cloud. Unfortunately, these
kinds of key-protection suffer from fundamental problems, such as low entropy,
which is vulnerable to brute-force attacks. It is possible to use, e.g., secret sharing
mechanisms, originally proposed by Shamir, 1979, which enables us to split a secret
and distribute the created parts to distinct semi-trusted parties to counteract the
problem of limited entropy. On-demand the secret can then be reconstructed if a
well-defined amount of trusted entities are available.
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All those approaches have in common, that the key has to be extractable from the
device that created it. This leads to an apparent vulnerability if a user’s device got
stolen or is lost. Nowadays, there are ways to create key material securely with the
help of dedicated hardware incorporated in devices, like Intel’s Software Guard
Extensions or the ARM’s Trusted Execution Environment. With these technologies,
keys are bound to the device and are not extractable.

This thesis proposes a cloud-based data sharing solution that supports multiple
devices per user, where the key material of every device is backed by secure-
hardware. Alongside the sharing and storage capabilities, we propose a key man-
agement system that enables device-loss recovery strategies, even for users with
a single device. We utilize a cryptographic primitive called Multi-Use Proxy Re-
Encryption (MUPRE), originally proposed by Blaze et al., 1998, to implement the
sharing aspect of our system and the key management.

1.1 Contribution

This thesis offers four main contributions, which serve as a basis for our paper
(Hörandner and Nieddu, 2019):

Cloud-Based Data Sharing System using Multi-Use Proxy Re-Encryption
We propose a cloud-based data storage system that relies on MUPRE to share data
with distinct users. Furthermore, it is possible for users to register multiple devices
at the service and to synchronize all their documents in a user-friendly manner.
Also, for the synchronization between the user’s devices MUPRE is used.

Key Management System for Recovery from Device-Loss This thesis de-
fines a key management system that allows users to securely create and store their
key material inside their devices’ secure hardware. Furthermore, it enables users to
recover access to their data if they lose all devices registered at the service where
they can make their own trust decisions.

Evaluation of Proxy Re-Encryption Schemes Additionally, this thesis eval-
uates multiple PRE schemes. We give an overview of specific properties of PRE
schemes, define which requirements have to be met for our data sharing solution

4



and key management system, and finally decide on a scheme which then can be
used for our proof of concept implementation.

Implementation to Showcase Feasibility and Evaluate Performance We
state how we created the proof of concept implementation of our system. We
integrated all proposed parts of the system, including the ability to share data with
distinct users, the key management system, and the MUPRE scheme. We further
evaluate and discuss the performance of the system and especially the MUPRE
scheme.

1.2 Outline

The first Chapter of this thesis aims to give an introduction to the thesis. Chapter 2

discusses work related to our proposed system. Chapter 3 presents the background
knowledge necessary to understand the remaining thesis. Next, Chapter 4 offers the
cloud-based data sharing system, alongside the recovery strategies from device-loss.
Then, Chapter 5 evaluates multiple Multi-Use Proxy Re-Encryption schemes against
requirements identified for our system. Chapter 6 explains how we transform the
chosen scheme, so it is possible to implement it practically. Afterward, Chapter 7

elaborates on our proof of concept implementation and states the challenges we
faced during implementation. Finally, Chapter 8 concludes the thesis.
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2 Related Work

In this section, we discuss other technologies that are related to our proposed key
management system. In the first part, we will focus on cryptographic primitives
that may be used for data sharing in the cloud setting and how these building
blocks differ from our used cryptosystem. The second part will evaluate different
solutions for key-loss recovery. The section then concludes with a discussion of
three real-world cloud-based data storages, how they function, and their contrast
to our proposed system.

2.1 Secure Data Sharing Cryptography

Over the next paragraphs, we will state different cryptographic building blocks
that also allow secure data sharing in the context of cloud-based data storages. We
will further state the difference to our system.

Hybrid Encryption and Lockbox Constructions One of the critical aspects
of every cloud-based data storage is the end-to-end confidentiality that has to be
ensured. There are multiple ways to achieve this, one being hybrid encryption. Hy-
brid encryption combines the advantages of symmetric and asymmetric encryption
by encrypting the plaintext with a symmetric cipher. It then encrypts the key of the
symmetric cipher asymmetrically.

In their work, Fu, 1999 expand on the idea of hybrid encryption by proposing
”lockbox” constructions - the term lockbox refers to a key that is encrypted with
another key. They give a real-world example to understand their concept better.
Imagine putting a key to a house inside a box. Additionally, a lock is attached to
the box that contains the key. Now, everyone who knows the lock’s combination
can obtain the key for the house and enter it. In summary, a lockbox allows users to
store a key in public, and everyone with correct access rights can obtain the key.

On the one hand, data sharing is easily possible with lockbox constructions and
also with hybrid encryption. Our system also relies on hybrid encryption, where a
MUPRE scheme is used for the asymmetric part. On the other hand, the recovery
strategies from device-loss defined in 4.3 cannot be implemented with the same
security guarantees and trust assumptions using lockboxes or conventional hybrid
encryption.
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Attribute-Based Encryption (ABE) Proposed by Goyal et al., 2006, ABE also
enables users to share data. In contrast to conventional asymmetric encryption,
where it is necessary to share the private keys to decrypt existing ciphertexts, ABE
allows for ciphertexts to be decrypted by multiple decryption keys as long as the
keys are associated with the correct access rights. This is done by labeling the
ciphertexts with certain attributes and decryption keys with the corresponding
structures that control whether the key can decrypt the ciphertext. The decryption
keys are derived from a master secret key and are generated by a trusted third
party.

Unfortunately, ABE assumes high trust assumptions, as the trusted third party
that creates the decryption keys can decrypt any ciphertext. Regarding the trust
assumptions for our proposed system, read Section 4.6.

IBE Identity-Based Encryption (IBE) was proposed initially by Shamir, 1984, but
remained an open problem for several years, as in his work, Shamir only gave an
identity-based signature scheme. Some years later, Boneh and Franklin, 2001 gave
an IBE scheme based on the Weil pairing.

The main advantage for IBE is that keys can be generated from publicly known
values bound to an identity, such as an email address. The corresponding private
key is then generated from a trusted third party, similar to ABE, with the help
of a master key. This procedure inherently allows the key-generating party to
create private keys for every known identity and, in turn, enables it to decrypt
all ciphertexts, which is a disadvantage when comparing it with our proposed
system.

Functional Encryption (FE) Initially formalized in Boneh et al., 2011, FE is a
cryptographic primitive that allows a key holder to learn a function of an encrypted
value, but nothing about the value itself.

Definition 1. A FE scheme for a specific functionality f , defined over (K, X) consists of
the following operations, which satisfy the correctness conditions for all k ∈ K and x ∈ X:

Setup(1κ)→ (pp, mk): This operation generates a public and a master secret key pair
(pp, mk), depending on the input parameter κ.

KeyGen(mk, k)→ sk: On input of a master secret key mk and some k , the KeyGen
operation creates a secret key sk for k.
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Enc(pp, x)→ c: The input to this operation is a public key pk and some message x. The
operations outputs a ciphertext c of the message x

Dec(sk, c)→ y: The decrypt operations uses the secret key sk to compute f (k, x) from
c

FE received a lot of attention during the last years, with remarkable progress and
has many theoretical fields of application. One of the interesting use cases is that it
is able to generalize existing cryptographic primitives like ABE as well as IBE. For
ABE, imagine defining the functionality f like:

f (k, x) =
{

x if k has attributes attached that allows to decrypt x
⊥ otherwise

Furthermore, for the IBE case, define f as follows:

f (k, x) =
{

x if k is an identity that allows to decrypt x
⊥ otherwise

Because of the possibility to formalize ABE and IBE through FE, FE enables data
sharing in the cloud setting as well. Unfortunately, also for FE, there is a third party
involved that may get access to all existing ciphertexts and has therefore much
higher trust assumptions than our proposed system.

All three described cryptographic building blocks suffer from the same inherent
problem. There are ways to limit the required trust, for example, by using Multi-
Party Computation (MPC) to create the corresponding private keys. MPC allows us
to split the trust, such that the possibility to read any ciphertext is not centralized.
In this setting, a certain threshold of parties has to be corrupted to break the system.
Nevertheless, these approaches also have to be paired with a strategy to recover
from key-loss.

2.2 Recovery from Key-Loss Techniques

This section discusses different ways to recover from key-loss and how these
techniques differ from our approach. The focus lies on cloud-based systems that
rely on storing cryptographic keys on the client’s device, as also our system is built
with this approach.
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Password-Based Encryption After creating a key on the user’s device, the key
is further encrypted and uploaded to a cloud storage. The encrypting key is derived
from a password given by the user with a key derivation function. Multiple schemes
are specifically designed for this exact purpose. If a user then loses their device,
the encrypted key can be downloaded to another device. If the user can reenter the
password, the key is decrypted, and in turn, the access to the documents stored in
the cloud is restored.

There are multiple downsides with this approach. First of all, relying on passwords
provided by users can lead to problems if the entropy of the password is not
high enough and is therefore guessable by attackers. Furthermore, enforcing high-
entropy enforces users to either remember long passwords or persistently store the
password somewhere, e.g., as a paper-key or on the hard drive of a device. Loss of
the high-entropy password renders the recovery impossible.

Biometric Encryption Like password-based encryption, biometric encryption
uses key derivation to encrypt the key created on the user’s device, which can
then be uploaded to a cloud storage. In contrast to password-based encryption,
where some information the user knows, e.g., a password, is used to derive the
key, biometric encryption uses the user’s biometric templates, like in the most
common case fingerprints. There are multiple ways to derive cryptographic keys
from such templates, which can be seen, for example, in the work from Jin et al.,
2004 or Dodis et al., 2004. In their work, Jin et al., 2004 discuss the advantages of
biohashing, whereas Dodis et al., 2004 propose to use fuzzy extractors to derive
keys from noisy data.

Unfortunately, as seen in Nagar et al., 2010, biometric encryption has certain disad-
vantages. The first apparent downside is that the biometric template used to create
the key must be kept confidential. Users can easily create a fresh template when
using password-based encryption schemes if the template (the password) leaked.
In contrast, users cannot switch the template when using biometric encryption as it
is their biometric identifier. Systems may enforce that additional data is used to
generate the keys to counteract this problem. This additional data has to be kept
confidential and available, so biometric encryption faces the same problems as
password-based encryption.

Secret Sharing The concept of secret sharing was proposed by Shamir, 1979.
It solves multiple problems regarding key management in a cloud setting where
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potential corrupted parties are involved. To share a secret, the secret is divided
into n shares. This secret can then be reconstructed if one obtains k of these shares,
where k is some previously defined threshold. In contrast, no information about
the secret is leaked even if someone is in possession of k− 1 shares.

In the context of cloud-based data storages, users can generate a recovery key, then
use secret sharing to split the key, and finally transmit the n shares to partially
trusted third parties, as seen in Huang et al., 2011. These partially trusted third par-
ties may be the user, the cloud service, or someone of the user’s social network. The
user has to convince k parties to transmit their corresponding shares to regenerate
the recovery key.

However, neither the original proposal by Shamir, 1979 nor the work from Huang et
al., 2011 addresses the problem of authenticating requests such that only authorized
parties receive shares.

Password-Protected Secret Sharing There are multiple ways to incorporate
authentication mechanisms into a secret sharing protocol. For example introducing
password-based authentication, such that entities holding shares, can verify that a
request is coming from an authorized source, for example, proposed by Bagherzandi
et al., 2011. In their work, the authors present a secret sharing protocol, where
a user on recovery has to authenticate themself with a password to the parties
that hold the shares. The authentication is done with a zero-knowledge protocol,
implying that the shareholders do not learn the user’s password.

This approach solves the inherent problem of other secret sharing protocols, namely
the user’s lack of authentication methods. Nevertheless, secret sharing protocols,
like proposed by Shamir, 1979, Huang et al., 2011, or Bagherzandi et al., 2011,
require that the secret key is extractable from the device. Our proposed key man-
agement system is extensible with secret sharing, as seen in Section 4.4. The main
advantage is that our system leaves the unextractability of the secret key intact,
meaning it still possible to utilize hardware protection for keys.

2.3 Complete Deployed Systems

Of course, various systems offer similar services as our proposed data storage,
which are deployed in the real-world. This section will discuss three cloud-based
data storages that offer high security and compares their solution with ours.
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2.3.1 Tresorit

By enabling secure storage of documents, synchronizing files, and sharing docu-
ments, Tresorit offers the same functionality as our proposed system. Their core
security guarantee is the end-to-end encryption that is warranted during every ac-
tion a user performs. In contrast to other cloud storages, they incorporate client-side
encryption, implying that no document in plaintext is uploaded to their servers.

There is official client software for multiple operating systems, including macOS,
Windows, and a Linux beta version. The end-to-end encryption used in the ecosys-
tem of Tresorit is described in TRESORIT, 2014. The client-side encryption uses
Advanced Encryption Standard (AES) in Cipher Feedback Mode (CFB) with a fresh
256-bit key that the client software chooses. To further ensure the integrity of docu-
ments, Tresorit computes a Hash-Based Message Authentication Code (HMAC),
usually with Secure Hash Algorithm 512 (SHA-512).

If a user wants to upload a document, the encrypted document is added to the
cloud’s existing directory structure. These structures represent the client-side
directories and consist of other directories and files called ”Tresor”. The directories
hold the symmetric keys of the files and other directories they contain, resulting
in a hierarchy of symmetric keys. It is only possible to add documents to the
Tresor if one knows the root key. The so-called Agreement Module provides
the root key. There are two different types of Agreement Module, namely one
based on Rivest–Shamir–Adleman (RSA) and one on Tree-Based Group Diffie-
Hellman (TGDH).

The RSA-based Agreement Module contains multiple pre-master secrets. If a user
wants to share their Tresor with another distinct user, a new pre-master secret
is added to the Agreement Module, which is encrypted with the distinct user’s
RSA public key. If a user wants to access the shared Tresor, they have to provide
their private key to the Agreement Module. The Agreement Module decrypts the
corresponding pre-master secret and then computes the root key of the Tresor. In
contrast to the RSA-based module, the TGDH-based Agreement Module does not
store the pre-master secrets, but the users’ certificates.

To share the access of a Tresor with other users, Tresorit relies on a 3-step authenti-
cation process done via email. In the first step, users authenticate themself with an
X.509 certificate and the corresponding RSA-2048 private key. After that authenti-
cation, an invitation is sent to the user with a 256-bit random secret. Finally, the
two users perform a handshake to establish the keys during a challenge-response
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protocol where the invitee presents the random secret received via email during
the protocol.

Tresorit also accounts for the case that a user lost all devices or forgot their login
password. If either a user has access to a previously paired client device but forgot
the password, or did loose all registered devices but still remembers the password,
the access to the user’s Tresors can be restored. If the user lost all devices and also
forgot their password, the access cannot be restored.

On registration, a random 256-bit master salt value is generated for the user. This
master salt and the user’s chosen password is used to derive a 256-bit master
key with Password-Based Key Derivation Function 2 (PBKDF2). The master key is
then used to encrypt the so-called ”Roaming Profile”, which contains the user’s
Transport Layer Security (TLS) certificate and the associated private key, and the
certificates and keys used to get access to the user’s Tresors, including the keys
relevant for the Agreement Module. The encrypted Roaming Profile is uploaded
to the cloud and also stored on the user’s device. Furthermore, an HMAC using
SHA-512 is computed over the Roaming Profile for integrity protection. Addition-
ally to the master key, a 160-bit authentication salt value is computed, which is then
used, together with the user’s password, to derive an authentication key, again,
using PBKDF2. This authentication key is also sent to the server.

If a user wants to log in to the service with a registered device, the 256-bit master
key is regenerated on the client’s side with the stored salt value and the user’s
password. The master key can be used to decrypt the locally saved Roaming Profile
such that all necessary keys are available to the client software. In case a new device
tries to log in, e.g., when a user reinstalled their operating system or lost all other
devices, the default login process is not possible because the encrypted Roaming
Profile is not stored on the new device. The user has to perform a proprietary
challenge-response protocol based on the authentication key generated during the
registration process to authenticate at the Tresorit servers. On success, the server
sends the encrypted Roaming Profile to the new client, where the default login
process can now be invoked.

To sum things up, Tresorit uses a hybrid encryption approach to store the user’s
documents securely. It uses AES in CFB mode and RSA to encrypt the corre-
sponding AES secret keys. This approach is similar to our solution regarding the
persistent storage of data. We also embed hybrid encryption, but we use MUPRE
to encrypt the AES keys. There is one advantage regarding the storage of the
cryptographic keys and their usage in our key management design, namely we
can store the private key of the asymmetric primitive in the secure hardware of
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the client’s device, which is not possible for Tresorit, as their design enforces the
extractability of the RSA key. For users to authenticate themselves to another user,
both systems rely on some external channel and Public Key Infrastructure (PKI).

As already mentioned, Tresorit’s design does not allow for the usage of hardware-
backed keys. Another difference between Tresorit and our system is how we handle
the recovery from device-loss. Whereas Tresorit solely relies on password-based
authentication, our system has another form of authentication. We recommend
using the authentication mechanism described in Section 4.4, where the user in
recovery has to convince a threshold of semi-trusted users to reconstruct at least
one MUPRE re-key which then can be used to restore the user’s access. Not only
are all involved asymmetric keys inside the secure hardware of the corresponding
devices, but the protection from misusing the recovery mechanism is more robust
with our approach.

2.3.2 pCloud

pCloud is a service provider that also offers, among others, a secure cloud storage.
In the default case without any additional security packages, pCloud uses server-
side encryption with 256-bit AES. Furthermore, during transfer, they rely on a
channel secured by TLS. They enable device synchronization and offer a web
application, a desktop application, and multiple mobile applications.

As an additional security feature, they offer an encryption package that is extra
charged. This package is called pCloud Crypto and is advertised as an additional
layer of security. In contrast to the general package, it enables client-side encryption
with 256-bit AES. Every file and folder is encrypted with a fresh key, whereas these
keys are encrypted with 4096-bit RSA. In contrast to their competition, pCloud
Crypto offers the possibility to decide if data should be encrypted on the client-side
or not. They argue that it is beneficial if some data may be stored with server-side
encryption. For example, they give server-side rendered thumbnails for pictures or
transcoding of media files such that they are playable in the cloud, as this would
be impossible with client-side encryption.

This duality of server-side and client-side encryption is enabled by providing the
opportunity to ”lock” individual folders. If a user locks a file, it is encrypted with
an AES key, which is derived from the so-called Crypto Pass. The Crypto Pass is
a high-entropy password. If a user forgets their Crypto Pass while using pCloud
Crypto, the encrypted data is lost. Furthermore, file sharing with users is not
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possible with pCloud Crypto. Nevertheless, pCloud offers another package called
pCloud Business. It may be possible to retrieve access to encrypted data if the
Crypto Pass is lost and enables the feature of sharing data with distinct users.

pCloud Business is a separate package of pCloud. The package targets businesses
that want to store their data in a common place and collaboratively work on it.
As the owner of a pCloud Business account, it is also possible to add pCloud
Crypto to the shared folders. The owner creates an encrypted folder and can share
subfolders with distinct users. This process implies that the owner of the account
has complete access to all the stored data. For the sub-folders, it is necessary to
create a temporary Crypto Pass that the other users need to access the encrypted
folders. If the business package owner forgets the Crypto Pass, it is implied that
it may be possible to recover the access to the encrypted folder with the help of
the support of pCloud. However, due to the project’s closed-source nature, it is not
stated how this process works. Furthermore, if the support can restore access to
encrypted documents, end-to-end encryption is not guaranteed.

In contrast to our system, the sharing capabilities of pCloud are only possible if a
user relies on server-side encryption or for the pCloud Business users. Although
pCloud Business users can share data with distinct users, the package targets
explicitly businesses and is designed so that the owner of the account has complete
access to all the stored data. Our system enables data sharing with distinct users,
even with client-side encryption.

Data recovery for pCloud users without using any additional packages is easily
made, as this service relies on server-side encryption. The authentication mecha-
nism relies on simple password authentication, although it is possible to enable
two-factor authentication. If using client-side encryption with pCloud Crypto, the
loss of the Crypto Pass implies complete data loss. As already mentioned, it is
hinted that for pCloud Business users, there may be a way for the support of
pCloud to recover access to documents, but it is not stated how this is possible. Our
system offers a user-friendly way of data recovery with minimal trust decisions of
the user, even with client-side encryption.

2.3.3 SpiderOak

Originally released in December 2007, SpiderOak offers a cloud-based backup
system, along with file-sharing capabilities called ”SpiderOak One”. SpiderOak
One uses a two-layered encryption approach. Every file is encrypted with a fresh
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AES key. These encryption keys are the ”outer layer” of their approach, and this
outer layer is encrypted with AES in CFB mode of operation. Furthermore, a
HMAC with Secure Hash Algorithm 256 (SHA-256) is computed to protect the
integrity of the keys. The key used for encrypting the outer layer is derived from a
key derivation function, namely PBKDF2 with SHA-256, 16384 rounds, and a 32

bytes random salt value. They guarantee that, if using their client, no keys, files,
or even metadata of files are stored in plaintext on the server. They also use TLS
secured channels for communication with their servers.

SpiderOak One provides separate clients for Windows, macOS, and Android. They
also offer the possibility to log in via the web, although all client-side security
guarantees only hold if the user is logged in with the client software. When using
the web platform, the password is transmitted to the server. Therefore SpiderOak
recommends using one of the clients. The synchronization between different devices
is enabled by password-based encryption. If a user provides the password used for
encrypting their outer layer, it is possible to decrypt the data on any device.

For multi-user sharing, SpiderOak One offers the possibility to create so-called
”ShareRooms”. A user can specify folders or files which should be added to a
ShareRoom. Suppose another person (not necessarily another user of SpiderOak
One) has access to the link. In that case, the person can read the room’s data, as long
as the room persists, although the remaining data of the user remains confidential.
This can be done with the two-layered approach of SpiderOak, as every file is
encrypted with a separate key.

Additionally, there is a more sophisticated solution for multi-user sharing, called
”SpiderOak CrossClave”. The service targets users who want to work on their
data collectively and persistently store it, supporting the platforms macOS, iOS,
Windows, and Android. SpiderOak CrossClave guarantees client-side encryption
and utilizes hardware-backed certificate chains. For authenticated file encryption,
the service uses AES-Galois/Counter Mode (GCM). A decentralized authority
implemented as blockchain is used for access rights to documents. Every time a
folder is shared, a blockchain is generated with it. On this blockchain, all privileged
user information or group membership is stored. Tampering with the blockchain is
immediately noticed by all other parties of the system. Additionally, the blockchain
is used for version control. All modifications of the documents are stored on the
blockchain.

To summarize, as SpiderOak One uses password-based encryption, users do not
face problems if they lose their devices. The client software can be reinstalled, and if
the user still remembers the password, the access to the documents is restored. The
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downside of this approach is that integrating hardware-backed keys is not possible,
as the key used to decrypt the outer layer is computed with a key derivation
function. Furthermore, the sharing mechanism of SpiderOak implies that everyone
with access to the sharing link can read the shared data, including SpiderOak. With
our approach, end-to-end encryption is still possible.

SpiderOak CrossClave allows users to share their data while keeping client-based
end-to-end encryption intact. It also utilizes hardware-backed keys for multiple plat-
forms. During the registration process of CrossClave, the client software presents a
recovery key, consisting of multiple English words. If users lose access to all their
devices or add a new device to their account, this recovery key must be provided. If
the user also loses the recovery key, it is impossible to recover access to the account.
With our system, the recovery process is not bound to a piece of information like
a password. Depending on the concrete implementation of the recovery process
described in Section 4.4, the availability of the needed parties may vary, but usually,
the process is always possible to invoke.
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3 Background

In this section, we recall basic background knowledge and definitions to understand
the thesis. The first part of the section fundamentally discusses pairing-based
cryptography. The second part states how Proxy Re-Encryption schemes work and
enumerate all operations of such a scheme. The section concludes with a discussion
on hardware-backed keys.

3.1 Pairing-Based Cryptography

To formulate the fundament of Pairing-Based Cryptography, it is necessary to
define some mathematical operations. The following explanation is inspired by
Menezes, 2009.

Let G1, G2 be two groups of prime order p which are generated by Q ∈ G1, R ∈ G2,
respectively. Furthermore, let GT be a group of order n. The groups G1 and G2 are
additively written, and GT is written multiplicatively. A bilinear pairing is a map
e

e : G1 × G2 → GT,

which satisfies the following properties:

Bilinearity: ∀a, b ∈ F∗p : e(aQ, bR) = e(Q, R)ab.
Non-Degeneracy: e(Q, R) 6= 1
Computability: e can be computed efficiently

In the current definition, we described the bilinear map e on the domain G1 × G2,
but there are multiple ways to define the domain of e, as seen in, for example,
Costello, 2012, yielding different ”types” of pairings. If we look at the definition of
the mapping e

e : G1 × G2 → GT,

then the type of the pairing depends on the choice of G2. The only difference
between the pairing types is the technical implementation. The literature defines
three different types of pairings:
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Type 1 pairing: These pairings are obtained if we set G1 = G2. Most pairing-
based protocols are written with pairings of this type because it has some math-
ematical benefits when defining a scheme. The first advantage is that there are
no problems with hashing into the groups, and there is a trivial isomorphism
φ : G2 → G1. The drawback is that the speed of computing the pairing is trouble-
some. Therefore, real implementations of cryptosystems do not employ this type of
pairing.

Type 2 pairing: A type 2 pairing has two distinct groups G1 and G2 (meaning
G1 6= G2) and an additional isomorphic map φ : G2 → G1, which can be computed
efficiently. The downside for this type of pairing is that it is unknown how to hash
into G2. Furthermore, it is impossible to generate random elements of G2, except
with scalar multiplication with the generator P2. This is often not desirable.

Type 3 pairing: A type 3 pairing also has G1 6= G2 but there is no isomorphism
φ : G2 → G1 (at least none that can be computed efficiently). A pairing of this type
is far easier to compute than pairings of the other types, and additionally, it is
possible to hash into G2. Due to this fact, most implementations of protocols based
on pairing-based cryptography rely on this type. However, the downside when
using this pairing type is the sacrifice of the map φ, which can be problematic, if
the security proof of a scheme relies on the homomorphism.

Cryptographic algorithms rely on the hardness of well-investigated problems.
With the above definitions, it is possible to define such a hard problem, namely the
Bilinear Diffie-Hellman Problem (BDHP). The BDHP is based on the Diffie-Hellman
Problem (DHP), proposed by Diffie and Hellman, 1976. The hardness assumption
of the DHP is the Discrete Logarithm Problem (DLP). We recall the definition of the
DLP (written multiplicative). Having a group G with order n, which is generated
by the generator g, and an element P ∈ G, find an integer x ∈ [0, n− 1] such that
gx = P. For some chosen groups, this problem is thought to be sufficiently hard.

So, the DHP is defined as knowing the generator g of G and two elements ga, gb,
find gab. If the DLP is hard, then the DHP is also hard to solve because it reduces in
polynomial time to this problem. One group for which the hardness assumptions
hold are points on elliptic curves over finite fields.

Due to the conditions on the bilinearity, the BDHP is given as having a bilinear map
e : G1 × G1 → GT and elements P, aP, bP, cP, compute e(P, P)abc. If one can solve
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the DLP, it is also possible to solve the BDHP. This problem definition is thought
to be as hard as DLP. The BDHP is the same for all different types of pairings.

3.2 Proxy Re-Encryption

This section summarizes the definitions of Proxy Re-Encryption (PRE) and states
all operations of a PRE scheme. Furthermore, we give more details on Multi-Use
Proxy Re-Encryption (MUPRE) schemes and the ”Multi-Use” property.

Blaze et al., 1998 introduced the concept of PRE. In their work, they define an es-
sential environment and notions for so-called Atomic Proxy Cryptography. Usually,
in this setting, there are three players involved: Alice, who wants to share her data,
Bob, who is the receiver of Alice’s data, and a semi-trusted proxy.

PRE enables the proxy to transform Alice’s ciphertext into another ciphertext,
which only Bob, with his secret key, can decipher, so that no sensitive data, such
as cleartexts or key material, is exposed to the semi-trusted proxy. So, PRE can be
seen as a natural extension to asymmetric cryptography.

Alice is often referred to as the delegator and Bob as the delegatee of data. In this
context, ”semi-trusted proxy” means that the proxy is actively trying to get access
to Alice’s data or key material, but performs the underlying protocol correctly.

3.3 Multi-Use Proxy Re-Encryption

Up to this point, all definitions were tackling the use case that Alice wants to share
her data with Bob. Schemes like that are called ’single-hop’ schemes. A logical
extension of this setting would be the addition of a new player Charlie.

If Alice wants to share her data with Bob, she enables the proxy to create a re-
encrypted ciphertext for Bob. In the context of MUPRE, Alice’s original ciphertext is
called the first-level ciphertext, and Bob’s re-encrypted ciphertext is called second-
level ciphertext. Let us say Bob also wants to share Alice’s data with Charlie, then
again, Bob invokes the re-encryption operation on the proxy, yielding a third-
level ciphertext for Charlie. Only Charlie’s secret key is then, of course, able to
decrypt this third-level ciphertext. Of course, it should also be possible to further
re-encrypt the ciphertexts up to the l-th level. Fulfilling this condition implies that
the scheme has the so-called ”multi-hop” or ”multi-use” property. Such schemes
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Figure 1: Data flow of a PRE scheme

are called Multi-Use Proxy Re-Encryption. We will stick to this naming convention
throughout the thesis as our proposed scheme uses MUPRE. A formal definition
of MUPRE can be seen in Definition 2.

Definition 2. A MUPRE scheme with message spaceM has the following operations.

KeyGen(1κ)→ (sk, pk): This operation outputs a fresh, unique key pair, consisting of a
public key and a secret key (sk, pk), depending on the input parameter κ.

Enc(pk, M)→ C1: On input of a public key pk and some cleartext message M ∈ M,
the encrypt operation creates a first-level ciphertext C1, which the respective secret
key then can decrypt.

Dec(sk, Cl)→M: The input to this operation is a secret key sk and an l-th level cipher-
text. If the given secret key can decrypt the ciphertext, it yields the message M ∈ M
or ⊥ otherwise.

ReKeyGen(skA, pkB)→ rkA→B: On input of Alice’s secret key skA and Bob’s public
key pkB , the operation creates a re-encryption key rkA→B.

ReEncrypt(rkA→B, Cl
A)→ Cl+1

B : Provided with a re-encryption key rkA→B and Alice’s
l-th level ciphertext Cl

A, the semi-trusted proxy creates a l + 1-th ciphertext Cl+1
B for

Bob.

Regarding the re-encryption key generation, we defined the input to the ReKeyGen
operation as Alice’s secret key and Bob’s public key. This definition is a general-
ization as the input can differ from that. We will discuss the input to this function
in more detail later in the thesis when we define the non-interactive property (see
Section 5).

Figure 1 examines the data flow between the individual operations. In this fig-
ure, the dependencies of the operations are shown when performing a single
re-encryption. For MUPRE schemes, the ReEncrypt step can, of course, be applied
multiple times.
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3.4 Hardware-Backed Keys

In this section, we will describe the concept of hardware-backed key material.
Alongside reasoning why such keys exist, we will frame the prerequisites that have
to be met to be able to use these keys and how they are implemented.

When integrating cryptographic building blocks in a system, designers face specific
problems, namely, among others, the secure creation, protection, and usage of cryp-
tographic key material. In every system which relies on cryptographic primitives,
these aspects have to be considered. Some challenges are more evident than others,
for example, the storage of secret keys. Of course, only the person who created the
key and later plans to use it shall access the secret key. However, to use the key,
it has to be persistently stored somewhere. A straightforward solution is to store
the key on the device’s hard drive, which created the key. The apparent downside
to this approach is that malicious software that runs on the same device would
be able to access the secret key, hence virtually no key is stored in this manner. A
more sophisticated approach to securely store keys is a dedicated file format, like
the format defined in PKCS#12 by Moriarty et al., 2014. Usually, PKCS#12 is used
to bundle a secret key with one or more corresponding X.509 certificates together,
then encrypted with a passphrase. Unfortunately, to access these files, systems
usually need to access the passphrase via code or configuration files, where the
passphrase is stored in plaintext.

Nevertheless, there are still limitations using dedicated file formats, although they
are reasonably secure. One such downside is that it is impossible to bind the key
material to a specific piece of hardware, meaning that the key can be used on any
device if the passphrase is known and the file was exchanged. Furthermore, if
the key material is used in a cryptographic operation, the secret key’s plaintext
has to be loaded into the RAM of the device to perform its task. This necessary
step opens a vast amount of different attack surfaces, e.g., side-channel attacks or
malware vulnerabilities. Hardware manufacturers recognized these problems and
introduced the concept of the so-called Trusted Execution Environment (TEE).

The TEE is a dedicated, isolated area inside the main processor of a device. Some-
times the TEE is implemented as a separate chip. In this dedicated area, only specific
pieces of software can be executed, alongside a TEE kernel. These programs are
called ”Secure Applications” and use the full functionality of the processor. Op-
posed to the TEE is the Rich Execution Environment (REE), where the kernel of
the operating system and user applications are executed. Although the TEE and

21



Figure 2: The separation of the TEE and REE
.

REE share the same processor, the REE does not have the same capabilities as the
TEE. Furthermore, the TEE has access to more memory regions than the REE.

Similar to the context switching mechanics in operating systems, there exists a
context switch to enter the TEE via well-defined manners. Communication between
the TEE and the REE is done via shared memory, and these context switches. This
clear partitioning between the two areas depends on hardware design and software.
Figure 2 shows the separation of the two worlds. The picture is obtained from
González, 2015.

Prominent examples for TEEs are the ”TrustZone” from ARM and the Software
Guard Extensions (SGX) from Intel. On devices that support a TEE, it can be
utilized to create cryptographic keys securely. Keys are generated inside the TEE
and stored in areas where the access of the REE is prohibited. Such keys are called
hardware-backed. Also, cryptographic operations using the hardware-backed keys
are performed in the TEE so that the key never leaves the TEE. Even if the system is
infected with malicious malware or the kernel of the operating system is exploited,
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it is not possible to compromise the key material due to the hardware and software
protection of the TEE, implying that a key is bound to the TEE (and ergo the
device), which created the key material. Even if attackers get physical access to the
device, it is not possible to extract the key material from the device.

The security of all operations we listed above also depends on the correct autho-
rization of incoming requests. In other words, it is necessary that only authorized
processes can use their respective keys. To give an example, the ”TrustZone” en-
sures this with a secure boot chain. During the booting process of a device, every
piece of software, including the REE and the secure applications, are verified by
validating a signature computed over the code that is loaded. If the secure boot
fails for whatever reason, the device does not start. This secure boot chain implies
that if the device did start correctly, the TrustZone can trust the REE that it handles
all incoming requests correctly.

In this section, we described the concept of hardware-backed key material. Along-
side reasoning why such keys exist, we gave the prerequisites which have to be
met to be able to use these keys and how they are implemented.
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4 Multi-User Data Sharing System and Recovery
from Device-Loss Strategies

This section describes the proposed multi-user data sharing system, which is the
main focus of the thesis. The system is cloud-based, with a novel user-friendly
solution for recovery from key-loss utilizing MUPRE with trust decisions that the
user chooses on their own. The first section will list the challenges the system faces.
The second section states all actors within the system, their operations, and how
they interact. A discussion on trusted recovery users can be found in section three.
The fourth section discusses the different approaches of key-authenticity, which
can be used in the system. The fifth section states all trust assumptions between
the actors.

4.1 Challenges

In this section, we will state all the challenges our system faces. Furthermore, all
objectives which have to be met are listed.

Confidentiality A significant demand for our system is the confidentiality of the
documents uploaded by users. As users may upload sensible data to the cloud
storage, it shall be, of course, only possible for privileged actors in the system to
get access to these documents. Additionally, users shall have absolute sovereignty
over what happens to their documents. It shall only be possible for entities to read
data from a different user if the said user previously agreed.

Integrity Alongside confidentiality, integrity is a fundamental basic concept in
information security. During all steps in the system, it shall not be able to alter data
from users undetected. Only a user themself, or any entity that got bestowed with
the user’s rights, shall be able to modify the data.

User Experience As we focus mainly on building a system that may be used by
real users, user experience is one of the most significant aspects of our system. All
cryptographic operations should be embedded in the system such that users do
not feel a negative impact on the performance. A simple, understandable interface
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shall be shown to users where it is easily possible to store and securely share their
data. Furthermore, as the underlying cryptography is quite complex, there may be
performance impacts. These problems need to be addressed.

Sharing of Documents One of the central functionalities of our system is the
sharing of documents between users. As already stated, it shall only be possible
for authorized users to access data uploaded to the cloud storage. The possibility
to bestow access rights of documents to distinct users shall be limited to the data
owner. Additionally, to server-side access validation, we incorporate cryptography
such that it is also mathematically unfeasible to gain unauthorized access to
documents.

Recovery after Device-Loss Users of our system shall have the possibility to
recover the access to their documents after losing all their devices and, therefore,
their key material. Additionally, this recovery process shall imply minimal trust
decisions by the user that lost all their phones.

Protection of the Key Material The key management is one of the core aspects
of our proposed system. Our approach enables the possibility that the users’ private
key material can be bound to the hardware’s device where it was created, which
renders it unextractable. For more information about hardware-backed keys, we
refer to Section 3.4.

4.2 Data Sharing

This section explains how the actors of the system interact. For a quick overview of
the actor’s workflow and how they interact, cf. Protocol 1.

À Register at Service Multiple users want to store their data securely. Therefore
they register at a cloud storage system. For all users who register at the service for
the first time, some space at the cloud storage is allocated. This space can be used
to store the users’ documents later on. This device will be the so-called Primary
Device (PD). The PD creates a hardware-backed MUPRE key pair and transmits
the public key to the service. After this step, the registration is complete.
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Á Upload Documents After the registration, users can start to upload their
data to their reserved space on the cloud storage system. The data is encrypted
with the key material of the user’s PD.

Â Register Secondary Device (SD) Users may want to register multiple
devices at the cloud storage alongside their PD. After creating fresh key material,
the cloud service notifies the PD over some secure channel, where the registration
of a new SD is authenticated or not. This workflow implies that it is necessary to
have physical access to the PD to register a new SD. In a real-world application,
this authentication step can be extended by providing another piece of information,
e.g., a password, resulting in a two-factor authentication.

Such additional devices are called Secondary Device (SD). The PD of the user
creates a re-key, which can transform ciphertexts from the user’s PD to the newly
registered SD. When signed in with the SD, uploaded ciphertexts can then be
decrypted after a single re-encryption. If a user wants to upload data from their
SD, the data is encrypted with the public key from the PD nevertheless. There are
multiple approaches on how to tackle key-authenticity of Primary and Secondary
Devices. Key-authenticity is discussed in more detail in Section 4.5.

Ã Share Data (Pairing) Users are also able to share their data with different
users. Imagine a user that wants to share their medical data with a medical authority
in a confidential matter. The authority initially has to perform a request to the user
to get bestowed with decryption rights to gain access to the medical data. If the
user agrees, they create a re-key that can transform ciphertexts from the user’s PD
to the authority’s device that sent the request. This can either be a PD or an SD.
Then the user installs the re-key at the cloud service. After this step, the medical
authority can decrypt the requested data.

Ä Download Data Of course, it is necessary to provide users the functionality
to download the documents for which they got access rights. In case the documents
are requested from the PD of the user, which uploaded them in the first place, the
approach is straightforward. The data is served in encrypted form, and the PD is
easily able to decrypt the data as the PD has access to its private key.

If users want to access their data from their SD, they can’t decrypt the encrypted
documents. So, the cloud storage needs to get active. The cloud storage uses
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the previously created re-key and re-encrypts the requested document. The re-
encrypted ciphertext is served to the SD, where it now can be decrypted.

A similar approach is taken when users want to download documents from distinct
users. The cloud storage re-encrypts the data with the previously installed re-key,
which was created during the pairing process. As the device requesting the data
may be an SD, there may be the need for more than one re-encryption.

Recall the example from the previous paragraphs. Some user bestowed a medical
entity with the right to read their documents. The medical entity wants to download
said documents on one of its SDs. The cloud storage searches for a path of re-keys,
enabling it to re-encrypt the documents from the original user’s PD to the medical
entities’ SD. If such a path is found, the cloud storage re-encrypts the data and
serves the l-th level ciphertext to the entities’ SD.

Figure 3 shows a simplified process flow of all the operations mentioned above in
the system. This diagram shows how the operations listed in 4.2 are executed if
Bob wants to download Alice’s documents on his SD.

Figure 3: Complete operation flow of the system
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À Register User
Alice: on her PD

1. Alice creates a key pair (skA1, pkA1)← KeyGen(1κ)
2. Alice sends her public key pkA1 to the cloud storage. Her

device is registered as PD

Á Upload Data
Alice: on any device

1. Alice obtains the public key of her PD pkA1
2. Alice invokes the encryption function and creates a first-level

ciphertext C1 ← Enc(pkA1, M) of her document M
3. Alice sends the first-level ciphertext C1 to the cloud storage

Â Register SD
Alice: on her secondary device

1. Alice creates a key pair on her device (skA2, pkA2) ←
KeyGen(1κ)

2. Alice sends her new public key pkA2 to the cloud storage. Her
device is registered as SD

3. Alice sends her new public key pkA2 to her PD

Alice: on her primary device

4. Alice verifies the registration of the SD
5. Alice creates a re-key rkA1→A2 ← ReKeyGen(skA1, pkA2)
6. Alice sends the re-key rkA1→A2 to the cloud storage

Ã Share Data
Bob: on any device

1. Bob sends the public key of his PD pkB1 to Alice

Alice: on any device k

2. Alice verifies the request from Bob
3. Alice creates a re-key rkAk→B1 ← ReKeyGen(skAk, pkB1)
4. Alice sends the re-key rkAk→B1 to the cloud storage

28



Ä Download Data
Alice: on any device k

1. Alice requests document M from cloud storage which is en-
crypted under pk∗

cloud storage:

2. cloud storage searches for a path of re-keys which are able to
translate M from pk∗ to pkAk. This path is denoted as rk*→k

3. cloud storage re-encrypts ciphertext to an l-th level ciphertext
Cl+1

A ← ReEncrypt(rk*→k, Cl) and sends it to device k

Alice: on device k

5. Alice decrypts the ciphertext and obtains the document M←
Dec(skk, Cl+1

A )

Protocol 1: Protocol of basic operation in the multi-user data sharing system

4.3 Recovery from Device-Loss

The system’s incorporated key management, which utilizes MUPRE, does not only
enable a user-friendly way to share data between multiple devices and users but
also provides a novel way to recover data in the case that users forfeit access to
their devices and in turn their key material. With classical public-key cryptography,
there would be an inherent problem, as the loss of the key material usually results
in a complete loss of the associated data. With our key management system, it is
possible to restore all data access in a confidential and user-friendly way.

There are three different strategies to recover from device-loss. Depending on the
situation, a different strategy has to be applied. The user that lost their device can
solve two of those scenarios. In the third scenario, another trusted recovery user
has to get active. The workflow of the actors during the recovery strategies can be
found in Protocol 2.

a© Loss of SD Let us suppose Alice loses her SD and in turn the device’s key.
First of all, Alice has to deregister the device from the system. This step ensures
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that no documents can be downloaded to the lost device, which could lead to data
leakage otherwise, if the device was stolen. Since Alice’s documents are encrypted
with the key material of the lost device, there is no need to perform recovery
operations as Alice still has access to the documents via her PD.

Another aspect that has to be considered are the connections from the lost device
to devices from distinct users. These connections can either be incoming or outgoing.
To get back to the same state of the system before the device-loss, some of these
connections have to be re-generated.

The more trivial problem are the outgoing connections. These connections are the
re-key paths where Alice bestows decryption rights to distinct users via the lost
device’s key material. Due to the existing re-key network, it is, in fact, not necessary
to generate new connections from another device. If Bob could read Alice’s data
via the lost SD, then this path is still intact, and all documents from Alice can be
re-encrypted like before. Of course, this approach implies that it is indispensable
that the proxy does not serve the intermediate re-encryptions, as they could be
decrypted with the lost SD.

Conversely, if the lost device was used to read data from distinct users (incoming
connections), the incoming re-keys have to be deleted. Alice then has to request
decryption rights with another device. Now distinct users can decide whether they
want to share their data again or not. These requests can either be done explicitly
by Alice or may be performed implicitly by the system.

This scenario is illustrated in Figure 4. The diagram shows the messages sent be-
tween Alice, who lost her SD, the cloud service, and Bob, who bestowed decryption
rights to Alice’s lost device.

b© Loss of PD with Existing SD Imagine that Alice forfeits access to the
key material of her PD, but registered one or more SDs some time beforehand.
Alice chooses one of her SDs, which then becomes her new PD. Her old PD is
deregistered, and no documents are served to this device anymore. However, all
newly uploaded documents are still encrypted with her old PD. She still has access
to her documents due to the existing network of re-keys. Furthermore, if Alice
owns other SDs, re-keys which translate ciphertexts from her new PD to the other
SDs are created.

Again, the incoming connections from the lost PD have to be restored. This process
is the same as for the loss of an SD.
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Figure 4: Messages sent to recovery from SD loss

c© Loss of PD without Existing SD The most interesting case is if Alice loses
her PD but does not have any other device registered at the cloud service. As the
other two recovery strategies are not applicable, a third party needs to get active,
namely a trusted recovery user. There are multiple ways of how a trusted recovery
user can be implemented in the system. The concrete implementations are further
discussed in Section 4.4.

Let us say, Bob acts as a single recovery user for Alice. This means that Alice
generated a re-key that can transform ciphertexts with respect to her lost PD to
ciphertexts that Bob would be able to decrypt with one of his devices. After Alice
realizes she lost her PD, she has to register a new device at the cloud service and
creates a fresh key pair for this device. How she obtains the new key pair and
ensures key-authenticity is discussed in Section 4.5. She then authenticates herself
to Bob, sends him the public key of her device, and requests data recovery.

First, Alice convinces Bob that the request is indeed coming from her. In a real-

31



world application, a trusted-user may be a family member or a close friend. Bob
then creates a re-key that can translate ciphertexts from Bob’s device to Alice’s
new device and sends this key to the cloud service. This authentication (password
authentication at the service, authentication at the trusted user) convinces the cloud
service that the requesting party is indeed Alice.

The cloud service invokes the recovery process, which consists of multiple re-
encryptions. All documents encrypted under the key material of Alice’s old PD are
re-encrypted twice. Firstly the documents are re-encrypted for Bob’s key material
and secondly to Alice’s new PD. This process is illustrated in Figure 5. Bob’s
intermediate ciphertexts are only used for the re-encryptions and are deleted
afterward. Alice is now able to login with her new PD at the cloud service, enabling
her to upload documents. Furthermore, she has restored the access to her previously
stored documents.

After the new device is successfully registered as PD, the recovery of the incoming
and outgoing re-key connections of Alice’s old PD has to be started. This operation
is done in the same way as in the other two recovery strategies.
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a© Loss of SD
Alice: on her PD

1. Alice deregisters her lost SD from the cloud storage

b© Loss of PD, with Existing SD
Alice: on her SD (new PD), with key pair (skA2, pkA2)

1. Alice deregisters her lost PD from the cloud storage
2. Alice creates a re-key for every other SD she owns
{rkA2→Ai ← ReKeyGen(skA2, pkAi

) : ∀i ∈ SDs}
3. Alice sends the re-keys to the cloud storage. Her PD is updated.

c© Loss of PD, without Existing SD
Alice: on new device ∗

1. Alice creates a key pair (skA∗, pkA∗)← KeyGen(1κ)
2. Alice sends her new public key pkA∗ to the cloud storage and

invokes the recovery process

cloud storage:

3. cloud storage sends Alice’s public key pkA∗ to her recovery
user Bob

Alice: via some channel

4. Alice authenticates herself to Bob

Bob: on any device k

5. Bob creates a re-key rkBk→A∗ ← ReKeyGen(skBk, pkA∗)
6. Bob sends the re-key to the cloud storage

cloud storage:

7. cloud storage re-encrypts Alice’s documents with the previ-
ously stored re-key from her old PD to Bob’s device k
C2

B ← ReEncrypt(rkA1→Bk, C1)
8. cloud storage re-encrypts the intermediate ciphertexts such

that Alice can decrypt them with her new PD
C3

A ← ReEncrypt(rkBk→A∗, C2
B)

9. cloud storage deregisters Alice’s old PD

Protocol 2: Protocol of the device-loss recovery strategies
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Figure 5: Messages sent to recover from PD loss when there is no SD registered
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4.4 Trusted Recovery Users

This section will discuss how trusted recovery users can be implemented in the
system in more detail. Trusted recovery users are needed for the recovery process
if a user forfeits access to their PD and does not have an SD registered at the
service.

As a trusted recovery user works mainly as an intermediate step in the recovery
process, there are multiple ways they can be integrated into the system. Never-
theless, certain restrictions have to be considered. Recovery users also work as a
”second-factor” authenticator for the user who lost their PD. The fact that it is
necessary to convince the recovery user to start the recovery process also makes it
harder to misuse the recovery strategies by attackers. So, this authentication step
has to be taken into account, as it should only be possible for the user, who lost
their PD to start the recovery process. The different versions of recovery users differ
in availability and the needed trust assumptions.

Distinct User As described in the example in Section 4.3, a recovery user may
be a distinct user of the data sharing system, e.g., a family member or a close friend.
The authentication in this scenario is straightforward, as it is easy to identify oneself
to an acquaintance, especially if said person is a family member. Furthermore, it is
hard to convince the recovery user to start the recovery process for an attacker.

The recovery with distinct users can also be implemented in different ways. One
possibility is that every user has to choose one recovery user at registration. Then
the registration process defined in Section 4.2 would be extended by the choice of
the recovery user. Furthermore, the registree creates a re-key from their PD to one
of their recovery user’s devices, which is then installed at the cloud service. This
re-key is only used if the recovery process is invoked, so the recovery user cannot
read the registree’s documents.

A different possibility is that there is not a single, dedicated recovery user, but every
user who was bestowed with decryption rights can act as a recovery user if specified
by the recovering user. With this approach, there could be multiple recovery users.
On the one hand, this approach’s apparent advantage is the availability of recovery
users, as the start of the recovery process is not bound to a single user. On the
other hand, it is necessary that the recovery user also has access to the other user’s
documents. Furthermore, if a user did not share their documents, it is also not
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possible to recover their documents. Also, it may get easier to impersonate a user if
there are multiple potential recovery users.

Additionally, trusted (possibly commercial) third party services can work as recov-
ery users. For every user, the recovery service creates a fresh key pair. The user
then has to create a re-key from their PD to the key pair of the recovery service
and install the re-key at the cloud service. Also, a strong authentication system for
the user at the recovery-system has to be set up. In this scenario, the third party
service would act as the second-factor authenticator for the recovery process. A
single password authentication would be too weak. Of course, it is prohibited for
these services to be affiliated with the cloud service, as this would break one of our
fundamental assumptions. If the cloud service and the recovery service collude,
it is easily possible to obtain the documents of all users who rely on the recovery
service.

Recovery users implemented as a single distinct user are a straightforward solution,
which meets all identified requirements. If availability is necessary, the solution can
be further tweaked to increase availability at the cost of increased trust assumptions.
The recovery user as second-factor in a two-way authentication is also reasonably
secure.

Threshold of Users A more favorable trade-off between availability and trust
assumptions is to incorporate a secret-sharing mechanism that was originally
proposed by Shamir, 1979. During the registration process, the user chooses n
recovery users and creates a re-key for each of them. Every re-key is split into
n shares. Every i-th share is encrypted for the i-th recovery user. The resulting
ciphertexts are stored at the cloud system. Once the user invokes the recovery
process, they need to convince a predefined threshold of t users to download their
respective shares. These t users decrypt their shares and transmit them to the cloud
service. The cloud service can then reconstruct at least one re-key of the transmitted
shares and perform the re-encryptions. All messages which are sent in this scenario
can be seen in Figure 6. The messages shown in this diagram are sent between
Alice, who lost her PD, the cloud service, and one of Alice’s recovery users, Bob. In
fact, Alice’s messages to Bob in this diagram are sent multiple times to each of her
n users.

The main advantage in this scenario is that the re-key used during the recovery
process is not accessible unless a threshold of t users collude with the cloud service.
If t is chosen reasonably large, the possibility for this to happen is minimal. Also,
the availability of t users is realistic.
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Figure 6: Messages sent to recover with a threshold of trusted users
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4.5 Key-Authenticity

During virtually all steps, actors have to interact with the keys of different devices.
These interactions include, among others, communication between the devices
which belong to the same user, and communication between devices that belong to
different users. Therefore some sort of key-authenticity has to be implemented in
the system. There are different approaches to how key-authenticity can be ensured.
In this section, we will give some solutions regarding how key-authenticity can
be integrated into the system. Furthermore, we will discuss the advantages and
disadvantages of the different approaches.

Manual Key-Authenticity A straightforward solution is a user-driven manual
key-authenticity without any PKI and digital signatures. When pairing a device
with another user’s device, irrelevant whether the devices are PDs or SDs, the
users verify the involved keys themselves. This verification can be done quickly if
the users compare their public keys’ fingerprint via, e.g., a phone call or scanning
QR-codes.

During the registration process of devices, each device creates a hardware-backed
key. If the new device is an SD, then the registration is authorized with the PD.
Users can verify the key of the SD by merely comparing the fingerprint of the
public key, which is displayed on the SD, and the authorization request on the
PD.

On the one hand, the low implementation effort, in comparison with other solutions,
is advantageous. On the other hand, there are multiple downsides when using this
approach. First of all, users have to get actively involved in the key verification
process. Furthermore, a key’s authenticity is dependent on the judgment of users.
Also, the cloud service does not have any secure means to authenticate keys.

However, the biggest shortcoming of this approach is the inability to authenticate
devices during the recovery process with an existing SD. It would be beneficial
to ensure the recovery request’s authenticity with some sort of key-authenticity,
which is not possible with this approach. There would be the need for additional
secret information on the device, to ensure that the request is indeed coming from
the SD.

The manual key-authenticity is easy to implement, but the downsides outweigh
the positives.
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Figure 7: Flat hierarchy of certified public keys

Flat PKI Structure Of course, it is also possible to use traditional, centralized
Public Key Infrastructure (PKI). A new actor would be added to the system, namely
a third party root Certificate Authority (CA). Furthermore, we introduce new key
pairs for every device. These keys are called signing-keys. These signing-keys are
used to certify the re-encryption (encryption) key pairs of the same device by
signing the public key’s fingerprint of the encryption key pair. Signing-keys could,
for example, be Elliptic Curve Digital Signature Algorithm (ECDSA) key pairs
and have a human-readable identifier to let users quickly identify the key pair. Of
course, the key pair used for signing can be created in the device’s hardware.

The root CA certifies every signing public key during its device’s registration
process. This approach would lead to a flat hierarchy of certified public keys, as
seen in Figure 7. In this example, Alice owns an additional SD alongside her PD.
Bob only registered his PD.

During each operation, a key’s authenticity needs to be validated. The parties
request the corresponding signing public key, validate the signature on the encryp-
tion public key, and then check whether the root CA certifies the signing public
key.

During the pairing process, users may further validate the key by a manual key-
authenticity check (as described in the previous section). This can be achieved by
assigning a naming scheme for the signing key pairs. One such naming scheme
could be, for example, that Alice’s PD is called ’Alice-PD’. Every SD Alice registers,
later on, could be incrementally named, like ’Alice-SD1’, ’Alice-SD2’, and so on.
With such a naming scheme, users can verify the other parties’ key easily. Of course,
the root CA has to ensure that these identifiers are not issued multiple times.

In contrast to the manual key-authenticity, the cloud service can easily verify
the authenticity of keys and requests with this approach. During the recovery
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process with an SD, the proxy may enforce the additional requirement that the
request is signed with the signing key of the SD. This added security measure leads
to a two-factor authentication during the recovery process with an SD, as now,
alongside the user’s password, physical access to an SD is needed to invoke the
recovery process. For the recovery with a trusted recovery-user, the second-factor
validation is outsourced to the recovery-user, as there is no access to the devices’
key material.

Nevertheless, one shortcoming of this approach is that if we want to add a naming
scheme for the signing key pairs, the flat PKI structure implies that the effort to
identify the SDs of users is on the CA. The CA does not have the means to verify
if a key-authentication request is indeed coming from the user’s SD. Therefore
it would be hard to bind the keys to a single user. One possible solution to this
problem is described in the next section.

Hierarchical PKI Structure Looking at the flat PKI structure defined in the
previous section, there is no easy way to identify that an SD belongs to a dedicated
user. This problem can be solved with a hierarchical PKI structure.

We again use the concept of signing-keys for each device, as described in the last
section. Each signing-key certifies its corresponding encryption key. However, in
contrast to the flat PKI structure, the signing-key from the PD works as intermediate
CA for the signing-keys of the user’s SDs. During the registration of an SD, the
device’s signing public key is transmitted to the PD, where it is certified by the
signing-key of the PD, yielding a PKI structure, which can be seen in Figure 8. In
this example, Alice owns an additional SD alongside her PD. Bob registered two
SDs.

When using this PKI structure, the loss of the PD leads to some problems. If the
user invokes the recovery process with an SD, the cloud service can still verify the
authenticity of the device by traversing the certificate chain. The SD becomes the
user’s PD, and its signing-key can then certify the newly registered SDs, which
increases the length of the validated certificate chains by one.

The more interesting case is the loss of the PD when the user does not own an SD.
As the user does not have access to any of their devices, it is also impossible to
authenticate the keys of the new device, which should act as the recovery device.
Furthermore, it is also not possible to back-up the signing-key of the PD somewhere
before the device-loss, as this would break one of our fundamental requirements
defined in Section 4.1, namely the hardware backing of keys. To solve this problem,
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Figure 8: The hierarchical structure of certified public keys

the user needs to convince the root CA to issue a new key pair for the recovery
device.

The user creates signing-keys and encryption-keys in the device’s hardware and
convinces their trusted recovery user to create a re-encryption path from the old
PD to the recovery device. Then the root CA creates a challenge ciphertext that is
encrypted under the encryption-keys of the lost PD. If the user can decrypt the
challenge and transmit it back to the CA, then the authorization with the trusted
user was successful, and the CA certifies the new PD’s keys. The messages sent
between the parties can be seen in Figure 9.

In this section, we gave some solutions regarding how key-authenticity can be
integrated into the system. Furthermore, we discussed the advantages and disad-
vantages of the different approaches.
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Figure 9: Certification of Alice’s recovery device with her trusted recovery user Bob
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4.6 Trust Assumptions

One of the multi-user data sharing system’s main goals is to minimize trust
assumptions between the actors while preserving the confidentiality of the data.
This section will state the trust assumptions fundamental to the system and how
these assumptions are preserved.

As we are in a semi-trusted setting due to the nature of PRE, every user trusts that
the cloud service follows the protocol as intended, but it may be curious about the
data it operates with. We incorporate MUPRE to ensure the confidentiality of the
users’ data.

The cloud service’s curiosity implies that every user has to trust the users that they
granted decryption rights to not collude with the cloud service. Otherwise, it would
be possible for the cloud service to send users’ data to corrupted users, where the
documents could be easily decrypted. Users have to consider which users they
trust enough to share their data. Key-authenticity, as described in Section 4.5, helps
the users to decide whether to accept a pairing request or not.

Of course, users have to trust their recovery users. First of all, they act as the
second-factor of the two-factor authentication in the recovery process. So, a user
in recovery trusts their recovery user to authenticate them at the cloud service
when needed. Furthermore, the user trusts the recovery user not to authenticate
any other person who tries to impersonate the user. We propose to rely on the
recovery process with a threshold of users, as described in Section 4.4. When using
the approach mentioned above, authentication errors become reasonably small
when the parameters involved are chosen correctly. Additionally, the trusted user(s)
shall not collude with the cloud service. The trusted user cannot read the user’s
documents during the recovery on their own, but they may be able to if they collude
with the cloud service.

Furthermore, the user trusts their device’s hardware that ensures the non-extract-
ability of the keys generated within it. Also, the secure usage of these keys has to be
handled correctly by the hardware. Additionally, users trust that the authentication
for using the keys is handled correctly by the operating system and the device
driver of the secure hardware.

This section stated all trust assumptions which are fundamental to the system and
how these assumptions are preserved.
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5 Evaluation of PRE Schemes

For the system we proposed in Section 4, we need an underlying cryptosystem,
namely MUPRE. For information regarding MUPRE, have a look at Section 3.2.
This section will give details on the requirements of the cryptographic building
blocks that have to be met to build our multi-user data sharing system. Furthermore,
we will investigate which proposed schemes meet all our requirements and finally
evaluate which scheme is best suited.

5.1 Properties of Proxy Re-Encryption Schemes

This section summarizes some of the main properties of MUPRE schemes and the
requirements regarding these properties, which are essential for the evaluation
process of PRE schemes to be used in the proposed system.

Type: Existing PRE schemes can be further categorized in certain types. One such
type is e.g., identity-based PRE. In contrast to conventional public-key cryptography,
ID-based cryptography (IDBC) is a type of public-key cryptography, where public
keys are known string representations of some identity. A prominent example
being the email address of some person or organization. Another example for types
of PRE schemes, is conditional PRE proposed by Weng et al., 2009. In conditional
PRE, a proxy can only re-encrypt a ciphertext if certain restrictions are met, which
are set by the delegator.

Nevertheless, as the proposed system does not depend on additional cryptographic
properties, such as the examples in the above paragraph, we focus on classical PRE,
which is precisely the setting, as described in Section 3.2.

Direction: According to Ivan and Dodis, 2003, PRE schemes can have two direc-
tions. Firstly, a scheme is said to be bidirectional if a re-key can be used to create l-th
level ciphertexts under both of the key pairs used to generate the re-key. To clarify
this, let us say Alice wants to share her data with Bob. She has to create a re-key
and re-encrypt her ciphertexts for Bob’s key pair. If the proxy can use the very
same re-key to re-encrypt Bob’s data for Alice, then this scheme is bidirectional.
On the contrary, if only one direction is possible, so, if the re-key can only be used
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by the proxy to re-encrypt Alice’s data but not Bob’s, then the scheme is said to
have the unidirectional property.

In their original paper, Blaze et al., 1998 also specified those properties but in a less
rigorous way and called them differently. On the one hand, they called bidirectional
schemes symmetric because of the symmetric trust implications of such schemes (if
A trusts B, then B also has to trust A). On the other hand, unidirectional schemes,
where a trust assumption does not imply the respective complement, are called
asymmetric.

For the proposed system, it is necessary to have a unidirectional scheme. In
most systems, it is desired to have trust relationships like the ones provided by
unidirectional schemes. To give a concrete example, imagine the use case defined
in the previous chapter, where user Alice wants to restore her data with the help of
her trusted user Bob. Alice had to create a re-key before the restoration process and
persistently store it at the proxy’s backend. Now, the proxy would have the ability
to re-encrypt Bob’s data and give Alice access to Bob’s data, so every trusted user
would sacrifice their privacy to restore another user’s data. This restriction is not
desirable.

Moreover, if there is a bidirectional use case, it is also possible to achieve bidirec-
tionality with a unidirectional scheme. Let us again imagine the setting defined in
the last paragraph. If Alice creates a re-key in a way such that Bob becomes Alice’s
trusted user, then Bob can recover Alice’s data, but Alice does not get access to
Bob’s data. Furthermore, if Bob wants Alice to read his data, he can create another
unidirectional re-key for Alice. This method has the same effect as if the scheme
would be bidirectional with the additional restriction that Bob is not forced to
reveal his documents, but instead has to give his explicit consent.

Non-Interactive: Originally introduced by Blaze et al., 1998 as active and passive
Proxy Re-Encryption, the non-interactive property clarifies the input to the re-key
generation. For interactive (active) schemes, the input to the re-key generation
function, as defined in Section 3.2, are the private keys of Alice and Bob, meaning
that if Bob wants to share his data with Alice, Alice is forced to actively get involved
in the creation process, as she is the only one that can provide her private key.

Non-interactive (passive) schemes do not require Alice to participate in the re-key
creation process. Here the re-key generation function depends on the private key
of Bob and the public key of Alice. Nowadays, as seen in Ateniese et al., 2006, the
literature refers to passive schemes as non-interactive.
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For our proposed multi-user data sharing system, it is a necessity for the chosen
scheme to be non-interactive. The first problem which comes to mind if using an
interactive scheme is the re-key generation. If let us say Alice wants to share her
data with Bob (or register Bob as her trusted user for that matter), then Alice has
to create a dedicated re-key. Bob has to send Alice his private key actively. Not
only would this approach be bothersome for users as the receiving party has to
participate in the key generation, but more importantly, Alice would get access to
Bob’s private key.

The reasons mentioned above lead to the unambiguous conclusion that the scheme
has to be non-interactive.

Collusion-Safe: In most scenarios, when working with proxy re-encryption, the
proxy is defined as semi-trusted. In other words, the proxy tries to obtain as much
information from the delegator as possible, be it the encrypted data or even the
private key.

Collusion-safeness, which is sometimes called master secret security, implies that
even when one recipient and the proxy collude, they cannot recover another user’s
secret key.

For our proposed system, collusion-safeness is not a fundamental requirement,
meaning that if a scheme does not have this property, it is not an exclusion criterion.
Nevertheless, if there are multiple schemes to choose from, we may determine our
final decision whether the schemes have the collusion-safeness property or not.

Basic Security Notions: Over the last paragraphs, we talked about properties
that are exclusive to PRE schemes. In the upcoming section, we investigate the
imperative need for some basic security notions. Also, other cryptography fields
use such notions, but for our case, these notions have to be extended to take
re-encryption capabilities into account.

The term security is somewhat ambiguous, and to evaluate cryptographic schemes
of any kind, we need to clarify what we mean if we talk about security. Of course, it
should not be possible to obtain information of the underlying plaintext given any
ciphertext. Still, this definition is too vague, as it does not take, e.g., the capabilities
or goals of attackers into account. Most of the upcoming explanations and clarifi-
cations are inspired by Bellare et al., 1998. Our primary focus lies on the different
attack models from individual attackers. Furthermore, for all attack models, we
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try to provide ciphertext indistinguishability, which ensures that attackers cannot
distinguish pairs of ciphertext, although they know the corresponding plaintexts.

Regarding these attack models, three different baseline attacks have been intro-
duced, namely the Chosen-Plaintext Attack (CPA), the Non-Adaptive Chosen-
Ciphertext Attack (CCA1), and the Adaptive Chosen-Ciphertext Attack (CCA2).
The power of the attackers increases from CPA to CCA1 to CCA2; hence, if a
scheme is secure against a more powerful attacker, it has a higher security notion.
The attack, which is mitigated by CPA secure schemes, is called a chosen-plaintext
attack. Both CCA1 and CCA2, mitigate a chosen-ciphertext attack. These notions
are best explained by their respective games, where an attacker and a challenger
are involved.

CPA: In this game scenario, the attackers gets access to a so-called encryption
oracle. This oracle yields ciphertexts from given plaintexts, although the attackers
do not get any information about the oracle (black box view). The attackers then
create as many plaintext-ciphertext pairs as they like. After this setup phase is
done, they choose two plaintexts where the corresponding ciphertexts are unknown
and send them to the challenger. The challenger then encrypts these plaintexts,
chooses a random bit, and presents the ciphertext to the attackers, depending on the
selected bit. If the attackers cannot guess the chosen bit with a higher probability
than fifty percent, then a scheme is said to be CPA secure.

CCA1: The CCA1 game is somewhat similar to the CPA game. In contrast to the
CPA game, the attackers get access to a decryption oracle, which can decrypt any
given ciphertext. The attackers may use this oracle as many times as they deem
necessary. After that, the attackers again choose two plaintexts and send them to the
challenger who randomly encrypts one of the plaintexts. The challenger provides
the ciphertext to the attackers, whereby the attackers are no longer allowed to use
the decryption oracle. A CCA1 secure scheme ensures the impossibility to deduce
information about what plaintext the challenger chose in the previous step.

CCA2: In contrast to the attack model of CCA1, the attackers may also use the
decryption oracle after obtaining the challenge ciphertext. Of course, it is not
allowed to decrypt the challenge ciphertext with the oracle. This small change in
the settings increases the difficulty in a not negligible way.
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As for the proposed multi-user data sharing system, we need at least a scheme that
provides CPA security, as there may be risks otherwise. Since we use public-key
cryptography, a universal encryption oracle is naturally given.

For the more powerful chosen-ciphertext attack, attackers need not only the in-
herently accessible encryption oracle but also a decryption oracle. There are only
two actors who perform decryptions in our setting, namely the users that decrypt
their documents and users, which act as delegatee of proxy re-encryption rights.
One can assume that users will not act as decryption oracles, either for internal or
external attackers, which is especially true for the users, which decrypt only their
respective ciphertexts.

Nevertheless, as the multi-user data sharing system is easily extendable or could
rise in complexity over time, the security requirements may increase to some higher
level, so, if feasible, a scheme with a higher security notion should be preferred.
One such example would be if we also grant writing permission when users share
their documents. This behavior could be exploited that users may act as decryption
models for other users.

In conclusion, this section summarized the properties of MUPRE schemes and
stated the requirements on these properties for the proposed key management
system.

5.2 Evaluation Process

In this section, we will evaluate schemes for the usage in our proposed multi-user
data sharing system against the requirements defined in Section 5.1. We will go
into detail on how we selected the schemes, which we then further examined.

We started the evaluation process with a search for classical PRE schemes. The
result was then further filtered for schemes, which provide the multi-use property.
In the upcoming sections, we evaluate the remaining schemes in more detail. The
results of our evaluation can be found in Table 3.

5.2.1 Initial MUPRE Schemes

In this section, we will discuss schemes that are neither based on lattices nor bilinear
pairings. They utilize different hard problems for their security claims.
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Blaze et al., 1998 introduce ”Atomic Proxy Cryptography” for the first time.
Alongside their definitions, which inspired academic research in the field of PRE,
they also proposed the very first PRE scheme. Their scheme is fundamentally based
on ElGamal and is bidirectional. Moreover, it is possible to create higher-level
ciphertexts making this scheme multi-use. During the re-key generation process,
the delegatee needs to get actively involved. Hence, the scheme is interactive. It is
also not resistant to collusion attacks and, therefore, not collusion-safe. Blaze et al.,
1998 state that their scheme is CPA secure. As the ElGamal based scheme from
Blaze et al., 1998 is bidirectional and interactive, it is not suitable for the usage in
our system.

Deng et al., 2008 propose a scheme that is based on the Computational Diffie-
Hellman (CDH) problem and is provable chosen-ciphertext secure in the random
oracle model. The authors claim that, since this scheme does not rely on bilinear
pairings, which are inherently costly to compute, the scheme is comparatively effi-
cient. During the re-key generation process, the delegator’s and delegatee’s private
keys are needed. Thus, the scheme is interactive and not collusion-safe. Addition-
ally, the re-key is bidirectional and the scheme is CCA1 secure. In conclusion, this
scheme does not meet the previously stated requirements.

Kirtane and Rangan, 2008 present a signcryption scheme that is suitable for
PRE. Signcryption simultaneously signs and encrypts messages, ensuring non-
repudiation, confidentiality, and integrity of plaintexts. They present a single-hop
scheme which is unidirectional and non-interactive and based on RSA. Further-
more, they give a rigorous proof that their scheme, if using correctly chosen
building blocks, is weakly CCA2 secure. The authors also show an extension for
their scheme, making it a multi-use scheme whereby the ciphertext grows linearly
with re-encryptions. The scheme is also collusion-safe, so this scheme fulfills all
identified requirements.

5.2.2 PRE based on Bilinear Pairings

This section will discuss and evaluate PRE schemes based on bilinear pairings re-
garding the identified requirements in the previous sections. For more information
about the mathematical concept of bilinear pairings, read Section 3.1.
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In contrast to lattice-based PRE schemes, which usually rely on the Learning-With-
Errors (LWE) problem, schemes based on bilinear pairings are not post-quantum
secure. What is more, the created higher level ciphertexts from schemes with the
multi-use property usually grow linearly concerning the number of re-encryptions
performed.

Shao et al., 2011 provide a multi-use, unidirectional PRE scheme, which is
proven secure against chosen-ciphertext attacks, making it at least CCA1 secure in
the standard model. Furthermore, it is also resistant to collusion attacks (collusion-
safe) and is non-interactive. Like many other schemes with the multi-use property,
the ciphertexts’ size grows linearly with re-encryptions. Nevertheless, this proposal
is sufficient for the usage of our proposed multi-user data sharing system.

Cai and Liu, 2014 introduce an attack which they call ”proxy bypass attack”.
Alongside the proxy bypass attack, the authors propose a new multi-use PRE
scheme resistant against the attack. Additionally, the scheme is non-interactive and
unidirectional. The scheme also is collusion-safe and is at least CCA1 secure, fea-
turing a linear growth of the ciphertexts. Since fulfilling all identified requirements,
this scheme is a candidate for our system.

Lu et al., 2014 provide a multi-use PRE scheme with constant ciphertext length
on re-encryptions. Furthermore, it is secure against chosen-ciphertext attacks,
thus making it CCA1 secure. The scheme is also collusion-safe. As the scheme
is interactive and also bidirectional, it is not possible to use this scheme in our
setting.

Shao et al., 2016 propose a multi-use PRE scheme, emphasizing the partic-
ular use case for ”Cryptographic Cloud Storage”. The scheme is bidirectional,
collusion-safe, and secure against replay chosen-ciphertext attacks in the random
oracle model (CCA1). As it is bidirectional, it is not suited to be used in our multi-
user data sharing system, although it is worth mentioning that their proposed
scheme has a constant ciphertext size. Furthermore, the scheme is interactive.
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5.2.3 PRE based on Lattices

The security assumptions of the LWE problem are the basis of the discussed
schemes, which is reducible from worst-case lattice-problems. The main benefit of
such schemes is that they are conjectured to be ”post-quantum secure”, meaning
they are immune to known post-quantum cryptanalysis.

Aono et al., 2013 propose a ”Key-Private Proxy Re-encryption under LWE”.
Key-Private Proxy Re-encryption in this context means that it is impossible to
deduce any information about the identity from the re-key of either the delega-
tor or the delegatee. Additionally, they state that their scheme is unidirectional
and also has the multi-use property. The scheme is CPA secure, and, with some
modifications, it also implies CCA1 security in the random oracle model (this is
a weaker version of the CCA1 notion, which is said to be in the standard model).
One problem when using this scheme is the re-key generation process. The re-key
consists of information created by the delegatee’s private key, making the scheme
interactive. Aono et al., 2013 propose that the delegatee may send the information
derived from their private key via a secure channel making the re-key generation
”not interactive”, but unfortunately, this also breaks our identified requirements.
Another problem with this scheme is the structure of the re-key. If the delegatee
and the proxy collude, it seems possible to learn the delegator’s secret key, making
it not collusion-safe. Due to the stated issues, we did not choose this scheme.

Nuñez et al., 2015 present a new Proxy Re-Encryption scheme called ”NTRU-
ReEncrypt” which is based on the NTRU cryptosystem. Ownership belonging
to Security Innovation, Inc, NTRU is an open-source cryptosystem developed
in 1996 trying to provide a post-quantum secure alternative to Elliptic Curve
Cryptography (ECC) and the RSA cryptosystem. The hardness assumption is based
on the “Approximate close lattice vector problem”. More information can be found
on the GitHub repository of the NTRU project.

NTRUReEncrypt is a rather efficient scheme and also has the multi-use property.
Furthermore, under the hardness assumption of the LWE problem, it is also CPA
secure. Unfortunately, the scheme is bidirectional, interactive, and not collusion-
safe, thus breaking fundamental previously identified requirements.
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Jiang et al., 2015 propose a ”Lattice-based multi-use unidirectional proxy re-
encryption” scheme. Like all discussed schemes in this section, it is also based
on the hardness assumption of the LWE problem. The authors claim the scheme
to be multi-use, unidirectional, and non-interactive. Furthermore, this scheme is
resistant to collusion attacks and Jiang et al., 2015 provide a security proof, which
shows that their scheme is CPA secure in the standard model. This scheme is,
therefore, a candidate for our proposed system.

Phong et al., 2016 present two key-private schemes. As only one of them is
a multi-use scheme, we leave the other one out of the evaluation process. Their
proposed scheme is CPA secure and unidirectional. Nevertheless, we did not
choose this scheme because it is interactive and not collusion-safe.

Fan and Liu, 2016 propose a single-hop scheme which is CCA1 secure and
extend it to two different multiple multi-use schemes. One of the multi-use schemes
is CCA1 secure, whereas the other falls back to CPA security. This weaker security
notion is due to the different definitions of the security games from the two proofs.
Both schemes are non-interactive and unidirectional. The authors do not make
any claims about collusion-safeness. Therefore, both schemes are candidates to be
used in our system.

5.3 Chosen scheme

In this section, we finish the evaluation process of the schemes, given in sections
5.2.1, 5.2.2, and 5.2.3. We will compare all schemes which meet the requirements
and choose one of them for our proposed system.

Two of the schemes that meet all requirements are only CPA secure, namely one
of the two schemes proposed by Fan and Liu, 2016 and the scheme by Jiang et al.,
2015. As all other schemes have a stronger security notion, we decided not to use
these CPA schemes.

The scheme given by Kirtane and Rangan, 2008 is the only scheme that is CCA2

secure, although there are some restrictions on the power of attackers. There is
one downside if we would choose to use their proposal. Their scheme is, in fact, a
unidirectional scheme that is extensible into a multi-use scheme. The unidirectional
re-key generation step involves the encryption of parts of the generated re-key.
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initial schemes
Blaze et al., 1998 7 7 7 P
Deng et al., 2008 7 7 7 C
Kirtane and Rangan, 2008 3 3 3 C

paring based schemes
Shao et al., 2011 3 3 3 C
Cai and Liu, 2014 3 3 3 C
Lu et al., 2014 7 3 7 C
Shao et al., 2016 7 3 7 C

lattice based schemes
Aono et al., 2013 3 7 7 C
Nuñez et al., 2015 7 7 7 P
Jiang et al., 2015 3 3 3 P
Phong et al., 2016 3 7 7 P
Fan and Liu, 2016 3 3 3 C/P

Table 3: The result of our detailed evaluation on some MUPRE schemes
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If Alice wants to create a re-key to translate her ciphertexts to Bob’s, she has to
encrypt certain parts of the re-key with a distinct public key from Bob using some
asynchronous encryption scheme. To get a fully functional multi-use scheme, they
suggest not to use an asynchronous encryption scheme, but rather re-encrypt the
parts of the re-key with another PRE algorithm. To still guarantee all security
assumptions, this distinct PRE scheme also has to be at least weak CCA2 secure.
As this would mean we would have to implement another PRE scheme, we did not
choose this scheme as this overhead in contrast to the other schemes is too high.

Due to the method of elimination, only three schemes remain at this point videlicet
the scheme proposed by Shao et al., 2011, the CCA1 secure scheme by Fan and
Liu, 2016, and the one given by Cai and Liu, 2014. There is no apparent advantage
when using one scheme over the other, hence the decision was more problematic
than before. Finally, we chose the scheme from Cai and Liu, 2014, just out of the
reason that this scheme is less complicated than the other and more comfortable to
implement.

In the last section, we finished the evaluation process of the schemes, given in
Section 5.2.1, 5.2.2, and 5.2.3. We compared all schemes which met the requirements
and chose one of them for our proposed system.
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6 Translation Process

The scheme from Cai and Liu, 2014 utilizes type 1 bilinear pairings. Over the
upcoming paragraphs, we discuss how we translated the scheme from Cai and Liu,
2014 into a system that relies on practical type 3 pairings instead of more theoretic
type 1 pairings. For more information regarding the different types of pairings, see
Section 3.1. Furthermore, we will give the translation of their scheme, which uses
type 3 pairings.

Type 1 pairings have some mathematical advantages regarding the creation of
cryptographic primitives (e.g., the hashing into subgroups). The downside of such
pairings is that they are infeasible hard to compute, thus reducing their adaptability
in real-world implementations of cryptographic algorithms. Therefore, we rewrote
the scheme of Cai and Liu, 2014. There are multiple ways to achieve this. We
will discuss two of them, namely the trivial approach and our more sophisticated
solution.

6.1 Trivial Approach

In this section, we discuss how to translate a scheme utilizing type 1 pairings into
a type 3 scheme with a trivial algorithm. For mathematical notation, we denote a
bilinear map of type 1 e1 and a bilinear map of type 3 e3, respectively. Furthermore,
all groups are written multiplicatively.

Let us recall the definition of a bilinear pairing e on the groups G1, G2 and the
target group GT:

e : G1 × G2 → GT

If G1 = G2, then we talk about type 1 pairings.

There is a set of public parameters for all PRE schemes that rely on type 1 bilinear
pairings. In most cases, they consist of the generator g1 of the group G1 and n
different elements hi ∈ G1, i ≤ n. Sometimes there are more public parameters,
such as cryptographic hash functions, but they are not relevant for the translation
process.

As in type 3 pairings G1 6= G2 and g1, hi /∈ G2, ∀i ≤ n, it is no longer possible
to evaluate the type 3 billinear map e3, because its domain is G1 × G2. To solve
this problem it is possible to naively add an extra pairing operation for each
existing pairing, leading to a doubling of the computed pairings. Furthermore,
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every random element hi has to have a representation in both groups, so also the
elements used are doubled. Imagine a pairing e1, two elements p1, p2 ∈ G1 and an
element in the target group pt ∈ GT:

e1(p1, p2) = pt

In order to translate this in such a way that it is possible to use the type 3 map e3,
there would be the need for two more elements q1, q2 ∈ G2 and two target elements
qt1, qt2 ∈ GT. Then the parings can be computed as

e3(p1, q1) = qt1

e3(p1, q2) = qt2

The translated scheme would then use the two elements qt1, qt2 whenever the
element pt would be used in the original scheme.

To give a concrete example, imagine the following, lightweight ”encryption” scheme.
It is a shortened version of the scheme proposed by Cai and Liu, 2014 where every-
thing was omitted but the key generation, encryption, and decryption operation,
although also these functions are abbreviated.

Setup(): Having a type 1 bilinear pairing, we define the public parameters as
(g, g1, q, G, GT, e), where g is the generator of G, g1 is a random element in
G \ {g}, G is defined over Z∗q and e being a billinear map e : G× G → GT

KeyGen(): → (pk, sk): Select x ∈R Z∗q , set pk = gx and sk = x.

Enc(pk, m): → c: Given m ∈ GT, select r ∈R Z∗q , outputs a ciphertext c = (c1, c2) =
(gr, m · e(pk, g1)

r).

Dec(sk, c): → m: Parse c as (c1, c2). If this does not work, return ⊥. Otherwise,
compute m← c2/e(c1, gsk

1 ).

To translate this very basic encryption scheme into a scheme utilizing type 3

pairings, the public parameters have to be extended. Like we stated earlier, for
every random element used, there has to be a representation in both G1 and G2.
Of course, the generator of G2 should also be part of the public parameters, so the
Setup phase becomes:
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Setup(): Having a type 3 bilinear pairing, we define the public parameters as
(g1, g2, p1, p2, q1, q2, G1, G2, GT, e), where g1 generates G1, g2 generates G2, p1
is a random element in G1 \ {g1}, p2 is a random element in G2 \ {g2}, G1
is defined over Z∗q1

, G2 is defined over Z∗q2
and e being a billinear map

e : G1 × G2 → GT.

The same is also true for the public key, meaning the key generation is altered in
the following manner:

KeyGen(): → (pk, sk): Select x1 ∈R Z∗q1
and x2 ∈R Z∗q2

, set pk = (pk1, pk2) =

(gx1
1 , gx2

2 ) and sk = (sk1, sk2) = (x1, x2).

We recall that, as stated above, we have to add an extra pairing evaluation for every
pairing computation in the type 1 scheme, so the Enc and Dec operation in the
translated type 3 pairing are:

Enc(pk, m): → c: Given m ∈ GT, select r1 ∈R Z∗q1
and r2 ∈R Z∗q2

, outputs a cipher-

text c = (c1, c2, c3) =

(
gr1

1 , gr2
2 , m ·

(
e(p1, pk2)r2 + e(pk1, p2)r1

))
.

Dec(sk, c): → m: Parse c as (c1, c2, c3). If this does not work, return ⊥. Otherwise,

compute m← c3/
(

e(c1, psk1
2 ) + e(p1, csk2

2 )
)

.

We successfully translated the basic encryption scheme. Unfortunately, there are
multiple shortcomings with this naive ”algorithm”. First of all, the complexity of
the scheme rises significantly. Not only the evaluated pairings, which are inherently
costly to compute, are doubled, but also the set of used parameters increases, finally
leading to massive performance impact. Furthermore, we showed this approach
with a reasonably small encryption scheme. When using this translation process on
a fully-fledged scheme, it can become quite complicated.

To conclude, the trivial approach is well-suited for lightweight schemes because
the algorithm used is easily applicable. On the other hand, the complexity rises
significantly on more intricate schemes. Additionally, the performance impact is
not negligible. Out of these reasons, we did not use this approach to translate the
used scheme.
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p1

p2

p3

Figure 10: Basic dependency graph for the translation process

6.2 Advanced Approach

In contrast to the last section, this section will state a more sophisticated solution
for translating a scheme utilizing type 1 pairings into a type 3 scheme. Notation for
this section will be the same as in Section 6.1.

As the trivial approach, given in Section 6.1, had multiple problems, we investi-
gate alternative ways of translating the scheme, aiming primarily at reducing the
evaluated pairings alongside a reduction of the number of public parameters used.
The algorithm’s main idea is to examine which of the random elements hi are
used together to evaluate pairings. If there are elements that are always combined
with a respective counterpart, then it would be possible to ”move” these points to
other groups, provided that the moving element does not break a different pairing,
implying that some of the random points hi would then be sampled from G1 and
some from G2. Of course, alteration of the generator element of G1 and G2 is not
possible.

The first step in achieving this is to build a dependency graph between all elements
used in the scheme, where the vertices are the elements used, and the edges
between them are the pairings. So, imagine the pairings

e1(p1, p2) = pt1

e1(p2, p3) = pt2

, then the graph would consist of three vertices and two edges, looking like Figure
10.

Of course, not all vertices need to be connected, so there may be multiple subgraphs.
On a side note, in actual schemes, all exponents can be omitted as they are irrelevant
for the evaluated pairing.

The next step is to determine if any of the graphs are non-cyclic. For every non-
cyclic graph, there is at least one possibility to sample the elements from G1 and
G2 in such a way that there is no necessity to add new pairings. To find such a
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p1 → G1

p2 → G2

p3 → G1

Figure 11: Labeled dependency graph for the translation process

possibility, start at any vertex of the uncyclic graph and chose whether this element
belongs to G1 or G2. The choice for the first element is indifferent. All connected
vertices should then be moved to the respective other group. Recursively go through
the graph and label every element with the counterpart of its predecessor. The path
through the graph does not matter, as long every vertex is visited. Applying this
to the graph in Figure 10, starting at vertex p1, which is moved to G1, we get the
graph in Figure 11.

So the translated equivalent pairing for type 3 would be

e3(p1, p2) = pt1

e3(p3, p2) = pt2

If there were no cyclic graphs, then the translation process would already be
finished. There was no need to add additional pairings, and also no further elements
had to be created.

Imagine again the parings used in the above paragraphs, but this time there is an
additional computation

e1(p1, p2) = pt1

e1(p2, p3) = pt2

e1(p1, p3) = pt3

The dependency graph would look like the graph in Figure 12.

A correct categorization of the vertices is not possible for this graph, at least not
in the manner we stated earlier. Imagine we start by declaring the element p1 as
an element from G1. Then there would be a contradiction later on, since both, p2
and p3 would belong to G2, although there is an edge connecting these points,
which renders it impossible. Unfortunately, there is no universal approach to solve
this, except the trivial algorithm defined in 6.1, which can be used to translate the
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p1

p2

p3

Figure 12: Cyclic dependency graph for the translation process

cyclic parts of the graphs. Sometimes it is also possible to find an alternative better
solution for specific schemes, but this has to be checked individually.

For some type 1 schemes, this more sophisticated solution can be applied to
translate them to type 3, where no additional costly pairing has to be added. What
is more, also the needed public parameters can remain the same. The downside is
the lack of a satisfactory solution for the problem when there is a cyclic dependency
on certain elements. Regardless of this shortcoming, this approach is still more
applicable than the trivial solution in Section 6.1.

To summarize, this section stated a more sophisticated solution on how to translate
a scheme utilizing type 1 pairings into a type 3 scheme.

6.3 Translated Scheme

In the following paragraphs we will give the scheme from Cai and Liu, 2014

translated from type 1 to a scheme based on type 3 pairings, utilizing the translation
process stated in Section 6.2.

Applying said algorithm on the MUPRE scheme provided by Cai and Liu, 2014, we
found out that there is not a single cycle in the dependency graph, so there was no
need to add additional pairings to the scheme. Regarding the public parameters,
we added the generator g2 of G2 and substituted it with the random point g1 ∈ G1.
We did this because it became apparent that the generator element g was the only
element that was ever paired with other elements, so there was no mixing between
the random elements g1, hi : 0 < i ≤ 3. Also, the random point g1 was only paired
with g, so we choose that this random element would be sampled from G2 and as
the generator of G2 was already added as a public parameter, we just set g1 = g2.
This led to the following scheme:
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Setup(1k) → par: Let 1k be the security parameter, (q1, g1, q2, g2, G1, G2, GT,
e), be generated by a bilinear group generator on input (1k), Sig = (G,S ,V) be a
strongly unforgeable signature scheme, and svk the signature verification key of the
proxy. Let h1, h2 and h3 be three random elements in G2. Further, let H1 : {0, 1}∗ →
Z∗q2

and H2 : GT → G2 be two one-way, collision-resistant cryptographic hash func-
tions. The public parameters are: par = (q1, g1, q2, g2, h1, h2, h3, G1, G2, GT, e, Sig, svk,
H1, H2).

KeyGen() → (sk, pk): Select x R← Z∗q1
, set pk = gx

1 and sk = x.

Enc(pk, m) → C(1)
pk : Given m ∈ GT, select r ∈R Z∗q1

, outputs a first-level ciphertext

C(1)
pk = (c1,1, c1,2, c1,3) = (gr

1, m · e(pk, g2)r, (hH1(c1,1)
1 hH1(c1,1||c1,2)

2 h3)r).

ReKeyGen(ski, pk j) → rki→j(i 6= j): To generate a re-encryption key from pki to
pk j, do the following:

1. Select rij ∈R Zq1 , Kij ∈R GT.

2. Compute R(ij)
1 = g

rij
1 , Rij

2 = Kij · e(pk j, g2)
rij , Rij

3 = svk,

Rij
4 = (hH1(Rij

1 )
1 hH1(Rij

1 ||R
ij
2 ||R

ij
3 )

2 h3)ri j, Rij
5 = H2(Kij) · g−ski

2

3. Output rki→j = (Rij
1 , Rij

2 , Rij
3 , Rij

4 , Rij
5 ). The re-encryption key is sent to the

proxy via a secure channel.

ReEncrypt(rki→j, C(l)
i ) → C(l+1)

j (i 6= j, l ≥ 1):

1. To re-encrypt a First-level ciphertext C(l)
i , denoted by C(1)

i , do:

a) Parse C(1)
i as (c1,1, c1,2, c1,3) and rki→j as (Rij

1 , Rij
2 , Rij

3 , Rij
4 , Rij

5 ).

b) Check if e(g1, c1,3) = e(c1,1, hH1(c1,1)
1 hH1(c1,1||c1,2)

2 h3) and

e(g1, Rij
4 ) = e(Rij

1 , (hH1(Rij
1 )

1 hH1(Rij
1 ||R

ij
2 ||R

ij
3 )

2 h3)) hold. If either of them fails,
return ⊥. Otherwise, do the following:

c) Select µ2 ∈R Z∗q1
, X2 ∈R GT, compute χ2,1 = gµ2

1 , χ2,2 = X2 · e(pk j, g2)µ2 ,

χ2,3 = (hH1(χ2,1)
1 hH1(χ2,1||χ2,2)

2 h3)µ2)
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d) Let C = (c′1,1, c′1,2, c2,1, c2,2, c2,3, c2,4, χ2,1, χ2,2, χ2,3), where c′1,1 = c1,1,

c′1,2 = c1,2 · e(c1,1, H2(X2) · Rij
5 ), c2,1 = R(ij)

1 , c2,2 = R(ij)
2 , c2,3 = R(ij)

3 , c2,4 =

Rij
4 .

e) Let ssk be the signing key of the proxy corresponding to the verification
key Rij

3 .
f) Run the signing algorithm S(ssk, C), to generate a signature on the

ciphertext tuple (c′1,1, c′1,2, c2,1, c2,2, c2,3, c2,4, χ2,1, χ2,2), and denote the sig-
nature as S2.

g) Output the ciphertext C(2)
j = (C, S2)

2. To re-encrypt a lth-level ciphertext C(l)
i , where l > 1, do:

a) Parse C(l)
i as (c′1,1, c′1,2, c2,1, c2,2, c2,3, χ2,1, χ2,2, S2, · · · , cl,1,

cl,2, cl,3, cl,4, χl,1, χl,2, χl,3, Sl) and rki→j as (Rij
1 , Rij

2 , Rij
3 , Rij

4 , Rij
5 ).

b) Check if e(g1, cl,4) = e(cl,1, hH1(cl,1)
1 hH1(cl,1||cl,2||cl,3)

2 h3), e(g1, χl,3) =

e(χl,1, hH1(χl,1)
1 hH1(χl,1||χl,2)

2 h3) and e(g1, R(ij)
4 ) = e(R(ij)

1 , hH1(R(ij)
1 )

1

hH1(R(ij)
1 ||R

(ij)
2 ||R

(ij)
3 )

2 h3) hold. If either of them fails, return ⊥. Otherwise,
do the following:

c) ∀k ∈ [2, l], check V(ck,3, Sk, (c′1,1, · · · , ck,1, ck,2, ck,3, χk,1, χk,2)) = 1. When-
ever one of them fails, return ⊥. Otherwise, do the following:

d) Compute c′l,2 = cl,2 · e(cl,1, R(ij)
5 ), cl+1,1 = R(ij)

1 , cl+1,2 = R(ij)
2 , cl+1,3 =

R(ij)
3 , cl+1,4 = R(ij)

4 .
e) Select µl+1 ∈R Z∗q1

, Xl+1 ∈R GT, let χl+1,1 = gµl+1
1 , χl+1,2 = Xl+1 ·

e(pk j, g2)µl+1 , χl+1,3 = (hH1(χl+1,1)
1 hH1(χl+1,1||χl+1,2)

2 h3)µl+1 , compute χ′l,1 =

χl,1, χ′l,2 = χl,2 · e(χl,1, H2(Xl+1) · R
(ij)
5 ).

f) All other elements remain unchanged, let C = (c′1,1, · · · , c′l,1, c′l,2, c′l,3,
χ′l,1, χ′l,2, Sl , cl+1,1, cl+1,2, cl+1,3, cl+1,4, χl+1,1, χl+1,2, χl+1,3).

g) Let ssk be the signing key of the proxy corresponding to the verification
key Rij

3 . Run the signing algorithm S(ssk, C) to generate a signature on
the ciphertext and denote the signature as Sl+1.

h) Output the ciphertext Cl+1
j = (C, Sl+1).

Dec(ski, C(l)
i ) → m:

1. To decrypt a First-level ciphertext C(l)
i , denoted by C(1)

i , do:
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a) Parse C(1)
i as (c1,1, c1,2, c1,3). If this does not work, return ⊥. Otherwise,

continue the following process:
b) Verify that e(g1, c1,3) = e(c1,1, hH1(c1,1)

1 hH1(c1,1||c1,2)
2 h3). If not, return ⊥.

c) Otherwise, compute m← c1,2/e(c1,1, gski
2 ).

d) Output m.

2. To decrypt a lth-level ciphertext C(l)
i , where l > 1, do:

a) Parse C(l)
i as (c′1,1, c′1,2, c2,1, c2,2, c2,3, χ2,1, χ2,2, S2, · · · , cl,1, cl,2, cl,3, cl,4,

χl,1, χl,2, χl,3, Sl). If this does not work, return ⊥. Otherwise, continue
the following process:

b) Check if e(g1, cl,4) = e(cl,1, hH1(cl,1)
1 hH1(cl,1||cl,2||cl,3)

2 h3). If not, return ⊥.
c) ∀k ∈ [2, l], check V(ck,3, Sk, (c′1,1, · · · , ck,1, ck2 , ck3 , χk,1, χk,2) = 1. When-

ever one of them fails, return ⊥. Otherwise, do the following:
d) Compute Kl−1 ← cl,2/e(cl,1, gski

2 ), Xl−1 ← χl,2/e(χl,1, gski
2 ).

e) For a from l− 2 down to 1, compute Ka ← Ca+1,2/e(ca+1,1, H2(Ka+1)), Xa
← χa+1,2/e(χa+1,1, H2(Xa+1)) · H2(Ka+1))

f) Compute m← c1,2/e(c1,1, H2(X1) · H2(K1)).
g) Output m.

In the above paragraphs, we provided the scheme from Cai and Liu, 2014 translated
from type 1 to a scheme based on type 3 pairings, utilizing the translation process
stated in Section 6.2.
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7 Implementation of Our System

This section will discuss the technical aspects of our proof of concept implemen-
tation of the multi-user cloud sharing system. The first part will state all actors
and components in the system. The second part will be a discussion about the
workflow and the user-experience of the system. We conclude this section with a
performance evaluation and focus on how we could improve the system’s perfor-
mance. Furthermore, we will address how we solved the key challenges defined in
Section 4.1.

7.1 Actors and Components

This section will list all components which make up our proof of concept imple-
mentation and which technology was used to implement them. Figure 13 illustrates
all the separate components and how they interact with each other.

7.1.1 MUPRE Library

The system’s central component is the Java implementation of the translated scheme
proposed by Cai and Liu, 2014. To implement the scheme (c.f. Section 6) we used the
ECCelerate library. This library offers the usage of certain elliptic-curve operations
for the Java platform, including, among others, pairing-based cryptography.

Public Parameters The chosen MUPRE scheme defines some global public pa-
rameters. First of all, the underlying mathematical structures are Barreto-Naehring
Curves (see Kasamatsu et al., 2014). Furthermore, there are three randomly sampled
elements from G2. The library statically initializes these elements on startup.

The scheme defines that the proxy that performs a re-encryption has to sign the
corresponding resulting l-th ciphertext. The scheme does not specify the used
signature algorithm, so we decided to use ECDSA. As for now, the used signature
algorithm is not configurable. When the proxy performs a re-encryption, it has to
provide a private key to sign the ciphertext. Additionally, during the decryption
operation, the corresponding public key has to be provided. If the signature
validation fails for any reason, the decryption operation terminates and outputs an
error message.
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Figure 13: Components of our system

Operations We implemented every operation defined by the scheme. Listing
1 shows how to obtain a fresh MUPRE key pair and then how to encrypt some
message with the newly created public key.

1 KeyPair keyPair = keyPairGenerator.generateKeyPair ();

2 MUPREPublicKey pk = keyPair.getPublic ();

3 MUPREPrivateKey sk = keyPair.getPrivate ();

4

5 Message m = new Message ();

6

7 MUPRECipher cipherEnc = new MUPRECipher ();

8 cipherEnc.init(PRECipher.ENCRYPT_MODE , pk);

9 byte[] ciphertext = cipherEnc.doFinal(m.toByteArray ());

Listing 1: Creation of a MUPRE key pair and encrypting a random message

Furthermore, every relevant object, like keys and ciphertexts, is serializable. The
serialization is especially crucial for the creation of re-encryption keys. Listing 2

shows the deserialization of a distinct public key, which is then, in turn, used for
creating a re-encryption key.

1 MUPREPrivateKey sk = keyPair.getPrivate ();
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2 // restore BASE64 encoded public key

3 MUPREPublicKey pkRestored = new MUPREPublicKey(Base64.decode(

encodedPK));

4

5 //svk is the signing key of the proxy that uses this re -key

6 MUPREReEncKeyGenerator.generateKey(sk, pkRestored , svk);

Listing 2: Deserialize a distinct public key, which is then used to create a re-key

The interface for the decryption operation is the same for first-level ciphertexts and
higher-level ciphertexts. The decryption operation decides on its own whether to
perform higher-level decryptions or not. The caller has to initialize the decryption
object with a private key to perform any decryption, which can be seen in Listing
3.

1 MUPREPrivateKey sk = keyPair.getPrivate ();

2 byte[] ciphertext = // obtain ciphertext

3

4 MUPRECipher cipherDec = new MUPRECipher ();

5 cipherDec.init(PRECipher.DECRYPT_MODE , sk);

6 Message m = cipherDec.doFinal(ciphertext);

Listing 3: Decrypt a l-th level ciphertext

7.1.2 Android Application

The component that is used by users of the system is implemented as an Android
application. We decided on an Android application because it provides all necessary
features we defined as compulsory, including, among others, the hardware-backed
storage of cryptographic keys alongside hardware-backed cryptographic computa-
tions. Furthermore, as we implemented the MUPRE library for the Java platform, it
is easily integrable into an Android application. The user interface of the application
is seen in Section 7.2.

The Android client can be used as PD and as SD. It provides the functionality to
upload documents, to download documents for which the client has the correct ac-
cess rights, and to share documents with distinct users. If the device was registered
as PD, it is also able to authorize the registration of SDs.
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Secure Storage of key material For the handling of the cryptographic op-
erations, we utilized the built-in ”Android Key Store” 1 system. If the device is
equipped with trusted hardware (like a TEE), then the Android Key Store system
allows the communication with this hardware component. Android supports a
predefined list of algorithms that can be used with the Android Key Store system.
Unfortunately, the scheme proposed by Cai and Liu, 2014 is not among them.
Therefore, we adopted a hybrid approach for the storage of the MUPRE private
key created on the device.

Alongside the creation of the MUPRE key pair, an AES key is generated inside the
device’s hardware. As this symmetric key is created within the hardware of the
device, it is not extractable. We then encrypt the MUPRE private key with the AES
key, with GCM for authenticated encryption. The encrypted private key is then
stored on the device. For all operations that depend on the MUPRE private key,
e.g., the creation of re-keys or encrypting documents, the key is decrypted inside
the device’s hardware. There are some downsides with this approach. For example,
during the key usage, the plaintext of the key resides in the RAM of the device.
Unfortunately, as long as there is no native support from Android for MUPRE
algorithms, we are limited to this approach.

Nevertheless, as the encrypting AES key is bound to the device’s hardware, the
MUPRE private key is also bound to the device. When using the Android Key
Store, only the application which also created a hardware-backed key can perform
cryptographic operations with it. Therefore, even when the device is corrupted, it is
impossible to decrypt the MUPRE key, which is stored somewhere on the device.

7.1.3 Cloud Service

This component combines two different roles. Firstly, it acts as the cloud storage,
which is the back end of the system. Secondly, it takes the proxy’s role in the
MUPRE scheme. The cloud service is initiated with Java Spring 5, a framework
based on Java to create web services. The rationale behind the usage of Java Spring
is our proficiency with this framework, and also the fact that we can easily integrate
our implemented MUPRE library. With the help of Java Spring, we created a REST
API, which can communicate with the Android application described in the last
section.

1Further information about the Android Key Store system can be found by following
this link
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Figure 14: Database definition of the cloud service

One of the central aspects of the cloud service is the user management and in
turn the device management. During the registration of the PD, an internal rep-
resentation of the user is created, alongside a representation of the PD. Every
newly registered device is also mapped in the backend. These representations are
persistently stored in a relational database. The illustration of the database can
found in Figure 14. A user can log in with every device at the same time.

Furthermore, the cloud service allocates some space for the documents of its users.
If a user uploads a document, the cloud service stores the encrypted document in
this allocated space, and creates a database entry for this file. This entry contains
certain meta information for later usage, e.g., the user that uploaded the document.
With this information, the cloud service is also able to perform access control. It
only serves documents to users if they have sufficient access rights. This can either
be the case if the user themself wants to access their documents or if an owner of
the document bestowed access rights to the requesting user.

Access rights are modeled as a directed graph of re-encryption keys. As seen in
Figure 14, there exists a database table for this purpose. The graph’s vertices are
devices, and the edges are registered re-encryption keys, which were uploaded
beforehand by users. If a user requests a document, the cloud service searches for
a path within this directed graph. The path starts from the device which uploaded
the document to the device which requests the document. If such a path exists, the
cloud service checks whether the document has to be re-encrypted or not, and then
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Figure 15: Messages sent for certification of the MUPRE public key

serves the (re)encrypted document. In the other case (no path exists), the cloud
service sends an error message.

7.1.4 MUPRE Certificate Authority

The last component of our proof of concept implementation is a CA, which issues
certificates over MUPRE public keys. This CA acts as a root of trust within our
system and enables some points discussed in Section 4.5. We used the same
framework for this component and the cloud service described in the last section,
namely Java Spring 5. The cloud service provides a REST API to request the
certification of MUPRE public keys. Furthermore, it manages a persistent database
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to keep track of all issued certificates.

Every time a device is registered, it has to create a MUPRE key pair. After creating
the key pair, the device requests the CA to certify the public key. To prove that a
device owns the corresponding private key, we implemented a challenge-response
protocol. All messages sent within this protocol can be found in Figure 15. This
diagram shows a top-level view of all messages that are sent between a device that
wants to certification for its MUPRE public key, and the MUPRE CA.

7.2 Process

In this section, we will describe the typical workflow from the point of view of a
user. Furthermore, we will address the user experience by discussing the Android
application’s user interface that serves as a client for the system. The section
is organized as follows: The first part shows the steps a user has to take to be
registered at the system. The second part and the third part will summarize how
the upload and sharing of documents are handled. The section concludes with a
discussion on the download of documents.

7.2.1 Registration of a PD

The first step for every user is the registration at the service (as seen in Section 4.2).
When opening the Android client, the shown interface depends on whether the
device is already registered at the system or not. If the user did not already register
the device, the home screen is rendered, as seen in Figure 16a. This window is the
starting point for multiple actions. The user can create a new account, register an
SD, and invoke the restoration process if the user has lost all their devices.

When clicking on ”create account”, the user is asked to input a unique username
and a password, followed by a window where the user enters additional information
incorporated in the certificate. All of the windows can be seen in Figure 16.

After the user inputs all their information, the device creates a fresh MUPRE key
pair. More information on the key-generation can be found in Section 7.1.2. This
fresh key pair has to be certified by the root CA in the system. The application
communicates with said CA and performs the necessary steps for certification, as
described in Section 7.1.4.
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a) Home screen
b) Specification for username and

password
c) Additional information for the

certificate

Figure 16: Registration Process

After the public key’s successful certification, the client transmits all necessary
information to the cloud service. The cloud service performs some checks on the
request. Among others, it verifies whether the CA issues the certificate of the public
key. Some space at the server is allocated for the new user’s documents, and all
data from the request is persistently stored. The new device is uniquely identifiable
by the public key’s fingerprint and by a string identifier of the device. This device
identifier is generated from the username and a device name. For the first PD, the
device name is set to ”PD”. For example, Alice’s device after the registration is
called ”AlicePD”. This device name is stored at the cloud service and the device.

If the registration process was completed, the user is greeted with a welcome
message and the possibility to login by providing their password, as seen in Figure
17. It is not necessary to give the username as the device is bound to a specific
user.

7.2.2 Registration of an SD

The workflow for the registration of an SD is similar to the registration of a new
user account. One of the differences for the user is that a device name has to be
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Figure 17: The welcome screen of the application after registration

provided. Furthermore, after the CA issued the certificate for the key pair of the SD,
and the key is sent to the cloud service, the user has to authenticate the SD. This
authentication is done by the PD, which is notified by a Push-Notification, which
can be seen in Figure 18a. The Push-Notification transmits the device name of the
SD, and the user has to re-enter their password to complete the authentication, as
seen in Figure 18b. The user could discard the registration of the SD if they did not
want to register a new device. This leads to a two-factor authentication, where it is
necessary to know the password of a user, and also have physical access to their
PD to register an SD.

7.2.3 Handling of Documents

In this section, we will summarize the upload and download of documents, includ-
ing the cryptographic steps which have to be performed. For this proof of concept
implementation, we decided to focus on the sharing of text documents. Every step
is easily extensible for arbitrary octet streams of data, but for the sake of simplicity,
we limited our scope. This specific part of the Android application can be seen in
Figure 19.
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a) Push notification on the PD
b) Input for password to finish

registration

Figure 18: User Interface for the registration of an SD

List After a successful login, the application requests the names of all documents
that the device has access to. This includes, of course, all documents belonging to
the user, but also the documents from distinct users that shared their data. How
the cloud service determines the access rights can be found in Section 7.1.3. When
the response from the cloud service is parsed, the application renders the interface,
which can be seen in Figure 19a. This window consists of a list of documents that
can be downloaded. In the given example, Alice has access to four documents.
Three of those documents belong to her, and one is owned by Bob, which shared
the document with her, indicated by Bob’s username in front of the document’s
name. From this window, the user can invoke multiple processes. The user can, for
example, delete documents where they have the correct rights or could download
any of these documents.

Upload Furthermore, it is possible to upload new text documents to the cloud
service. Creating and uploading a document is done by clicking the floating action
button, as shown in Figure 19. For simplicity, a prompt is opened where the
user can specify a document name and input the document’s content. Figure 19b
shows the prompt. After the user enters the necessary information, the document
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is encrypted and uploaded. The encryption process itself is a hybrid encryption
approach, where the asymmetric part is the rewritten scheme given in Section 6.3,
and for the symmetric part, we utilize AES in GCM. For every document, the device
creates an AES key and an Initialization Vector (IV) and encrypts the document.
The AES key is derived from a randomly sampled element P ∈R GT. The point P is
then encrypted with the MUPRE scheme, and all resulting ciphertexts and the IV
are sent to the cloud service where they are persistently stored.

Download If the user wants to download a document, they have to click on the
name of the document. The Android application requests all information needed
from the cloud service. After the cloud service validates the request, it transmits
the AES ciphertext of the document and the MUPRE ciphertext of the point P.
Furthermore, the cloud service may perform some re-encryptions, depending on
which device the document was originally encrypted. With the embedded MUPRE
private key on the device, it can obtain the point P and derives the AES key, which
can be finally used to decrypt the document. After a successful decryption, the
document is rendered, as seen in Figure 19c.

Because the decryption and the re-encryption are expensive computations, the
original download of a document can take some time, especially if multiple re-
encryptions have to be performed. To counteract this problem, we implemented
a mechanism to cache the downloaded documents, so only the first opening of a
document will take some time. If a document is downloaded for the first time, it is
encrypted with a separate AES key, which is embedded in the secure hardware of
the device. It is possible to reload the document by clicking on the reload button,
which can also be seen in Figure 19c.

7.2.4 Sharing of Documents

This section focuses on the sharing of documents and how to pair devices. To
communicate between devices, we utilize the Push-Notification technology natively
supported by Android. The user interface for this process can be examined in
Figure 20.

Show When we have a look at Figure 20a, we see all pairings where the device
is involved. In this example, Alice created two outgoing connections, and one
incoming connection was created for her. For every outgoing connection, she
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a) All documents for which the
device has access

b) Prompt to upload a text docu-
ment

c) A downloaded, decrypted doc-
ument

Figure 19: Document handling

bestowed decryption rights to another device. The two devices for which outgoing
re-encryption keys were registered are Alice’s SD and Bob’s PD. Of course, Alice’s
SD is able to read the data encrypted for her PD (see 4.2). Furthermore, Bob can
read Alice’s documents on all of his devices. Contrary, the incoming connection
enables her to read Charlie’s documents.

Create To create a new pairing, it is necessary to perform a pairing request
to the targeted device where the public key of the requesting key is embedded,
such that it is possible to invoke the re-key generation. The user has to click on
the floating action button, which can be seen in Figure 20a to start this process.
This action opens a prompt where the user is asked to enter the username of a
distinct user. If the given username is registered at the service, the cloud service
notifies the requested user that some user wants to get access to their documents.
Imagine Bob wants to obtain decryption rights for Alice’s data. After Bob enters
Alice’s username, Alice is notified that Bob requested read access, as seen in Figure
20c. Alice can either discard the request or accept it by entering her password. If
she accepts it, her device creates a new re-key with her device’s private key and
Bob’s public key, which was sent to her device via the Push-Notification. Figure
20d shows the interface for Alice to enter her password. The fresh re-key is then
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installed at the cloud service.

7.2.5 Recovery after Device-Loss

This section describes the user interface for recovery after a user lost all of their
devices. Same as for the sharing of documents, we use Push-Notifications to
communicate between devices. Figure 19 shows the user interface for this process.

If a user lost all their devices, they have to install the client on a new device. This
device will become the new PD after the recovery process finishes successfully. The
recovery process is invoked by clicking on the button ”I lost all my devices!”, which
can be seen in Figure 16a. If, for example, Alice lost all her phones and started
the restoration process, she will see the screen given in Figure 21a. There she has
to input her username, her password, and the username of her trusted user Bob.
Furthermore, as the device she is currently on is not registered, she has to specify a
new alias.

After the cloud service verifies the request, Bob receives a push notification, as
seen in Figure 21b. If he clicks on the push notification, the screen in Figure 21c is
opened on his device. If Bob is convinced that the request is coming from Alice, he
inputs his password and invokes the recovery process described in Section 4.3.
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a) All pairings from this device
b) Prompt to send a pairing request to an-

other user

c) The push notification on the device of the
other user

d) Input for the distinct user to enter pass-
word

Figure 20: User Interface for sharing of documents
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a) Input for username, password,
new alias, and trusted user b) The push notification on the

trusted user’s phone

c) The input where the trusted
user has to input their pass-
word

Figure 21: User Interface for recovery
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7.3 Discussion

In this section, we state the results of our performance evaluation, followed by a
discussion on how to improve the system’s performance. We will further elaborate
on how we met the key challenges of the system defined in earlier sections.

7.3.1 Performance Evaluation

During the development of our proof of concept implementation, we performed
multiple benchmarks to assess the service’s performance. We mainly focused on
cryptographic operations because we suspected that these operations would have
the biggest impact on the service regarding speed.

We started by evaluating the throughput of all operations of the MUPRE scheme (as
seen in Definition 2), which are necessary for data sharing and recovery on different
devices. Our results can be found in Table 4. In the referenced table, we listed
the time it took on average (10000 computations) in milliseconds to perform said
operations of the MUPRE scheme. This includes key generation, re-key generation,
and encryption. Furthermore, we tested the re-encryption and decryption steps on
ciphertexts up to the fifth level. We chose this limitation because the expected level
of a ciphertext used in the system is at most 4. There may be some cases where the
level will get higher than that, but this only happens if a user lost their device, and
the system needs to recover access to the documents.

Table 4 shows two representative benchmark results for a PC, running with Ubuntu
18.04, and a mobile phone, namely a Google Pixel 2 with Android 8.0.0. Interest-
ingly, when performing the benchmarks on mobile phones, there was a fall-off in
nearly every operation. When performed on mobile devices, we expected that the
operations are slower, but not by such a margin. Whereas for the PC, all operations
take a reasonable amount of time regarding user experience. Even for the heavy
computations as decryption and re-encryption, the same mobile phone operations
perform significantly worse. The decryption and re-encryption time increases even
linearly.

As the client for users is implemented as an Android application and the backend
of the cloud service runs with Java Spring, some of the tested operations will
only be performed on a mobile device and some only on a PC. The Android
application will create keys, create re-keys, encrypt plaintexts, and decrypt l-th
level ciphertexts, whereas the cloud service will only perform the re-encryption
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level l KeyGen ReKeyGen Enc ReEnc
l → l + 1 Dec

PC (Intel i5-2500@3,30GHz x4, 16Gb RAM)
1 6.9 184 110 472 206

2 - - - 632 357

3 - - - 633 524

4 - - - 664 672

5 - - - 615 808

Mobile Phone (Google Pixel 2, Android 8.0.0)
1 8.8 3622 2468 9740 4961

2 - - - 13501 7284

3 - - - 13656 10912

4 - - - 14082 14191

5 - - - 14532 17832

Table 4: Execution Times (in milliseconds) of the implemented MUPRE scheme

of ciphertexts. Key generation, re-key generation, and encryption are reasonably
fast for our needs. However, re-encryptions are computed when users want to
download their documents on different devices, which naturally implies that the
decryption on the mobile phone is done during the same workflow. For users of
the application, both of these operations are done sequentially during a single
request they perform. The re-encryptions per se do not have that much of a negative
impact on their own, as they are computed on a PC. Still, the decryptions on the
mobile have a noticeable impact on the overall user-experience. In the upcoming
paragraphs, we discuss how to address this problem and present some solutions to
better the system’s response time.

In subsequent work, we have investigated possibilities to improve performance. By
re-implementing, the same translated MUPRE scheme based on RELIC 2 in C, we
were able to improve the performance as reported in Hörandner and Nieddu, 2019

dramatically.

Re-Encryption Chain Length As seen in Table 4, the time for both, the re-
encryption and decryption, rises directly proportional to the level of the ciphertext.

2RELIC is a framework that helps you build cryptographic libraries based on C. More
information can be found on their Github page.
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This implies that if we can limit or decrease the chain length of re-encryptions,
there will be a positive impact on the system’s performance. Recalling Protocol 1,
there is a natural limitation on the chain length of re-encryptions. In this protocol,
re-encryptions are only computed by the cloud service when a user wants to
download documents on a device different than their PD. There are, in fact, three
cases, 1) Alice wants to download data to her SD, 2) Bob wants to download data
from Alice to his PD, and 3) Bob wants to download data from Alice to his SD. As
there are no transitive trust assumptions, further re-encryptions are never done in
this context. The maximum level of the created ciphertexts for the three different
cases are 2, 3, and 4, respectively, depending on whether Alice’s SD is involved in
the re-encryption chain or not. To summarize, when performing Protocol 1, the
maximum chain length of re-encryptions and the maximum level of a ciphertext is
4.

It gets more complicated when performing recovery processes as defined in Protocol
2. On the one hand, the loss of an SD does not impact the level of the ciphertexts
used. On the other hand, the loss of the PD increases the needed amount of
re-encryptions if the download of the data is requested by a device, where the
connection was created after the recovery process was performed. If, for example,
Alice loses her PD but did register an SD, an additional re-encryption has to be
performed every time a user, irrelevant if its Alice or some distinct user, wants
to download one of Alice’s documents with such a new connection. Furthermore,
if Alice did not register an SD before her loss of the PD, the needed amount
of re-encryptions increases by 2, in the same case. As such, device-loss recovery
strategies are not performed regularly, the ciphertext levels will not get infinitely
large. Still, even one recovery may impact the service’s performance in a noticeable
fashion.

Refreshing Ciphertext Level The maximal length of a re-encryption chain is
limited to 4 re-encryptions, except a user lost their PD and performed one of
the recovery strategies from device-loss discussed in Section 4.3. We defined two
different types of connections that a lost device may have. The first ones are the
outgoing keys, which are the keys where the user bestowed decryption rights to
other devices, and the lost device acts as an intermediate step in a re-encryption.
The other keys are called incoming keys. With these keys, it is possible to re-encrypt
ciphertexts such that the ciphertext may get decrypted with the key pair of the lost
device.

For all recovery strategies, we specified that the existing network of re-encryption
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keys stays intact with the addition of new incoming connections to the device
used for recovery. This approach implies that the re-encryption chain of documents
that are downloaded with a device, where the connection was created after the
device-loss, may exceed the natural limit of 4 re-encryptions, negatively impacting
the system’s performance.

To give an example, imagine Alice lost her PD and registered her old SD to be her
new PD. If now Bob requests access to Alice’s documents, then all ciphertexts have
to be re-encrypted from her old PD to her new PD for Bob to be able to read Alice’s
data. This increases the level of the ciphertexts by one in contrast to the original
levels defined in the previous paragraph, implying that there even may be a 5-th
level ciphertext that has to be decrypted on any of Bob’s SDs. The same is true for
the case that Alice did not register an SD, with the difference, that the ciphertext
level increases by two, yielding potential 6-th level ciphertexts. As Alice may lose
her PD again, there is no limit on the growth of the ciphertext.

This problem can be tackled by refreshing the ciphertexts which were encrypted for
the lost PD. During the recovery process, the user may be allowed to select some
(or all) ciphertexts. These ciphertexts are re-uploaded to the cloud storage with
respect to the new PD. The recovery process would be much more costly, as the
defined documents stored at the cloud storage have to be served to the new PD,
where they would be decrypted, then encrypted again (with a hybrid approach),
and finally persistently stored in the cloud. The obvious advantage is that there
would be fewer ciphertexts created at a higher level than 4.

Caching and Pre-Computing Ciphertexts Another possible solution to tackle
the linearly growing time consumption of performing multiple re-encryptions
sequently is to pre-compute re-encryptions. Instead of re-encrypting documents
on-demand, the cloud service caches ciphertexts. For example, if a user registers
an SD, the cloud service re-encrypts every document of the user, such that the
resulting ciphertexts can be decrypted with the newly registered SD. This approach
could also be extended for sharing data with distinct users. Every time a user shares
their documents with a distinct user, the documents get re-encrypted for all devices
of the requesting user. Also, after a successful recovery process, all ciphertexts
would be pre-computed. The apparent advantage is that irrelevant which device
requests documents, there is no need to perform any costly computations at the
cloud service at the time of requesting the data.

Additionally, pre-computing could also be applied for decryption. Clients may
download the documents for which they have access rights in a background task
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and decrypt them without the user’s knowledge and store them somewhere on the
mobile device. The cached documents may or may not be symmetrically encrypted
on the hard drive of the mobile phone.

The downside of pre-computing decryptions and especially re-encryptions is the
additional computational effort. During almost all operations defined in Protocol 1

and 2, extra computations have to be performed that may never be used. What is
more, pre-computing naturally requires more storage space on the cloud service.
The same holds for caching decryptions.

7.3.2 Discussion of Challenges

In Section 4.1, we defined the key challenges our system faces, whereas, in this
section, we will state how our proof of concept implementation tackled each of
those challenges.

Confidentiality Of course, a major requirement of our system is the confidential-
ity of the user’s data. To guarantee confidentiality, we utilized a hybrid-encryption
approach for protecting sensitive data. For symmetric encryption we used state-
of-the-art implementations of AES with GCM. The security guarantees of AES are
more than well-investigated. Furthermore, for asymmetric encryption, we used a
modified scheme proposed by Cai and Liu, 2014. For a discussion on necessary
security implications of the MUPRE scheme, see Section 5. Every communication
between devices and the cloud service utilizes TLS, and we also implemented
key-authenticity in the system, as discussed in Section 4.5. All of those concepts
combined ensure the requirements for the confidentiality of the system, as previ-
ously defined.

Integrity The integrity of the data is protected by the same concepts that warrant
confidentiality, namely the hybrid encryption approach with AES in GCM and
the integrated integrity protection of the scheme proposed by Cai and Liu, 2014.
When operating AES with GCM, AES becomes an authenticated encryption scheme,
where it is no longer possible for any party that is not authorized to alter or insert
data undetected. Additionally, the scheme by Cai and Liu, 2014 also detects whether
the ciphertext was compromised by any other party than the proxy that performed
the corresponding re-encryption during decryption.
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User Experience Next to the key concepts of information security is the user
experience of the system. Our main goal regarding user experience was that the
costly cryptographic operations should not negatively impact the system’s usage.
A discussion on the performance of the system can be found in Section 7.3.1.

Sharing of Documents Additionally to the confidentiality and integrity protec-
tion, the MUPRE scheme from Cai and Liu, 2014 also enables to share documents
with distinct users. If a user wants to share the access to their documents, they have
to create a re-key that the cloud storage can use to re-encrypt the data. To create
such a re-key, it is necessary to have physical access to the PD of a user and know
their password. This approach implies that the threat of unauthorized sharing of
documents is negligible.

Recovery after Device-Loss Our system utilizes client-side storage of crypto-
graphic key material. Nevertheless, it is possible for a user to recover the access
to their documents if the user lost all their devices and, therefore, their key mate-
rial. All recovery steps imply minimal trust decisions by the user. We address the
recovery strategies in Section 4.3.

Users of our system shall have the possibility to recover the access to their docu-
ments after losing all their devices and, therefore, their key material. Additionally,
this recovery process shall imply minimal trust decisions by the user that lost all
their phones.

Protection of the Key Material As the key management of our system is one
of the key concepts, we addressed the protection of the key material in Section
7.1.2. Using the ”Android Key Store” system, we can ensure that all requirements
on the integrity of the key material are met, in case that the Android device on
which the application runs is not rooted and that the security guarantees of the
Android Key Store system hold.
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8 Conclusion

In this thesis, we proposed a cloud-based data storage system utilizing Multi-Use
Proxy Re-Encryption. The proposed system enables users to register multiple
devices, synchronize their data across these devices, and share data with distinct
users confidentially and securely. Alongside the data storage, we introduced a key
management system, allowing users to create and store their key material in their
devices’ secure hardware. With our key management system, users can recover
access to their data after device-loss, including a recovery strategy when all devices
of a user are lost.

As already mentioned, Proxy Re-Encryption was used to implement the sharing
of the users’ documents and is also the main building block for the recovery
strategies. In our work, we evaluated multiple Multi-Use Proxy Re-Encryption
schemes with respect to previously identified requirements in the context of our
solution. We decided to use the scheme proposed by Cai and Liu, 2014 since it is
a unidirectional, non-interactive scheme with collusion-safeness, and it provides
CCA-security. Because this scheme was originally proposed with type 1 pairings,
we also stated the process of how to translate schemes relying on bilinear pairings
from type 1 into a scheme using type 3 schemes, as they are more practical to
implement. We further applied our algorithm and transformed the chosen scheme
into a type 3 scheme.

Additionally, we implemented a proof of concept solution to showcase our proposed
system, alongside the translated MUPRE scheme. We created a fully functional
backend infrastructure with Java Spring that enables potential users to register new
devices, upload and securely store their documents, and share their documents
with distinct users. Furthermore, we created an Android application that can
communicate with the backend of the system and also utilizes the secure hardware
of the underlying Android device to manage the keys generated on the device. Of
course, the proof of concept implementation allows the user to recover access to
their documents in case one or all devices of the user are lost. Finally, we evaluated
the performance of the system with particular attention on the MUPRE scheme.
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