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Abstract

Community detection is an essential tool for analyzing the organization of
complex social, biological and information networks. Among the numerous
community detection algorithms proposed so far, Infomap is a prominent
and well-established framework. In this thesis, we propose a novel method
for community detection inspired by Infomap. Whereas Infomap approaches
community detection analytically by minimizing the average description
length of a random walk on a network, our method minimizes dissimilarity,
measured using Kullback-Leibler divergence, between a graph-induced and
a synthetic random walker to arrive at a partition into communities. Hence,
we call our method synthesizing Infomap. Specifically, we focus on commu-
nity detection in undirected networks with non-overlapping communities
and two-level hierarchies.

In this work, we provide a formalization and a rigorous derivation of the
synthesizing Infomap objective function. By applying synthesizing Infomap
on a set of toy graphs we explore its properties and qualitative behavior.
Our experiments on artificially generated benchmark networks show that
synthesizing Infomap outperforms original Infomap in terms of adjusted
mutual information on networks with weak community structure. Both
methods perform equally well on a selection of real-world networks, indi-
cating that synthesizing Infomap produces reasonable results on real-world
networks as well. The promising results of synthesizing Infomap encour-
age further evaluation on real-world networks, as well as extensions to
multilevel hierarchies and overlapping community structures.
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1. Introduction

Large complex systems are ubiquitous in our everyday environment, be
they of social, biological or technological kind. Such systems can often be
represented as networks [1, 2], where the actors of the system are described
as nodes and the relationships between the actors are described as links
between their respective nodes. Commonly, there exist groups of nodes,
having strong relationships within the group and weak relationships to
nodes outside of their group. Such groups are referred to as communities
or modules [3, 4]. To know about the community structure of a complex
network can greatly aid in comprehending its overall constitution as well
as learning about their dynamics. Hence, numerous community detection
algorithms have been proposed [1, 2, 5], aiming to extract the community
structure of complex systems given their network representation.

A prominent method for community detection is the Infomap algorithm
presented in [6, 7]. The authors exploit the duality between the community
detection and a compression problem, to arrive at a compact and efficient
cost function known as the map equation. The map equation embedded
within a potent search algorithm lies at the core of the Infomap software
package [8]. Originally, Infomap was designed to detect non-overlapping
communities in a two-layer hierarchy. Many extensions have been developed
in follow up research, e.g. for the detection of hierarchical community struc-
tures [9] or overlapping communities [10]. Further study [11] on the map
equation revealed superior performance w.r.t the smallest detectable com-
munities (“resolution limit”) when compared to modularity-based methods
(e.g. [12]). In contrast, in an analysis of the largest detectable communities
the authors of [13] showed, that Infomap exhibits a “field-of-view limita-
tion”, potentially over-partitioning certain networks. However, this issue
was conveniently solved by adapting Infomap to reflect also higher-order
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1. Introduction

Markov dynamics as proposed in [13, 14].

In a comparative study, the authors of [5] have shown that, albeit Infomap
uncovers communities reliably when they are strongly connected internally,
it fails to do so for weakly linked communities. Arguably the identification
of strong communities in systems is of greater interest if one wants to learn
about the mechanics of a system. Yet, densely connected communities may
appear weak due to missing links in collected network data or a lack of
information only allows for a sparse network representation.

To address this issue, in this thesis we propose a novel method for commu-
nity detection, the synthesizing Infomap problem. The aim of this thesis is
to conduct an initial investigation of the capabilities of synthesizing Infomap
as a community detection method. Therefore, we provide a thorough deriva-
tion of synthesizing Infomap and explore its optimization properties and
qualitative behavior by considering illustrative toy examples. Furthermore,
we integrated the synthesizing Infomap objective into the existing Infomap
framework in order to evaluate the method in experiments on artificially
generated benchmark graphs, as well as on a set of real-world networks.
Although we use Infomap as a performance baseline, our method is not
supposed to be a substitute to the established Infomap method, but a useful
supplement to its functionality. Moreover, in this work we focus on commu-
nity detection in two-layer hierarchies with non-overlapping communities
only.

The results of our experiments on generated benchmark graphs indicate, that
synthesizing Infomap indeed outperforms its inspiring method on networks
with weak community structure, and it performs on par with Infomap when
strong community structures are present. In addition, a comparison on
real-world networks shows that synthesizing Infomap delivers reasonable
results, as it performs on par with Infomap. Overall, our evaluation shows
promising results, calling for further study and experimentation. To this end,
we propose several potential directions of future work around synthesizing
Infomap.

The remainder of this thesis is structured as follows. In Chapter 2 we
introduce the relevant notation and basic concepts used in the course of

2



this work. In Chapter 3 we present the synthesizing Infomap approach
to community detection and derive its objective function. Moreover, we
explore the optimization properties of the synthesizing Infomap objective
by giving illustrative examples. In Chapter 4 we document the methods
used in our experimental setup. Chapter 5 reports and discusses the results
of our experiments. Finally, in Chapter 6 we summarize the main part of
this thesis and give an outlook of potential future work.

Additionally, we provide three appendices, that supplement the main part
of this thesis. In Appendix A we document the integration of the synthe-
sizing Infomap objective into the Infomap software package. We connect
synthesizing Infomap to related work in Appendix B. Lastly, in Appendix C
we provide the proofs that we withheld in the main part.
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2. Preliminaries

In this chapter we introduce concepts and notation that serve as a basis for
the remainder of this thesis. We cover the notation for graphs, clusterings,
Markov chains and information theory in Section 2.1. Section 2.2 clarifies
the definition of communities and in Section 2.3 we compactly describe the
intuition underlying Infomap and the map equation.

2.1. Notation

2.1.1. Graphs and Graph Properties

Let G := (X , E, W) be a weighted, directed graph with vertices X =
{1, . . . , N}, edges E ⊆ X 2 and weight matrix W. The weight matrix is
given by W := [wα→β]α,β∈X where wα→β ≥ 0 denotes the weight of the edge
(α, β) ∈ E starting at vertex α and pointing at vertex β. The adjacency matrix
A := [aα→β]α,β∈X of G is defined by aα→β = IE((α, β)), where IE(·) is the
indicator function

IE((α, β)) =

{
1 if (α, β) ∈ E
0 if (α, β) 6∈ E.

(2.1)

For an unweighted graph the weight matrix equals the adjacency matrix of
the graph, i.e. W = A. If a graph is undirected, then it holds that A = AT,
where (·)T denotes matrix transposition. Hence, if (α, β) ∈ E then also
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2. Preliminaries

(β, α) ∈ E. A set C ⊆ X is a clique if it is a complete subgraph of G, i.e.
its edgeset is given as E = {(α, β)|α 6= β} where α, β ∈ C. We say it is a
maximal clique if it is not a subset of a larger clique. We call S ⊆ X an
independent set if (S× S) ∩ E = {} and we call it a maximal independent
set if it is not a subset of a larger independent set. Lastly, we say that an
undirected graph G is strongly connected if every possible pair of vertices
in G are connected by a path. Specifically, for every pair (α, β) of vertices,
there exists an ordered set of intermediate vertices (γ1, . . . , γk) such that
(α, γ1), (γi, γi+1) for i ∈ {1, . . . , k− 1}, and (γk, β) are in E. In the course of
this work we will use the terms graph and network, vertex and node, as
well as edge and link interchangeably.

2.1.2. Clusterings

Consider a clustering Y of X into a set of M nonempty elements Y :=
{Y1, . . . ,YM}, where

⋃M
i=1 Yi = X . We refer to the elements of such a

clustering as modules or communities. Furthermore, if the modules are disjoint,
i.e. Yi ∩ Yj = {} for all i 6= j where i, j ∈ {1, . . . , M}, then we call the
modules non-overlapping and the clustering a partition. For the remainder of
this thesis we assume that all clusterings are partitions, unless otherwise
stated.

We call a partition Y• = {Y•1 , . . . ,Y•M} a coarsening of another partition
Y = {Y1, . . . ,YK} if each module in the coarsening Y•i ∈ Y• is comprised
of one or more modules of the original partition Y and M < K.

Importantly, we indicate module indices by roman letters i, j, . . . , contrasting
them from Greek letters α, β, . . . indicating the vertices of G. Additionally,
we define a mapping function m: X → Y , uniquely mapping each vertex of
G to the index of its containing module, i.e.

∀α ∈ X : m(α) = i ⇐⇒ α ∈ Yi, Yi ∈ Y . (2.2)

Abusing notation, we write α ∈ i instead of α ∈ Yi and i ∈ Y instead of
Yi ∈ Y .
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2.1. Notation

2.1.3. Markov Chains

We consider random walks on the graph G. Specifically, let {Xt} where
t ∈ N be a first-order homogeneous Markov chain with alphabet X . We
assume that its stationary transition probability matrix P := [pα→β]α,β∈X
is derived from the graph’s weight matrix W where its elements are given
as

∀t ∈N, ∀α, β ∈ X : pα→β := P(Xt+1 = β|Xt = α) = const. (2.3)

Then, for a state distribution p := [pα]α∈X where pα := P(Xt = α), it follows
that

pβ = P(Xt+1 = β) = ∑
α

pα pα→β. (2.4)

If it further holds that the state distribution at a given time step is the same
as in the previous time step, i.e. if p = P · p, then we call p a stationary
distribution.

Setting Yt := m(Xt) defines a stationary process {Yt} on the modules.
Specifically, the marginal and joint probabilities describing {Yt} are obtained
as

pi := P(Yt = i) = ∑
α∈i

pα, i ∈ {1, . . . , M} (2.5a)

and

pi,j := P(Yt+1 = j, Yt = i) = ∑
α∈i

∑
β∈j

pα pα→β, i, j ∈ {1, . . . , M}. (2.5b)

From the product rule of probability it follows that

pi→j := P(Yt+1 = j|Yt = i) =
pi,j

pi
if pi > 0, i, j ∈ {1, . . . , M}. (2.5c)

We further abbreviate

p¬i := 1− pi = P(Yt 6= i), (2.6a)

pi 6→j := 1− pi→j = P(Yt+1 6= j|Yt = i) (2.6b)

and

pi,¬j := pi − pi,j = P(Yt+1 6= j, Yt = i). (2.6c)
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2. Preliminaries

2.1.4. Information Theory

In the course of our work we make use of the following concepts from
the field of information theory that are well-described in [15]. Let Y, Z
denote random variables (RV), then we call H(Z) the entropy of Z, H(Y|Z)
the conditional entropy of Y given Z and I(Y; Z) the mutual information
between Y and Z. Furthermore, let p and q denote discrete probability
distributions over the same alphabet. Then we call D(p‖q) the Kullback-
Leibler divergence between p and q. If p, q are Bernoulli distributions i.e.,
p = [p1, 1− p1] and q = [q1, 1− q1], then we abbreviate

D(p1‖q1) := p1 log
p1

q1
+ (1− p1) log

(1− p1)

(1− q1)
. (2.7)

Let H({Zt}) denote the entropy rate of the stationary stochastic process
{Zt}. If {Zt} is an irreducible, stationary Markov chain with alphabet Z ,
transition probability matrix P and invariant distribution [pα]α∈Z , then its
entropy rate is

H({Zt}) := − ∑
α∈Z

∑
β∈Z

pα pα→β log pα→β (2.8)

where we define 0 log 0 := 0 by continuous extension of the logarithm.
Finally, let Q := [qα→β]α,β∈Z be another transition probability matrix of the
same size as P. The Kullback-Leibler divergence rate D(·‖·) between two
stationary Markov chains governed by P and Q is

D(P‖Q) := ∑
α∈Z

∑
β∈Z

pα pα→β log
pα→β

qα→β
(2.9)

given that the Markov chains are irreducible [16, Th. 1].

2.2. Defining Communities

In order to approach the problem of community detection and to evaluate
the results of any detection method, a more precise definition of a com-
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2.2. Defining Communities

munity is very helpful, if not necessary. Several definitions of communities
have been proposed in the literature. The authors of a recent survey [2] give
a thorough overview of the evolution of community definitions. Here, we
give a compact summary, introducing the necessary concepts appearing in
the rest of this thesis.

In a classical view, communities are densely connected subgraphs in a
network that are well separated. A primal example fitting to this intuition is
a clique, that comes, however, with several implications. First, communities
seldom appear as cliques and secondly, connections to other subgraphs are
not taken into account. Thirdly, in a clique every node has the same degree
and hence appears to be equally important, which also does not reflect
the structure of real-world networks satisfactorily (e.g. in (online) social
networks). Yet another complication arises when we consider overlapping
communities, as communities may not be well separated at all.

An evolved approach to community definition takes the internal and ex-
ternal node degrees w.r.t a community into account. As such, the mixing
parameter [17, 18] of a node is the ratio of the number of links it shares
with nodes outside of its community to its total number of links. It is a
key tuning parameter [19] for the LFR benchmark and a measure for the
existence and strength of communities [18]. Assume a graph G = (X , E)
with community structure Y . The mixing parameter of a node α ∈ Yi is
given as

µ(α) =
kext

α

kint
α + kext

α

(2.10)

where kint
α is the internal degree and kext

α is the external degree of α with
respect to its community Yi. Assuming a common global mixing parameter
µ for all nodes in G, clearly, the average mixing parameter across any subset
of nodes is again µ. Thus, for any community Yi it holds that

9



2. Preliminaries

µ =
kext

β

kint
β + kext

β

, ∀β ∈ Yi (2.11)

=
1
|Yi| ∑

α∈Yi

kext
α

kint
α + kext

α

(2.12)

=
∑α∈Yi

kext
α

∑α∈Yi
kint

α + kext
α

. (2.13)

Strong communities [4] satisfy µ > 0.5, i.e. each node has more connections
to nodes inside its community than to external nodes. According to [18],
weaker communities are still well defined for µ < N−Nmax

c
N , where N is

the number of nodes in the network and Nmax
c is the size of the largest

community.

A more modern view on community definition employs a probabilistic
description. There, for each node within a strong community its linking
probability to every other node in the same community is higher than
the linking probability to any external node. For weak communities this
constraint is relaxed such that only the average internal edge probability
of a node has to be greater than the average external edge probability.
However, also this probabilistic view does not come without practical issues,
as it is not straight forward to compute the necessary linking probabilities.
Thus, usually one assumes an underlying probabilistic model describing
the network formation process. An example of such a model is the popular
stochastic block model.

Whereas the above definitions mainly focus on the topology of a network, al-
ternative perspectives also take dynamic processes occurring on the network
into account. Random walks provide a simple proxy for diffusion processes
describing the dynamics of a network. Here, the notion of a community is
related to the average time a random walker spends within subgraph of a
network. In the next section we will see that Infomap is conceptually based
on this idea.

10



2.3. Infomap and the Map Equation

2.3. Infomap and the Map Equation

The map equation, as presented in [7], was proposed as a cost function
for community detection. Suppose we have a graph G and an arbitrary
partition Y of its vertex set X into M modules Y = {Y1, . . . ,YM}. Addition-
ally, suppose we have a random walker traversing the edges of the graph
according to some transition probability matrix P derived from its weight
matrix W. We can then describe the path of the random walker on the
graph using a two-level coding scheme. Firstly, we have an index codebook Q
with one codeword for each module. Secondly, each module Yi has its own
module codebook P i with one codeword for each vertex in the module and an
additional exit codeword. We can then encode the movements of the random
walker by considering the following two cases.

1. If the random walker moves from some vertex α to some vertex β
within the same module Yi, then its movement is encoded using the
codeword for vertex β from the module codebook P i.

2. If the random walker moves from some vertex α in module Yi to some
vertex β in a different module Yj, then the exit codeword from module
codebook P i is used together with the codeword for module Yj from
the index codebook Q and the codeword for vertex β from the module
codebook P j.

The key idea behind the map equation assumes that by finding an efficient
coding scheme (and hence a partition into modules) one can compactly
describe the community structure of a network. Since intuitively a shorter
description length of the random walk should correspond to a better, more
compact representation, we measure the efficiency of such a coding scheme
by considering the average description length of a single step of the random
walker. The map equation thus provides us with a lower bound on this
average description length as follows.

Shannon’s source coding theorem [20] states that the average codeword
length for each of our codebooks is lower bounded by their entropy, given

11
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their usage probabilities. Specifically, the codebook entropies are given as

H(Q) = − ∑
i∈Y

pi,¬i

∑i∈Y pi,¬i
log

pi,¬i

∑i∈Y pi,¬i
(2.14)

and

H(P i) = − pi,¬i

pi,¬i + pi
log

pi,¬i

pi,¬i + pi
−∑

α∈i

pα

pi,¬i + pi
log

pα

pi,¬i + pi
, (2.15)

according to the probabilities (cf. Equations (2.5)) governing the random
walker. The index codebook is used with a rate ∑i∈Y pi,¬i, i.e. the cumulative
exit rates of all modules. In contrast, any module codebook P i is used at a
rate pi,¬i + pi, which reflects the exit rate of the module plus the time we
spend in it. Hence, the map equation

L(Y) := ∑
i∈Y

pi,¬iH(Q) + ∑
i∈Y

(pi + pi,¬i)H(P i) (2.16)

gives a lower bound of the expected codeword length required to encode a
single step of the random walker. As a consequence, the Infomap community
detection method proposes to minimize the map equation (2.16) over all
possible partitions Y . A minimizer Y∗ ∈ arg minY L(Y) is supposed to
represent the community structure of the graph very well.

In conclusion, we can say that the map equation analytically describes a
networks’ dynamics by deriving a lower bound on the average description
length of a random walker for a predefined coding scheme. In contrast, we
will explore a synthetic approach to describing the network dynamics in the
next chapter.

12



3. A Synthesis-based Map
Equation

In this chapter we outline a synthetic approach to arrive at an alternative
map equation, contrasting the analytical minimum description length idea
underlying the map equation in Section 3.1. Furthermore, we formalize our
model into an optimization problem and derive a novel utility function, the
synthesizing Infomap objective, which we investigate with respect to its
applicability to community detection tasks in the remainder of this thesis. In
Section 3.2 we explore fundamental properties of the optimization landscape
of synthesizing Infomap and provide illustrative examples.

3.1. Derivation of Synthesizing Infomap

Assume a graph G = (X , E, W) and an inherent partition Ytrue of its nodes
into modules. Consider further a random walker moving on G governed by
the transition probability matrix P, which is derived from the weight matrix
W. We refer to this random walker as the graph-induced random walker, as
its movements depend on the topology of G (i.e. implicitly its community
structure). In the next step we design a synthetic random walker, governed
by some transition probability matrix QY which, in contrast to P, explicitly
depends on some arbitrary partition Y . The fundamental idea behind our
approach is then to find a partition Y such that the graph-induced and the
synthetic random walker behave as similarly as possible (regarding their
stochastic behavior). Intuitively, such a partition will resemble the intrinsic
partition Ytrue very closely. We formalize this concept in the following.

13



3. A Synthesis-based Map Equation

At any given time step, our synthetic random walker is visiting some
node α ∈ i where i ∈ Y . We decide whether to leave or to stay in the
current module i in the next time step, based on a module-specific Bernoulli
distribution [si, 1− si]. In case of a module change, we choose a new module
j 6= i according to a distribution over modules [ui]i∈Y . Indifferent to whether
we stay in or leave the current module, we choose the next visited node
β lying in the new module j by a module-specific distribution over nodes
[rj

β]β∈j (note that j = i if we stay in the current module). We can now

assemble the transition probability matrix QY = [qα→β]α,β∈X where

qα→β =


rm(β)

β (1− sm(α)) for m(α) = m(β),

rm(β)
β sm(α)

um(β)

1−um(α)
for m(α) 6= m(β).

(3.1)

Note that when changing modules we have to normalize the distribution
over modules by 1− um(α) = ∑k 6=m(α) uk since we exclude the current mod-
ule m(α) as a choice.

We quantify the similarity between the graph-induced and the synthetic
random walker by utilizing the Kullback-Leibler divergence rate D(P‖QY ),
i.e. the lower D(P‖QY ), the more similar are P and QY . Hence, we minimize
D(P‖QY ) with respect to the distribution parameters of QY on the one hand,
and regarding the partition Y on the other hand. This leads to the following
optimization problem.

Problem 1. Let G = (X , E, W) be a graph and let P ∼W be a transition
probability matrix derived from the weight matrix W. Moreover, let
QY denote a transition probability matrix dependent on partition Y
as described in (3.1). We then want to find an optimal distribution Y∗,
subject to a

Y∗ ∈ arg min
Y

[
min

{[ri
α]α∈i, si, ui}i∈Y

D(P‖QY )
]

. (3.2)

aIn general, multiple optimal partitions w.r.t the inner minimization problem may
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3.1. Derivation of Synthesizing Infomap

exist, hence the set notation.

Solving the inner optimization problem with respect to the parameters
{[ri

β]β∈i, si}i∈Y yields (see Appendix C.1)

ri
α =

pα

pi
= P(Xt = α, Yt = i) (3.3)

si = pi 6→i = P(Yt+1 6= i|Yt = i). (3.4)

Regarding the distribution over modules [ui]i∈Y there exists no closed-form
solution to the best of our knowledge. Nevertheless, by choosing

ui = pi = P(Yt = i) (3.5)

as a sub-optimal solution we can relax (see Appendix C.1) Problem 1 to
arrive at the following.

Problem 2 (Synthesizing Infomap). Let G = (X , E, W) be a graph and
let P ∼ W be a transition probability matrix derived from the weight
matrix W. Moreover, let QY denote a transition probability matrix
dependent on some partition Y as described in (3.1). The synthesizing
Infomap problem is concerned with finding an optimal partition Y∗ of
X into modules, subject to

Y∗ ∈ arg max
Y

∑
i∈Y

piD(pi→i‖pi) (3.6)

where pi and pi→i are defined as in (2.5).

Hence, we define the synthesizing Infomap objective for a given partition Y
as

J (Y) := ∑
i∈Y

piD(pi→i‖pi). (3.7)
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3. A Synthesis-based Map Equation

3.2. Bounds and Characterization of the
Optimization Landscape

In Appendix C.1 we show that fundamental bounds of the synthesizing
Infomap objective J (Y) are given by (cf. Corollary 1)

0 ≤ J (Y) ≤ I(Xt; Xt−1). (3.8)

In the following we construct examples where the synthesizing Infomap
objective achieves these bounds for particular graphs and partitions in Sec-
tion 3.2.1 and Section 3.2.2 respectively. In Section 3.2.3 we will explore the
potential existence of local optima for partitions into maximal independent
sets.

3.2.1. Achieving the lower bound

Example 1. Let G be an arbitrary graph and let Y = {Y1} = {X },
i.e. all vertices of G are placed in a single module. Then, p1 = 1 and
p1→1 = 1, from which we obtain J (Y) = 0.

Example 1 indicates, that the lower bound J (Y) = 0 is tight, as it can be
achieved on every possible graph. More importantly, Example 1 indicates
that a single module will never be a solution of the Problem 2, at least not
in non-trivial cases.

3.2.2. Achieving the upper bound

In the following examples we achieve the upper bound J (Y) = I(Xt; Xt−1)
for selected graphs and partitions. Anyways, there is no guarantee that the
upper bound is achievable by any possible partition of an arbitrary given
graph.
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Example 2. Let G = (X , E) be an unweighted and undirected graph
of disconnected cliques, i.e. there exists a partition Y = {Y1, . . . ,YM}
such that the edge set E of G is given as E =

⋃M
i=1 Yi × Yi. Note that

here we include self-loops in the edge set. Furthermore, let P ∼ A be
the transition probability matrix derived from the graph’s adjacency
matrix A.

Since the graph is unweighted, the movement within cliques and the
invariant distribution within each clique are uniform. The resulting
Markov chain is not irreducible and therefore infinitely many invariant
distributions exist for the entire alphabet X . Specifically, for every
distribution over the modules [pi]i∈Y the distribution over vertices
[pα]α∈X given by pα =

pm(α)

|Ym(α)| is invariant under P. Thus, we have that

H(Xt) = − ∑
α∈X

pm(α)

|Ym(α)|
log

pm(α)

|Ym(α)|
= − ∑

Yi∈Y
pi log

pi

|Yi|
. (3.9)

Given that the random walker is currently at vertex α in module i, all
vertices in this module (including α) are equally likely to be visited
in the next step. Thus, it follows that H(Xt|Xt−1 = α) = log |Ym(α)|.
Combining this with H(Xt) yields I(Xt; Xt−1) = H(Yt).

Since the modules in Y represent the cliques in G and since conse-
quently there are no edges connecting one module with another, we
have pi→i = 1 for every module. Thus, it follows that J (Y) = H(Yt) =
I(Xt; Xt−1), i.e., the upper bound of the synthesizing Infomap objective
is achieved.

Note that a coarsening Y• = {Y•1 , . . . ,Y•M} of the partition Y does not
achieve this optimum. Although for Y• being a coarsening of Y we still
have pi→i = 1, for the distribution over modules [p•i ]i∈Y• we get

p•i = ∑
Yj∈Y•i

pj (3.10)
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3. A Synthesis-based Map Equation

and thus H(Y•t ) < H(Yt).

In Example 2 we show that the utility function J (Y) achieves its upper
bound for a partition Y that splits the graph G into sets of disconnected
cliques. This suggests that our proposed synthesis-based map equation is
a theoretically valid approach to community detection and, at least in this
trivial example, has its global optimum at the desired partition.

Example 3. Let G be a complete graph (unweighted and undirected)
and consider a partition Y = {{α}|α ∈ X} where each vertex of G is a
module. Then for each module Yi obviously pi→i = 0 and hence

J (Y) = − ∑
i∈Y

pi log(1− pi) (3.11)

= − ∑
α∈X

pα log(1− pα). (3.12)

Furthermore, since G is a complete graph, it follows that pα = 1
N for all

α ∈ X and therefore

J (Y) = log N − log(N − 1). (3.13)

It is straightforward to show that I(Xt; Xt−1) = log N − log(N − 1)
and thus the partition Y achieves the upper bound of the synthesizing
Infomap objective for a complete graph.

Example 3 demonstrates an interesting behavior of synthesizing Infomap.
Although a clique can be seen as an exemplary proxy for a community,
synthesizing Infomap achieves its minimum objective for such a partition on
a single clique (cf. Example 1). Instead, we achieve the maximum objective
for a partition into single vertices, which arguably is not a desirable behavior
as it over-partitions the given graph. However, we would argue that a
partition into a single module (in general) provides little to no information
about a given network and hence is an unusable result if provided by
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any community detection algorithm. From this perspective, the behavior
of synthesizing Infomap in Example 3 does seem sensible in community
detection tasks (cf. the experiments in Section 5.2).

Example 4. Let G = (X , E) be an unweighted and undirected graph
with a star topology where one central node is connected to N − 1
satellite nodes by a single edge and satellite nodes are not connected
with each other. The edge set is given as E = {(1, α)|α ∈ {2, . . . , N}}
and stationary distribution over nodes [pα]α∈X is given by

pα =

{
1
2 if α = 1

1
2(N−1) otherwise.

(3.14)

Now consider a partition Y = {Y1,Y2} into two modules where the
central node represents the first module and the satellite nodes repre-
sent the second module, i.e. Y1 = {1} and Y2 = {α|α ∈ {2, . . . , N}}.
Clearly, p1 = p2 = 1

2 and since both partitions are independent sets it
follows that p1→1 = p2→2 = 0. For this partition the objective attains a
value of

J (Y) = − ∑
i∈Y

pi log(1− pi) = 1. (3.15)

It is straightforward to show that for the given graph I(Xt; Xt−1) = 1
and thus the partition Y achieves the upper bound of the synthesizing
Infomap objective for a complete graph.

The optimal partition in Example 4 can be interpreted as a classification
into master and slave nodes e.g. in a computer network. Thus, the partition
appears to be a reasonable result for the given graph, although it may not
fit an intuitive understanding of a community at a first glance.
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3. A Synthesis-based Map Equation

3.2.3. Local Optimality of Maximal Independent Sets

Interestingly, the globally optimal solutions in Example 3 and Example 4 are
partitions into maximal independent sets. Indeed, partitions into maximal
independent sets appear to be local or even global optima of the synthesizing
Infomap objective, depending on the graph at hand. Actually, one can show
(see Appendix C.2), that for any given partition Y of a graph into (not
exclusively maximal) independent sets, a coarsening Y• of Y into solely
maximal independent sets will always achieve a better objective J (Y•) >
J (Y), if Y• has at least two modules. Consider further Example 5.

Example 5. In this example we consider a graph of k disconnected
cliques Y = {Y1, . . . ,Yk} as in Example 2. This time, however, we
assume that the graph does not contain any self-loops. This does not
affect the cliques having uniform invariant distributions. We further
assume that all cliques have the same size, i.e. we set |Yi| = nc for
every Yi ∈ Y . Lastly, we assume an invariant distribution such that
[pi =

1
k ]i∈Y and hence [pα = 1

k·nc
]α∈X .

Let Y• be a partition of X into nc maximal independent sets of size
k, i.e. each set Y•1 , . . . ,Y•nc contains exactly one element of each clique.
Therefore, p•i = 1

nc
and since the graph has no self-loops, it follows

immediately that p•i→i = 0 for every i ∈ Y•. Thus, J (Y•) = log nc −
log(nc − 1).

Now we define a partition Y◦ that coincides with Y• except that one
vertex α from module Y•i is moved to module Y◦j , i.e. Y◦i = Y•i \ {α}
and Y◦j = Y•j ∪ {α}. This changes the marginal distributions of both

modules to p◦i = k−1
k·nc

and p◦j = k+1
k·nc

. Module Y◦i remains an independent
set and thus p◦i→i = 0. However, module Y◦j now has one internal

connection to some node β ∈ Y◦j where pα→β = pβ→α = 1
nc−1 . It
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3.2. Bounds and Characterization of the Optimization Landscape

follows that

p◦j→j =
2

(nc − 1)(k + 1)
. (3.16)

A numerical evaluation (see Figure 3.1) indicates that for every possible
clique size and every possible number of cliques it holds, that J (Y•) ≥
J (Y◦). Thus, the independent set is a local optimum of Problem 2 for
the considered graph G.

The existence of local optima in the form of maximal independent sets
has implications for the choice and parameterization of the optimization
algorithm. On the one hand, they can be a potential nuisance when one
wants to detect densely connected communities. However, the Infomap
search algorithm and hence our synthesizing Infomap implementation do
not identify independent sets by design (cf. Appendix A), as the search rou-
tine merges only adjacent nodes/modules, thus violating the independent
set condition. The only exception is the initial partition of the algorithm,
where each node serves as a module as in Example 3. To avoid getting stuck
in this initialization in ill-posed scenarios (cf. Section 5.1.1) we propose an
alternative initialization in Section 4.3.

On the other hand, a partition into maximal independent sets might be of
interest for example in multipartite graphs (cf. Example 6). In such graphs,
nodes of the same type have no mutual connections at all, although they
form a natural functional unit of interest. It is therefore remarkable, that
synthesizing Infomap can potentially detect densely connected communities
as well as independent sets. In spite of this fact, our synthesizing Infomap
implementation does not yet provide a suitable search algorithm for inde-
pendent sets. Hence, we will not investigate such cases extensively in the
course of this thesis.

Example 6. Consider a bipartite graph G with N = N1 + N2 nodes in
two groups of nodes Y = {Y1,Y2}, where N1 nodes are in group Y1
and N2 nodes are in group Y2. Every node from group Y1 is connected
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3.2. Bounds and Characterization of the Optimization Landscape

to every node from group Y2, however the groups have no internal
connections, i.e. the edge set is given as E = {(α, β)|α ∈ Y1, β ∈ Y2}.
Clearly, Y1 and Y2 are maximal independent sets and p1 = p2 = 1

2 .
Hence, the synthesizing Infomap objective for the given partition yields

J (Y) = − ∑
i∈Y

pi log(1− pi) = 1. (3.17)

Furthermore, we get

H(Xt) = −N1 ·
1

2N1
log

1
2N1
− N2 ·

1
2N2

log
1

2N2

= 1 +
1
2
(log N1 + log N2) (3.18)

and

H(Xt|Xt−1) = −N1 ·
1

2N1
· N2 ·

1
N2

log
1

N2
− N2 ·

1
2N2
· N1 ·

1
N1

log
1

N1

=
1
2
(log N1 + log N2). (3.19)

Therefore, I(Xt; Xt−1) = H(Xt) − H(Xt|Xt−1) = 1 = J (Y), i.e. the
synthesizing Infomap objective achieves its global optimum for correct
partition of the given bipartite network.
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4. Methods

In this chapter we briefly summarize how we implemented our cost function
in Section 4.1 and give an overview of the software packages we utilized in
the course of our work in Section 4.2. In Section 4.3 we describe different
initialization strategies for the search algorithm before we explain in Sec-
tion 4.4 the benchmark selection and generation for the experiments. Finally,
we define metrics used to analyze and compare the examined community
detection algorithms in Section 4.5.

4.1. Synthesizing Infomap Implementation

To compare the performance of the original Infomap and synthesizing
Infomap we aimed for a common optimization algorithm to provide compa-
rability. Hence, we integrated the synthesizing Infomap objective into the
existing Infomap framework [8] since it is available open-source and proven
to be a practical framework. The modified framework used in the course of
this work can be found at https://github.com/chritoth/infomap. Further
details regarding the implementation are given in Appendix A.

4.2. Utilized Software Packages

In the course of our work we utilized the software packages listed in Table 4.1
to conduct our experiments.
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Package Name Version Reference

networkx 2.4 [21]

scikit-learn 0.22.1 [22]

clusim 0.3.7 [23]

matplotlib 3.1.2 [24]

numpy 1.18.1 [25]

pandas 0.25.3 [26]

Table 4.1.: Utilized software packages and versions.

4.3. Initialization

The standard initialization used in the Infomap framework puts each node of
a given network in its own module, i.e. Y = X and minit(α) = α, ∀α ∈ X for
a given graph G = (X , E). This provenly works well for the map equation
as a cost function. Additionally, we propose an alternative initialization for
synthesizing Infomap based on spectral clustering [27, 28, 29] and hence
refer to it as spectral clustering initialization (SCI). We precluster a given
network with N nodes into

√
N clusters by employing the well known scikit-

learn software package. From there we utilize SpectralClustering() with
parameters as given in Table 4.2. As the similarity matrix we take the graphs
adjacency matrix. In our experiments we report results for both initialization
strategies used with synthesizing Infomap whenever it provides valuable
insight.

4.4. Benchmark Selection and Generation

In order to validate and compare the results of community detection meth-
ods it is common practice to evaluate their performance on benchmark
graphs [5, 2, 3, 17, 19] where the ground truth community structure is
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Parameter Value

n clusters
√

N

n init 1

affinity 'precomputed'

assign labels 'kmeans'

Table 4.2.: Parameter setup of the scikit-learn spectral clustering method. Any not listed
parameters assume default values. N denotes the number of nodes in the
network.

known. Such benchmark graphs can either be real-world networks or ar-
tificially generated. The former seems to be the favorable choice, since
eventually any community detection algorithm is to be applied on real-
world networks. However, there are several limitations to this approach. It
is often difficult and time-consuming to obtain ground truth for real-world
networks. Hence, available benchmark networks are either too small (e.g.
Zachary’s karate club [30]) or ground truth is either missing or extracted
from node metadata (cf. the network databases [31, 32, 33]). Albeit the use of
node metadata as ground truth can conveniently provide labeled networks
at scale, the authors of [34] show that this approach gives rise to several
practical problems when testing community detection algorithms. First,
particular metadata can be irrelevant to the network structure or it may
capture different aspects than the communities detected by an algorithm.
Secondly, communities might not exist or be non-detectable in a network,
although metadata raises such an impression. Moreover, the authors prove
that no single algorithm can behave optimally for all possible community
detection scenarios which raises another issue: the network parameters of
real-world networks are not controllable, which limits the possible test cases
to certain types of networks.

To this regard, artificially generated graphs provide (high) flexibility in
tuning network parameters. In addition, arbitrarily many graph realizations
can be generated, allowing for a more robust evaluation of algorithm be-
havior. The two prevalent benchmarks found in the literature are the GN
benchmark [3] (after Girvan and Newman) and the LFR benchmark [17,
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Parameter Description Value

n Number of nodes in the network N 500 . . . 10000

mu Mixing parameter µ 0.1 . . . 0.75

max community Maximum community size Nmax
c 0.2N

min community Minimum community size Nmin
c 0.25Nmax

c

max degree Maximum node degree 0.3Nmax
c

min degree Minimum node degree 0.4Nmin
c

tau1 Degree distribution exponent 3.5

tau2 Community size distribution exponent 1.1

Table 4.3.: Parameter setup of the LFR benchmark generation using networkx. Any not listed
parameters assume default values.

35] proposed by Lancichinetti, Fortunato and Radicchi. The former was
found [17] to be a bad proxy for the community structure in real-world
networks, as all its communities are equally sized and all nodes approxi-
mately have the same degree. As a result, the LFR benchmark more and
more replaces the GN benchmark in more recent studies [5, 19]. Therefore,
we use the LFR benchmark to evaluate the performance of synthesizing
Infomap and to compare it to the results achieved by standard Infomap in
Section 5.2. For the generation of the LFR benchmark graphs we use the net-
workx software package. We utilize LFR benchmark graph() with parameters
as given in Table 4.3. A sample benchmark graph is visualized in Figure 4.1.
Nevertheless, in order to prove the practical applicability of synthesizing
Infomap we also evaluate its performance on a set of real-world networks
taken from [31] in Section 5.3.
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4. Methods

4.5. Metrics and Performance Measures

For analyzing and comparing the behavior of Infomap and synthesizing
Infomap we consider the following metrics.

4.5.1. Adjusted Mutual Information

The adjusted mutual information (AMI) is a similarity measure for com-
paring partitions proposed in [36]. AMI values close to 1 indicate high
similarity whereas a values around 0 reflect low similarity. We consider two
partitions U , V as described in Section 2.1.2. Then we define the AMI as

AMI(U ,V) = I(U ,V)− E{I(U ,V)}
1
2 [H(U ) + H(V)]− E{I(U ,V)} , (4.1)

where E{·} denotes the expectation operator with respect to a chosen
permutation model. For a thorough discussion on how to compute the
information theoretic measures necessary to compute AMI(U ,V) we refer
the interested reader to [36]. Although there are several variants of the AMI
in terms of normalization, we stick to the AMI normalized by the arithmetic
mean as in Equation (4.1).

We note that further similarity measures based on the mutual information
have been proposed in [37, 38]. However, we chose AMI over variants of
the normalized mutual information [37] (NMI), because the adjustment
for chance in AMI provides us with a constant baseline when comparing
the different community detection algorithms, which NMI does not. We
did not consider the standardized mutual information [38] (SMI) as to
the best of our knowledge there is no easy-to-integrate implementation
publicly available. Hence, for the sake of reproducibility we use the AMI
implementation adjusted mutual info score provided by scikit-learn.
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4.5. Metrics and Performance Measures

4.5.2. Average Community Clustering

In our experiments we employ the average community clustering (ACC) as a
measure of ”connectedness “within the communities of a network. Assume
an undirected and unweighted graph G(X , E) and an arbitrary clustering
Y on G as described in 2.1.2. The clustering coefficient [39] cG(α) of a node
α ∈ X with respect to the graph G is given as the number of triangles T(α)
including α normalized by the number of triangles if G was fully connected,
i.e.

cG(α) =
2 · T(α)

deg(α)(deg(α)− 1)
. (4.2)

The average clustering coefficient for the graph G is then given as

c̄G =
1
|X | ∑

α∈X
cG(α). (4.3)

Now let Gi denote the sub-graph

Gi = (Yi, Ei) where Ei = E ∩ {(α, β)|α 6= β; α, β ∈ Yi} (4.4)

induced by the community Yi ∈ Y . Then we define the community cluster-
ing coefficient of a module Yi as

c̄G(Yi) =
1
|Yi| ∑

α∈Yi

cGi(α) (4.5)

and finally the average community clustering of a graph G given the clus-
tering Y as

ACC(Y) = 1
|Y| ∑

Yi∈Y
c̄G(Yi). (4.6)

One can see that the ACC is bounded by 0 ≤ ACC(Y) ≤ 1, where a higher
ACC value indicates more densely connected communities (w.r.t internal
connections) and ACC(Y) = 1 if all communities in Y are cliques.
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4. Methods

In contrast to the mixing parameter and the modularity measure [12], the
ACC is not a global measure in the sense that it evaluates the existence of
communities and how well they are defined. Instead, we consider each com-
munity as an independent entity to see how well it is connected internally,
regardless of its external connections.

4.5.3. Mean Relative Error in the Number of Detected
Communities

We compute the mean relative error in the number of detected communities
(MRENDC) over a set of K realizations of benchmark graphs for a given
parameter set θ (i.e. parameters according to Table 4.3). Let Cθ

true,i denote the
true number of communities of the i-th benchmark graph realization and
let Cθ

i denote the number of communities detected by any of the examined
methods. Then the mean relative error is given as

ēθ =
1
K

K

∑
k=1

Cθ
i − Cθ

true,i

Cθ
true,i

. (4.7)

Note that this error is lower bounded by ēθ > −1 since any number of
(detected) communities will be a positive integer, i.e. Cθ

i ≥ 1 and Cθ
true,i ≥ 1

∀i, θ. Thus, an algorithm detecting always one community will stay within
an error bound of |ēθ| ≤ 100%.

4.5.4. Omega Index

The Omega index is a similarity measure for comparing two clusterings
with overlapping modules proposed in [40]. An Omega index close to 1
indicates high similarity whereas a index close to 0 reflects low similarity.
We consider two clusterings U , V as described in 2.1.2. Let NU ,V

k denote the
number of node pairs that occur exactly k times within a common cluster in
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4.5. Metrics and Performance Measures

both clusterings U and V . Then the non-adjusted Omega index writes

ω(U ,V) = 1

(N
2 )

∑
k

NU ,V
k . (4.8)

Adjusting for chance yields the Omega index

Ω(U ,V) = ω(U ,V)− E{ω(U ,V)}
1− E{ω(U ,V)} , (4.9)

where E{·} denotes the expectation operator with respect to a chosen
permutation model. For a detailed derivation we refer the interested reader
to [40]. In this work we use the Omega index implementation omega index

provided by clusim.

4.5.5. Overlapping Normalized Mutual Information

The overlapping normalized mutual information (ONMI) is a similarity
measure for comparing two clusterings with overlapping modules pro-
posed in [41]. ONMI values close to 1 indicate high similarity whereas a
values close to 0 reflect low similarity. We consider two clusterings U , V as
described in 2.1.2. Then we define the ONMI as

ONMI(U ,V) = 1− 1
2
[Hnorm(U|V) + Hnorm(V|U )], (4.10)

where Hnorm(·|·) indicates a normalization of the conditional entropy such
that Hnorm(·|·) ∈ [0, 1]. For a thorough discussion on how to compute
ONMI(U ,V) we refer the interested reader to [41]. In this work we use the
OMNI implementation onmi provided by clusim.
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5. Experiments

In this chapter we explore the behavior of synthesizing Infomap on a
set of toy graphs in Section 5.1. Furthermore, we compare the results of
standard Infomap and synthesizing Infomap with and without SCI on the
LFR benchmark in Section 5.2 and on a selection of real-world networks in
Section 5.3. We do so by utilizing the metrics described in Section 4.5.

5.1. Behavior on Toy Graphs

In this section we test our implementation of the synthesizing Infomap
objective by examining a selection of prototypical toy graphs. In particular
we consider the barbell graph in Section 5.1.1 and as a natural extension a
ring of cliques in Section 5.1.2. Lastly, we discuss a network of two connected
rings in Section 5.1.3. We restrict all graphs to be unweighted and undirected.
Moreover, we compare the observed behavior with the results achieved by
standard Infomap where insightful.

5.1.1. The Barbell Network

The barbell network is an undirected and unweighted graph G = (X , E)
consisting of two maximal cliques C1, C2 ⊂ X that are connected by a single
edge, i.e., |(C1 × C2) ∩ E| = 1. We further assume that the cliques are of
equal size, i.e. nc := |C1| = |C2|.
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Figure 5.1.: Sample barbell networks with nc = 5 nodes per clique. Nodes with the same
color and numbering belong to the same module. For ground truth we have
two modules, i.e. each clique is a module. The initial partition has 2 · nc = 10
modules (each node) and the maximal independent sets partition has nc = 5
modules. Synthesizing Infomap cannot escape the initial partition whereas
initialization with SCI always detects the ground truth communities.

We analyze the behavior of synthesizing Infomap by examining three par-
titions of interest (see Figure 5.1). Firstly, we define ground truth as the
partition Ytrue where each clique is a module, i.e. Ytrue = {C1, C2}. Secondly,
a partition Yinit = X where each vertex is a separate module. We note that
Infomap uses this partitioning as the initialization for optimization, hence
the subscript. Thirdly, a partition Yind into nc maximal independent sets
of cardinality two, i.e. Yind = {Si} where |Si| = 2, (Si × Si) ∩ E = {} and
Si ∩ Sj = {} for i, j ∈ {1, . . . , nc}.

Figure 5.2 shows the analytical objective as well as the implementation
results for the three examined partitions as a function of the clique size
nc. Apparently, the analytical objective for all three partitions approaches
some limit as nc increases. Indeed, for Yinit and Yind it is easy to see that
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5.1. Behavior on Toy Graphs

p1→1 = p2→2 = 0 and therefore

J (Yind) = J (Yinit) = − ∑
i∈Y

pi log(1− pi).

Now as nc → ∞ it follows that pi = pα → 1
N for Yinit and thus

lim
nc→∞

J (Yinit) = lim
nc→∞

− ∑
i∈Y

1
N

log
(

1− 1
N

)
= lim

nc→∞
− log

(
1− 1

N

)
= 0.

The limit for Yind can be reasoned along similar lines for pi → 1
nc

as nc →
∞.

For the ground truth partition Ytrue we have p1→1, p2→2 → 1 as nc → ∞.
Therefore,

lim
nc→∞

J (Ytrue) = − ∑
i∈Y

pi log(pi)

and since p1 = p2 = 1
2 we get

lim
nc→∞

J (Ytrue) = lim
nc→∞

−2 · 1
2

log
(

1
2

)
= 1.

Given these observations, using each node as a module initially appears to
be a reasonable starting point for optimization, as it tends to the minimum
achievable value of a function we aim to maximize. However, practical
experiments with synthesizing Infomap (see Figure 5.2) reveal that, for the
barbell network, our standard implementation cannot escape the initial
partition even for larger networks (nc > 1000). By utilizing the spectral
clustering initialization (SCI) as described in Section 4.3 our implementation
can correctly identify ground truth for all clique sizes.

5.1.2. A Ring of Cliques

The ring of cliques network is an undirected and unweighted graph G =
(X , E) consisting of c maximal cliques Ci ⊂ X for i ∈ {1, . . . , c}. Addition-
ally, each clique is connected to two neighboring cliques by exactly one edge
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Figure 5.3.: Sample ring of cliques networks with c = 3 cliques nc = 4 nodes per clique.
Nodes with the same color and numbering belong to the same community.
For ground truth we have three communities, i.e., each clique is a community.
The initial partition has c · nc = 12 communities (each node) and the maximal
independent sets partition has nc = 4 communities.

between any of their nodes, i.e. |(C1 × Cc) ∩ E| = |(Ci × Ci+1) ∩ E| = 1 for
i ∈ {1, . . . , c− 1}. Furthermore, the cliques are of equal size, i.e. nc := |Ci| =
|Cj| for all i, j ∈ {1, . . . , c}.

We again analyze the behavior of synthesizing Infomap by examining three
partitions of interest (see Figure 5.3). Firstly, we define ground truth as
the partition Ytrue where each clique is a module, i.e. Ytrue = {Ci} for
i ∈ {1, . . . , c}. Secondly, the partition Yinit = X . Thirdly, a partition Yind
into nc maximal independent sets of cardinality c, i.e. Yind = {Si} where
|Si| = c, (Si × Si) ∩ E = {} and Si ∩ Sj = {} for i, j ∈ {1, . . . , nc}.

Figures 5.4 and 5.5 show the analytical objective as well as the implementa-
tion results for the three examined partitions as a function of the clique size
nc. Again, the objective for all three partitions approaches specific limits. The
vanishing limits for J (Yinit) and J (Yind) can be obtained as in Section 5.1.1.
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5. Experiments

For J (Ytrue) we again assume

lim
nc→∞

J (Ytrue) = − ∑
i∈Y

pi log(pi).

However, now pi =
1
c for all i ∈ Y is independent of the clique size and

therefore

lim
nc→∞

J (Ytrue) = lim
nc→∞

−c · 1
c

log
(

1
c

)
= log c.

This matches the observed behavior in Figures 5.4 and 5.5.

Conducting experiments with varying parameter pairs {c, nc} present us
with the following observations. For networks with few cliques and suffi-
ciently many nodes per clique (e.g., {c = 4, nc = 30}), synthesizing Infomap
cannot escape the initial partition Yinit. Conversely, for networks with a
large number of small-sized cliques (e.g. {c = 32, nc = 3}) we do not arrive
at the ground truth partition either. Although synthesizing Infomap can
escape the initial partition, it still under-partitions the network as shown in
Figure 5.6. Since Infomap cannot identify the correct partitioning either, we
argue that for such edge cases the problem is ill-posed.

For balanced parameter sets {c, nc} synthesizing Infomap identifies the
cliques correctly. Using synthesizing Infomap with SCI we can uncover the
cliques as long as c / nc (cf. Figure 5.7). Otherwise, the variant with SCI
under-partitions the network and yields similar partitions as the variant
without SCI (e.g. Figure 5.6).

5.1.3. A Two Rings Network

The two rings network is an undirected and unweighted graph G = (X , E)
consisting of two rings of nodes C1, C2 ⊂ X of equal size, i.e. nc := |C1| =
|C2|. The rings are connected by a single edge, i.e. |(C1×C2)∩ E| = 1. Within
each ring a node is adjacent to exactly two neighboring nodes, i.e. the set
of edges is given as E = {(α, α + 1), α ∈ {1, . . . , N − 1}} ∪ {(1, nc), (nc +
1, N)}.
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Figure 5.6.: Ring of c = 32 cliques with nc = 3 nodes per clique classified by synthesizing
Infomap with standard initialization. Nodes with the same color and numbering
belong to the same community.

We analyze the behavior of synthesizing Infomap by examining four par-
titions of interest (see Figure 5.8). Firstly, we define ground truth as the
partition Ytrue = {C1, C2} where each ring is a module (Figure 5.8a. Sec-
ondly, again the partition Y = X (Figure 5.8b). Thirdly, a partition into
maximal independent sets. Here we distinguish between the cases nc even
(Figure 5.8c) and nc odd (Figure 5.8d). For even nc, we have a partition
Yind,even into two maximal independent sets of cardinality nc. For odd nc,
we have a partition Yind,odd into two independent sets of cardinality nc − 1
and an independent set of cardinality two. Fourthly, a partition Yc into
c modules per ring (2 · c modules in total) as depicted in Figure 5.8e, i.e.
Yc = {Si} where i ∈ {1, . . . , c}. The number of nodes in each module are
balanced, i.e., for all i it holds that |Si| ∈ {b(nc

c )c, b(nc
c )c+ 1}.

Figure 5.9 shows the analytical objective for the four examined partitions
as a function of the ring size nc. Again, the analytical objective for all four
partitions approaches specific limits. The limit limnc→∞ J (Yinit) = 0 can be
obtained as in Section 5.1.1. The objective for the maximal independent sets
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5.1. Behavior on Toy Graphs
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Figure 5.8.: Sample two rings networks with different partitions. All shown networks have
nc = 10 nodes per ring except for (d) where nc = 11. Nodes with the same
color and numbering belong to the same module.
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5. Experiments

can be computed as

J (Yind,α) = 1− log
(

1 +
2α

|E|

)
− 2α

|E| log
( |E| − 2α

|E|+ 2α

)
− 2α

|E|
where

|E| = 2nc + 1 and α =

{
0 if nc even,
1 if nc odd.

It is clear to see that J (Yind,even) = 1 and it is straightforward to show
that limnc→∞ J (Yind,odd) = 1. For any partition Yc into a finite number c of
modules per ring, one can show that

lim
nc→∞

J (Yc) = 1 + log(c).

For c = 2 and c = 4, the objective approaches the limits limnc→∞ J (Y2) = 2
and limnc→∞ J (Y8) = 4, respectively, as depicted in Figure 5.10. The ground
truth can be seen as a special case of a partition into c = 1 module per ring.
Thus, limnc→∞ J (Ytrue) = 1.

Notably, for the two rings network the partition into maximal independent
sets always yields a better objective than ground truth (cf. Figure 5.9).
However, our implementation never returns such a partition even for small
nc, as the (synthesizing) Infomap optimization algorithm by design does
not examine independent sets (cf. Section 3.2.3 and Appendix A.

For reasonably large rings (e.g. nc ≥ 10), synthesizing Infomap yields a
partition into d connected ring segments (cf. Figure 5.10), i.e. the resulting
partitions resemble our model description of a partition into c modules per
ring. Varying the number of modules c as depicted in Figure 5.11, one can
see that there is an optimal value c∗ maximizing the objective for a given
ring size nc. Indeed, synthesizing Infomap finds d ≈ 2c∗ partitions, closely
approximating the optimal number of partitions for Yc. For example, d =
[6, 9, 18, 32] for nc = [10, 20, 50, 100] respectively (cf. Figure 5.11). Standard
Infomap delivers the same type of partitioning with similar numbers of
partitions, e.g. for nc = [10, 20, 50, 100] we get d = [5, 8, 19, 31] respectively.
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5. Experiments

5.2. LFR Benchmark

In this section we report the benchmark results for three types of experi-
ments. First, we examine the AMI as a function of the mixing parameter
in Section 5.2.1 and secondly the MRENDC as a function of the mixing
parameter in Section 5.2.2. Thirdly, we look at the AMI as a function of the
network size in Section 5.2.3. Additionally, in these three experiments we
report the ACC for the generated benchmark networks. Finally, we compare
the results visually by plotting a network with the communities detected by
the different methods.

In our experiments we vary the mixing parameter µ in the range from 0.1
to 0.75. Lower values of µ provide no additional insight, as all detection
algorithms manage to identify all modules accurately in our setup. Since
we limit Nmax

c = 0.2N (see Table 4.3) in the benchmark graphs, theoretically
communities exist up to µ < 0.8 (cf. Section 2.2).

5.2.1. AMI as a Function of the Mixing Parameter

The results for AMI performances as a function of the mixing parameter are
shown in Figures 5.12, 5.13, 5.14 and 5.15. As can be seen, Infomap correctly
identifies the communities for sufficiently small values of µ, i.e. strong
community structures, and transitions to vanishing AMI values as µ→ 0.75
(cf. [5]). Interestingly, in contrast to [5], in our experiments the transition
interval is dependent on the network size. Whereas AMI performance
sharply drops for larger networks (e.g. Figure 5.15), it decreases gradually
for smaller networks (e.g. Figure 5.12). Moreover, the turning point rather
depends on the ACC than on the mixing parameter, occurring at a value of
ACC(Ytrue) ≈ 0.26 regardless of the network size.

The synthesizing Infomap variants show similar behavior to Infomap. How-
ever, transition happens smoothly and turning points occur at increasing
values of µ for increasing network sizes, i.e. for a fixed mixing parameter
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5.2. LFR Benchmark

AMI performance rises for larger network sizes (see Section 5.2.3). For suffi-
ciently large networks (e.g. N ≥ 600) both synthesizing Infomap variants
outperform Infomap in terms of AMI, whereas synthesizing Infomap with
SCI performs consistently better than the variant with standard initialization
for all network sizes.

5.2.2. MRENDC as a Function of the Mixing Parameter

The MRENDC values as a function of the mixing parameter are compared
in Figures 5.16, 5.17, 5.18 and 5.19. Infomap identifies the correct number
of communities for sufficiently small values of µ. Transition phases are
apparent in the MRENDC behavior as well, whereas the transition intervals
coincide with the respective intervals of the AMI behavior described in
Section 5.2.1. Again, the turning point much rather depends on the ACC
than on the mixing parameter, occurring at a value of ACC(Ytrue) ≈ 0.26
regardless of the network size. For small networks (see Figure 5.16), Infomap
transitions to MRENDC values in the vicinity of zero. In this case, Infomap
either over- or underestimates the number of communities, yielding small
MRENDC values on average. For the larger network sizes with N ≥ 600
nodes, Infomap predicts only a single community for all nodes, transitioning
to MRENDC values in range [−0.8,−0.95] depending on the true number
of communities.

The synthesizing Infomap variants correctly identify the number of com-
munities for sufficiently small values of µ as well. Smooth transitions occur
for increasing values of µ where, as for Infomap, the transition intervals
coincide with the ones in Section 5.2.1. During and after the transition
phases, both variants overestimate the number of communities, whereas
synthesizing Infomap with SCI consistently performs better. Interestingly,
MRENDC values after the transition approximately double with doubling
network size.
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5. Experiments

5.2.3. AMI as a Function of the Network Size

The results for AMI performances as a function of the network size are
shown in Figures 5.20, 5.21 and 5.22. Infomap correctly identifies com-
munities for sufficiently small values of µ and larger network sizes (see
Figure 5.20) and it fails to do so for increasing values of µ and larger network
sizes as in Figure 5.22. Here, a behavioral change occurs within a critical
region of the mixing parameter.

Regarding synthesizing Infomap variants, one can observe that regardless of
the mixing parameter the AMI performance rises with increasing network
size. Although counterintuitive at first, the behavior can be explained by
the average community clustering. As ACC increases with the network
size it resembles the AMI behavior very well. Again, synthesizing Infomap
consistently performs better that its standard variant.

5.2.4. Visual Comparison

In the following we display multiple partitions of a sample LFR benchmark
graph with N = 600 nodes and a mixing parameter of µ = 0.35. Figure 5.23

shows the nine ground truth modules as given by the benchmark generation.
The resulting partition for Infomap is visualized in Figure 5.24. As can be
seen, Infomap yields a single community including all nodes. Partitions for
synthesizing Infomap with and without SCI are given in Figure 5.25 and
Figure 5.26 respectively, where we aggregate nodes that are not members of
the nine largest detected modules into a common residual module. For this
sample graph, synthesizing Infomap reasonably uncovers seven out of the
nine ground truth communities whereas the variant with SCI detects eight
out of nine.

Interestingly, smaller communities are uncovered with greater accuracy than
larger communities, where at first this behavior seems counter-intuitive.
Nevertheless, we explain the phenomenon in the following way. Consider an
undirected graph G with only two modules Y = {Y1,Y2} where |Y1| = 10,
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5. Experiments

|Y2| = 20 and Y1 is a maximal clique. Further, assume a fixed mixing
parameter µ = 0.1 for all nodes, corresponding to a strong community
definition according to [4]. The internal degree of any node α ∈ Y1 is
kint = |Y1| − 1 = 9. Hence, the total number of outgoing links for Y1 can be
computed from Equations (2.11)–(2.13) as

kext
Y1

= ∑
α∈Y1

kext
α =

µ

1− µ ∑
α∈Y1

kint
α = 10. (5.2)

Since there are only two communities in our example, it holds that

kext
Y2

= kext
Y1

(5.3)

and therefore

kint
Y2

=
1− µ

µ
kext
Y2

=
1− µ

µ
kext
Y1

= kint
Y1

= 90, (5.4)

i.e. the total internal degree of the smaller community Y1 limits the total
internal degree of the larger community Y2. Whereas in our example Y1
is already fully connected internally, Y2 only has 45 out of 190 possible
internal edges and is thus less well connected internally. For the community
clustering coefficients it follows that c̄G(Y2) < c̄G(Y1) = 1 as long as Y2 is
larger than Y1. We note that the global mixing parameter cannot be achieved
by all nodes in Y2 but only as a community average.

Transferring these observations to the LFR benchmark graphs, in order to
achieve a global mixing parameter, larger communities have to “adapt” their
internal degrees to match the internal degrees of the smaller communities
in the network. Therefore, smaller communities will be more strongly con-
nected internally than larger communities and thus be easier to detect. Hence
we argue that, although the mixing parameter is decisive of the existence
of a community, its discoverability rather depends on the actual connected-
ness within the community, which can be measured using the community
clustering coefficient.
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5.3. Real-World Networks

Original network Reduced network

Network # nodes # edges # nodes # edges Nc

com-Amazon 334, 863 925, 872 16, 716 48, 739 13

com-DBLP 317, 080 1, 049, 866 93, 432 335, 520 22

com-LiveJournal 3, 997, 962 34, 681, 189 84, 438 1, 521, 988 28

com-Youtube 1, 134, 890 2, 987, 624 39, 841 224, 235 15

Table 5.1.: Properties of the examined real-world networks. We report network sizes for
the original and the reduced networks. Additionally, we provide the average
community size Nc of the reduced networks.

5.3. Real-World Networks

We compare Infomap and synthesizing Infomap on a selection of real-world
networks taken from the SNAP network dataset collection [31]. Specifically,
we limit our experiments to networks with given ground-truth communities,
originally provided by the work in [42]. Since the ground truth communities
are overlapping, we compare the methods using ONMI, Omega index and
RENDC. We compute these metrics with respect to the top 5000 communities
(see [42] for ranking details) on reduced networks. We reduce a given
network by removing all nodes from the network that are not included in
any of the top 5000 communities. Network properties are given in Table 5.1.
The results of our experiments are summarized in Table 5.2.

As can be seen, the results of Infomap and synthesizing Infomap are close
to each other on all tested networks. In fact, synthesizing Infomap scores
equally or slightly better regarding the Omega Index, and performs worse
with respect to ONMI only on the com-Youtube network. RENDC values stay
below 100% in all test cases. These results indicate that synthesizing Infomap
is a suitable method to uncover communities on real-world networks.
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5. Experiments

Infomap
(reduced network)

Synthesizing Infomap
(reduced network)

Network RENDC ONMI OI RENDC ONMI OI

com-Amazon −0.72 0.89 0.35 −0.72 0.90 0.37

com-DBLP 0.21 0.47 0.01 0.19 0.47 0.01

com-LiveJournal −0.32 0.88 0.60 −0.35 0.88 0.66

com-Youtube −0.50 0.52 0.19 −0.39 0.43 0.21

Table 5.2.: Comparison of Infomap and synthesizing Infomap results achieved on re-
duced real-world networks. We report RENDC, overlapping mutual information
(ONMI) and Omega index (OI) values with respect to the top 5000 communities.
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6. Conclusion and Future Work

In this final chapter we summarize the main findings of this thesis in
Section 6.1 and give an outlook on potential future extensions and research
questions in Section 6.2.

6.1. Summary

This thesis presents synthesizing Infomap, which is a novel, Kullback-Leibler
divergence-based method for community detection. Our work comprises
the following main points.

We integrated the synthesizing Infomap objective into the existing Infomap
software package, considering issues regarding numerical stability and
making the extended functionality available via the command line inter-
face. The modified framework is publicly accessible in our repository at
https://github.com/chritoth/infomap. Hence, we provide a ready-to-use
implementation of the synthesizing Infomap objective for the further eval-
uation of this approach and any potential application as a community
detection method to real-world networks.

To this end, we extensively evaluated our implementation in experiments
on artificially generated LFR benchmark graphs. Our results show that
our method performs on par with Infomap on networks with strong com-
munity structure and outperform Infomap as the community structure of
the networks weakens. Furthermore, we observe that the performance of
our method is not dictated by the network size as such, but rather on the
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internal “connectedness” of the communities in the network. We argue that
the mixing parameter serves as a measure for the existence of communities
in a network, whereas our defined average community clustering governs
their detectability. On a selection of real-world networks we perform on par
with Infomap, proving that our method is applicable to real-world tasks.

Additionally, we provide fundamental bounds of the synthesizing Infomap
objective and we explore basic behavior of the optimization procedure by
looking a set of prototypical toy graphs. Our findings indicate that the
synthesizing Infomap objective is characterized by local minima in the form
of maximal independent sets, depending on the network structure. However,
as the search algorithm does not assemble independent sets by design,
this does not impact our application to community detection as discussed
in this thesis. To mitigate initialization issues connected to independent
sets, an alternative initialization strategy based on spectral clustering was
proposed.

Lastly, we provide a complete derivation of synthesizing Infomap and
position our method within the related scientific literature.

6.2. Future Work

The promising performance of synthesizing Infomap in our experiments
calls for further evaluation, especially regarding the applicability on real-
world networks. However, as many real-world networks exhibit highly
overlapping or hierarchical community structure, an generalized formula-
tion of synthesizing Infomap to serve such network properties is a highly
relevant future extension of the method. Additionally, exploring a synthetic
random walk model with higher-order Markov dynamics, similar to [14],
may yield an interesting functional expansion. Furthermore, we have yet to
further study and exploit local optimality of synthesizing Infomap regarding
maximal independent sets as an application to multipartite graphs. The
design of an alternative search algorithm for such a scenario could pose an
interesting field of work.
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6.2. Future Work

In order to evaluate community detection methods on artificially generated
benchmark graphs the LFR benchmark is widely used within the scientific
literature. In our experiments, we observed that the number of nodes in the
network as a primary parameter to the generation routine limits the ability to
generate benchmark networks with specific community properties. In more
detail, fundamental network parameters as the number of communities and
their sizes cannot be fixed but are a result of network size and distribution
parameters. We argue that when testing community detection algorithms
what we want to specify in a benchmark graph is exactly the fundamental
parametrization of communities in the network, as this would improve
the variance of simulation results and hence enable a more objective and
efficient comparison of individual community detection methods. In our
opinion, the design of a benchmark providing such features could would be
a worthwhile endeavor to the scientific community.
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Appendix A.

Implementation Details

In this appendix we document different aspects of our synthesizing Infomap
implementation. Since we integrated the synthesizing Infomap objective
into the existing Infomap framework [8], we first give a compact overview
of the Infomap software package and its functionality in Section A.1. Sec-
ondly, we summarize the integration process of our synthesizing Infomap
in to the existing Infomap framework in Section A.2. Lastly, we explain
implementation strategies regarding the numerical stability of our objective
function in Section A.3. The modified framework used in the course of this
work can be found at https://github.com/chritoth/infomap.

A.1. The Infomap Software Package in a Nutshell

Infomap is a well-known software package for community detection, able
to analyze a broad range of different network types (directed vs. undi-
rected, weighted vs. unweighted) and community structures (two-level
vs. multi-level hierarchies, overlapping vs. non-overlapping communities).
Infomap is implemented in the C++ programming language and its func-
tionality is accessible via a command line interface (CLI). The CLI provides
numerous options, e.g. for the mode of operation and optimization hyper-
parameter tweaking. In our experiments we setup Infomap for undirected
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(--undirected) networks with a two-level hierarchy (--two-level). We do
not specify any optimization hyper-parameters using the CLI.

As discussed in Section 2.3, Infomap tries to extract the community structure
of a given network by finding a suitable partition that minimizes the map
equation (see Equation (2.16)). Since finding the optimal partition is a hard
problem, Infomap employs a sophisticated search algorithm to find good
solutions. In the following we will briefly describe the two-level search
procedure.

The Infomap search algorithm can be described by a core algorithm and
two tuning mechanisms as follows.

• Core Algorithm: In the core algorithm neighboring modules are re-
peatedly joined to form a reasonable partition, serving as a starting
point for the tuning mechanisms. Initially, each node serves as its
own module. In a first iteration each node repeatedly joins with a
neighboring modules such that the resulting decrease of the map
equation is maximal. In case no improvement is possible by moving
a specific node, it stays in its module. This process is run until no
further improvements are achieved. The resulting modules serve as
nodes in the next iteration and the merging process as described above
is repeated. This hierarchical clustering process is repeated until no
further decrease of the map equation is achieved.

• Coarse Tuning: Assume a partition Y provided by the core algorithm. In
the coarse tuning procedure each module Yi ∈ Y within this partition
is considered an independent network. Applying the core algorithm to
the modules yields a partition Z into sub-modules Zi for each module
Yi. Then the core algorithm is re-applied to the original network with
partition Y whereas now the sub-modules Zi are movable between
the modules Yi.

• Fine Tuning: Assume a partition Y provided by the core algorithm.
Then, in the fine tuning procedure, each node α ∈ X of the original
network is considered to be a separate module. The core algorithm is
reapplied to the original network with partition Y whereas now single
nodes are movable between the modules Yi ∈ Y .
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Coarse and fine tuning procedures are repeated sequentially until no fur-
ther improvements are achieved, resulting in the (approximately) optimal
partition with respect to the map equation.

A.2. Integration of the Synthesizing Infomap
Objective

We integrated the synthesizing Infomap objective J (Y) (see Equation (3.7))
into the existing Infomap software package, motivated by two main rea-
sons. First, Infomap has already implemented and tested input/output
mechanisms, a CLI, and a practical search algorithm. By reusing these fea-
tures the lengthy process of implementing a whole software package from
scratch could be circumvented in favor of experiments. Secondly, the com-
mon optimization algorithm enables better comparability of the Infomap
and synthesizing Infomap objectives. The synthesizing Infomap objective is
available via the CLI option --altmap.

Infomap provides the possibility of passing an initial clustering for a given
network via the CLI option --cluster-data <cluster-file>. We use this
option in our experiments to pass a pre-computed spectral clustering to
Infomap, as we did not implement a spectral clustering initialization into
the Infomap framework itself.

As Infomap minimizes the map equation and synthesizing Infomap poses
a maximization problem, we minimize the negative synthesizing Infomap
objective −J (Y) in the implementation. Since original Infomap already
computes the marginal and joint probabilities of the process on the net-
work modules as described in Section 2.1.3, it is convenient to reuse these
quantities. Indeed, we can express the synthesizing Infomap objective solely
in terms of marginal and joint probabilities by rewriting Equation (3.7) as
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Filename Modifications

Config.h add --altmap option
Infomap.cpp add --altmap option
InfomapBase.cpp correct compression rate for negative cost
InfomapGreedyCommon.h implement synthesizing Infomap objective
InfomapGreedySpecialized.h implement synthesizing Infomap objective

Table A.1.: Files modified in the integration process including the respective changes.

follows.

J (Y) = ∑
i∈Y

piD(pi→i‖pi) (A.1a)

= ∑
i∈Y

pi pi→i log
pi→i

pi
+ pi pi 6→i log

pi 6→i

1− pi
(A.1b)

= ∑
i∈Y

pi,i log
pi,i

p2
i
+ pi,¬i log

pi,¬i

pi p¬i
(A.1c)

= ∑
i∈Y

pi,i log pi,i − 2 · pi,i log pi + pi,¬i log pi,¬i − pi,¬i log pi p¬i

(A.1d)

Modifications to any files in the original Infomap framework are listed in
Table A.1.

A.3. Implementation Strategies regarding
Numerical Stability

From the implemented form of the synthesizing Infomap objective in Equa-
tion (A.1d) it is apparent that numerical issues may arise for any of the
logarithm arguments vanishing. Looking at an arbitrary module i we con-
sider the three possible cases for the marginal pi as follows.
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1. pi = 1: For the marginal probability to be pi = 1 a random walker
must spend all the time moving withing module i. Hence, also the
joint probability pi,i = 1. It is easy to see, that for pi,i = pi pi→i = 1
also pi = 1. Therefore, pi = 1 ⇐⇒ pi,i = 1. Moreover, pi = 1∧ pi,i =
1 =⇒ pi,¬i = 0. A single module contribution to Equation A.1d
therefore is evaluated as

J (Yi) = pi,i log pi,i −2 · pi,i log pi +pi,¬i log pi,¬i −pi,¬i log pi p¬i

= 1 log 1 −2 · 1 log 1 +0 log 0 −0 log(1 · 0)
= 0

where we set 0 log 0 = limx→0 x log x = 0.
2. pi = 0: For pi = 0 it trivially follows that pi,i = pi,¬i = 0, i.e. a random

walker never visits module i. Thus, the contribution of module i is

J (Yi) = pi,i log pi,i −2 · pi,i log pi +pi,¬i log pi,¬i −pi,¬i log pi p¬i

= 0 log 0 −2 · 0 log 0 +0 log 0 −0 log(0 · 1)
= 0.

3. 0 < pi < 1: For 0 < pi < 1 the only critical terms ins the objective
are pi,i log pi,i and pi,¬i log pi,¬i. However, as pi,i → 0 (module i is
an independent set) also pi,i log pi,i → 0 and similarly as pi,¬i → 0
(module i is absorbing; not feasible for pi < 1) pi,¬i log pi,¬i → 0

The considerations above have been incorporated into the implementation.
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Appendix B.

Connections of Synthesizing
Infomap to Previous Work

In this section we give several connections our proposed synthesizing In-
fomap objective to related scientific areas. In Section B.1 we present a further
relaxation of Problem 1 and list its connection to Markov aggregation and
random walk-based clustering. In Section B.2 locate synthesizing Infomap
within the scientific literature around Markov aggregation. Finally, in Sec-
tion B.3 we relate our approach to stochastic block modeling.

B.1. A Relaxation and its Connection to Related
Work

We present the following relaxation for the sake of completeness, although
it does not affect our experimental sections. However, this relaxation allows
to bring our work in context with other existing information-theoretic
approaches to community detection and to the aggregation of Markov
chains.

We relax the optimization problem (3.2) by admitting not only one multi-
nomial distributions over modules [ui]i∈Y , but one distribution [vi

j]j∈Y\{i}
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for each module Yi. Here, vi
j denotes the probability that, if the random

walker leaves module Yi, the next visited module will be Yj. The transition
probability matrix QY = [qα→β]α,β∈X characterizing the relaxed random
walker is hence given by

qα→β =


rm(β)

β (1− sm(α)) for m(α) = m(β),

rm(β)
β sm(α) vm(α)

m(β)
for m(α) 6= m(β).

(B.1)

We can now state the relaxed problem accordingly.

Problem 3. Let G = (X , E, W) be a graph and let P ∼W be a transition
probability matrix derived from the weight matrix W. Moreover, let QY

denote a transition probability matrix dependent on some partition Y
as described in (3.1). We then want to find an optimal distribution Y∗,
subject to

Y∗ ∈ arg min
Y

[
min

{[ri
α]α∈i, si, [vi

j]j∈Y\{i}}i∈Y
D(P‖QY )

]
. (B.2)

In Appendix C.3 we prove that the minimization with respect to the param-
eters of QY yields the following proposition.

Proposition 1. Let {Xt} be a stationary Markov chain with transition proba-
bility matrix P derived from the weight matrix W of the graph G and let QY

be a transition probability matrix of the same size parameterized as in (3.1).
Additionally, let Yt = m(Xt). Then, for every partition Y , it holds that

min
{[ri

α]α∈i, si, [vi
j]j∈Y\{i}}i∈Y

D(P‖QY ) = I(Xt; Xt−1)− I(Yt; Yt−1). (B.3)
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B.2. Relationship with Cost Functions for Markov Aggregation

The alternative objective for the relaxation according to Problem 3 therefore
reads

J̃ (Y) := I(Yt; Yt−1). (B.4)

By the data processing inequality, I(Yt; Yt−1) increases under refinements of
the partition. Indeed, the trivial partition in which every state is a module
maximizes I(Yt; Yt−1) to I(Xt; Xt−1). Hence, this objective function cannot
be used to determine the number of communities (other than by using
an “elbow rule” as in [43, Fig. 8]). This objective function has furthermore
appeared in Markov aggregation (see Section B.2) and random walk-based
clustering [44].

B.2. Relationship with Cost Functions for Markov
Aggregation

Markov aggregation is concerned with replacing a Markov chain {Xt} on a
large state space X by another Markov chain {Yt} on a significantly smaller
state space Y . Several authors have proposed using the Kullback-Leibler
divergence rate as a cost function for Markov aggregation [43, 45, 46, 47].
Specifically, for the task of comparing two Markov chains with different state
spaces, the authors of [43] proposed “lifting” the aggregated Markov chain
{Yt} to the original state space X . Let P = [pα→β]α,β∈X and Q = [qi→j]i,j∈Y
denote the transition probability matrices of the Markov chains {Xt} and
{Yt} respectively. Then the authors defined a Markov chain {X•t } on X with
transition probability matrix P• = [p•α→β]α,β∈X defined by

p•α→β =
pα

∑α∈Ym(α)
pα•

qm(α)→m(β) (B.5)

and thus formulated the Markov aggregation problem as one of finding an
aggregation function m: X → Y that minimizes D(P‖P•). If the transition
probability matrix Q is equivalent to the one-step conditional probabilities
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of the process {m(Xt)}, then one can show that minimizing D(P‖P•) is
equivalent to maximizing I(Yt; Yt−1). In other words, our relaxed utility
function for community detection from Proposition 1 is equivalent to the
cost function for Markov aggregation proposed by [43].

The authors of [43] have argued that maximizing I(Yt; Yt−1) aims at finding
modules such that the process {Yt} on the modules is “predictable”. This
has been made precise in [48, Sec. IV.B] by connecting this objective function
with the error probability of estimating the next module to which the
random walker moves. Indeed, [43] reports success mainly for Markov
chains that are “nearly completely decomposable”, i.e. the transition graph
of such Markov chains displays a clear community structure. It has further
been shown that a relaxation of maximizing I(Yt; Yt−1) for only two modules
is connected to the spectral theory of Markov chains [43, Sec. IV.B]. The
authors further showed that the transition probability matrix Q minimizing
the problem in Proposition 1 is such that qβ = pβ, i.e. the processes {X•t }
and {Xt} have the same invariant distribution [43, Th. 2]. Finally, the authors
of [47] give yet another justification for maximizing I(Yt; Yt−1). Maximizing
this objective strikes a perfect balance between two operational goals for
Markov aggregation [47, Lemma 4]. On the one hand, the process {Yt} on
the modules should be close to a Markov chain (but not necessarily for
every initial distribution) and, on the other hand, it should retain most of
the temporal dependence structure of the original Markov chain {Xt}.

In contrast to this, the authors of [45] have proposed a cost function based
on a sufficient condition for strong lumpability, i.e. the requirement that
{Yt} = {m(Xt)} is a Markov chain for every initial distribution. Similarly,
their cost function can be written as the Kullback-Leibler divergence rate
between the original Markov chain, and a (different) lifting of the aggregated
Markov chain with transition probability matrix Q•. The resulting cost
function

H(Yt|Yt−1)− H(Yt|Xt−1) (B.6)

was shown to be a lower bound of our relaxed objective (B.4). Hence, the
lifting proposed by [45] is expected to yield a closer approximation of the
original transition probability matrix P (or equivalently, of the original
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process {Xt}). In contrast to this, Corollary 2 shows that synthesizing
Infomap gives an upper bound on I(Xt; Xt−1)− I(Yt; Yt−1). Therefore, Q
in (3.1) is assumed to be a worse fit to P than both Q in (B.1) and P′ as
proposed by the lifting in [45].

The link between Markov chains and community detection is prominent
and well-known. The preceding discussion displays an even stronger link
between our proposed cost function for community detection and the lit-
erature on Markov aggregation with information-theoretic cost functions.
In both [43, 45] and our Problem 2, the Kullback-Leibler divergence rate
between the transition probability matrix P of the original Markov chain (or
random walk on the considered graph) and an approximation is used as
a cost function. Furthermore, the resulting cost functions can be shown to
form an ordered set. The main difference between our Problem 2 on the one
hand and [43, 45] on the other is that the transition probability matrix Q
used in the Kullback-Leibler divergence rate is not obtained via lifting the
one-step conditional probabilities of the process {m(Xt)}.

B.3. Relationship to Stochastic Block-Modeling

The definition of Q in (3.1) and of the optimization problem (3.2) are remi-
niscent of stochastic block-modeling under Kullback-Leibler divergence. The
main difference is that in stochastic block-modeling, one tries to infer model
parameters such that the likelihood of a given graph is maximized without
first transforming this graph into a probabilistic model via for example a
random walker. In other words, block-modeling infers the parameters of a
random graph model by maximizing the likelihood for a given graph. Here,
in contrast, we infer the parameters of a restricted random walk model
that resembles the probabilistic behavior of a random walker on the given
graph.
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Proofs

In this appendix we provide proofs which we withheld in the main part of
this thesis for the sake of readability. In Section C.1 we prove the feasibility
of the relaxation of Problem 1 into Problem 2. We show the local optimality
of maximal independent sets as a coarsening of independent subsets in
Section C.2. Finally, we prove Proposition 1 in Section C.3.

C.1. Relaxation of Problem 1

Proposition 2. Let {Xt} be a stationary Markov chain with transition proba-
bility matrix P derived from the weight matrix W of the graph G and let QY

be a transition probability matrix of the same size parameterized as in (3.1).
Then, for every partition Y , it holds that

min
{[ri

α]α∈i, si, ui}i∈Y
D(P‖QY ) ≤ I(Xt; Xt−1)− ∑

i∈Y
piD(pi→i‖pi) (C.1)

where pi and pi→i are defined as in (2.5).

89



Appendix C. Proofs

Proof 1. Let pα→i := ∑β∈i pα→β and pα 6→i := ∑j 6=i pα→j = 1 − pα→i.
Then from (3.1) follows that

D(P‖QY ) = ∑
α,β

pα pα→β log
pα→β

qα→β

= ∑
α,β

pα pα→β

Im(α)(β) log
pα→β

rm(β)
β (1− sm(α))

+(1− Im(α)(β)) log
pα→β

rm(β)
β sm(α)

um(β)

1−um(α)



= ∑
j

∑
α

∑
β∈j

pα pα→β log

pα→β

pα→j

rj
β

+∑
i

∑
α∈i

pα pα→i log
pα→i

1− si

+∑
i

∑
j 6=i

∑
α∈i

pα pα→j log
pα→j

si
uj

1−ui

= ∑
j

∑
α

∑
β∈j

pα pα→β log

pα→β

pα→j

rj
β

+ ∑
i

∑
j 6=i

∑
α∈i

pα pα→j log

pα→j
pα 6→i

uj
1−ui

+∑
i

∑
α∈i

pα pα→i log
pα→i

1− si
+ ∑

i
∑
α∈i

pα pα 6→i log
pα 6→i

si

= ∑
j

∑
α

∑
β∈j

pα pα→β log

pα→β

pα→j

rj
β

+ ∑
i

∑
j 6=i

∑
α∈i

pα pα→j log

pα→j
pα 6→i

uj
1−ui

+∑
i

∑
α∈i

[
pα pα→i log

pα pα→i

pα(1− si)
+ pα pα 6→i log

pα pα 6→i

pαsi

]
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= ∑
j

∑
α

∑
β∈j

pα pα→β log

pα→β

pα→j

rj
β

+ ∑
i

∑
j 6=i

∑
α∈i

pα pα→j log

pα→j
pα 6→i

rj
1−ri

+∑
i

D(pα pα→i‖pα(1− si)).

(C.2)

We can now independently minimize the first summation term w.r.t
{[rj

β]β∈j}j∈Y , the second summation term w.r.t [ui]i∈Y , and the last
summation term w.r.t [si]i∈Y . Considering the latter, one can show [15,
Lemma 10.8.1] that the Kullback-Leibler divergence D(pα pα→i‖pα(1−
si)) is minimized for

1− si = ∑
α∈i

pα pα→i = pi→i (C.3)

and hence

si = 1− pi→i = pi 6→i. (C.4)

The minimizer regarding the distribution over nodes can be found
along similar lines. For the first summation term in (C.2) we observe
that

∑
j

∑
α

∑
β∈j

pα pα→β log

pα→β

pα→j

rj
β

= ∑
j

∑
α

pα pα→j ∑
β∈j

pα→β

pα→j
log

pα→β

pα→j

rj
β

= ∑
j

pj ∑
α

pα pα→j

pj
∑
β∈j

pα→β

pα→j
log

pα→β

pα→j

rj
β
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= ∑
j

pj ∑
α

pα pα→j

pj
∑
β∈j

pα→β

pα→j
log

pα pα→β

pj
pα pα→j

pj
rj

β

= ∑
j

pj ∑
α

∑
β∈j

pα pα→j

pj

pα→β

pα→j
log

pα pα→β

pj
pα pα→j

pj
rj

β

= ∑
j

pjD(
pα pα→j

pj
· pα→β

pα→j
‖ pα pα→j

pj
· rj

β)

and by again employing [15, Lemma 10.8.1], for a fixed module j this
quantity is minimized for

rj
β = ∑

α

pα pα→β

pj
=

pβ

pj
= P(Xt = β|Yt = j). (C.5)

Applying these minimizers yields

min
{[ri

α]α∈i, si, ui}i∈Y
D(P‖QY ) = min

[ui]i∈Y
I(Xt; Xt−1)− H(Yt) + H(St|Yt)

−∑
i

∑
j 6=i

pi pi→j log
uj

1− ui
(C.6)

where St = 1 is a binary RV reflecting whether we stay in or leave a
module at time t. Since for the distribution over modules [ui]i∈Y there
exists no closed-form solution to the best of our knowledge, we choose
[ui]i∈Y = [pi]i∈Y as a sub-optimal solution. In other words, we utilize
the stationary distribution of {Yt}. Inserting this choice finally yields

min
{[ri

α]α∈i, si, ui}i∈Y
D(P‖QY ) ≤ I(Xt; Xt−1)−∑

i
piD(pi→i‖pi). (C.7)
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Corollary 1. From the non-negativity of the Kullback-Leibler divergence,
Kullback-Leibler divergence rate and the mutual information it follows trivially,
that

0 ≤ ∑
i∈Y

piD(pi→i‖pi) ≤ I(Xt; Xt−1). (C.8)

C.2. Behavior of Coarsenings of Independent Sets

Proposition 3. Let Y = {Y1, . . . ,YM} be partition into (not exclusively
maximal) independent sets of a graph G = (X , E, W). Consider further a
coarsening Y• = {Y•1 , . . . ,Y•M} of Y such that each module in Y• is a
maximal independent set. Then, for every partition Y it holds that

J (Y•) > J (Y). (C.9)

Proof 2. Let

f (Yi) := piD(pi→i‖pi) (C.10)

denote the contribution to the synthesizing Infomap objective J (Y) =
∑Yi∈Y f (Yi) (cf. Equation (3.7)) for a given module Yi. If Yi is an inde-
pendent set it holds that pi→i = 0 and therefore f (Yi) reduces to

find(Yi) = −pi log(1− pi). (C.11)

It is clear to see, that

find(Yi) > find(Yj) if pi > pj (C.12)
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for the marginal probabilities 0 < pi, pj < 1. For a union of two
independent sets Yi and Yj into a larger independent set the objective
reads

find(Yi ∪ Yj) = −(pi + pj) log[1− (pi + pj)] (C.13)

= −pi log[1− (pi + pj)]− pj log[1− (pi + pj)]. (C.14)

Now, since

−pi log[1− (pi + pj)] > −pi log(1− pi) = find(Yi) (C.15)

and

−pj log[1− (pi + pj)] > −pj log(1− pj) = find(Yj) (C.16)

it further holds that

find(Yi ∪ Yj) > find(Yi) + find(Yj). (C.17)

It follows for a maximal independent set

Y•i =
⋃
Yi∈Y•i

Yi (C.18)

that

find(Y•i ) > ∑
Yi∈Y•i

find(Yi) (C.19)

where {Yi}Yi∈Y•i are independent subsets of Y•i . Hence,

J (Y•) = ∑
Y•i ∈Y•

find(Y•i ) > ∑
Yi∈Y

find(Yi) = J (Y) (C.20)

if Y• is a coarsening of Y .
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C.3. Proof of Proposition 1

Proof 3. Reusing intermediate results from Proof 1 we can minimize
w.r.t {[vi

j]j∈Y\{i}}i∈Y by looking at the second summation term of Equa-
tion (C.2).

∑
i

∑
j 6=i

∑
α∈i

pα pα→j log

pα→j
pα 6→i

vi
j

= ∑
i

∑
α∈i

pα pα 6→i ∑
j 6=i

pα→j

pα 6→i
log

pα→j
pα 6→i

vi
j

= ∑
i

pi pi 6→i ∑
α∈i

pα pα 6→i

pi pi 6→i
∑
j 6=i

pα→j

pα 6→i
log

pα→j
pα 6→i

vi
j

= ∑
i

pi pi 6→i ∑
α∈i

pα pα 6→i

pi pi 6→i
∑
j 6=i

pα→j

pα 6→i
log

pα pα→j
pi pi 6→i

pα pα 6→i
pi pi 6→i

vi
j

= ∑
i

pi pi 6→iD(
pα pα 6→i

pi pi 6→i
· pα→j

pα 6→i
‖ pα pα 6→i

pi pi 6→i
· vi

j).

Again using [15, Lemma 10.8.1], the Kullback-Leibler divergence attains
its minimum for

vi
j = ∑

α∈i

pα pα 6→i

pi pi 6→i

pα→j

pα 6→i
=

pi→j

pi 6→i
(C.21)

= P(Yt = j|Yt−1 = i, Yt 6= i). (C.22)

for a fixed module i. Recapitulating Equation (C.6) we have

min
{[ri

α]α∈i, si, [vi
j]j∈Y\{i}}i∈Y

D(P‖QY ) = min
{[vi

j]j∈Y\{i}}i∈Y
I(Xt; Xt−1)

−H(Yt) + H(St|Yt)−∑
i

∑
j 6=i

pi pi→j log vi
j (C.23)
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and inserting the result from Equation (C.21) finally yields

min
{[ri

α]α∈i, si, [vi
j]j∈Y\{i}}i∈Y

D(P‖QY ) = I(Xt; Xt−1)− I(Yt; Yt−1). (C.24)

Corollary 2. Since the optimization problem (B.2) has a larger feasible set
than (3.2) it holds that

I(Xt; Xt−1)− I(Yt; Yt−1) ≤ I(Xt; Xt−1)− ∑
i∈Y

piD(pi→i‖pi). (C.25)

This implies

J (Y) ≤ I(Yt; Yt−1), (C.26)

which presents a different upper bound of the synthesizing Infomap objec-
tive (3.7).
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NumPy Array: A Structure for Efficient Numerical Computation.”
In: Computing in Science & Engineering 13.2 (2011), pp. 22–30. doi:
10.1109/MCSE.2011.37. url: https://aip.scitation.org/doi/abs/
10.1109/MCSE.2011.37 (cit. on p. 26).

[26] Wes McKinney. “pandas: a foundational Python library for data anal-
ysis and statistics.” In: Python for High Performance and Scientific Com-
puting 14 (2011) (cit. on p. 26).

[27] Ulrike Luxburg. “A Tutorial on Spectral Clustering.” In: Statistics
and Computing 17.4 (Dec. 2007), pp. 395–416. issn: 0960-3174. doi:
10.1007/s11222-007-9033-z. url: http://dx.doi.org/10.1007/
s11222-007-9033-z (cit. on p. 26).

[28] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. “On Spectral Cluster-
ing: Analysis and an Algorithm.” In: Proceedings of the 14th International
Conference on Neural Information Processing Systems: Natural and Syn-
thetic. NIPS’01. Vancouver, British Columbia, Canada: MIT Press, 2001,

100

https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://networkx.github.io
https://doi.org/10.1101/410084
https://www.biorxiv.org/content/early/2018/09/06/410084
https://www.biorxiv.org/content/early/2018/09/06/410084
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2011.37
https://aip.scitation.org/doi/abs/10.1109/MCSE.2011.37
https://aip.scitation.org/doi/abs/10.1109/MCSE.2011.37
https://doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1007/s11222-007-9033-z


Bibliography

pp. 849–856. url: http://dl.acm.org/citation.cfm?id=2980539.
2980649 (cit. on p. 26).

[29] Jianbo Shi and J. Malik. “Normalized cuts and image segmentation.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22.8
(Aug. 2000), pp. 888–905. doi: 10.1109/34.868688 (cit. on p. 26).

[30] Wayne W. Zachary. “An Information Flow Model for Conflict and
Fission in Small Groups.” In: Journal of Anthropological Research 33.4
(1977), pp. 452–473. doi: 10.1086/jar.33.4.3629752. url: https:
//doi.org/10.1086/jar.33.4.3629752 (cit. on p. 27).

[31] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. June 2014 (cit. on
pp. 27, 28, 69).
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