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Abstract

To provide a complete 2D scene segmentation, Panoptic Segmentation (PS) unifies the

tasks of semantic and instance segmentation. For this purpose, existing approaches in-

dependently address semantic and instance segmentation and merge their outputs in a

heuristic fashion. However, this simple fusion has two limitations in practice. First, the

system is not optimized for the final objective in an end-to-end manner. Second, the mu-

tual information between the semantic and the instance segmentation tasks is not fully

exploited. To overcome these limitations, we present a novel end-to-end trainable archi-

tecture that generates a full pixel-wise image labeling with resolved instance information.

Additionally, we introduce interrelations between the two subtasks by providing instance

segmentation predictions as feature input to our semantic segmentation branch. This

inter-task link eases the semantic segmentation task and increases the overall panoptic

performance by providing segmentation priors. We evaluate our method on the chal-

lenging Cityscapes dataset for semantic understanding of urban street scenes and show

significant improvements compared to previous PS architectures.
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Kurzfassung

Um eine vollständige 2D-Szenensegmentierung zu ermöglichen, vereinigt PS die Aufgaben

der Semantischen und der Instanz-Segmentierung. Zu diesem Zweck adressieren beste-

hende Ansätze die Semantische und die Instanz-Segmentierung unabhängig voneinander

und führen ihre Ausgaben heuristisch zusammen. Diese einfache Verschmelzung hat je-

doch in der Praxis zwei Einschränkungen. Erstens ist das System nicht durchgehend

für das Endziel optimiert. Zweitens wird die gegenseitige Information zwischen den

Semantischen und den Instanz-Segmentierungsaufgaben nicht vollständig genutzt. Um

diese Einschränkungen zu überwinden, stellen wir eine neuartige, durchgehend trainier-

bare Architektur vor, die eine vollständige pixelweise Bildbeschriftung mit aufgelöster

Instanzinformation erzeugt. Zusätzlich führen wir Wechselbeziehungen zwischen den bei-

den Teilaufgaben ein, indem wir Instanz-Segmentierungsvorhersagen als Feature-Input

für unseren Semantischen Segmentierungszweig bereitstellen. Diese Verknüpfung zwis-

chen den beiden Teilaufgaben erleichtert die Semantische Segmentierungsaufgabe und

erhöht die gesamte panoptische Leistung durch die Bereitstellung von Segmentierungs-

Prioritäten. Wir evaluieren unsere Methode anhand des anspruchsvollen Cityscapes-

Datensatzes für das semantische Verständnis städtischer Straßenszenen und zeigen sig-

nifikante Verbesserungen im Vergleich zu früheren PS -Architekturen.
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1
Introduction

Panoptic Segmentation (PS) addresses the task of complete 2D scene segmentation [44].

The goal of PS is to assign a class label to each pixel of an image while differentiating

between instances within a common class, as shown in Figure 1.1. Thus, it can be seen as a

unification of semantic segmentation [9, 62, 74] and instance segmentation [31, 45, 54, 58].

PS is a new and active research topic with applications in augmented reality, robotics,

and medical imaging [21, 69, 96].

(a) Image. (b) Semantic Segmentation.

(c) Instance Segmentation. (d) Panoptic Segmentation.

Figure 1.1: The goal of Panoptic Segmentation is to assign a class label to each pixel of an image
while differentiating between instances within a common class, e.g., separating individual cars and
humans. To illustrate this, for a given image (a), we show ground truth for Semantic Segmentation
(b), Instance Segmentation (c), and the unified task of Panoptic Segmentation (d).
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2 Chapter 1. Introduction

To predict a PS of an image, recent approaches perform three tasks [43]. First, they

perform semantic segmentation to identify regions of uncountable stuff classes like road

or sky (see Figure 1.1b). Second, they perform instance segmentation to detect individual

instances of countable things classes like cars or humans (see Figure 1.1c). Third, they

merge the outputs of these two tasks into a single panoptic prediction (see Figure 1.1d).

However, this strategy has two limitations in practice. First, because the panoptic

output is generated using heuristics, the system cannot be optimized for the final objec-

tive in an end-to-end manner. Second, because semantic and instance segmentation are

addressed independently, mutual information and similarities between the two tasks are

not fully exploited.

To overcome these limitations, we propose a holistic neural network architecture for

PS that supports end-to-end training and exploits inter-task relations, as illustrated in

Figure 1.2. Our network directly generates the target panoptic output and entangles

the semantic and instance segmentation tasks to improve the panoptic performance. In

Figure 1.2: Overview of our proposed end-to-end panoptic segmentation network with task inter-
relations. We perform semantic and instance segmentation on top of a shared feature extraction
backbone, provide instance segmentation predictions as additional feature input to our semantic
segmentation branch, and merge semantic and instance segmentation predictions using differen-
tiable operations. In this way, we exploit mutual information between the tasks and support
end-to-end training.

particular, we perform semantic and instance segmentation on top of a shared feature

extraction backbone. To take advantage of mutual information between the two tasks,

we provide instance segmentation predictions as additional feature input to our semantic

segmentation branch. For this purpose, we gather predicted instance masks into an Initial

Segmentation Image (ISI) which represents a coarse semantic segmentation for things

classes. In this way, we exploit a segmentation prior which eases the semantic segmentation

by entangling the two previously disjoint subtasks.

Finally, we use differentiable operations instead of heuristics to combine individual

semantic and instance segmentation results and to generate a full pixel-wise image labeling

with resolved instance information internally. As a result, our entire system can be trained

in an end-to-end manner using a panoptic objective.
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The benefits of our approach are threefold. First, using a single network for PS

reduces the model size and the training time compared to two disjoint semantic and in-

stance segmentation networks. Second, our inter-task link between semantic and instance

segmentation increases the panoptic performance, because it avoids the computation of

redundant information in the two subtask branches. Third, end-to-end training using

a panoptic objective increases the overall system accuracy and removes the necessity to

manually select thresholds for a heuristic combination of results.

To demonstrate the benefits of our approach, we evaluate it on a synthetically gen-

erated TOY dataset consisting of geometric shapes and on the challenging Cityscapes

dataset [14] for semantic understanding of urban street scenes. We benchmark our ap-

proach against different methods using the common evaluation metrics Intersection Over

Union (IoU), Mean Average Precision (mAP), and Panoptic Quality (PQ) to asses the se-

mantic, instance, and panoptic segmentation performance respectively. Our experiments

show that both end-to-end training and inter-task relations improve the panoptic perfor-

mance in practice. This quantitative improvement is also reflected in qualitative examples,

where our method creates more accurate label transitions between individual classes while

being less sensitive to speckle noise in semantically coherent regions.

The rest of this work is structured as follows. In Chapter 2, we provide preliminaries

that are required to understand the contribution of this thesis and discuss related work.

In Chapter 3, we present our holistic neural network architecture for PS with inter-task

relations. In Chapter 4, we conduct a detailed experimental evaluation of our approach.

Finally, we summarize our results and draw conclusions in Chapter 5.
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Preliminaries and Related Work

Contents

2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 22

In this chapter, we provide preliminaries that are required to understand the contribu-

tion of this thesis and discuss related work. We start with an introduction to deep learning

in Section 2.1, which became a fundamental building block in computer vision. We present

different neural network architectures (Section 2.1.2), activation functions (Section 2.1.5),

optimization methods (Section 2.1.3), and loss functions (Section 2.1.4) that are used

in our approach. Finally, in Section 2.2, we give an overview of how object recognition

systems evolved with deep learning.

2.1 Deep Learning

In recent years, deep learning has significantly improved the state of the art in disciplines

like speech recognition [64] and image processing [33]. Especially in the field of computer

vision, deep learning systems outperform complex hand-crafted processing pipelines be-

cause they learn features that are relevant for the task from raw data. In contrast to

engineered models, deep models learn a hierarchy of abstract features from possibly mil-

lions of matching input and output data pairs. While deep learning techniques have been

known for decades [26, 48], the availability of large supervised datasets and advances in

computational hardware made them successful in practice in recent years. In the next

sections, we describe the building blocks of deep Artificial Neural Networks (ANNs).

5



6 Chapter 2. Preliminaries and Related Work

2.1.1 Artificial Neurons

Artificial neurons are the fundamental structures of an ANN . They portray a mathematical

model that is loosely inspired by biological neurons and synapses in the human brain. An

artificial neuron, as shown in Figure 2.1, computes a weighted sum between a set of inputs

x = {x1, x2, . . . , xn} with corresponding weights w = {w1, w2, . . . , wn}. This weighted sum

and the added bias b yield a linear transformation z. To solve more complex problems

a non-linearity is introduced into the equation by applying an activation function σ(·) to

z. Popular activation functions are monotonically increasing, continuous and piecewise

differentiable. They range from piecewise linear to sigmoid functions and are described in

more detail in Section 2.1.5.

Figure 2.1: Illustration of an artificial neuron. A linear transformation z is computed as a
weighted sum of inputs {x1, . . . , xN} and weights {w1, . . . , wN} and the addition of the bias b.
The activation function σ(·) calculates the non-linear output ŷ from z.

Formally, an artificial neuron computes an output ŷ as

ŷ = σ

(
N∑
i

wi · xi + b

)
= σ(z) . (2.1)

Eq (2.1) can also be rewritten as a dot product between the weight vector w and the input

vector x:

ŷ = σ
(
wTx + b

)
. (2.2)

The earliest known artificial neuron is the McCulloch-Pitts-Neuron first proposed in 1943

by McCulloch and Pitts in an attempt to find a simple model for nervous activity in the

brain [65]. This neuron model is also known as a Threshold Logic Unit (TLU), since it
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aggregates all inputs and depending on a defined threshold has an output of one or zero.

This neuron is able to learn simple boolean algebra [65]. In 1958, Rosenblatt adapted this

concept and changed the world of machine learning and artificial intelligence with the idea

of perceptrons [75]. A perceptron is a single neuron with a step activation function:

ŷ = σ(x; θ) =

{
1 wTx + b > 0

0 else
, (2.3)

where θ = {w, b} is the set of learnable parameters and x is the input vector. The param-

eters θ are optimized using one of the earliest supervised learning algorithms based on the

Hebbian theory of neuroscience [34]. The parameters are incrementally adjusted based

on the difference between the target value and the neuron prediction outcome σ(x; θ).

The perceptron is used as a binary classifier with a guaranteed convergence for linearly

separable data. Nowadays, the parameter updates are based on gradient techniques which

are described in more detail in Section 2.1.3.1.

2.1.2 Artificial Neural Networks

Although a single neuron can be used for many tasks, it has limited expressive power.

For example, a single neuron cannot predict multidimensional outputs nor implement a

hierarchy of non-linear transformations. ANNs overcome these limitations by forming a

structured network of interconnected artificial neurons.

ANNs are one of the main concepts in machine learning. As the name suggests,

ANNs are mathematical models that are inspired by the complex network structures in

the human brain. ANNs have input neurons, hidden neurons, and output neurons. In

many cases, these neurons are organized in layers. Figure 2.2 illustrates the structure of

a simple ANN with an input layer, a hidden layer, and an output layer. If each neuron

of a layer is connected to all neurons of the previous layer, the layers are referred to as

fully-connected (see Figure 2.2).

An ANN models a function ŷ = f(x; θ) for a given input x and a set of parameters

θ. In contrast to a single artificial neurons, the output ŷ can be multidimensional, the

parameters θ comprise weights and biases of all artificial neurons of the ANN , and the

function f(·) can be arbitrarily complex. The universal approximation theorem states that

it is possible to approximate any continuous function by a network with a single hidden

layer with a finite number of artificial neurons up to a desired precision [15, 30, 36].

Although it is in theory possible to approximate any function with a single hidden layer,

a large number of neurons in the hidden layer is required in practice. However, research

shows that ANNs with multiple hidden layers empirically requires a smaller number of

neurons to approximate the same function and often generalize better to previously unseen

data [33, 78]. The structure of an ANN , which is also referred to as architecture, can
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Figure 2.2: Illustration of a simple ANN . The depicted network has an input layer with n neurons,
a hidden layer with m neurons, and an output layer with k neurons. Its layers are fully-connected
in a feed-forward manner. In practice, the structure of the network and the number of neurons are
chosen depending on the task.

be designed arbitrarily depending on the task. In practice, many ANNs show common

architecture patterns that can be used to categorize them. For example, many ANNs

are Feed-forward Neural Networks (FNNs) [95]. FNNs do not have recurrent connections

nor form any cycles (see Figure 2.2). Their computational graph is directed and acyclic.

This structure eases the computation gradients during training [76] which makes them a

popular choice for many computer vision tasks [26].

In contrast to FNNs, Recurrent Neural Networks (RNNs) [42, 67] form cycle con-

nections and have recurrent states. This principle of loops in the computational graph

introduce a memory effect that allows RNNs to process inputs with variable length [35].

This structure is important for applications that process input sequences like speech recog-

nition [64], text-to-speech [11], or video analysis [19]. However, in this work, we focus on

FNNs because we are dealing with single image inputs. Next, we describe certain types

of FNNs used in our approach.

2.1.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [49] are a special type of ANNs that employ layers

with a sparse connection pattern which implement a convolution operation. Opposed to

fully-connected layers, which lose spatial input information by computing a global weighted

sum of all inputs, convolutional layers compute a local weighted sum only for neighboring

inputs. This connection pattern is inspired by the organization of receptors in the first
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stages of the human visual cortex [38], where only a few specific neurons respond to changes

within a local region called the receptive field.

Figure 2.3: Visual example of a convolutional layer applying a 2× 2 kernel to a 3× 3 input.

Formally, a convolutional layer performs a filter operation

Fl+1(i, j) = σ
( M∑
m=1

N∑
n=1

Fl(i−
M

2
+m, j − N

2
+ n)K(m,n)

)
, (2.4)

where the feature map Fl+1 is computed by sliding the kernel K over the input map Fl
and computing the weighted sum for each position (i, j). In this case, K is a filter kernel

with size M and N and σ is an activation function. A visual example for a convolution

layer applying a 2× 2 kernel to a 3× 3 input is shown in Figure 2.3. A convolution layer

has several hyperparameters:

Kernel size: The kernel size determines the number of learnable parameters, the re-

ceptive field, and the output feature dimensionality. For two-dimensional input data like

images, kernels are commonly declared using a square and odd n×n window, such as 3×3

or 7 × 7, and an input and output feature dimensionality Nin respectively Nout, such as

64 or 128. The total number of learnable parameters is given by Nin · n · n ·Nout.
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Kernel Stride: The kernel stride describes how the filter moves across the input. The

stride affects on the spatial dimensions of the output feature map. Larger strides result

in feature maps with a smaller spatial resolution, because the filter is applied at fewer

positions. An example image with a stride of 2 is shown in Figure 2.4. In practice, a

stride of 1 is used most commonly.

Figure 2.4: Example of a 1× 1 kernel with stride 2. Strides larger than 1 can be used to reduce
the spatial input size.

Padding: Padding controls the border handling of the convolution. Due to the filter

operation over the entire image, edge cases at the spatial input border need to be addressed.

A common solution to this problem is to pad the input with zeros around the border. This

is referred to as zero-padding which is illustrated in Figure 2.5. In practice, zero-padding

is often performed in a way that the kernel can be applied at every input position and the

spatial input and output size are equal.

Figure 2.5: Example of zero-padding. The input is artificially augmented by adding zeros around
the spatial border.

Due to the sparse local connection pattern, the filter operation of a convolutional layer

can be computed efficiently even for inputs with large spatial dimensions. Because only a

local region in the input contributes to the output at each position (see Figure 2.3), the

computation for a single output position is only dependent on the spatial kernel size and

not on the spatial input size. Besides, the computations for individual positions can be

parallelized to increase the computation speed.

Another key concept of CNNs is weight sharing. In contrast to fully-connected layers

that have different weights for each neuron, convolutional layers share the same kernel

weights for all neurons. This significantly decreases the number of weights and increases

generalization. Also, convolutional layers can be applied to inputs with arbitrary spatial
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dimensions which is not possible for fully-connected layers. In addition, the features

computed by a convolutional layer are translation equivariant. This means that if the

input spatially shifts in a certain direction, the corresponding features also spatially shift

by the same amount. Thus, convolutional layers are important for location-aware feature

extraction [78] which enables applications like object detection [24].

Figure 2.6: Illustration of a simple CNN . Kernels are convolved over the input image to pro-
duce feature maps. To increase the receptive field and reduce memory consumption, pooling is
performed. Stacking multiple convolutional layer on top each other efficiently learn a hierarchy
of features. Finally, the computed feature maps are flattened and processed by a fully-connected
layer before predicting the output.

By stacking multiple convolutional layers on top of each other, CNNs efficiently learn

a hierarchy of features. An example of a simple CNN is shown in Figure 2.6. While early

layers extract simple local features like edges in images, later and deeper layers extract

more complex features with larger spatial extend like faces in images [94]. Consecutive

convolutional layers increase the respective field of computed features while having a small

number of parameters and being computationally efficient. To further increase the effec-

tiveness of kernels and compute features with larger receptive field without increasing the

number of convolutional layers or the kernel size and therefore, the number of weights,

CNNs often employ pooling layers. Pooling reduces the spatial size of feature maps using

the max or average operation. This increases the receptive field and reduces the memory

consumption at the expense of an information loss. Empirically, the benefit of features

with a larger receptive field sometimes outweighs the information loss resulting from the

pooling compression in terms of final performance [78].

CNNs have established themselves as the primary tool for image processing and pat-

tern recognition due to their ability to compactly approximate complex functions from

data pairs. In recent years, CNNs significantly improved the state of the art in tasks

like image classification [33], super-resolution [17], image denoising [97], optical character

recognition [93], optical flow [79], and 3D pose estimation [28].

2.1.2.2 Fully Convolutional Network

A FCN [62] is a special type of CNN which only employs convolutional layers, as can

be seen in Figure 2.7. In addition to standard convolutional layers, FCNs often employ

deconvolution layers [62] also known as transpose convolutional layers. These layers are
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Figure 2.7: Illustration of a simple Fully Convolutional Network (FCN). The depicted network
only employs layers that perform convolutions and deconvolutions. In this way, the FCN is able
to make predictions for arbitrarily sized input images.

commonly used for upsampling, since they are more flexible than traditional interpolation

methods because they provide learnable weights. Transpose convolutions also slide a kernel

over their input but aim at decompressing data. An example of a transposed convolution

is illustrated in Figure 2.8.

Figure 2.8: Example of a transpose convolution with a 2 × 2 input and a 2 × 2 kernel. The
upsampling yields a 3 × 3 output. Transpose convolutions increase the spatial output size by
sliding learnable kernels over the input.

Because FCNs only employ layers that perform convolutions and deconvolutions they

do not require a specific spatial input resolution. As long as the input dimensionality is

correct, the spatial dimension can be arbitrary. Thus, FCNs are a popular choice for tasks

that require dense outputs at the same spatial resolution as the input image like semantic

segmentation [74], super-resolution [17], and depth estimation [47].

2.1.2.3 Region-based Convolutional Neural Network

Region-based Convolutional Neural Networks (R-CNNs) are a recently introduced exten-

sion to CNNs that make multiple predictions for sub-regions of the input instead of a

single prediction for the entire input. In this way, R-CNNs are able to deal with multiple

objects in a single image, for example. This is not only important for object detection [24]
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but also for other tasks that implicitly require object detection to perform higher-level

tasks such as 3D pose estimation [28] or 3D reconstruction [25].

Figure 2.9: Example of a Region-Based CNN: Individual regions of interest are fed into a CNN
to classify the region.

A simple example for an R-CNN which first finds Regions of Interest (RoIs) and then

uses a CNN to classify the individual regions can be seen in Figure 2.9.

2.1.2.4 Multi-task Neural Network (MNN)

Multi-task Neural Networks (MNNs) use multiple independent network branches to per-

form independent predictions that possibly contribute to the same output. Each sub-

network shares the same input but performs unique tasks without interaction between

modules. Multi-task learning is a common approach to reduce the number of network

parameters, increase training speed, and improve generalization. An illustration of such a

MNN can be seen in Figure 2.10.

Figure 2.10: Example of a Multi-task Neural Network: Independent sub-networks with a shared
input perform different tasks that contribute to a joint output.
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2.1.3 Optimization Methods

In this section, we discuss optimization methods that are used to train ANNs. Opti-

mization describes the process of finding a solution with respect to a certain objective.

In the context of supervised deep learning, optimization is used to minimize the error

between a prediction ŷ = f(x; θ) made by an ANN and the ground truth y. In order

to measure the error an objective function is defined, which is often referred to as loss

function L(y, ŷ) [26]. The loss function quantizes the error between a prediction ŷ and

the ground truth y. Thus, in terms of training ANNs, the goal of optimization is to find

a set of parameters θ which minimize a defined loss function given data pairs consisting

of an input x and its associated ground truth output y.

2.1.3.1 Backpropagation

ANNs implement highly non-linear and non-convex [26] functions. As a consequence, there

is no closed-form solution to compute optimal parameters θ for a certain loss function.

However, backpropagation [76] makes it possible to compute the gradient of a loss function

L(y, ŷ) with respect to the parameters θ for given data pairs {x,y}. By adjusting the

parameters θ in the direction of the negative gradient, the loss function can be minimized

in an iterative way.

In particular, backpropagation [76] refers to the process of computing gradients for

all parameters θ. Backpropagation makes use of the chain rule to calculate the gradient

for each parameter. The algorithm uses dynamic programming to efficiently compute

gradients and to avoid redundant calculations of intermediate terms.

Figure 2.11: Example of backpropagation for a simple ANN . The dashed arrows show the
gradient flow of backpropagation to compute gradients for w (orange line) and b (green line)
starting from the loss L.
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Figure 2.11 shows an example of backpropagation for a simple ANN . The computa-

tional graph implements a one-dimensional linear regression. Gradients for the individual

parameters are computed as

∂L

∂w
=
∂L

∂ŷ
· ∂ŷ
∂w

= δ · ∂ŷ
∂w

∂L

∂b
=
∂L

∂ŷ
· ∂ŷ
∂b

= δ · ∂ŷ
∂b
,

(2.5)

where δ = ∂L
∂ŷ describes the shared intermediate term that is only computed once thanks

to dynamic programming.

2.1.3.2 Gradient Descent

Backpropagation only computes gradients for the parameters θ. In order to actually

optimize the parameters, an iterative optimization technique is applied. Gradient descent

is an iterative gradient-based approach to minimize a loss function

L
(
y, f(x; θk+1)

)
≤ L

(
y, f(x; θk)

)
∀k > 0 (2.6)

such that the next set of parameters θk+1 yields a smaller loss than the current set of

parameters θk. Gradient descent minimizes a function by following the curve from a

random starting point towards the steepest descent. Unless the function is convex it is

not guaranteed that the global minimum is attained. The mathematical formulation of

gradient descent is

θk+1 = θk − η · ∇θL
(
y, f(x; θk)

)
, (2.7)

where η is the step size also called learning rate and ∇θL(·) is the gradient of the loss

function with respect to θ. To compute gradient directions given an entire dataset instead

of a single sample, the gradients of individual samples are averaged.

2.1.3.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a variation of gradient descent presented above.

The main difference to gradient descent is that the gradient calculated in each iteration

is not computed from the entire dataset but only from a randomly selected subset of

samples. In gradient descent all samples are considered to compute a gradient. This is

computationally expensive if the number of samples is large. Thus, SGD only considers

a randomly selected subset of all training samples. This subset is called a minibatch and

can be as small as a single sample. Typically, samples are randomly selected without

replacing them in the selection pool to make sure all samples are seen during training.
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Figure 2.12: Example of gradient descent on the function f(x) = x2. We choose a random
starting point at x = −3 and a learning rate of η = 0.3. The function moves towards the global
optimum at x = 0.

SGD has three major advantages. First, the computation of a single update is efficient.

Second, stochastic updates avoid getting stuck in local optimization minima. Finally, SGD

reduces overfitting and increases generalization compared to gradient descent.

2.1.3.4 Stochastic Gradient Descent with Momentum

SGD with momentum has similarities to momentum in physics. A problem that arises in

using SGD is the oscillation towards convergence, which happens because of the variance

in each minibatch. To overcome this limitation, a momentum term β is added that results

in an exponentially weighted average of the gradients. This forces SGD to consider past

gradients and, therefore, smooths the update directions. In each iteration, a new update

direction Vnew is computed as

Vnew = β · Vold + (1− β) · ∇θL, (2.8)

where Vold is the previous update direction and ∇θL is the current gradient. The momen-

tum term β regulates the tradeoff between past and new update directions. A value of

β = 0 will result in the standard SGD update rule. A typical range for β is [0.8, 0.999].

The actual parameter update follows the same principle as the previously described opti-

mization methods:

θnew = θold − η · Vnew . (2.9)
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2.1.4 Loss Functions

Loss functions quantize the error between a prediction and the ground truth to measure

the quality of predictions. Different types of data require different loss functions. For

many problems, multiple loss functions are applicable but each loss function has unique

properties that impact the final trained model. In this section, we present different loss

functions that are used in our work.

2.1.4.1 Squared Loss

The squared loss [26], also known as L2 loss, computes the squared error

LL2(y, ŷ) =
1

2
D(y, ŷ)2 (2.10)

of a distance D(·) between the ground truth output y and the predicted output ŷ. For one-

dimensional outputs, D(·) can be the difference between the output scalars D(y, ŷ) = y−ŷ,

for example. For multi-dimensional outputs, D(·) can be the Euclidean distance between

the output vectors D(y, ŷ) = ‖y−ŷ‖2, for example. This loss function has a unique global

minimum for convex problems and is often used for regression tasks. In practice, however,

ANNs implement non-convex functions. Additionally, the squared loss is not robust to

outliers or mislabeled data pairs. The factor 1
2 is used as a scaling constant that eases

the computation of the gradient and does not influence the optimization minimum. To

compute a loss for multiple samples, the mean of individual squared losses is computed.

This is known as the Mean Squared Error (MSE).

2.1.4.2 Absolute Loss

The absolute loss [41], also known as L1 loss, computes the absolute error

LL1(y, ŷ) = |D(y, ŷ)| (2.11)

of a distance D(·) between the ground truth output y and the predicted output ŷ. Unlike

the squared loss, the absolute loss is more robust to outliers because the computed loss

grows linearly with the error. As a consequence, the gradient for every error is the same

positive or negative constant. In this way, the gradients of samples with large error do

not outweigh the gradients of samples with small error during the optimization. However,

this also reduces the stability of the solution. To compute a loss for multiple samples,

the mean of individual absolute losses is computed. This is known as the Mean Absolute

Error (MAE).
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2.1.4.3 Smooth L1 Loss

The smooth L1 loss [23] is a combination of the L1 loss and L2 loss. Formally, this loss

function is computed as

Lsmooth L1(y, ŷ) =

{
1
2D(y, ŷ)2 if |D(y, ŷ)| < 1

|D(y, ŷ)| − 1
2 else

. (2.12)

The smooth L1 loss behaves like the L1 loss if the distance D(·) is larger than 1 and like

the L2 loss otherwise. In this way, the unique global minimum property of the L2 loss

is exploited while the influence of outliers is reduced using the L1 loss for large errors.

Figure 2.13 illustrates this effect and compares the L1, L2, and smooth L1 loss. The

smooth L1 loss is used in many object detection methods such as Faster R-CNN [73] to

optimize regression tasks robustly.

Figure 2.13: Comparison between the L1, L2, and smooth L1 loss for the interval [−3, 3].

2.1.4.4 Cross Entropy Loss

The cross-entropy loss [4] is one of the most used loss functions for classification tasks.

It originates from the mathematical field of information theory. There, the cross entropy

describes the average amount of bits needed to identify an event drawn from the estimated

probability distribution q rather than from the true distribution p, where both distributions

have the same set of events. In the context of learning, the cross-entropy is used as a loss
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function for multi-class classification problems. Formally, the cross-entropy loss computes

LCross Entropy(y, ŷ) = −
C∑
c=1

yc · log(ŷc) , (2.13)

where y is a one-hot vector of length C that represents the ground truth class probability

distribution and ŷ is a vector of length C that represents the predicted class probability

distribution. In this case, C is the number of classes, while yc and ŷc represent the ground

truth and predicted probability for a certain class.

However, the output of a ANN is typically not a valid class probability distribution

in which, for example, all class probabilities sum to one and there are no negative values.

To overcome this limitation, a softmax normalization

ŷc =
exp(ỹc)∑C
i=1 exp(ỹi)

(2.14)

is applied to all output values. In this case, ŷc is a normalized output and ỹc is the

corresponding raw output. This normalization makes it possible to interpret each element

ŷc of ŷ as the probability p(c|x) of a certain class c given the input x.

In a binary classification setup, a single output neuron with a sigmoid non-linearity (see

Section 2.1.5.2) can be used instead of a softmax normalization for two output neurons.

In this case, the cross entropy simplifies to

LBinary Cross Entropy(y, ŷ) = −
(
y log(ŷ) + (1− y) log(1− ŷ)

)
, (2.15)

where y ∈ {0, 1} is the ground truth class probability for the first class and ŷ is the

predicted class probability for the first class.

2.1.5 Activation Functions

Activation functions have a fundamental role in ANNs. They apply a non-linear transfor-

mation to a linear combination of inputs which enables ANNs to approximate arbitrary

functions. In this section, we briefly discuss activation functions used in this work.

2.1.5.1 Rectified Linear Unit (ReLU)

The most popular activation function is the Rectified Linear Unit (ReLU)

σ(x) = max(0, x) . (2.16)

This function is simple, thus, it is a common choice in many ANNs. The ReLU maps

negative inputs to zero and leaves positive inputs unchanged, as shown in Figure 2.14a.
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This result yields a piecewise-linear convex function. The derivative of the ReLU function

σ′(x) =

{
1 if x > 0

0 otherwise
(2.17)

is a constant depending on the input. It is one for positive inputs and zero otherwise. The

ReLU is not differentiable at the input x = 0. However, this is no issue in practice as

one of the subgradients is simply selected in this case. The ReLU does not saturate for

large inputs but is unbounded. Neurons with the ReLU activation function can end up

in inactive states due to squashing negative inputs to zero. An illustration of the ReLU

function and its derivative is shown in Figure 2.14.

(a) (b)

Figure 2.14: Illustration of the ReLU activation function and its derivative in the interval [−3, 3].

2.1.5.2 Sigmoid

The sigmoid activation function

σ(x) =
1

1 + e−x
, (2.18)

is another popular activation function that maps values from R to the interval [0, 1]. It

is derived from probability theory and the Bayes’ theorem. The derivative of the sigmoid

function can be computed using the sigmoid function itself

σ′(x) = σ(x) · (1− σ(x)) . (2.19)

The sigmoid function is smooth and continuously differentiable. It is centered and sym-

metric around input zero. The sigmoid function is approximately linear for inputs around

zero and saturates for large positive or negative inputs. This saturation causes small gra-

dients for inputs with large absolute value. An illustration of the sigmoid function and its

derivative is shown in Figure 2.15.
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(a) (b)

Figure 2.15: Illustration of the sigmoid activation function and its derivative in the
interval [−10, 10].

2.1.5.3 Hyperbolic Tangent Function

The hyperbolic tangent activation function

σ(x) = tanh(x) =
sinh(x)

cosh(x)
(2.20)

is similar to the previously described sigmoid function. The main difference to the sig-

moid function is that input values from R are mapped to the interval [−1, 1]. Similar to

the sigmoid function, the derivative of the hyperbolic tangent activation function can be

computed using the function itself:

σ′(x) = 1− tanh2(x) . (2.21)

The saturation properties of the hyperbolic tangent activation function are similar to the

sigmoid activation function. An illustration of the hyperbolic tangent function and its

derivative is shown in Figure 2.16.

(a) (b)

Figure 2.16: Illustration of the hyperbolic tangent activation function and its derivative in the
interval [−10, 10].
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2.2 Object Recognition

Humans are great at recognizing objects. We recognize a multitude of different ob-

jects within milliseconds, even despite challenging conditions like partial occlusions, scale

changes, rotations, and translations. In this way, we achieve a high-level understanding

of images that enables us to perform complex tasks like safely driving a car through a

crowded street. Thus, the goal of object recognition approaches is to match and surpass

human-level performance in terms of understanding objects in images.

Object recognition is an important field in computer vision [61, 63]. It is an um-

brella term for techniques to find and identify objects in images. As a consequence, the

object recognition approach has many applications in practice, for example, augmented

reality [27], robotics [18] and medical imaging [50].

The prevalent strategy to understand objects with machines is to extract features from

images and make a prediction based on these features, as shown in Figure 2.17. The idea

of feature extraction is to compute a different representation of the input data that makes

it easier to perform a certain task. Thus, feature extraction is an essential aspect of many

object recognition approaches across different tasks.

In this context, traditional machine learning approaches extract hand-crafted features

and use a learning algorithm such as support vector machines [80] or decision trees [70] on

top of these features to make a prediction (see Figure 2.17a). Early approaches for different

object recognition tasks used hand-crafted feature extractors like SIFT [63], SURF [3], or

HOG [16]. However, these features are not optimized for a certain task and, thus, the

performance of traditional machine learning approaches is limited.

In contrast, deep learning approaches simultaneously learn a feature representation

and make a prediction (see Figure 2.17b). In this way, they exploit the power of CNNs to

compute features that are optimized for the specific task. In recent years, deep learning

approaches greatly advanced the state-of-the-art in many object recognition tasks and

significantly outperformed traditional machine learning approaches [46]. Today, CNNs

are the prevailing tool used in object recognition systems.

In the following sections, we describe different object recognition tasks and show how

different tasks finally issue into Panoptic Segmentation (PS). In addition, we present

existing methods to address these tasks focusing on recent approaches based on CNNs

and discuss the relation of these works to our approach.

2.2.1 Object Classification

Object classification addresses the problem of predicting the class of an object in an image.

Classification predictions are typically expressed as a list of individual class probabilities,

where the most likely one is chosen as the final class label. Object classification has

many applications, such as face recognition [87], image retrieval [81], and traffic sign

recognition [77]. An example of object classification is shown in Figure 2.17.
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(a) Traditional machine learning approaches extract hand-crafted features and
use a learning algorithm such as support vector machines or decision trees on
top of these features to make a prediction.

(b) Deep learning approaches simultaneously learn a feature representation
and make a prediction, which results in significantly improved performance.

Figure 2.17: Comparison between (a) traditional machine learning and (b) deep learning for
image feature based object recognition.

In recent years, many breakthroughs have been achieved in the field of object classi-

fication thanks to deep learning. In fact, the revolution of deep learning-based computer

vision started with the successful application of CNNs to object classification [46]. Since

then, many popular deep learning concepts that are found across different disciplines to-

day have first been proposed for the task of object classification [33, 78, 82]. Due to the

availability of very large supervised datasets this task has been a driving force in deep

learning research.
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2.2.2 Object Detection

Object detection aims at predicting the presence as well as the 2D location of objects in

images. Detections are typically expressed as 2D bounding boxes with an accompanied

class label for each bounding box, as shown in Figure 2.18. 2D bounding boxes are

marked by four values (x, y, w, h) that present the 2D location and the 2D dimensions.

Object detection has many applications in computer vision, including surveillance [37], face

detection [87], robotics [90], and image analysis [5, 40, 81]. Moreover, object detection

is often a first step to solve higher-level tasks like 3D object pose estimation [28] or 3D

object reconstruction [25].

(a) Image. (b) Object Detection.

Figure 2.18: An example for object detection. Object detection identifies the presence of objects
by predicting a 2D bounding box and a class label for each detected object. Bounding boxes of
detected objects might overlap because objects often do not have perfectly rectangular shapes.

Images can contain many different objects. Thus, many approaches to object detec-

tion apply object classification on small RoIs of an image. Traditional machine learning

approaches use exhaustive search algorithms and segmentation techniques to find possi-

ble RoIs. State-of-the-art networks for object detection use region-based approaches like

Region Proposal Network (RPN) to find multiple RoIs.

Early approaches to object detection using sliding window techniques [16, 20, 87] to

classify hand-crafted features computed from RoIs cropped from an image individually.

Deep learning approaches significantly improved the state of the art in object detection be-
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cause they learn features that are optimized for the task. Deep object detection methods

can be categorized into two-stage detectors, including R-CNN [24], Fast R-CNN [23],

Faster R-CNN [73], and SPPNet [32], and single shot detectors like YOLO [71] and

SSD [60]. Two-stage detectors achieve higher accuracy, while single-shot detectors provide

real-time object detection.

In the following, we briefly describe the evolution of R-CNNs for object detection as

our approach builds on region-based computations.

R-CNN: The first R-CNN approach, which is called R-CNN [24], combines a selective

search method [86] with a conventional CNN , as shown in Figure 2.19. This approach

generates multiple RoIs across the image by clustering similar pixels. For each of these

regions, a CNN performs a class prediction and a bounding box regression. Since the used

CNN requires a fixed-size input, i.e., 227× 227, each RoI is rescaled to this size without

preserving the aspect ratio.

Figure 2.19: Schematic of R-CNN [24]. A class-agnostic selective search algorithm identifies
RoIs. Each RoI is processed by the same CNN, as illustrated by the network color, to perform a
class prediction and a bounding box regression.

Fast R-CNN: The biggest limitation of R-CNN [24] is the fact that the computation-

ally expensive CNN is evaluated for each detected RoI . As a consequence, features in

overlapping RoIs are unnecessarily recomputed in each CNN forward pass. Thus, Fast

R-CNN [23], illustrated in Figure 2.20, uses a single CNN forward pass to extract features

for the entire image and only applies a light-weight ANN on top of these features for each

detected RoI . For this purpose, a new RoI pooling operation is employed that samples

features from an associated region of the full-size feature map and transform them into a

fixed-size sub-feature map. This is necessary because the light-weight ANN that performs

the class prediction and bounding box regression requires a fixed input size.

Faster R-CNN: To increase the accuracy compared to Fast R-CNN [23], Faster R-

CNN [73] replaces the selective search with a RPN that detects RoIs, as shown in Fig-

ure 2.21. This approach has multiple benefits. First, the system can be trained end-to-end.
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Figure 2.20: Schematic of Fast R-CNN [23]. In contrast to R-CNN [24], Fast R-CNN only
performs a single computationally expensive CNN forward pass to compute features for the entire
image. Next, RoIs are sampled from this full-size feature map instead of sampling from the image.
Finally, a light-weight ANN performs a class prediction and a bounding box regression for each
RoI .

Second, RoIs are detected in the feature map, where they are actually sampled from. Fi-

nally, the RPN gives more control over the number of RoIs.

Figure 2.21: Schematic of Faster R-CNN [73]. Compared to Fast R-CNN [23], the selective
search is replaced by a RPN that detects RoIs to improve the accuracy.

2.2.3 Instance Segmentation

Instance segmentation takes the idea of object detection a step further. Instead of only

computing a 2D bounding box and a class label for each detected object, a detailed binary

mask which takes recognizes the shape of the found object is predicted. An example for
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(a) Ground Truth. (b) Instance Segmentation.

Figure 2.22: An example for instance segmentation. In contrast to object detection, each detected
object is recognized with a binary mask.

instance segmentation is shown in Figure 2.22, where the two persons from our previous

object detection example in Figure 2.18 are now recognized with masks.

Instance segmentation models can be categorized into top-down [31, 54, 59] and

bottom-up [45, 55, 58, 85] approaches. One of the most popular top-down frameworks

is Mask R-CNN [31], which is a combination of the object detection network Faster

R-CNN [73] and an additional mask segmentation branch. In particular, an additional

FCN (Section 2.1.2.2) on top of Faster R-CNN [73] is employed to produce instance

segmentation masks. Since our work builds on the Mask R-CNN framework, we describe

its components in more detail:

Mask R-CNN: Mask R-CNN [31] generalizes the Faster R-CNN [73] approach and

presents an extensible framework that supports higher-level tasks like instance mask pre-

dictions on top of object detection, as demonstrated in Figure 2.23. In this context,

different light-weight ANNs are applied on top of sub-feature maps to address various

tasks besides class prediction and bounding box regression with a single network. More-

over, Mask R-CNN [31] replaces the RoI pooling operation introduced in Fast R-CNN [23]

with a RoI align operation that uses bilinear interpolation as opposed to nearest-neighbor

interpolation to extract sub-feature maps with reduced quantization errors.
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Figure 2.23: Schematic of Mask R-CNN [31]. Compared to previous R-CNN approaches, quan-
tization errors due to the RoI pooling operation are reduced using a novel RoI align operation.
Additionally, different light-weight ANNs are applied on top of sub-feature maps to address various
tasks besides class prediction and bounding box regression, e.g., instance mask prediction, with a
single network.

Feature Pyramid Network: A feature pyramid network is a feature extraction back-

bone with a bottom-up and top-down architecture that has lateral connections to build

rich feature maps from multi-scale features [56]. CNNs like ResNet [33] build the bottom-

up feature pyramid, where early stages detect low-level features and later stages compute

high-level features. Features of individual stages are then combined in a multi-scale feature

map in a top-down manner. Similar concepts of fusing information from multiple scales

can be found in many areas of computer vision [62, 74].

Region Proposal Network: RPNs have first been introduced in Faster R-CNN [73]

and detect RoIs in feature maps. In Mask R-CNN, a RPN receives the convolutional

feature map computed from a Feature Pyramid Network (FPN) and provides region pro-

posals as an output. In this case, the RPN computes regions based on a set of anchors

that span the entire image. For this purpose, anchors with five different scales and three

different aspect-ratios are designed. For each anchor, a class-agnostic objectness score is

predicted and depending on this score the region is discarded or kept. Additionally, the

RPN outputs four delta bounding box regression values: ∆xcenter,∆ycenter,∆height,∆width

which refine the given anchor to the final region proposal.

RoI Alignment: RoI alignment solves a quantization problem occurring when pooling

features for a proposed region for a global feature map. This pooling is necessary because

a fully-connected network that classifies the region proposals expects a fixed-sized input.

Since RoIs can have any size they have to be rescaled consistently. In Fast R-CNN [23] an
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operation called RoI pooling based on nearest-neighbor interpolation is used to rescale the

feature map. In Mask R-CNN, the Roi alignment operation based on linear interpolation

is used for rescaling to reduce the quantization error. This allows RoI alignment to capture

information more accurately compared to RoI pooling, which results in improved overall

object detection quality.

2.2.4 Semantic Segmentation

Semantic segmentation is an important task in computer vision. It describes the process

of labeling an image in a semantic meaningful way by associating each pixel with a class

label, as shown in Figure 2.24. Semantic segmentation combines information about stuff

and things into one prediction.

(a) Ground Truth. (b) Semantic Segmentation.

Figure 2.24: An example of semantic segmentation. Each pixel is associated with a class label.

Most semantic segmentation approaches are based on FCN (see Section 2.1.2.2) [62]

that can take an arbitrarily sized image and output a pixel-wise prediction. State-of-the-art

semantic segmentation networks can be categorized into an encoder-decoder structure [2,

74] and a dilated convolution structure [8, 9].

Encoder-decoder networks have an hourglass structure that first compresses and then

decompresses information. The encoder part downsamples the input information using the

convolutions and the pooling layer. Thus, it reduces the spatial resolution and generates
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high-level feature maps. The decoder part upsamples this compressed representation back

to the original input size creating the full pixel-wise semantic segmentation output.

Dilated convolutions support the exponential expansion of the receptive field without

pooling or large filter kernels [92]. Atrous convolutions make it possible to capture multi-

scale context by using different atrous rates. In this way, features with large receptive

fields are calculated without reducing the spatial input size or applying many regular

convolutions.

2.2.5 Panoptic Segmentation

Instance segmentation makes it possible to recognize objects of countable things classes at

the pixel level, as shown in Figure 2.22. However, simply observing the instance segmen-

tation output, there is no context information about the surrounding of objects. Without

the visual clues of the ground truth image, we would have a hard time figuring out what is

going on in this particular image. Clearly, we need more information about the background

stuff classes to understand the scene.

In contrast, semantic segmentation provides a dense pixel-level labeling that combines

information about stuff and things classes into one prediction, as shown in Figure 2.24.

The semantic segmentation output now gives us the contextual information that there are

persons on the ground (green area) and on the wall (orange area). However, semantic

segmentation cannot distinguish between multiple instances within a common class, e.g.,

both persons in this image get the same class id. Although it is rather easy to separate

the two instances in this case, additional post-processing is necessary. In practice, objects

belonging to the same class might be close to each other or occlude each other. In this case,

the output of semantic segmentation creates a single class blob that cannot be separated

anymore. If we want to understand the complete image both semantic segmentation and

instance segmentation need to be joined.

PS [44] addresses this problem of complete 2D scene segmentation by not only assigning

a class label to each pixel of an image but also differentiating between instances within

a common class. Thus, it can be seen as a unification of semantic segmentation [9, 62,

74] and instance segmentation [31, 45, 54, 58], as shown in Figure 2.25. PS combines

all the background and foreground information of semantic segmentation and instance

segmentation. PS is a new and active research area with applications in augmented

reality, robotics, and medical imaging [21, 69, 96].

Fusing semantic and instance information has a rich history in computer vision [83, 84].

However, only recently Kirillov et al. formalized the task of PS and introduced a panoptic

quality (PQ) metric to assess the performance of complete 2D scene segmentation in an

interpretable and unified manner [44]. This formalization and the availability of large

datasets with corresponding annotations [57] motivated research on PS lately.

Early approaches to PS use two highly specialized networks for semantic segmenta-

tion [9, 62, 74] and instance segmentation [31, 55, 59, 85] and combine their predictions
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(a) Ground Truth. (b) Panoptic Segmentation.

Figure 2.25: An example of panoptic segmentation. Each pixel is associated with a class label.
Additionally, instances belonging to the same class are separated.

heuristically 1. Instead, recent methods address the two segmentation tasks with a single

network by training a multi-task system that performs semantic and instance segmenta-

tion on top of a shared feature representation [43]. This reduces the number of parameters,

the computational complexity, and the time required for training.

To improve panoptic quality, newer approaches propose a differentiable fusion of se-

mantic and instance segmentation instead of a heuristic combination. In this way, they

learn to combine the individual predictions and optimize directly for the final objective

in an end-to-end manner. For example, UPSNet [89] introduces a parameter-free merging

technique to generate panoptic outputs using a single network.

Another strategy to improve accuracy is to exploit mutual information and similar-

ities between semantic and instance segmentation network branches. In this context,

AUNet [53] incorporates region proposal information as an attention mechanism in the

semantic segmentation branch. In this way, the semantic segmentation focuses more on

stuff classes and less on things classes, which are eventually replaced by predicted instance

masks. TASCNet [52] enforces L2-consistency between predicted semantic and instance

segmentation masks to exploit mutual information. SOGNet [91] addresses the overlap-

1COCO 2018 Panoptic Segmentation Task. http://cocodataset.org/index.htm#

panoptic-leaderboard. Accessed: 31.01.2020

http://cocodataset.org/index.htm#panoptic-leaderboard
http://cocodataset.org/index.htm#panoptic-leaderboard
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ping issue of instances using a scene graph representation which computes a relational

embedding for each object based on geometry and appearance.

Similar to our approach, IMP [22] uses predicted instance segmentation masks as ad-

ditional input for the semantic segmentation branch. Compared to our approach, they use

a different normalization technique and combine instance masks using the max operator

instead of averaging them.
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Figure 3.1: Overview of our proposed end-to-end panoptic segmentation network with task inter-
relations. We perform semantic and instance segmentation on top of a shared feature extraction
backbone, provide instance segmentation predictions as additional feature input to our semantic
segmentation branch, and merge individual predictions using differentiable operations. In this way,
we exploit mutual information between the tasks and support end-to-end training.

In this chapter, we introduce our end-to-end trainable Panoptic Segmentation (PS)

network with inter-task relations, which is illustrated in Figure 3.1. For this purpose,

we first present our end-to-end trainable architecture, which combines semantic and in-

stance segmentation predictions in a differentiable way, in Section 3.1. Then, we introduce

our interrelations module, which provides instance segmentation predictions as additional

feature input to our semantic segmentation branch, in Section 3.2.

33
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3.1 End-to-End Panoptic Architecture

Figure 3.2: Our network architecture builds upon Panoptic Feature Pyramid Networks [43]. This
work extends the generalized Mask R-CNN framework [31], which performs object detection and
instance segmentation, with a semantic segmentation branch. However, to generate a panoptic
output, individual predictions are combined using heuristics in [43]. In contrast, we propose a
differentiable fusion.

Our network architecture builds upon Panoptic Feature Pyramid Networks [43]. Like

many recent panoptic segmentation methods, this approach extends the generalized Mask

R-CNN framework [31] with a semantic segmentation branch, as shown in Figure 3.2. This

results in a multi-task network that predicts a dense semantic segmentation in addition

to sparse instance segmentation masks. For our implementation, we use a shared ResNet-

101 [33] feature extraction backbone with a Feature Pyramid Network [56] architecture to

obtain a multi-level representation with combined low- and high-level features 1. These

features serve as shared input to our semantic and instance segmentation branches, as

shown in Figure 3.4.

For the semantic segmentation branch, we process each stage of the feature pyramid

{P2, P3, P4, P5} by a series of upsampling modules. These modules consists of 3 × 3

convolutions, batch normalization [39], ReLU [29], and 2× bilinear upsampling. Because

the individual stages have different spatial dimensions, we process each stage by a different

1Abdulla, W. H. (2017). Mask R-CNN for Object Detection and Instance Segmentation on Keras and
TensorFlow. https://github.com/matterport/Mask_RCNN.

https://github.com/matterport/Mask_RCNN
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Figure 3.3: Illustration of our semantic segmentation branch. The ResNet-101 FPN backbone
combines four stages of low-level and high-level features. For each stage we use 3× 3 convolutions,
batch normalization, ReLU and 2 × 2 upsampling until we reach the desired size of H/4 ×W/4.
These outputs are combined with the additional prior knowledge of our instance segmentation
branch in the form of an initial segmentation image (ISI) to produce the final pixel-wise semantic
segmentation prediction.

number of upsampling modules to generate H/4×W/4×128 feature maps. In this case, H

and W are the spatial input image dimensions and the feature dimensionality is set to 128

as in [43]. For P5, which has the lowest spatial resolution but the highest level of feature

abstraction, we use three upsampling modules. For P2, which has the highest spatial

resolution but the lowest level of feature abstraction, we only use a single Conv-BN-ReLU

block but no bilinear upsampling. The resulting outputs of all stages are concatenated and

processed using a final 1 × 1 convolution to reduce the channel dimension to the desired

number of classes.

For our instance segmentation branch, we implemented a Mask R-CNN [31]. We use

a Region Proposal Network (RPN) to detect Regions of Interest (RoIs), perform non-

maximum suppression, execute RoI alignment, and predict 28× 28 binary masks as well

as class probabilities for each detected instance. In order to combine the semantic and

instance segmentation outputs of our network, we use an internal differentiable fusion
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instead of external heuristics. For this purpose, we first select the most likely class label

for each detected instance using a differentiable

soft argmax(z) =

N∑
i

b ezi·β∑N
k e

zk·β
e · i (3.1)

operation [7], where N is the number of things classes, β is a large constant, and z is a

vector of predicted class logits with length N . Using β in the exponent in combination

with the round function allows us to squash all non-maximum values to zero. In this

way, we approximate the traditional non-differentiable argmax function, which allows us

to backpropagate gradients through this operation. This approximation holds as long as

there are no duplicate maximum logit values in z. However, even if two or more logits

share the same maximum value, we can detect and resolve the edge case by adding a small

amount of random noise to the predictions.

Additionally, the large constant β in the exponent can cause overflows. To ensure

numerical stability, we, thus, subtract the maximum logit value from z such that the

largest logit becomes zero while the remaining logits become negative an converge to zero:

lim
x→−∞

ex = 0 . (3.2)

Next, we resize the predicted 28×28 mask logits for each detected instance according to

its predicted 2D bounding box size and place them in empty canvas layers at the predicted

2D location, as shown in Figure 3.4 (top right). Additionally, we merge the canvas layers

for regions of interest with the same object id and high mask Intersection Over Union

(IoU). To merge canvas layers, we add all combinable canvas layers and normalize each

spatial location by the number of contributing regions.

The resulting canvas collection from the instance segmentation branch is then con-

catenated with the stuff class logits of the semantic segmentation branch to generate

our panoptic output, as illustrated in Figure 3.4 (bottom). The pixel-wise panoptic seg-

mentation output is attained by applying a softmax layer on top of the stacked seman-

tic and instance segmentation information. The shape of the final output is H ×W ×
(# stuff classes + # detected instances). For stuff classes, the output is a class ID. For

things classes, the output is an instance ID. The corresponding class ID for each instance

can be gathered from our instance segmentation output.

During training, it is important to reorder the detected instances to match the order

of the ground truth instances. For this purpose, we use a ground truth instance ID lookup

table. Additionally, to support training with multiple images per mini batch, we fix the

number of instances that can be detected. The number of maximum instances per image,

thus, becomes a hyper-parameter. If the number of detected instances is smaller than our

maximum number of instances hyper-parameter, our instance canvas collection is padded

with empty canvas layers.
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Figure 3.4: Detailed illustration of our proposed panoptic segmentation architecture. We ex-
tend the Mask R-CNN framework [1] with a semantic segmentation branch. These branches use
instance segmentation predictions as additional feature input in the form of an initial segmenta-
tion image (ISI). In this way, the semantic segmentation branch exploits prior knowledge from
already recognized instances. Finally, we merge stuff predictions form semantic segmentation and
things predictions from instance segmentations in a differentiable way. This results an end-to-end
trainable panoptic segmentation network with interrelations.
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3.2 Inter-task Relations

In Section 3.1, we presented a differentiable way to combine semantic and instance seg-

mentation predictions. This formulation allows us to join the outputs of our two branches

internally for end-to-end training. However, it also allows us to provide instance pre-

dictions as additional feature input to our semantic segmentation branch, as shown in

Figure 3.4.

For this purpose, we first evaluate our instance segmentation branch and build an

instance canvas collection as described in Section. 3.1. Next, we merge canvas layers of

instances that belong to the same class using weighted average and insert empty canvas

layers for missing or undetected classes. In this way, we generate an Initial Segmentation

Image (ISI) which represents a coarse semantic segmentation for things classes.

To exploit this segmentation prior in our semantic segmentation branch, we downsam-

ple our ISI to (H/4×W/4×# things classes) and concatenate it with the output of our

semantic segmentation upsampling modules, as shown in Figure 3.3. Next, we apply four

network blocks consisting of 3 × 3 convolution, batch normalization, and ReLU followed

by a single 1× 1 convolution, batch normalization, and ReLU block to reduce the channel

dimension to the number of classes. Finally, we use bilinear upsampling to obtain semantic

segmentation logits at the original input image dimensions. A softmax layer followed by

an argmax operation can be used to compute a semantic segmentation from these logits.

By exploiting the segmentation prior given by ISI , the upsampling modules of our

semantic segmentation branch focus more on the prediction of stuff classes and boundaries

between individual classes instead of things classes. This is a huge advantage compared

to disjoint semantic and instance segmentation branches where redundant predictions are

performed in the semantic segmentation branch. As a consequence, this link between the

individual tasks increases the panoptic performance of our system.
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In this chapter, we evaluate our proposed approach. For this purpose, we describe

the different evaluation metrics for semantic, instance, and panoptic segmentation in Sec-

tion 4.1. In Section 4.2, we cover different forms of data augmentation applied to images

during training. Finally, we present the results on a synthetically generated TOY dataset

consisting of geometric shapes and on the challenging Cityscapes dataset [14] for semantic

understanding of urban street scenes in Section 4.3.

To provide an unbiased evaluation, we compare four different approaches with an

increasing level of entanglement between semantic and instance segmentation. All methods

use the same backbone, training protocol, and hyper-parameters:

Semantic + Instance: This approach uses two different networks based on a ResNet-

101 [33] backbone which independently performs semantic and instance segmentation. A

heuristic is used to combine the individual results [44].

Panoptic FPN: This method is a reimplementation of Panoptic Feature Pyramid Net-

works [43] with a ResNet-101 [33] backbone. In contrast to Semantic + Instance, the

semantic and instance segmentation branches use a single shared feature representation.

The results, however, are still merged heuristically.

HPS: Our holistic panoptic segmentation network (HPS) extends Panoptic FPN as

described in Section 3.1. Our network internally builds the panoptic segmentation output

using differentiable operations which enables us to optimize for the final objective.
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HPS + ISI: This method augments our HPS with inter-task relations between the

semantic and instance segmentation branches by using an initial segmentation image (ISI),

as introduced in Section 3.2.

4.1 Metrics

In this section, we describe the Intersection Over Union (IoU), Mean Average Precision

(mAP), and Panoptic Quality (PQ) metrics which are used to measure performance on

the tasks of semantic segmentation, instance segmentation, and panoptic segmentation

respectively.

4.1.1 Intersection over Union (IoU)

The IoU is a simple evaluation metric that is used in many computer vision tasks to

measure accuracy. In the field of object detection, for example, it is used to determine the

exactness of a predicted bounding box compared to the given ground truth. In this work,

we adopt the IoU to measure semantic segmentation accuracy. Instead of calculating the

IoU with bounding boxes, as shown in Figure 4.1, we compute it at pixel-level segments:

IoU =
TP

TP + FP + FN
. (4.1)

In this case, the confusion matrix for an image is computed from True Positives (TPs),

False Positives (FPs), and False Negatives (FNs) of all pixels. IoU is the ratio of TP

pixels divided by the sum of pixels, as shown in Equation 4.1.

Figure 4.1: Illustration of IoU: The area of intersection is divided by the area of union. This
metric measures the accuracy in a range [0% − 100%], where 0% has no overlap between ground
truth and prediction and 100% has the exact overlap.

The intersection consists only of pixels of a class, which are found in both the ground

truth mask and the prediction mask. The union consists of all pixels found in the ground

truth mask and the prediction mask. The IoU metric is computed for each class separately

and then averaged over all classes to get the Mean Intersection Over Union (mIoU).



4.1. Metrics 41

4.1.2 Mean Average Precision (mAP)

The mAP is a popular evaluation metric for the task of instance segmentation. It involves

the computation of the area under the precision/recall curve, see Eq (4.4) and Figure 4.2.

Precision measures the accuracy of a prediction. It is calculated by dividing TP ob-

jects by the total number of classified objects, as shown in Eq (4.2). The decision, whether

an object is classified as positive or negative depends on the selected IoU (Section 4.1.1)

threshold.

Precision =
TP

TP + FP
(4.2)

Recall measures how well objects can be retrieved. It is calculated by dividing TP

objects by the total amount of instances, as shown in Eq (4.3). Recall starts at a minimum

value of zero and increases over time:

Recall =
TP

TP + FN
(4.3)

AP =

∫ 1

0
p(r)dr, (4.4)

AP computes the area under a curve given by precision over recall, through integrating

it from zero to one, see Eq (4.4). The area is first rectified, as shown in Figure 4.2, by

shifting each precision value to the maximum of the current recall level. In order to obtain

mAP the sum of individual Average Precisions per class is divided by the total number

of classes:

mAP =
1

C
·
C∑
i

APi . (4.5)

Figure 4.2: Illustration of mAP: with an example curve. Recall measures how well objects
can be retrieved from a given image. Precision measures the accuracy of the prediction. The
average precision is given by the area under the precision/recall curve. Since precision can have
a ”zig-zag” pattern through increasing accuracy the curve is oftentimes interpolated, where each
precision value is set to the maximum precision at this recall level.
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4.1.3 Panoptic Quality (PQ)

The PQ [44] is a recently introduced evaluation metric for panoptic segmentation. It

measures semantic segmentation and instance segmentation quality using a simple and

easily interpretable formula:

PQ =

∑
(p,q)∈TP IoU(p, q)

|TP |+ 1
2 |FP |+

1
2 |FN |

, (4.6)

where the IoU is calculated between a predicted segment p and the ground truth segment

q. The term 1
2 |FP | +

1
2 |FN | is added as a penalization for segments without matching

pairs. Segments are matched when the IoU between them is larger than 0.5. Eq (4.6) can

be split into two parts:

PQ =

∑
(p,q)∈TP IoU(p, q)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

· |TP |
|TP |+ 1

2 |FP |+
1
2 |FN |︸ ︷︷ ︸

recognition quality (RQ)

, (4.7)

which define PQ as the product between Segmentation Quality (SQ) and Recognition

Quality (RQ). PQ is insensitive to class imbalance, by averaging over all classes. The

evaluation splits ground truth and prediction into three sets {TP, FP, FN} of unique

segments, as shown in Figure 4.3.

Ground Truth. Prediction.

Figure 4.3: Example of ground truth and prediction for panoptic segmentation. Pairs of matching
colored segments have an IoU > 0.5. In this example, the cow class prediction yields the three sets
TP, FN, and FP.
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4.2 Data Augmentation

Data augmentation describes the process of modifying the input data before feeding it to

a network. This synthetically increases the training data size without actually acquiring

more samples. Data augmentation improves image classification accuracy [68] and regu-

larizes possible overfitting issues with small datasets. In this work, we apply four different

data augmentation methods to our input images.

4.2.1 Horizontal Flipping

Image. Horizontally flipped image.

Figure 4.4: Data augmentation: Horizontal flipping applied to an example image from the
Cityscapes dataset.

Horizontal flipping, as shown in Figure 4.4, is a simple data augmentation method that

flips the image around its y-axis. For each 2D location (x, y), the rigid transformation(
x′
y′

)
=

(
−1 0

0 1

)
·

(
x

y

)
(4.8)

is applied. We apply this transformation at random with a chance of 50% to flip. The

horizontal flip is a very useful method because the content of natural images can face in

the other direction as well and still be valid. For example, cars can drive on the left or

right side of the street. Note that vertical flips would result in invalid images such as sky

at the bottom and upside-down cars. Hence, it would create unrealistic images that to

not improve the quality of trained models.

4.2.2 Random Rotation

Random rotations are rigid transformations that warp an image by a random angle around

some origin. Each 2D location (x, y) is rotated around the origin, as shown in Figure 4.5,

by first shifting the point to the origin then rotating the point and finally shifting it back
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Image. Rotated image (10 degrees).

Figure 4.5: Data augmentation with a Rigid transformation: Random rotation applied to
an example Cityscapes image.

to get (x′, y′). Mathematically, this is formulated as[
x′ + originx
y′ + originy

]
=

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)[
x− originx
y − originy

]
. (4.9)

We use random rotations in the range of θ ∈ [−10, 10] degrees.

4.2.3 Brightness Augmentation

Image. Image with increased brightness [H,S, V + 60].

Figure 4.6: Data augmentation: Brightness augmentation applied to an example Cityscapes
image.

This augmentation method describes the element-wise addition of a scalar to the inten-

sity value of each pixel. For this process, we transform our image from RGB to HSV color

space, then add a scalar value drawn from a normal distribution to the V channel, and

transform the modified image back to the RGB space. Augmented images, as shown in

Figure 4.6, appear to be brighter or darker. This is a useful augmentation for our dataset

since images can be taken at different times of the day.
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Image. Image with added noise.

Figure 4.7: Data augmentation: Random noise applied to an example Cityscapes image.

4.2.4 Random Noise

This augmentation method describes the process of adding random Gaussian noise to

each pixel. Random noise can improve the robustness and generalization of a trained

network [88]. The additional noise forces the network to learn the underlying structure

of objects and not only memorize specific pixel patterns since the input is constantly

changing. An example of added random noise can be seen in Figure 4.7.

4.3 Results

In this section, we quantitatively and qualitatively evaluate our proposed approach and

discuss results. We perform experiments on a synthetically generated TOY dataset con-

sisting of geometric shapes and on the challenging Cityscapes dataset [14] for semantic

understanding of urban street scenes.

4.3.1 TOY-Shapes

The TOY-Shapes dataset is a synthetically generated dataset consisting of 500 training

and 100 validation images created by us as a sanity check for our approach. The dataset

contains four different classes (1. Square, 2. Circle, 3. Triangle, 4. Half-circle), where

the first two belong to stuff and the other two belong to things. We provide the semantic

segmentation, instance segmentation, and panoptic segmentation masks for every image.

The resolution of our input images is [512× 256× 3]. Example images with accompanied

ground truth annotations for semantic segmentation, instance segmentation, and panoptic

segmentation can be seen in Figure 4.8.

Images for TOY-Shapes can be generated on the fly, however, we generate all 500

training and 100 validation images once before training. This is useful, since creating all

the images on the fly when a new minibatch for training has to be composed causes a

massive bottleneck on the data loading pipeline. Each image contains a randomly colored

background and up to 10 objects in different locations.
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Image. GT: Semantic segmentation.

GT: Instance segmentation. GT: Panoptic segmentation.

Figure 4.8: Example from the TOY-Shapes dataset. We show an image with corresponding
ground truth annotations for semantic segmentation, instance segmentation, and panoptic seg-
mentation. The color palette is showing the respective color for semantic segmentation. Note
that in the ground truth annotations instances are shown with different colors to make it easier to
differentiate between them.

We provide the following data for training:

Semantic segmentation: The ground truth semantic segmentation is provided as an

image of size [H×W×1] and has a traditional mapping of classes, where the last dimension

has a value range of [1, 4].

Instance segmentation: The ground truth instance segmentation is provided as an

image of size [H ×W ×M ], where M is the number of instances in the image. For each

instance, a binary [H ×W ] mask segments the instance and occlusions are resolved by

considering later masks to be on top.

Panoptic segmentation: The ground truth panoptic segmentation is provided as an

image of size [H × W × 1]. The last dimension is the instance id in the range [1, 10].

Note that we provide a second ground truth image for easier evaluation since we adopt

the evaluation scripts of the Cityscapes dataset [13]. This augments the class information

with the additional instance id. Hence, the object class is multiplied by 1000 and the

current instance count is added. For example, the third triangle which is drawn in the

image would have the number 3002. This format supports up to 1000 objects per class.
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4.3.1.1 Evaluation Setup

We use Stochastic Gradient Descent (SGD) with momentum β = 0.9 and a minibatch size

of 6 split on two GPUs (TITAN X with 12GB). At the start of each epoch, the dataset

is randomly shuffled and split into 84 batches without selecting an image again until the

whole dataset was used at least once. Each image in a minibatch is randomly modified

with data augmentation methods, as presented in Section 4.2. Since random rotations

can rotate objects out of scope of the image, we have two options. First, remove all the

missing masks and clean up the training data. Second, perform repeated runs of data

augmentation on the original image from the dataset until a data augmentation run is

valid. We use option number two.

The Region Proposal Network (RPN) uses the following scales (16, 32, 64, 128, 256) to

generate anchors that cover the entire image as well as small regions, where each scale

corresponds to one level of the Feature Pyramid Network (FPN). Each level has 3 aspect-

ratios (0.5, 1, 2) per anchor, which makes a total of 32736 anchors for our images. We train

our networks in a three-stage learning process. In the first stage, we initialize our Mask

R-CNN [31] with weights pre-trained for instance segmentation on COCO [57] and use a

learning rate of η = 0.001. In this stage, we freeze all layers except our network heads

and train the network for 50 epochs. In the second stage, we decrease the learning rate

by a factor of 5 and train all layers above ResNet-101 layer 4 for another 25 epochs. In

the last stage, we reduce the learning rate again by a factor of 5 and fine-tune the entire

network for 25 epochs. In total, the networks train for 100 epochs in a period between

6 and 12 hours, as shown in Figure 4.9. The idea of this multi-stage learning is that the

pre-trained weights of our feature extractor generalize well and we only have to learn the

additional new tasks on top. In the last few iterations, we train the entire network but

use a small learning rate such that the network does not overfit to the small dataset while

still fine-tuning all weights.

We train the four methods Semantic + Instance, Panoptic FPN, HPS, and HPS +

ISI described at the beginning of chapter 4 once before evaluation. The hyper-parameters

were selected based on the best testing performance on Panoptic FPN [43], which acts as

the baseline for this thesis. Semantic + Instance and Panoptic FPN do not have a single

panoptic segmentation output. Hence, we use the simple heuristic described in the original

paper to merge the semantic segmentation and instance segmentation outputs [44].

4.3.1.2 Training Times

First, we compare the training times of different approaches. The obvious training time

reduction achieved by combining two separate neural networks (Semantic + Instance)

into a single network (Panoptic FPN, HPS, and HPS + ISI ) can be seen in Figure 4.9.

The training time is nearly halved when using a shared backbone. Merging the informa-

tion of semantic segmentation and instance segmentation internally with our methods, as

described in Chapter 3, only adds 8.4 minutes for HPS to the total training time.
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Semantic Segmentation: IoU

Class Semantic + Instance Panoptic FPN HPS HPS + ISI

Square 96.0 95.8 95.9 96.8
Circle 95.6 95.3 95.5 95.3

Triangle 94.6 94.6 94.6 95.2
Halfcircle 92.3 91.4 92.0 91.2

mIoU 94.6 94.3 94.5 94.6

Table 4.1: Quantitative IoU results on the TOY-Shapes dataset. The results show that for such
a simple dataset there are no significant differences between the individual methods. This can also
be accounted to the small size of the dataset.

Using additional inter-task relations only adds 33 minutes to the total training time

for HPS + ISI.

Se
m

an
tic

+
In

st
an

ce

Pan
op

tic
FPN

H
PS

H
PS

+
IS

I
0

5

10

12.02

6.34 6.48 6.89

T
im

e
in

[h
]

Figure 4.9: TOY-Shapes dataset training time comparison. We can see that training a single
neural network with a shared backbone reduces training time by nearly half as expected. Adding
additional complexity for the generation of ISI does not increase the time significantly.

4.3.1.3 Semantic Segmentation

In this section, we discuss the semantic segmentation performance of different approaches.

The corresponding results under the IoU metric (see Section 4.1.1) are shown in Table 4.1.

The accuracy drops in cases of ambiguous shapes, such as half-circles and circles, which

happen to look the same when half of the objects are occluded.

The results on the TOY-shapes dataset show no significant differences between the

individual methods. We hypothesize that the four types of shapes have distinct charac-
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teristics which makes it easy for the network to learn how to distinguish between them.

For example, squares have perpendicular corners, triangles have sharp angles, half-circles

and circles have round boundaries. We can see that the IoU score for circular shapes

(half-circles and circles) is lower than for the other shapes since there is more ambiguity

between them.

The average score for all four methods is approximately 94.5%. This high accuracy can

be explained by the simple structures and homogeneously colored areas without textures

in the images. Although the dataset is simple, we do not reach higher accuracy because

occlusions make it hard for the network to figure out the right class of the object in many

cases.

GT: Semantic Segmentation. Prediction: Semantic Segmentation.

Figure 4.10: Illustration of occlusion issues: The green circle on the left side is occluded by the
red square, hence the network does predict a half-circle on the right.

One such example can be seen in Figure 4.10, which shows that objects can sometimes

overlap in a way that they look like another shape. In this case, the circle has an overlaying

square, which makes it look like a half-circle. In these instances, not even humans could

clearly tell the correct class without further clues. On the one hand, we can see that the

results on the triangle class improve slightly using HPS + ISI because of the additional

prior information of the instance segmentation branch. On the other hand, the perfor-

mances on the half-circle shapes are slightly lower since the prior information is wrong in

many cases due to the previously described ambiguity in the case of overlapping shapes.

Finally, we show a few visual examples of our results for all four methods in Figure 4.11.

4.3.1.4 Instance Segmentation

In this section, we discuss the instance segmentation performance of different approaches.

The corresponding results under the mAP metric (see Section 4.1.2) are shown in Table 4.2.

The results are similar as in the case of semantic segmentation (see Section 4.3.1.3).

There are no significant differences between all four evaluated methods. Again, we argue

that this simple dataset is too easy to solve for the complex networks. Thus, no method

outperforms the others.
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Mean Average Precision: mAP

Class
Semantic + Instance Panoptic FPN HPS HPS + ISI
AP AP@50 AP AP@50 AP AP@50 AP AP@50

Triangle 88.2 98.1 88.6 97.2 89.6 99.0 89.4 99.0
Halfcircle 87.0 94.9 89.5 97.0 89.2 95.2 87.5 94.8

mAP 87.6 96.5 89.1 97.1 89.4 97.1 88.4 96.9

Table 4.2: Quantitative mAP results on the TOY-Shapes dataset. The results show that for such
a simple dataset we do not gain any significant improvements in the instance segmentation metric.

However, the reported scores for the mAP are only around 88%. This is due to the

difficulty of large occlusions in the TOY-Shapes dataset, as shown in Figure 4.12. In the

case of Region-based Convolutional Neural Network (R-CNN) such as Mask R-CNN [31]

anchor boxes might fail to detect small or highly occluded objects. Another limitation

of this instance segmentation strategy is that only one object can be found per region.

This means that multiple objects which are close to each other are often only detected as

one object. Finally, we show a qualitative examples of our results for all four methods in

Figure 4.13.

Figure 4.12: Illustration of the overlap problem. The disadvantage of R-CNN approaches is
the single object per box. In case of occlusion and many overlaps between bounding boxes some
objects might be missed.

4.3.1.5 Panoptic Segmentation

In this section, we discuss the panoptic segmentation performance of different approaches.

The corresponding results under the PQ metric (see Section 2.2.5) are shown in

Tables 4.3 and 4.4.

We observe that for all methods the predictions for squares and triangles have a higher

score than the predictions for more ambiguous shapes such as half-circles and circle.
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Another observation is that the PQ increases with increasing entanglement between se-

mantic and instance segmentation in different methods, as shown in Table 4.3. Semantic +

Instance and Panoptic FPN are not optimized for the panoptic segmentation task. Their

predictions for semantic segmentation and instance segmentation are merged heuristi-

cally [44] to produce a panoptic output. In contrast, our methods (HPS and HPS + ISI )

use a single end-to-end trainable network, which significantly improves the achieved PQ .

One major issue in the first two methods (Semantic + Instance and Panoptic FPN )

is the threshold selection for instance masks. In particular, the instance segmentation

masks are generated using a sigmoid nonlinearity followed by a thresholding function. If

the predicted value of a pixel is larger than 0.5 this pixel becomes active. In the case

of overlapping regions, this causes confusion and the network does not know which mask

should be chosen since both have the same value after thresholding. Additionally, pixels

at transitions between instances are often predicted incorrectly as background because

the thresholding reduced the mask probability of instances to zero in uncertain areas, as

shown in Figure 4.14. Our methods (HPS and HPS + ISI ) resolve this issue by letting

the network learn to address overlapping issues on its own, as described in Section 3.1.

Image GT: PQ Semantic + Instance HPS + ISI

Zoomed Region

Figure 4.14: Example of edge improvements for overlapping objects. HPS + ISI resolves the
overlapping issue of object better than Semantic + Instance.

Additionally, using inter-task relations in the form of an Initial Segmentation Image

(ISI), as described in Section 3.2 provides an effective segmentation prior and increases

the overall panoptic quality for HPS + ISI. Finally, we show qualitative examples of our

results for all four methods in Figure 4.15.

4.3.2 Cityscapes

The Cityscapes dataset [14] is a challenging dataset for semantic understanding of urban

street scenes. It contains 5000 fine annotated images with large diversity among locations

(50 cities), several seasons (spring, summer, fall) and good/medium weather conditions.

The resolution of all images is [2048 × 1024 × 3]. Cityscapes has 30 classes grouped
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into 8 different categories. It provides ground truth for semantic segmentation, instance

segmentation, and panoptic segmentation. Each image has many dynamic objects and

different backgrounds. The 5000 images are split into 2975 training samples, 500 validation

samples, and 1525 test samples.

Panoptic Segmentation

Image. GT: Semantic segmentation.

GT: Instance segmentation. GT: Panoptic segmentation.

Figure 4.16: Example from the Cityscapes dataset. We show an image with corresponding ground
truth annotations for semantic segmentation, instance segmentation, and panoptic segmentation.
The color palette is showing the respective color for semantic segmentation. Note that in the
ground truth annotations instances are shown with different colors to make it easier to differentiate
between them.

Cityscapes has an online benchmark submission system that evaluates the prediction

accuracy on the test data. Since the test image annotations are not public, we only use

the validation images to evaluate our approach. In this work, we use 19 of the available 30

classes, where 11 are considered as stuff and 8 as things. An example of images with ac-

companying ground truth annotations for semantic segmentation, instance segmentation,

and panoptic segmentation can be seen in Figure 4.16.
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4.3.2.1 Evaluation Setup

The pre-processing performed for Cityscapes images is similar as for the TOY-Shapes

images described in Section 4.3.1.1. We use SGD with momentum (see Section 2.1.3.3)

β = 0.9 and a minibatch size of 6 split on two GPUs (TITAN X with 12GB). At the start of

each epoch, the dataset is randomly shuffled and split into 500 batches without selecting an

image again until the whole dataset was used at least once. Each image in a minibatch is

randomly modified with data augmentation methods, as presented in Section 4.2. Because

our computational resources are limited, we restrict the maximum number of instances

per image to 30 and excluded samples with more instances from training and evaluation.

In this way, we use 2649 of 2975 training images (≈ 89%) and 415 of 500 publicly available

validation images (≈ 83%). Additionally, we reduce the spatial image resolution from

2048 × 1024 to 1024 × 512. We could downsample the images even more to increase the

minibatch size, but this would result in images like Figure 4.17, where small structures

such as poles vanish.

The RPN uses the following scales (16, 32, 64, 128, 256) to generate anchors that cover

the entire image as well as small regions, where each scale corresponds to one level of

the FPN . Each level has 3 aspect-ratios (0.5, 1, 2) per anchor, which makes a total of

65472 anchors for our images. We train our networks in a three-stage learning process. In

the first stage, we initialize our Mask R-CNN [31] with weights pre-trained for instance

segmentation on COCO [57] and use a learning rate of η = 0.001. In this stage, we freeze

all layers except our network heads and train the network for 50 epochs. In the second

stage, we decrease the learning rate by a factor of 5 and train all layers above ResNet-101

layer 4 for another 25 epochs. In the last stage, we drop the learning rate again by a factor

of 5 and fine-tune the entire network for 25 epochs. In total, the networks trains for 100

epochs in a time span between 20 and 37 hours, as shown in Figure 4.18.

We train the four methods Semantic + Instance, Panoptic FPN, HPS, and HPS +

ISI described at the beginning of chapter 4 once before evaluation. The hyper-parameters

were selected based on the best testing performance on Panoptic FPN [43], which acts as

the baseline for this thesis. Semantic + Instance and Panoptic FPN do not have a single

panoptic segmentation output. Hence, we use the simple heuristic described in the original

paper to merge the semantic segmentation and instance segmentation outputs [44].

4.3.2.2 Training Time Comparison

First, we compare the training times of different approaches. The time reduction achieved

by combining two separate neural networks (Semantic + Instance) into a single network

(Panoptic FPN, HPS, and HPS + ISI ) can be seen in Figure 4.18. Similar as for the TOY-

Shapes dataset (see Section 4.3.1.2), the training time is nearly halved, when using a shared

backbone. Merging the information of semantic segmentation and instance segmentation

internally with our methods, as described in Chapter 3, only adds 60 minutes for HPS to

the total training time. Using additional inter-task relations only adds 66 minutes to the
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Figure 4.17: Example of a 8× downsampled Cityscape image. Top: is the original [2048×1024×3]
image. Bottom: is the 8× nearest-neighbor downsampled [256× 128× 3] image. On the left side,
we can see vanishing structures of small objects, such as the pole.

total training time for HPS + ISI. Compared to the TOY-Shapes dataset, the Cityscapes

dataset has more images and a larger number of maximum instances per image, i.e., 30

instead of 10. Thus, training requires more time.

4.3.2.3 Semantic Segmentation

In this section, we discuss the semantic segmentation performance of different approaches.

The corresponding results under the IoU metric (see Section 4.1.1) are shown in Table 4.5.

In contrast to the simple TOY-Shapes dataset results, the challenging Cityscapes

dataset is more complex. Thus, we see differences in the performance of individual meth-

ods. We observe that our HPS + ISI method is more useful on this complex dataset than

on the much simpler TOY-Shapes dataset. We significantly improve the IoU score for

many things classes and also slightly improve the performance of many stuff classes. The

additional prior information of the instance segmentation branch in the form of an ISI

increases the semantic segmentation task on this dataset. We gain the largest accuracy

improvement for classes that are closely related, such as bus, truck, or train. We also
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Figure 4.18: Cityscapes dataset training time comparison. We can see that training a single
neural network with a shared backbone reduces training time by nearly half as expected. Adding
additional complexity for the generation of ISI does not increase the time significantly.

observe improvements for predictions of the rider class which is the only class that does

not occur in the COCO dataset [57].

Finally, we show qualitative examples of our results for all four evaluated methods in

Figure 4.19.

4.3.2.4 Instance Segmentation

In this section, we discuss the instance segmentation performance of different approaches.

The corresponding results under the mAP metric (see Section 4.1.2) are shown in Table 4.6.

We observe that the shared backbone in Panoptic FPN slightly increases the mAP

compared to two disjoint networks Semantic + Instance. Our methods (HPS and HPS

+ ISI ) that add more intelligence to the semantic segmentation branch do not improve

the instance segmentation predictions. In this work, we focus on an end-to-end train-

able network for panoptic segmentation and improve the semantic segmentation branch

with additional interrelations. Hence, we do not expect large changes in pure instance

segmentation performance.

Due to the rectangular region proposals in Mask R-CNN [31], we observe the same

issues for occluded objects as already discussed for the TOY-Shapes dataset in Sec-

tion 4.3.1.4. However, the Cityscapes dataset is far more complex and presents real-world

scenarios, where even more objects overlap, occlude each other, and appear in different

sizes. This makes it hard to find the right anchor box sizes and results in low mAP . Finally,

we show qualitative examples of our results for all four evaluated methods in Figure 4.20.
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Semantic Segmentation: IoU

Class Semantic + Instance Panoptic FPN HPS HPS + ISI

Road 95.1 93.6 95.0 95.3
Sidewalk 69.2 67.8 68.9 69.8
Building 86.3 86.0 86.3 86.5
Wall 41.5 38.7 39.9 42.1
Fence 35.2 34.7 35.9 34.4
Pole 36.3 35.3 37.4 37.6
Traffic Light 46.6 44.8 45.7 45.9
Traffic Sign 50.4 48.7 51.1 52.2
Vegetation 87.6 87.5 87.7 87.8
Terrain 48.7 47.6 50.0 49.5
Sky 90.2 90.2 90.4 90.1

Person 65.2 65.2 65.2 68.9
Rider 37.3 37.1 34.5 51.1
Car 89.2 89.1 89.1 91.2
Truck 54.8 49.1 49.1 65.6
Bus 68.9 67.5 67.2 83.8
Train 53.1 47.7 48.5 73.3
Motorcycle 50.8 45.0 48.5 50.7
Bicycle 59.6 59.2 58.9 61.7

mIoU 61.4 60.4 60.5 65.1

Table 4.5: Quantitative results on the Cityscapes dataset. The results show that our HPS + ISI
method significantly improves the performance of things classes compared to other methods.

4.3.2.5 Segmentation Panoptic

In this section, we discuss the panoptic segmentation performance of different approaches.

The corresponding results under the PQ metric (see Section 2.2.5) are shown in

Tables 4.7 and 4.8. In addition, to the PQ , we show the SQ and the RQ for all classes,

things (Th) classes only, and stuff (St) classes only. Since PQ is a measurement of

semantic (SQ) and instance (RQ) segmentation quality an improvement in either part

will increase the accuracy of the overall system.

Interestingly, Semantic + Instance performs worse than Panoptic FPN. We hypothe-

size that this is because the number of training images in Cityscapes is rather low. Thus,

the shared feature backbone of Panoptic FPN acts as a regularizer which reduces overfit-

ting compared to two individual full networks on this dataset.

Next, HPS improves upon Panoptic FPN across all metrics and classes, because we

optimize for the final panoptic segmentation output. Our system minimizes a panoptic

loss in addition to the semantic and instance segmentation losses which provides better

guidance for the network. In this way, we do not rely on the heuristic merging of subtask
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predictions but directly generate the desired output internally which results in improved

accuracy in practice. Finally, HPS + ISI outperforms all other methods because it addi-

tionally leverages inter-task relations. Compared to Panoptic FPN, HPS + ISI improves

PQ by +4% relative from 41.9 to 43.5. Providing instance segmentation predictions as

additional feature input for the semantic segmentation branch gives a segmentation prior.

By exploiting this prior, the semantic segmentation branch can focus more on the predic-

tion of stuff classes and boundaries between individual classes which results in improved

accuracy across all metrics.

This quantitative improvement is also reflected qualitatively, as shown in Figure 4.22.

We observe that HPS + ISI handles occlusions more accurately (1st row) and resolves

overlapping issues on its own while being less sensitive to speckle noise in semantically

coherent regions (2nd row). Thanks to our end-to-end training and inter-task relations,

we predict more accurate semantic label transitions (3rd row) and reduce confusion be-

tween classes with similar semantic meaning like bus and car (4th row). Finally, we show

qualitative examples of our results for all four evaluated methods in Figure 4.21.
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Panoptic Segmentation

Semantic Segmentation

Image Ground truth Panoptic FPN HPS + ISI

Figure 4.22: Qualitative results on the Cityscapes dataset. Compared to Panoptic FPN, HPS +
ISI handles occlusions more accurately (1st row) and is less sensitive to speckle noise in semantically
coherent regions (2nd row). Additionally, we predict more accurate semantic label transitions (3rd

row) and reduce confusion between classes with similar semantic meaning like rider and person
or bus and car (4th row). Both our end-to-end training as well as inter-task relations increase
panoptic quality. Best viewed in digital zoom.





5
Conclusion

Panoptic Segmentation (PS) is an important but challenging problem with high relevance

in practice. PS addresses the task of complete 2D scene segmentation by assigning a class

label to each pixel of an image while differentiating between instances within a common

class. Thus, it can be seen as a unification of semantic segmentation and instance seg-

mentation. In recent years the task of PS gained popularity because the Panoptic Quality

(PQ) [44] metric made it possible to assess the performance of complete 2D scene seg-

mentation in an unified manner and publicly available datasets like Microsoft COCO [57],

Mapillary Vistas [66], and Cityscapes [14] added the panoptic segmentation challenge to

their benchmarks.

Many PS methods approach the task by independently addressing semantic and in-

stance segmentation and generating the panoptic output using heuristics. However, this

strategy has two limitations. First, the system cannot be optimized for the final objective

in an end-to-end manner. Second, mutual information between the semantic and instance

segmentation tasks is not fully exploited. To overcome these limitations, we propose a

single end-to-end trainable network architecture and directly optimize our system using

a panotpic objective. Moreover, we present a way to share mutual information between

the two subtasks by providing instance segmentation predictions as additional feature

input for our semantic segmentation branch. This inter-task link allows us to exploit a

segmentation prior and improve the overall panoptic quality.

Our results show that our proposed holistic PS method achieves significant improve-

ments compared to previous architectures with only a negligible increase in computational

complexity during training. Quantitatively, we show that both end-to-end training and

inter-task relations result in improved PQ in practice. Qualitatively, our method creates

more accurate label transitions between individual classes while being less sensitive to

speckle noise in semantically coherent regions. Our approach performs especially well on

complex datasets like Cityscapes [14] that contain images with many objects at different

scales and difficult occlusion scenarios. In these cases, our method achieves significantly

71
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improved PQ because our network learns to resolve overlapping issues between neighbor-

ing classes on its own. In many cases, our approach does not only compute more accurate

PS predictions but also improved semantic and instance segmentation predictions.

Our experiments show that our method performs well for large objects and regions but

struggles to make accurate predictions for small objects and regions. This can be accounted

to the fact that we process images at reduced spatial resolution due to GPU memory

limitations. Additionally, there is a bias in the optimization towards minimizing the

error on large objects and regions because these occupy more pixels and, thus, contribute

stronger to the loss. Moreover, one limitation of our approach is that the our employed

instance segmentation is based on Region-based Convolutional Neural Networks (R-CNNs)

that can only detect a single object per region. In many cases, small or strongly occluded

objects are not detected because only one prominent instance is detected in each region.

In the Cityscapes [14] dataset, we found some minor flaws that are considered as label

noise in this work but should be explicitly addressed in future projects. First, many

images contain transparent subregions like car windows or glass walls of bus stations.

These subregions belong to regions of a specific classes but actually show content that

is behind the labeled class. According to the ground truth annotation, the see-through

region should be labeled as the foreground region itself but our network predicts the visible

region behind. Second, there are ambiguous regions that show subregions of other classes.

For example, there are posters and t-shirt that show printed persons or cars which our

method detects as distinct object instances.

A possible future research direction and a way to resolve some of the issues described

above is to add depth sensor information as additional input to our approach. In this

way, transparent regions could be disambiguated. Another promising future research

direction is to exploit semantic segmentation predictions as additional feature input to

the instance segmentation branch to improve instance detection accuracy. Additionally,

instead of discarding the things predictions of the semantic segmentation branch, they

could be taken into account during the generation of the final panoptic output to improve

the prediction. Finally, our work showed that sharing information between semantic and

instance segmentation indeed improves the panoptic performance and marks a first step

towards fully entangled PS in the future.
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