
Alexander Köberl, BSc

Implementation and Design
of an Advanced Memory Manager based on the

ARMv8-M Security Extension

MASTER THESIS

to achieve the university degree of

Master of Science

Master’s degree programme: Information and Computer Engineering

submitted to:

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics

Advisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Dipl.-Ing. Dr.techn. Ulrich Neffe (NXP Semiconductors Austria GmbH)

Graz, December 2018

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded
to TUGRAZonline is identical to the present master‘s thesis.

Date Signature

1

Kurzfassung

Mit der steigenden Leistung von Mikrokontrollern ergeben sich neue Anwendungsfälle
und die Komplexität der eingesetzten Software vergrößert sich. Der Aufschwung in der
Internet of Things (IoT) Branche führt zu einer starken Verbreitung von kleinen und ver-
bundenen Geräten in unserem Alltag. Durch das Hinzufügen von Konnektivität zu diesen
einfachen Geräten, sind die Auswirkungen der Software nicht mehr auf die unmittelbare
Umgebung begrenzt.

Der erweiterte Funktionsumfang und die gesteigerte Leistung machen sie zu einer gu-
ten Wahl für energieeffiziente und preisgünstige Lösungen. Projekte, die früher einen kom-
plexen Prozessor benötigten, können jetzt auf einem einfachen Mikrokontroller realisiert
werden.

Diese neuen Anwendungsfälle stellen neue Anforderungen an die Systemarchitektur und
benötigen einen stärkeren Fokus auf Sicherheit und Vertraulichkeit. Leider ist die zugrunde-
liegende Hardwarearchitektur von Mikrokontrollern nicht speziell auf sichere Software aus-
gelegt. Kurze Interrupt Latenzen und ein deterministischer Programmablauf haben höhere
Priorität in eingebetteten Systemen. Die Cortex-M Familie im speziellen, benutzt noch im-
mer ein flaches Speichermodell ohne zusätzliche Unterstützung einer Memory Management
Unit (MMU). Der aktive Programmteil kann auf alle Daten und Hardwarekomponenten
zugreifen, auch wenn eine Applikation in mehrere Tasks unterteilt wird.

Ein erfolgreicher Angriff auf eine Systemkomponente gefährdet auch unbeteiligte Tei-
le. Zusätzlich kann ein Programmierfehler auch Seiteneffekte in streng verifizierten Tasks
auslösen. Um die Korrektheit von wenigen kritischen Komponenten zu garantieren, muss
eine aufwändige Validierung des kompletten Systems durchgeführt werden.

Die Security Extension der neuen ARMv8-M Architektur kann dazu beitragen, die Sy-
stemsicherheit zu verbessern. Eine strenge Unterteilung in sichere und unsichere Speicher-
bereiche wird von Hardwarekomponenten durchgesetzt. Eine Partitionierung ist jedoch
nur in zwei Sicherheitsdomänen möglich: Alle abgesicherten Komponenten können nicht
zusätzlich voneinander abgegrenzt werden.

Diese Arbeit konzentriert sich auf die Erweiterung des Systems, um eine zusätzliche
Unterteilung der Zugriffsberechtigungen in der sicheren Domäne durchzusetzen. Ein Kon-
textmanager verwaltet Speicherbereiche und aktiviert benötigten Code und Daten dyna-
misch. Diese Isolierung verhindert einen uneingeschränkten Systemzugriff durch sicheren
Code. Eine Kombination aus den Funktionen der Security Extension und einer proprietären
Bus-Firewall von NXP wird für die Realisierung benutzt.

Das vorgeschlagene Design bietet flexible Rahmenbedingungen für die eingefügten Pro-
grammteile. Bereits vorhandene Projekte und Bibliotheken von externen Quellen benötigen
nur wenige Anpassungen. Alle Übergänge zwischen den Sicherheitsdomänen werden unter-
stützt um die Funktionalität des Anwendungscodes nicht einzuschränken.

2

Abstract

With the increasing performance of embedded microcontrollers, new use cases arise and
the complexity of the deployed software grows. The recent boom of the Internet of Things
(IoT) market lead to a spreading of small and connected devices in our everyday life. By
adding connectivity to those simple systems, the software is no longer confined by the
device borders.

The added hardware features and performance increase make them a feasible choice for
energy efficient and low-cost designs. Projects, which previously required an application
processor, can now be deployed on a microcontroller. This often entails performing of safety
critical operations and handling of sensitive data.

Those new applications have a stronger focus on security and confidentiality, which
requires a change in the system architecture. Unfortunately, the underlying hardware ar-
chitecture of microcontrollers was not designed with software security as main priority.
Low interrupt latency and deterministic execution of the firmware is a stronger require-
ment of embedded systems. Focusing on the Cortex-M family, there is still a flat memory
model without an additional Memory Management Unit (MMU) in place. When an appli-
cation is split into distinct tasks, the active code can access unrelated data and hardware
components without restrictions.

Compromising a single component can expose the complete system to an adversary. Ad-
ditionally, a programming fault can lead to corruption of otherwise strictly validated tasks.
This requires extensive verification of the complete system to guarantee the correctness of
only a small part of critical operations.

The Security Extension of the new ARMv8-M architecture is an improvement for sys-
tem security. Strict separation of secure and non-secure memory areas is enforced by the
hardware architecture of the core. Nevertheless, it only provides a partitioning into two
security domains: All secure code is part of the same Trusted Code Base (TCB) with the
previously mentioned security concerns.

This thesis focuses on extending the present system, to further limit the access permis-
sions within the secure domain. A context manager keeps track of distinct memory sections
and dynamically activates required code and data. With this isolation, secure code has no
longer full permission over the complete system. This protection is realized by combining
the Security Extension with a proprietary bus-firewall developed by NXP.

The proposed design provides an unobtrusive framework for deployed code. Required
modifications of legacy code and third-party libraries are kept to a minimum. All transition
sequences between the security domains are supported, to impose no restrictions on the
application code.

3

Acknowledgements

This thesis was developed in cooperation with NXP Semiconductors Austria GmbH. I would
like to thank Dipl.-Ing. Dr.techn. Ulrich Neffe for initiating and advising on the project,
and Dipl.-Ing. (FH) Christian Eisendle for the great support and guidance. Furthermore,
thanks to Dipl.-Ing. Lukas Gressl for the suggestions on writing style and the in-depth
review. It was a unique opportunity, to work on such a recent research-topic with the
support of a leading company.

Finally, thanks to Prof. Christian Steger and the Institute for Technical Informatics for
the strong cooperation with NXP and approving this thesis. With the past experience in the
research field, valuable recommendations were given during development and refinement
of the resulting documentation.

Graz, December 2018 Alexander Köberl

4

Contents

1 Introduction 10
1.1 Motivation . 10

1.1.1 Device security . 10
1.1.2 Intellectual property protection . 11

1.2 Goals . 12
1.3 Example Use Case . 13
1.4 Structure . 13

2 Preliminaries 15
2.1 Memory Protection Unit . 15

2.1.1 MPU limitations . 16
2.2 ARM Cortex-M TrustZone . 16

2.2.1 Attribution Units . 18
2.2.2 Banked system components . 19
2.2.3 Security domain transitions . 19
2.2.4 Debug protection . 23

2.3 ARM Cortex-A . 24
2.3.1 ARM Cortex-A TrustZone . 25

2.4 Point of Sale Technology . 26
2.4.1 PCI Security Standard . 27

3 Related Work 28
3.1 Embedded operating systems . 29

3.1.1 embOS . 29
3.1.2 FreeRTOS-MPU . 30
3.1.3 mbed RTOS - uVisor . 30
3.1.4 ProvenCore-M . 31

3.2 Cortex-A TrustZone examples . 33
3.2.1 Android . 33
3.2.2 ANDIX OS . 34

3.3 ARM Platform Security Architecture . 35
3.3.1 Trusted Firmware-M . 35

3.4 Conclusion . 37

5

4 Design 38
4.1 Target hardware . 39

4.1.1 AHB-Firewall . 39
4.2 Software partitioning . 41
4.3 Memory map . 42

4.3.1 Always-on areas . 43
4.3.2 Library section . 44

4.4 Context manager . 44
4.5 Context transitions . 45

4.5.1 Non-secure to secure call . 46
4.5.2 Non-secure call-back . 48
4.5.3 Secure → secure call . 49
4.5.4 Exception-based transitions . 50

4.6 Sanity check . 55

5 Implementation 57
5.1 Toolchain . 57
5.2 Project architecture . 58
5.3 Context manager . 59

5.3.1 Fault reason . 59
5.3.2 Call-stack management . 59
5.3.3 Detailed transition sequences . 59
5.3.4 Task control block . 71

5.4 Verification . 72

6 Evaluation 74
6.1 Timing behaviour . 74

6.1.1 Measurement procedure . 74
6.1.2 Results . 75
6.1.3 Latency variations . 77

6.2 Attack vectors . 79

7 Conclusion 82
7.1 Future work . 83

7.1.1 External requirements . 83
7.1.2 Implementation changes . 84

Terms and abbreviations 87

6

List of Figures

1.1 Cooperative development steps . 11
1.2 Software components of a payment terminal 13

2.1 Simplified System-on-Chip (SoC) architecture 17
2.2 ARMv8-M execution modes [11, p. 5] . 17
2.3 Security attribution by SAU and IDAU [35, p. 7] 18
2.4 ARMv8-M domain transitions [35, p. 10] . 20
2.5 ARMv8-M secure veneer software flow [35, p. 9] 21
2.6 Non-secure call-back sequence [35, p. 9] . 22
2.7 Cortex-A execution domains [20] . 25
2.8 Simplified Point of Sale (POS) architecture 26

3.1 embOS task handling [23] . 29
3.2 Partitioning concepts of ProvenCore-M [21] 32
3.3 ANDIX system architecture [8, p. 32] . 34
3.4 Structure of Trusted Firmware-M [19] . 36

4.1 Software partitioning of a payment terminal 42
4.2 Memory map of the target system . 43
4.3 Memory activation based on executing code 45
4.4 High-level sequence of the context manager 46
4.5 Non-secure to secure call sequence . 47
4.6 Non-secure call-back sequence . 48
4.7 S → S call . 49
4.8 Secure exception during non-secure execution 51
4.9 Secure exception during secure execution . 52
4.10 Secure exception nesting . 53
4.11 Secure call from secure exception handler 54
4.12 Non-secure exception during secure execution 55

5.1 Project structuring . 58
5.2 Secure call sequence . 62
5.3 Secure return to non-secure code . 63
5.4 Secure call from a secure context . 63
5.5 Secure return to secure code . 64
5.6 Non-secure call-back sequence . 65
5.7 Non-secure interrupt sequence . 67

7

5.8 Secure interrupt during secure execution . 68
5.9 Secure interrupt during non-secure execution 68
5.10 Privileged function call . 69
5.11 Nested exceptions . 70
5.12 Interleaved context switches . 72
5.13 Verification functions . 73

6.1 Composition of execution latency . 75
6.2 Total latency comparison . 77
6.3 Core latency comparison . 78

7.1 Sandboxing Cycle [17] . 86

8

List of Tables

2.1 Memory Protection Unit (MPU) access permissions [5] 16
2.2 List of banked exceptions [4] . 19
2.3 EXC_RETURN field description . 22
2.4 Basic exception stack frame . 23
2.5 Extended exception stack frame . 23

4.1 Firewall rules configuration . 40

5.1 Context transition overview . 71

6.1 Context switch latency [µs] . 76
6.2 Attack vector summary . 81

9

Chapter 1

Introduction

This chapter gives the motivation for the project by introducing the current requirements
of the embedded-system market. The focus is set at device security and the protection of
Intellectual Property (IP).

The concrete project goals are defined to give an overview of the proposed architecture
and list the needed features. An example software partitioning for a payment terminal is
given to introduce the target use case.

1.1 Motivation

Embedded systems were originally deployed in self-contained devices to complete a cer-
tain technical process, controlled by a local user interface. With the increasing number of
connected micro controllers caused by the steady growth of the Internet of Things (IoT)
market, our surrounding is flooded with remote-controlled sensors and actuators. New use
cases call for cheap, reliable, secure and power-efficient devices, creating challenges for
engineers and manufacturers.

Another trend is the increasing complexity and specialization of System-on-Chips (SoCs).
Hardware modules for specific applications are integrated directly on the silicon of the mi-
crocontroller, to reduce the overall footprint and increase performance. Examples include
connectivity, cryptography modules, coprocessors and interfaces for cameras and displays.
Customers expect high-level Application Programming Interfaces (APIs) and hardware ab-
straction for shorter development cycles and increased portability. The chip manufacturer
might not want to disclose the internal implementation of those libraries to protect IP or
prevent tampering of certified components.

The following sections highlight the need for an advanced security architecture for
embedded devices regarding security and protection of IP.

1.1.1 Device security

Mass produced IoT devices recently became a popular target for attacks. This could be
motivated by the high availability of cheap devices, a potentially high profit of a successful
attack and the limited security features available on those low-power devices.

10

CHAPTER 1. INTRODUCTION 11

When a device is attached to a network, it can be a victim of a targeted attack, or
become a gateway to cause harm to other connected members. In the former case, an adver-
sary uses a remotely accessible vulnerability of the device to manipulate the functionality
or gain access to confidential data.

One of the most famous examples is the Stuxnet worm which targeted Programmable
Logic Controllers (PLCs) used in industrial machines [13]. In one case, it was deployed
to modify the speed of centrifuges used for the Iranian nuclear program, which caused
premature wearing and damage to the machines. Other established targets are internet-
enabled surveillance cameras and routers to attack the privacy of a target.

A new application for compromised embedded devices emerged in 2016, when the Mirai
malware infected Digital Video Recorders (DVRs), smart TVs and routers. The adversary
later used those devices to overload large websites with Distributed Denial of Service
(DDoS) attacks [12]. Another theoretical attack scenario is the usage of high-wattage IoT
devices (e.g. air conditioning, heaters) to destabilize the power grid to the point of a local
blackout [26].

Although the previously mentioned attacks were mostly enabled by misconfiguration
or bugs on higher level software, the impact might have been reduced by using a secure
execution environment for critical system components. Another line of defence can be
implemented by adding an integrity monitor, which continuously verifies the system and
resets to a known state when unauthorized modifications are detected [27]. A trusted
execution environment is also required when adding a simple interface for secure firmware
upgrades.

Security vulnerabilities are often uncovered by reverse engineering the software image
and tracing the external signals. To close this attack vector, encrypted binaries (with
hardware secured keys) and reliable encryption of external communication is required.

Both of these aspects can be implemented as trusted services of a secure execution
environment. Additionally, debugging of secure code can be prevented for release versions
of the product. This prohibits inspection of the software binary and access to the internal
processor state via register values during execution.

1.1.2 Intellectual property protection

Complex devices are mostly developed by a chain of individual companies. Figure 1.1
illustrates the sequence of manufacturing steps in this case.

Figure 1.1: Cooperative development steps

Every participator in the manufacturing chain has different requirements regarding
confidentiality and available system features:

• Chip manufacturer: Delivers the SoC with complex hardware drivers. This IP
might contain a lot of know-how and must be protected from reverse engineering and
unauthorized modifications.

CHAPTER 1. INTRODUCTION 12

• System integrator: Needs an easy-to-use API to the low-level drivers. Develops
middleware to external components and the main application which might require
extensive verification and certification. Secure storage is required to protect keys and
other secrets from tampering by subsequent suppliers and the end customer.

• Licensee: Customizes an off-the-shelf device with minimal interference to the base
system. Changes are mostly cosmetic, e.g. Graphical User Interface (GUI) branding,
and should not require further certification efforts.

This example illustrates the necessity of software isolation to protect IP on multiple
stages of development.

1.2 Goals

The goal of this project is to implement a secure component, for isolating critical memory
sections from unauthorized accesses. Sandboxing concepts from other application domains
are evaluated, to derive ideas for this proof of concept design. The new Security Extension
of the ARMv8-M -architecture and the proprietary Advanced High-performance Bus (AHB)
firewall, developed by NXP, are used to enforce access permissions.

Individual modules of the firmware are divided into distinct memory sections, which
are called contexts in the remainder of this document. Different unrelated libraries or tasks
of an operating system could be separated this way.

The purpose of those isolated contexts is to provide protection from intentional and
accidental corruption of internal data on the one hand. On the other hand, multiple parties
should be able to contribute functions to the secure domain without fear of disclosing their
IP.

As described in Section 1.3, the target use case of the proposed design is a next gen-
eration of Point of Sale (POS)-terminals. The SoC for this application typically includes
Near Field Communication (NFC) hardware, which is abstracted by a complex API, and
security critical payment libraries.

A company confidential hardware prototype is used as target platform. It is developed
for a different application but features all relevant security modules. Issues, which are
discovered during this work, will be resolved during the design of the final product.

The proposed architecture must support the following key features:

• Provide protection for individual contexts (e.g. libraries or tasks) within the secure
execution environment.

• Allow flexible cross-domain calls without the need of explicit supervisor or Remote
Procedure Calls (RPCs).

• The non-secure domain should not be influenced by the added software components
to enable the simple porting of Real Time Operating Systems (RTOSs) and legacy
projects.

• The design should allow the addition of secure functions from a third-party without
the need of recompiling the entire secure code.

CHAPTER 1. INTRODUCTION 13

1.3 Example Use Case

An example use case, which combines both challenges mentioned in Section 1.1, is the
architecture of a payment terminal. Although context isolation should also be applied to
other application domains (e.g. IoT), the rest of the document is focused on this imple-
mentation. Figure 1.2 illustrates an example firmware partitioning of such a device, which
incorporates modules from different suppliers. A detailed description of a POS architecture
is given in Section 2.4.

Interrupts

Low-level drivers

Payment libraries

RTOS

Application

Figure 1.2: Software components of a payment terminal

• Low-level drivers from the chip manufacturer include access to the card interface and
complex interaction with the Contactless Interface (CLIF).

• The system integrator adds payment libraries and uses the low-level drivers to inter-
face external hardware components (e.g. key pads).

• A final licensee might develop or modify an existing payment application. Projects
with this complexity generally use a RTOS and split the execution into distinct tasks.

1.4 Structure

Prerequisites to give background knowledge are given in Chapter 2. It starts with giving
an introduction to the Memory Protection Unit (MPU) of the Cortex-M microcontroller
series. This is required to understand the common memory protection technique, which is
heavily used in projects for this architecture. The limitations of this module are pointed
out to emphasize the need for a new approach to tackle advanced security scenarios.

Afterwards, the new Security Extension of the ARMv8-M architecture is described in
more detail. It is one of the key features enabling the functionality of this project. The
provided security-domain transitions with all side effects and limitations are examined, to
get the background knowledge for the design and implementation of the context manager.
An overview of the included secure debug functionality is given to conclude the added
security functionality of the new architecture.

A large part of the available literature does not make a distinction between the Cortex-A
and Cortex-M cores. The primary features of the former are introduced to make this clas-
sification easier and give the main differences. Another source for confusion is the synonym

CHAPTER 1. INTRODUCTION 14

‘TrustZone’ for the new security extension. It is used on both architectures for similar
concepts, but the core functionality follows different approaches. Section 2.3.1 describes
the distinct attributes of both systems.

To conclude the preliminaries, an overview of a POS architecture is given. It will be
the target use case of the developed solution of this project. Attack vectors and currently
employed security measures are mentioned to highlight the need for an improved security
solution for payment terminal firmware. The security standard of this industry is also
mentioned to further confirm the importance of the proposed context manager.

Related work is discussed in Chapter 3. Evaluation of RTOS projects is done in the
first section. Security features and established concepts are discussed based on practical
examples. The second part looks at applications of the TrustZone of Cortex-A processors.
Finally, the ARM Platform Security Architecture, with focus on Trusted Firmware-M, is
introduced as a potential solution for reducing vulnerabilities in IoT devices.

The relevant features, which could be reused for this project, are summarized. Those
possible design choices are discussed, and apparent restrictions are outlined.

Chapter 4 is concerned with the design of the context manager. It starts with defining
the main requirements of the proposed solution. The technical details of the target hardware
platform are listed to present the influence of the specific architecture to the design. Based
on this information, a memory map defining the secure and non-secure sections is defined.
The prepared software partitioning is later used at the implementation stage.

The main part of this chapter is spent on the design of the context manager itself. The
high-level operation flow is further refined by giving the detailed sequences of the different
context transitions. Important aspects of defining the sanity check, for monitoring calls
within the secure domain, are also given.

The implementation is described in more detail in Chapter 5. The used toolchain,
required development steps and the project architecture are also documented there.

Detailed instruction sequences illustrate the different context transitions. They show
steps which are performed implicitly by the processor core and give instructions about
identifying them. The required tasks, which have to be performed by the context manager
are also specified.

Finally, the method for validating the resulting implementation is described.

The evaluation in Chapter 6 starts with the timing behavior of the context switches.
Detailed measurements were taken and discussed.

Another focus is set on the different attack vectors which are handled by the different
components. It also gives best-practice examples and security recommendations.

Finally, the conclusion in Chapter 7 compares the results of the project to the initial
requirements. Proposed design changes of the target platform are described and recommen-
dations for improving the context manager are also given. Meaningful extensions, which
were out of the project scope, are mentioned for future expansion.

Chapter 2

Preliminaries

The following sections give a brief introduction to the relevant features of the ARM ar-
chitecture and general embedded security concepts, which are used for evaluation and
implementation of the final solution. They provide a quick overview of the used terms
which are needed to understand the remainder of this document, but are not meant to be
an advanced reference. Additionally, the specification of the target hardware is presented.

2.1 Memory Protection Unit

Cortex-M processors provide two execution modes: Privileged execution for full access
to all registers during start-up or in exception handlers, and unprivileged execution for
application code.

The Memory Protection Unit (MPU) can be further used to define the allowed priv-
ilege level for memory accesses [5]. Before the introduction of TrustZone to embedded
controllers, this was the only measure provided by the ARM design to prevent accesses to
restricted memory areas. When an invalid read/write or execution fetch is performed, a
fault exception is triggered.

Being an optional feature, the number of distinct configurable regions ranges from 0
up to 16. For ARMv8-M -series processors, the MPU is configurable independent for each
security state, if it is implemented on the specific SoC.

Every section can be used to define the permission settings for a continuous address
range from 32 bytes to 4 gigabytes. The value of the Access Permissions field of the
configuration register selects the permission as described in Table 2.1.

Additionally, sections can be marked as Execute Never to provide a measure against
arbitrary code injection through user data. This restricts the freedom of an attacker when
exploiting return-oriented programming [32].

This basic security feature is often utilized for task isolation in an RTOS. The kernel
of the operating system and interrupt handler code is hidden from the unprivileged tasks.
Additional write protection can be used to prevent malicious or unintended modification
of code when executing from Random Access Memory (RAM).

The code, data and stacks of inactive tasks are protected by dynamically reconfiguring
the MPU during scheduling. This strict isolation prevents data corruption of inactive tasks,

15

CHAPTER 2. PRELIMINARIES 16

Table 2.1: MPU access permissions [5]

AP[2:1] value Access permission
0b00 Read/write by privileged code only.
0b01 Read/write by any privilege level.
0b10 Read only by privileged code only.
0b11 Read only by any privilege level.

e.g. caused by stack overflow or invalid pointer usage. Section 3.1 looks at implementation
details of RTOS projects using this technique.

Logging these access violations during development can also help to easily uncover
otherwise hard-to-track bugs.

2.1.1 MPU limitations

Despite offering a foundation for secure embedded software, advanced security architectures
cannot be realized with an MPU alone. The following shortcomings demonstrate the need
for additional hardware-enabled security measures:

• The number of non-overlapping memory regions is implementation defined and can
vary between 0 and 8 for each security mode. This limit can be reached early with
complex memory maps and fine grained configurations.

• Privileged code has full access to the entire memory, resulting in the RTOS kernel and
all interrupt handlers to be part of the trusted code base. The addition of TrustZone
solves this issue by adding another security domain.

• The MPU is located between the ARM -core and the system bus. For this reason,
memory accesses can only be monitored when they are initiated by the core. As
illustrated by Figure 2.1, additional components integrated into the SoC are not
monitored and have no limitations when accessing the memory over the system bus
[14, Ch. 5]. Unprivileged software could also use a Direct Memory Access (DMA)
controller to modify or compromise secret memory areas [30]. Moreover, accesses
from an external hardware debugger are not restricted. No selective debug permission
can be configured, it can only be globally disabled with the control registers (e.g.
DBGEN).

2.2 ARM Cortex-M TrustZone

Beginning with the ARMv8-M -Architecture, the idea of splitting software execution on
a single processor core into two distinct security domains was implemented. Previously,
specialized security modules or dedicated processor cores had to be integrated into the
SoC to enable a secure execution environment. Complex interfaces and incompatible so-
lutions from different vendors resulted in difficult development and a steep learning curve
for beginners. Additionally, designing and integrating those security modules into a SoC
resulted in higher cost, larger footprint and decreased energy efficiency.

CHAPTER 2. PRELIMINARIES 17

Figure 2.1: Simplified SoC architecture

With the introduction of the Cortex-M Security Extensions (CMSE), mostly called
TrustZone, an attempt was made to include a unified security architecture into the core.
Because of the stricter requirements regarding energy efficiency, complexity and interrupt
latency, the already established TrustZone feature of Cortex-A processors could not be
reused. Section 2.3.1 highlights the differences between the architectures.

This new domain was added by extending the present privileged (handler) and unpriv-
ileged (thread) execution modes orthogonally. Figure 2.2 illustrates the relation between
those four processor states. Switching between modes is fully hardware enabled and does
not rely on hypervisor code, the memory address defines the permission instead. Section
2.2.3 gives more details about the supported transitions.

Figure 2.2: ARMv8-M execution modes [11, p. 5]

The memory is partitioned into secure and non-secure sections by software at startup.
When the processor is executing in non-secure mode, only those memory sections can
be accessed. During secure execution on the other hand, the entire memory is available.
The special Non-Secure Callable (NSC) memory attribute can be used to provide entry
functions for the non-secure software. Section 2.2.3 describes this process in more detail.

CHAPTER 2. PRELIMINARIES 18

In contrast to the MPU, the security information is also propagated to devices on the
bus, enabling protection of critical memory from bus members or debugger intrusion.

2.2.1 Attribution Units

Assignment of the security state to memory regions is done through the Secure Attribution
Unit (SAU) and the optional Implementation Defined Attribution Unit (IDAU). The SAU
is an integrated module of the processor core and can provide 0, 4 or 8 distinct regions
with a resolution of 32 byte.

Memory which is not covered by any section, is considered secure when the SAU is
enabled. Sections are used to carve out non-secure addresses. The same approach is used
for peripherals, which are accessed through memory mapped registers.

Instruction execution and data accesses are checked against the SAU attribution. If
the current security state of the processor does not allow the operation, a SecureFault is
triggered.

The included SAU might not provide enough flexibility for some systems. For this
reason, an interface for external attribution was designed into the architecture. The address
of the current access is passed to the IDAU. The resulting information about the security
state from the view of this external component is returned to special inputs at the core.

The complexity of this external logic is up to the chip manufacturer. It could be a
constant lookup-table or a sophisticated configurable design.

The output of the SAU and IDAU are compared. The more restrictive of the two values
is used. Figure 2.3 illustrates the address attribution.

Address

Security Attribution
Unit (SAU)

Implementation
Defined Attribution

Unit (IDAU) interface

Compare

Secure / Non-Secure

Optional IDAU
(System specific
attribution unit,

outside processor)

Figure 2.3: Security attribution by SAU and IDAU [35, p. 7]

CHAPTER 2. PRELIMINARIES 19

2.2.2 Banked system components

The following components are banked between security states and are switched automati-
cally when changing the execution mode [35]:

• Stack pointers (Main Stack Pointer (MSP) and Process Stack Pointer (PSP))

• MPU (if implemented in the specific SoC)

• SysTick timer

• Various control registers

• Vector Table Offset Register (VTOR) (resulting in banked vector tables)

In addition to peripherals, some exceptions are also banked. Table 2.2 lists all system
exceptions and states the banking configuration.

Table 2.2: List of banked exceptions [4]

Exception Banked
Reset No

HardFault Yes
NMI No

MemManageFault Yes
BusFault No
UsageFault Yes
SecureFault No

SVCall Yes
DebugMonitor No

PendSV Yes
SysTick Yes

External interrupts No

Having duplicates of those components, especially SVCall and SysTick, opens many
interesting use cases. For example, it is possible to run a separated RTOS in each security
state with different scheduling, developed as independent projects. This application can
already be classified as a simple virtualization technique.

The secure domain can also explicitly access the non-secure versions of all registers.
This elevates the privilege of the secure domain above normal code.

2.2.3 Security domain transitions

One possibility to change the security state is by directly calling a function from memory
of the other state. Additionally, higher privileged interrupts can also cause a spontaneous
transition. These options might look at first like the cause of serious security issues, but
this section describes the complex measures to prevent exploitations of this mechanism.

CHAPTER 2. PRELIMINARIES 20

The base functionality is partially enabled by core hardware, but some additional as-
sembler instructions had to be introduced. When using the C -programming language, it
is toolchain and compiler dependent, which intrinsics have to be used. The syntax, which
is used in the remainder of the document, targets the Keil compiler.

As illustrated in Figure 2.4, the TrustZone system is only concerned with horizontal
transition which cross the security domain. Changes in the privilege mode are only relevant
for the MPU.

Handler mode Handler mode

Thread mode Thread mode

Non-secureSecure

IRQ/return IRQ/returnIRQ/return IRQ/return

Function call/IRQ/
return

Function call/return

Figure 2.4: ARMv8-M domain transitions [35, p. 10]

Secure function call

One of the basic use cases is to provide a secure API which can be called from a non-secure
application [36]. This is done by a simple function call when using the C language, but
requires additional support from the toolchain.

A change to the secure state is only valid, when the first instruction which is fetched
from Non-Secure Callable (NSC) memory, is the Secure Gateway (SG) instruction, other-
wise a SecureFault is triggered. The SG instruction triggers switching of the security state
and all banked registers. Subsequent instructions are executed in the secure domain and
have full system access, without the need of a software hypervisor or management code.

Figure 2.5 illustrates the software flow which is generated by the toolchain: Secure API
functions have to be decorated with the cmse_nonsecure_entry attribute. The linker does
not create direct branches to these functions. Instead, function stubs called secure veneers
are created and linked to initiate the state transition.

Creating additional veneers, instead of directly including the SG instruction in the
secure function, prevents a possible security hole: Having the bit-pattern of the SG in-
struction in a data structure marked as NSC can open a door for arbitrary code injection.
Even when only the Read-Only (RO) memory is marked as NSC, constant data and string
literals could create malicious code by accident.

CHAPTER 2. PRELIMINARIES 21

Non-Secure world Non-Secure Callable (NSC) Secure world

…
BL Func_A_entry
...

Func_A_entry
 SG ; Indicate valid entry
 B Func_A Func_A

 … ; Function
 BXNS LR

Figure 2.5: ARMv8-M secure veneer software flow [35, p. 9]

After the execution of the SG instruction, the internal state of the processor is switched
to secure execution. For normal calls, the privilege level of the called secure code is derived
from the secure banked CONTROL.nPRIV field. This prevents a privilege escalation when
a non-secure, privileged code calls a secure API which should not have full access rights.

All banked registers, including stack pointers, are changed to their secure version. Non-
secure registers can still be accessed by explicitly using aliased addresses.

After executing the secure function, a special branch instruction (BXNS) is executed
to return to normal execution [4, p. 60]. This instruction has to be used explicitly to avoid
information leakage of unintended mode switches, because additional clean-up has to be
performed beforehand: General purpose and floating-point registers still might contain
sensitive data which is not cleared implicitly. It is the responsibility of the toolchain or
assembler programmer to overwrite those values manually. The use case might also require
signalling of an imminent mode switch to external peripherals.

Non-secure callback

A use case might require calling a non-secure function from the secure domain. An example
might be processing information from a secure interrupt by using non-secure functions.

While calling a non-secure function is an easy job, returning to the correct secure lo-
cation has to be ensured. As the secure code is most likely compiled before the non-secure
application, function pointers need to be passed and stored in the secure domain. These
pointers have to be decorated with the cmse_nonsecure_call attribute to ensure that the
toolchain clears secure registers and uses the Branch and Exchange Non-secure (BXNS) in-
struction for the call. Crossing the security domain with a normal branch instruction causes
a SecureFault to prevent an unintended switch without clearing confidential information.

When the state switch is triggered, the secure return address, as well as parts of
the Interrupt Program Status Register (IPSR) and CONTROL registers are automati-
cally stacked to the currently active secure stack. A special value, called FNC_RETURN
(0xFEFFFFFF), is written to the Link Register (LR).

When the non-secure code uses this value as return address to the secure code, automat-
ic unstacking of the true return address is performed and the execution state is changed.
This sequence keeps the return address secret and does not rely on the non-secure domain
to return to the correct address. Figure 2.6 illustrates this sequence.

CHAPTER 2. PRELIMINARIES 22

Non-Secure world Secure world

Func_B
 … ; Function
 …
 …
 …
 BS LR

…
BLXNS R0 /* R0 = address of Func_B
… with MSB = 0 (NS) */

Return Address pushed
to Secure stack, LR set to

FNC_RETURN

Branch to FNC_RETURN
triggers unstacking of return
address from Secure stack

Figure 2.6: Non-secure call-back sequence [35, p. 9]

Interrupts

The target domain of interrupts can be configured with the Interrupt Target Non-secure
(NVIC_ITNS) register by secure software. The exception handler is fetched from the de-
fined version of banked vector tables to execute the correct function. This mechanism can
produce state transitions in both directions.

Which transition happened, is indicated by the EXC_RETURN value in the LR. It
contains one bit for the source (S, bit [6]) and for the destination (ES, bit [0]) security
state. Table 2.3 lists all fields of the EXC_RETURN identifier.

Table 2.3: EXC_RETURN field description

Bit
number Name Value

6 S 0 Non-secure code origin
1 Secure code origin

5 DCRS 0 Callee-saved registers not stacked
1 Default stacking

4 FType 0 Extended floating-point frame
1 Standard frame

3 Mode 0 Handler mode origin
1 Thread mode origin

2 SPSEL 0 Frame on main stack
1 Frame on process stack

1 Reserved

0 ES 0 Non-secure exception target
1 Secure exception target

The simpler case, a transition from non-secure code to a secure interrupt, does not differ
from the basic exception mechanism when staying in the same domain: The exception frame
is pushed to the active stack, execution mode changes to handler mode and the exception

CHAPTER 2. PRELIMINARIES 23

handler is executed when no higher priority interrupt occurs. The only addition in this
instance is the changed security mode. Table 2.4 shows the basic exception stack when no
floating-point unit is used.

Table 2.4: Basic exception stack frame

Offset
0x20 ← original SP
0x1C xPSR
0x18 PC
0x14 LR
0x10 R12
0x0C R3
0x08 R2
0x04 R1
0x00 R0 ← new SP

Table 2.5: Extended exception stack frame

Offset Register
0x48 ← original SP
0x44 xPSR
0x40 PC
0x3C LR

Basic 0x38 R12
frame 0x34 R3

0x30 R2
0x2C R1
0x28 R0
0x24 R11
0x20 R10
0x1C R9
0x18 R8

Additional 0x14 R7
state 0x10 R6

context 0x0C R5
0x08 R4
0x04 Reserved

0x00 Integrity
signature ← new SP

Interrupting secure code by a non-secure interrupt results in additionally stacking of the
callee-saved registers. This is done, because non-secure code cannot be trusted to restore
the correct values on exception return. Further on, those registers are cleared automatically
to prevent information leakage. Table 2.5 lists the contents of this additional state context.

2.2.4 Debug protection

Security attribution is performed on bus level. This allows for different debug permissions
based on the security domain. Debugging can generally be classified into two categories:

1. Invasive debug: Conditions for breaking the execution flow by the integrated debug
hardware can be configured externally. Examples are hardware breakpoints on specific
addresses or ranges, and watches on certain register values. The core enters the debug
state when a condition is met, and stops subsequent instruction fetches. The debugger
can inject instructions or continue execution after collecting detailed data.

2. Non-invasive debug: The goal of non-invasive debugging is to monitor internal
states and memory accesses, without interruption the execution. This can be used for

CHAPTER 2. PRELIMINARIES 24

profiling the execution sequence of an application, where high real-time requirements
have to be met (e.g. engine controller). Suspending code execution would completely
break the functionality of the underlying technical process.

Both debugging types can be configured independently for each security domain. Ad-
ditionally, reading of memory by the debugger can be restricted.

Disabling secure debug produces the following effects for an external debugger [31]:

• If an instruction step targets secure state, the function executes uninterrupted. Con-
trol to the debugger is not returned until the secure state is left again.

• Pausing the execution has no effect when secure code is executed. Debug state is
entered only once a non-secure instruction is fetched.

• Memory and hardware breakpoints are ignored when they target secure memory.

• Secure configuration registers and the secure versions of banked registers cannot be
read.

• Secure instructions and memory accesses are not traced by non-invasive debug.

Debugging can only be disabled for complete execution domains. Using this feature
to enable IP protection for secure APIs, would also prevent third party developers from
debugging their own secure code.

2.3 ARM Cortex-A

The target platform of this work is the Cortex-M Series of embedded processor cores.
Despite having fundamentally different features and target applications, a lot of literature
does make no explicit declaration of the used variant. To make matters even worse, the
term TrustZone is also shared to the new Security Extension of Cortex-M, although the
underlying functionality is vastly different. As a rule of thumb, when no explicit declaration
is made, the author most likely addresses the more common version for the Cortex-A series.
On the contrary, this document focuses on embedded Cortex-M processors.

Many related concepts of this work, like sandboxing, virtualization and memory protec-
tion, stem from the advanced field of Cortex-A processors. The following section gives an
introduction and highlights the limitations when moving those concepts to an embedded
architecture.

Ranging from low-performance appliances, over mobile devices up to enterprise server
clusters: Cortex-A processors can be found in many application domains. The most relevant
differences for this project are interrupt handling, memory management and execution
modes [33].

• Interrupts: Cortex-M guarantees short interrupt latency by handling all stack and
branch operations directly in hardware. Application processors on the other hand,
may require multiple stages of function calls and mode switches until the correct
interrupt handler is executed.

CHAPTER 2. PRELIMINARIES 25

• Memory management: By providing a Memory Management Unit (MMU), Cortex-
A processors enable hardware support for virtual memory and allow the execution
of rich operating systems like Linux [20].

• Execution modes: In addition to the privileged and unprivileged execution modes
of embedded processors, Cortex-A provides two additional exception levels. The Hy-
pervisor and Secure Monitor modes add additional privilege levels. More details are
given in Section 2.3.1.

• Virtualization: With the additional Hypervisor -mode, a two-stage address trans-
lation allows the execution of multiple, isolated operating systems in the non-secure
world. A wide range of available hypervisors offer a large variety of different security
features.

Figure 2.7: Cortex-A execution domains [20]

2.3.1 ARM Cortex-A TrustZone

In contrast to the Security Extension of Cortex-M processors discussed in Section 2.2,
switching to the secure domain cannot be done directly with a simple function call. The
entry to the secure-world must always be performed with a Secure Monitor Call (SMC)
instruction.

Direct access to secure memory is restricted with additional hardware logic in the
bus fabric. Every transfer includes a dedicated bit to mark the security status. The slave
interface compares the state with the internal configuration and blocks the access if invalid.

This additional bit can be viewed as an extended width of the address bus. Resolution
of virtual addresses takes this into account, resulting in an aliased memory space with two
“virtual” MMUs. This flag is also regarded for cache architectures to avoid information
leakage.

The Secure Monitor is responsible for forwarding the call to the correct secure-function
based on the supplied parameters, or trigger more advanced events when a dedicated op-
erating system is available in the secure domain. Handling of this RPCs is implementation

CHAPTER 2. PRELIMINARIES 26

dependent, but API standards (e.g. ARM SMC calling conventions [25] or GlobalPlatform
TEE API [28]) were introduced to provide better portability and compatibility between
multiple manufacturers.

Many security critical functions have to be performed by this software component,
which is often provided by the SoC-Manufacturer. Events from the past have shown, that
security issues in this central part can compromise the entire system [9][22].

Another limitation of the TrustZone is the missing hypervisor mode in the secure
world. This circumstance prevents isolation of multiple unrelated trusted modules with
the build-in virtualization techniques [10].

2.4 Point of Sale Technology

With the increasing acceptance of cashless payments by customers, most merchants have an
integrated point of sale system. The following gives a short introduction to the interacting
components of such a system. Because the application of this work is focused on payment
terminals, they are described in more detail.

The visible payment terminal is just a part of the overall system. It usually provides
a card reader to authenticate the customer, a display for status information and a keypad
for Personal Identification Number (PIN) entry. An additional contact-less interface, using
NFC technology, is also included in most recent terminals. External interfaces, either wired
or wireless, connect this hardware to the rest of the payment system.

Based on the card type and state, different sequences for accepting the transaction
are possible. When the card is inserted into the card interface, the PIN is required for
authentication. In case of an online transaction, contact to a remote payment processor is
established to check the availability of funds. The received status is returned and transac-
tions can be reported to the attached warehouse system when the sale was completed.

Micro-
controller

NFC

Display

POS
System

Payment
processor

Keypad

Bluetooth,
(W)LAN,
USB,
...

Card
interface

Figure 2.8: Simplified POS architecture

CHAPTER 2. PRELIMINARIES 27

This simplified view already illustrates the serious requirements on security. The com-
plete system can be compromised by successfully attacking a single component. For exam-
ple, all red arrows of Figure 2.8 might handle the PIN.

A common attack scenario is compromising the PIN and Primary Account Number
(PAN) data. This information is sufficient to create forged transactions from the victims
account. Sensitive data might be stored by malicious components inside the firmware. It
is later send to a third-party, which withdraws money in cash, initiates transactions to
services or buys goods. Typically, hard to trace products are bought and later resold (e.g.
gift cards, crypto currencies).

As a first line of defence, tamper switches and conductive meshes around the circuit
detect modifications. Once those precautions are triggered, the device should no longer op-
erate normally and lock down sensitive data. This should prevent the unnoticed installation
of modified firmware on the terminal Authenticated boot images and encrypted secret data
is further used to restrict the possible influences of a successful attack.

From the many possible attack vectors, this design focuses on the memory and firmware
security aspects. One goal of this project, is to increase the resilience of the firmware against
injection of malicious code. The context manager helps with this problem by reducing the
Trusted Code Base (TCB) which is in contact with sensitive information. This prevents a
fault in unrelated components, e.g. GUI from being used to compromise the entire system.

2.4.1 PCI Security Standard

The Payment Card Industry (PCI) Security Standard tries to define minimum require-
ments for products of the payment industry. Ranging from card production to network
and software security, the main goal is to protect the data of the cardholder.

Payment terminals are designed to prevent tampering on the hard- and software. This
should make adding of backdoors or keyloggers impossible. Nevertheless, there are always
unpreventable weak spots in a system.

Practical attacks are performed on the device, with the goal of successfully implanting
a keylogger. The time requirement and the needed expertise for a successful attack is rated
by the standardisation. This quantifies the probability and feasibility of a theoretical attack
vector. A minimum rating has to be reached for passing the certification process.

There are also static requirements defined: Triggering the tamper switches must lock
or delete the internal keys within a certain time frame.

Another regulation is the mandatory audit of security sensitive firmware, which should
evaluate the design concept and prevent critical bugs in the implementation. The firmware
itself has to perform authentication during boot and regular integrity checks during oper-
ation.

Relaxed rules are mandated for non-critical code which is isolated from the secure
firmware. The TrustZone and context manager could be used to exclude large parts of
the non-secure application from these strict rules. Updating of non-critical code could be
performed without needing a recurring audit.

Chapter 3

Related Work

The concept of task isolation is already well established in the world of embedded operating
systems. With projects targeting the ARM Cortex-M platform, the basic operation always
follows the same principle, which can be partially applied to the use case of this project:
During task scheduling, the memory and independent stacks of the inactive tasks are
disabled with the MPU (as described in chapter 2.1).

This mechanism provides basic isolation of unprivileged tasks to prevent memory cor-
ruption and leakage of sensitive information. It can also be used to protect the operating
system resources and privileged tasks from side effects caused by a corrupted module [16].

Having the support from an MMU and a rich operating system, software for Cortex-A
processors is generally not concerned with this low-level task/thread management. The
RTOS kernel on the other hand uses the TrustZone to provide secure and trusted ser-
vices to the application. Another advanced hardware feature is the support for hardware-
virtualization, enabling the concurrent execution of multiple operating systems with strong
memory separation [20].

The following sections introduce example products from different application domains
and highlight the differences. The gained knowledge of these architectures is combined to
produce a design which leverages the best aspects of tried and tested solutions.

Evaluation is divided into three main categories:

1. Embedded (RT) operating systems: Many embedded operating systems provide
support for basic isolation of tasks by using the MPU, which was already introduced
in Section 2.1. Examples of major distributions are evaluated to re-use the underlying
concepts in this project.

2. Cortex-A TrustZone related: Enabling an isolated and trusted execution envi-
ronment is an established feature for application processors. With the many use cases
of mobile devices which require software security, advanced architectures were devel-
oped. This section looks into those applications and derives low-level functions for
use in embedded systems.

28

CHAPTER 3. RELATED WORK 29

3. ARM Platform Security Architecture: With the introduction of the security
extension to the Cortex-M platform, ARM attempts to increase device security by
providing reference architectures and implementations of core components. Section
3.3 focuses on the Secure Partition Manager of this project.

3.1 Embedded operating systems

Looking at the implementation of embedded RTOS projects acts as reference for task
switching and memory protection concepts.

3.1.1 embOS

Developed as commercial product by SEGGER, embOS is a complete RTOS solution. It
provides advanced features like events, mailboxes and preemptive task scheduling [7].

The base version does not provide memory protection and distinction between privi-
leged and unprivileged tasks.

To use the MPU features, the embOS-MPU extension is required. Tasks are started in
privileged execution mode, perform initialization for themselves and switch to unprivileged
state, where they are restricted to their protected memory and communicate with the kernel
using an API. Access to device drivers is also limited to an indirect call to the kernel.

Figure 3.1: embOS task handling [23]

All privileged tasks and interrupt handlers have full access to the complete memory, an
additional isolation for this code is not performed. Additionally, access to hardware and
kernel memory can be explicitly granted to individual unprivileged tasks with a whitelist
approach.

Because of the commercial nature of this product and the associated high license cost,
no evaluation of the internal implementation can be made by the author. Support for the
ARMv8-M architecture is advertised but the functional range is not revealed in detail [24].

CHAPTER 3. RELATED WORK 30

3.1.2 FreeRTOS-MPU

The FreeRTOS project is developed for more than 15 years and supports a wide range of
officially supported architectures, including x86, AVR and ARM [18]. Managed by Amazon
Web Services (AWS), it stayed completely open-source and is counted among the most used
RTOSs in the embedded market [6]. Only the relevant security features for this project are
mentioned in the following.

For ARM platforms supporting an MPU, the kernel source and data are mapped to
an exclusive memory section, which are protected from unprivileged access at start-up.
Individual tasks can be created with up to 3 protected memory sections [29]. During
scheduling of the task, those sections are activated by the MPU and protect other data
from corruption due to faulty write accesses. The exclusively owned stack is also bounded
by a MPU section to prevent against the severe side effects of stack overflows.

Code and constant data of unprivileged tasks is configured as read-only by default. This
prevents accidental corruption by software faults and code injections from an adversary.
Hiding of unprivileged code is not supported by default, but could be implemented with
the following steps:

• Define an exclusive memory section for the task code in the linker script.

• Place the code in this section with compiler attributes or linker settings.

• Read the linker symbols defining the address range.

• Specify the code section when creating the restricted task with the FreeRTOS API.
It will be disabled when the owning task is not currently executing.

The open-source nature of the project allows for a detailed look into the scheduler and
task switching operation. Using the Pended Service Call (PendSV) exception, the kernel is
triggered to perform a task switch. The general-purpose registers (including Floating-Point
Unit (FPU) registers when used), CONTROL register and the return address are pushed
to the stack of the interrupted task. Subsequently, a scheduling algorithm selects the task
with the highest priority. The PSP address is exchanged with the value of the private stack
of the next task. Restoring the saved registers finalizes the task switch.

Using the TrustZone for kernel isolation and the changed programmer’s model of the
ARMv8-M MPU are not yet supported by this project.

3.1.3 mbed RTOS - uVisor

Managed directly by ARM, this open-source RTOS targets IoT solutions. In addition to
the kernel, it includes device libraries and drivers aimed for communicating with a server
infrastructure. This cloud extension can be used for secure communication, as well as
updating the application software [1].

CHAPTER 3. RELATED WORK 31

uVisor

Device security is enforced by the optional uVisor security kernel. It protects the operating
system from unauthorized modifications and enforces isolation between application tasks
and their resources. An attacker compromising one task, can no longer influence the com-
plete system. Security critical components, e.g. firmware update or encryption functions,
are no longer vulnerable because of untrusted application code.

When creating a new task, an Access Control List (ACL) is defined with provided
macros. The task can only access memory addresses defined public and those from the
private ACL. The kernel implicitly reserves a section for a private stack.

Although it is a complex and well-tested system, ARM considers uVisor to be an
technology preview with possibly incomplete implementations [2]. With the current version
of Mbed, uVisor is deprecated and not the focus of further development. It is advised to
switch to the Secure Partition Manager introduced in Section 3.3.

Unprivileged interrupts

The uVisor software provides a functionality for de-privileged interrupt hooks. Functions
are registered by tasks on a first-come-first-serve basis.

The interrupt vector is swapped out during initialization of the kernel. All interrupts
are reconfigured to target a generic wrapper, which triggers a privileged Supervisor Call
(SVC). A dedicated gateway function retrieves the original interrupt number, activates the
associated context, clears the general-purpose registers and jumps to the interrupt handler.
Execution privilege level is decreased beforehand and execution will resume at the entry
wrapper after finishing the interrupt handler. To resume normal execution, another SVC
is made to restore the stack and permissions of the interrupted context.

Remote procedure calls

Secure API calls cannot be made directly. A task providing API functions has to register
them for public usage explicitly. An entry function is placed in globally readable memory,
which triggers switching of the active context and a call to the actual function.

Public functions are callable from every context. The implementation has to query the
task identifier and validate the source of the access itself. No support for access restrictions
is provided by the kernel.

3.1.4 ProvenCore-M

The commercial ProvenCore operating system focuses on enabling the development of
secure devices, especially for the IoT market. The customer should only concentrate on
application development without needing the knowledge of advanced security concepts
[21].

Deployed applications are isolated from each other to provide security and stability.
The kernel is already formally proven, which simplifies a required certification process.

Illustrated by Figure 3.2, multiple partitioning concepts are possible:

CHAPTER 3. RELATED WORK 32

Figure 3.2: Partitioning concepts of ProvenCore-M [21]

• Application isolation can be realized on generic ARM Cortex-M microcontrollers
without special security features. This can be utilized for secure storage or protecting
privileged drivers.

• When a security coprocessor is present, ProvenCore can be deployed on it to manage
the secure applications. Communication from the non-secure application, running on
the main processor, is managed by the kernel.

• The target partitioning of this project is also advertised: A non-secure operating sys-
tem manages the application on a TrustZone-enabled microcontroller. The build-in
functionality protects the secure applications from it, with further isolation between
the applications provided by the security kernel.

• Platforms with an integrated Secure Element are also supported to provide secure
storage and cryptographic functions. Access rules are enforced by the kernel to pre-
vent leakage of secure data.

Because of the commercial nature of this project, all statements are based purely on the
marketing information from the company. Detailed description about how the presented
concepts are implemented is not published.

CHAPTER 3. RELATED WORK 33

3.2 Cortex-A TrustZone examples

Basic memory protection is handled in Cortex-A processors with a dedicated MMU con-
trolled by a rich operating system. Every process performs operations on virtual memory
addresses which are independent from the actual physical locations. Moreover, processes
have only unprivileged access rights and communicate with peripherals over system calls
provided by the operating system.

This section is not concerned with the basic principle of virtual memory management.
Instead, it gives an overview of using the Cortex-A specific TrustZone for security critical
functions. The main characteristics of example projects are summarized to show the prac-
tical application of this technology. Section 2.3.1 already introduced the main features of
the underlying platform.

3.2.1 Android

The Android kernel is executed entirely in non-secure world. Secure system services are
decoupled from the rich operating system and placed in the secure execution environment.

Access to secure services is established with SMC calls, which trigger the hypervisor
and a secure kernel. This secure kernel is an independent operating system located in the
secure domain. Individual services are managed as tasks and isolated with the MMU.

The feature set of trusted services is platform specific and often not published, but
the GlobalPlatform API specification[28] acts as standard for Android devices. The SoC
manufacturer develops the secure kernel (e.g. QSEE from Qualcomm [22]) and integrates
secure services for the chip integrator.

The following lists possible applications for secure services:

• Secure storage: Certificates and manufacturer keys are stored in protected Read-Only
Memory (ROM). Additionally, session keys and secret runtime data can be managed
in secure RAM sections.

• Secure boot: Execution starts in the secure domain to perform verification of the
system kernel. Faulty configurations are reset, and the system can be started to a
reset/update mode. Periodic checks can also be performed to notice run-time modi-
fications and non-typical behaviour.

• Digital Rights Management (DRM): Multimedia applications often rely on propri-
etary DRM functions for decoding the content. It is in the interest of the provider
to protect encryption keys, algorithms and the decoded data from unauthorized ac-
cesses.

• Advanced authentication: Authentication with biometric features is a security critical
process. Accessing raw data, e.g. fingerprint or face features, must only be allowed
from secure code. Optimized reference data has to be protected from unprivileged
accesses to avoid the possibility of injecting data from an attacker, or leaking details
which could be used for forging a duplicate.

CHAPTER 3. RELATED WORK 34

3.2.2 ANDIX OS

ANDIX OS is a security kernel developed as an open-source project aimed for research and
educational purposes. The kernel is executed in the secure domain and manages the mem-
ory permissions and scheduling for trusted applications. Figure 3.3 illustrates all system
components.

Figure 3.3: ANDIX system architecture [8, p. 32]

The non-secure world can in theory run any full featured operating system, but the
needed kernel extensions are currently only ported to Linux and Android. This kernel ex-
tension copies the request data from the user-space to protected kernel memory to prevent
subsequent changes by the unprivileged application task. The SMC instruction is then used
to switch to the secure domain and trigger the ANDIX kernel.

Because the SMC instruction can only be executed in privileged execution mode, an
additional user-space library is needed. This library implements the API functions defined
by GlobalPlatforms [28] and forwards them to the non-secure kernel extension with a SVC
instruction.

In the secure user-space domain, the TEE Library also provides a standardized API
for communication to the secure kernel. Example functions include memory management,
timing, trusted storage and cryptographic operations. Only a limited subset of the API is
currently implemented by ANDIX.

The TZ Service Daemon is executed as application task in the non-secure user space.
It regularly polls a specific memory location used by the secure world for non-secure call-
backs. Those call-backs are predefined service functions which are complex, non-critical
functions which are moved from the secure domain to reduce the TCB of the system. They
also allow later addition of hardware drivers and utilities, e.g. a complete networking stack.

CHAPTER 3. RELATED WORK 35

The central part of the kernel manages the isolation between trusted applications. This
is achieved by changing the translation table of the MMU during context switching. The
task can only access data which is already mapped to its virtual address space, physical
addresses of other tasks or the kernel are protected.

3.3 ARM Platform Security Architecture

The proposed Platform Security Architecture (PSA), developed by ARM, is meant to be a
solution to the security issues faced in the IoT market [19]. With an expected landscape of
billions of connected devices from diverse manufacturers, the already mentioned security
threads cannot be ignored.

With the high market share of ARM microcontrollers in this business segment, a com-
mon framework is applicable on a wide range of devices. ARM wants to develop a base
layer for their platform to increase security and reliability by reducing the responsibility
of the manufactures. The PSA supports developers by giving a guideline for the three
important development phases:

• Examples of thread models are analysed for common use cases. They can be applied
to the custom application or serve as starting point of a completely new analysis.
Guidelines are published, to act as a reminder for known security considerations and
new threads in this area.

• Based on the preceding analysis, the PSA is derived. It provides best-practice designs
for common security components. Modules like trusted boot and firmware updates
are discussed here. Designs for advanced scenarios for the complete device lifecycle
are given. This ranges from secure manufacturing to provision the confidentiality
of root-secrets and also includes details of the concrete firmware architecture (e.g.
authentication, partitioning).

• Maybe the most effective measure to increase the security of a wide range of devices,
is the provided reference implementation. Developed as open source, a complete base
architecture is published with the Trusted Firmware-M (TF-M) project. The next
section focuses on the features of this implementation.

3.3.1 Trusted Firmware-M

The first version of TF-M was released in March 2018. At the time of this writing, it is still
under active development with missing features. The current roadmap predicts a complete
implementation with the second quarter of 2019. This time frame will approximately corre-
late with the widespread commercial launch of ARMv8-M processors. Figure 3.4 illustrates
the structure of the system components.

The following lists key points of the planed feature set:

• As root of trust, a secure bootloader with image upgrade functionality will be inte-
grated. Authenticated booting of the firmware is ensured for secure and non-secure
binaries.

CHAPTER 3. RELATED WORK 36

Figure 3.4: Structure of Trusted Firmware-M [19]

• The fundamental design already takes a non-secure and a secure processing envi-
ronment into account. This can be realized with dual-core hardware, where both
domains run on different processors. The main goal however, will be to use a single
processor with the TrustZone extension for this separation.

• In addition to the basic separation, secure services will be placed into isolated parti-
tions. This higher isolation level is also used to protect the secure core from malicious
accesses from compromised services.

• A dedicated Inter-process communication (IPC) framework and standardized APIs
are used for communication between distinct isolated secure partitions.

• The non-secure RTOS is completely decoupled from the secure Trusted Firmware
components. The current implementation supports RTX as guest-OS, but other ma-
jor RTOSs, like Mbed OS and FreeRTOS will also be supported in the future.

Because of the early stage of development, individual components of the project could
not be re-purposed for solving the task of this work. Implementation for the secure par-
tition manager will not be finished before the first quarter of 2019. No details about the

CHAPTER 3. RELATED WORK 37

expected overhead and latencies is published. This prevents a more detailed evaluation and
comparison to other projects.

Nevertheless, it is an ambitious project with the potential of causing a lasting security
increase in the IoT market.

3.4 Conclusion

By looking at similar concepts and evaluating already proven projects, new ideas and
potential design choices are contributed to the solution of this work. This section looks at
key points which will be considered for the final design.

The basic task management, which is used by most RTOS schedulers, should be applied
to the context manager. Individual stacks are reserved for every context.

Instead of implementing privileged and unprivileged tasks like embOS, the TrustZone
and firewall could be used for a similar concept. Direct access to the configuration registers
of hardware components could be blocked for non-secure code. The separation of the re-
sulting architecture would only allow secure libraries a direct hardware access. Non-secure
application code must use device drivers implemented as secure API functions.

Kernel functions and data are explicitly placed in separated linker sections by the
FreeRTOS project. This is done by manually decorating the source code with the section
compiler attribute. The ranges of those automatically scaled regions are read back by the
initialization code from linker-symbols. The MPU is then configured to block unprivileged
accesses to those memory sections.

Explicit placing of code and data, by using compiler attributes and linker sections, will
also be used by the context manager. Linker symbols should be used to synchronize the
address ranges between linker script and configuration code.

The mbed OS provides the functionality for de-privileged exception handlers. Applica-
tion code can implement interrupt service routines by the default way. The secure kernel
changes the interrupt vector and adds gateway functions to lower the privilege level before
executing the code from untrusted sources.

The feature descriptions of ProvenCore-M and Trusted Firmware-M (TF-M) show the
possibility of isolated partitions inside the secure execution domain. Little information is
given about the implementation, but the MPU is apparently used to enforce the permis-
sions.

Disregarding the little information which has been gained from the ProvenCore project,
an important point was raised: An advantage of this project is the formal verification and
the provided support for certifications. Other projects might require extensive audits for
large parts of the kernel.

It also raises concerns about including a full-featured RTOS in the secure domain
altogether, because the large TCB makes a detailed verification impossible.

Chapter 4

Design

This chapter describes the design decisions based on the related work and the target use
case. The resulting implementation has to satisfy the following requirements:

• Context protection: Protection against unauthorized accesses to secure code and
data is already provided by the ARM security extension. The main goal of this
project is the separation of individual contexts within the TrustZone.

One requirement is to ensure the integrity of code and data in case of stack-overflow or
erroneous memory operations of another context within the secure domain. Another
aspect deals with IP protection: Arbitrary secure code must not be able to read
the entire secure code-base and potentially dump it to an external peripheral. This
prevents reverse engineering of proprietary software.

Advanced attack scenarios, e.g. violating the ARM Application Binary Interface
(ABI) by passing an incorrect return address or corrupting the callee-saved regis-
ters are discussed theoretically but are not fully covered by the implementation.

• Small Trusted Code Base (TCB): The context manager is a fundamental part of
the overall system security. As the module becomes more complex, the probability of
critical bugs increases. This constraint rules out the possibility to modify an existing
RTOS-kernel for the target application. Including an entire RTOS would present
a large software overhead, especially when the resource constraint environment for
embedded systems is considered.

• Influence on NS-domain: Context isolation should only be implemented for the
secure execution of the processor. Non-secure software should not be influenced by
this addition. Especially when porting legacy projects to the new platform, the re-
quired modifications should be kept to a minimum. At the best case, only changes
to security critical libraries and the build scripts are required.

• Cross-domain calls: Especially for complex projects, there must be no restrictions
on available cross-domain calls. In connection with the previous requirement, a com-
plex RPC-API should be avoided. The provided transitions of the security extensions
should be used as primary entry point. This also leaves the basic security responsi-
bility to the build-in hardware components. The context manager is only concerned
when a reconfiguration in the secure domain is required.

38

CHAPTER 4. DESIGN 39

4.1 Target hardware

At the time of this writing, no microcontrollers based on the ARMv8-M architecture are
publicly available. The only options to develop code for the new security extensions are
the following:

• ARM developed the Musca-A Test Chip Board as an official development platform.
Availability of those boards is still limited and requires entry to an application pro-
cess. No details about the acceptance criteria and cost are published.

• A complete virtual system can be emulated with the Fast Models provided by ARM.
A licence for the so-called Fixed Virtual Platform for Cortex-M33 is available for a
price of 500 dollars per year.

• A soft-core can be synthesized for a Field Programmable Gate Array (FPGA) target.
Running a complex model requires potentially expensive hardware.

All public solutions had a high price compared to the offered features. The additional
effort of organization and setup of the toolchain made them further unattractive. Fortu-
nately, an internal prototype was provided by NXP for this project. It is a development
board, used for implementation and testing of an upcoming product. Featuring a Cortex-
M33 core with the optional security extension, and an additional bus-firewall, it was an
ideal target for implementing the context manager. The firewall is described more detailed
in the next section, as it plays an essential role for this design.

The core of the chip architecture consists of the Cortex-M33 clocked at 100 MHz, an
AHB-lite matrix and 256 kilo-byte (kB) of RAM. External peripherals are supported by
DMA enabled communication controllers (e.g. SPI, UART and I2C). Execution on this
controller is mainly RAM-based. The encrypted binary is loaded from external memory
by a small bootloader located in ROM. With the help of a cryptographic coprocessor, the
decrypted code and data is written directly to the RAM. With this approach, clear text
code is never located in non-volatile memory.

Additional components of the SoC are cryptography blocks, one-time-programmable
memories and an independent Digital Signal Processor (DSP). Those modules are included
for another application and will not be actively used by this project.

4.1.1 AHB-Firewall

The proprietary AHB firewall was developed to enforce flexible memory permissions on
bus level. It solves the all-or-nothing constraint for DMA masters: Access to individual
components can be blocked on hardware-level with the bus matrix. The connection to the
boot-ROM might be configured exclusively to the CPU, for example.

This static configuration cannot be changed later and does not allow distinct sections
within a memory module. Moreover, the type of access is not considered for defining the
permission.

The combination of a SAU and IDAU for security attribution is described in Section
2.2.1. To reduce the total gate count, no SAU regions were implemented in favour of

CHAPTER 4. DESIGN 40

an integrated IDAU into the firewall. Instead of defining a constant number of sections,
security attribution is based on memory blocks. A distinct security setting can be configured
with a resolution of 4 kB. The IDAU is responsible for the basic security attribution of the
memory. In addition to that, configurable sections make a much more precise configuration
possible. Table 4.1 lists the available configuration parameters for every section.

Configuration is partially predefined by hardware for the used processor: The different
memory modules have a fixed number of available sections with static resolutions assigned
to them. Dynamic configuration by software can only be used for moving those windows
within the boundaries. An 8-bit mask is provided to split the section and apply the rules on
non-contiguous memory ranges. For every section, the following configuration is possible:

• Debug can be explicitly disabled for the section, to override the global configuration.

• The permission of CPU accesses can be configured for read, write and execute. The
secure and non-secure execution state is defined independently. Information about the
current execution mode is directly received from a default interface of the ARM-core.

• Read and write operations can also be enabled for secure and non-secure DMA mas-
ters. Assignment of the security state of each member is done in software, with
optional locking described in the next section.

Table 4.1: Firewall rules configuration

Field Setting
Modification allowed

Enable
Debug Forbid, Global configuration

Secure CPU Read, write, execute
Non-secure CPU Read, write, execute
Secure DMA Read, write

Non-secure DMA Read, write

When an AHB master initiates a transfer, the address is compared with the configured
rules and permission of the component. In case an invalid access is observed, the firewall
triggers a Firewall-Interrupt and cancels the bus operation.

Configuration locking

The configuration of the firewall is generally protected by itself: The address range of
the memory-mapped registers should be covered by a section with restricted privileges.
Write access is only granted to secure software as a first defence against unauthorized
configuration changes.

CHAPTER 4. DESIGN 41

An additional mechanism further protects some configurations from changes by secure
software. All security critical registers contain additional “Modification-allowed” flag. Up-
dating of values is monitored by an internal logic. Based on the setting, modifications can
be blocked completely, or they can be allowed when they are more restrictive.

Updating of the configuration can be locked for the following registers:

• Debugging can be disabled globally from a single register. This configuration can be
frozen until the next reset of the chip is performed.

• The access rules of every section are configured with associated registers as described
previously. Modification can be controlled in three steps: All modification can be
allowed, blocked or more restrictive settings are permitted.

• The assigned addresses are locked together with the rules register, to prevent bypass-
ing of the firewall by modifying the effective range of the section.

• Security state of AHB masters is also a critical information. Once a master has
performed all secure responsibilities (e.g. during start-up), it can be downgraded and
locked to non-secure status.

4.2 Software partitioning

Ownership of the individual components is divided in the following way:

• Bootloader and context manager are provided by the chip manufacturer, possibly
on an internal ROM. The responsibility of those components is to load the trusted
firmware, set an initial configuration and provide the context isolation. This scenario
lays the foundation of a Root-of-Trust (RoT) chain.

• Low-level drivers, in this example for SPI and Contactless Interface (CLIF), are also
provided by the chip manufacturer. The customer can use sophisticated APIs instead
of explicit register accesses. As this software may reveal a lot of information about the
underlying hardware modules, protection against read-out and reverse engineering is
in the interest of the manufacturer.

• The system integrator provides the core firmware for the payment terminal function-
ality. In this example, security critical payment libraries and hardware abstractions
for a connected pin-pad are shown. Those components furthermore use the low-level
drivers of the chip manufacturer.

• The enclosing application with the RTOS is isolated from security critical components
by the ARM Security Extension. It can be supplied by the system integrator or by a
final licensee. Function calls to secure libraries cross the barrier to the secure domain.
Depending on the system architecture, additional functionality might be extracted
from the non-secure application and placed in the secure domain.

CHAPTER 4. DESIGN 42

Figure 4.1: Software partitioning of a payment terminal

4.3 Memory map

The following assigns the software partitioning to a concrete memory map. As described in
Section 4.1, the target hardware uses SRAM as source for data and code execution. This
circumstance makes handling of the different sections easier, because code, data and the
stack of a context can be grouped together in a continuous memory range.

For this project, an arbitrary split was introduced that divides the memory into secure
and non-secure attribution. Each domain is assigned exactly half of the available 256 kB
SRAM.

The secure domain houses the library manager, secure interrupts and the isolated li-
braries. The additionally empty memory of this domain is activated together with the
non-secure code and can be used for secure functions of the application. Non-secure mem-
ory is, except for the always-on section described in Section 4.3.1, unlimited usable by the
application.

Figure 4.2 illustrates the different types of memory sections:

CHAPTER 4. DESIGN 43

0x2000_0000 Always-on
area

S-Application

0x2001_7FFF

0x2001_FFFF

Library
section

0x2002_0000 Always-on
area

NS-
Application

0x2003_FFFF

S
ec

ur
e

N
on

-s
ec

ur
e

0x2000_0000 S-Vectors,
Handlers

0x2000_1000 LibManager,
Firewall functions

0x2000_4000 Veneers (NSC)

0x2000_7C00 S-MSP

0x2001_A000 Library_1

0x2001_B000 Library_2

0x2001_FC00 Sys-PSP

0x2002_0000 NS-Vectors

0x2002_7800 NS-PSP

0x2002_7C00 NS-MSP

Figure 4.2: Memory map of the target system

4.3.1 Always-on areas

Both security domains have a section, which must never be disabled by the context man-
ager. They contain essential code and data that is needed before the context manager is
triggered:

• Interrupt vectors: The address of the target interrupt handler is fetched automat-
ically by hardware from this vector. If this memory is disabled by the firewall, an
error state is entered by the processor and execution halts.

Because both security domains have an independent vector table, an always-on region
must also be placed in non-secure memory.

• Interrupt handlers: Context switching is triggered by a Firewall-Interrupt, whose
handler implementation must always be enabled. Additionally, all other higher pri-
oritized interrupt handlers must not be disabled by the firewall.

Even when the Firewall-Interrupt is configured by software with the highest priori-
ty, some faults are always privileged: Reset, HardFault and Non-maskable Interrupt
(NMI) have a hardware-defined priority which is always the highest.

Handlers for lower privileged exceptions can be deactivated by the firewall: The first
instruction within the handler triggers a Firewall-Interrupt as nested exception. The
context manager performs a switch before resuming the exception. On exception
return, another context switch is performed.

CHAPTER 4. DESIGN 44

• Context manager entry/exit: The entry code for the context manager needs to
enable the code and data which is required for the complete functionality. Addi-
tionally, all security critical sections have to be disabled reliably before returning
from the context manager. This small code portion will be added directly into the
Firewall-Interrupt handler.

• Secure veneers: To support the transition from non-secure to secure execution,
secure veneers in NSC memory are used. Section 2.2.3 describes this process in more
detail. If this section is disabled, the delay of a non-secure→secure call would double,
because two context switches would potentially be needed. As the security of this
domain transition is already provided by the TrustZone mechanism anyway, the
context manager is only triggered if the target library is currently disabled.

This section does also only contain calls of the SG instruction and branches to the
secure function address. If it is configured as execute-only memory, malicious code
cannot change the function addresses and no information about the real addresses is
leaked.

• Main stack pointers: The main stacks are used automatically when entering an
exception handler. Nested exceptions also store the exception frame on the MSP.
When performing a secure→non-secure transition, the secure return address and
the IPSR are pushed to the secure main stack (see section 2.2.3). The previously
mentioned points highlight the infeasibility of placing the main stacks in disabled
sections.

4.3.2 Library section

The current configuration reserves a block of 32 kB for library usage. With the masking
capability of the firewall, this section can be divided to house 8 isolated libraries with
4 kB of memory. It is an arbitrary amount for demonstration purposes. More advanced
implementations could use individual sections with different resolutions.

Because we are executing from SRAM, the code, data and secure PSP of the context
are concentrated into this memory. One slice of this section is reserved for the secure PSP
of the application code.

The individual slices are activated exclusively: There is either one library, or the appli-
cation with the secure PSP activated. Accessing deactivated memory triggers the context
manager. Figure 4.3 illustrates the activated memory sections for different scenarios, where
the enabled contexts are highlighted in blue color.

4.4 Context manager

The context manager is the central logic responsible for dynamically changing the mem-
ory permissions. When an access (data modification or instruction fetch) is performed on
a locked memory address, the resulting Firewall-Interrupt triggers the sequence of the
context manager illustrated in Figure 4.4:

1. Store stack pointer of active context: Depending on the active execution mode and

CHAPTER 4. DESIGN 45

Always-on
area

S-Application

Library_1

Library_2

Sys-PSP

Always-on
area

NS-
Application

S
ec

ur
e

N
on

-s
ec

ur
e

Always-on
area

S-Application

Library_1

Library_2

Sys-PSP

Always-on
area

NS-
Application

Always-on
area

S-Application

Library_1

Library_2

Sys-PSP

Always-on
area

NS-
Application

NS/S Application Library_1 Library_2

Figure 4.3: Memory activation based on executing code

security domain, one of the four distinct stack pointers was used for the exception
frame.

2. Activate code and data sections of the context manager: The memory of the context
manager is disabled during execution of (untrusted) code to prevent modifications.

3. Resolve entry reason: Based on the status code contained in the LR, the exact reason
of the fault can be replicated.

4. Check access permission, trigger a HardFault or other error handling function for
unauthorized entry.

5. Store status data and stack pointer to the Task Control Block (TCB) of the source
context

6. Clean-up stacks: The exception frame is possibly located on the stack of the old
context. It has to be moved to the stack of the destination context to enable the
exception-return mechanism.

7. Restore data and stacks of the destination context.

8. Deactivate code and data sections of the library manager to prevent unauthorized
modifications during code execution.

4.5 Context transitions

Entry to the context manager is not established through a centralized function or supervi-
sor call. The resulting Firewall-Interrupt of an invalid memory access is used for context

CHAPTER 4. DESIGN 46

Figure 4.4: High-level sequence of the context manager

switching instead.
Because of the separated security domains and banked stack registers, multiple entry

sources to the context manager are possible. This section describes all context transitions
which are supported in the basic form. More advanced scenarios, with nested transitions,
are demonstrated in Section 5.4 in the Implementation chapter.

4.5.1 Non-secure to secure call

One of the most essential transitions is the possibility to call a secure function from the
non-secure application. This case deals with application code, running unprivileged with
the PSP enabled. The context manager is not concerned if the secure function belongs to
the domain of the application as described in Section 4.3.

CHAPTER 4. DESIGN 47

If the library is currently deactivated, the context manager is needed in addition to the
security transition performed by the Security Extension.

Figure 4.5: Non-secure to secure call sequence

Figure 4.5 illustrates the execution sequence. The secure function is not called directly.
A secure veneer, responsible to call the SG instruction, is used instead. Those veneers are
located in NSC memory as described in Section 4.3.1.

The branch from the secure veneer targets a memory address, which is disabled by the
firewall. The resulting Firewall-Interrupt originates from the secure domain with the first
instruction of the function as return address. The exception frame is located on the secure
PSP of the wrong context. Because this stack pointer is switched to the new context, the
stack frame has to be moved to the destination stack. The exception-return mechanism
would fail otherwise.

After the context switch and exception-return are performed, the secure function is
finally executed. Assumed that the function is not interrupted or calls another context, it
can finish without noticing side effects. A return to the non-secure domain is performed
with the last instruction.

The memory of the return address was disabled by the firewall, leading to another
Firewall-Interrupt. This time, the transition to the non-secure execution mode was per-
formed before. The interrupt source is the non-secure domain with the exception frame
residing on the NS-PSP. As this stack pointer is not changed by the context manager, the

CHAPTER 4. DESIGN 48

exception frame can remain. Execution resumes at the previously fetched instruction after
the exception return.

4.5.2 Non-secure call-back

Another essential transition is calling a non-secure function from the secure domain. This
is needed when triggering pre-registered hook functions from secure interrupts or using a
utility function provided by the non-secure application.

From the design perspective, this sequence is basically a reverse version of the previous
case: The secure code branches to a non-secure address and triggers a change in execution
mode. Fetching the instruction causes a Firewall-Interrupt which is starting the context
manager. As the source of the exception was the non-secure domain, the exception vector
is already on the NS-PSP and must not be moved. The additionally pushed return address
and control data has to be moved to the secure stack of the application context. More
details about this mechanism are given in Section 2.2.3.

When the non-secure code returns, the secure instruction address is automatically
fetched from the secure stack and the execution mode changes. Immediately, a Firewall-
Interrupt is triggered. The exception frame is on a secure location and has to be moved to
the target stack. Execution resumes at the secure function after the exception-return.

Figure 4.6: Non-secure call-back sequence

CHAPTER 4. DESIGN 49

4.5.3 Secure → secure call

Calling a secure function of a different context is the first scenario, where only the context
manager is concerned. The security extension is not involved, because accesses in the same
security domain are completely unrestricted.

This function call is realized with a default branch instruction. When the first instruc-
tion of the target is fetched, the Firewall-Interrupt is triggered. Switching to a different
context in the secure domain requires moving of the exception frame to the stack of the
target.

Returning to the caller function behaves similar to the initial call. In essence, only the
stack pointer is changed, and the exception frame is moved. The implementation has to
distinguish both cases only for access control described later.

In the simplest case, illustrated in Figure 4.7, the called function is finished and returns
to the caller. Additional interrupts and nested cross-domain calls are not discussed at this
moment. Those scenarios are supported by the design and will be discussed in Section 5.4.

Checking the permission of the function call is the responsibility of the context manager.
Section 4.6 discusses this topic in more detail.

Figure 4.7: S → S call

CHAPTER 4. DESIGN 50

4.5.4 Exception-based transitions

Exception handlers also belong to a specific context, which might be disabled when the
interrupt occurs. This design tries to avoid special restrictions on allowed interrupts. More-
over, blocking or dynamic disabling of interrupts to prevent advanced scenarios must not
be used as a workaround. The traditional priority, chaining and nesting features of excep-
tions also have to be fully supported. All use cases require that the Firewall-Interrupt has
the highest configurable priority. Context switches required by higher prioritized interrupts
would fail otherwise. The following sections summarize the possible exception sequences:

Secure exception during non-secure execution

The first exception use case is a combination of changing all execution modes at once. Non-
secure application code, executing as unprivileged task, is interrupted by a secure exception
of a different context. In this case the privilege level and security state are changed by the
build-in functionality of the core, and context switching is handled by the context manager.

Entry to the secure exception is done in the conventional way with the additional
switch of the execution permission. The first instruction of the interrupt handler causes
the Firewall-Interrupt as nested exception. The exception frame is located on the secure
MSP, because execution already switched to privileged mode beforehand. This stack is
shared by all tasks anyway, preventing the need of moving the fault stack.

When the initial secure exception finishes, the exception frame is retrieved from the
non-secure stack. Fetching the next instruction causes a Firewall-Interrupt again. This case
behaves the same as returning from a secure function call. No explicit stack modifications
are performed, only internal data structures are updated.

Secure exception during secure execution

Figure 4.9 illustrates the scenario, where the execution of secure code is interrupted by a
secure exception of an inactive context. The initial exception causes a switch to privileged
mode, where the first instruction of the handler triggers a Firewall-Interrupt as nested
exception. The exception frame of the outer exception is located on the stack of the wrong
context and has to be moved. The inner exception happened already in privileged handler
mode and placed the frame on the MSP.

Returning from the outer exception causes the same context switch as a return from
a normal secure function: The next instruction of the interrupted context triggers the
context switch. The created exception frame has to be moved to the stack of the initial
context again, because the execution privilege was decreased before the Firewall-Interrupt
happened.

CHAPTER 4. DESIGN 51

Figure 4.8: Secure exception during non-secure execution

Secure exception nesting

A fundamental concept of exceptions on Cortex-M processors, is the nesting of higher pri-
oritized exceptions. A simple design could deactivate subsequent interrupts at the context
switch. In contrast, this project tries to preserve the established programmers’ model of
the original architecture.

The exception priority can be configured freely in software. The only constraint is, that
the Firewall-Interrupt must have the highest configurable priority. All other exceptions
can be nested freely, even if they belong to different contexts. It is assumed that secure
interrupts have a globally higher priority compared to non-secure interrupts. This precon-
dition simplifies the stack handling, because no subsequent transitions in the security state
are possible. The execution flow of nesting one exception level is illustrated in Figure 4.10.
The outer exception is handled as described in previous sections. Whether the exception
frame has to be moved depends on the security state of the interrupted function. The con-
text switch of the inner exception does not require changes to the fault stacks. Execution
already was in privileged handler mode, resulting in placement of the exception frame on
the secure MSP, which is shared by all contexts.

This condition holds true for all subsequent nested exceptions, as the MSP is used
exclusively until the lowermost exception returns to the normal execution flow.

CHAPTER 4. DESIGN 52

Figure 4.9: Secure exception during secure execution

Function call from exception handlers

All functionality required for processing an interrupt might not be implemented in the
handler. An additional function from a secure library might provide utilities or can be
used to pass data for later usage.

When calling the function, which is located in another context, a Firewall-Interrupt is
triggered which handles the task switch. The entry behaves the same as for other nested
exceptions, with the exception frame located on the MSP. No stack modifications have to
be performed, because the execution mode remains privileged. When the function returns
eventually, the task switch is the same scenario in reverse.

This use case is mostly mentioned for the sake of completeness, because a lot of care
must be taken. One concern deals with performance considerations: Exception handlers
should be as short, and therefore as fast as possible. Calling a utility function, which might
be extended for an unrelated reason at a later time, could unintentionally influence the
real-time properties in the future.

CHAPTER 4. DESIGN 53

Figure 4.10: Secure exception nesting

Another serious issue arises from the execution privilege. The exception handler is
executed as privileged function. With this status, it has full access to all system registers,
configurations and the MSP. When an external function is directly called by the handler,
the privilege is carried over. Returning to the calling exception handler is the responsibility
of the function. The context manager cannot check the correctness of the return address.
For this reason, calling an untrusted function from an external library, creates a serious
security weakness.

A proposed solution to prevent both issues could be realised by using the Pended
Service Call (PendSV) or a periodic task, which performs the complex calculations. The
interrupt handler performs only the minimum required functionality, e.g. reading data
from external peripherals and storing them in buffers, and registers a PendSV or sets
an implementation specific flag. Data processing is only activated once all interrupts are
completed. The PendSV additionally has to decrease the privilege level and modify the
return stack, in order to return to the initially interrupted function.

CHAPTER 4. DESIGN 54

Figure 4.11: Secure call from secure exception handler

Non-secure exception during secure execution

Normal thread execution in the secure domain does not influence the occurrence of non-
secure interrupts. They can happen all the same and perform a domain transition as
described in Section 2.2.3.

The extended exception frame of the initial exception is placed on the currently active
secure PSP. It has to be moved to the stack associated with the application context,
to enable the exception-return sequence. The exception frame of the Firewall-Interrupt
is located on the non-secure MSP, because switching the security domain and execution
privilege was already finished beforehand. Returning from the non-secure handler uses
the data of the extended exception frame. The required task switch behaves the same as
returning from a non-secure call-back.

CHAPTER 4. DESIGN 55

Figure 4.12: Non-secure exception during secure execution

4.6 Sanity check

The strict isolation between the two security domains is already handled by the default
Security Extension of the processor. Information leakage and invalid accesses from contexts
inside the secure domain have to be additionally checked by the context manager. As the
implementation is very application dependent, only basic checks are performed within the
scope of this project. The following considerations give an overview of the responsibilities
imposed on the context manager.

Information about the memory map is the essential requirement of the context manager.
Only with a defined schema, the matching of fault-addresses and context borders can be
performed. The simple static design, which is described in Section 4.3, was chosen to
simplify the implementation and reduce the effort of debugging. More advanced projects
could use linker symbols to retrieve this information automatically, and setup variably
sized sections at the initialization stage.

Only function calls are allowed between secure contexts. Read/write operations on
disabled memory regions are prohibited by this design, passing of large data has to be
performed with shared buffers in always-on regions described in Section 4.3.1. Noticing

CHAPTER 4. DESIGN 56

such an invalid access is simple: The resulting Firewall-Interrupt contains a PC value
belonging to the already activated context. This means, that the executed instruction was
in an activated section, but another side-effect (e.g. data access) triggered the fault.

A more advanced logic is needed to guard the function calls. Not all functions of a
context should be publicly available to external calls and branching to the middle of the
function should be prevented. This could be exploited to skip the data validation part of a
function and perform actions on an invalid input. The resulting side effects could further
cause vulnerabilities in the security architecture. The first step of securing the entry points
can be realized with the help of function whitelists: Every context registers the publicly
available functions at the context manager. Those lists are stored internally and are queried
when context switches are performed. A proposed design would place allowed function
pointers at the beginning of the memory section with the help of compile-time macros.

When a function of a disabled context is called, the resulting Firewall-Interrupt indi-
cates the start address of the function. Preventing context switches on addresses, which
are not on the whitelist of the destination context, would solve both requirements of the
sanity check. Unfortunately, the flexibility of secure code would be limited severely by this
simple implementation:

• Returning to the source context from a function call also triggers the context man-
ager. The source address is the instruction following the initial function call, which
would fail with the pure whitelist-approach.

As a workaround, the previous instruction could be inspected. Containing the signa-
ture of one of the branching operation codes could indicate a return in the execution
flow. This approach would loosen the requirements by also allowing arbitrary calls
to all instructions of this pattern.

• Code execution can always be interrupted by an exception. Context switches, caused
by exceptions, have to be traced to enable the default exception-return procedure.

The previous mentioned points highlight the need of detailed information about the
context switch reason, and the management of a call-stack. The context switch reason is
mainly derived from the fields of the EXCEPTION_RETURN value located in the link
register. The call-stack collects the initial return addresses before a context switch was
performed. If the source address of the Firewall-Interrupt equals the top of the call stack,
return from a nested call is identified. Sections 5.3.2 and 5.3.1 give the implementation
details of those components.

Chapter 5

Implementation

This chapter documents the details of the practical implementation and the used toolchain
during project development. The general software architecture and the verification steps
of the proposed solution are also covered.

5.1 Toolchain

The main software development was done with the Keil µV ision Integrated development
environment (IDE) and the associated compiler, officially developed by ARM.

The decision, to use these commercial products instead of free and open-source solu-
tions (e.g. GNU Compiler Collection (GCC)), was made because of the following reasons:
ARM primarily releases examples and sample projects with this toolchain. As the target
architecture is not yet used in the mainstream market, support and documentation from
other sources is still very limited. The initial orientation and project launch was made
easier, because the well-structured information from a single resource could be used.

Another crucial factor was the company internal support from NXP. The same toolchain
is used for other projects targeting this hardware. The licence, support packages and a
sample project was provided as initial starting point. The re-use of the implementation
results is also simplified if the same workflow is retained.

Creating a new project for an ARMv8-M target, two distinct projects are created and
the required support files for the specific hardware are linked automatically. The reason
for two projects is the better separation of secure and non-secure code. Unintentionally
calling of non-secure code with increased privileges is made harder and secure code is not
compiled into the non-secure binary.

The secure project is compiled/linked first and produces two objects:

1. The stand-alone binary contains all the code and constant data of the project. Ini-
tialization and a bootloader should also be included in this file. If the application
does not use an additional non-secure component, the complete system is contained
in this binary.

2. An import library is produced, to allow linking of the non-secure code. It contains
the symbol table for all the secure functions which can be called from non-secure

57

CHAPTER 5. IMPLEMENTATION 58

code. They point to the static addresses of the entry functions located in the NSC
memory section.

This sequence has a direct impact to the software architecture: Call-backs to the non-
secure domain are realized with function pointers. They are passed on a per-call basis or
statically registered with a start-up sequence.

Functions decorated with the non-secure-entry attribute cannot be optimized out, be-
cause there is no information about the subsequently compiled non-secure application. This
could add a lot of unused code unintentionally, when including components from external
libraries.

When the secure code is updated at a later stage, care has to be taken to avoid incom-
patibilities with the already deployed non-secure application. New secure functions can be
added without causing recompilation of non-secure code which does not use this newly
implemented feature. The old import library has to be passed to the linker, to prevent
reordering of the secure veneers. New entry functions are appended at the end. Assuming
that the address of the NSC section and the memory map remained the same, only the
secure project has to be rebuild and deployed.

5.2 Project architecture

An example project was used to implement and test the context manager. Figure 5.1
illustrates the structure.

The secure code contains initialization, firewall configuration, secure interrupts and
context manager. Additional functions were implemented as secure libraries to test the
non-secure entry and callback scenarios. In contrast to a real-world application, all secure
code was developed in a single project and compiled at once. Based on the memory map
defined by the scatter file, context and IP protection is only ensured during execution.

This approach was chosen to simplify development and debug operations of the context
manager. It also allowed quick deployment of the binaries without the need of a bootloader.

The non-secure code implements several use cases to verify the implementation. More
details about the verification are given in Section 5.4.

Figure 5.1: Project structuring

CHAPTER 5. IMPLEMENTATION 59

5.3 Context manager

The context manager is the central part of this project. The design described previously was
implemented as proof-of-concept. Details of the concrete implementation of the essential
parts are given in Section 5.3.3.

The main functionality of the context manager is implemented in four steps:

• Identifying the cause of the context switch is the essential operation. The EXCEP-
TION_RETURN value and registers from the exception frame are used for this
decision.

• The call-stack keeps track of context switches caused by nested calls. Returning from
an inner function is detected to perform stack clean-up operations and allow otherwise
prohibited task switches.

• When switching the stack pointer, the exception frame also has to be moved. Based
on the fault reason, the location and size of the exception frame is different.

• Finally, the firewall configuration has to be changed for allowing the execution of the
destination context.

5.3.1 Fault reason

The exact fault reason is required for the sanity check and all later stack management.
The main indication of the exception source is given with the fields of the EXCEP-
TION_RETURN value. It is written to the link register on exception entry. A detailed
description about the available fields is given in Table 2.3.

The values of the link register and program counter placed on the exception frame are
also needed for this identification. The program counter points to the execution address,
which triggered the Firewall-Interrupt. With the link register, nested exceptions can be
identified. Algorithm 1 gives an implementation overview.

5.3.2 Call-stack management

The call-stack is stored to get the information about returning from a function or interrupt
handler. The general-purpose registers are restored when a return is detected.

Updating of the stack and the location of the return address is dependent on the fault
reason. The used fault stack location can be derived from the EXC_RETURN value. The
relevant fields are S (secure/non-secure, bit[6]) and SPSEL (stack pointer selection, bit[2]).
With this information, the return address can be pushed to the call-stack. Algorithm 2 gives
an overview of the required steps.

5.3.3 Detailed transition sequences

This section combines the previously mentioned tasks and gives a detailed summary of all
required steps to handle a context switch.

CHAPTER 5. IMPLEMENTATION 60

Algorithm 1 Algorithm to get fault reason.
1: procedure GetFaultReason(exceptionReturn, faultstack)
2: linkRegister := faultstack[5]
3: programCounter := faultstack[6]
4: faultReason := NULL
5: if linkRegister == 0xFEFFFFFF && !SecureOrigin then
6: faultReason := REASON_NS_CALLBACK
7: else if CallstackTop == programCounter && SecureOrigin then
8: faultReason := REASON_RETURN
9: else if CallstackTop == programCounter && !SecureOrigin then

10: faultReason := REASON_RETURN_NS
11: else if !SecureOrigin && PrivilegedOrigin then
12: faultReason := REASON_NS_IRQ
13: else if PrivilegedOrigin && SecureOrigin && linkRegister ==

EXCEPTION_PREFIX then
14: if linkRegister == !PrivilegedOrigin then
15: faultReason := REASON_S_IRQ
16: else
17: faultReason := REASON_S_IRQ_PRIV ILEGED
18: end if
19: else if PrivilegedOrigin && SecureOrigin then
20: faultReason := REASON_S_PRIV ILEGED_CALL
21: else
22: faultReason := REASON_CALL
23: end if
24: returnfaultReason
25: end procedure

Secure function call

Calling a secure function from a non-secure context is one of the most basic use cases. The
implementation has to track this case, to verify the context switch when returning to the
non-secure domain again.

Figure 5.2 illustrates the detailed steps of this use case.

1. The non-secure code calls the function by the name declared in the provided header
file. The import library does not point to the implementation of the function directly
- a branch to the secure veneer located in NSC-memory is performed instead. At this
function call, the security domain is changed to the secure state. It only succeeds, if
the target instruction is the SG operation.

2. The secure veneer calls the concrete implementation of the secure function imme-
diately. By using a direct branch, the LR still points to the next instruction of the
non-secure code. No return to the secure veneer will be performed.

CHAPTER 5. IMPLEMENTATION 61

Algorithm 2 Call stack management
1: procedure UpdateCallStack(exceptionReturn, faultStack, faultReason)
2: linkRegister = faultStack[5]
3: if faultReason IN [REASON_RETURN,REASON_RETURN_NS] then
4: PopFromCallstack()
5: else if faultReason IN [REASON_CALL,REASON_S_PRIV ILEGED_CALL]

then
6: PushToCallstack(linkRegister)
7: else if faultReason == REASON_S_IRQ then
8: PushToCallstack(originalFaultStack[ReturnAddress])
9: else if faultReason == REASON_NS_IRQ then

10: PushToCallstack(extendedFaultStack[ReturnAddressExtended])
11: else if faultReason == REASON_NS_CALLBACK then
12: PushToCallstack(secureStack[0])
13: end if
14: end procedure

3. Because the secure function is located in another context, a Firewall-Interrupt is
triggered when fetching the first instruction. The EXC_RETURN value located in
the LR indicates secure, unprivileged code as the exception origin. The exception
frame has to be moved before changing the secure PSP to the destination context.

The cleaned stack pointer of the switched-out context is updated in the associated
TCB. To detect the return to the non-secure code later on, the old LR value located
on the exception frame is pushed to the internal call stack.

4. The default exception return procedure restores the stacked register values from the
PSP of the active context. Execution of the secure function can be performed, because
the firewall rules were updated by the context manager beforehand.

5. To return from the secure domain, the BXNS instruction is used. Clearing of security
critical registers has to be performed manually beforehand. Secure code has full
visibility over the non-secure memory. For this reason, the non-secure return address
was initially passed in the LR. It was preserved by the function and can be used
directly to return from the subroutine call. Fetching the next instruction of the non-
secure code will inevitably cause another Firewall-Interrupt and activation of the
initial context. This return-sequence is described in the next section.

Function return

A function return has to be distinguished from other cases for the sanity check described in
Section 4.6. In combination with the previous sequence, a secure API call can be handled.
This section focuses on the return of a subroutine call, the secure call is only indicated in
Figure 5.3.

1. An initial secure call is needed to prepare the inner state of the context manager for a
function return. This step includes the switch to the secure domain, branching from

CHAPTER 5. IMPLEMENTATION 62

2main_ns:
…
0x200: BL sec_func_entr
0x204: ...

0xA0: SG
0xA4: B sec_func
0xA8: SG
0xAC: B ...

Secure veneer:Non-secure:

Firewall-Interrupt:
● Secure, unpriv. origin
● Exc.-frame on S-PSP
● EF[0x14(LR)] = 0x204

1

3

TZ

sec_func:
0x100: ...
...
0x140: BXNS LR (0x204)

Secure library:

45

Figure 5.2: Secure call sequence

the secure veneer and switching the context to the target. The BXNS instruction
starts the return-sequence.

2. Fetching of the next instruction causes a context switch to the initially active non-
secure code. The transition to the non-secure domain was finished beforehand, caus-
ing the exception frame to be located on the NS-PSP. This stack is not modified by
the context manager and requires no moving of the exception frame.

The return address causing the Firewall-Interrupt matches the top of the call-stack,
indicating the return from a nested call.

3. The exception-return mechanism automatically cleans the exception frame from the
non-secure stack. Code execution continues oblivious to the occurred context switch-
es.

Depending on the security state of the calling code, we have to further distinguish the
stack handling. Returning to secure code is handled in following sections.

Secure function call from secure code

Calling a secure function in a different context also initiates a context switch. When the
calling function is already in the secure domain, the TrustZone features are not involved.
Managing the access rights is only ensured by the firewall implementation. Figure 5.4
illustrates this sequence in more detail.

1. Because both contexts already are in the secure domain, the secure function is directly
called in this case. The called address was supplied from a function pointer, or linked
from an export library. A sanity check has to performed in the context manager to
prevent unauthorized context entry.

2. Fetching the first instruction of the other context causes a Firewall-Interrupt. There
is no difference to the non-secure call visible to the context manager: The exception

CHAPTER 5. IMPLEMENTATION 63

main_ns:
…
0x200: BL sec_func_entr
0x204: ...

Non-secure:

Firewall-Interrupt:
● Non-secure, unpriv. origin
● Exc.-frame on NS-PSP
● EF[0x18(PC)] = 0x204
● Top of callstack = 0x204

1

2

TZ

sec_func:
0x100: ...
...
0x140: BXNS LR (0x204)

Secure library:

3

Figure 5.3: Secure return to non-secure code

source is also secure, unprivileged code. The return address from the exception frame
is pushed to the call stack. Before switching the PSP to the new context, the exception
frame has to be moved.

3. The exception-return procedure uses the restored registers to return to the called
function.

4. Returning from the subroutine-call uses the default branch instruction. It is assumed,
that the function does not tamper with the return address. The context manager
cannot distinguish a subroutine call from an invalid return procedure. Validation
can only be performed on function entry, because no information about the function
length is known.

4

…
0x200: BL func_2
0x204: ...

func_2:
0x400: ...
…
0x440: B LR (0x204)

Context 2:Context 1:

Firewall-Interrupt:
● Secure, unpriv. origin
● Exc.-frame on S-PSP
● EF[0x14(LR)] = 0x204

1 2

3

Figure 5.4: Secure call from a secure context

Secure return to secure code

Returning to a secure function from a secure subroutine-call also requires different handling
from the context manager. The management of the call-stack is an essential requirement
for this case.

CHAPTER 5. IMPLEMENTATION 64

1. Calling and returning from the function take place without changing the security sta-
tus of the processor. The switch to the second context was explained in the previous
section and is omitted here.

2. The operation after the initial branch causes a context switch. The EXC_RETURN
also signals entry from secure, unprivileged code. Looking at the internal call-stack
helps to distinguish this case from previously mentioned entry reasons. After mov-
ing the stack frame and activating the initial context, the exception-return can be
performed.

3. The build-in functionality of the core cleans the stack frame and restores the register
values.

…
0x200: BL func_2
0x204: ...

func_2:
0x400: ...
…
0x440: B LR (0x204)

Context 2:Context 1:

Firewall-Interrupt:
● Secure, unpriv. origin
● Exc.-frame on S-PSP
● EF[0x18(PC)] = 0x204
● Top of callstack = 0x204

1

23

Figure 5.5: Secure return to secure code

Non-secure call-back

The core architecture provides basic support to enable non-secure call-backs without caus-
ing security vulnerabilities. Illustrated by Figure 5.6, this advanced scenario has to be
specifically handled by the context manager:

1. To trigger the correct internal measures for the switch in execution mode, the BLXNS
instruction is used. When developing in the C language, call-back pointers have to
be decorated with the cmse_nonsecure_call attribute. This causes creation of the
correct instructions and additional code to save security critical registers.

In addition to the transition of the security domain, the secure return address and
status registers are pushed to the secure PSP. A special value, called FNC_RETURN
is stored in the LR. Section 2.2.3 gives more details about this functionality.

CHAPTER 5. IMPLEMENTATION 65

The privilege level of the executing non-secure code depends on the value of the
banked CONTROL register. In this project, we always assume unprivileged execution
of application code.

2. The triggered context switch has a non-secure, unprivileged origin. The exception
frame is located on the non-secure stack and has not to be moved for this reason.
However, the secure return address and status register has to be moved to the secure
destination stack, to enable the return sequence later on. This return address also
has to be pushed to the call stack.

3. The exception return restores the stacked register values again. The FNC_RETURN
magic number is placed in the LR again to indicate the special return sequence.

4. Branching to the FNC_RETURN value automatically pops the actual secure return
address from the stack. Additionally, all banked registers are switched together with
the security status. All other registers, which have been cleared for security reasons
before the call, have to be restored again manually.

5. The context switch required to continue operation follows the same sequence as the
previously mentioned secure-return sequence.

One distinction remains: Because the original registers of this function were not yet
restored, the stacked LR on the exception frame still has the FNC_RETURN value.
It must not be used as a primary identifier for the fault reason. Nevertheless, this
anomaly is discovered, because a non-secure call-back targeting secure code is not
possible.

4

…
0x200:LDR R4,

 =Callback_func
0x204: BLXNS R4
0x208: ...

Callback_func:
0x400: ...
…
0x440: BX LR

 (0xFEFFFFFF)

Non-secure:Secure library:

Firewall-Interrupt:
● Non-secure, unpriv.

origin
● Exc.-frame on NS-PSP
● EF[0x14(LR)] =

 0xFEFFFFFF
● S-PSP[0] = 0x208

1

2

3

TZ

Firewall-Interrupt:
● Secure-return

sequence

5

NS-Callback

Figure 5.6: Non-secure call-back sequence

Non-secure exception

Non-secure exceptions can happen unpredictable at all times. If the application context is
already active by chance, the context manager is not involved and only the default exception
sequence is completed. Execution of secure code can also be interrupted unexpectedly.

CHAPTER 5. IMPLEMENTATION 66

Multiple features of the build-in architecture ensure the security constraints of the system
in this case.

Secure exceptions are considered to be prioritized over non-secure exceptions by the
current design. For this reason, interruption of secure, privileged code is not considered as
a valid sequence.

Handling of non-secure exceptions is illustrated in Figure 5.7:

1. Secure code has no higher priority than non-secure application code. This allows even
the lowest prioritized exception to interrupt secure execution. When crossing the
security domain, additional steps are performed internally: In addition to switching
the banked registers, an extended exception frame is created on the secure stack.
It additionally contains the secure values of the general-purpose registers. Table 2.5
lists all fields in more detail.

2. Before the interrupt handler can be executed, the non-secure context has to be en-
abled. The context switch is triggered by a nested exception, which again crosses to
the secure execution domain. Because the switch of the execution mode was already
concluded before the instruction fetch, it is entered from a non-secure, privileged
origin. The inner exception frame does not need a relocation, because it is on the
non-secure MSP. On the contrary, the extended exception frame of the original ex-
ception has to be moved to the secure PSP of the (NS)-application context. The
actual Program Counter (PC) of the interrupted secure code has to be pushed to the
call stack to detect the exception return later on.

3. The exception return procedure uses the exception frame from the non-secure MSP.
The extended exception frame on the secure stack is not touched for this sequence.
The restored value of the LR contains the required EXCEPTION_RETURN value
to trigger the change in execution mode at return.

4. Returning to the secure domain is done automatically when the EXCEPTION_RETURN
value is decoded. The extended exception frame is used to restore system registers
(e.g. program counter) and the additionally stacked general-purpose registers.

5. Another context switch is required to continue the initially running code. This re-
quires the same procedure as returning from a normal function call.

Secure exception during secure execution

Secure interrupt handlers can also be located in a deactivated context. The respective
context has to be switched-in before the exception can be handled.

1. The exception frame of the initial interrupt is placed on the PSP of the active context.
Because execution is already in the secure domain, only a switch in the privilege level
is performed.

CHAPTER 5. IMPLEMENTATION 67

4

…
0x200: ...
...

IRQ_Handler:
0x400: PUSH LR
…
0x440: POP PC

Non-secure interrupt:Secure library:

Firewall-Interrupt:
● Non-secure, priv. origin
● Exc.-frame on NS-MSP
● Extended exc.-frame

on S-PSP
● S-PSP[0x40] = 0x200

1 2

3

TZ

Firewall-Interrupt:
● Secure-return

sequence

5

NS - Exception

Figure 5.7: Non-secure interrupt sequence

2. The Firewall-Interrupt triggering the context switch originates from secure, privi-
leged execution state. The inner exception frame has not to be moved, because it is
placed on the secure MSP.

This case is identified by the stacked value of the LR. It contains an EXC_RET
value, which requires another exception to be happened previously. The exception
frame of the initial exception has to be moved to the PSP of the destination context.
It contains the PC of the interrupted code. This address is pushed to the call-stack
to identify the exception return later.

3. Returning from the inner exception cleans the exception frame from the main stack.
The execution mode stays secure and privileged.

4. Based on the EXC_RET value of the outer exception, the registers are restored for
continuing the execution of the secure code.

5. Because the return address is located on top of the call-stack, activating the initial
context follows the secure-return sequence already described.

Secure exception during non-secure execution

A secure exception interrupting non-secure code, is similar to the previously described
sequence. Because the change in security mode is handled by the hardware of the base-
architecture, no extra overhead is required from the context manager.

Stacking of the exception frame is performed before switching the security state. For
this reason, the exception frame of the outer interrupt is located on the non-secure stack.
The current execution privilege of the non-secure code influences the whether the PSP or
MSP is used.

This changed location has the following impact for processing the sequence:

• None of the two exception frames have to be moved by the first context switch. They
are both located on stacks, which are not changed by the context manager.

CHAPTER 5. IMPLEMENTATION 68

4

…
0x200: ...
...

IRQ_Handler:
0x400: PUSH LR
…
0x440: POP PC

Secure interrupt:Secure library:

Firewall-Interrupt:
● Secure, priv. origin
● Exc.-frame on S-MSP
● S-MSP[LR] = EXC_RET
● S-PSP[PC] = 0x200

1
2

3

Firewall-Interrupt:
● Secure-return

sequence

5

S→ S-Exception

Figure 5.8: Secure interrupt during secure execution

• The return address for call-stack management has to be retrieved from the non-
secure stack. For selecting the correct stack, the initial EXC_RET value has to be
inspected.

• Returning to non-secure code also changes the execution mode before causing the
Firewall-Interrupt. The resulting exception frame on the non-secure stack requires
no copy operations.

4

…
0x200: ...
...

IRQ_Handler:
0x400: PUSH LR
…
0x440: POP PC

Secure interrupt:Non-secure:

Firewall-Interrupt:
● Secure, priv. origin
● Exc.-frame on S-MSP
● S-MSP[LR] = EXC_RET
● NS-PSP[PC] = 0x200

1
2

3

Firewall-Interrupt:
● Non-secure-

return sequence

5

NS→ S-Exception

TZ

Figure 5.9: Secure interrupt during non-secure execution

Privileged function call

Calling a secure function from a privileged context requires special handling. As described
in Section 4.5.4, this functionality should be used with care, to minimize the risk of exploit-
ing the resulting security vulnerability. Although the usage of this function is discouraged,
implementation is done for completeness and to avoid a system crash when it is used for
legitimate purposes.

CHAPTER 5. IMPLEMENTATION 69

1. Calling a function from inside an interrupt handler preserves the privileged execution
level.

2. Entry to the context manager, from a privileged and secure origin, wrongly hints to a
secure interrupt as the cause. The valid return address in the LR field of the exception
vector correctly identifies this nested call. It would contain an EXC_RET value
otherwise. This return address is also pushed to the call-stack to identify the return
to the interrupt handler. Because only the secure MSP is involved, the exception
frame is not moved.

3. Returning from the context manager does not change the execution privilege. This
code still runs with privileged and secure status. This circumstance illustrates the
previously mentioned security vulnerability, because the function can potentially ac-
cess the complete system.

4. The subroutine is finished with one of the basic return strategies.

5. Resuming the secure interrupt causes the Firewall-Interrupt as a nested exception.
The interrupt source is again secure and privileged code. The PC field of the excep-
tion vector matches the top of the call-stack, which identifies this privileged-return
sequence. The exception frame is not moved and will be cleaned by the exception-
return.

4

0x200: BL sec_func
...

sec_func:
0x400: PUSH LR
…
0x440: POP PC

Secure library:Secure interrupt:

Firewall-Interrupt:
● Secure, priv. origin
● Exc.-frame on S-MSP
● S-MSP[LR] = 0x200

1 2

3

Firewall-Interrupt:
● Secure, priv. origin
● Exc.-frame on S-MSP
● S-MSP[PC] =

 top of callstack

5

Privileged S call

Figure 5.10: Privileged function call

Nested secure exception

Like all non-secure code, exception handlers of the non-secure domain belong to the same
context. Nested exceptions do not require a context switch for this reason.

Secure interrupt handlers can potentially be implemented in different contexts. Nesting
of interrupts and required context switches have to be supported for this reason.

Figure 5.11 illustrates handling of this sequence in detail:

CHAPTER 5. IMPLEMENTATION 70

1. Entry to the first exception level follows the already described sequence. In this
example, the exception handler is additionally interrupted by a higher privileged
exception. The exception frame used for returning is placed on the secure MSP in
this case.

2. Assumed that the second exception handler is located in a different context, a
Firewall-Interrupt is triggered. The LR field located in the exception frame indi-
cates a nested exception with the EXC_RET value. Based on this information, the
location of the exception frame from the second interrupt is known. It is also located
on the secure MSP - just before the exception frame of the Firewall-Interrupt.

By applying the offset of the second frame, the PC of the interrupted exception
handler is resolved. This address is pushed to the call-stack to identify an exception-
return.

3. Based on the configured priority levels, even more layers of nested exceptions can
occur. Fortunately, the sequence is always identical from the second layer onwards.
The secure main stack is growing with the additional exception frames and local data
of the handlers. The call-stack also increases to match the nested call hierarchy.

4. Returning from each layer immediately causes a Firewall-Interrupt to activate the
initially running context again. The matching address on the call-stack identifies
the return sequence. The default exception-return mechanism and the handler code
clean-up the main stack without intervention of the context manager.

0x200: ...
...

4

0x400: …
...
0x420: …
...
0x440: BX LR

Interrupt 2:Interrupt 1:

Firewall-Interrupt:
● Secure, priv. origin
● Exc.-frame on S-MSP
● S-MSP[LR] = EXC_RET
● S-MSP[PC+8] = 0x200

1 2

Firewall-Interrupt:
● Secure, priv. origin
● Exc.-frame on S-MSP
● S-MSP[PC] =

 top of callstack

Nested S exception

0x600: ...
…
0x620: BX LR

Interrupt 3:

Firewall-Interrupt:
● Secure, priv. origin
● Exc.-frame on S-MSP
● S-MSP[LR] = EXC_RET
● S-MSP[PC+8] = 0x420

3

Figure 5.11: Nested exceptions

Summary

By investigating the detailed context transition sequences, the logic of the context manager
can be summarized with the fields of Table 5.1: The EXC_RETURN value is parsed to get
the security domain (S) and execution privilege (Mode: Thread or H andler) of the interrupt

CHAPTER 5. IMPLEMENTATION 71

Table 5.1: Context transition overview

EXC_RETURN Return address Stack frame copy
Fault reason S Mode SPSEL Call-stack top source (bytes)
CALL S T PSP - S-PSP[LR] 32
RETURN_S S T PSP S-PSP[PC] - 32
RETURN_NS NS T PSP NS-PSP[PC] - 0
NS_CALLBACK NS T PSP - S-PSP[0] 8
NS_IRQ NS H MSP - S-PSP[64] 72
S_IRQ S H MSP - S-PSP[PC] 32
S_IRQ_PRIVILEGED S H MSP - S-MSP[PC + 8] 0
S_PRIV_CALL S H MSP - S-MSP[LR] 0

origin, as well as the location of the exception frame (SPSEL). Additional comparison of
the PC to the call-stack is used to identify all return-related sequences.

The location of the return address to the old context is different for every transition.
This address needs to be retrieved from the correct stack and offset for updating the
call-stack.

Finally, different amounts of data have to be copied when the secure PSP is changed.
In the obvious cases (e.g. CALL and RETURN_S), the exception frame of the Firewall-
Interrupt has to be moved. It is needed immediately after the context manager is finished,
to return from the interrupt.

Other cases move data, which is needed later in the return sequence. In theNS_CALLBACK
case for example, the exception frame is located on the non-secure stack. The context man-
ager copies the secure return address and status register, which are automatically retrieved
from the secure stack when switching the security domain at function return.

5.3.4 Task control block

The responsibility of the Task Control Block (TCB) is storing persistent information when
a context is temporarily disabled. Although this project does not specifically deal with
RTOS tasks, the name TCB is used to follow the naming convention generally used in
similar projects. A TCB designed for preemptive scheduling often stores a lot of data from
the interrupted task. It can hold general-purpose and control registers, stack information
and independent interrupt configuration for every task.

Because of the interrupt-focused design of the context manager, a lot of context data
is automatically stored in the exception frame. This enables a lightweight design of the
TCB. Only the following entries are stored for every context:

• Secure PSP: Because the stack is exclusive for every context, the current address
has to be stored before switching to a different stack. When the exception frame of
the Firewall-Interrupt is moved to the new stack, the address has to be adjusted
accordingly.

CHAPTER 5. IMPLEMENTATION 72

• Stack limit: Both secure stacks have a limit register provided by the core architec-
ture. Modifications of the pointers cause a comparison with the limit and trigger a
UsageFault if the address underflows.

They can be optionally used to prevent system corruption by stack underflows. Han-
dling of those cases has to be implemented manually based on the application re-
quirements. Setting the value to zero will lead to the default behaviour which does
not restrict the allowed range.

The limit is stored and set individually for the secure PSP of every context.

• Switch reason: In the current implementation, the reason of the last context switch
is also stored. This is done for debugging and monitoring purposes. It can be omitted
by implementations for productive deployment.

The current implementation does not explicitly store and clear the general-purpose
registers when switching between contexts in the secure domain. When implementing this
feature, they must not be stored in static memory of the TCB. Instead, they have to be
pushed to a stack for the following reason: Context activations can happen interleaved
before returning finally. In this scenario, multiple versions of the general-purpose registers
exist for a single context. The older version would be overwritten if simply stored in the
TCB. Figure 5.12 illustrates this scenario.

Library 1: Library 2: Library 3:

lib1_1()

lib1_2()

lib2()

lib3()

1

2

3

4

5

6 ● lib1_1
● lib2
● lib1_2
● lib3

Callstack:

Figure 5.12: Interleaved context switches

Calls of only two contexts can already cause this scenario. Having the same context on
the call stack multiple times is caused by a call-back to a function of the source context. If
this function again produces a context switch by a function call, the values of the general-
purpose registers of the initial call would be lost. For this reason, they have to be stored
in a stack data structure. This procedure was not implemented in the scope of this project
and left for future work.

5.4 Verification

The two test libraries and the non-secure code are used to perform various use cases. The
API functions mostly perform simple arithmetic functions with prime numbers on a given
input, and return the result to the caller. This places some arbitrary load on register and
stack usage, as well as increasing the code size.

CHAPTER 5. IMPLEMENTATION 73

When calling the test functions, the returned results are collected. The current im-
plementation of the context manager features a function to disable it completely. This
feature is used, to run the tests again without interference of the firewall. By comparing
the returned results, stack or register corruption caused by the context manager can be
discovered. Figure 5.13 lists the involved functions for verification.

main_ns

+ns_callback(int param, f_ptr function)
+ns_irq()
-run_tests()

Library_1/2

+ns_entry(int param) [ns]
+call_lib(int param) [ns]
+s_lib_func(int param) [ns]
+trigger_irq(int irq_number) [ns]
+s_irq()
+start_timer(callback, timeout) [ns]
+s_pingpong(recursion_count)result_checker

+push_result(int result)
+start_validation()

Figure 5.13: Verification functions

The executed tests are selected by pre-processor defines. All active tests originate from
the non-secure main and the run_tests function. The non-secure application also contains
an interrupt handler and a call-back function. This call-back can further be used for calling
another function.

Most tests are statically implemented and require no modifications for execution. Some
more advanced scenarios were tested with temporary code changes. Negative testing is
also not performed automated. The resulting HardFault halts execution when an invalid
sequence was discovered successfully. Both test-libraries contain the same basic function-
ality to test different ordering of the sequences:

• ns_entry: A simple secure entry from non-secure code is tested by calling this
function. The passed parameter is modified by the function and returned.

• call_lib: This function is used to test a context switch within the secure domain.
The secure library function of the other context is called.

• trigger_irq:With the NVIC→STIR register, an arbitrary interrupt can be triggered
by software. It is used by this function, to cause context switches by exceptions
in other libraries. The corresponding interrupt hander, implemented in the other
context, will be executed.

• start_timer: A timer can be started for multiple advanced scenarios. By passing a
pointer to a call-back function, a privileged function call is tested. When an interrupt
is triggered from this function, tail chaining and nesting of exceptions is performed.

• pingpong: This function calls the matching definition in the other context recur-
sively. It is used to test the call-stack management when interleaved switches occur.

Chapter 6

Evaluation

The following sections review the existent design and implementation to highlight potential
limitations. It is dependent of the target application if the context manager can be deployed,
or if the restrictions prevent the usage for this specific case.

6.1 Timing behaviour

The additional overhead of the context manager causes an unavoidable latency. Variations
in the logic and varying copy operations cause differences of the timing behaviour for
every fault reason. Measuring of the timings was done by toggling a General Purpose
Input/Output (GPIO) pin and capturing the level with an oscilloscope.

6.1.1 Measurement procedure

Additional code was added to set the state of the GPIO pin. This approach introduces a
static error in the results, because additional cycles are lost by writing the register values.
When a more precise analysis without modification is required, an external trace adapter
can be used for monitoring the precise instruction timings.

The pin is toggled before triggering the context switch with a call from a test function.
The output voltage starts to increase and reaches a stable level during execution of the
subsequent instruction. This steady increase, caused by charging the involved capacitances,
is another source for a static error. Because of its small size, it does not influence the
resulting cycle count. Nevertheless, the final computation of the delta time takes this error
into account.

Figure 6.1 classifies the individual contributions to the total latency for a simple func-
tion call.

Measurements were performed for three different sections:

• For comparison, the sequence was completed with disabled context manager. This
gives a base value for the internal latency caused by instruction fetch/decode and
changes in the operation mode. The branching instruction itself, and the instructions

74

CHAPTER 6. EVALUATION 75

set GPIO branch clear GPIO

Context manager disabled

set GPIO branch

Firewall-Interrupt entry

IRQ
latency

Context
manager

Exc.
return

clear GPIO

Total latency

Function entry

Function entry
Delta time

Figure 6.1: Composition of execution latency

to clear the GPIO are also included in this time. This overhead is approximately
1-4 cycles for an unconditional branch, and up to 7 cycles for modifying the GPIO
registers [3].

• When the context manager is enabled, fetching the instruction from a disabled mem-
ory section causes a Firewall-Interrupt. The measured latency includes the failed
instruction fetch, triggering of the interrupt and interrupt entry code. This value
can be subtracted to get a clearer indication about the isolated context manager
performance.

• The total latency caused by the context manager is measured by clearing the pin-
value in the target function of the destination context. It defines the time, which is
needed before the target function is executed. The instructions for branching and
clearing the GPIO are also included in this measurement.

• Finally, the delta time is calculated by subtracting the latency with disabled context
manager from the total latency. This value is the concrete delay added by the context
manager, which has to be accounted for when working with real-time constraints.
The added error caused by branching or triggering the context switch (e.g. setting
an interrupt request) is compensated by calculating the difference.

6.1.2 Results

The results are only provided to get a general idea of the magnitude of expected delay
and define a starting point for comparing later optimizations. Subsequent addition of new
features and design changes, as proposed in Section 7.1, will require a new review of the
exact status.

CHAPTER 6. EVALUATION 76

With a clock frequency of 100 MHz, the available prototype board has a cycle period
of 0,01 µs. With an average time of 4.28 µs spent by the context manager, about 400
cycles are additionally used by the current implementation. Table 6.1 lists the detailed
measurement values.

Table 6.1: Context switch latency [µs]

Fault reason Total latency Context manager
disabled

Interrupt
entry

Fault-stack
copy [bytes] Delta time

CALL (NS→S) 4,43 0,15 0,30 32 4,28
CALL (S→S) 4,46 0,11 0,26 32 4,35
RETURN_S 4,30 0,08 0,23 32 4,22
RETURN_NS 4,00 0,16 0,28 0 3,84
NS_CALLBACK 4,60 0,32 0,48 8 4,28
NS_IRQ 5,10 0,38 0,48 72 4,72
S_IRQ 4,90 0,24 0,38 32 4,66
S_IRQ_PRIVILEGED 4,25 0,24 0,38 0 4,01
S_PRIV_CALL 3,77 0,14 0,33 0 3,63

The latency is composed of the following components:

• Security mode change: Switching the security domain is done highly optimized in
hardware. Nevertheless, the additional stacking operations cause slow memory op-
erations which add multiple clock cycles of delay. Moreover, the C -compiler adds
code to clear the general-purpose registers when switching to the non-secure domain.
Manually clearing only security critical registers could reduce this proportion slightly.
As described in Section 6.1.3, this example takes 4 additional cycles when a change
in the security domain is needed.

• Interrupt latency [15]: Interrupt handlers can not be executed without delay for
several reasons. Because the proposed architecture is highly dependent on interrupts,
this delay is also relevant.

Completing the current instruction, which might take multiple cycles, adds the first
part of the delay. Fetching and decoding the first instruction of the interrupt handler
also needs time. Additionally, the instruction pipeline is flushed and needs to be filled
again with Interrupt Service Routine (ISR) instructions.

The minimum interrupt latency for Cortex-M3 processors is 12 cycles. Measurements
for the available Cortex-M33 prototype showed similar values for the best case. De-
pending on the source and destination execution mode, a higher latency has to be
assumed. Table 6.1 lists the entry delay for the Firewall-Interrupt handler. The tim-
ing includes the additional cycles for toggling the GPIO pin, which was measured at
0,09 µs (9 clock cycles).

• The largest portion of the latency comes from the logic of the context manager. A
decision tree has to be traversed to retrieve the current reason for the switch. The

CHAPTER 6. EVALUATION 77

additional sanity check has to look up the entry point in a whitelist when a function
call was performed.

Only then, the actual context switch can finally be performed. Based on the switch
reason, the exception frame and additional context data has to be moved. Updating
the internal data structures and restoring the saved registers also takes additional
processor time.

In contrast to the other latencies, this part can be further optimized to increase the
responsiveness of the system. Prohibiting some of the more advanced use cases can
simplify the decision logic arbitrarily, if they are not used in the application.

The current implementation has the advantage of a simple design with a static address
layout. Dynamic registering of libraries and the provided entry-points will increase
the complexity of the sanity check and further decrease the overall responsiveness
of the context manager. This compromise, whether latency or flexibility is preferred,
has to be decided based on the target application.

6.1.3 Latency variations

The different scenarios have a jitter in the latency. One contribution to this variation
comes from the different entry times to the context manager. Based on the needed change
in execution mode, different preparatory tasks (e.g. stacking operations) are performed by
the ARM core. The rest of the variation is caused by the fault-reason dependent logic and
varying operations handled by the context manager. Figure 6.2 compares the complete
delay (Latency total) to the latency introduced purely by the context manager (Delta).

Figure 6.2: Total latency comparison

CHAPTER 6. EVALUATION 78

Figure 6.3: Core latency comparison

When looking at the latency of a function call to the secure domain, a higher delay is
observable when the TrustZone border is crossed. This factor is apparent when looking at
the timings with disabled context manager. Compared to calls within the same security
domain, four additional cycles are needed. This latency is also present when looking at
the time needed for the Firewall-Interrupt entry. These two scenarios with their respective
timings are shown in Figure 6.3

Returning to the non-secure domain generally takes more time. This is caused by the
additional clearing of the general-purpose registers. With the activated context manager on
the other hand, copying the exception frame for the secure destination and the additional
logic outweighs this small delay substantially.

The most internal latency of the core is detected, when non-secure code has to return to
the secure domain. This is the case for non-secure interrupts and call-backs. A non-secure
interrupt also requires moving of the large additional state context. This causes a large
latency and makes it the least responsive case. Delaying interrupts by such a long time
might be a critical factor. At least for non-secure interrupts, this can be solved by placing
them in an always-on section.

Secure interrupts have a lower entry delay compared to the non-secure counterparts,
but the internal logic is more complicated. With the current implementation, checking for
tail-chained exceptions requires more operations than a standard call-sequence. Interrupts
during privileged execution have the same entry delay, but return to normal execution
more quickly. The reduced total time results from omitting exception frame movement.

As for the non-secure case, this interrupt delay could cause problems for some applica-
tions. This issue can also be solved by defining a section, which is always active and not

CHAPTER 6. EVALUATION 79

assigned to a context. Special care has to be taken when placing secure code in such an
always-on section: Data can be leaked, and code might be injected when the section is not
configured as execute-only.

Calling a secure function from privileged execution is the most responsive sequence. No
switch in execution privilege or security state is needed. There is also no copy operation
for moving the exception frame required.

6.2 Attack vectors

The responsibility concerning system security is shared between the TrustZone and the
context manager with hardware support from the AHB-Firewall. Nevertheless, the compiler
toolchain and the programmer must also produce security aware bytecode.

The following section lists potential attack vectors and describes the applied solution
defending against it. A short summary repeats the main points of the affected logic.

The initial attribution of memory security of the target hardware is done with the
provided IDAU. The current hardware implementation assigns the security status in blocks
of 4 kB, which might waste memory space in some instances. This limitation is especially
severe for NSC sections. It is highly unlikely, that the secure veneers occupy a major portion
of this section.

The remaining space is lost and must be reserved by the linker script to prevent acci-
dental placement of code or data. This is an essential requirement to protect against invalid
entry to the secure domain and arbitrary code injection. Moreover, the placement address
used during the linking stage must match the address configured by the code. Because
the final location is dependent on the size of preceding code, it might be moved during
development. This is a chicken-egg-problem which can be solved by using linker symbols
for the IDAU configuration.

The integrity of the configuration values and code has to be ensured with secure ROM
or cryptographically signed firmware binaries. The setting also has to be applied as soon
as possible and measures against reconfiguration have to be put in place.

When the attribution is configured correctly, the basic partitioning into secure and
non-secure domains is guaranteed by the TrustZone. Generally speaking, this statement
is only valid for the software execution on the ARM -core. Security attribution for other
components of the SoC attached to the system bus is highly (hardware-)implementation
dependent. In the worst case, all bus members are configured with secure authority. This
configuration would not increase the resilience against external threads compared to a
MPU-based security architecture (see Section 2.1.1 for details).

With this system in place, many potential attack vectors are already covered by the
hardware implementation. One of the most basic scenarios, a function call from the non-
secure domain to a secure API, is handled by the TrustZone at the first stage. Accesses
to secure memory are prohibited, only instruction fetches to NSC memory are permitted
when the SG operation is the target.

CHAPTER 6. EVALUATION 80

Nevertheless, there are still possibilities for security violations not covered by this hard-
ware logic: The C compiler must add code to clear the general-purpose registers before
returning to non-secure memory. When using the assembler language directly, it is the
responsibility of the programmer to prevent leakage of confidential data.

Without context manager, secure code can access the complete memory map. Non-
secure code might wrongfully supply secure pointers to cause unchecked memory corrup-
tion. The destination for modifications has to be validated by the secure code for this
reason. With the context manager, access to memory of other contexts is prevented. Data
has to be placed in shared buffers located in an always-on section beforehand.

Non-secure call-backs are supported directly by the hardware. The secure return address
is automatically pushed to a secure stack, to prevent the non-secure code from returning to
an arbitrary address. The return sequence is also fully enabled by the hardware. Clearing
confidential data from registers is the responsibility of the compiler and programmer. Call-
backs are generally not regulated by the TrustZone technology. Branching to arbitrary
non-secure addresses is possible. The context manager on the other hand, could be used
to also restrict those transitions to predefined entry functions.

Once the secure domain is entered, no further monitoring is performed by the TrustZone
technology. Apart from privileged configuration registers, the complete memory map is
accessible by default. Data can be modified, and functions can be called arbitrarily.

Distinct firewall sections are used by the context manager to limit this unrestricted
behaviour. The additional sanity check prevents calling of arbitrary functions outside the
active context. By detecting crossing of context borders, the context manager can clear
potentially secure data from the general-purpose registers. The current implementation
does not allow data access to the memory of another context. Shared buffers in always-on
regions have to be used for passing large amounts of data.

The sequence of non-secure exceptions, interrupting secure code is fully handled by the
build-in TrustZone hardware. Possibly confidential data is automatically pushed to the
secure stack before switching to the non-secure execution state. The well-proven exception-
return sequence ensures that execution continues at the correct address. The only software
interaction happens, when the exception handler is placed in an inactive context. The
interrupted context is deactivated during execution of the handler, to protect it from
malicious operations.

Secure interrupts use the default exception sequence. The only addition is the change in
execution mode, when needed. This simple mechanism can be used, because data leakage
from the non-secure domain or other secure code is not considered critically by the initial
TrustZone design. However, before returning, the compiler toolchain or the programmer
have to clear the general-purpose registers to prevent security violations. This responsibility
can also be moved to the context manager when a switch is performed.

Table 6.2 gives a summary of the different attack vectors and the corresponding module
defending against it.

CHAPTER 6. EVALUATION 81

Table 6.2: Attack vector summary

Use case Task Responsible module

NS→S call
Block calls to arbitrary addresses TrustZone
Clear confidential registers before returning Compiler/Programmer
Check access permission of passed pointers Programmer

NS→S data access Block all accesses TrustZone

NS callback

Change security state and banked registers TrustZone
Block calls to arbitrary addresses Firewall/Context manager
Clear/restore confidential registers Compiler/Programmer
Ensure return to correct secure address TrustZone

S→S call
Block calls to arbitrary addresses Firewall
Check correct entry/perform context switch Context manager
Clear/restore confidential registers Context manager

S→S data access Block all accesses (current implementation) Firewall/Context manager

NS interrupt

Change security state and banked registers TrustZone
Clear/restore confidential registers TrustZone
Ensure return to correct secure address TrustZone
Context switch Firewall/Context manager

S interrupt Change security state and banked registers TrustZone
Clear confidential registers Compiler/Programmer

Chapter 7

Conclusion

This project examined the security features of the new ARMv8-M architecture and an
additional proprietary AHB firewall. With the practical use case of a payment terminal
and the challenges originating from the IoT market, the importance of software security in
embedded systems was emphasized.

The design of already established RTOS projects was evaluated, to get ideas and tech-
nical background information for designing a system for secure context isolation.

A memory partitioning was created and the details of the various transition sequences
were tested to cover all required use cases. The implementation acts as proof-of-concept
and can be used to further improve the design. It also provides a basis for measuring the
expected latency and evaluating the architecture for practical use cases.

Additional features, which were not implemented in this project, are mentioned in
the next section. It also includes recommendations for increasing the performance and
flexibility of the design.

In conclusion, the design and the resulting implementation satisfy the initial require-
ments: With the help of the TrustZone and the AHB-firewall, it is possible to protect
secure code and data from unauthorized accesses. Debug access is configured individually
for every section, providing essential developing support for third-party customers.

The implicit context switching, realized by handling the Firewall-Interrupt, enables
flexible deployment of the project: Application code is simply linked against the supplied
import library of the secure API and loaded for execution. No RPCs or manual context
switching by calling special functions is required. This allows easy porting of legacy projects
and developing a single code-base for products with and without the integrated context
manager.

The additional time of the context switch is in the same range as task switches per-
formed by established RTOS projects. This should not represent a knock-out criterion for
most applications. Whether interrupt handlers can also be protected, depends on the indi-
vidual performance requirements concerning latency. As a trade-off, they could be placed
in shared regions.

82

CHAPTER 7. CONCLUSION 83

7.1 Future work

The presented project is only concerned with the software part of the context switching
and processing of the multiple transition sequences. It acts as proof-of-concept implemen-
tation for the underlying design. There are still refinements needed before deploying it
to a productive system. Additionally, it needs to be integrated with supporting security
concepts to act as a complete base for a RoT solution.

The following summarizes key requirements, to provide the intended functionality and
optional modifications to increase performance and overall usability.

7.1.1 External requirements

Additional support from external components is required to ensure system security. To
provide the basic functionality of the proposed design, one critical change has to be made
at the AHB-firewall: The current implementation does not distinguish between privileged
and unprivileged execution modes.

As a measure against unauthorized modifications, the configuration registers of the
firewall can be locked-down completely. However, this would also prevent the dynamic
reconfiguration performed by the context manager. Defining a firewall section, which covers
the address range of those memory-mapped registers, can be used as a workaround. This
prevents untrusted code in the non-secure domain from disabling the firewall, but still gives
all secure code the authority for modifications. The isolation of secure contexts cannot be
guaranteed by this approach - it is only applicable when the complete secure code is part
of the TCB.

A proposed design improvement would only allow secure, privileged code to access
those registers. The protection of MPU configuration and some system registers against
unprivileged tampering follows the same idea.

Ensuring confidentiality during execution is only a partial solution to the underlying
problem. Third-parties must be able to efficiently develop application code without gaining
access to the internals of the IP. Integrity of configuration and code has to be guaranteed
to prevent subsequent modifications. This requires encrypted binaries which are processed
by a secure bootloader. The non-secure application is then statically linked to the secure
APIs and also loaded at start-up.

Based on the memory technology of the target hardware, performance of context switch-
ing could be further improved. By placing the context manager in Tightly Coupled Memory
(TCM), the latency of instruction fetches can be reduced in comparison to flash or normal
RAM [34]. This is possible, because the memory is directly attached to the core and runs
at the same clock to provide single-cycle access.

Another hardware-based performance increase could be achieved by implementing some
of the decision logic in hardware. The algorithm to decide the fault reason consists mostly
of Boolean comparison operations. With a code size of nearly 280 bytes, traversing this
decision tree adds unnecessary latency.

CHAPTER 7. CONCLUSION 84

7.1.2 Implementation changes

The current implementation focuses on the core logic and verifying the processing of various
domain transitions. To simplify the first version of implementation, only uniform sections,
located on static address ranges are supported. This is not a practical solution, because
the sizes of different contexts might be largely different. The address ranges should also be
computed dynamically based on the starting point used during linking.

The target hardware platform does not include an FPU, simplifying the handling of
the fault stacks. When a hardware unit is present, additional registers might be stacked
at exception entry. This is indicated by the FType field of the EXC_RETURN value
and the FPCCR.TS field. The current implementation does not consider this additional
floating-point context when moving the exception frame.

The callee-saved registers are not saved by the current implementation, because the ABI
requires subroutines to restore them before returning. To provide full protection against
malicious attacks or malfunctioning code, all register have to be stored when switching
to a different context. The contents should also be cleared to prevent leakage of secure
data. This protection was not implemented for the current version, because secure code is
expected to comply to the ABI.

Another simplification was introduced by limiting the effective range of the context
manager to secure memory. All non-secure memory is combined into a single security do-
main with full access. It is common practice to isolate the RTOS kernel from application
tasks by using the MPU. On the used hardware platform, the MPU was omitted in favour
of the proprietary AHB-firewall. This circumstance makes isolating the kernel from ap-
plication code impossible at the moment. Extending the context manager by the missing
transition sequences needed for the non-secure domain, could provide a solution for this
hardware limitation.

The context manager is currently tightly coupled to the interface of the AHB-firewall.
Changes in behaviour of the hardware module have to be also replicated in this code.
A Hardware Abstraction Layer (HAL) should be introduced to encapsulate the firewall-
specific functions from the context manager. This would also enable the usage of other
memory protection schemes in the future. Based on preferences, the MPU might be used
for context isolation on other hardware platforms, instead of the firewall.

To have a functional and secure system, the configuration of three different components
must match: Firstly, the linker scripts of both security domains are responsible for placing
the code and data in defined sections. The security attribution is then configured with
the IDAU settings. This provides the underlying partitioning in secure and non-secure
domains enforced by the TrustZone. Only then, the AHB-firewall is used for more detailed
attribution based on access type and type of bus master.

If the memory map of the target application is not completely fixed during the de-
sign stage, address ranges can change during implementation. This happens when relative
addresses are used in the linker script and additional components are inserted at the be-
ginning of the memory map. Another cause of this phenomenon is increasing buffer sizes

CHAPTER 7. CONCLUSION 85

or changing the optimization level. In the best case, the linker complains about range vio-
lations or the application crashes immediately. Hard to debug faults can occur, when only
certain functions or segments of buffers are shifted to invalid sections.

To prevent the mentioned misconfiguration risk, linker symbols and configuration func-
tions should be introduced to dynamically set the section ranges.

The current implementation uniquely assigns memory sections to contexts. This pre-
vents the possibility for shared buffers, where only a subset of contexts has access rights.
To further extend this scenario, every context could have different access rights for a single
section: A possible application for this feature would be a data sink, where one context
has only write permissions and acts as data producer (e.g. receiver interface), and a dif-
ferent context is the consumer which processes the data (e.g. decrypting data) with full
read/write access.

This feature could also be a prerequisite for some interrupt handlers in always-on
regions: The handlers for real-time critical interrupts can be located in an execute-only
section which are always enabled, to avoid the latency of the context manager. They can
set events to trigger the task scheduling or modify other internal states.

If security critical data is involved, special precautions have to be in place. Previously
mentioned data-sinks have to be used instead of public buffers. Writing to them does not
cause a context switch and only the target context has read privileges.

When the stack-limit registers are used, the expected maximum stack size should be
independently configurable for every context. Otherwise, contexts with simple functions,
that only use little stack memory would waste a lot of memory when only a global stack
size is used.

As a final statement, the following principle should be considered for extending the
context manager: The fact must be accepted, that added security results in performance
losses and restricts the flexibility of the platform. It is a challenging task to find the best
compromise without ending up in a cycle as depicted in Figure 7.1.

CHAPTER 7. CONCLUSION 86

Figure 7.1: Sandboxing Cycle [17]

Terms and abbreviations

ABI Application Binary Interface 38, 84
ACL Access Control List 31
AHB Advanced High-performance Bus 12, 39–41,

79, 82–84
API Application Programming Interface 10, 12, 20,

24, 26, 29–31, 34, 36–38, 41, 61, 72, 79, 82, 83
AWS Amazon Web Services 30

BXNS Branch and Exchange Non-secure 21

CLIF Contactless Interface 13, 41

DDoS Distributed Denial of Service 11
DMA Direct Memory Access 16, 39, 40
DRM Digital Rights Management 33
DSP Digital Signal Processor 39
DVR Digital Video Recorder 11

FPGA Field Programmable Gate Array 39
FPU Floating-Point Unit 30, 84

GCC GNU Compiler Collection 57
GPIO General Purpose Input/Output 74–76
GUI Graphical User Interface 12, 27

HAL Hardware Abstraction Layer 84

I2C Inter-Integrated Circuit 39
IDAU Implementation Defined Attribution Unit 18,

39, 40, 79, 84
IDE Integrated development environment 57
IoT Internet of Things 2, 3, 10, 11, 13, 14, 30, 31,

35, 37, 82

87

Terms and abbreviations 88

IP Intellectual Property 10–12, 24, 38, 58, 83
IPC Inter-process communication 36
IPSR Interrupt Program Status Register 21, 44
ISR Interrupt Service Routine 76

kB kilo-byte 39, 40, 42, 44, 79

LR Link Register 21, 22, 45, 60, 61, 64–67, 69, 70

MMU Memory Management Unit 2, 3, 25, 28, 33, 35
MPU Memory Protection Unit 9, 13, 15, 16, 18–20,

28–30, 37, 79, 83, 84
MSP Main Stack Pointer 19, 44, 50–53, 66, 67, 69,

70

NFC Near Field Communication 12, 26
NMI Non-maskable Interrupt 43
NSC Non-Secure Callable 17, 20, 44, 47, 58, 60, 79
NVIC_ITNS Interrupt Target Non-secure 21

PAN Primary Account Number 27
PC Program Counter 66, 67, 69, 70
PCI Payment Card Industry 27
PendSV Pended Service Call 30, 52, 53
PIN Personal Identification Number 26, 27
PLC Programmable Logic Controller 11
POS Point of Sale 7, 12–14, 26
PSA Platform Security Architecture 35
PSP Process Stack Pointer 19, 30, 44, 46–48, 53,

61–64, 66, 67, 71, 72

RAM Random Access Memory 15, 33, 39, 83
RO Read-Only 20
ROM Read-Only Memory 33, 39, 41, 79
RoT Root-of-Trust 41, 83
RPC Remote Procedure Call 12, 25, 38, 82
RTOS Real Time Operating System 12–16, 19, 28–

30, 36–38, 41, 71, 82, 84

SAU Secure Attribution Unit 18, 39
SG Secure Gateway 20, 44, 47, 60, 79

Terms and abbreviations 89

SMC Secure Monitor Call 25, 33, 34
SoC System-on-Chip 7, 10–12, 15–17, 19, 26, 33,

39, 79
SPI Serial Peripheral Interface 39, 41
SVC Supervisor Call 31, 34

TCB Trusted Code Base 3, 27, 34, 37, 38, 83
TCB Task Control Block 45, 61, 71, 72
TCM Tightly Coupled Memory 83
TF-M Trusted Firmware-M 35, 37

UART Universal Asynchronous Receiver Transmitter
39

VTOR Vector Table Offset Register 19

Bibliography

[1] ARM. ARM mbed Technical Overview. Web. Accessed: 13.10.2018. June 2017. url:
https://www.arm.com/files/event/20170628_ATF_Korea_B2.pdf.

[2] ARM. The Arm Mbed uVisor. Web. Accessed: 13.10.2018. 2018. url: https://
github.com/ARMmbed/uvisor/blob/master/README.md.

[3] ARM Cortex-M3 Processor Technical Reference Manual. r2p1. Accessed: 14.10.2018.
ARM. Feb. 2015. url: http://infocenter.arm.com/help/topic/com.arm.doc.
100165_0201_00_en/arm_cortexm3_processor_trm_100165_0201_00_en.pdf.

[4] ARM R©v8-M Architecture Reference Manual. Beta A.b. ARM. July 2016.

[5] ARMv8-M Memory Protection Unit. Version 2.0. Accessed: 01.10.2018. ARM. 2017.
url: https://static.docs.arm.com/100699/0200/armv8m_memory_protection_
unit_100699_0200_en.pdf.

[6] Aspencore, EETimes, and Embedded.com. 2017 Embedded Markets Study. Web. Ac-
cessed: 09.10.2018. Apr. 2017. url: https://m.eet.com/media/1246048/2017-
embedded-market-study.pdf.

[7] embOS-MPU - Real-Time Operating System User and Reference Guide. Revision: 1.
SEGGER. Dec. 2017. url: https://www.segger.com/downloads/embos/UM01001.

[8] Andreas Fitzek. “Development of an ARMTrustZone aware operating system ANDIX
OS”. Accessed: 16.10.2018. MA thesis. Graz University of Technology, Apr. 2014.
url: https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=
77938.

[9] Full TrustZone exploit for MSM8974. Web. Accessed: 25.09.2018. Aug. 2015. url:
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-
msm8974.html.

[10] Zhichao Hua et al. “vTZ: Virtualizing ARM TrustZone”. In: 26th USENIX Securi-
ty Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, 2017,
pp. 541–556. isbn: 978-1-931971-40-9. url: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/hua.

[11] Introduction to the ARMv8-M architecture. Version 2.0. Accessed: 04.10.2018. ARM.
2017. url: https://static.docs.arm.com/100688/0200/introduction_to_
armv8m_architecture_100688_0200_en.pdf.

[12] C. Kolias et al. “DDoS in the IoT: Mirai and Other Botnets”. In: Computer 50.7
(2017), pp. 80–84. issn: 0018-9162. doi: 10.1109/MC.2017.201.

90

https://www.arm.com/files/event/20170628_ATF_Korea_B2.pdf
https://github.com/ARMmbed/uvisor/blob/master/README.md
https://github.com/ARMmbed/uvisor/blob/master/README.md
http://infocenter.arm.com/help/topic/com.arm.doc.100165_0201_00_en/arm_cortexm3_processor_trm_100165_0201_00_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100165_0201_00_en/arm_cortexm3_processor_trm_100165_0201_00_en.pdf
https://static.docs.arm.com/100699/0200/armv8m_memory_protection_unit_100699_0200_en.pdf
https://static.docs.arm.com/100699/0200/armv8m_memory_protection_unit_100699_0200_en.pdf
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://www.segger.com/downloads/embos/UM01001
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=77938
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=77938
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hua
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hua
https://static.docs.arm.com/100688/0200/introduction_to_armv8m_architecture_100688_0200_en.pdf
https://static.docs.arm.com/100688/0200/introduction_to_armv8m_architecture_100688_0200_en.pdf
https://doi.org/10.1109/MC.2017.201

BIBLIOGRAPHY 91

[13] R. Langner. “Stuxnet: Dissecting a Cyberwarfare Weapon”. In: IEEE Security Pri-
vacy 9.3 (May 2011), pp. 49–51. issn: 1540-7993. doi: 10.1109/MSP.2011.67.

[14] Trevor Martin. The Designer’s Guide to the Cortex-M Processor Family. Elsevier
Science, June 6, 2016. 490 pp. url: https://www.ebook.de/de/product/26315737/
trevor_martin_the_designer_s_guide_to_the_cortex_m_processor_family.
html.

[15] Measuring Interrupt Latency. Rev. 1. Accessed: 12.11.2018. NXP Semiconductors.
Apr. 2018. url: https://www.nxp.com/docs/en/application-note/AN12078.pdf.

[16] Memory Protection Unit (MPU). 1.0. Accessed: 28.09.2018. ARM. 2016. url: https:
//static.docs.arm.com/100699/0100/armv8m_architecture_memory_protection_
unit_100699_0100_00_en.pdf.

[17] Randall Patrick Munroe. Sandboxing Cycle. Web. Accessed: 27.11.2018. Sept. 2018.
url: https://xkcd.com/2044/.

[18] Official FreeRTOS Ports. Web. Accessed: 09.10.2018. url: https://www.freertos.
org/RTOS_ports.html.

[19] Platform Security Architecture Overview. Revision 1.2. Accessed: 20.11.2018. ARM.
Oct. 2018. url: https://pages.arm.com/PSA-Building-a-secure-IoT.html.

[20] Programmer’s Guide for ARMv8-A. Version 1.0. ARM. 2015. url: https://static.
docs.arm.com/den0024/a/DEN0024A_v8_architecture_PG.pdf.

[21] ProvenCore-M Product Page. Web. Accessed: 21.11.2018.

[22] Dan Rosenberg. “QSEE TrustZone Kernel Integer Overflow Vulnerability”. In: Black
Hat Conference. Accessed: 25.09.2018. 2014. url: www.blackhat.com/docs/us-
14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf.

[23] Segger. Basic concepts of embOS-MPU. Web. Accessed: 19.10.2018.

[24] Segger. IoT—Smart Embedded Solutions. Web. Accessed: 10.10.2018. url: https:
//www.segger.com/products/security-iot/iot-solutions/.

[25] SMC CALLING CONVENTION. Issue B. Accessed: 08.10.2018. ARM. 2016. url:
http : / / infocenter . arm . com / help / topic / com . arm . doc . den0028b / ARM _
DEN0028B_SMC_Calling_Convention.pdf.

[26] Saleh Soltan, Prateek Mittal, and H. Vincent Poor. “BlackIoT: IoT Botnet of High
Wattage Devices Can Disrupt the Power Grid”. In: 27th USENIX Security Symposium
(USENIX Security 18). Baltimore, MD: USENIX Association, 2018, pp. 15–32. isbn:
978-1-931971-46-1. url: https://www.usenix.org/conference/usenixsecurity18/
presentation/soltan.

[27] D. Suciu and R. Sion. “Droidsentry: Efficient Code Integrity and Control Flow Ver-
ification on TrustZone Devices”. In: 2017 21st International Conference on Control
Systems and Computer Science (CSCS). May 2017, pp. 156–158. doi: 10.1109/
CSCS.2017.28.

[28] TEE Client API Specification. Version 0.17. Accessed: 08.10.2018. GlobalPlatform.
2010. url: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
2C3A19C13215CE2ACB0A0069B09B5039?doi=10.1.1.183.2049&rep=rep1&type=
pdf&usg=AOvVaw2JQhCFbWENvqm0t0a6PhRR.

https://doi.org/10.1109/MSP.2011.67
https://www.ebook.de/de/product/26315737/trevor_martin_the_designer_s_guide_to_the_cortex_m_processor_family.html
https://www.ebook.de/de/product/26315737/trevor_martin_the_designer_s_guide_to_the_cortex_m_processor_family.html
https://www.ebook.de/de/product/26315737/trevor_martin_the_designer_s_guide_to_the_cortex_m_processor_family.html
https://www.nxp.com/docs/en/application-note/AN12078.pdf
https://static.docs.arm.com/100699/0100/armv8m_architecture_memory_protection_unit_100699_0100_00_en.pdf
https://static.docs.arm.com/100699/0100/armv8m_architecture_memory_protection_unit_100699_0100_00_en.pdf
https://static.docs.arm.com/100699/0100/armv8m_architecture_memory_protection_unit_100699_0100_00_en.pdf
https://xkcd.com/2044/
https://www.freertos.org/RTOS_ports.html
https://www.freertos.org/RTOS_ports.html
https://pages.arm.com/PSA-Building-a-secure-IoT.html
https://static.docs.arm.com/den0024/a/DEN0024A_v8_architecture_PG.pdf
https://static.docs.arm.com/den0024/a/DEN0024A_v8_architecture_PG.pdf
www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://www.segger.com/products/security-iot/iot-solutions/
https://www.segger.com/products/security-iot/iot-solutions/
http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/soltan
https://www.usenix.org/conference/usenixsecurity18/presentation/soltan
https://doi.org/10.1109/CSCS.2017.28
https://doi.org/10.1109/CSCS.2017.28
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=2C3A19C13215CE2ACB0A0069B09B5039?doi=10.1.1.183.2049&rep=rep1&type=pdf&usg=AOvVaw2JQhCFbWENvqm0t0a6PhRR
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=2C3A19C13215CE2ACB0A0069B09B5039?doi=10.1.1.183.2049&rep=rep1&type=pdf&usg=AOvVaw2JQhCFbWENvqm0t0a6PhRR
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=2C3A19C13215CE2ACB0A0069B09B5039?doi=10.1.1.183.2049&rep=rep1&type=pdf&usg=AOvVaw2JQhCFbWENvqm0t0a6PhRR

BIBLIOGRAPHY 92

[29] The FreeRTOSTM Reference Manual. Version 10.0.0 issue 1. Accessed: 10.10.2018.
Amazon Web Services. 2017. url: https://www.freertos.org/Documentation/
FreeRTOS_Reference_Manual_V10.0.0.pdf.

[30] Using the STM32F0xx DMA controller. Accessed: 02.10.2018. STMicroelectronics.
May 2012. url: https://www.st.com/resource/en/application_note/dm00053400.
pdf.

[31] Using TrustZone on ARMv8-M. AN291. Accessed: 30.10.2018. ARM-KEIL. 2016.
url: www.keil.com/appnotes/files/apnt_291.pdf.

[32] Nathanael R. Weidler et al. “Return-Oriented Programming on a Cortex-M Proces-
sor”. In: 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE, Aug. 2017. doi: 10.1109/
trustcom/bigdatase/icess.2017.318.

[33] Which ARM Cortex Core Is Right for Your Application: A, R or M? Accessed:
25.09.2018. Silicon Labs. url: https://www.silabs.com/documents/public/
white-papers/Which-ARM-Cortex-Core-Is-Right-for-Your-Application.pdf.

[34] Jacko Wilbrink and Lionel Perdigon. “Run Blazingly Fast Algorithms with Cortex-
M7 Tightly Coupled Memories”. In: (Nov. 2015). Accessed: 16.10.2018. url: http:
//itersnews.com/wp-content/uploads/experts/2015/11/101291Atmel-45151-
Fast-Algorithms-with-Cortex-M7_Article.pdf.

[35] Joseph Yiu. ARMv8-M Architecture Technical Overview. Tech. rep. Accessed: 04.10.2018.
ARM, Nov. 2015. url: https://community.arm.com/cfs-file/__key/telligent-
evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-
2D00-ARMv8_2D00_M-Architecture-Technical-Overview.pdf.

[36] Joseph Yiu. “Software Development in ARMv8-M Architecture”. In: Embedded World
2017. Accessed: 07.10.2018. 2017. url: https://community.arm.com/cfs-file/
__key/telligent-evolution-components-attachments/01-2142-00-00-00-
01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-
Development-in-ARMv8_2D00_M-Architecture.pdf.

https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.st.com/resource/en/application_note/dm00053400.pdf
https://www.st.com/resource/en/application_note/dm00053400.pdf
www.keil.com/appnotes/files/apnt_291.pdf
https://doi.org/10.1109/trustcom/bigdatase/icess.2017.318
https://doi.org/10.1109/trustcom/bigdatase/icess.2017.318
https://www.silabs.com/documents/public/white-papers/Which-ARM-Cortex-Core-Is-Right-for-Your-Application.pdf
https://www.silabs.com/documents/public/white-papers/Which-ARM-Cortex-Core-Is-Right-for-Your-Application.pdf
http://itersnews.com/wp-content/uploads/experts/2015/11/101291Atmel-45151-Fast-Algorithms-with-Cortex-M7_Article.pdf
http://itersnews.com/wp-content/uploads/experts/2015/11/101291Atmel-45151-Fast-Algorithms-with-Cortex-M7_Article.pdf
http://itersnews.com/wp-content/uploads/experts/2015/11/101291Atmel-45151-Fast-Algorithms-with-Cortex-M7_Article.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-ARMv8_2D00_M-Architecture-Technical-Overview.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-ARMv8_2D00_M-Architecture-Technical-Overview.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-ARMv8_2D00_M-Architecture-Technical-Overview.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf

	Introduction
	Motivation
	Device security
	Intellectual property protection

	Goals
	Example Use Case
	Structure

	Preliminaries
	Memory Protection Unit
	MPU limitations

	ARM Cortex-M TrustZone
	Attribution Units
	Banked system components
	Security domain transitions
	Debug protection

	ARM Cortex-A
	ARM Cortex-A TrustZone

	Point of Sale Technology
	PCI Security Standard

	Related Work
	Embedded operating systems
	embOS
	FreeRTOS-MPU
	mbed RTOS - uVisor
	ProvenCore-M

	Cortex-A TrustZone examples
	Android
	ANDIX OS

	ARM Platform Security Architecture
	Trusted Firmware-M

	Conclusion

	Design
	Target hardware
	AHB-Firewall

	Software partitioning
	Memory map
	Always-on areas
	Library section

	Context manager
	Context transitions
	Non-secure to secure call
	Non-secure call-back
	Secure secure call
	Exception-based transitions

	Sanity check

	Implementation
	Toolchain
	Project architecture
	Context manager
	Fault reason
	Call-stack management
	Detailed transition sequences
	Task control block

	Verification

	Evaluation
	Timing behaviour
	Measurement procedure
	Results
	Latency variations

	Attack vectors

	Conclusion
	Future work
	External requirements
	Implementation changes

	Terms and abbreviations

