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Abstract

Age estimation of humans has become an essential task in today’s Clinical and Legal

Medicine. Current Machine Learning (ML)-based multi-factorial age estimation meth-

ods show an accuracy, which is in line with established manual age estimation methods.

However, the age estimation task underlies a substantial uncertainty caused by different

biological development of bone structures in humans. In this thesis, we evaluated multiple

Deep Learning (DL)-based methods regarding their ability to extract the label uncertainty,

which arises from the biological variation in bone development.

We investigated the epistemic uncertainty by applying Ensembles, Monte Carlo (MC)-

Dropout and Bayesian Convolutional Neural Networks (BCNNs) to our baseline and the

multi-factorial age estimation task on 2D and 3D data. To extract the label uncertainty,

we modified the model output. With our baseline experiments, we captured the theorized

behavior of the epistemic uncertainty and the aleatoric uncertainty in literature. We were

able to approximate a function, which describes behavior of the age information present

in our age estimation data. The compared methods transfer the same behavior to the

uncertainties in the age estimation task. The expressed uncertainty strongly depends

on the dimensionality of the used data. The Ensemble can estimate the expected label

uncertainty the most accurately and, at the same time, achieve the highest accuracy in

the age estimation task.

We were able to show the theoretically described behavior of the uncertainties in

our baseline experiment, which was also present in our age estimation experiments. In

our baseline results, all methods, except the MC-Dropout method, were able to capture

the expected uncertainty. The results in this thesis demonstrate that all methods can

fit the data with an accuracy, comparable to current automated methods. We show

that Ensembles are suited best for estimating the underlying label uncertainty in the

investigated multi-factorial age estimation task. However, further investigation of the

underlying problem is recommended in order to fully utilize the capabilities of the Bayesian

framework.

xvii





Kurzfassung

Die Altersschätzung von Menschen ist eine essenzielle Aufgabe in der heutigen klinischen

und rechtlichen Medizin. Derzeitig verwendete ML-basierende multifaktorielle Methoden

der Altersschätzung weisen eine vergleichbare Genauigkeit zu etablierten manuellen Meth-

oden auf. Der Altersschätzung unterliegt eine wesentliche Fehlerquelle, die durch die unter-

schiedliche Entwicklung von Knochenstrukturen in Menschen begründet ist. Im Rahmen

dieser Diplomarbeit evaluierten wir verschiedene DL-basierende Methoden bezüglich deren

Fähigkeit diese Unsicherheit, basierend auf der variierenden Entwicklung von Knochen-

strukturen, zu schätzen. Wir untersuchten die epistemische Unsicherheit durch die An-

wendung von Ensembles, MC -Dropout und BCNNs auf Baseline-Beispiele sowie 2D und

3D Daten zur Altersschätzung. Die aleatorische Unsicherheit wurde durch die Modi-

fikation vom Output der Modelle gewonnen. In unseren Baseline-Experimenten konnte

das theoretisierte Verhalten der epistemischen und aleatorischen Unsicherheit visualisiert

werden, welches mit der Literatur übereinstimmt. Zusätzlich konnten wir die Funktion

ermitteln, die das Verhalten der Altersinformation in unseren Daten zur Altersschätzung

widerspiegelt.

In dieser Diplomarbeit konnten wir das theoretisch beschriebene Verhalten der

Unsicherheiten durch unsere Baseline-Experimente aufzeigen, welches auch in der

Altersschätzung sichtbar ist. Unsere Baseline-Experimente zeigten, dass alle Methoden,

mit Ausnahme von MC-Dropout , die erwarteten Variationen in den Daten wiedergeben

zu können. Unseren Resultaten ist zu entnehmen, dass alle Methoden in der Lage

waren die Daten zur Altersschätzung zu lernen und Prognosen zu treffen, welche in

deren Genauigkeit mit derzeitigen automatisierten Methoden übereinstimmen. Aus

dieser Arbeit geht hervor, dass Ensembles die erwartete Label-Unsicherheit am besten

wiedergeben kann und gleichzeitig die höchste Genauigkeit bezüglich der prognostizierten

Labels besitzt. Um das Potential vom Bayesian Framework auszunutzen, werden jedoch

noch weitere Untersuchungen auf diesem Gebiet notwendig sein.

xix
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Contents

1.1 Age estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Age estimation

The estimation of age in living humans from radiological data has become an important

topic in recent years. In clinical medicine, forensic anthropology, and legal medicine, age

estimation is used to assess the unknown age of young subjects or discriminate adults from

minors in cases where official personal documents are not available. The clinical medicine

focuses on the stage of bone development, which is measured by the Biologial Age (BA),

in children to assess an optimal time point of intervention to overcome endocrinological

diseases [36] or plan orthopedic interventions. While the BA is of interest in the clinical

medicine, in the legal medicine, the focus lies on the estimation of the age till birth,

namely the Chronological Age (CA), based on the bone development in humans. The

investigation of the BA development is mostly enabled by the ossification of epiphyseal

gaps of human long bones [3]. The accuracy of the CA estimation, based on the BA, is

limited by the biological variation of subjects of the same CA. The biological variation

limits the accuracy of the estimation with an error of approximately one year [52]. The

biological variability causes the estimation of the CA to be a difficult task for radiologists,

in which the resulting estimate of the CA, which tend to be uncertain.

Established radiological methods for the estimation of BA are based on visual exam-

ination of the stage of bone development in terms of the ossification of hand bones from

X-ray images [15]. The most commonly used way for manual X-ray based age estimation is

1



2 Chapter 1. Introduction

provided by the Greulich-Pyle Atlas method (GP) [15] or the Tanner-Whitehouse (TW2)

approach [55]. The GP relies on atlases, which represent the bone development of subjects

in discretized age intervals in terms of a mean or a median image. By visually identifying

the accordance between the subject’s radiological image and this atlas, an estimate of the

CA is provided. Although the GP is fast and easy to use for the age estimation on the

whole hand, it provides a low accuracy and high inter- and intra-rater variability. An

improvement over the GP is provided by the TW2 method. Instead of relying on atlases,

the TW2 bases the estimation of the CA on a scoring based system. In this system, scores

are assigned to multiple defined maturity indicators in discrete stages of the individual

hand bones. The single estimates are then combined in a weighted manner to calculate

the final age estimate, which represents the age prediction with the highest probability [6].

While manual methods provide a good accuracy, they can be a tedious task for human

experts. BoneXpert [57], an automated age estimation method, which is able to mimic

the TW2 scoring procedure, has been applied successfully.

In the process of the examination, the clinicians have to take the strong non-linear

behavior of the ossification of different bones into account. Commonly, more distal bones,

such as hand bones, finish growth earlier than proximal bones. In the case of hand bones,

the development is finished at around 18 years. With the finished development of hand

bones, the available age information saturates, which restricts the use of only hand bones

in the age range from 13 to 18 years in clinical medicine. To extend this age range up

to 25 years, which is highly relevant in legal applications, the Study Group on Forensic

Age Diagnostics (AGFAD) [46] recommended a multifactorial approach by combining

age-related information from hand bones in X-ray images with clavicle bones in chest

Computed Tomography (CT) images and teeth in dental panoramic X-ray images.

The major drawback of using the established manual and automated X-ray based atlas

methods for age estimation is the exposure of the subject of interest to ionizing radiation.

Without a diagnostic purpose, the exposure of a human subject to ionizing radiation is not

justifiable and is nowadays prohibited in most European countries. In legal applications,

the interest mostly lies in the investigation of the age of healthy subjects, such as young

asylum seekers, without proper identification papers. Therefore, research has recently

focused on exchanging X-ray based techniques with Magnetic Resonance Imaging (MRI)

as a non-invasive imaging modality for forensic age estimation [9, 18, 54, 56]. An additional

advantage is that the acquired Magnetic Resonance (MR) images are usually volumetric,

and multiple sites can be acquired within one imaging session. Volumetric data has the

potential to hold much more information relevant for the age estimation, as compared to

the 2D images acquired with X-ray imaging.

To eliminate the need to define discrete staging schemes for individual anatomical

sites and subjective schemes for their fusion into a single age estimate, automatic, Deep

Learning (DL)-based age estimation methods have already been developed [29, 49, 53, 57].

DL is an automated way of extracting features and learning representations from data,

which as shown great success on various tasks in research fields like Computer Vision [47],
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Physics [2] and Biology [16]. A recently proposed method by Štern et al. [52] for multi-

factorial age estimation, based on Convolutional Neural Networks (CNNs), provides a

solution for the automatic fusion of developmental information from 3D MRI scans of

hand, clavicle and teeth into a CA prediction.

1.1.1 Types of uncertainties and their sources

Especially in the medical domain, where the lack of big datasets can negatively influence

the performance of developed DL-based methods, it seems unjustifiable to treat the pre-

diction of such a DL model without a measure of its predictive quality, or uncertainty. To

be able to decide, based on the quality of the prediction, if certain samples need to be

further examined by human experts, can help identifying problematic cases, reduce the

workload on humans and can potentially reduce the overall error in the age estimation

pipeline.

In current research, regarding the estimation of the predictive quality, the uncertainty

is split into two main parts, namely the aleatoric uncertainty and the epistemic uncer-

tainty [5, 7, 12]. The epistemic uncertainty gives insight into the quality of the model

parameters regarding the data, which can be improved by increasing the number of data

samples. This uncertainty is also often referred to as the model uncertainty [7, 21, 48].

The aleatoric uncertainty, also called data uncertainty, captures the noise of the infor-

mation content, present in the data. It represents the deviation of the information present

in a sample from the total population of samples. This uncertainty can only be reduced

by improving the quality of the data itself. The aleatoric uncertainty can further be split

into homoscedastic and heteroscedastic uncertainty. The homoscedastic uncertainty as-

sumes a constant observation noise and stays constant, independent of the data. The

heteroscedastic uncertainty depends on the noise in the input data and can vary according

to the data [21].

In the task of the age estimation, the deviation of the CA from the BA can be inter-

preted as the label uncertainty present in the data. This label uncertainty falls into the

category of the heteroscedastic aleatoric uncertainty.

1.1.2 Estimation of the Uncertainty with CNNs

Although automatic age estimation methods show favorable accuracy compared to human

performance, the predictions of conventional CNN -based methods lack a measure of the

predictive quality of the estimate. Therefore, the outlier in the data can lead to predictions

that are wrong but indicate a high confidence, which can negatively influence the overall

performance of the task [12, 37]. Due to the state-of-the-art results for various tasks,

recent research has focussed on exploiting properties of CNNs to estimate the predictive

quality with them.

While CNNs typically are deterministic systems, Gal and Ghahramani [11] proposed a

method to model the epistemic uncertainty in CNNs, exploiting a commonly applied reg-
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ularization method in current research. Kendal and Gal [21] built on the work of Gal and

Ghahramani [12] and modified the output layer of a CNN in order to model the aleatoric

uncertainty additionally to to the epistemic uncertainty. Those methods typically evaluate

the epistemic uncertainty by sampling during inference time. Instead, Lakshminarayanan

et al. [28] investigated the effects of Ensembles on the epistemic uncertainty and addition-

ally modeling the aleatoric uncertainty.

1.1.3 Estimation of the Uncertainty with BCNNs

The described methods try to estimate the same underlying statistical process as in their

statistical equivalent, the Bayesian Convolutional Neural Networks (BCNNs). The intro-

duction of the Bayesian probability framework to the concept of machine learning adds

a way to reason about the quality and the uncertainty in the provided predictions using

mathematical tools [30]. While Bayesian Neural Networks (BNNs) are studied for many

years now, only recently, they had been successfully applied to CNNs, since they often

come with a computationally prohibitive cost [11, 34, 40].

1.2 Contributions

In this work, we evaluated multiple DL-methods regarding their capability to fit the data

but mainly investigate their ability to represent the label uncertainty of the predictions

in the multifactorial age estimation task. The compared methods encompass the Monte

Carlo-Dropout (MC-Dropout), Ensembles and BCNN to model the epistemic uncertainty.

Additionally, we applied the Gaussian output layer to each model, including conventional

CNNs, to extract the aleatoric uncertainty from the data.

We used the late fusion method by Štern et al. [52], combining the age information of

the different bone sites in our network architecture. To evaluate the contribution of age

information from different sites of the human body, we evaluated our methods on hand

bones only and combined hand bones with clavicles and teeth. All methods were con-

ducted for the 3D imaging volumes and just the 2D middle slices of the images. In order

to investigate the influence of the information content with the theorized epistemic uncer-

tainty and aleatoric uncertainty we applied those methods to two baseline experiments

on generated functions.

We evaluated the ability of the individual methods to capture the label uncertainty

present in the data, which is the measure of uncertainty in this age estimation task. Fur-

thermore, we investigated the ability of each method to separate the aleatoric uncertainty

from the epistemic uncertainty, using the Gaussian output layer.

In this thesis, we found that the compared methods are capable of fitting the data with

an accuracy, which is in line with the results archived by established automated Machine

Learning (ML)-based age estimation methods. The individual methods are successful in

capturing the label uncertainty, although it can be seen the best in Ensembles with 2D
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data. Overall, the results showed a strong dependence on the dimensionality of the training

data. Applying the Gaussian output layer, to split the uncertainty was only successful

for the Ensemble method, while MC-Dropout and CNN only manages to do so with 2D

data. The BCNN captures the label uncertainty but failed to perform this separation

of the uncertainties, where the label uncertainty is included in the epistemic uncertainty.

Finally, we showed that the Ensemble method showed the most substantial agreement to

the baseline results, in terms of the expressed uncertainties, for the individual cases.

1.3 Outline

Chapter 2 provides the introduction into the topic of conventional- and Bayesian deep

learning and the theoretical background as a basis for this thesis. Chapter 3 presents and

explains the applied methods. Additionally, in this section discusses, the experimental

setup, with the used network architecture, data augmentation, and additional used con-

figurations in detail. An explanation and comparison of the archived results are shown in

Chapter 5. In Chapter 5 our results are presented. The first part states on the quantitative

results of the accuracy of the fit for the individual methods. In the second part, plots of

the extracted uncertainty are depicted. In Chapter 6, a thorough discussion, comparing

the results for the different evaluated methods is provided, followed by concluding this

thesis in Chapter 7.
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The aim of Machine Learning (ML) is the automated detection of patterns in data

without human intervention. By presenting data to such a ML-system it automatically

extracts features from the data and builds a mathematical model, which can describe the

data. This learned mathematical model can then be applied to yet unseen data in order

to predict corresponding annotations for the data.

2.1 Deep Learning

2.1.1 Supervised learning

Supervised learning is a type of ML in which we train a model on a combination of input

data x and corresponding labels y to learn a functional representation of information

present in the data. This functional representation allows the mapping from the input to

some target output. By learning a good representation of this information in the processed

samples, the model is able to automatically predict labels for unseen samples.

2.2 Neural Network

The idea of Neural Networks (NNs) originate from the human biological nervous system,

which consists of interconnected biological neurons. In NNs, artificial neurons mimic bio-

7
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logical neurons. An artificial neuron represents the very basic idea of information process-

ing via neurons in the human brain in a highly abstracted and simplified mathematical

formalism [4]. This formulation can be derived from the simplest model of regression,

namely linear regression.

Each of the i ∈ N data samples xi consist of a d -dimensional feature vector. The model

of each artificial neuron consists of a weight vector w ∈ RD;w = (w1, ..., wN )T . The single

elements of the input vector xi is weighted by the entries wi of the weight vector w ∈ R
and a bias w0 is added. The sum notation can be rewritten in matrix form [4], as shown

bellow

a(x,w) = w0 +
N∑
i=1

wixi = wTx + w0 (2.1)

The output a(x,w) of this function is then mapped with an activation function h(·) to

the output that becomes the input to the next neuron, also called unit, as shown in the

following equation

y(x) = h(a(x,w)). (2.2)

2.3 Feedforward Neural Networks

Feedforward NNs are extremely important parametric Deep Learning (DL) models, which

layed the foundation for many of the nowadays most successfully applied methods in

DL [13]. The aim of feedforward NNs is to approximate a function f∗. This function

maps the input x to some output value y, using this learned function y = f∗(x; θ). By

processing data x, the network learns the parameters θ, that define the function f in order

to minimize a given optimization target.

The output of such a feedforward NNs is produced, by passing the input through a

series of various functions f (l), which define f . In NNs, those functions are also called

layers, where each layer is represented by numerous artificial neurons f (l)(xl−1;θl). Layers,

which do create the desired output, are called hidden layers [13]. While the arrangement

of those layers can basically be arbitrary, in feedforward NNs they are connected in a

chain to form an acyclic, directed graph

f(x) = f (3)(f (2)(f (1)(x))). (2.3)

2.3.1 Activation Function

Linear transformations lack the complexity needed to learn functional representations of

high dimensional features. To enable NNs to even learn complex functions, the linear

transformation of the activation function h(·) is replaced by a differentiable, non-linear

function.

One of the most successful choices as an activation function, in current research, is

the Rectified Linear Unit (ReLU) function. The ReLU activation function represents
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a piecewise linear function, defined by Eq. (2.4) with the visualization in Fig. 2.1. Al-

though this function is not differentiable in every point, in the floating point accuracy

caused the evaluation typically to not be exactly at a = 0. Therefore this function is

commonly used in gradient-based optimization methods [13] Compared to other, more

complex functions, such as the Selective Linear Unit (SeLU) [25] or a variation of ReLU

named leaky-ReLU [33], the ReLU provides faster convergence speed and is also more

stable in terms of convergence behaviour.

h(a) = max(0, a) =

{
a ≤ 0 0

else a(x,w)
(2.4)

3 2 1 0 1 2 3
a(x)

0

1

2

3

h(
a)

Figure 2.1: Visualization of the Rectified Linear Unit activation function.

Typically, the ReLU is only applied to the hidden units of a NN . For the units of the

output layer, the activation function has to be modified, according to the task to solve. The

most commonly encountered tasks are classification and regression. In case of regression,

g(·) performs an identity transformation of the activation of the output units [4].

2.3.2 Optimization

In 1986 Rumelhart [44] proposed a computationally efficient algorithm to iteratively ad-

just the model weights, depending on their individual contributions to the error. Error

backpropagation, or also called backprop in short, refers to the method for computing the

gradients of an abitrary function. In NNs, those calculated gradients are then used with

another algorithm, with one of the simplest being stochastic gradient descent, to perform

learning of the correct model weights [4, 13].

The process of optimizing a NN can be split into a three step process, which described

bellow.

In the forward-propagation step, the input is passed through the network starting

from the input layer. Single neurons are activated based on their weights and their used

activation function. An objective function F(·, ·) is used to calculate the deviation of the
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output ŷ of the network from their corresponding groundtruth labels y. In the second

step, the gradients of the objective function F with respect to the single model weights w

are calculated at the current iteration τ , shown in the next equation

∇w(τ)F(ŷ, y,w(τ)) =
δF(ŷ, y,w(τ))

δwi,j
.

The last step, the gradient descent step, updates the corresponding model weights based

on the computed gradients

w(τ+1) = w(τ) − η∇w(τ)F(ŷ, y,w(τ)),

where η > 0 is the learning rate and τ + 1 indicates the next iteration.

In this formulation, gradient descent is computationally very inefficient, since the

weights are updated after all samples N of the training set were processed. By per-

forming the weight update after mini-batches with batch size K < N , or even after single

samples, the performance of this method can be increased significantly. This method is

called Stochastic Gradient Descent and has shown an improvement in performance and

convergence behaviour [4, 31]. A further improvement over Stochastic Gradient Descent

can be gained by introducing a momentum in the process of the weight update [42, 44],

shown in the following equation

w(τ+1) = βw(τ−1) − η∇w(τ)E(ŷ, y,w(τ)). (2.5)

The momentum remembers the weight update of the previous iteration and scales it by the

momentum paramter β. With that the susceptibility to noise of the gradient, introduced

in the current batch can be reduced. This enforces consistent gradient directions and often

faster convergence speeds [13]. Kingma and Ba [22] proposed a stochastic optimization

algorithm called Adam that is derived from adaptive moment estimation. Adam has shown

to improve the convergence speed and stability of the computed gradients over standard

Stochastic Gradient Descent.

2.4 Convolutional Neural Network

In fully-connected feedforward NN all neurons of the previous layer are connected to all

neurons of the next layer. Therefore, especially deep architectures are made up of millions

of neurons and require a significant amount of memory. The backpropagation of the

error, in such architectures, can become complicated, if no impossible. In 1989 LeCun et

al. [32] introduced Convolutional Neural Networks (CNNs), which leverage the fact that

neighboring pixels share more information with each other, than pixels which are further

apart. In the discrete domain in the 2D case, a weight kernel K ∈ Rm×n is convolved

with the input features I ∈ Ri×j of the layer, where the kernel is comprised of the weights
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of the layers according to the bellow equation

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (2.6)

The convolutional operation can be extended for the 3D case, by using the kernel

K ∈ Rm×n×o, as given in following equation

S(i, j, k) = (I ∗K)(i, j, k) =
∑
m

∑
n

∑
o

I(i−m, j − n, k − o)K(m,n, o). (2.7)

CNNs effectively perform weight sharing over multiple different locations of the input

image, which significantly reduces the number of model parameters, compared to a feedfor-

ward NN . Using a kernel smaller in size than the input creates sparse interactions, which

in combination with parameter sharing, enable a certain translation equivariance. This

translation equivariance has the effect that the same feature produces the same output,

independent of its location in the image.

CNNs outperform conventional NNs in terms of performance and additionally have less

required memory needed to archive an equivalent performance. Usually, CNNs consist of

a cascade of convolutional and pooling layers, whereby each convolutional layer extracts

local features at different levels of image resolution. The combination of the extracted

features allow the detection of higher order features [13].

2.4.1 Pooling Layer

Pooling layers are sub-sampling layers with the intention to reduce the size of the input

tensor by retaining certain local pixel statistics of the input. The most commonly used

pooling operation is Max-pooling [60], which only retains the pixel with the highest value

within the sliding window. Additionally to the properties of convolutions, the pooling

operation adds a certain translation , and up to a degree, also rotational invariance [13].

2.4.2 Fully Connected Layer

In CNNs fully connected layers are commonly used in the last few layers before the output

layer of the network architecture. Fully connected layers are used for the final decision

making by summarizing the activations from all previous layers. The input tensor into the

fully-connected layer is flattened, thus reshaped to a one-dimensional vector. Consequently

an input tensor with batch size B, number of channels C, width W and height N and of

size B × C ×M × N is reshaped into size B × C ∗M ∗ N . In fully connected layers all

neurons of a layer are connected all the neurons in the next layer. Commonly the fully

connected layer successively reduces the number of features until the output layer.
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2.4.3 Dropout Regularization

Due to the introduced non-linearities, deeper CNNs are prone to memorize the training

data and are not able to generalize to the whole domain, explained by the training data.

This effect is called overfitting and becomes critical when dealing with a small amount

of data samples. Dropout, proposed by Srivastava et al. [51] is a regularization technique

designed to reduce the effect of overfitting. During training, a dropout layer randomly

deactivates neurons with a dropout probability p. Therefore, the model can not simply

relie on strong activations from single neurons. With dropout, a regularization effect is

obtained, which can also be interpreted as adding noise to the hidden units [50]. In CNNs,

dropout is commonly only applied to the intermediate outputs of fully-connected layers in

the form of additional dropout layers, since dropout directly after the convolutional layers

has shown to decrease the evaluation performance drastically [11].

2.4.4 Batch Normalization

The normalization of the input features has shown to improve the overall performance of

the network and can increase its convergence speed. This data normalization is usually

only possible before passing the input into the network [13].

Ioffe and Szegedy [19] extended on this idea and proposed a method called Batch

normalization which can be applied to the outputs of the intermediate layers of the model.

Batch normalization can be seen as a layer wise linear transformation of the output of the

previous layer based on statistics of the current batch, to ensure a consistent distribution

of the activations for all mini-batches. The batch normalization layers retain a moving

average of the µ and σ of the activation of each unit.

During training, each mini-batch is normalized with the µ and σ of the current mini-

batch according to the following equation

H∗ =
H − µ
σ

, (2.8)

and during evaluation, the calculated moving average over the seen samples is used to

normalize the data with Eq. (2.8) [13, 19].

2.4.5 Pobabilistic Layers

Bayesian Convolutional Neural Networks (BCNNs) require a modification of the conven-

tional convolutional and dense layers in order to incorporate the bayesian framework.

Based on the work of Bundell et al. [5], for both the kernel and bias, a posterior and

a prior distribution is defined. The prior distributions p(kernel,bias)(ω) remains constant

and describes the assumption about the data distribution. The posterior distributions

p(kernel,bias;θ)(ω|x) is parameterized by a Gaussian distribution, thus θ = {µ, σ}. During

optimization, the parameters θ of the approximate posterior distribution is learned in
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order to approximate the true posterior distribution of the presented data.

An example for such statistical layers are called Reparameterization layers [23] and

are provided in the TensorFlow Probability library [8]. The Reparameterization layers,

by definition, implement the idea of reparameterization in order to allow backpropaga-

tion through the network (Section 3.1.3). The implementation of Reparameterization

layers averages the activations over multiple sets of weights, sampled from their trained

approximate posterior distributions q(ω|θ). In practice the Kullback Leibler (KL) loss

is calculated layer wise. The KL loss of each layer contributes in sum to the Evidence

Lower Bound (ELBO) loss in Eq. (3.7). By sampling model weights w ∼ p(w|θ) and biases

b ∼ p(b|θ), probabilistic convolutional and dense layers can be applied as described in their

deterministic counterparts in Section 2.4.
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In the following sections, the different evaluation methods of the uncertainties are

discussed in further detail, and the experimental setup is described.

3.1 Bayesian Deep Learning

Bayesian Neural Networks (BNNs) are the counterpart to their deterministic version,

the Neural Networks (NNs). The idea behind Bayesian Deep Learning (DL) is based

on the well known statistical model, the Gaussian Process. A Gaussian Process is a

non-parametric approach, that tries to find a distribution of possible functions f(x). A

Gaussian Process consists of a set of random variables, which formulate a multivariate

Gaussian distribution. An assumed prior distribution, which restricts the set of possible

functions, is updated by observing data. For sufficiently enough data samples, a model

posterior over possible functions is generated, which describes functions, that could have

generated the seen data [43].

With this intention in mind, we introduce Bayesian statistics into the concept of BNNs,

by putting a distribution over function f in the form of a prior distribution p(f). Given the

corresponding data and label pairs {xi, yi}Ni=1 we can define a function f , parameterized by

the model weights w, which maps the input to an output y = f(x). With this alternation

15
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the model is enabled to capture the epistemic uncertainty information directly in it’s

individual distributions.

Using the Bayesian Theorem, we can calculate the posterior distribution p(f |x, y) as

given in the equation bellow

p(f |x, y) =
p(y|x, f)p(f |x)

p(y|x)
, (3.1)

where the likelihood is given by p(y|x, f).

The predictive probability the combination of unseen data x∗ and labels y∗ is given in

the following equation

p(y∗|x∗, x, y) =

∫
p(y∗|f∗)p(f∗|x∗, x, y)df∗. (3.2)
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Figure 3.1: An exemplary visualization of the difference between a conventional CNN and a
BCNN. (a) The weights of a CNN are represented by single values. (b) The weights are replaced
by distributions.
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3.1.1 Variational Inference

Equation (3.2) can possess an analytical solution in only very rare cases, but is typically

intractable in praxis, since it requires the integration over all possible functions f ∈ Ω in

the parameter space. This inhibits the calculation of an exact solution of the posterior

distribution p(y∗|x∗, x, y) [48].

Laplacian methods from MacKay [35], and Hamiltonian dynamics from Neal [39] have

been proposed to approximate the true posterior distribution. Both methods either provide

a poor approximation or are computational prohibitive [27] and can therefore not be used

efficiently in Bayesian Convolutional Neural Networks (BCNNs).

A nowadays commonly used method to overcome intractable integrals in Bayesian DL is

Variational Inference. Variational Inference aims to replace those intractable integrals with

computable approximations. The predictive probability calculated in Eq. (3.2), depends

on the data x and the corresponding labels y from the training set, which is not available

during evaluation. By conditioning the model on a finite set of random variables ω, the

predictive likelihood is decoupled from those data points. With that, it can be assumed

that the random variables can represent the population, which turns them into sufficient

statistics for the approximation model [48], as shown in the following equation

p(y∗|x∗, x, y) =

∫
p(y∗|f∗)p(f∗|x∗, ω) p(ω|x, y)︸ ︷︷ ︸

Intractable

df∗dω. (3.3)

The Eq. (3.3) still is intractable. Variational Inference now replaces the intractable poste-

rior distribution with a simplified, computable variational distribution q(w), which should

approximate the posterior as close as possible. With this replacement the approximate

predictive distribution can be rewritten as shown in the equation bellow

p(y∗|x∗, x, y) ≈
∫
p(y∗|f∗)p(f∗|x∗, ω)q(ω)df∗dω. (3.4)

To approximate the true posterior with the variational posterior, we use the Kullback

Leibler (KL) divergence as a measure of the accordance between both distributions q(ω)

and p(ω|x, y). The definition of the KL divergence in the continuous domain is given in

the equation bellow

KL[q(ω)||p(ω|x, y)] =

∫ ∞
−∞

q(ω) log
q(ω)

p(ω|x, y)
dω. (3.5)

3.1.2 Bayes by Backprop

To archive a good representation of the true posterior distribution by the variational dis-

tribution, we aim to maximize the accordance between them. Blundell et al. [5] proposed

a Variational Inference method named Bayes by Backprop in which the given problem in

Eq. (3.4) can be converted in an optimization problem.
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The variational posterior is paramterized by the paramters θ, which can be updated

to increase the similarity in Eq. (3.5). The optimal paramters θ̂ are given by the following

optimization problem

θ∗ = arg min
θ

KL[q(ω|θ)||p(ω|x, y)]

= arg min
θ

∫
q(ω|θ) log

q(ω|θ)
p(ω|x, y)

= arg min
θ

∫
q(ω|θ) log

q(ω|θ)
p(ω)p(x,y|ω)

p(x,y)

= arg min
θ

∫
q(ω|θ) log

q(ω|θ)
p(ω)

dω −
∫
q(ω|θ) log p(x, y|ω)dω +

∫
q(ω|θ) log p(x, y)dω

= arg min
θ

KL [q(ω|θ)||p(ω)]− Eq(ω|θ) [log p(x, y|ω)] +

∫
q(ω|θ) log p(x, y)dω.

(3.6)

The integral in the last term in Eq. (3.6) reduces to p(x, y) which is constant, and therefore,

can be neglected in the optimization process. This gives the objective function

F(x, y, θ) = KL [q(ω|θ)||p(ω)]− Eq(ω|θ) [log p(x, y|ω)] , (3.7)

which is widely known as the variational free energy or Evidence Lower Bound (ELBO)

loss [20, 40, 45, 59]. The optimization of this cost function provides an inherent regular-

ization effect, which is able to reduce the likelihood of overfitting to the data [5].

3.1.3 The Reparameterization Trick

Bayes by backprop aims to use the backpropagation algorithm to update the distribution

parameters θ in BCNNs and requires the calculation of the partial derivatives the estab-

lished loss function (Eq. (3.7)), as shown bellow

∇θF(x, y, θ) = ∇θKL [q(ω|θ)||p(ω)]−∇θEq(ω|θ) [log p(x, y|ω)] . (3.8)

Due to the usage of parameterized distributions for the weights, the nodes are now

stochastic. For simplicity, we define the output of a stochastic variable as

z ∼ q(w|θ) = N (µ, σ), (3.9)

and

fθ(z) = log p(x, y|z). (3.10)

Although, the usage of backpropagation with this cost function is theoretically possible,

its use for backpropagation would be not feasible. The main reason for infeasibility arises
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from the gradient of the second term of Eq. (3.8), which is shown in the following equation

∇θEq(ω|θ) [fθ(z)] = ∇θ
[∫

Ω
q(z|θ)fθ(z)dz

]
=

∫
Ω
∇θ [q(z|θ)fθ(z)] dz

=

∫
Ω
fθ(z)∇θq(z|θ)dz +

∫
Ω
p(z|θ)∇θfθ(z)dz

=

∫
Ω
fθ(z)∇θq(z|θ)dz + Eq(z|θ) [∇θfθ(z)] .

(3.11)

The calculated gradients in Eq. (3.11) are calculated based on samples from q(z|θ). There-

fore the calculated gradients can have discontinuities, which do not represent the true

underlying gradients. This causes the optimization procedure to be rendered impossible,

since the contribution of individual parameters cannot be distinguished (see Fig. 3.2a).

The Reparameterization trick was introduced by Kingma et al. [23] in order to over-

come the problem of this high variance, and enable the efficient application of backpropa-

gation with BCNNs. Instead of calculating the partial derivative of Eq(ω|θ) [fθ(z)], using

the stochastic node, first we reformulate the sampling procedure, by introducing a new

random variable ε ∼ N (0, 1). With that, we can define a deterministic function

gθ(x, ε) = µ+ σ · ε = N (µ, σ), (3.12)

from which we generate the samples

z = gθ(ε, x). (3.13)

Instead of sampling from q(w|θ) directly, we sample from the, now decoupled stochastic

variable ε and apply it to the now deterministic variables, µ and σ. This way, we can

substitute

Eq(z|θ)
[
f(z(i))|θ)

]
= Eq(ε)

[
f(gθ(ε,x

(i)))
]
, (3.14)

through which the gradient of the expectation in Eq. (3.8) can be expressed as the expec-

tation of the gradient, as shown in the equation bellow

∇θEq(z|θ)
[
f(z(i)|θ)

]
= ∇θEq(ε)

[
f(gθ(ε,x

(i)))
]

= Eq(ε)
[
f(∇θgθ(ε,x(i)))

]
,

(3.15)

in order to guarantee, the gradient to be a valid solution (see Fig. 3.2b). Furthermore, by

assuming that gθ(ε, x) is differentiable, Monte Carlo (MC) integration can be used as an
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approximation of the resulting expectation [23], given in the following equation

Eq(ε)
[
f(∇θgθ(ε,x(i)))

]
≈ 1

T

T∑
t=1

f(∇θgθ(ε(t),x(i))) (3.16)

Averaging over l ∈ L samples of ε(l), the random noise variable ε can be considered to

be constant, since the error introduced by it will be integrated out, if a large dataset is

used [23, 24].
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Figure 3.2: Schematic representation of the effect of reparamterization on the output of a stochas-
tic node z. (a) The calculated gradients with respect to the variables µ and σ indicates a high
variance and therefore are inaccurate. (b) Applying reparameterization to the stochastic node,
the noise ε can be separated from the node, which now becomes deterministic. The calculated
gradients are accurate, which allows the measurement of the individual contribution. This allows
backpropagation of the error through the node to both µ and σ.

3.2 Monte Carlo-Dropout

As already described in Section 3.1, exact Bayesian modeling is not possible due to com-

putational restraints. Therefore, alternative ways to estimate the uncertainty are required

instead. While sampling-based approaches, to approximate the exact posterior distribu-

tion, are theoretically plausible, in praxis, they are computationally very demanding for

current hardware. In 2015 Gal and Ghahramani [12] proposed a method termed Monte

Carlo-Dropout (MC-Dropout), which can be used with conventional Convolutional Neu-

ral Networks (CNNs). MC-Dropout couples the widely used regularization method of

dropout [51] with a sampling-based approach at inference time to approximate the in-

tractable variational posterior distribution in Eq. (3.2). Dropout has proven to be an
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effective way to prevent networks from overfitting to the training data, and when used in

the context of Bayesian reasoning, it can offer additional insight into the uncertainty that

comes with the prediction provided from a model. MC-Dropout not only offers additional

insight into the quality of the prediction, but it can also increase the performance over the

standard Frequentist approach [11, 12].

The application of dropout effectively minimizes the KL divergence between an ap-

proximate distribution and the posterior of an in-depth Gaussian process [12]. Therefore,

the authors state, MC-Dropout can be used as an approximation of the Gaussian Process,

thus approximating BCNNs. MC-Dropout avoids the intractable integral in Eq. (3.3), by

averaging the predictions over T stochastic forward passes, as shown in Eq. (3.17) [11].

With that, the predictive performance of the model can be evaluated.

p(y∗|x∗, x, y) ≈
∫
p(y∗|f∗)p(f∗|x∗, ω)p(ω)df∗dω ≈ 1

T

T∑
t=1

p(y∗|x∗, ω̂t) (3.17)

Dropout causes for each of the t ∈ T stochastic forward passes a different set of network

weights to be sampled from the approximative variational posterior distribution wt ∼ q(w).

Concerning the regression task, the epistemic uncertainty of sample xi is expressed in the

variance over T stochastic forward passes in following equation

σ2
i = V ar({f(xi;wt)}Tt=1). (3.18)

According to Gal and Ghahramani [11], the implementation of a CNN , which applies

MC-Dropout , is equivalent to performing dropout after every convolutional layer and dense

layer. Since the pooling operation is comparable to a non-linear operation, dropout has

to be performed before a pooling layer [11].

3.3 Uncertainty predictions

To extract the the epistemic uncertainty of the data sample xn in Ensembles, the MC-

Dropout method and BCNNs we calculate the variance of the predictions ŷn of T forward

passes of the input sample xn as shown in the equation bellow

σ2
n = Var

(
{ŷn}Tt=1

)
(3.19)

3.3.1 Gaussian Output Layer

Neither conventional CNNs, nor Bayesian CNNs capture the aleatoric uncertainty by

default and require some modifications to the output of the model.

To overcome this problem, we extend the output of a network by a second pre-

diction [21]. This second prediction expresses the variability of information, thus the
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σ

μ

ŷ

Figure 3.3: A visualization of the possible formulations of the output. a) The model predicts
both µ and σ at the output which are used to instantiate a normal distribution. This approach is
refered to as Gaussian output layer in this thesis. b) The predicts only a single value ŷ.

aleatoric uncertainty. in the data sample x, directly at the output. We formulate the

cost function, such that both predictions of the model parameterize a Normal distribu-

tion N (y;µ(x, θ), σ(x, θ)), of which we aim to maximize the probability for a given the

groundtruth label y of the corresponding data sample x. The optimal paramters of the

model are given by

θ̂ = arg max
θ

N (y;µ(x, θ), σ(x, θ)). (3.20)

Moreover, we can increase the numerical stability by minimizing the negative log-

probability, namely the Negative Log Likelihood of Eq. (3.20) instead

θ̂ = arg min
θ
− logN (y;µ(x, θ), σ(x, θ)). (3.21)

The objective function for optimizing a network with a Gaussian output layer, there-

fore, is equivalent to

F(x, θ) = − logN (y;µ(x, θ), σ(x, θ)) =

= − log

(
1√

2π σ(x, θ)
exp−(µ(x, θ)− y)2

2σ(x, θ)2

)
= − log σ(x)√

2π
+

(y − µ(x))2

2σ(x)2

(3.22)

Expressing the variability at the output of the network enables the use of standard

supervised learning, in order learn the variability σ present in the data. With this method,

no additional labels of the uncertainty are required, which improves the applicability for

many different tasks. A Gaussian output layer can be used for CNNs and BCNNs to

extract the sample-wise aleatoric uncertainty.
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3.4 Ensemble Model Combination

In the work of Srivastava et al. [51], the authors noted that the regularization method

dropout could be interpreted as an Ensemble model combination, which often can improve

the performance by averaging the predictions. The large amount of possible non-linear

parameter configurations that contribute to the representation of the training data gives

single networks, which are trained on the same tasks, a high variety around a true optimum.

A reduction of the variability of the single voters can be archived by using an Ensemble of

models. This way, predictions of individual models are combined to get a single estimate.

Multiple different approaches using the concept of Ensemble model combination ex-

ist. Randomization-based approaches, like random forests, rely on independent branches,

which are all trained in parallel. The outcomes of the single branches are then combined

and used as the Ensemble’s prediction. Another approach, named boosting in the liter-

ature, trains graphs sequentially on grouped sets of images [28]. The simplest approach

involves training several identical models, which deviate from each other due to the ini-

tialization scheme of the weights. Each model extracts different features and aspects of

the input data. Further diversification of the single models can be obtained by addition-

ally applying dropout during training. Ensemble model combination provides a measure

against overfitting due to the combination of multiple votes. Averaging of the single pre-

dictions of the same sample has shown an improvement of performance and reduced the

variance between the predictions themself [26].

While conventional Ensembles are applied to various CNN architectures with success

and have shown to be able to increase the overall predictive performance [28], those mod-

els do not consider the uncertainty of the predictions in any way. Lakshminarayanan et

al. [28] proposed an approach that requires minor changes to standard CNNs and is ar-

gued to produce a high-quality predictive estimate of the epistemic uncertainty as well

as the aleatoric uncertainty. Similarly to Kendall and Gal [21] the output of the model

is extended, as a Gaussian output layer, described in Section 3.3.1. The predictions of

the individual models m ∈ M are averaged to compute µ(x) = M−1
∑M

m µm(x) and

σ(x) = M−1
∑M

m σm(x) which are then used in the loss function, described in Eq. (3.22).

3.5 Loss Functions

In the case of a conventional CNN , we used the `2 norm of the difference of the prediction

ŷ and the groundtruth y plus a standard weight decay as a regularization term. Our

objective function, in this case, is given by

F(x, y) =
1

B
||ŷ(x)− y||2 (3.23)

where B is the size of the current mini-batch. Using the Gaussian output layer, we utilize

the Negative Log Likelihood in Eq. (3.22) as a loss function.
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To optimize the BCNN , we minimize the ELBO loss in Eq. (3.7). We used a layer-wise

KL-loss Eq. (3.5), which contributes in sum to the ELBO-loss and calculate the data term

using the Negative Log Likelihood from Eq. (3.22). In experiments with BCNNs, which

do not express the variability σ at the output, we assume the variance of each sample to be

a constant of σ = 1. This assumption simplifies the Negative Log Likelihood in Eq. (3.22)

according to Eq. (3.24) to effectively a scaled `2 norm up to a constant of log 2π, that can

be neglected in optimization.

− log p(y|x) = − logN (y(x);µ, σ2)|σ2=1

= − log

(
1√
2π

exp−(µ̂− y)2

2

)
= −1

2

(
− log 2π − (x− µ)2

) (3.24)
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4.1 Baseline Experiments

To visualize the impact of the data on the aleatoric uncertainty and the epistemic un-

certainty, we conducted baseline experiments on a one dimensional regression task. We

sample 1000 uniformly distributed samples from two different functions (see Fig. 4.1).

The first function is shown in Fig. 4.1a. In this function, we added noise by sampling

values from a standard normal distribution. The second function is given in Fig. 4.1b

which should approximate a function, which describes the age information content, in our

hand bones. We added noise sampled from a standard normal distribution for samples

x < 18 and sampled a uniform distributed noise between 18 and 25 for samples x > 18.

For testing, we sample the model output at 1000 uniformly distributed values of x

in the range between −10 and 20 for the sinusoidal baseline and 10 < x < 25 for the

approximative function. We use T = 20 Monte Carlo (MC)-samples to calculate the

epistemic uncertainty according, as described in Section 3.3. The aleatoric uncertainty is

expressed, by the extension of the Monte Carlo-Dropout (MC-Dropout) with the Gaussian

output layer.

For the baseline, we applied our explained methods to a fully-connected Neural Net-

work (NN), which consists of four layers, each layer generating 128 outputs. We train the

25
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Figure 4.1: The generated functions are shown in red and the noisy samples are depicted in blue.

NN , the MC-Dropout method and the Ensemble for 30000 iterations and the Bayesian

Convolutional Neural Network (BCNN) for 100000 iterations and feed data in batches

of size 360 to the model. We chose an Ensemble consisting of T = 5 individual models.

For MC-Dropout we apply dropout with the dropout probability of p = 0.3 after each

dense layer. We use a scaling factor for the Kullback Leibler (KL)-loss in the BCNN of

λ = 0.00001. For the optimization of both methods, we used a learning rate of η = 0.0001.

4.2 Age Estimation Experiments

4.2.1 Material

The used Magnetic Resonance Imaging (MRI) dataset was acquired at the Ludwig Boltz-

mann Institute for Clinical Forensic Imaging in Graz as part of a study investigating the

role of MRI in forensic age estimation. All applied methods in this thesis were evaluated

on a dataset of T1-weighted 3D MR images from a dataset, consisting of N = 328 subjects

with a known Chronological Age (CA), approximately uniformly distributed between 13

and 25 years. The dataset is comprised of MRI scan volumes from the left hand, the

upper thorax, and the jaw, all acquired in a single imaging session. Hand and clavicle

images had been acquired using a T1-weighted gradient-echo sequence with fat satura-

tion. The volumes of the jaw had been imaged using a proton density-weighted turbo

spin echo. The size of the acquired images is 288 × 512 × 72mm with a voxel spacing of

0.45 × 0.45 × 0.9mm3 for the hand, 168 × 192 × 44 (0.9 × 0.9 × 0.9mm2) for the upper

thorax and 208× 256× 56 (0.59× 0.59× 1.0mm3) for the jaw. An example for the used

images can be seen in Fig. 4.2.

We used a 4-fold cross-validation for the evaluation of the model performance. We

aimed to evaluate the contribution of the different sites to the performance of the models.

Therefore, all methods were carried out for training on hand bones alone and hand bones
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(a) (b) (c)

Figure 4.2: Example projection images of the recorded MR images with their according landmarks
showing the (a) hand bones, (b) clavicle bones and (c) teeth.

combined with clavicle bones and teeth. Additionally to using the volumetric data, we

repeated all experiments, using just the 2D middle slices of the cropped volumes. The

middle slices are extracted, such that the bone of interest lies perpendicular to the 2D

plane.

4.3 Network architecture

Our network architecture was chosen to be the late fusion architecture of Štern et al. [52].

The late fusion architecture is oriented on how forensic experts currently perform combi-

nation of the age information of hand bones, clavicle bones and teeth. This architecture

combines the age information for each site individually and concatenates the information

between all sites, bevor the final prediction. The used late fusion architecture for Con-

volutional Neural Networks (CNNs), Ensembles and BCNNs can be seen in Fig. 4.3 with

its corresponding Deep Convolutional Neural Network (DCNN) block in Fig. 4.5. This

particular architecture mimics the stating of different anatomical sites, where each DCNN

block acts as a feature extractor per cropped input volume. In Fig. 4.4 the the architec-

ture in Fig. 4.3 is modified in order to implement MC-Dropout . The corresponding DCNN

block can be seen in Fig. 4.6.

Each DCNN block consists of three sequential levels of two convolution layers and

a pooling layer that halves the input tensor to each level. The convolutions do not use

padding. Thus each convolutional layer reduces the input tensor in each dimension by
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2. At the end of a DCNN block, the tensor was flattened and passed through a dropout

layer to the fully connected layer, which produced 96 outputs. This dropout layer drops

neurons with the probability of pd. The extracted features of each cropped volume were

combined per site using a fully connected layer with 32 units. A dense layer acts as the

output layer, which produces task-dependent predictions. The output layer was modified,

depending on the experiment (see Section 3.3) and is visualized in Fig. 3.3.

Clavicle bones 

Teeth

fc

fc

Hand bones 

co
n

ca
te

n
a

te

co
n

ca
te

n
a

te

co
n

ca
te

n
a

te

fc

co
n

ca
te

n
a

te

Figure 4.3: Schematic representation of the used network architecture. The images of each site
are connected via a separate DCNN block to a fully connected layer fc. The features of the final
fully connected layer of each site are merged into a final prediction.

4.4 Data augmentation

We used an on-the-fly data augmentation of the training images by sampling values of a

uniform distribution in defined ranges. According to these sampled values, the images were

scaled, rotated, and translated. The landmarks of the cropped volumes of each site were

aligned. After the augmentation of the whole volume, the images were cropped around

the landmarks with a bounding box of the size [44mm, 44mm, 44mm]. We interpolated

to a uniform voxel spacing of [1mm, 1mm, 1mm] using linear interpolation. We applied a

random rotation between [−5.73◦, 5.73◦] for the x and z-axis and between [−11.4◦, 11.4◦]
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Figure 4.4: Schematic representation of the used late fusion network architectures. The images
of each site are connected via a separate DCNN block to a fully connected layer fc. The final fully
connected layer fc and the DCNN block implementMC-Dropout . The features of the final fully
connected layer of each site are merged into a final prediction.
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Figure 4.5: Schematic representation of a DCNN block. It consists of multiple levels of two
consequential convolutional operations without padding, followed by a pooling operation. The
features are then passed via a dropout layer with dropout probability pd to a fully connected layer
(fd) The n indicates the dimensionality of the kernels, which can be 2 and 3 in this work.
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Figure 4.6: Schematic representation of a DCNN block using MC-Dropout . This block extends
Fig. 4.5 with additional dropout layers with dropout probability pc, after each convolutional layer.
It consists of multiple levels of two consequential convolutional operations without padding, fol-
lowed by a pooling operation.

for the y-axis. The volumes of the finger joints and wrist bones were scaled in the range

of [0.85, 1.15] for all dimensions and translated by [−2mm, 2mm] for all dimensions. The

volumes of the clavicles were rotated about the voxel center in the range of [−5.73◦, 5.73◦],

translated by [−2mm, 2mm] and scaled by [0.85, 1.15] for all dimensions. This random

augmentation was applied during training, each image in each iteration individually.

The intensity values of the training images were randomly shifted in the range of

[0.75, 1.25] and scaled within [0.6, 1.4]. The intensities were additionally clamped in the

range of [−2, 2].

4.5 Training setup

We used a mini-batch size of B = 8 for all experiments. We applied Tensorflow as Machine

Learning (ML) framework [1] and the Adam optimizer [22]. For the initialization of the

model weights, we used the He Normal initialization proposed by He et al. [17]. We

utilized a maximal number of iterations of 20000 and a learning rate of η = 0.0001 for all

methods except BCNN , where we used a learning rate of η = 0.001 up till 10000 iterations

and η = 0.0001 from 10000 iterations onwards.

To ensure convergence for experiments, which involved the optimization of the Negative

Log Likelihood from the Gaussian output layer, as well as for BCNNs, we performed

normalization of the age labels for experiments. We calculated the mean and standard

deviation of the age labels of all samples occurring in the current training set beforehand

and used those statistics to normalize the labels during training and evaluation. For all

experiments conducted in this work, we used the Rectified Linear Unit (ReLU)[38] as a

non-linearity in the network.
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4.5.1 Convolutional Neural Networks

In the case of a conventional CNN , we considered only one output of the network, and

used the `2 loss in Eq. (3.23) as our loss function.

During training, we used a dropout rate of pd = 0.5 for the fully connected layers.

This approach was extended by the Gaussian output layer in Section 3.3.1 to additionally

express the aleatoric uncertainty. In this case, we optimized the Negative Log Likelihood

from Eq. (3.22).

4.5.2 Monte Carlo-Dropout

For this method, we applied dropout after every dense layer with a rate of pd = 0.5

and after every convolutional layer with a dropout rate of pc = 0.1 during training and

evaluation time. To overcome the potential decrease of evaluation performance due to

dropout after convolutions, we averaged the results over T = 20 forward passes.

The architecture is reformulated in order to extract both epistemic uncertainty and

aleatoric uncertainty as described in Section 3.3. We evaluated the model uncertainty

using Eq. (3.19).

4.5.3 Ensemble

We trained Ensemble consisting of T = 5 separately trained models {ft}Tt=1. The DCNN

paths of each model consists of (24, 48, 96), (24, 32, 48), (32, 48, 96), (24, 24, 96), (24, 96, 96)

filters per level of convolution and the same number of features for the fully connected

layers as described in Section 4.3. The experiments were carried out for both types of

output, as described in Section 3.3.

4.5.4 Bayesian Convolutional Neural Networks

The network architecture in our implementation of the BCNN is equivalent to the one of

CNNs and MC-Dropout . To capture the epistemic uncertainty inherently in the model

weights, we convert the default CNN to a BCNN , by replacing the convolutional and dense

layers with Reparameterization layers, as described in Section 2.4.5. Due to the statistical

behavior of those layers, MC-Dropout for the purpose of model uncertainty extraction

is not needed. We evaluated the epistemic uncertainty over T = 20 forward passes per

sample.

The aleatoric uncertainty is given per sample at the model output, according to Sec-

tion 3.3. A scaling factor of λ = 10−6 of the KL-divergence was selected. To ensure the

positivity of the variance, we transformed the output using the Softplus function on the

prediction σ of the network, as given in the equation bellow

σ(x) = 10−3 + ln (1 + exp(σ̂)) (4.1)
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and added a constant of 10−3 to ensure numerical stability.

In practice, model the weights are sampled each iteration from their individual distri-

bution over the model weights. While it is possible to average the activations over multiple

sampled weights for each layer, in this thesis, we used one set of sampled model weights

per forward pass. We conducted the experiments with both formulations of the output

layer as described in Section 3.3 and used the corresponding loss functions described in

Section 3.5.
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In this thesis we evaluated different Deep Learning (DL) methods, regarding their

capability of extracting the uncertainty, introduced by to the difference in the biological

variation of the Biologial Age (BA) and the Chronological Age (CA). The applied methods

encompass Convolutional Neural Networks (CNNs), Ensemble model combination, CNNs

implementing Monte Carlo-Dropout (MC-Dropout) and Bayesian Convolutional Neural

Networks (BCNNs). All of those methods were extended with a Gaussian output layer

in order to extract the aleatoric uncertainty directly from the model predictions. We

performed a 4-fold cross-validation using the cropped 3D imaging volumes of bones and

using just the 2D middle slices of those cropped volumes. To evaluate the influence of the

age information included in different sites of the human body, we repeated the experiments

for training on just hand and wrist images (H) and a combination of hand and wrist images,

including clavicles and wisdom teeth (HCT ). To evaluate the overall performance of the

different methods, all results needed to be evaluated quantitatively and visually. In order

to theoretically evaluate the influence of the training data onto the epistemic uncertainty

and the aleatoric uncertainty, we additionally conducted some experiments on two one

dimensional functions.

5.1 Baseline Experiments

The followings results are gained from the experiments on both the sinusoidal (Fig. 4.1a)

and the linear function (Fig. 4.1b). Fig. 5.4 and Fig. 5.1 shows the extracted aleatoric

33
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uncertainty from the Neural Network (NN), by using the Gaussian output layer. Figure 5.2

and Fig. 5.5 visualize the expressed epistemic uncertainty for the MC-Dropout method and

the Bayesian Neural Network (BNN), using the Gaussian output layer. Figure 5.2 and

Fig. 5.5 depict the epistemic uncertainty for the Ensemble, the MC-Dropout method and

the BNN without the usage of the Gaussian output layer. Fig. 5.3 and Fig. 5.6 depict

the extracted aleatoric uncertainty and epistemic uncertainty by the Ensemble, the MC-

Dropout method and a BNN , by applying the Gaussian output layer.
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Figure 5.1: Visualization of the extracted aleatoric uncertainty from the NN.
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Figure 5.2: Visualization of the epistemic uncertainty for the MC-Dropout method and a
Bayesian NN for the sinusoidal function.
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Figure 5.3: Visualization of the epistemic uncertainty and the aleatoric uncertainty generated
for the stated methods, implementing the Gaussian output layer.
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In Table 5.1 the averaged aleatoric uncertainty and epistemic uncertainty for the com-

pared methods is listed. The average uncertainty was calculated for samples x ≥ 18 and

x < 18. For x < 18, we sampled our training data from a uniform distribution with

standard deviation of 0.3. For x ≥ 18 based on the samples uniform distribution, the ex-

pected standard deviation is 2.02. Additionally to the averaged uncertainty the standard

deviation of the predictions is stated.

Experiment type
Epistemic Aleatoric

x < 18 x ≥ 18 x < 18 x ≥ 18

NN plus σ - - 0.30± 0.06 1.82± 0.25
Ensemble 0.71± 0.42 0.60± 0.51 - -

Ensemble plus σ 0.76± 0.53 0.65± 0.43 0.28± 0.03 1.83± 0.20
MCD 0.81± 0.36 0.94± 0.39 - -

MCD plus σ 0.97± 0.28 1.12± 0.45 1.22± 0.49 2.44± 0.55
BNN 0.75± 0.5 0.58± 0.45 - -

BNN plus σ 0.73± 0.34 0.60± 0.42 0.39± 0.98 2.00± 0.19

Table 5.1: Listing of the epistemic uncertainty and aleatoric uncertainty extracted for the given
methods, from the baseline experiments on the linear function.
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Figure 5.4: Visualization of the extracted aleatoric uncertainty from the NN.
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Figure 5.5: Visualization of the epistemic uncertainty for the MC-Dropout method and a
Bayesian NN for the linear function
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(b) MC-Dropout
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Figure 5.6: Visualization of the epistemic uncertainty and the aleatoric uncertainty generated
for the stated methods, implementing the Gaussian output layer.
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5.2 Quantitative Evaluation of the Results

Table 5.3 and Table 5.2 list the results for the evaluated methods for 2D and 3D experi-

ments, trained on the two different combinations of the sites of the hand bones (H) and

clavicle bones plus teeth (CT ). All of the stated results are extracted from the regression

plots for the single methods in Figs. 5.7 to 5.10. The Mean Absolute Deviation (MAD) de-

scribes the average distance between each prediction to the mean of the whole population

of predictions. For methods, which are trained on hand bones , the MAD was calculated

only for subjects ≤ 18 years in age. Caused by the method, the epsitemic uncertainty

is not available for the standard CNN . The aleatoric uncertainty is only available for

methods which are extended with the Gaussian output layer.

Investigating the results for methods trained on hand bones in Table 5.2, the best

performance regarding the MAD was archived in 3D with the BCNN with the Gaussian

output layer (0.94±0.80). Both BCNN and Ensemble methods follow the best result in 3D

very closely, with a slightly increased standard deviation of the predictions (0.98±0.85 and

0.98 ± 0.87). Compared results, using 2D data, show an overall slightly increased MAD ,

compared to the results in 3D. In 2D, the Ensemble performs the best (0.99±0.90), closely

followed by MC-Dropout (1.04± 0.97) and the conventional CNN (1.05± 0.97).

The results of methods, trained on the combination of sites HCT show an overall

increase in MAD , compared to training on hand bones only. Despite the increase in

MAD , the overall standard deviation for the single experiments is decreased when trained

on the combination of sites HCT , over training on hand bones alone. With 3D data,

the best fit was gained by the Ensemble method (0.98± 0.77), which is followed by MC-

Dropout (1.02±0.78) and the conventional CNN (1.06±0.77). Using the 2D middle slices,

the best MAD of 1.02 ± 0.81 was archived by the Ensemble method. As opposed to the

models trained on H, the other results in 2D deviate more from the best result, namely

by the MC-Dropout (1.01± 0.83) and the conventional CNN (1.16± 0.87).
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Experiment type Sites MAD Epistemic Aleatoric

CNN
H 1.04± 0.88 - -

HCT 1.06± 0.77 - -

CNN plus σ
H 1.17± 0.96 - 1.61± 0.42

HCT 1.23± 0.97 - 1.41± 0.41

Ensemble
H 0.98± 0.87 0.30± 0.22 -

HCT 0.98± 0.77 0.38± 0.23 -

Ensemble plus σ
H 1.14± 1.03 0.65± 0.41 1.74± 0.39

HCT 1.21± 0.93 0.99± 0.55 1.82± 0.35

MCD
H 1.03± 0.89 0.11± 0.05 -

HCT 1.02± 0.78 0.09± 0.04 -

MCD plus σ
H 1.06± 0.98 0.31± 0.14 1.59± 0.36

HCT 1.17± 0.94 0.29± 0.20 1.39± 0.36

BCNN
H 0.98± 0.85 0.52± 0.20 -

HCT 1.13± 0.87 0.54± 0.24 -

BCNN plus σ
H 0.94± 0.80 0.11± 0.06 0.52± 0.17

HCT 1.19± 0.94 0.24± 0.14 0.74± 0.28

Table 5.2: Quantitative results evaluating the performance of the different methods using the
3D volumes of each site. H in indicates the usage of just hand bones, whereas HCT indicates
the use of hand bones, clavicle bones and teeth as training data. Methods, which implement the
Gaussian output layer are denoted by the addition of σ to the method name. The MAD and the
standard deviation of the predictions for methods, trained on only hand bones, were calculated
in the age range between 13 and 19 years. For hand bones, clavicle bones and teeth, the MAD
and the predictions standard deviation was calculated over the whole age range between 13 and
25 years.
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Experiment type Sites MAD Epistemic Aleatoric

CNN
H 1.05± 0.97 - -

HCT 1.16± 0.87 - -

CNN plus σ
H 1.27± 1.21 - 1.38± 0.52

HCT 1.33± 1.11 - 1.15± 0.42

Ensemble
H 0.99± 0.90 0.43± 0.20/ -

HCT 1.02± 0.81 0.33± 0.18 -

Ensemble plus σ
H 1.32± 1.20 0.79± 0.44 1.97± 0.49

HCT 1.24± 0.99 0.78± 0.41 1.55± 0.41

MCD
H 1.04± 0.97 0.15± 0.08 -

HCT 1.10± 0.83 0.15± 0.08 -

MCD plus σ
H 1.16± 1.19 0.29± 0.13 1.48± 0.61

HCT 1.28± 1.04 0.29± 0.20 1.15± 0.42

BCNN
H 1.10± 0.93 0.47± 0.25 -

HCT 1.18± 0.88 0.55± 0.27 -

BCNN plus σ
H 1.07± 0.94 0.26± 0.12 0.97± 0.37

HCT 1.24± 0.98 0.42± 0.21 1.15± 0.34

Table 5.3: Quantitative results evaluating the performance of the different methods using the 2D
middle slices of the cropped volumes of each site. H in indicates the usage of just hand bones,
whereas HCT indicates the use of hand bones, clavicle bones and teeth as training data. Methods,
which implement the Gaussian output layer are denoted by the addition of σ to the method name.
The MAD and the standard deviation of the predictions for methods, trained on only hand bones,
were calculated in the age range between 13 and 19 years. For hand bones, clavicle bones and
teeth, the MAD and the predictions standard deviation was calculated over the whole age range
between 13 and 25 years.
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5.2.1 Visualization of the Regression Plots

In Figs. 5.7 to 5.10 the regression plots for CNNs, the MC-Dropout method, Ensembles

and BCNNs are depicted. The Subfigures (a) and (b) show the regression plot for the

corresponding method for 3D data, trained on hand bones, clavicles and teeth. In the

Subfigs. (e) and (f) the regression plot for 3D data, trained on hand bones, is depicted.

Subfigs. (c, d) visualize the regression plots for the stated methods, trained on 2D data

from hand bones, clavicles and teeth, while (g) and (h) show the results when training on

hand bones. In those plots, the predicted sample age is plotted versus the groundtruth

age.
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Figure 5.7: Visualization of the regression plots for CNNs, with both 2D and 3D data.
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Ensemble
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Figure 5.8: Visualization of the regression plots for Ensembles, with both 2D and 3D data.
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Monte Carlo-Dropout
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Figure 5.9: Visualization of the regression plots for MC-Dropout, with both 2D and 3D data.
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Bayesian Convolutional Neural Networks

BCNN BCNN with σ
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Figure 5.10: Visualization of the regression plots for BCNNs, with both 2D and 3D data.
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5.3 Visual Evaluation of the Uncertainty Plots

In the Subfigs. (a) and (b) in Fig. 5.11 and Fig. 5.12 the aleatoric uncertainty of CNNs,
extended by the Gaussian output layer are visualized. The Subfigs. (a, b) in Figs. 5.13
to 5.18 represent the sample-wise epistemic uncertainty of the corresponding methods.
The Subfigs. (b, e) visualize the extracted epistemic uncertainty and the Subfigs. (c,
f) visualize the aleatoric uncertainty for the stated methods, which are extended by the
Gaussian output layer. All plots depict the corresponding uncertainty plotted versus the
predicted age of the model.

5.3.1 Convolutional Neural Networks

3D Experiments
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Figure 5.11: Visualization of the aleatoric uncertainty for the CNN, using the Gaussian output
layer and 3D data.
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2D Results

CNN with σ
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Figure 5.12: Visualization of the aleatoric uncertainty for the CNN, using the Gaussian output
layer and 2D data.
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5.3.2 Ensembles

3D Results
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Figure 5.13: Visualization of the extracted uncertainties with the Ensemble, using 3D data.
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2D Results

Ensemble Ensemble with σ
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Figure 5.14: Visualization of the extracted uncertainties with the Ensemble, using 2D data.
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5.3.3 Monte Carlo-Dropout

3D Results
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Figure 5.15: Visualization of the extracted uncertainties with the MC-Dropout method, using
3D data.
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2D Results

MC-Dropout MC-Dropout with σ
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Figure 5.16: Visualization of the extracted uncertainties with the MC-Dropout method, using
2D data.
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5.3.4 Bayesian Convolutional Neural Networks

3D Results
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Figure 5.17: Visualization of the extracted uncertainties with the BCNN, using 3D data.
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2D Results
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Figure 5.18: Visualization of the extracted uncertainties with the BCNN, using 2D data.
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Discussion

6.1 Baseline Experiments

In order to visualize the impact of the quality of the data on the epistemic uncertainty and

aleatoric uncertainty, we evaluated Ensembles, the Monte Carlo-Dropout (MC-Dropout)

method and the Bayesian Convolutional Neural Network (BCNN) on a simple regression

task. This section aims to evaluate and discuss results from those baseline experiments.

To start with, we investigate the aleatoric uncertainty extracted by the Neural Network

(NN), using the Gaussian output layer in Fig. 5.1. In this plot, it becomes visible that

the aleatoric uncertainty for the trained range shows a small increase in uncertainty over

the uncertainty outside this range. This result is in line with the theory that the aleatoric

uncertainty only captures the noise in the data. The slight increase in uncertainty can

be explained since we added noise to the training samples. Samples, which lie outside

of the training range, were not captured during training, and the aleatoric uncertainty is

lowered.

For methods, which model only the epistemic uncertainty the uncertainty is constant

for samples, which lie inside of the training data and show an increased uncertainty for

samples outside of this range. This is the case for the Ensemble (Fig. 5.2a), the MC-

Dropout method (Fig. 5.2b) and the Bayesian Neural Network (BNN) in Fig. 5.2c. All

methods can fit the function accurately, and even show highly similar results for the

epistemic uncertainty inside the trained range. On the tested samples, which lie outside

of this range, we can also see similar results regarding the epistemic uncertainty, although

the BNN predicts different values for samples x < −5, compared to the Ensemble and the

MC-Dropout method. The observed behavior of the epistemic uncertainty agrees with the

theory that the epistemic uncertainty arises from the lack of knowledge about a problem.

In with this experiment, the model captured information about the training data, and

therefore does not have any information about samples outside of the trained range.

In Fig. 5.3 we can see, that the application of the Gaussian output layer slightly alters

the predictive behavior of the function for the Ensemble (Fig. 5.3a) and the MC-Dropout

55
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method (Fig. 5.3b). However, all methods still represent the epistemic uncertainty, as

described before, which is increased for samples, which lie outside of the training range.

The epistemic uncertainty is even increased for the MC-Dropout method, over the results

in Fig. 5.2b

Investigating the expressed aleatoric uncertainty with the Gaussian output layer, we

can see that the Ensemble method (Fig. 5.3d) shows the highest accordance to the result

gained from the NN in Fig. 5.1. In this example, the MC-Dropout method (Fig. 5.3e) failed

to capture the aleatoric uncertainty since it shows a strong increase of uncertainty towards

both borders. While the BNN in Fig. 5.3f shows a comparably low aleatoric uncertainty

for samples before the training range, and a mostly constant aleatoric uncertainty for

the training range itself, the uncertainty is increased with x = 10 to a constant value,

even outside of the range. Since this increase occurs close to the border of the trained

function, and additionally the function shows increased fluctuations in this range, the

NN captured this change the overall behavior of the function, by an increased aleatoric

uncertainty. Since those amplitudes of the function lie close to the border, the model

transfers the captured statistics to samples outside of this range, thereby increasing the

aleatoric uncertainty.

Investigating the results from the uncertainties in Table 5.1 shows that the epistemic

uncertainty extracted by the Ensemble and the BNN are in line with each other and

approximate an uncertainty of 0.74 for the range x < 18. In the range of x ≥ 18, this

uncertainty is lowered to approximately 0.61. In contrast, the MC-Dropout method indi-

cates a strong increase of the epistemic uncertainty for x < 18 and x ≥ 18. This suggests

that the MC-Dropout method overestimates the uncertainty for the baseline example.

In our function, we sampled from a uniform distribution in the range between 18

and 25. The expected standard deviation of this uniform distribution is calculated as

σ = 25−18√
12

= 2.02. Therefore, the expressed aleatoric uncertainty of the methods should

predict a standard deviation of 2.02 for 18 < x < 25. This standard deviation way

estimated the closest with the BNN with an aleatoric uncertainty of 2.00, followed by the

Ensemble with 1.83. Again, the MC-Dropout method seems to overestimate the aleatoric

uncertainty with an estimated aleatoric uncertainty of 2.44.

The experiments performed on the approximative function in Fig. 4.1b reveal that the

extracted aleatoric uncertainty indicates a strong dependence on the noise content of the

training data. We sampled data for x > 18 intentionally from a uniform distribution,

which does not hold any information pattern, but the average of those uniform samples.

Therefore the aleatoric uncertainty predicted by the NN Fig. 5.4 shows a low uncertainty

for samples bellow x = 18 and a strong increase after this point. The trained model seems

to predict the average value of the sampled uniform distribution, which is 21.5. This is

expected, since no clear pattern is present for samples x > 18, and the model predicts the

mean value of those samples Due to the noise of the samples x > 18, the model seemingly

does not capture the statistics of the uniform distribution of the noise, which causes a
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substantial increase in aleatoric uncertainty after x = 18. The Ensemble in Fig. 5.5a only

extracts the epistemic uncertainty. It can fit the training data in the linearly increasing

section and predicts the average value of the uniform distribution for x > 18. Between

x = 17 and 21.5, the model shows an increased epistemic uncertainty compared to samples

x < 17. After x = 22, the epistemic uncertainty is significantly decreased, compared to

the rest of the function.

The MC-Dropout method (Fig. 5.5b) shows an overall constant epistemic uncertainty

for the whole tested range, with the exception of the transition at x = 18, where

the model shows the same behavior as the Ensemble. The BNN in Fig. 5.5c shares

overall the same behavior with the Ensemble. Between 18 < x < 21 the BNN shows

an increased epistemic uncertainty over the rest of the function, and a lower epistemic

uncertainty for x > 19. Moreover, the models are able to predict the average value of

the uniform distribution, for x > 19. The observations in this paragraph show that the

compared methods can represent the epistemic uncertainty as expected. In contrast to

the Ensemble and the BNN , the MC-Dropout method indicates an increased epistemic

uncertainty over the whole range. Furthermore, the epistemic uncertainty is increased

for x > 18, than compared to x < 18. For x < 18, we generated samples from a Normal

distribution with a standard deviation of σ = 0.3. In contrast to the Ensemble Fig. 5.5a

and the BNN Fig. 5.5b, the MC-Dropout method increases the epistemic uncertainty

for x > 18. Similarly, to our baseline result on the sinusoidal function, we would expect

the epistemic uncertainty to be constant for the whole range for which training data

is available. This increase in epistemic uncertainty from the MC-Dropout method

could indicate that the method does not capture the epistemic uncertainty alone, but

additionally expresses the aleatoric uncertainty which should be increased in this range.

Splitting the uncertainties with the Gaussian output layer in Fig. 5.6 shows the same

increase of the epistemic uncertainty for x > 17, as explained in the paragraph above,

expressed by the Ensemble (Fig. 5.6a). Same, as without the usage of the Gaussian output

layer the MC-Dropout method (Fig. 5.6b) is able to fit the target function. However, the

claim that the MC-Dropout method fails to clearly separate between both uncertainty

is reinforced, since the epistemic uncertainty shows the same behavior as in Fig. 5.5b

and the aleatoric uncertainty in Fig. 5.6e shows an overall increase, compared to the other

methods. The BNN in Fig. 5.6c shares the same behavior with the Ensemble, but indicates

a more stable uncertainty, compared to Fig. 5.5c additionally for samples x < 10.

The aleatoric uncertainty extracted from the Ensemble (Fig. 5.6d) and the BNN

(Fig. 5.6f) are in line with the aleatoric uncertainty from Fig. 5.4. In both results, the

models indicate a comparably low aleatoric uncertainty before x = 17 with a sudden

increase after this point. The uncertainty is constant for the rest of the tested range.

Same as already mentioned, the MC-Dropout method cannot separate between both un-

certainties, therefore it fails the split with the Gaussian output layer. Additionally, the

estimated epistemic uncertainty and aleatoric uncertainty by the MC-Dropout method
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indicates From all methods, the Ensemble and the BNN show the most accordance with

the expected behavior of the epistemic uncertainty and aleatoric uncertainty and are able

to capture the expected standard deviation of the uniform distribution the best in the

aleatoric uncertainty.

To summarize the results of the baseline experiments, we can state that the

aleatoric uncertainty shows a strong dependence on the noise of the data. The aleatoric

uncertainty is mostly increased in regions, where the target function shows increased

fluctuations or noisy training samples. Moreover, the epistemic uncertainty in our

experiments is also in line with the hypothesized behavior, namely a constant uncertainty

for the range, in which training data is available, and an increased uncertainty for

samples outside this range. In our baseline for the approximative function, we found

that the epistemic uncertainty is mostly constant, but shows an increase in uncertainty,

between 17 < x < 21, where the transition between the linear function and the uniform

distribution occurs. The increased epistemic uncertainty in this range is caused due

to the sudden transition from an explainable function, to the average of the uniform

distribution. In this range, the model lacks the complexity to fit this steep gradient and

misses out on the necessary feature. Here, the model indicates the lack of knowledge by

an increased epistemic uncertainty.

The examined approximative function Fig. 4.1b is engineered such that it should rep-

resent the contained age information in our hand bones. When training on only images

of the hand, the ossification of hand bones causes the saturation of the available infor-

mation at around 18 years. Therefore, data above this age does not contain any valuable

age information. Based on this ossification, we, therefore, expect a constant increase in

uncertainty for subjects older than 18 years.

To describe this behavior in our approximation function, we draw samples from a

uniform distribution for x > 18. Based on this hypothesis, we expect a similar behavior of

the uncertainties in our age estimation experiments, as to the results found in this section.

By additionally introducing images of clavicle bones and teeth to the training data, the

whole age range is covered, and the saturation should vanish.

6.2 Age Estimation

This section is focussed on the discussion and evaluation of the results archived for our

age estimation task. To begin with, we compare our results of the 3D experiments

using Convolutional Neural Network (CNN), trained on hand bones, clavicles and teeth

(1.06 ± 0.77 years), we archive a similar performance in terms of the Mean Absolute

Deviation (MAD) to the results of Štern et al. [52] (1.01 ± 0.74 years). With Ensembles

trained on the combination of sites, we are able to surpass this performance (0.98± 0.77

years). In general, the results indicate that the introduction of imaging volumes instead

of only the 2D middle slices increases the ability to fit the data, which can be seen by
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the overall reduced MAD . Furthermore, the introduction of additional sites does not

necessarily reduce the MAD , but rather the standard deviation of the predictions, which

can be seen upon the comparison of the results in Table 5.2 and Table 5.3.

6.2.1 Convolutional Neural Network

Evaluating the extracted aleatoric uncertainty from conventional CNNs, applying the

Gaussian output layer (Fig. 5.11b), we can see that the method trained on hand bones

shows an increased uncertainty for subjects older than 18. The model estimates this

aleatoric uncertainty with a standard deviation of 1.8 years. Compared to younger sub-

jects, we can see an increasing uncertainty, which is on average 1.4 years. Introducing

additional sites to the training provides age information for the range of subjects older

than 18 years. This can be seen in Fig. 5.11a, where the aleatoric uncertainty steadily

increases with the subjects age. The results from our CNN , using the output layer, ap-

proximate the assumed error due to the biological variation of one year.

With 3D data, the aleatoric uncertainty was captured successfully from the CNN .

Using 2D data instead shows that the same effect can be found in the results, although

it is less pronounced, which can be seen in Fig. 5.12b. Additionally, the model tends to

cluster the predicted aleatoric uncertainty of the samples. The same effect is present when

training on the combination of sites in Fig. 5.12a. The application of the Gaussian output

layer shows that the CNN is able to represent the expected behavior of the aleatoric

uncertainty although this effect is more pronounced with 3D data.

6.2.2 Ensemble

The epistemic uncertainty for the Ensemble method, trained on 3D data is visualized in

Fig. 5.13d. When using only hand bones for training, the age information saturates due to

the ossification of hand bones around the age of 18 years. Since the model does not separate

the uncertainties, both are included in the expressed epistemic uncertainty. Therefore

we can see the sudden increase in epistemic uncertainty around 18 years. Moreover, the

epistemic uncertainty shows an increased standard deviation of the uncertainty predictions

at 20 years. Compared to our baseline results for the Ensemble in Fig. 5.5a, we see

the same expression of an increased uncertainty, which is shifted to around 20 years.

Interestingly, the same saturation effect can also be found, when training the Ensemble on

the combination of the hand bones, clavicles, and teeth, as shown in Fig. 5.13a. This could

indicate, that the Ensemble method does not successfully combine the age information

from all the different sites in 3D, but instead focuses on the age information present in

hand bones only, therefore neglecting available information in the clavicle bones and teeth.

The application of the Gaussian output layer causes the epistemic uncertainty of the

model in Fig. 5.13e to not express the label uncertainty, but instead generates noisy

predictions, with an increased standard deviation. A similar effect can be seen in the
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baseline (Fig. 5.6a), where the epistemic uncertainty in the saturated age range shows an

increased uncertainty. This is the case for the Ensemble, with the Gaussian output layer

for training on hand bones (Fig. 5.13e) and the combination of hand bones, clavicles and

teeth (Fig. 5.13b).

The extracted aleatoric uncertainty (Fig. 5.13f) successfully visualizes the label uncer-

tainty, which was present in the epistemic uncertainty before the split in Fig. 5.13d. In

subjects older than 18 years, the aleatoric uncertainty is estimated with a standard devi-

ation of 1.97 years, which is in line with the baseline experiments. Below this range, the

aleatoric uncertainty is in averaged to 1.14 years and therefore agrees with the assumed

error underlying the age estimation task of 1 year.

Training the Ensemble on hand bones, clavicles and teeth instead causes the same

saturation behavior for the aleatoric uncertainty (Fig. 5.13c) and a noisy epistemic

uncertainty (Fig. 5.13c), as described before. This distinct behavior between the

extracted epistemic uncertainty and aleatoric uncertainty, therefore, suggests that both

uncertainties are presumably decoupled. However, since the introduction of clavicles and

teeth does not cause the saturation behavior of the uncertainty to vanish in Fig. 5.13a

and Fig. 5.13c, we suggest, that the Ensemble does not use the available age informa-

tion to its full extend. It rather neglects the essential age information available in the data.

Investigating the epistemic uncertainty for the Ensemble trained on 2D data, we found

that the Ensemble can combine the age information of the different sites into one final age

estimate, as opposed to the 3D experiments. Therefore, the saturation behavior, when

trained on hand bones, can be seen in Fig. 5.14d, which is not present anymore, when

training on the combination of the sites, as depicted in Fig. 5.14a. In the latter case,

we can see that the epistemic uncertainty increases continuously with the subject’s age,

instead of the saturation. This behavior is expected since the additional sites extend the

covered age range, and therefore cause the saturation to vanish. Since the Ensemble on

3D data is not able to use the age information of all trained sites to its full extension,

while with 2D data, it can distinguish the sites, we suggest that the Ensemble method is

highly dependent on the dimensionality of the data.

Using the Gaussian output layer on the Ensemble with 2D data shows the same behav-

ior for the epistemic uncertainty for both sets of training data (Fig. 5.14d and Fig. 5.14a),

as described for 3D data above. In contrast to the 3D experiments, here, the Ensemble

method can fully utilize the training data of hand bones, clavicles and teeth, which causes

the saturation effect in Fig. 5.14c to vanish.

The same observation of the aleatoric uncertainty and the epistemic uncertainty can

also be found in the 2D experiments for Ensembles, for hand bones (Fig. 5.14f and

Fig. 5.14c) and hand bones, clavicles and teeth (Fig. 5.14e and Fig. 5.14b). However,

with 2D data, the extracted aleatoric uncertainty for younger subjects is approximated

with 1.55 years, which indicates a slight increase over the 3D results. These results show

a different expressive behavior and a consistent representation of the aleatoric uncertainty
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of the Ensemble using the Gaussian output layer. This indicates that the Ensemble is

successfully able to utilize the Gaussian output layer with 2D data in order to split the

epistemic uncertainty from the label uncertainty in a meaningful way.

6.2.3 Monte Carlo-Dropout

While the Ensemble fails to merge the age information with 3D data, when using all bone

sites (Fig. 5.13a), the MC-Dropout method captures the label uncertainty, when trained

on 3D hand bone data and indicates a slight saturation behavior in Fig. 5.15d. Similarly,

we can see the sudden increase in the epistemic uncertainty of the baseline Fig. 5.5b at

x = 18, which is immediately reduced again to the same constant uncertainty. Introducing

additional sites into the training data, diminishes the saturation effect and instead causes

a steady increase of the epistemic uncertainty, as seen in Fig. 5.15a.

Interestingly, using 2D data for the MC-Dropout method causes the epistemic uncer-

tainty to be increased, but to keep the same expression of the label uncertainty, as in the

2D case. Here, the epistemic uncertainty visualizes the expression of the label uncertainty

better for training on hand bones (Fig. 5.16d) and the combination of sites (Fig. 5.16a).

Upon splitting the uncertainties with the Gaussian output layer we can see, that the

label uncertainty is now only contained in the aleatoric uncertainty for both combinations

of training data (Fig. 5.15f and Fig. 5.15c). The estimated aleatoric uncertainty for train-

ing on hand bones estimates a label uncertainty of 1.31 years for subjects younger than 18

years. In the saturated region, this uncertainty is increased to 1.97 years. The epistemic

uncertainty in those cases (Fig. 5.15e and Fig. 5.15b) provide a similar behavior, since

they indicate an increased epistemic uncertainty towards the borders. Those results agree

with our baseline result of the epistemic uncertainty in Fig. 5.6b, where the uncertainty is

also increased towards the borders. The estimated aleatoric uncertainty for the baseline

is approximately 1 and increased to approximately 3. However, training on all bone sites

causes the overall epistemic uncertainty to be increased over training on hand bones only.

For the MC-Dropout method, implementing the Gaussian output layer in the 2D

case shows on first impression, that the aleatoric uncertainty for our hand bones data

in Fig. 5.16f contains the label uncertainty. However, the aleatoric uncertainty for the

combined training data in Fig. 5.16c indicates the same expression. Therefore, we suggest

that both models do not contain the expected label uncertainty. Instead, this method

shows a tendency to cluster predictions. This result does not agree with the baseline ex-

periments since the baseline is able to extract the aleatoric uncertainty with the Gaussian

output layer, which can be seen in Fig. 5.6e.

The epistemic uncertainty when trained on hand bones (Fig. 5.16e), depicts the sat-

uration of subjects older than 18 years, with an increased uncertainty towards the lower

border. In contrast, the epistemic uncertainty indicates a steady increase with the subject

age, when trained on the combination of sites (Fig. 5.16b) Similarly to our baseline ex-

periment in Fig. 5.5b, here the epistemic uncertainty is mostly constant, but only shows



62 Chapter 6. Discussion

an increased uncertainty for subjects younger than 18 years. The Gaussian output layer

causes the uncertainties to be increased in both our baseline experiment, as well as in the

age estimation results.

To summarize, the MC-Dropout method can capture the label uncertainty for 2D and

3D data. Using the Gaussian output layer visualizes, that this method is able to perform

this split between both uncertainties only with 3D data and fails to do so with 2D data.

Our age estimation results are mostly in line with those of the baseline experiments.

6.2.4 Bayesian Convolutional Neural Network

In contrast to the described behaviour of the epistemic uncertainty in Ensembles and

with the MC-Dropout method, the results of the BCNNs indicate for both 2D and 3D

experiments an increased epistemic uncertainty in the age below 18 years, for hand bones

and the combination of sites (see Fig. 5.18a and Fig. 5.17a).

When training the BCNN on 3D hand bone data, we found that the epistemic un-

certainty is increased for subjects younger than 18 years (Fig. 5.17d). A similar effect

can be seen in the 2D Ensemble experiment, trained on hand bones, in Fig. 5.18d. For

subjects older than 18 years, we can see the saturation behavior in both cases, which is

expected, when training on hand bones. This increased uncertainty stands in contrast to

our baseline experiment in Fig. 5.5c, where we see an overall constant behavior for the

trained samples within the target function. However, we can see in our age estimation

result, that the increase and immediate reduction of the epistemic uncertainty agree with

the baseline results.

The introduction of clavicles and teeth to the training data causes the epistemic un-

certainty to adopt the expected behavior for subject older than 18 years. This can be seen

in both our 3D and 2D experiments (Fig. 5.17d and Fig. 5.17a). Again, the epistemic un-

certainty indicates an increased uncertainty towards the border for subjects younger than

18 years. This increased uncertainty could be explained, since the BCNN is restricted

in its ability to represent the uncertainty by choice of the prior distribution. Therefore,

the model captures the statistics around 18 years better, but neglect samples in the range

bellow, suggesting an increased uncertainty in this range.

The application of the Gaussian output layer to BCNNs with 3D data, causes the

aleatoric uncertainty to overall being significantly smaller, than with the other methods.

Training on hand bones leads to an estimated label uncertainty of 0.41 years, which is

increased to 0.59 years for mature subjects. Training the BCNN on 3D hand bone data,

causes the aleatoric uncertainty to start increasing at around 17 years and to saturate

at around 22 years, which can be seen in Fig. 5.17f. However, the same effect can be

found in the epistemic uncertainty in Fig. 5.17e, where the saturation is much more dom-

inant. In comparison, when training on the combination of sites, the aleatoric uncertainty

(Fig. 5.17c) indicates the same behavior as for the aleatoric uncertainty, when training on

only hand bones (Fig. 5.17e). The introduction of additional sites seems to cause an over-
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all increased epistemic uncertainty, which can be found in Fig. 5.17b. Here, the epistemic

uncertainty indicates a significant increase, especially for subjects younger than 16 years.

Apart from the aleatoric uncertainty, the found results do not agree with the baseline

experiments, since the model in the baseline was able to clearly separate the aleatoric

uncertainty from the epistemic uncertainty (Fig. 5.6f and Fig. 5.6c). Instead, we found

that the epistemic uncertainty captures the label uncertainty and is highly similar to the

aleatoric uncertainty, suggesting that the uncertainty is not split successfully.

Using 2D data instead, we found a very similar behavior for the epistemic uncertainty

(Fig. 5.18b and Fig. 5.18b) and aleatoric uncertainty (Fig. 5.18c and Fig. 5.18c), while

the uncertainties show an overall increase over the uncertainties in the 3D experiments.

In the 2D case, the estimated label uncertainty for minors is 0.66 years in average, where

this uncertainty is increased to 1.19 years for adults. The same behavior suggests that the

increased information content in 3D data can be utilized to lower the overall uncertainty.

However, similarly to the 3D experiments, the 2D results depict a saturation of epistemic

uncertainty when trained on hand bones. This behavior recommends that the epistemic

uncertainty contains the label uncertainty. This statement is reinforced since the introduc-

tion of additional sites in Fig. 5.18b causes the epistemic uncertainty to show a behavior

that would be expected for this training data. Here the epistemic uncertainty increased

for subjects older than 18 years, while training on only hand bones, clearly shows the

saturation of age information in Fig. 5.18e. Although the saturation behavior can also be

found in the aleatoric uncertainty for both training on hand bones and the combination of

sites, it seems to be less dominant and independent on the trained site. In the described

2D and 3D experiments, the split aleatoric uncertainty and epistemic uncertainty are cor-

related. This suggests that the application of the Gaussian output layer to BCNNs is not

able to separate both uncertainties successfully.

While in the baseline experiments, the epistemic uncertainty is constant towards

the borders (Fig. 5.5c), the increase is much more dominant in the age estimation task

(Fig. 5.17d). Here, the extracted aleatoric uncertainty is approximated with a standard

deviation of 0.5 for x < 18 and approximately 2 afterward. Our age estimation results sug-

gest that the methods are not able to estimate the included label uncertainty successfully,

which is in line with the results from our baseline.

Same, as for the MC-Dropout method, the results obtained from the experiments

performed with the BCNNs applying the Gaussian output layer, therefore

suggest, that this method is not able to split both uncertainties. Additionally,

when comparing the results between the MC-Dropout method and the BCNN ,

we found that the aleatoric uncertainty for both methods does not explicitly

contain the label uncertainty. Furthermore, both methods show an increased un-

certainty towards the borders, which can for example be found in Fig. 5.18b and Fig. 5.15e.

By further investigating the uncertainties in Table 5.2, we found that the MC-Dropout

method reaches the lowest epistemic uncertainty when trained on 3D hand images (0.09).
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However, in our baseline experiments, the MC-Dropout method indicated the overall high-

est epistemic uncertainty (0.95), which is increased by the application of the Gaussian

output layer (1.12). The same case occurs for the age estimation results on 2D data, given

in Table 5.3.

We hypothesized that Fig. 4.1b approximates the function, which describes the age

information content in our hand images. In our baseline, we saw that the Ensemble and

the BNN showed the highest agreement of the standard deviation of 0.3 for x < 18. The

same methods also captured the expected standard deviation of 2.02 for x > 18 in the

aleatoric uncertainty.

Moreover, the estimated epistemic uncertainty in our age estimation task agrees the

most to the baseline for the Ensemble method and the BNN . The expected standard

deviation for subjects older than 18 years was estimated the best by the Ensemble (1.97)

and the MC-Dropout method (1.79). Furthermore, all methods, except for the BCNN

approximated the underlying error of the label uncertainty of 1 year. In contrast to

our baseline experiments, we mostly found that the aleatoric uncertainty for subjects

younger than 18 years is not constant, but instead increases with the subject age until

18 years. However, since the MC-Dropout method failed to perform a successful split of

both uncertainties, we suggest, that the Ensemble method showed the most success in

estimating the hypothesized uncertainties in our age estimation experiments.

6.3 Final Remarks

This section focuses on the discussion of problems of the individual methods themselves

and to propose potential improvements over problems that have been encountered in this

thesis.

A significant challenge in this work involves the evaluation of the quality of the pre-

dictive uncertainty. In this thesis, we are able to consider the deviation of the Biologial

Age (BA) from the Chronological Age (CA) as the label uncertainty. An alternative way

of evaluating the quality of the predicted uncertainty, to consider the generalization to

a specific domain. Thus shifting the domain of input images, the predicted uncertainty

should be increased since the data of the out-of-domain data is not included in the training

data distribution [28]. Our baseline experiments investigated this proposal.

In this work only, the aleatoric uncertainty and epistemic uncertainty were considered,

based on literature in current research [21, 27, 48]. Osband [41] further makes a distinction

between risk and uncertainty, saying that risk is inherent to the stochastic in a model while

the uncertainty provides the confusion about which model parameters apply.

For our experiments, we used Ensembles, consisting of T = 5 models in total, in order

to get a measure of the epistemic uncertainty, instead of T = 20 forward passes, as done

in the other methods. While it would be possible to extend the number of trained models,

this would have increased the time needed for training enormously, since we were not able

to train the models at once, due to the increased memory consumption for 3D data.
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An important point to note regarding the MC-Dropout method is that a dropout

probability for the convolutional layers, which, if chosen too high, can cause a severe

performance decrease. Even dropping just 10% of the neurons could remove activations

of significant features with an image volume of size 443.

In the optimization process of the BCNN , similarly to Kingma et al. [24], we found it

to be necessary that both parts of the Evidence Lower Bound (ELBO) loss are in the same

vale range, to ensure convergence. Therefore, we scaled the contribution of the Kullback

Leibler (KL) term in Eq. (3.7) by the factor λ = 10−6. While this scaling enabled us to

train the BCNN , it could also introduce an error to the model, by assigning the KL loss

less importance.

While not only the range of both parts is significant to the learning performance, the

learning rate additionally affects the optimization of the KL loss. An increased learning

rate causes the KL loss to converge faster than the data term and vice versa. Minimizing

the ELBO loss increases the fit to the data while keeping the approximated posterior as

close as possible to the assumed prior distribution. In the case of the faster convergence

of the KL loss, the model mainly increases the weight distributions similarity to the prior

distribution and neglects the fit of the data for the most part. Therefore the model can

not learn to represent the input data since its range of possible descriptive functions is

decreased.

Apart from that, a faster than the KL loss converging data term indicates that the

model learns an accurate representation of the data, but loses its ability to generalize to a

large part of the domain. In this case, satisfying the assumed prior distribution is neglected

in the calculation of the posterior distribution. This neglection defies Bayesian theory

and, in theory, leads to the same deterministic behavior as with conventional CNNs. As a

possible approach to overcome this potential problem, Blundell [5] proposed to weight the

KL loss stronger at the beginning of the training and reduce its contribution with ongoing

epochs.

In the Reparameterization layers, the prior distribution over the model weights is se-

lected to be a Gaussian distribution. This simplicity of the Gaussian distribution could

reduce the ability to generalize to the data since it constricts the model complexity. Inter-

changing the Gaussian distribution with a more complex distribution could increase the

performance and the ability to represent the uncertainty of the data. This will increase

the difficulty of the optimization problem further and increase the difficulty for the model

to converge towards a minimum.

In this thesis, we only used one set of sampled model weights per iteration to approx-

imate the posterior distribution. Graves [14] has shown that it is sufficient to use only

one set of weights as an approximation. However, especially after initialization, those

samples underlie a significant variation since the approximate posterior distributions are

initialized with a mean of 0 and a standard deviation of 1. Therefore, it can be assumed

that averaging the activations over multiple sets of weights can improve the convergence

speed and predictive performance, especially in the early stages of training. Increasing the
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amount of sampled sets of weights causes a tremendous increase in memory consumption,

due to the static formulation of the computational graph in TensorFlow. Due to hardware

restrictions, we were not able to follow this approach.

As an alternative to the utilized Reparameterization layers, another implementation

of the probabilistic convolutional and dense layers exist. Wen et al. [58] proposed their

method name Flipout approximation, which is implemented in the Flipout convolutional

and dense layers in the Tensorflow probability library [8]. Those Flipout layers have

shown to reduce the variance of the calculated gradients and lead to a potential increase

in convergence speed when compared to the used Reparameterization layers [58].



7
Conclusion

In this thesis, we evaluated four different methods on a multi-factorial age estimation task

regarding their ability to fit the data and the quality of the extracted uncertainty. In

order to investigate the impact of the information content of the data on the epistemic

uncertainty and aleatoric uncertainty, we performed baseline experiments on two different

functions.

The investigated methods encompass Ensembles, Monte Carlo-Dropout (MC-Dropout)

and Bayesian Convolutional Neural Network (BCNN) for the extraction of the epistemic

uncertainty and the Gaussian output layer, for the split into epistemic uncertainty and

aleatoric uncertainty. Our baseline experiments provided insight into the influence of

the information content of the data on both uncertainties. We expected an estimated

standard deviation of the aleatoric uncertainty for x < 18 of 0.3. The Neural Network

(NN) predicted an aleatoric uncertainty of 0.30, the Ensemble 0.28 and the Bayesian

Neural Network (BNN) predicted 0.39. Those methods were able to predict the expected

uncertainty. The MC-Dropout method failed to do so and overestimates the aleatoric

uncertainty with 1.22.

Furthermore, the NN , the Ensemble and the BNN agreed with their predicted epis-

temic uncertainty for the individual ranges with an uncertainty of around 0.73. Similarly,

as with the aleatoric uncertainty, the MC-Dropout overestimates the epistemic uncertainty

and fails to represent the same accuracy. Based on our baseline results, we can state that

the epistemic uncertainty represents the ability of the model to capture data. We suggest,

based on the estimated uncertainty and the behavior of the epistemic uncertainty and the

aleatoric uncertainty that the Ensemble performed the best on this baseline experiment.

It provided a small epistemic uncertainty over the whole range and additionally was able

to capture the expected uncertainties the best.

Our experiments showed the expected results regarding the behavior of the expressed

uncertainties. The epistemic uncertainty should remain constant for the range in which

training data is available, while the aleatoric uncertainty should increase in the case where

data is present, but the labels are noisy. We were able to verify that our engineered

67
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approximative function can describe the age information present in our hand bone data,

although the chosen standard deviation was chosen too small with 0.3. We hypothesized

that our approximative function could represent the true age information content present

in our hand bones. We were able to verify that our engineered approximative function can

describe the age information present in our hand bone data, although the chosen standard

deviation was chosen too small with 0.3.

Our age estimation results showed that the Convolutional Neural Network (CNN),

applying the Gaussian output layer can represent the expected saturation when trained

on hand bones in the predicted aleatoric uncertainty. While this effect can be seen with

3D data, it vanishes with 2D data and introduces grouping of the predictions The NN

estimated an aleatoric uncertainty of 1 year for minors, which increases with the age of the

subject. After 18 years, the estimated aleatoric uncertainty approximates the expected

standard deviation of 2.02 of the uniform distribution in the saturated range.

The result of the Ensemble method, trained on hand bones, visualizes the saturation

effect and estimate the expected standard deviation correctly with the aleatoric uncer-

tainty. The introduction of hand clavicle and teeth causes the label uncertainty to be

increased with the age of the subject. Bellow 18 years, the aleatoric uncertainty is esti-

mated with 1 year, which is in line with the expected underlying label uncertainty due to

the biological variation. The Ensemble can perform a successful split of the uncertainty,

and also shows the label uncertainty in the epistemic uncertainty without the Gaussian

output layer.

The MC-Dropout method indicates that the extracted aleatoric uncertainty agrees with

the theoretical development of the label uncertainty and shows the saturation for training

on hand bones with 3D data. However, using 2D data causes this expressed behavior to be

less pronounced. The MC-Dropout method fails to estimate the expected uncertainties, as

compared to the NN and the Ensemble. Moreover, the MC-Dropout method is not able

to perform a successful split between both uncertainties, using the Gaussian output layer.

In our BCNN results, we found the expected increase of uncertainty, with increased

subject age. However, the method seems to underestimate the label uncertainty in the

experiments with an aleatoric uncertainty of approximately 0.6. Moreover, this method

seems to fail the split of both uncertainties, using the Gaussian output layer, since both

uncertainties are correlated. While the saturation effect is present in the experiments

with 3D data, it is more pronounced with 2D data. Furthermore, the BCNN fails to

perform the split of the uncertainties, with 2D data. However, the Ensemble indicates a

successful split. Therefore, each method shows different results regarding the agreement

of the expressed behavior.

We were able to confirm the expected behavior of the epistemic uncertainty and the

aleatoric uncertainty in our baseline experiments. The results from the baseline indicate

that all methods, except for the MC-Dropout can capture the statistics of the underlying

noise with success, while the MC-Dropout method overestimates this uncertainty. We ver-
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ified that our assumed baseline function approximates the function, which describes the

age information content in our age estimation data. Similar to the baseline, the age esti-

mation results demonstrate that not all compared methods capture the label uncertainty.

The gained results indicate a strong dependence of the expressed behavior and value of

the uncertainty on the dimensionality of the used data. Overall, the expected saturation

is pronounced the most when using 2D data. Based on the agreement of the estimated

aleatoric uncertainty and the expressed behavior of the uncertainty, we conclude this the-

sis by stating that Ensembles in combination with the Gaussian output layer provided the

best approximation of the underlying label uncertainty in this age estimation task.
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List of Acronyms

AGFAD Study Group on Forensic Age Diagnostics

BA Biologial Age

BCNN Bayesian Convolutional Neural Network

BNN Bayesian Neural Network

CA Chronological Age

CNN Convolutional Neural Network

CT Computed Tomography

DCNN Deep Convolutional Neural Network

DL Deep Learning

ELBO Evidence Lower Bound

GP Greulich-Pyle Atlas method

KL Kullback Leibler

MAD Mean Absolute Deviation

MC Monte Carlo

MC-Dropout Monte Carlo-Dropout

ML Machine Learning

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

NN Neural Network

ReLU Rectified Linear Unit

SeLU Selective Linear Unit

TW2 Tanner-Whitehouse

71





B
List of Publications

My work at the Institute of Computer Graphics and Vision led to the following

publication, which was accepted at the Medical Imaging meets NeurIPS workshop in 2019:

S. Eggenreich, C. Payer, M. Urschler, and D. Štern. Variational Inference and Bayesian
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