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Kurzfassung

In der Automobilindustrie werden Systeme zur Umgebungswahrnehmung schon
seit Jahren eingesetzt. Von vorerst einfachen Wahrnehmungssystemen, wie ein
Abstandsmesser für das Einparken oder einer Rückfahrkamera, wurden mit der
Zunahme von Automatisierung, immer mehr sicherheitsrelevante Systeme eingebaut,
wie Spuren-Assistent, Auffahrwarnung mit Abbremsfunktion, Verkehrszeichen
Assistent und so weiter. Da die Automobilindustrie derzeit in die Entwicklung echter
selbstfahrender Autos (SAE Level 4 und 5) investiert, wird sich dieser Trend auch
fortsetzen.

Aufgrund von Platz- und Kostenbeschränkungen für selbstfahrende Autos ist
es unvermeidlich, dass ein einzelnes Wahrnehmungssystem vielseitig einsetzbar sein
muss, damit es verschiedenste Aufgaben in unterschiedlichen Szenarien bewältigen
kann. Ein solches Wahrnehmungssystem könnte dazu verwendet werden, die
steigenden Anforderungen an die funktionale Sicherheit zu bewältigen, die mit einem
selbstfahrenden Auto verbunden sind.

Diese Arbeit befasst sich mit dem Entwurf und der Implementierung eines
Wahrnehmungssystems. Der Schwerpunkt liegt auf ’Fail-Operational’ Konzepte die
in Software implementiert werden können.
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Abstract

Environmental perception systems have been used in the automotive industry for
years now. From the first simple perception systems, such as a distance meter for
parking or a reversing camera, have been built into more and more safety-relevant
systems with the increasing automation, such as lane assistant, collision warning
with braking function, traffic sign assistant and so on. This trend is continuing
as the automotive industry is currently invested in creating true self-driving cars
(SAE Level 4 and 5). Due to space and cost restrictions for self-driving cars, it
will be inevitable that a single perception system will need to be versatile such
that it can handle different tasks when confronted with diverse scenarios. Such
a versatility perception system could be used to handle the increasing functional
safety requirements that come with a self-driving car. This thesis deals with the
design and implementation of a versatile perception system with the main focus on
a fail-operational concepts that can be implemented in software.
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Chapter 1

Introduction

1.1 Motivation

Safety has many facets. Depending on the context, the meaning of the word safety
can have vastly different implication like physical safety for people and things, data
safety for privacy and intellectual property, financial safety for investors, or func-
tional safety for processes. These different types of safety are normally not isolated,
instead a failure of one safety measure usually has an effect on multiple areas. As
safety is often seen as a problem that can be solved with technology, it’s easy to
forget that a safety measure in itself can introduce another safety risk. For example,
the introduction of airbags in cars has drastically decreased the number of deaths
and serious injuries but malfunctioning airbags also caused some deaths and seri-
ous injuries [MKK+01]. This is why modern safety standards define some form of
functional safety to reduce the risk of malfunctioning behavior that are harmful for
a person. A typical behavior for systems that are designed with functional safety
in mind, is to detect a malfunctioning component and put it into some kind of safe
state. This safe state can be as simple as deactivating the malfunctioning compo-
nent but naturally a safe state should not introduce more risks to a person’s health.
Furthermore, if the failing components is critical for the functionality of the system
it cannot be simply deactivated. Instead there needs to be some kind of redundancy
implemented so that component seamlessly continues working even in the case of
failure.

In the automotive industry the functional safety of electrical and electronic sys-
tems (E/E systems) gained more significance over the decades as more E/E systems
are introduced into a vehicle. This trend has no sign of stopping as manufactures at
large are aiming for self-driving cars. The level of driving automation that a vehicle
is capable of is usually described by the six SAE levels defined by SAE international,
with SAE level 0 providing no driving automation and SAE level 5 providing full
driving automation [Int18]. The automotive industry at large is currently adding
more and more conditional automation driving systems (SAE Level 3) to the quite
established partial automation driving systems (SAE Level 2). On top of that, high
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CHAPTER 1. INTRODUCTION 12

driving automation (SAE Level 4) is already tested and used in highly restricted
scenarios (NAVYA building Level 4 shuttles, Alphabet’s Waymo self-driving taxi,
...). Such development indicates that high driving automation systems (SAE Level
4) probably will be widely used in the near future. For SAE Level 1-3 the fail-safe
responsibility lies by the driver. In a SAE Level 4-5 there might not be anything
a passenger could use to trigger a fail-safe response. This is why vehicles with
SAE Level 4 systems need to migrate from fail-safe systems to fail-operational sys-
tems. This trend to reach higher driving automation is highly dependent on the
improvements in perception systems and computation power. Perception systems
are already heavily used in vehicles and they will play a more and more important
role as vehicles reach higher automation levels. Since their failure can have negative
effects on all components that use them, it is important to implement perception
systems in a fail-operational way.

1.2 Problem Definition

In a future of self-driving vehicles, perception systems are the vehicles eyes and ears.
As with a human driver, a critical failure of any part of a perception system might
have serious consequence for the safety of the passengers. A perception system
has to overcome multiple challenges that might lead to single-point failures, some
examples would be:

Weather: Fog and rain causes not only to reduced visibility for humans and conven-
tional camera systems but also to a reduction of accuracy in LIDAR systems.
Freezing cold weather can cause the lens to freeze over. Sand and snow storm
can significantly block the view of any LIDAR system. [PGM17], [RSS11]

Heat: Strong heat changes the wave length of lasers which can accumulate and
reduce the accuracy of an LIDAR system. Heat also accelerates electromigra-
tion what can cause micro-cracks over time. This effect is a concern especially
for small and energy efficient systems that need to run constantly and reliable
for years. Constant heating and cooling over years increase the likelihood of
an early dead for ICs. [LS14]

Beside the single-point failures there are residual failures that aren’t so obvious.
For example, stuck bits in ram cells that cause soft or hard memory failures [HSS12].
Since this is a normal issue for servers, its standard to developed hardware capable
of some error correcting codes (ECC) scheme to mitigate the effects memory errors
have on a system. But compared to a server where every few years a ram block
gets replaced and the replacement procedure is relatively simple. A perception
system in an automated vehicle has soldered memory and would need to be replaced
completely.

For the migration of perception systems from fail-safe systems to fail-operational
systems the aforementioned issues need to be handled adequately.
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1.3 Goal

The goal of this thesis is to design and implement parts of a Fail-Operational module
between a ToF camera and the application in an Environmental Perception System.

The issues that this thesis wants to handle are:

Temperature: Handle CPU utilization, frequency, and voltage such the heat output
of the CPU is reduced and that for driving situations where more headroom
is needed the CPU not immediately thermal-throttles. This implies that de-
pending on the driver situation we want to change the load on the CPU. A
change in CPU load should be achieved by down-scaling the image resolution
or reducing the frame rate of the camera. With a reduced CPU utilization,
the frequency of the CPU can be stepped down to further decrease the heat
output.

Memory Errors: Detect memory cells that are failing and correct them. Frequently
failing memory cells should be dropped and not used anymore. The implemen-
tation should be done in software. Furthermore, if no memory is left, reduce
the data flow to ensure functionality. Data-flow can be reduced by decreasing
the image resolution.

1.4 Structure

This thesis is organized in six chapters, with Chapter 1 being the current chapter.
Chapter 2 provides a background and references to related topics that are basis to
this work. Chapter 3 takes a conceptual look at simple perception system model.
In the course of the chapter the model will be extended to a fail-operational system.
The extended model will be used to explain the reasoning behind some decisions
and it will be used as basis for further in-depth concept discussions.

Chapter 4 discusses the implementation of the perception system. The chapter
focuses on how and what got implemented, what hardware was used and what
problems accrued with them and how the implementation handles certain situations.

Testing and their Results will be discussed in Chapter 5. The main focus in
this chapter lies in the explanation of the testing methodologies and the discussion
of their Results.

At last we will discuss in Chapter 6 the final conclusion of the thesis and take
a look at possible further extensions and future projects build on this thesis.



Chapter 2

Related Work

2.1 Functional safety and fail-operational

The main focus in functional safety is to detect faults, prevent, and/or control the
resulting failures. As shown in figure 2.1 it is important that the failing operations
is brought to a safe state before a fault ends in a hazardous event.

Figure 2.1: Fault tolerant time interval. [XSS+16]

The definitions for the terms used in the last few sentences can slightly differ
depending on the source. Since this thesis is more connected to the automotive side
of functional safety the definitions from Part 1 of the ISO Norm 26262:2018 “Road
vehicles Functional safety“ [ISO18a] are the ones used in this thesis. Some of the
interesting definitions are [ISO18a]:

• Functional safety: “absence of unreasonable risk due to hazards caused by
malfunctioning behavior of E/E systems“

• Safe state: “operating mode, in case of a failure, of an item without an
unreasonable level of risk“

14



CHAPTER 2. RELATED WORK 15

• Hazard: “potential source of harm caused by malfunctioning behavior of the
item“

• Fault tolerance: “ability to deliver a specified functionality in the presence
of one or more specified faults“

• Fault: “abnormal condition that can cause an element or an item to fail“

• Error: “discrepancy between a computed, observed or measured value or
condition, and the true, specified or theoretically correct value or condition“

• Failure: “termination of an intended behavior of an element or an item due
to a fault manifestation“

From the above definitions it is visible that fault and failure can be used recursively.
If a fault occurs in a safety related product it will propagate through the system.
The fault will lead to error(s) and those will lead to failure(s) which might again
lead to further fault(s). The norm does not include the definition of fail-operational
and the definition of fault tolerance was only recently added with the 2018 revision
of the norm. With the relative new challenges of automotive driving, the automotive
industry has to actively work towards industry-wide standards. This work towards
industry-wide standards also applies to the safety aspects, as seen with the whitepa-
per Safety First for Automated Driving, or short SaFAD [Apt19]. The whitepaper
was created by the twelve industry leaders of the automotive and component indus-
try and summarizes widely known safety by design and verification and validation
(V&V) methods for higher levels of automated driving. The definitions contained
in it included the definition of fail-operational that was missing from the norm. The
whitepaper defines [Apt19]:

• Fail-operational: “This refers to full & safe operations/service in the pres-
ence of hazardous events. The loss of safety-related functions or system com-
ponents shall not lead to a hazard.“

• Fail-degraded “This means that the system is still able to operate safely
when degraded“

From these definitions it is visible that fault tolerance is the basis of fail-degraded
and fail-operational behavior. For example, if a fault tolerant system was designed
that in the presence of a faulty component it would isolate or switch off the faulty
component and continue operation with a degraded capability, the system would be
a fail-degraded behaving system. This is normally known as graceful degradation.
If the before mentioned fault tolerant system would replace the faulty component
by a redundant backup component so that the system keeps its full and safe op-
eration, then the system would be a fail-operational behaving system. To note is
that a gracefully degrading system might first behave fail-operational and only af-
ter a certain number of failures enters a fail-degraded behavior. In such a case the
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component that is failing is overdesigned such that it has some headroom and is
in itself redundant. So, the HW/SW-modules of a fail-operational behaving sys-
tems should continue to perform a certain set of functionalities to some predefined
extent, performance, duration and for a certain amount of failures. As already men-
tioned, fail-operational systems often rely on redundancy to achieve this. According
to Elena Dubrova book Fault-Tolerant Design [Dub13] redundancy methods can be
categorized into two kinds of redundancies methods: space redundancy and time
redundant methods. In her book space redundancy is described as an redundancy
that “provides additional components, functions, or data items that are unneces-
sary for fault-free operation.“ and time redundancy as a redundancy where “the
computation or data transmission is repeated and the result is compared to a stored
copy of the previous result.“. Depending on the type of redundancy implemented in
a system, space redundancy can be further classified into hardware, software, and
information redundancy.

2.2 Redundancy and fault-tolerant behavior

2.2.1 Hardware redundancy

As previously mentioned, to achieve fail-operational behavior, systems rely on re-
dundancy. To achieve hardware redundancy a system must contain at least two
physical copies of the hardware component. Of course, this comes with a number of
disadvantages like increased cost, size, weight, power consumption, time to design
and testing effort. Depending on how a hardware redundant system handles a fault
it can be grouped into passive, active and hybrid redundant system [Dub13].

Passive redundancy

A passive redundant system achieves fault tolerance by masking faults rather than
explicit detecting them.

Two of the most common passive hardware redundancies are Triple Modular Re-
dundancy (TMR) and N-modular redundancy (NMR). Figure 2.2 shows the basic
configuration for TMR and NMR. As seen in figure 2.2 there are multiple compo-
nents or modules that perform the same computation in parallel. Depending on the
application, the modules can be processors, memories, network connections, power
supplies and so on. A majority voting is used to determine the correct result. It
should be visible form the figure that the voter is single point of failure in such
systems. This is why the voter it is typically kept very simple compared to the
redundant modules to reduce the probability of failure. Still there are schemes with
redundant voters, for cases where a single point of failure is not acceptable. The
main difference between TMR and NMR is that NMR uses N modules instead of
three. N should be odd such that N = 2k + 1, where k is the number of failing
modules that should be tolerated. This formula also shows that TMR can only mask
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Figure 2.2: Common passive redundant architectures. [Dub13]

a single module fault. To note is that modules do not necessarily need to fail to
cause an unreliable vote. It is very important that the input values arrive at the
same time to avoid generating incorrect voting results. To achieve accurate timing a
reliable synchronization service is needed for TMR and NMR system, which in itself
needs to be fault-tolerant. Another problem for the voting system is that modules
might create different outputs even in a fault-free case. This could happen in case
of signal conversion. This could be solved for example, by using the median of the
values that are in a certain span to each other. What this shows is that the voter
handles the input should depend on the modules used [Dub13].

In Wang et al. work “The Research of FPGA Reliability Based on Redundancy
Methods“ [WYZ11], TRM is shown to be an effective method for dealing with single
event effects in FPGA-based logic systems.

Active redundancy

An active redundant system achieves fault tolerance by detecting occurring faults
and performing some action that returns the system back to a fault free state.
Systems that utilize active redundancy are normally systems where occasional errors
are allowed as long as the system returns back to a normal operation state in a certain
amount of time. In some cases, it is even enough for a system to know that an output
cannot be trusted. This principle follows the active redundancy method duplication
with comparison. It simply compares the output of two identical modules that run
in parallel and generates an error signal if the results of both modules are not equal.
No further actions are taken. For cases where a simple detection of a fault is not
enough the standby redundancy is a technique for active hardware redundancy that
allows the return to a normal operation state on a module failure.
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Figure 2.3: Example cold standby redundancy. [Dub13]

As figure 2.3 shows, the basic concept of a standby redundancy is that it contains
N modules with some sort of fault detection or diagnostic mechanism. One of the
modules is active and the other N-1 modules serve as backups. If an error is detected
in a module, by the fault detection mechanism, a switch is triggered and one of the
spare modules is used instead of the current active module. The standby redundancy
can be grouped into two types: the hot standby and cold standby. In the hot standby,
all modules are powered up. On a switch the spare can be used immediately after
the current active module has failed. Such a system reduces downtime with the
cost of power consumption. In the cold standby, only the current active module
is powered on, all the other modules are in low power state or entirely turned off.
This decreases power consumption but with the tradeoff of longer downtime if the
module fails [Dub13].

An example for an active redundant system is shown in Gorelik et al. work
“Range Prediction and Extension for Automated Electric Vehicles with
Fail-Operational Powertrain“ [GKO18]. There they present a torque distribution
strategy for controlling a fail-operational powertrain topology consisting of two in-
dependent axles which are controlled separately. The shown system is a variant
of the hot standby system where both modules have active roles but can substitute
each other to a certain degree. Another example for an active redundant system can
be found in Li and Eckstein work “Fail-Operational Steer-By-Wire System for Au-
tonomous Vehicles“ [LE19]. The Work-In-Progress fail-operational Steer-By-Wire
system introduced in the work is similar to a hot standby redundant system con-
taining two modules. The voter of the presented system contains the switch logic
that decides which MCU to use. When a fault is detected in MCU1 by the internal
diagnostic mechanism the voter will use MCU2 till MCU1 has recovered again.
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Hybrid redundancy

As the name implies, the goal of hybrid redundancy is to combine the advantages of
the passive and active approaches. In hybrid redundant system fault masking is used
to prevent momentary erroneous results, while fault detection and recovery are used
to reconfigure a system back to its normal operating state. Hybrid redundancy is
normally used in safety-critical applications (medical equipment, weapons, aircrafts,
...). Figure 2.4 shows an example of a simple hybrid redundant architectures, the
self-purging redundancy.

Figure 2.4: Example self-purging redundancy. [Dub13]

The self-purging redundancy can be seen as a mixture of the previously men-
tioned NMR redundancy and standby redundancy. It consists of N identical mod-
ules that actively participate in voting. In a feedback loop the output of the voter is
compared with the vote of each individual module. If the output of the Voter is in
disagreement with the result of the module, the switch opens and removes (purges)
the faulty module. The system can mask N - 2 faults and is able to detect N - 1
[Dub13].

2.2.2 Software redundancy

Compared to hardware, where reliability evaluation is simplified by assuming that
failures of components or modules are independent events, modules in software tend
to have highly correlated failures, such that the error in one module affects the result
of other modules. Software does not degrade over time. Instead software faults
occur mostly due to design faults and bad specifications. Since a software fault will
manifest itself as soon the relevant condition occurs, the manifestation of a software
fault strongly depends on the input that the execution environment generates over
time. A tragic example for this is the Ariane 5 rocket accident, where software
that was safe for the Ariane 4 operation environment, caused a disaster when it was
used in the Ariane 5 operation environment. Traditional hardware fault tolerance
techniques like N-modular hardware redundancy are primarily designed to mitigate
permanent module fault and transient faults that are caused by some external factor.
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However, in software copying a module N times will just result in N faulty outputs
when given the right input parameters. To achieve a useful behavior each redundant
module would need to be implemented in a different way. Techniques to create
fault tolerant software can be divided into single version techniques, multi version
techniques [Dub13], and process-level redundancy [SBM+09]:

• The principle of single-version techniques are to add components to a soft-
ware that allow for detection of faults and the contain or recover the affected
module. To detect faults, techniques like timing checks (for example watchdog
timer), coding checks (for example CRC checksum), reasonableness checks (for
example, check if value is in bounds), structural checks (for example, expect
fixed number of bytes). Some techniques for fault containment in software
are: modularization (split application into modules, avoid shared resources
between modules, monitory communication between modules), system clo-
sure (functions and resources are only accessible if permission is granted) and
atomic actions (components interact exclusively with each other). Some fault
recovery techniques would be: exception handling (interrupt normal execution
to handle an abnormal condition), checkpoint and restart (check correctness
of a result, re-initialize to a previous state if fault is detected), process pairs
(check correctness of a result, the second process takes over if first process
fails, while second process is used for continuation of normal execution the
first process tries to recover)

• The principle of multi-version techniques are use multiple versions of the same
software component. The idea behind generating different versions of software
executing the same tasks is to minimize the probability of a common fault
between the versions. To generate different versions of software that fulfill
the same design specifications it is common to use different teams, different
coding languages, or different algorithms. To detect faults, techniques like
recovery blocks (checkpoint and restart for multiple software versions), N ver-
sion programming (software version of N -modular hardware redundancy) and
N self-checking programming (combination of N version programming and re-
covery blocks).

• The process-level redundancy is a technique that utilizes the multi-core archi-
tectures of modern processors and the process handling of operating systems to
detect transient faults. It leverages the operating systems capability to sched-
ule redundant processes efficiently with available hardware resources. This is
done by adding a emulation layer between the operating system and processes
which replicates the input and emulates system calls. The emulated layer is
also used to detects transient faults by comparing the output, execution time,
and error messages of the redundant processes.
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2.2.3 Information redundancy

For safety critical devices it is important that faults in stored or transmitted infor-
mation is detected and if possible corrected. Such fault-tolerant behavior can be
achieved with coding. In coding n bit sized data words are encoded based on some
coding scheme into n + k bit sized code words. The fault detection and correction
capability of a coding scheme depends on the code distance the scheme creates.
From the 2n+k code words a coding scheme can create from n bit data words and k
code bits, 2n are valid. Faults cannot be detected if corrupted code word is valid.
The code distance or minimum hamming distance is the distance between two valid
code words (i.e. the number of bits that have to change to get from code word x
to code word y). A code distance of C can detect C - 1 bit faults and correct C−1

2

bit faults. An important assumption of coding theory is that faults are much more
likely to affect only a few bits than affecting many. Some common coding schemes
are Parity Code, CRC and AN-codes [Dub13].

2.2.4 Time redundancy

The idea behind time redundancy is to repeat the computation or transmission
of data and compare the results with the previously stored data. The compari-
son between the data can detect transient faults and in case of multiple computa-
tions/transmissions even correct them. In this case, systems similar to the voting
techniques used for hardware redundancy, can be used. An issue with time re-
dundancy is that in case of a fault the data or functionality required to repeat a
computation is not affected by the fault. An interesting aspect of time redundancy
is that it can detect and correct permanent faults when it is used in combination
with some encoding scheme. Some techniques targeting permanent faults would
be alternating logic, recomputing with shifted or swapped operands, and recomputing
with duplication with comparison [Dub13].
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2.3 Fail-operational aspects in Norms

The goal to reduce, control or prevent the occurrences of dangers and risks lead to the
creations of norms and standards. Over the decades functional safety related norms
and standards have not only been created but also adapted to fit the changing needs
of the industries they were developed. Since different industries have different needs,
their definitions for safety and risks often differ and with them the approaches they
created to handle them. Table 2.1 is a shortened version of Table 2.1 from Ross book
“Funktionale Sicherheit im Automobil“ [Ros19] and gives a good overview about the
different functional safety related norms from some industries.

Automotive Aeroplane Railway
Risks and
Dangers

ISO 26262 CFR 25.1309 EN 50126

Control of
Risks

ISO 26262
DO 178C,

DO 254 / ED-12C
EN 50126/28/29

Safety and
Integrity

ISO 26262,
ISO/PSA 21448

ARP 4754A,
ARP 4761

Details IEC 61508

Table 2.1: Overview of safety related norms in different industries. [Ros19]

The following subsections will give a small overview of the Aeroplane
Norms/Standards and a rather close look at the Automotive Norms.

2.3.1 Avionic Norms/Standards

The Aerospace Recommended Practice (ARP) 4754/A “Guidelines For Development
Of Civil Aircraft and Systems“ [Int10] from the SAE International, historically SAE
stands for Society of Automotive Engineers, is a guideline for development of civil
aircraft and systems with an emphasis on safety aspects. ARP 4754 goal is to
harmonize the existing civil aviation regulations for transport category airplanes by
the U.S. Federal Aviation Administration and the European Aviation Safety Agency.
ARP 4754 defines following structural overview of the avionics safety standards
[Int10]:

• SAE ARP 4761 “Guidelines and Methods for Conducting the Safety Assess-
ment Process on Civil Airborne Systems and Equipment“ covers safety as-
sessment process, defining functions, failure and safety information of avionic
systems, including specification and analysis techniques [Int96].

• SAE ARP 4754/A “Guidelines For Development Of Civil Aircraft and Sys-
tems“ covers the development of aircraft systems taking into account the over-
all aircraft operating environment and functions [Int10].
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• RTCA DO-254 / EUROCAE ED-80 “Design Assurance Guidance for Air-
borne Electronic Hardware“ covers the aspect of electronic hardware develop-
ment [fAEOfCAE00].

• RTCA DO-178C / EUROCAE ED-12C “Software Considerations in Airborne
Systems and Equipment Certification“ covers the aspect of software develop-
ment [fAEOfCAE12].

Safety assessment and risk classification

The safety assessment processes for aviation systems and the methods for their
application are defined in SAE ARP-4754 and SAE ARP-4761. Figure 2.5 shows
the relation between the SAE specified System Assessment Process (SSA) and the
development process for an aircraft. As seen in the figure the SAE safety assessment
process runs in parallel to the development process, with a quite extensive common
cause analysis. The objective is to prove independence where it is required by the
system architecture, with special focus on common cause faults. Depending on the
Functional Hazard Analysis (FHA) a Design Assurance Level (DAL) is assigned to
the aircraft and its system components. As seen in Table 2.2 depending on the
failure classification given by the FHA and the therefore resulting DAL a minimum
failure probability per flight hour specified. Furthermore, depending on the DAL
some safety goals can become mandatory. Though fail-operational behavior is not
explicitly addressed in SAE ARP-4761, in practice to achieve the required failure
risk resulted into redundancy systems like Duo-Duplex redundancy, implemented as
part of Airbus flight control [TLS05] or a Triple-Triple redundancy as it is used in
a Boeing 777 primarily flight computer [Yeh96].

Failure classification DAL Failure risk per flight hour Frequency of occurrence
Catastrophic Level A < 10−9 extremely improbable
Hazardous Level B < 10−7 extremely remote
Major Level C < 10−5 remote
Minor Level D < 10−3 resonable remote
No effect Level E - frequent

Table 2.2: Design Assurance Level (DAL). [Int96]
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Figure 2.5: SAE System Safety Assessments process in relation to the development
processes. [Int10]

2.3.2 Automotive Norms/Standards

The main focus of this thesis, in regards to functional safety, is on their application
in automotive area. The development safe HW/SW systems is a completely differ-
ent challenge to constructing more conventional mechanical and hydraulic system.
Due to experience and necessarily the automotive industry used various functional
safety methods even before they started to apply state-of-the-art functional safety
standards. The first functional safety standard that found widespread use in the
automotive industry was the international standard IEC 61508 “Functional Safety
of Electrical/Electronic/Programmable Electronic Safety-related Systems“ [ICE10]
published by the International Electrotechnical Commission. The automotive in-
dustry recognized that the IEC 61508 was limited in its application to their specific
needs. This led to the creation of the ISO 26262 “Road vehicles Functional safety“
[ISO11] in 2011. One of the main challenges of the ISO 26262 was to have existing
practices, methods, well established designs and architectures of existing techniques
not be deemed as dangerous while ensuring that the planned safety of future tech-
nologies can be structurally argument. The ISO 26262 is heavily based on the IEC
61508 and in terms of functional safety its mainly focused on E/E-Systems. This
focus on E/E-Systems is based on the assumption that the industry is capable of
constructing safe non E/E-Systems. With the “second edition“ of the ISO 26262
[ISO18a], which was released at the end of 2018, the standard was revised and ex-
tended. Most changes in the revision are based on the extension of the norm to
include commercial vehicles like busses, trucks, two-wheeler and three-wheeler, as
well as some rational and informative changes. Even with the revisited publica-
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tion, ISO 26262 is still a standard mainly for fail-safe systems. Figure 2.6 gives an
overview of the ISO 26262:2018.

Figure 2.6: Overview of the ISO 26262:2018 series of standards. [ISO18a]

With the rise of Smart Mobility, the demand for a standard with fail-operational
system in mind is high. To answer this demand the standard ISO 21448 “Safety
of the intended functionality“ [ISO19], which is current in its PAS phase, was in-
troduced. Still since ISO 21448 does not apply to faults covered by ISO 26262
it is necessary to consider both standards. [Sch16] takes a closer look at the fail-
operational aspects for each part of the ISO 26262:2011 standard. Though ISO
26262:2011 is now replaced by ISO 26262:2018, since the changes made to the stan-
dard are evolutionary, [Sch16] is still a valid read for fail-operational automotive
systems. ISO 26262:2018 now contains a fully new section on semiconductors and
the scope of road vehicles got extended by application to commercial vehicles and
motor cycles. From a safety aspect the interesting changes are the improved safety
analysis methods for software, the more detailed requirements for semiconductors,
security and the support safety case for ADAS, fail-operational and diversified re-
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dundancy.
The safety aspect of the ISO 21448 applies to functionality that requires proper
situational awareness. The ISO 21448 is concerned with guaranteeing safety of the
intended functionality (short SOTIF). While ISO 26262:2018 covers functional safety
in the event of system failures, ISO 21448 covers safety hazards that result without
system failure. The ISO 21448 provides guidance on the applicable design, verifica-
tion and validation measures needed to achieve the SOTIF. As mentioned before the
ISO 21448 does not apply to fault s already covered by the ISO 26262:2018 series
or to hazards directly caused by the system technology. For a better overview what
norms are relevant for which hazards event the ISO 21448 contains the table seen
in figure 2.7.

Figure 2.7: Overview of safety relevant topics addressed by different ISO standards.
[ISO19]

As seen in table of figure 2.7, another important safety aspect is cyber-security.
The SAE J3061 “Cybersecurity Guidebook for Cyber-Physical Vehicle Systems“ [Int16]
is used as a practical guide for information security of a product over its whole
lifetime. The standard is one of the bases for the new ISO/SAE 21434 “Road vehi-
cles Cybersecurity engineering“ [ISO18b], which is currently in its Committee Draft
phase. The focus of the ISO/SAE 21434 is on defining a common terminology and
important aspects of Cybersecurity. It does not prescribe specific Cybersecurity
technology, solutions or requirements to use certain methods or communication sys-
tems but instead sets some minimum criteria for vehicle Cybersecurity engineering
and highlights key Cybersecurity challenges of the industry.
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As mentioned in Hans-Leo Ross book “Funktionale Sicherheit im Automobil“ [Ros19],
there is another safety aspect that might not be voiced directly by the norms but
is indirectly connected with their proper implementation, the investment safety. A
lack of safety performance will lead to revenue erosion. Since a single component
with lacking safety can create huge after production cost and in the worst cases a
removal of the product from the market. Furthermore, a product with issues will
inevitably damage the image of the company that produces the product.

Aspects of fail-operational in IEC 61508 [ICE10]

For the automotive industry the IEC 61508 can be seen as the “mother“ for func-
tional safety standards. In case of the ISO 26262 this is certainly the case since it
is an adaptation of the ICE 61508. Interesting is that the ICE 61508 defines the
term fault tolerance explicitly as an functional unit that needs to maintain a required
function even in the presence of failures or errors. While the ISO 26262 only includes
an explicit definition for fault tolerance in its latest 2018 edition as the ability to
deliver a specified functionality in the presence of one or more specified faults.

The IEC 61508 standard defines following techniques for HW to achieve the safety
standard [ICE10]:

• Monitored redundancy, as monitoring function for electrical components

• 16bit signature (or Cyclic Redundant Code (CRC)), as monitoring function
non-volatile memory

• Block replication, as monitoring function for non-volatile memory

• Multi-channel parallel output, as a diagnostic measure for external interfaces

• Input comparison/voting, as a diagnostic measure for external interfaces and
sensors

• HW redundancy, as a diagnostic measure for internal communication

• Transmission- and information redundancy, as a diagnostic measure for inter-
nal communication

• Switch to secondary power supply, as a reaction measure to power supply
failures

For SW the standard defines following fault tolerant architectural measures [ICE10]:

• Diverse redundancy (different types with different degree of diversity)

• Recovery blocks (see section3.1)
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• Regeneration by repetition

• Graceful degradation, meaning that the faulty parts of the SW can be deacti-
vated

• Artificial intelligence - fault correction

• Dynamic reconfiguration, meaning that in case of a HW fault, SW functions
executed by this faulty unit are allocated to another, correctly functioning
HW resource

To note here is that the IEC 61508 does not define the HW diagnostic methods
as measure for fail-operational behavior or fault tolerance. Furthermore, some of the
fault tolerance architectural measures for SW are techniques that are not highly rec-
ommended safety environment (e.g. artificial intelligence - fault correction). Adam
Schnellbach doctoral thesis “Fail-operational automotive systems“ [Sch16] further
investigates how the techniques addressed above can be implemented and are of
interest for a system that should behave fail-operational.

Aspects of fail-operational in ISO 26262 [ISO18a]

As shortly mentioned in the previous section, the ISO 26262 a standard mainly for
fail-safe systems. This is further reassured with the addition of the definition of the
term fault tolerance in the 2018 revision of the ISO 26262. Fault tolerance is defined
as the ability to deliver a specified functionality in the presence of one or more
specified faults. Interesting is that the definition from the ISO 26262 is somewhat
weaker than the definition from the ICE 61508, since the ISO 26262 uses the term
“... in the presence specified faults“ while the ICE 61508 just is more general and
uses “... in the presence of failures or errors“. Of course, the ISO 26262 defines a
concept that helps with specifying the faults.

Similar to the SAE System Safety Assessments process for aircraft, the ISO 26262
specifies a Hazard Analysis and Risk Assessment (HARA). In the HARA hazards
get identified and get an Automotive Safety Integrity Level (ASIL) from ASIL “A“
to ASIL “D“ assigned. The primary output of the HARA are the defined safety
goals with respective ASIL-s. Functional safety concepts are defined to fulfil the
safety goals. The following list summarizes the steps in a HARA [ISO18a]:

• Situation analysis and hazard identification: This step is to determine
potential hazards and evaluate their consequences for each operation mode an
“item“ might have.

• Hazard Classification: The identified potential hazards are classified based
on the estimation of probability of:

– Exposure: Defines the likelihood of an operational situation which may
lead to a hazardous event in case of a failure. The exposure ranges from
E0 extremely unusual situation to E4 highly likely situation.
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– Severity : Estimates the harm to person(s) that are at risk to receive an
injury from an occurring hazardous event that was not timely controlled.
The severity ranges from S0 no injuries to S3 fatal injuries.

– Controllability : Characterizes the ability the person(s) that are at risk to
react to a hazardous event in a timely fashion. The controllability ranges
from C0 simple controllable to C3 uncontrollable.

The hazard classification strongly depends on the use case. For example, a
perception system that is used as parking assistance won’t cause fatal injuries
on failure, where a perception system for a break assistant might will.

• ASIL Determination: Figure 2.8 shows how the before defined hazardous
event parameters S, E and C are used to define ASIL. Four ASILs are defined,
where ASIL “A“ is the lowest safety integrity level and ASIL “D“ is the highest
one. While a “quality managed“ (QM) rating signifies that the safety goal is
not severe enough to require specific regulations through the standard.

Figure 2.8: ASIL Determination [ISO18a].

• Safety goal formulation: Safety goals (SG) are determined for each evalu-
ated event from the hazard analysis. Functional safety concepts are defined to
fulfil the safety goals.
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Figure 2.9: Overall safety management according to ISO 26262:2018. [ISO18a]

The ISO 26262:2018 overall safety management cycle shown figure 2.9 gives an
overview of the most important safety activities with references to the specific chap-
ter of the ISO 26262:2018. In general, the ISO 26262:2018 gives guidance to project
independent safety management through establishing a corporate safety culture and
a project specific safety management guidance by using a safety plan, containing
the safety relevant process steps.

As seen in the figure 2.10 the project safety management part can be split into
three phases:

• Concept phase

• Production development phase

• After release for production phase

The concept phase is the first phase in the lifecycle of the safety management.
This phase contains previously mention HARA, the definition of the safety goals
and the functional safety concept. The HARA with its resulting ASIL can identify
if a fault tolerant behavior is required for a mechanism. Furthermore, with an
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Figure 2.10: Structure of requirements 26262:2018. [ISO18a]

ASIL ≥ A a fail-operational behavior is required from the mechanism. The primary
output of the concept phase are the safety goals. They are always related to a
“loos of function“ hazard. The safety concept on the vehicle architectural level are
then defined from the safety goals by determines the necessity of a fail-operational
behavior and the appropriated safe state for each safety goal.

The next phase in the lifecycle of the safety management is the product de-
velopment phase. As seen in figure 2.9 and figure 2.10 it can be split into three
parts depending on what level the technical safety concept development currently
is. Comparing the two previous mentioned Figures, the figure 2.9 has the better
illustration on how the technical safety concept definition, defined on the System
level envelops the production and safety requirements for HW and SW. Important to
note is that the defined technical safety concept can define safety mechanisms that
require an implementation on both, HW and SW. The system level also focuses on
testing the correct implementation and performances of the safety mechanism to
provide evidence of compliance with the safety goals. On the Hardware level the
technical safety requirements specification for the HW further refines the input re-
quirements, influencing the architectural and detailed design phase of the HW. Also,
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on the Hardware level is the architectural analyze and testing of the HW. Similar
as with the Hardware level, on the Software level the technical safety requirements
specification for the SW is further refined and implemented into the SW requirement
specification, which acts as a reference for the SW architecture and detailed design.
Also, on the Software level is the architectural analyze and testing of the SW.

The last phase in the lifecycle of the safety management is the after release for
production phase. An important aspect that the ISO 26262:2018 contains that is
missing from the ICE 61508 is that it is not sufficient to develop a safe system but
it also necessary to produce it as a safe system. Furthermore, it is necessary that it
can be operation and maintained safely, as well as decomposed safely after it reached
its end of lifetime.
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2.4 Reliability and Thermal Stress

The reliability of semiconductor devices can be represented by a failure rate curve
which is commonly known as the “bathtub curve“. As mentioned in Martin L.
Shooman book “Reliability of Computer Systems and Networks: Fault Tolerance,
Analysis, and Design“ [Sho02], the bathtub curve is a hazard curve that has been
known for decades now and is valid for many types of equipment’s. Looking in figure
2.11 the curve can be divided into three regions [Sho02]:

• Early Failures: Young devices often have a high failure rate due to manufac-
turing imperfections or performance marginality. This early high failure rate
tends to decrease over time. To find and eliminate early failures, manufactures
normally put the semiconductors devices under stresses such as temperature
and voltage.

• Random Failures: After the latent defects have been found and removed, the
device enters its stable operating period. Failures that occur during this period
are usual due to some unexpected excessive stress (power surge, software error,
...) or early failures that were not detected.

• Wear-Out Failures: When a device reaches the end of its inherent lifetime
it enters the wear-out period. Depending on the usage conditions the failure
rate tends to increase rapidly.

Figure 2.11: Failure Rate Curve (Bathtub Curve). [Cor17]
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2.4.1 Memory Reliability

For all computing systems the memory systems play major role in determining their
power consumption, reliability and performance. Operating system, file system
structures, program binaries, program variables and so on are constantly stored and
loaded from the main memory of a modern system. Dynamic random-access memory
(DRAM) is used by nearly any modern system and programmers rely on that that a
byte written to an address can reliably be read until it’s overwritten or the module
has been powered off. The International Technology Roadmap for Semiconductors
(ITRS) suggest a nominal DRAM cell lifetime of 3 ∗ 1016 write cycles before failure
[ITR12]. For DDR3 with a row change latency of ∼50ns, according to the JEDEC
DDR3 SDRAM standard JESD79-3C [Ass08], this would result in about 47.5 years
of constant data accessing before a failure accrues.

DRAM Device Failures

Though theoretically DRAM should be able to run reliable for yeas there are various
device-level failures mechanisms in DRAM.

• Retention Failures: Since the charge of a DRAM cell leaks over time it needs
to be refreshed periodically to prevent the DRAM cell from losing its data.
The time a cell can store data varies between each cell, the manufacturing
processes and the size of the cells. With smaller sized cells being more prone
to failure (see [FDN+01], [LJK+13], and [MWKM15]). Furthermore Patel
et al. in “Enabling the mitigation of dram retention failures via profiling at
aggressive conditions“ [PKM17] and Liu et al. in “An experimental study of
data retention behavior in modern dram devices: Implications for retention
time profiling mechanisms“ [LJK+13] show that a DRAM cell’s retention time
decreases exponentially as ambient temperature rises.

• Disturbance Failures: Beside the loos of data due to charge leaks, the data
in a DRAM cell can altered due to external events. For example, alteration due
to electrical interference between cells (see [LJK+13], [MS14], and [PKM17]).
A software example that exploits this effect is for example the RowHammer as
shown in Kim et al. work “Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors“ [KDK+14]. Another example
of disturbance failure from external events is when charged particle transfers
a part of its charge to the capacitor. The charge of a charged particle needs
to invert the state of the capacitor to change the data in a DRAM cell. This
mostly happens at higher altitudes where cosmic rays can cause such an effect
on DRAM capacitors due to reduced atmospheric protection (see [SSD+13] or
[HSS12]).
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• Endurance Failures: As mentioned above theoretically DRAM cells should
be able to endure for decades before they wear out. But the work of Wang
et al. in “What can we learn from four years of data center hardware fail-
ures?“ [WZX17] and Meza et al. in “Revisiting memory errors in large-scale
production data centers: Analysis and modeling of new trends from the field.“
[MWKM15] observed signs of DRAM endurance failures over the course of
several years. While Sridharan et al. in “Feng shui of supercomputer memory
positional effects in dram and sram faults.“ [SSR+17] shows no sign of wear out
failures after a operational lifetime of five years and Chia et al in “New dram
hci qualification method emphasizing on repeated memory access“ [CWB10]
shows that endurance failures can be forced when DRAM cells operate in and
by extreme conditions.

DRAM Failures in the wild

For this section the dissected studies will be of large-scale studies on DRAM fail-
ures fin the field, since for the functional safety aspect of this thesis the large-scale
studies of DRAM failures in the field are more helpful in regards of failure rate and
severity. Schroeder et al. in their work “Dram errors in the wild: A large-scale field
study.“ [SPW09] performed a study on Google servers over a period of 2.5 years,
and shows a relative high memory error rate across Google servers. Their study
also observes a correlation between temperature and correctable error rate. But
as seen in figure 2.12, they also observe that the effect of temperature is relatively
small when compared to the effect memory utilization has on the correctable error
rate. Furthermore, they observe that the rate of uncorrectable errors is strongly
influenced by age. [SPW09]

Figure 2.12: The left graph shows the normalized monthly rate of experiencing
a correctable error as a function of the monthly average temperature, in deciles.
The middle and right graph show the monthly rate of experiencing a correctable
error as a function of memory usage and CPU utilization, respectively, depending
on whether the temperature was high (above median temperature) or low (below
median temperature). [SPW09]
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Meza et al. observed and analyzed in their work “Revisiting memory errors in
large-scale production data centers: Analysis and modeling of new trends from the
field.“ [MWKM15] for fourteen months the memory errors in the “entire fleet of
servers“ at Facebook. The study shows, as seen in figure 2.13, that the majority of
errors are caused by the memory controller and memory channels but also that these
errors occur on only a small fraction of servers. Furthermore, their work shows that

Figure 2.13: Left hand side shows the fraction of logged errors each month that
are attributed to different types of failures. Right hand side shows the fraction of
servers hit with correctable errors each month per type. [MWKM15]

modern DRAM cell fabrication technologies have higher failure rates and that the
DIMM architecture also effects memory reliability, where DIMMs with fewer chips
and lower transfer rate have the lowest error rates. Interesting is that Meza et al.

Figure 2.14: Left hand side relative failure rate for severs with different DIMM
capacities. Right hand side relative failure rate for severs with different chip density.
[MWKM15]

[MWKM15] work compared to Schroeder et al. work [SPW09] sees no clear trends
between failure rates and CPU and memory utilization but rather a correlation of
workload types and failure rates.
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The previous mentioned work of Sridharan et al. “Feng shui of supercomputer
memory positional effects in dram and sram faults.“ [SSD+13] examines the impact
of aging on DRAM in the early lifespan of two supercomputers over multiple months.
Because both supercomputers in their work include hardware scrubbers in DRAM,
L2 and L3 caches the authors define a permanent fault when the device generates
error messages in multiple scrub intervals, and else transient fault.

Figure 2.15: Left hand side Cielo DDR3 device fault rates per month; 23 billion
DRAM hours total. Right hand side Jaguar DDR2 DRAM device fault rates per
month; 17.1 billion DRAM hours total. [SSD+13]

As figure 2.15 shows, both supercomputers experienced a constant rate of transient
faults but a declining rate of permanent faults over the observed time span.
They also took a look at the fault rate experienced by each vendor. As figure 2.16
shows, there is a substantial difference among vendors, with Vendor A having a
3.9x higher total fault rate than Vendor C. It also shows a strong variation between
transient and permanent fault rate between each vendor.

Figure 2.16: Left hand side are the operations hours per vendor. Right hand side
are the fault rates per vendor. [SSD+13]
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2.4.2 Temperature based Failures

• Thermal fatigue: Semiconductor devices are normally subjected to of re-
peated cycles of heating and cooling, be it through a changing computational
workload or a constant changing environment. Such temperature cycles cause
mechanical stress on a semiconductor device since different materials have
different thermal expansion coefficients. Over time this stress causes material
fatigue which can result in a magnitude of different failures like: hairline crack,
solder fatigue, bond-wire fracture, cracking of the die, etc. [LS14]

• Electro-migration: It describes phenomenon of material transportation caused
by the gradual movement of Ions in a current-carrying conductor. Electrons
hat are flowing as electric current collide with the Ions and cause them to mi-
grate. This leads to voids in the conductor which again increases the resistance
of the conductor due to loss of metal and ultimately will lead to disconnec-
tion. Higher temperature will increase the rate of electromigration and with
it reduces the Mean Time To Failure (MTTF). [LS14]

• Frequency, current, voltage drift: In a Semiconductor device, properties
such as frequency, leakage current, threshold voltage, device characteristics,
etc. drift due to temperature changes. Such drifts can cause malfunctions, in-
stabilities and general inconsistency in device functionality. Nowadays circuits
are designed with temperature stabilization techniques that consider the tem-
perature fluctuations a circuit encounters during their expected life time. For
example, as mentioned in the previous chapter, the retention time of DRAM
decreases exponentially as ambient temperature increases. This can be coun-
tered by adapting the periodically refresh cycle accordingly. [LS14]

• Circuit protection: The Thermally Accelerated Age Factor (TAAF) usually
rises roughly exponentially with temperature. So, it’s no wonder that some
modern circuits like CPUs are designed to reduce the thermal stress they inflict
on themselves to prolong their lifetime. Such countermeasures can be voltage
and frequency scaling as well as thermal throttling. The issue is that if the
effects of such countermeasures are not considered in the design of a device
they can lead to reduced functionality and reliability in certain situations.
[LS14]



CHAPTER 2. RELATED WORK 39

2.4.3 Temperature effects on light based Time of Flight
(ToF) devices

Even though the basic working principle of a ToF devices is quite simple, they still
can be very accurate and precise devices with the right configuration. Depending
on the use case, ToF devices come with very different configurations, range, energy
consumption, accuracy and price points. For example, depending on what frequency
and wavelength a ToF device light pulse emitters is set to, it can have different
properties in regards to accuracy, range, energy consumption, eye safety, etc.. It
usually depends on the use case for the ToF device which wavelength it uses in the
end.

Some common wavelength used in the automotive industry are around 850nm,
905nm, 950nm, 1550nm, with wavelength around 905nm and 1550nm being currently
the most discussed wavelength for LIDAR devices in the automotive industry. An-
other part that can change with the use case is the light pulse emitter. If the use
case allows it some cost-efficient devices might use LEDs instead of Lasers Diodes
as light pulse emitters.

Though this diversity makes it hard to quantify the measurement errors caused
by temperature there are some universal points for that Manufacture should watch
out for:

• Warm-Up induced drift [HK91]: As with any electric device, ToF device
experience a Warm-Up phase where the temperature of the device changes
from to environment temperature to its working temperature. The time it
takes for a device to thermal stabilize and the amount of drift can vary from
device to device. For example, Hebert and Krotkov see in their work “3-
D measurements from imaging laser radars: how good are they?“ [HK91]
experienced a range drive of around 40cm over 30 minutes as their amplitude-
modulated continuous-wave laser radar pointing at a target six meters heated
up form 21C to 45C. Interesting here is that this measurement drift is not
necessary due to a frequency shift of the light pulse emitters but can also
happen due to the other components in the ToF device. In modern ToF devices
manufactures usually embed some temperature compensation algorithms in
their products to counteract such measurement drift over time.

• Frequency shift [YWP15]: As mentioned in the previous subsection, a change
in temperature causes a frequency shift. The severity of shift depend on fac-
tors like wavelength and what light pulse emitters is used. But there are also
some other considerations to make. Yulianto et al. investigating in their work
“Temperature Effect towards DFB Laser Wavelength on Microwave Genera-
tion Based on Two Optical Wave Mixing“ [YWP15] the temperature effect
when mixing two single mode lasers with equal properties and output. When
mixing two lasers it is important to keep the temperature of the laser in order
so that the wavelength difference between the two lasers is stable. Because of
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Figure 2.17: Range measurements vary over time. The target is a sheet of cardboard
6 m in front of the scanner [HK91]

this, it requires an automatic control method that changes the temperature of
one laser so that it matches the temperature of the other laser. Another effect
discussed in the paper is that the increase in temperature results in decreas-
ing intensity of the laser output power which also needs to be controlled by
varying the current injected into the laser.

Figure 2.18: Left hand side shows the wavelength variation versus laser temperature
. Right hand side shows the optical power laser output with respect to increasing
the laser temperature [YWP15]

• Mode-Hopping [AVG15]: As shown on the left-hand side of figure 2.19,
lasers are affected by an effect called mode-hopping where the laser oscillate
between different lasing modes or wavelengths. The effect itself is temperature
independent but as Alhashimi et al. show in their work “Joint Temperature-
Lasing Mode Compensation for Time-of-Flight LiDAR Sensors“ [AVG15] the
position modes vary with changing temperature. From the right-hand side
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of figure 2.19, they concluded that for their device the manufacture did not
compensate for Mode-Hopping.

Figure 2.19: Left hand side shows the average spectral distribution for GaAsP lasers
at the nominal temperature of 21C. Right hand side shows the Dependency of the
distance measurements on the device temperature for a SICK 200 device point-
ing to a xed object in a controlled environment. The device does compensate for
temperature change but not for the Mode-Hopping effect [AVG15]



Chapter 3

Design

3.1 Overview

The goal for this thesis is the conceptually design and implementation of a software-
based Fail-Operational Environmental Perception System. In this case Software
based means that the software should detect some potential hazardous events and
react in a fail-operational way to them. The design of a simple environmental
perception system would look roughly as seen in figure 3.1.

Figure 3.1: Rough sketch of a basic environmental perception system.

As visualized in figure 3.1, the perception device would simply store the image
to the memory and calls the application. The application would fulfill some percep-
tion task like the detection of lanes, traffic lights/signs and so on. Accordance to
[ISO18a] part 3, potential hazards are identified following an analysis of the opera-
tional situations of the “item“. The potential hazards need to be categorized into
severity, probability of exposure and controllability. This categorization is used to
determine an Automotive Safety Integrity Level (ASIL) for the potential hazard.
The ASIL is assigned to the formulated safety goal(s) and the safety requirements
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are derived from the safety goals. The following sections will go through each of
these steps and explain what the thought process behind them was.

3.2 Hazard Analysis and Risk Assessment (HARA)

As mentioned before this thesis concentrates on software-based solution so the anal-
ysis will be software level. As seen in figure 3.1, the basic model is quite abstract
and as such the analysis needs to be extended depending on the actually used per-
ception device, storage and application. The following list gives a simplified HARA
with using the steps previously discussed in Chapter 2.3.2, to give a better insight
of the model:

• Situation analysis and hazard identification: Hazards that comes to
mind when looking at figure 3.1 are:

– Complete failure of one or all of the components (perception device, stor-
age, or application). This might happen due to production or design
errors in each component. The consequence is that the perception sys-
tem cannot fulfill its purposed functionality.

– Memory corruption. This means the data in the storage might get cor-
rupted or some memory cells fail for one reason or another. The con-
sequence for such a hazard is that the application might not create an
accurate enough output or in the worst case might cause the application
to crash.

– Heat is a hazard for any electronic component. The consequences of heat
range from accelerate the aging process of electronic components and
with it causing an early end of life cycle, to frequency shifting causing
inaccurate measurements of a perception system, to unexpected loss of
efficiency and computing power (e.g. some kind of thermal throttling for
self-protection of electronic components).

– Overload due to unexpected workloads. Do to issues with another com-
ponent the computational overhead of the perceptions system might be
used for another and currently more important task. This could cause
the application and the extra workload to create delayed output.

• Hazard Classification: Since this model does not define an explicit use case
the hazard classification unavoidably has to be more general. So, for all hazard
the classification will be:

– S3: In worst case fatal injuries.

– C2: Normally controllable, since an issue is detected there is normally a
cluster of other perceptive systems or a redundant system that can take
over some functionality of the failing system.
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– E2: Low probability.

• ASIL Determination: When looking at figure 3.2 the ASIL for the above
Hazard Classification is ASIL A.

Figure 3.2: ASIL Determination [ISO18a].

• Safety goal formulation: Safety goals (SG) are determined for each evalu-
ated event from the hazard analysis.

– SG1: Detect memory corruption in the storage component and react
fail-operational manner if they occur.

– SG2: Avoid heat exposure and heat generation due to excessive usage.

– SG3: Avoid high utilization due to unexpected workload and react in a
fail-operational manner.

– SG4: Avoid complete failure of components and react in a fail-operational
manner if component failure occurs.
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3.3 Safety Concept

This System seen in figure 3.1 would depend on that the memory will never fail
and the processing unit would be cool enough that it never thermal throttles and
that even over years phenomenon like electromigration wont cause any issues to the
processing unit or other components. In case of Smart Mobility, the assumption is
that each vehicle needs to run reliable for years under ever chaining thermal and
kinetic conditions. When thinking about the safety goals SG1 to SG3 there are two
simple aspects with that we could improve the concept of figure 3.1. First would be
to regulate the load on the CPU depending on its current temperature. This can
improve the longevity of the CPU and its surrounding components as well as prevent
thermal throttling in critical situation in that the CPU has to compute a high load.
The Second would be to integrate a memory module that not only corrects memory
errors but also reacts to complete memory failure of a block by shifting the data
accordingly and if no space is left reduce the image quality to let the camera image
fit to the memory. Now let us look at the reworked concept in figure 3.3.

Figure 3.3: Reworked basic environmental perception system.

Beside the CPU we see that following two blocks added to figure 3.3:

Memory Manager receives the raw data from the camera and stores it to the mem-
ory. It should be able to verify the integrity of the memory and handle memory
errors accordingly (fulfill SG1). On a successful storage it should signal the
System Control part. Furthermore, it should be able to reduce the resolution
of the received image to a desired fidelity (first part to fulfills SG2 and SG3).

System Control main task is to configure the CPU, Camera, and Memory Man-
ager in regards to Frequency, Frame Rate and Resolution depending on the
current CPU temperature and the configured options (second part to fulfills
SG2 and SG3). The desired configurations are assumed to come from outside
the model and set depending on the current situation the desired target frame
rate, resolution and system temperature.
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The safety goal SG4 cannot be controlled by the perceptions system itself. It
needs to be handled by the above lying “item“, with redundancy or workload dis-
tribution to other systems.

3.3.1 Software Concept

With the safety goals SG1-SG4 and the reworked basic system sketch seen in figure
3.3 the next step is to define the basic software architecture to achieve the desired
functionalities.

Logical View

Here we take a simple look at what each part of the software system should provide
as terms of services. From the basic system sketch we can see that the software part
of the prototype can roughly segmented into four different parts. As seen in figure
3.4 the logical segmented software services are:

• System Control : The main software component of the prototype. Its goal
is to connect the software parts with each other, as well as situational con-
figure them. Depending on the current settings and CPU temperature the
System Control component should be able to configure the other components
accordingly.

• Communication: The communication component of the prototype should be
able the to connect to the Control Unit. When connected it should send the
results from the application to the control unit and receive setting changes
from it. In case of a setting change, the communication component should
notify the system control component about the changes.

• Memory Manager : The memory manager component should process the data
it receives from the camera. Processing in this case means to store the data
depending on the provided settings and handling of memory failures.

• Application Example: The application component should contain a simple
example on how the data can be processed. It is used for testing purpose and
should be simple to replace.

Procedural interworking

Here we take into account some non-functional requirements and show the workflow
of the system. The activity diagram seen in figure 3.5 gives a rough overview of the
internal workings of each class and how they interact with each other and the envi-
ronment. As seen in figure 3.5 when the prototype is initialized it reads its desired
default configuration form a configuration file and initializes the classes accordingly.
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Figure 3.4: Logic View Software Architecture.

After the initialization there are following five asynchronous parts of the prototype
running simultaneously:

• System Control classes : As the name might suggest the System Control classes
are built to handle the System Control requirements established in the logic
view. The classes contain all configuration related data and a thread initialized
on startup periodically checks the current system status (Current Settings,
Temperature, CPU Frequency, CPU Utilization, etc.) and applies changes
depending to the System depending on the current status and configuration.
To note is that since the checks are performed periodically, configuration send
by the control unit are not applied immediately.

• Camera and Memory Manger Class : This part of the prototype manages each
frame the camera records. After the camera is started it sends the pointer to
the raw data to the function that was registered by the startup configuration.
In this case it is the “onNewData“ function of the Memory Manger class. The
function stores the raw data into a different buffer while checking the integrity
of the stored data and handles errors according to the current configuration.
Depending on the set configuration from the system control part of the proto-
type, the function might also decrease the frame size. After the frame is ready
the application part of the prototype is signaled that a new frame is ready. To
note here is depending on the image size and current configuration this part
of the prototype can be quite computationally intensive.

• Application Class : The application class is an easy to replace class that cur-
rently is creating a gray Image, depth Image and an angled view onto the 3D
Point Cloud received form the Memory Manger Class. The goal is to have
a class that is easily adapted to different use cases. The current flow of the
application class is that the main thread waits for a signal from the Memory
manager class that a new image frame is ready and calls the processing func-
tion of the application. After processing the frame, the communication class
is called to send the results to the control unit
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• Communication Class : The communication class is the bridge between the
prototype and the control unit. It sends the current frames, temperature,
CPU information and memory information to the control unit and receives
the desired configuration from it. The receiving part of the communication is
its own thread that waits for connection requests and data from the control
unit. Configuration changes received by the control unit are set in the system
control classes and will be applied with the next periodical check. The sending
part is a function called by the application. To note is that currently only one
connection can be active at a time and it should be taken care that the time
needed to send the data does not exceed the frame time.

• Control Unit : In the prototype example the control unit is the UI that visu-
alizes the data. In a working case scenario, the control unit would be a device
that is connected and receives data from multiple camera applications and
processes the data according to the devices purpose.

Figure 3.5: Process View Software Architecture.
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3.3.2 Asynchronous Parts

From figure 3.3 in section 3.1 we see that there are some parts of the model that
can (and should) run parallel to each other. Ass seen in figure 3.6, apart from
the obvious asynchronous parts Camera, CPU and Storage access, it shows that
the System Control and Communication run mostly independent from each. The
figure shows that the dependent parts of the concept is the Application call from the
System Control and the communication from the Camera to the Memory Manager.
The Camera should not wait for the Memory Manager and the Memory Manger
should only store data into the Storage according to the configuration and signal
System Control. System Control should run independent since it needs time for a
configuration change to have a measurable impact on the CPU temperature.

Figure 3.6: Parallel running threads of the environmental perception system.

3.3.3 Memory Handling

As already mentioned, the Memory Manager module should be able to check the
memory integrity and reduce the image size if needed. With the first part, the
checking of the memory integrity, is not the protection of malicious software or
physical attacks on the memory meant but rather a solution similar to ECC memory.
The assumption here is that the Memory Manger will get for each single pixel a
complete set of data (e.g. gray value, color value, distance, position, certainty of
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measurement, ...) with a check sum at the end. When copying the data to the
memory a new checksum is calculated and compared to the received checksum.
Depending on the configuration on a failing check the memory section should be
dropped or the write process should be tried again. On a dropped memory section,
the data is simple written to the next free section. It’s assumed that a dropping
memory sections is a very rare event. To keep track on which memory section is in
use, an array is needed that stores the indices of the used memory sections. Figure
3.7 shows an example of a memory block before and after a copy processes with
multiple failures and some dropped memory sections.

Figure 3.7: Data shifted in memory block due to memory integrity failures.

Another task of the Memory Manger is to reduce the image size if needed. A
simple method is shown in figure 3.8, where a reduction factor dictates which n-th
pixel gets actually stored into the memory. Of course, this method can easily be
improved by using a scaling filters instead of simply taking a single point. This is
especially interesting when we consider that a part of the received data are 3D-Points
from a point cloud.

Figure 3.8: Image size reduction based on a reduction factor.



Chapter 4

Implementation

4.1 Development Environment

Figure 4.1 gives an overview about the composition of the development environment
as well as the relation of the hardware and software parts used in the development
of the prototype. The following subsections will explain the hardware and software
parts that are seen in figure 4.1.

Figure 4.1: Hadware & Software relation.

4.1.1 Hardware

• Raspberry Pi [Fou19]: is one of the most well-known single-board computers.
It comes in different configurations, sizes and versions and officially supports a
Debian Linux based operating system called Raspbian. As seen in figure 4.1,
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the model used as an execution device for the application and the extended
modules is the Raspberry Pi 4B. A reason why the Raspberry Pi 4B was
chosen for this thesis was because it supports USB 3.0 which is needed for the
camera device. Another reason why the Raspberry Pi 4B was chosen is that
even though it has good performance for its price, it also has some thermal
issues in it current state. The SoC on the Raspberry Pi 4B is a Broadcom
BCM2711 is a quad-core cortex-A72 (ARM v8) 64-bit SoC and starts thermal
throttling at 80◦C, which can be reached by extended heavy usage. This model

Figure 4.2: Raspberry Pi 4B.

has following core specifications:

– Broadcom BCM2711, ARM Cortex-A72 64-bit SoC @ x 1.50GHz

– 4GB LPDDR4-2400 SDRAM

– 2.4 GHz and 5.0 GHz IEEE 802.11a/b/g/n/ac WLAN, Bluetooth 5.0

– 1 Gb LAN

– 2 USB 3.0 ports; 2 USB 2.0 ports.

– Raspberry Pi standard 40 pin GPIO header

– 5V/3A DC power input

• CamBoard pico monstar [pmd18]: Is a USB powered, high-end 3D camera
development kit from pmd and is used as the camera for this thesis. The
CamBoard pico monstar is a Flash Time-of-Flight (ToF) camera and with 352
x 287 pixels it has a relative high resolution for at ToF camera. Furthermore,
the camera has a configurable frame rate from 2 FPS to 60 FPS. This flexibility
allows for a good use case selection. Another advantage of the camera is that
pmd provides a powerful software suit called Royale for the camera. Royale is
a cross-platform SDK containing all the logic to operate the 3D camera. As
seen in figure 4.1 the pico monstar is connected to the Raspberry Pi 4B via
USB 3.0. For the camera to work correctly the appropriate driver, which are
provided by the Royale SDK, need to be installed on the system.
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Figure 4.3: CamBoard pico monstar.

This model has following core specifications:

– IRS1125C Infineon REAL3 3D Image Sensor IC based on pmd intelligence

– 0.5m 6m measurement range (Framerate dependent)

– Up to 60 fps (3D frames) Framerate

– 352 x 287 (100k) px Resolution

– 4x VCSEL, 850 nm, Laser Class 1

– 4.5W max for IRS chip, illumination and USB3.0

• Laptop: Is a simple of the shelf Lenovo Thinkpad E495. The GUI running on
the laptop is used to simulate the communication between perception system
and overlying system, as well as to gather data about the current status of
the Raspberry Pi 4. As seen in figure 4.1 the Raspberry Pi 4B communicates
with the laptop with TCP/IP over an Ethernet connection. The laptop can
be replaced with any other device capable of running the GUI.

4.1.2 Programming Languages

The primary programming language for the implementation is C++. C++ was
selected simply because a preexisting C++ example of the Royale SDK already had
the form as in figure 3.1 and the decision was made to use this example as basis.
Secondary programming language is TIScript (an extension of JavaScript) with some
HTML/CSS elements to realize the GUI.
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4.1.3 Libraries and SDKs

The application makes use of following libraries:

• pmd Royale SDK [pmd19] provides the logic to operate pmd-based ToF
cameras. The Royale SDK has cross-platform compatible and runs on Win-
dows, Linux for ARM based systems, Ubuntu Linux, macOS and Android.
This allowed us to develop and test the prototype in Visual Studio under a
Windows operating system and deploy the solution onto the Raspberry PI 4B
which runs a Linux operating system for ARM based systems. The solution
created with the Royale SDK is to communicate with the camera and configure
it if needed.

• Boost [lib19] is a powerful collection of free peer-reviewed portable C++
source libraries. The prototype uses the Asio library [Koh19] contained in the
Boost collection which can be used to created simple servers and clients that
are able to handle TCP/IP requests. For the thesis, the Asio library is used
for the TCP/IP communication between Raspberry Pi 4B and the GUI, which
consists of configuration data, system status and captured frames.

• JSON.hpp [Loh19] is a simple to use json file parser for C++ written by Niels
Lohmann. It was chosen because its implementation is uncomplicated, since it
is one header file contains all functionality and because it provides a clean way
to parse json files. In the prototype it is used to read the startup configuration
file “config.json“, which contains the configuration for the camera and the
application running on the Raspberry Pi 4B

• Sciter [TIS19] is a embeddable HTML/CSS/script engine for modern UI de-
velopment. It is used to create the GUI for this thesis. The advantage of the
Sciter engine is that a GUI can be defined with HTML and CSS which allows
a quite uncomplicated and fast GUI development. Furthermore, for computa-
tionally intensive task, it is capable to of callbacks between the GUI and native
code. Sciter allows for easy deployment by using a single compact DLL which
is placed right next to the executable of the application. Because of this the
Sciter engine seems to be a quite elegant solution to use for the GUI prototype
especially when comparing it to other solutions that allow GUI definition with
HTML and CSS like for example electron, which runs the Chromium browser
engine in the background.

• OpenCV [IC19] (Open Source Computer Vision Library) is an open source
computer vision and machine learning software library aimed at real-time ap-
plications. Since OpenCV is a cross-platform it is a good fit for this thesis as
it was used for the Application part of the prototype and in the GUI. In the
prototype OpenCV is used in the example Application part to create the depth
image, gray image and a rotated point cloud. In the GUI OpenCV is used to



CHAPTER 4. IMPLEMENTATION 55

handle the incoming images form the prototype so they can be displayed in
the GUI.

4.1.4 Toolchain Overview

The prototype and the GUI where both develop using Microsoft Visual Studio Com-
munity 2019 edition which was running naively on a Microsoft Windows 10 operat-
ing system. For future projects that might use parts of this code, it is not necessary
to use Visual Studio to change and compile the code but it provides a good starting
point since the Visual Studio project files already contain the right structure. One
thing to take care of when using the Visual Studio project files is that the path to
the external libraries is updated accordingly. Thanks to the cross-platform capabil-
ities of all the libraries and SDKs used in the development, it is possible to write
and debug the code for the prototype and the GUI on a Windows machine and later
compile the code with a simple makefile on the Raspberry Pi for further testing. In
the actually development the basic interaction between the prototype and the GUI
was tested on the same machine before deploring the code to the Raspberry Pi for
a more in depth testing. In general, any environment can be used for development
and debugging the prototype and the GUI so long as one is careful to link the right
versions of the shared libraries when developing and knows that the GUI can look
significantly different when running it on different operating systems.

Figure 4.4: Project File Tree.

Figure 4.4 shows a shortened file tree of the prototype folder. As seen in the figure
the naming scheme of the files does not completely correlate with software concept
discussed in Chapter 3. The example application is stored in the ApplicationEx-
ample.cpp. The CamDataManager.cpp handles the incoming data from the camera
and contains the memory manager. The CameraInfo.cpp and CameraInit.cpp are
provided by the pmd Royale SDK and are used to print information and initialize
the camera. The prototype.cpp contains the main and start up procedure of the
program. The SystemAsyncServer.cpp contains the communication part of to the
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gui. The SystemControl.cpp, SystemData.cpp and SystemSetting contain the sys-
tem control part of the program for general control functionality, data handling and
settings handling.
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4.2 Class Design

The first set of classes where derived from the concept seen in figure 3.3 and further
refined as the development of prototype advanced. Figure 4.5 shows a simplified
class diagram without methods or variables. As seen in figure 4.5 the classes of the
prototype can be summarised into following sections:

• System Control section:

– SystemControl: The logic part of the prototype is handled by the Sys-
temControl class. It contains the decision making part of the prototype.
Its main task is to periodically check the current status of the system re-
garding temperature, utilized frame rate and CPU utilization. Depending
on the user defined settings configuration it changes the image resolution,
set frame rate or CPU frequency. As seen in figure 4.5 the SystemControl
class connects the Memory Manager and the Communication part of the
prototype.

– SystemSetting: In the setting part of the prototype are all settings
stored that are defined by the user on startup or through the GUI. The
idea of the SystemSetting class and its parent classes was to split off
the handling of user defined data and application defined data. The
SystemSetting classes mostly consist of getter and setters.

– SystemData: The SystemData part of the prototype handles the data
that the prototype creates and sets. Furthermore, compared to the Sys-
temSetting it contains some algorithm to update existing data or generate
new data from the received data.

• Communication:

– SystemTcpServer: Creates the communicator for the prototype. Its
task is to accept incoming connections and create a new SystemTcpCon-
nection to handle incoming requests from the GUI and send an appropri-
ate answer.

– SystemTcpConnection: The communication part of the prototype.
Its task is to communicate with the GUI. It handles incoming requests
from the GUI and send an appropriate answer.

• Memory Manager:

– CamDataManger: This class handles the incoming data from the cam-
era and adapts them according to the set settings. Depending on the set-
tings set by the SystemControl class the resolution of the received image
is reduced before it gets stored to the memory. Furthermore, the user has
the option to enable a memory control code that checks the integrity of
the stored data.
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• Application:

– ApplicationExample: This class contains a simple example where a
gray, depth and point cloud image are created from the data. To note is
that only the gray and depth image are visualized in the GUI.

Figure 4.5: Class Diagram (Simple).
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4.3 Program Flow

The following subsection takes a closer look at the program flow for certain parts of
the prototype.

4.3.1 Startup Program Flow

Figure 4.6 visualizes the sequence on Startup. First System Control, Camera and
Application are initialized. After that the configurations read form config.json file
are set for System Control and the Camera Memory Manager is initialized accord-
ingly. Default configurations are used if the config.json file does not exist. In the
next step the camera parameters (frame rate, resolution, lens parameters) are read
and the Memory Manger is set as data listener for the camera. After that the
threads for communication, periodical device checks and signal wait are initialized
and started. Finally, the capturing is started and the and the program flow changes
as described in the next section.

Figure 4.6: Start Up Execution Sequence.
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4.3.2 Single Frame Program Flow

Figure 4.7 visualizes the sequence for a single frame. The camera calls the onNew-
Data() function with a pointer to the raw data after each captured frame. The
Memory Manager locks the access to the memory and starts an execution timer.
After that the Memory Manager copy the copies and checks the integrity of the
memory. According to what the current configuration is the Memory Manager also
changes the image resolution at this point. When the image is successfully stored in
the memory the Memory Manager wakes up the System Control signal thread and
unlocks the memory lock. After being woken up by the Memory Manger the System
Control locks the memory and calls the Application to process the image. When the
Application is finished processing the image the System control sends the finished
image to the Control Unit (in this case the GUI). Finally, the System Control stops
the timer started by the Memory Manger, unlocks the memory and goes back to
sleep, waiting for the next signal from the Memory Manager.

Figure 4.7: Single Frame Execution Sequence.
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4.3.3 Periodically System Status Check Program Flow

Figure 4.8 visualizes the sequence for a periodical system status check. When the
thread in System Control wakes up it reads the current CPU temperature and cal-
culates the temperature trend with respect to previous readings. Furthermore, it
calculates the actually utilized frame rate and might change the configured frame
rate of the camera. Thereafter the thread processes if changes are needed for con-
figured Frame Rate and CPU frequency depending on the current configured option
from the GUI, temperature trend, utilized frame rate and CPU utilization. De-
pending on result the thread configures the Camera, CPU and Memory Manager
accordingly. Finally, the thread goes back to sleep for a predefined amount of time.

Figure 4.8: Periodically System Status Check Execution Sequence.
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4.3.4 Server Receives Message Program Flow

Figure 4.9 visualizes the sequence when the prototype receives a message form the
GUI. The fixed sized incoming message from the GUI gets buffered and processes in
the communication part of the prototype. The message contains the current desired
configuration and a request flag on what data the GUI wants from the prototype.
Depending on the request, data gets poled from the System Control. Finally, the
communication part sends back the desired data to the GUI.

Figure 4.9: Server Receives Message Execution Sequence.
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4.4 Graphical User Interface

The GUI was originally developed for debugging purpose and to better visualize
the status of CPU temperature and set Frame rate. It later on evolved to the
main interface to configure the application. The GUI was realized with the help of
Sciter engine API. As already mentioned in the Libraries and SDKs section, Sciter
allows GUI definition with HTML and CSS. The computational part of the GUI
is handled through JavaScript and simple callbacks to the C++ that handles the
server communication and readies the incoming data for visualization.

Figure 4.10: Sections of the GUI.

As seen in figure 4.10, the GUI is divided into following four sections:

Option Section: The option part of the GUI allows to configure desired temperature
target, the desired frame rate, a minimum and maximum resolution as well as
three options for further granularity on the behavior of the prototype. Though
these settings can be changed any time, it depends on the update cycle how
fast the prototype applies the changes. The effects of the tree Boolean options,
Ignore Target Temperature, Ignore Target Resolution and Ignore Target Frame
Rate can be seen in figure 4.1. Also, in the option section is the Device IP
Address field where the IP address of the device running the prototype is
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entered. The run and stop buttons then connect/disconnect to the device.
After a connection to the prototype is established the GUI periodically sends
request data for the charts and memory view and the prototype sends after
each frame the resulting image. The testing version of the GUI also contains a
start recording and start test run button which generate a CSV file containing
the data visible in the GUI with time stamp.

Images Section: Displays the gray and depth images that the application creates in
their current resolution. The text above the image displays what the current
resolution of the images is. Compared to the charts and memory section of the
GUI, the image section receives the images without sending a request for it
after each frame. Meaning that the image section is a live feed of the processed
images.

Charts Section: Displays four charts that show the last 120 data points received by
the application in the last 720 seconds (6 minutes). So, the GUI sends every
three seconds a request to the prototype for a data update. The four charts
see in figure 4.10 are sectioned for:

• Temperature information: Displays the desired temperature set by the
GUI in blue, the current temperature of the CPU in red and the tempera-
ture trend in green. The temperature trend line is generated from the last
30 temperature readings and projected onto the last 10 data points. The
goal of the line is to visualize how the temperature behaved in average
over the last 30 seconds. This is interesting when the device is exposed
to high temperature fluctuations.

• Frame rate: Displays the current configured frame rate of the camera
in blue as well as the frame rate utilization in green. The Frame rate
utilization is the number of frames that where actually processed by the
application on average over the last 3 seconds.

• CPU frequency: Displays the current set CPU frequency of the device in
blue and the current CPU utilization in green.

• Memory usage: Displays the free memory in blue, the in use memory in
green and the failed memory in red. The free memory is the memory
allocated for image storage that is currently not used. While the in-use
memory is the memory that is currently used (which means that the
image is stored on it). The failed memory is the memory of the allocated
image storage that won’t be used by the prototype anymore.

Memory Visualization Section: This section visualizes the memory section that is
allocated for the images of each frame. Depending on the granularity each
block can represent a single structure that contains all information of a pixel
or a cluster of said structures. It is possible to step into a cluster of structures
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by clicking on the corresponding block. The blocks are individual color coded
to visualize their status. Blue means the block is free/unused, green means
the block is used and there is no issue with it, yellow means that the block is
in use but there were some issues and red means that the block is considered
as have being failed and that it is not used any more. Also, in this section
is the option enable/disable the software ECC and the percentage of memory
failure for the test run.

Ignore Target
Temperature

Ignore Target
Resolution

Ignore Target
Frame Rate

False False False
Reduce resolution and frame rate till

CPU temperature reaches equilibrium.

False False True
Reduce frame rate till CPU temperature

is below the target temperature.

False True False
Reduce resolution till CPU temperature

is below the target temperature.

False True True
Reduce frame rate and resolution till CPU

temperature is below the target temperature.

True False False

Set resolution and frame rate to their

defined maximum. The image resolution

gets reduced if frame rate is below

50 percent of the set target frame rate.

True False True
Set resolution to it’s defined maximum.

Then try to level out CPU temperature.

True True False
Set frame rate to it’s defined maximum.

Then try to level out CPU temperature.

True True True
Reduce resolution and frame rate till

CPU temperature reaches equilibrium

Table 4.1: The effect of the Boolean options in the GUI.



Chapter 5

Experimental Results

The focus of this chapter is the description of the different test cases that have been
executed and the discussion of their individual result(s). The test cases described
in this chapter will be a mix of testing the functionality of the prototype and tests
that shall show the fulfillment of the safety goals defined in Chapter 3.2. Figure
5.1 shows the test environment and hardware used for testing. The description of
the hardware can be found in the Section 4.1. As seen in figure 5.1 the Raspberry
PI 4B was tested with a 3D printed plastic enclosure on. The enclosure has some
ventilation holes but no active cooling was used for testing.

Figure 5.1: Prototype Setup.

66
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5.1 Test Cases

The list below describes the executed test cases in regards of test scenario, test
execution and the expected result. The test names for the settings of the GUI
Boolean options, as seen in Table 4.1, are shorten versions of their configuration in
the form of GUI {T/F}{T/F}{T/F}. For example, GUI TFT would means that
the option Ignore Target Temperature is set to True, Ignore Target Resolution is
set to False and Ignore Target Frame Rate is set to True. Following test cases have
been executed:

• GUI FFF & GUI TTT:

– Scenario: Reduce resolution and frame rate till CPU temperature reaches
equilibrium.

– Execution: Start with temperature around target temperature. Set all
three Boolean options to false. Around 20 minutes test Execution time.
Target Temperature set to 70◦C. Target frame rate set to 10 FPS.

– Expected Result(s): The prototype changes resolution and frame rate of
the camera such that the temperature of the device doesn’t exceeds the
target temperature with defined hysteresis.

• GUI FFT:

– Scenario: Reduce frame rate till CPU temperature is below the target
temperature.

– Execution: Start with temperature around target temperature. Set Ig-
nore Target Frame Rate to true and the other options to false. Around
20 minutes test Execution time. Target Temperature set to 70◦C. Target
frame rate set to 10 FPS.

– Expected Result(s): The prototype changes only the frame rate of the
camera such that the temperature of the device doesn’t exceeds the target
temperature with defined hysteresis.

• GUI FTF:

– Scenario: Reduce resolution till CPU temperature is below the target
temperature.

– Execution: Start with temperature around target temperature. Set Ig-
nore Target Resolution to true and the other options to false. Around
20 minutes test Execution time. Target Temperature set to 70◦C. Target
frame rate set to 10 FPS.

– Expected Result(s): The prototype changes only the resolution of the
camera such that the temperature of the device doesn’t exceeds the target
temperature with defined hysteresis.
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• GUI FTT:

– Scenario: Reduce frame rate and resolution till CPU temperature is below
the target temperature.

– Execution: Start with temperature around target temperature. Set Ig-
nore Target Resolution and Ignore Target Frame Rate to true and the
other options to false. Around 20 minutes test Execution time. Target
Temperature set to 70◦C. Target frame rate set to 10 FPS.

– Expected Result(s): The prototype changes resolution and frame rate of
the camera such that the temperature of the device false below the target
temperature.

• GUI TFF:

– Scenario: Set resolution and frame rate to their defined maximum. The
image resolution gets reduced if frame rate is below 50 percent of the set
target frame rate.

– Execution: Start with temperature around target temperature. Set Ig-
nore Target Temperature to true and the other options to false. Around
20 minutes test Execution time. Target Temperature set to 70◦C. Target
frame rate set to 10 FPS.

– Expected Result(s): The prototype changes resolution and frame rate of
the camera to their defined maximum. The temperature gets ignored.
If the device temperature reaches 80◦C the effect of thermal throttling
should be visible in the utilized frame rate.

• GUI TFT:

– Scenario: Set resolution to its defined maximum. Then try to level out
CPU temperature by changing the frame rate.

– Execution: Start with temperature around target temperature. Set Ig-
nore Target Resolution to false and the other options to true. Around
20 minutes test Execution time. Target Temperature set to 70◦C. Target
frame rate set to 10 FPS.

– Expected Result(s): The prototype changes resolution of the camera to
its defined maximum. The frame rate of the camera is changed such that
the temperature of the device doesn’t exceeds the target temperature
with defined hysteresis.

• GUI TTF:

– Scenario: Set frame rate to its defined maximum. Then try to level out
CPU temperature by changing the resolution.
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– Execution: Start with temperature around target temperature. Set Ig-
nore Target Frame Rate to false and the other options to true. Around
20 minutes test Execution time. Target Temperature set to 70◦C. Target
frame rate set to 10 FPS.

– Expected Result(s): The prototype changes the frame rate of the camera
to its defined maximum. The resolution of the camera is changed such
that the temperature of the device doesn’t exceeds the target temperature
with defined hysteresis.

• Memory Failure:

– Scenario: The memory cells of the device fail one after another.

– Execution: Set Ignore Target Temperature to true and the other options
to false. Define ECC memory error detection and set memory failure rate
to 100 percent in the GUI. The device temperature has no importance in
this test. Test ends if resolution is below the configured minimum.

– Expected Result(s): The prototype changes the resolution of the camera
to its defined maximum. Thereafter one memory error after another gets
detected and the image resolution starts to degrade.

• Cool down CPU Temperature:

– Scenario: The device current temperature is above the target tempera-
ture, including the hysteresis. See how long it takes for the device to
reach the target temperature.

– Execution: Start with temperature at least 5◦C above target temperature
with hysteresis. Set all options to false. Let test run for around 20
minutes.

– Expected Result(s): The prototype changes the resolution and the frame
rate to its minimum till it comes close to the target temperature. Then
the prototype will step wise increase the frame rate and resolution till
the device temperature reaches equilibrium.

• Simulate Drive at Test Track:

– Scenario: Simulate a test drive for a predefined test track on a city street,
highway and country road.

– Execution: Create a CSV file to simulate the test drive. The file contains
the settings (target temperature, frame rate, resolution, options) for each
read type (city street, highway and country road, ...) and a list of roads
with road type and distance to drive on them.

– Expected Result(s): See the behavior of the prototype when it changes
between different configuration depending on the road that is currently
simulated.
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5.2 Test Procedure

Figure 5.2: Test Procedure Sketch.

Figure 5.2 gives a general overview on how the test results seen in the Section
5.3 Results where produced. The following points give a more detailed description
on the parts seen in figure 5.2:

• The Initialize Hardware step contains task like, connect the pico monstar
camera to the Raspberry Pi via USB, connect the Raspberry Pi to the Laptop
via Ethernet and making sure that current temperature of the Raspberry Pi
corresponds to the current test case and if not let it heat up or cool down.

• The Initialize Software step contains task like, start the prototype on the
Raspberry Pi, start the GUI of the on the Laptop and connect to the GUI
prototype running on the Raspberry Pi. Finally set the configuration in the
GUI corresponding to the current test case.

• As its name states, the Start Recording step starts the recording of the test.
Of course, the recording should only be started after hardware and software
are in their corresponding testing state. The recording task itself is handled
by the GUI.
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• The GUI part for the testing is quite simple. Every three second the GUI
sends it current configuration to the prototype while requesting the current
status of the CPU and Frame Rate as well as the last processed frame itself.
Since the GUI handles the recording task of the test the received data are not
only displayed but also stored into a csv file for further use.

• The Prototype part of the testing can be split into three general parts:

– The Communication part handles the communication with the GUI. It
stores the settings it received from the GUI, so that the Configuration
part can use them. It sends back the CPU and Frame Rate data collected
by the Configuration part as well as the last frame created by the Frame
Processing part.

– The Configuration part wakes up every second to gather data like tem-
perature, utilization and frequency form the CPU as well as the current
frame rate by calculating how many frames got processed since the last
time it woke up. Depending on the collected data and the current con-
figuration the Configuration part might change some settings of the pico
monstar camera.

– The Frame Processing part simply waits till the pico monstar camera
captures a new frame and sends it to the Memory Manager. After the
Memory Manger stores the frame according to its current configuration
it calls the application to further process the frame.
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5.3 Results

This section shows and discuss the results of the previous defined test cases. The
figures seen in this section are marked with points of interest (POI) and region of
interest (ROI) which will be discussed in more detail.

5.3.1 GUI FFF & GUI TTT:

Figure 5.3 shows a 25-minute run, containing around 500 data points. As seen
in figure 5.3 the Prototype was able to keep the temperature between the target
temperature and the top hysteresis of 3◦C (dashed blue lines). POI 1 marks the
point where the temperature went above the target temperature with hysteresis. As
seen in the frame rate chart and image size chart of the figure a single overstepping
of the boundary is not enough to trigger a frame rate and image size reduction.
Instead ROI 1 marks the region where a steady increase of temperature is visible
and after it passed a certain threshold the frame rate and the image size have been
decreased. The ROI 2 marks a region where the temperature strongly fluctuated
and with it the frame rate and image size. The test run ended with a set frame rate
of 9 FPS and a resolution of 25 percent (176x144 pixels) of the original image size.

Figure 5.3: Result Chart test case GUI FFT and GUI TTT.
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5.3.2 GUI FFT:

Figure 5.4 shows a 25-minute run, containing around 500 data points. As seen in
figure 5.4 the Prototype was able to keep the temperature well below the target
temperature. Since this option ignores the configured frame rate, the frame rate
is set to its minimum of 2 FPS and ignores the target frame rate of 10 FPS. As
seen in ROI 1 this causes a first steep decline below the hysteresis of the target
temperature and with this decline the frame rate is increased twice to keep the
temperature between target temperature and hysteresis. The test run ended with a
set frame rate of 4 FPS and resolution of 100 percent (352x287 pixels) of the original
image size.

Figure 5.4: Result Chart test case GUI FFT.
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5.3.3 GUI FTF:

Figure 5.5 shows a 25-minute run, containing around 500 data points. As seen in
figure 5.5 the Prototype was able to keep the temperature between the hysteresis of
3◦ and the target temperature. Comparing the result to the one of the GUI FFT test
it is clearly visible that the frame rate has a higher impact one operating temperature
than image size. But this impact might change depending on how computationally
intensive the image processing part of the application is. Also compared with the
GUI FFT result where the frame rate is increased twice, the image size is never
increased since the temperature never falls low enough. The test run ended with a
set frame rate of 10 FPS and a resolution around one percent (30x24 pixels) of the
original image size.

Figure 5.5: Result Chart test case GUI FTF.
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5.3.4 GUI FTT:

Figure 5.6 shows a 25-minute run, containing around 500 data points. As seen in
figure 5.6 the Prototype was able to keep the temperature well below the target
temperature. The frame rate and resolution were kept at minimum the entire run.
The note here is that even with a very low computational load the device takes
a significant time to cool down after reaching a certain disparity between ambient
temperature and device temperature. Which will be further visualized in the test
case Cool down CPU Temperature.

Figure 5.6: Result Chart test case GUI FTT.
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5.3.5 GUI TFF:

Figure 5.7 shows a 25-minute run, containing around 500 data points. As seen in
figure 5.7 the frame rate for this test was set to 15 FPS compared to the 10 FPS
in the previous tests. The figure visualizes how the utilized frame rate in the frame
rate chart drops as the device reaches and rises above the 80◦C mark. Also visible
in the figure is that even when the device thermal throttles he temperature still
continues to trend upwards. The test run ended with a set frame rate of 11 FPS
and a resolution 100 percent (352x287 pixels) of the original image size.

Figure 5.7: Result Chart test case GUI TFF.
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5.3.6 GUI TFT:

Figure 5.8 shows a 25-minute run, containing around 500 data points. The behavior
seen in figure 5.8 is very similar to what the test run for GUI FFT showed. This
is not very surprising since in the test run for GUI FFT it was already visible that
by reducing the frame rate it’s possible to keep the temperature below the target
temperature. Since this option ignores the configured frame rate, the frame rate is
set to its minimum of 2 FPS and ignores the target frame rate of 10 FPS. As such a
change causes the temperature to drop rather quickly the frame rate gets increased
again. The test run ended with a set frame rate of 5 FPS and a resolution 100
percent (352x287 pixels) of the original image size.

Figure 5.8: Result Chart test case GUI TFT.



CHAPTER 5. EXPERIMENTAL RESULTS 78

5.3.7 GUI TTF:

Figure 5.9 shows a 25-minute run, containing around 500 data points. As seen in
figure 5.9 the temperature is ignored and increases above the target temperature
with hysteresis. The slope of the temperature increase is not as steep as in the
GUI TFF test case but the temperature is still steadily increasing. At the set frame
rate the temperature did not level out, even with the image resolution set to its
minimum. Still at the end of the test run the temperature was below the 80◦C
mark. The test run ended with a set frame rate of 15 FPS and a resolution around
one percent (30x24 pixels) of the original image size.

Figure 5.9: Result Chart test case GUI TTF.
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5.3.8 Memory Failure:

Figure 5.10 shows a 1 minute and 30 seconds run, containing around 30 data points.
The figure 5.10 shows how the image size decreases step by step as the portion of
failed memory blocks increases. The images resulting from the image size reduction
can be seen in figure 5.11.

Figure 5.10: Result Chart test case memory failure.
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Figure 5.11: Step by Step image size reduction. From top to bottom: Gray image,
depth color image and point cloud
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5.3.9 Cool down CPU Temperature:

Figure 5.12 shows a 15-minute run, containing around 325 data points. As seen
in figure 5.12 with an aggressively reduction of frame rate and image resolution
the device manages to cool from around 80◦C to below 73◦C in about 3 minutes.
Also seen in the figure is that after the temperature starts to drop below the target
temperature the prototype increases the frame rate and image resolution again. The
test run ended with a set frame rate of 7 FPS and a resolution of around two percent
(51x41 pixels) of the original image size.

Figure 5.12: Result Chart test case cooling down.
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5.3.10 Simulate Drive at Test Track:

Figure 5.14 shows a 45 minute run, containing around 850 data points. The figure
5.13 is a map snipped containing the test track.

Figure 5.13: Road map of the simulated drive.

As seen in figure 5.13 and figure 5.14 the run can be roughly segmented into
three parts:

• City: The simulated drive starts on a city road. In a city environment the
driving speed is relatively low (around 50km/h) but traffic scenarios can be
very complex. This is why it was decided to priorities image resolution over
frame rate in this case, so that the complex scene could be captured in full
detail. In the end this resulted in a setting with a frame rate of 5 FPS and a
100 percent resolution (352x287 pixels).

• Highway: The next section of the simulated drive on a highway. In the highway
environment the driving speed is very high (up to 120km/h) but the traffic
scenarios are quite simple. This is why it was decided to priorities frame rate
over resolution in this case, so that it is possible to react faster. In the end this
resulted in a setting with a frame rate of 15 FPS and a two percent resolution
(51x41 pixels).

• Country Road and Localities: The last part of the simulated drive is on a
country road that passes through different localities. On the country road the
driving speed can differ vastly depending on the localities (from 50km/h up to
100km/h). This is also true for the complexity of the traffic scenarios. This
is why it was decided to use two sets of configurations for the country road,
one when the vehicle drives between localities and one when the vehicle is in a
locality. The configuration used when driving between localities is a mixture
form the city and highway configuration, with a frame rate of 10 FPS and a
resolution of 25 percent (176x144 pixels). The configuration for the localities
is the same as for the city part of the simulated drive.

Each of these parts has a different configuration in regards to frame rate and image
size while the target temperature has not been changed between each part. The
chart shows that except for the highway part the temperature was between the
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target temperature of 70◦C and hysteresis. For the highway part the chart shows
that the prototype regulates the frame rate to keep the temperature in check. To
note is that this simulation was executed with the same setup as seen at the start of
the chapter in figure 5.1 and that on the highway with highway speeds the airstream
might have some positive effects on the temperature.

Figure 5.14: Result Chart test case simulated drive.



Chapter 6

Conclusion and Future Work

This thesis introduced a system architecture design that enables the creation of a
partially fail-operational environmental perception system for a variety of applica-
tions. The design and its basic concept was introduced in Chapter 3. With Section
3.1 introducing the basic perception system which was reworked in Section 3.3 with
the defined safety goals that resulted from a the simplified HARA from Section 3.2
and the goals defined in the Section 1.3. The Chapter 4 describes how the design
of Chapter 3 was implemented. With the Section 4.1 describing the hardware and
software used for the implementation, Section 4.2 describing the class design, Sec-
tion 4.3 describing the program flow of important software parts and Section 4.4
describing the UI that was used for testing and logging. In the end the Chapter
5 shows how the implementation described in Chapter 4 was tested and what re-
sults where produced. When comparing the results in Section 5.3 with the safety
goals defined in Section 3.2, it shows that a software solution can help to achieve
functional safety goals but also that they have their limits. The safety goal SG1
for memory is handled through graceful degradation. It depends on the memory
overhead how long it takes before the image does not fit anymore in the memory
and needs to be reduced. Furthermore, a degradation scheme won’t protect against
complete hardware failure. The safety goal SG2 for overheating is handled mainly
by decreasing the load on the CPU by reducing the image resolution or frame rate.
This only works if an image resolution or frame rate reduction can be safely executed
in the current driving scenario. The safety goal SG3 for avoiding overload is handled
the same way as SG2 and therefore suffers from the same limitation. As described
in Section 3.3, the safety goal SG4 cannot be controlled by the perceptions system
itself.

One of the biggest challenge when designing a functional safe system is to find the
balance between safety, efficiency and cost. Solutions that require a higher degree
of functional safety normally rely heavily on hardware redundancy, which is efficient
but usually also introduces a lot of extra costs. The environmental perception system
introduced by this thesis showed that a software solution can help find a balance
between safety and cost.

84
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6.1 Future Work

Future work might consist of investigating on how to encode the internal data trans-
mission inside the device such that the integrity of configuration data and variables
are ensured. Or an extension to the memory manager that distributes the data in
such a way that no memory cell is utilized proportionally more to other memory
cells. This extension might also contain a monitor to track the wear of the memory.
Another future work might be the design of a fail-operational system that makes
use of multiple instances of the system described in this thesis. This design might
look similar as seen in figure 3.3 in Chapter 3.

However, no matter what future works might include one thing is clear, as cars
evolve towards self-driving cars and cars-as-a-service, so must the safety designs and
concepts used in cars evolve from fail-safe to fail-operational.
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