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Abstract

�e arti�cial classi�cation of audio samples to an abstraction of the recorded

location (e.g., Park, Public Square, etc.), denoted as Acoustic Scene Classi�cation

(ASC), represents an active �eld of research, popularized, inter alia, as part of the

Detection and Classi�cation of Acoustic Scenes and Events (DCASE) challenge.

Nevertheless, we are more concerned to arti�cially assign audio samples directly to

the location of origin, i.e., to the location where the recording of the corresponding

audio sample is conducted, which we denote as Acoustic Location Classi�cation

(ALC). �e evidence for the feasibility of ALC contributes a supplementary challenge

for acoustics-based Arti�cial Intelligence (AI), and enhances the capabilities of

location dependent applications in terms of context-aware computing. �us, we

established a client-server infrastructure with an Android application as recording

solution, and proposed a dataset which provides audio samples recorded at di�erent

locations on multiple consecutive dates. Based on this dataset, and on the dataset

proposed for the DCASE 2019 ASC challenge, we evaluated the application of ALC,

along with ASC, providing a special focus on constraining training and test sets

temporally, and locally, respectively, to ensure reasonable generalization estimates

with respect to the underlying Convolutional Neural Network (CNN). As indicated

by our outcomes, employing ALC constitutes a comprehensive challenge, resulting

in decent classi�cation estimates, and hence motivates further research. However,

increasing the number of samples within the proposed dataset, thus, providing

daily recordings over a comparatively long period of time, e.g., several weeks or

months, seems necessary to investigate the practicality and limitations of ALC to a

su�cient degree.
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1. Introduction

Especially due to the DCASE Challenge
1
, ASC, the task of arti�cially assigning

audio samples to an abstract class which represents the acoustic environment of

the location where the recording is conducted, receives a high amount of a�ention

in recent research.

Although the classi�cation of audio samples to an abstraction of the recorded loca-

tion represents an active research area in computer science, we are more concerned

with the classi�cation of audio samples directly to geographic locations. �erefore,

the objective of this thesis covers the investigation of classifying audio samples

to the location where the corresponding recording is conducted. We denote this

classi�cation task of assigning audio samples to the location of origin as ALC.

More speci�cally, we examine the capabilities and limitations of applying ALC on

a speci�cally for this evaluation established dataset. Furthermore, the relationship

between ALC and ASC, w.r.t. common properties and restrictions, is investigated.

In addition, we evaluate the TAU Urban Acoustic Scenes 2019, Development dataset

(TAU development dataset), proposed for the DCASE 2019 ASC challenge, for the

application of ALC, and analyze the outcomes in consideration of our proposed

dataset.

First, we establish a client-server based solution for the process of collecting audio

recordings of multiple locations. To provide our solution to a broad audience, the

clients are realized by an Android application, hence, smartphones are employed

as recording devices. Utilizing a dedicated so�ware solution preserves consistent

audio properties for the recordings, and enforces the collection of the necessary

metadata. �us, the monophonic audio samples are recorded with a sample rate of

48 kHz, and a bit depth of 16 bit, utilizing the UNPROCESSED2
audio source.

In terms of metadata, each recording is assigned to a unique location which belongs

1http://dcase.community/ (Accessed on: 2019-10-24)

2https://developer.android.com/reference/android/media/Medi
aRecorder.AudioSource.html#UNPROCESSED (Accessed on: 2019-10-24)

1

http://dcase.community/
https://developer.android.com/reference/android/media/MediaRecorder.AudioSource.html#UNPROCESSED
https://developer.android.com/reference/android/media/MediaRecorder.AudioSource.html#UNPROCESSED


1. Introduction

to an acoustic scene. Furthermore, multiple events, e.g., ringing church balls, may

be added to the particular recording. �e recording device, i.e., the smartphone

model, is stored for each recording as well. Additionally, to o�er feedback on the

expressiveness of the published audio recordings, the mobile application features

the evaluation of ASC and ALC, based on a server-side employed CNN.

Due to the application of CNNs in multiple state-of-the-art classi�cation bench-

marks, e.g., on ImageNet [Deng2009], we evaluate the performance of the acquired

dataset, and of the TAU development dataset, on a 2-layer deep CNN, utilizing

40-band log-mel spectrograms, with a window size of 40 ms and an overlap of

20 ms, of 10 s audio samples as features. More speci�cally, we employ the sug-

gested baseline for the DCASE 2019 ASC challenge, proposed in [Mesaros2018],

additionally utilizing a separated validation set and an enhanced Early Stopping

(ES) methodology by stopping the training a�er a prede�ned number of stagnating

epochs w.r.t. the validation loss.

To provide a meaningful evaluation for the application of ALC, we collect audio

recordings at 8 locations within the city of Graz (AUT). �e locations are equally

distributed between the acoustic scenes Urban Green Space and Public Square. For

each location, we record 5 minutes of audio data on each of 3 consecutive working

days between 9:00 am and 12:00 am.

�us, a special focus of this work lies in the evaluation of temporally constrained

train-test splits for ALC. To the best of our knowledge, this is the �rst work evalu-

ating temporally constrained ALC in particular.

�e remainder of this thesis is organized as follows. �e �rst part, Section 2.1, of

chapter 2, introduces recent research in the �eld of arti�cial audio classi�cation. In

the second part, Section 2.2, of chapter 2, we provide the background on Neural

Networks (NNs), more speci�cally on CNNs, employed for the classi�cation of

audio samples. In chapter 3, we describe the establishment of our proposed dataset

based on the Android application, and the framework for the evaluation of the

acquired audio samples. In chapter 4, the results, along with an interpretation, for

ASC and ALC with local and temporal constraints, employed on the TAU devel-

opment dataset, and on our proposed dataset, are presented. Chapter 5 concludes

this thesis, recapitulating the objective of our work, the approached data collection

and evaluation process, and the outcomes of our evaluation. Finally, possible future

work is discussed in Section 5.1.

2



2. Related Work

In this chapter, we provide the required knowledge base for our work. �us, in the

�rst section, Section 2.1, we introduce the state-of-the-art in the �eld of arti�cial

audio classi�cation. Furthermore, we provide an in-depth introduction to CNNs in

the second section, Section 2.2. �us, we start o� with Feedforward Neural Networks

(FFNNs) and transition over to CNNs. Additionally, we introduce concepts utilized

along with CNNs, i.e., regularization with dropout and ES, acceleration of the

training based on Batch Normalization (BN), and discuss how to achieve reliable

results based on Cross-validation (CV). Finally, we provide insights on the optimizer

Adaptive Moments (Adam), utilized for our CNN.

2.1. State of the Art

We start o� with the dataset utilized for the DCASE 2018 ASC challenge, proposed

in [Mesaros2018], representing the predecessor of the dataset employed as bench-

mark during the evaluation of this thesis.

�e dataset consists of audio samples recorded in 6 European cities over a time

frame of 2 months. For each city, audio recordings of multiple locations, represent-

ing a total of 10 di�erent acoustic scenes, are collected. More speci�cally, audio

recordings with a duration between 2 and 3 minutes at multiple positions in each

location are acquired, totalling over 28 hours of audio material. For the develop-

ment dataset of the DCASE 2018 ASC challenge, 24 hours of stereophonic, more

speci�cally, binaural audio recordings are collected, utilizing an in-ear microphone

along with a professional audio recorder, providing a sample rate of 48 kHz and a

bit depth of 24 bit. Our work is based on the updated version of this development

dataset, proposed for the DCASE 2019 ASC challenge, represented by 40 hours of

audio data recorded in 10 European cities.

For the evaluation of the development dataset, a constrained train-test is proposed

3



2. Related Work

in [Mesaros2018]. Hence, the dataset is split into a training and a test set, restricting

samples associated with a particular location to either the training or the test set.

Furthermore, representatives of each city are distributed throughout the training

and the test set. �us, during the evaluation of this thesis, we are encouraged to

investigate the impact of local constraints on the train-test split.

Next, we introduce the baseline CNN, proposed in [Mesaros2018], provided for

the DCASE 2018 ASC challenge, and employed during the evaluation of our work.

Based on the submission of [Valenti2016] for the DCASE 2016 ASC challenge,

[Mesaros2018] implements a 2-layer deep CNN with BN. �e features for the

network are represented by 40-band log-mel spectrograms of 40 ms windows with

an overlap of 20 ms computed on 10 s audio samples.

Opposed to [Mesaros2018], [Valenti2016] utilizes a di�erent number of hidden

neurons and 60-band log-mel spectrograms computed on 30 s samples, com-

pared to 40-band log-mel spectrograms computed on 10 s samples. Additionally,

[Valenti2016] trains the network on sub-sequences of the log-mel spectrograms,

and proposes a learning approach based on 2 stages. In the �rst stage, denoted

as non-full training, the training fold is split into a training and a validation set.

�en, for each epoch independently, the log-mel spectrograms, computed on 30 s

audio samples, are alternately split into non-overlapping sub-sequences, e.g., 3 s

long sub-sequences, and the network is trained until convergence, i.e., 100 epochs

without improvements in the training and validation accuracy. In the second stage,

denoted as full training, the network is trained on the whole training fold for the

number of epochs which corresponds to the training time during the �rst stage.

�us, compared to the DCASE 2016 baseline, proposed in [Mesaros2016], which

implements a Gaussian Mixture Model (GMM) based on Mel-frequency Cepstral

Coe�cients (MFCCs), [Valenti2016] achieves an improvement of 8.8% on the

proposed 4-fold CV w.r.t. the development dataset proposed for the DCASE 2016

ASC challenge.

2.2. Background

In this section, we provide the fundamentals of CNNs, employed for ASC and ALC.

�us, we start o� with a brief recap of FFNNs in Section 2.2.1, and proceed with

an introduction to CNNs in Section 2.2.2. Furthermore, we present regularization

4
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based on dropout in Section 2.2.3, followed by BN in Section 2.2.4, and CV in Section

2.2.5. Additionally, we present the application of ES in Section 2.2.6. Finally, the

emergence of the employed optimizer, i.e., Adam, is explained in Section 2.2.7.

2.2.1. Feedforward Neural Networks

We start o� with a short recap of FFNNs, also known as Multilayer Perceptrons

(MLPs), which represent the basis for CNNs. �e content is based on the lecture

notes of [Legenstein2017] and [Knoebelreiter2017], and Chapter 6, Deep Feedfor-

ward Networks, of [Goodfellow2016].

Figure 2.1.: Feedforward Neural Network with 2 hidden ReLU layers and So�max output.

As illustrated by Figure 2.1, a FFNN consists of an input layer, at least one hidden

layer, and an output layer.

In the �eld of Machine Learning (ML), FFNNs are employed as approximators

for non-linear functions. For example, FFNNs with 2 hidden layers, and su�cient

hidden neurons, are able to represent any non-linear function. [Legenstein2017]

In general, a FFNN is denoted by a function, f ′(x; θ) = y′, which aims to approx-

imate another function f(x) = y, where x represents the input, θ the parameters

of a network, and y the corresponding output. [Goodfellow2016]

�us, when training a FFNN, we try to optimize the network parameters θ.

As represented in Figure 2.1, the input of a neuron is composed of all outputs

of the previous layer. Furthermore, to introduce non-linearity, hidden activation

functions, e.g., Recti�ed Linear Unit (ReLU), denoted by h(z) = max{0, z}, are

element-wise applied to activate the output of the hidden layers. [Legenstein2017,

Goodfellow2016]

�us, we denote the activated output of a hidden layer by f (i)(x) = a(i) = h(z(i)) =
h(W (i)f (i−1)(x) + b(i)), where h represents the activation function, W the weights,

5
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b the bias, and i the depth of the particular layer. [Knoebelreiter2017, Goodfel-

low2016]

Finally, the output of the network depends on the problem statement, hence, on the

output activation function. For multi-class classi�cation, which is conducted when

classifying audio samples in multiple classes, So�max, denoted by h(z)i =
ezi∑
j e
zj ,

depicts a common output activation function. [Legenstein2017, Goodfellow2016]

When training a FFNN, the input is forward propagated by computing the activated

outputs through the network. �e output of the network is then evaluated on a loss

function, which provides the error of the output as a result. With So�max as output

activation function, we utilize the categorical cross-entropy loss to evaluate the

error, which is denoted by L(y, y′) = −
∑

i

∑
j yijln(y

′
ij)

1
, where y represents the

targets, and y′ represents the predicted output. �e error is then back-propagated

through the network by computing the gradient of the loss function w.r.t. the

network parameters θ, utilizing the chain rule of calculus. �is approach is denoted

as Backpropagation, proposed in [Werbos1974, Rumelhart1986]. Finally, the net-

work parameters θ are updated. For example, when using Batch Gradient Descent,

the weights are updated by moving in the direction of the negative gradient w.r.t.

the corresponding parameter, hence, θ = θ − η∇θL(θ), where η represents the

learning rate. [Legenstein2017]

2.2.2. Convolutional Neural Networks

Next, we provide an introduction to CNNs, proposed in [Fukushima1980], and

[LeCun1989], which we utilize for the classi�cation of audio samples.

CNNs are superior in detecting objects in grid-structured data, e.g., in image clas-

si�cation and time series tasks, and are employed by multiple state-of-the-art

solutions. [Goodfellow2016]

Basically, CNNs correspond to FFNNs, but implement an additional type of layer,

denoted as convolutional layer.
2

Conventionally, a pooling layer is placed a�er the activation of the convolutional

1https://peltarion.com/knowledge-center/documentation/model
ing-view/build-an-ai-model/loss-functions/categorical-crosse
ntropy (Accessed on: 2019-09-27)

2https://www.youtube.com/watch?v=YRhxdVk sIs (Accessed on: 2019-09-17)
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layer. �us, there exists another topology, denoting the combination of convolution,

activation, and pooling, as convolutional layer. [Goodfellow2016]

However, throughout this thesis, we denote the implementation of convolution,

without activation and pooling, as convolutional layer.

Besides, recent results, proposed in [Springenberg2014], suggest to completely

replace pooling layers by convolutional layers with a larger stride.

Opposed to FFNNs, CNNs are not fully connected, and the weights, denoted as

�lters or kernels, are shared when convolving, i.e., sliding, over the input. �us,

the number of network parameters is decreased, and the e�ciency, in terms of

runtime and memory requirements, is improved. Additionally, CNNs are robust to

position changes when applied to detect pa�erns and objects within the input. On

the downside, disparities in the scaling and the rotation of pa�erns and objects are

not handled by default. [Goodfellow2016]

Each convolutional layer consists of one or multiple �lters, employed to detect

pa�erns and objects in the input provided to the layer. Starting with the detection

of geometric pa�erns, e.g., edges, in higher layers, and proceeding to more speci�c

objects, e.g., detecting numbers, in deeper layers.
3

To compute the output of a convolutional layer, also denoted as �lter maps, each �l-

ter is convolved over the input. �us, the dot product, i.e., the element-wise product

[Karpathy2019], of the �lter and the corresponding area of the input, denoted as

receptive �eld, is computed.
3

Finally, we illustrate the application of convolution in Figure 2.2, utilizing zero-

padding to preserve the input dimension for the output, and hence to prevent the

loss of information.
4

Next, we brie�y introduce the pooling layer, more precisely, max pooling, which is

more relevant in practice compared to average pooling. [Karpathy2019]

In general, pooling computes a summary over the neighborhood of the correspond-

ing input �eld. �us, in the case of max pooling, the neighborhood is represented

by its maximum value. [Goodfellow2016]

�e motivation behind pooling is the reduction of the input dimension for the

next layer, resulting in a smaller number of network parameters, and hence in an

improved e�ciency. [Karpathy2019]

Furthermore, due to the generalized representation of the information, introducing

3https://www.youtube.com/watch?v=YRhxdVk sIs (Accessed on: 2019-09-17)

4https://www.youtube.com/watch?v=qSTv m-KFk0&feature=youtu.b
e (Accessed on: 2019-10-23)
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a pooling layer enhances the robustness of the network in respect of over��ing.
5

�us, in Figure 2.3, we illustrate the application of max pooling.

Figure 2.2.: In this �gure, we illustrate the application of convolution on a 3-dimensional input with

a single 2× 2 �lter, and a stride of 1, represented by the horizontal and vertical arrow.

�us, the output is computed by the dot product of the receptive �eld of the input and

the �lter. More precisely, the output at position O
(1)
a represents the sum of 1) the dot

product of the receptive �eld of the �rst input layer (green), and the corresponding

�lter (green), and 2) the dot product of the receptive �eld of the second layer (blue) with

the corresponding �lter (blue). �e remaining output �elds are computed in the same

way, while sliding one step at a time over the input.[Goodfellow2016, Karpathy2019]

Additionally, to preserve the input dimension for the output, we introduce a zero-padding

to the input.
4

5https://deepai.org/machine-learning-glossary-and-terms/max
-pooling (Accessed on: 2019-10-23)
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Figure 2.3.: �is �gure illustrates the application of max pooling, using a pool size of 2 × 2 and

a corresponding slide of 2. E.g., the output O
(1)
a presents the maximum value of the

corresponding area of the input, i.e., max(I
(1)
a , I

(1)
b , I

(1)
e , I

(1)
f ).[Karpathy2019]

2.2.3. Dropout Regularization

Dropout represents a regularization methodology for deep NNs to avoid over��ing,

hence, is utilized to improve generalization. As proposed in [Srivastava2014], NNs

with dropout achieved signi�cant results in various domains, e.g., speech recogni-

tion, image, and document classi�cation.

When using dropout, randomly selected neurons are dropped, i.e., are ignored,

during the training. More speci�cally, the input to the neuron, the neuron itself,

and the neuron’s output are omi�ed. �erefore, just a particular part of the NN, i.e.,

a sub-network, is trained each time. On an abstract point of view, a NN utilizing

dropout can be compared to multiple smaller sub-networks, each contributing to the

prediction. �us, dropout can be seen as a kind of model averaging. [Legenstein2017,

Srivastava2014]

2.2.4. Acceleration with Batch Normalization

BN, proposed in [Io�e2015], aims to accelerate the training of deep NNs. �is

acceleration is achieved by reducing the Internal Covariate Shi� (ICS), proposed

in [Shimodaira2000]. ICS describes a phenomenon induced when using multiple

layers:

9
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Changes in the parameters of a layer alter the layer’s output, thus, the input for

the proceeding layer. Consequently, when the distribution of the previous layer

changes, the proceeding layer has to adapt to the new distribution. �is recursive

adaption to new distributions is denoted as ICS.
6

Especially for very deep networks, this e�ect results in a slow convergence beha-

vior.

To reduce the ICS, the input to layers is batch-wise normalized. Since this approach

allows larger learning rates, the training of deep NNs is accelerated. Furthermore,

the impact of the selected parameter initialization methodology becomes less signi-

�cant. With the utilization of BN, [Io�e2015] achieved state-of-the-art results on

the ImageNet benchmark, proposed in [Deng2009], while keeping the number of

training iterations signi�cantly low. [Io�e2015]

2.2.5. K-Fold Cross-Validation

In the following, we provide a brief introduction to K-fold Cross-validation (K-

fold CV), which is utilized to improve the reliability of performance estimates in

consideration of ML approaches. As illustrated in Figure 2.4, the dataset is split

into multiple parts, more precisely, into k parts, denoted as folds. At each step,

k − 1 folds are utilized for training, and one fold for testing, i.e., for the validation.

�us, the particular model is trained multiple times, but on di�erent sets of samples,

and validated against the remaining unseen samples. Ultimately, a�er k training

runs, the arithmetic mean of the test losses, or accuracies, is declared as �nal result,

i.e., as the performance estimate. Especially for datasets with a limited number of

samples, this procedure allows to determine a more meaningful estimate of the

model’s performance. [Legenstein2017]

6https://www.quora.com/Why-does-an-internal-covariate-shift
-slow-down-the-training-procedure, Zhao, Nathan on 2019-05-06 (Accessed on:

2019-10-21)
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Figure 2.4.: Illustration of a 4-fold CV, representing the train-test splits of the corresponding 4 folds

w.r.t. the CV runs.

2.2.6. Early Stopping

Next, we provide a brief introduction to ES, a regularization mechanism to avoid

over��ing. When training a NN on a set of samples, i.e., on the training set, the

network parameters are adapted w.r.t. the loss function. �us, the network perform-

ance on the training set improves continuously. In practice, we need the network to

perform well on unseen samples, too. Unfortunately, when training a network, the

performance on unseen samples, i.e., on the test set, tends to become worse a�er

a particular number of epochs. At this moment, we denote the network to start

over��ing, i.e., further improving on the training data, while starting to perform

worse on unseen samples. �us, ES is utilized to prevent a NN from over��ing.

�erefore, a minor part of the training set is split into a separated validation set.

During training, the loss on this validation set is monitored and utilized to determ-

ine the best performing model. �us, we receive a generalized model, performing

well on unseen samples. [Legenstein2017, Prechelt1998]

Finally, we present the application of ES in Figure 2.5, illustrating the training,

validation, and test loss of employing ASC on the TAU development dataset, while

restricting the samples to one of the 3 sets w.r.t. the associated location, as proposed

in [Mesaros2018], and stopping the training a�er 20 epochs of stagnating validation

loss.

11
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Figure 2.5.: Training, validation, and test loss of employing ASC with ES on the TAU development

dataset. �us, 70% of the dataset are utilized for training and 30% for testing. Addition-

ally, 10% of the training set is split apart for the validation set. Furthermore, samples

are restricted to either the training, validation, or test set w.r.t. to the labelled location.

Finally, the training is stopped a�er 20 epochs of non-improvement w.r.t. the validation

loss.

2.2.7. A Journey from Batch Gradient Descent to Adam

In the following, we provide an introduction to the emergence of the optimizer

Adam, proposed in [Kingma2014], which we utilize for our CNN. Utilizing Adam is

motivated due to the application in the DCASE 2019 baseline CNN and due to the

results presented in [Kingma2014]. [Kingma2014] demonstrates the capabilities of

Adam by outperforming various state-of-the-art algorithms, i.e., AdaGrad, proposed

in [Duchi2011], and RMSProp, proposed in [Tieleman2012, Graves2013], on image

classi�cation and sentiment analysis benchmarks.

�e content of this introduction is based on the lecture notes of [Legenstein2017],

and Chapter 8, Optimization for Training Deep Models, of [Goodfellow2016].

Hence, the remainder of this section is structured as follows. We start o� with Batch

Gradient Descent (BGD), proceed with Mini-batch Gradient Descent (MBGD), and,

12
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�nally, we introduce the improvements induced by Adam.

Since the direction of the negative gradient of the loss function, w.r.t. to the corres-

ponding parameter, represents the direction where the error decreases the most,

each of the following optimization algorithms, i.e., BGD, MBGD, and Adam, utilizes

the gradient of the loss function to optimize the parameters. [Legenstein2017]

When using BGD, also denoted as Deterministic Gradient Descent (DGD), the

gradient of the loss function is computed over all training samples. [Legenstein2017,

Goodfellow2016]

�erefore, in Algorithm 1, we present the optimization algorithm BGD.

Algorithm 1 Batch Gradient Descent [Legenstein2017]

1: θ ← init() . initialize parameters

2: while stopping criterion not reached do
3: θ ← θ − η∇θL(θ) . compute gradient on all samples

Next, we present MBGD, also denoted as Mini-batch Stochastic Gradient Descent

(MBSGD), and Stochastic Gradient Descent (SGD). However, historically, SGD is

identi�ed by gradient updates based on a single sample. [Goodfellow2016]

MBGD does not compute the gradient over all training samples, but updates the

parameters on small batches of samples, e.g., on 32, 16, or 8 samples. MBGD allows

the computation of batch updates in parallel, thus, can accelerate the training

runtime. Additionally, MBGD converges faster and is able to escape local minima.

[Legenstein2017]

According to [Masters2018], the batch size, i.e., the number of samples per batch,

should not exceed 32 samples. Emphasized by Yann LeCun, who introduced todays

CNNs in [LeCun1998], with a post on the social media platform Twi�er: “Training
with large minibatches is bad for your health. More importantly, it’s bad for your test
error. Friends dont let friends use minibatches larger than 32.” 7

Furthermore, keeping the batch size a magnitude of 2 might improve the perform-

ance of particular implementations.
8

7https://twitter.com/ylecun/status/989610208497360896?lang=
en (Accessed on: 2019-10-01)

8https://towardsdatascience.com/gradient-descent-algorithm-
and-its-variants-10f652806a3 (Accessed on: 2019-11-04)
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�us, MBGD is presented in Algorithm 2.

Algorithm 2 Mini-Batch Gradient Descent [Goodfellow2016]

1: θ ← init() . initialize parameters

2: while stopping criterion not reached do
3: θ ← θ − η 1

N
∑N

i=0∇θL(yi; f(xi; θ)) . compute gradient on mini-batch

Finally, we present Adam, proposed in [Kingma2014], in Algorithm 3. Adam

belongs, among AdaGrad, proposed in [Duchi2011], and RMSProp, proposed in

[Tieleman2012, Graves2013], to the category of optimization algorithms which

implement adaptive learning rates. �us, AdaGrad scales the learning rate with

the accumulated inverted roots of the squared gradients. RMSProp corresponds to

AdaGrad, but implements a running average for the accumulation. Additionally

to an adaptive learning rate, Adam is designed to accelerate learning based on

momentum, proposed in [Polyak1964]. [Goodfellow2016]

�us, in general, Adam can be compared to RMSProp with momentum, according

to [Kingma2014].

But, opposed to RMSProp, Adam implements momentum directly into the estimate

of the �rst moment. Additionally, Adam corrects the bias of the moment estimates.

[Goodfellow2016]
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Algorithm 3 Adaptive Moments (Adam) [Goodfellow2016, Kingma2014]:

�e provided initialization values represent the default values proposed in

[Kingma2014]. pτ1 denotes p1 to the power of τ , and pτ2 denotes p2 to the power of

τ , respectively.

1: τ ← 0 . time step

2: η ← 0.001 . step size

3: p1, p2 ← 0.9, 0.999 . exponential decay rates p1, p2 ∈ [0, 1)
4: m1,m2 ← 0, 0 . 1st and 2nd moment estimate

5: ε← 10−8 . constant for numerical stability

6: θ ← init() . initialize parameters

7: while stopping criterion not reached do
8: τ ← τ + 1 . increment time step

9: g← 1
N
∑N

i=0∇θL(yi; f(xi; θ)) . compute gradient on mini-batch

10: m1 ← p1m1 + (1− p1)g . compute 1st moment estimate

11: m2 ← p2m2 + (1− p2)g � g . compute 2nd moment estimate

12: m′1 ← m1

1−pτ1
. correct bias of 1st moment estimate

13: m′2 ← m2

1−pτ2
. correct bias of 2nd moment estimate

14: θ ← θ − η m′
1√

m′
2+ε

. update parameters
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In this chapter, we present our approach for the collection and evaluation of audio

recordings for ASC and ALC. �us, we start o� with an overview of the infrastruc-

ture, utilized to establish our proposed dataset, in Section 3.1. �erefore, we provide

an in-depth introduction to the employed Android application in Section 3.1.1, and

present the web service, and the database, in Section 3.1.2, and Section 3.1.3, re-

spectively. In Section 3.2, we introduce the established dataset, along with the TAU

development dataset, utilized as benchmark for the evaluation. Finally, in Section

3.3, we present the classi�cation methodology, providing a detailed introduction to

the feature extraction, i.e., log-mel spectrograms, in Section 3.3.1, and introduce

the employed CNN in Section 3.3.2.

3.1. Infrastructure

In this section, we present the infrastructure, consisting of an Android application,

and a Node.js Representational State Transfer (REST)
1
web service, along with a

SQLite database, employed to establish a dataset for the investigation of ASC and

ALC.

To provide the possibility of collecting and sharing audio recordings to as many

individuals as possible, we decide to implement an Android application over an

iOS Application. �is decision is based on the current market share of smartphone

operating systems, i.e., Android excels iOS with 76% to 22%.
2
Unfortunately, web

applications are not capable of directly accessing native device resources, and

hence are not suited to gather reliable audio recordings. �us, we do not consider

1https://en.wikipedia.org/wiki/Representational state trans
fer (Accessed on: 2019-11-18)

2https://gs.statcounter.com/os-market-share/mobile/worldwid
e (Accessed on: 2019-09-04)
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web applications as an appropriate alternative.

We declare a minimum So�ware Development Kit (SDK) version of 24 (An-

droid 7, Nougat), and a target SDK version of 28 (Android 9, Pie).
3
Hence, with

a minimum SDK version of 24 , we support approximately 80% of all Android

devices.
4
Furthermore, the support of Android itself is lower bound by the SDK

version of 24.
5
At the start of this thesis (Mai, 2019), the target SDK version of 28,

i.e., Android Pie, represents the most recent version.

For the development, we utilize a Nexus 6 with Android 7.1.1. �us, a �awless

employment of the application is only guaranteed for the denoted device and

Android version.

To avoid restrictions on the distribution of the Android application, we decide

to publish the application via a website, instead of the Google Play Store. �us,

the website is hosted on a dedicated server and can be accessed via stck.ddns.net.
Furthermore, the address resolution is realized with the dynamic Domain Name

System (DNS) service provided by noip.com.

To publish audio recordings remotely, we utilize a Node.js (v11.15.0) REST web

service, hosted on our dedicated server. Furthermore, we provide a SQLite (v3.22.0)

database to gather additional metadata, along with the uploaded audio recordings

stored on the �le system. On top of that, the database is employed for the user

management, representing a mandatory requirement due to the current legal

situation. Additionally, the web service provides the evaluation of uploaded audio

recordings w.r.t. ASC and ALC based on a pre-trained CNN.

Summarized, in Figure 3.1, we illustrate the established infrastructure.

3https://developer.android.com/studio/releases/platforms
(Accessed on: 2019-09-04)

4https://gs.statcounter.com/android-version-market-share/mo
bile-tablet/worldwide (Accessed on: 2019-09-04)

5https://en.wikipedia.org/wiki/Android version history (Accessed

on: 2019-09-04)
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Figure 3.1.: �e infrastructure employed to gather audio recordings along with the required metadata,

represented by Android smartphones running an instance of our application, and hence

communicating with the Node.js REST web service hosted on our server. �us, the

web service provides an interface to store audio recordings on the �le system along

with metadata in the SQLite database. Furthermore, to approach ASC and ALC on

uploaded audio recordings, the web service spawns a Python process and employs a

pre-trained CNN on demand. In addition, an OpenMapTiles Map Server, running in a

Docker container, provides tiles for the target region, i.e., Austria.

Next, we provide an in-depth introduction to the Android application in Section

3.1.1, and specify the web service, and the database, in Section 3.1.2, and in Section

3.1.3, respectively.
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3.1.1. Android Application

�e motivation behind our Android application is driven by the establishment

of an audio dataset for the evaluation of ALC and ASC. Hence, to enable the

collection of reliable audio data, and to ensure the availability of the required

metadata, we provide a dedicated so�ware solution for mobile devices. From there,

the participation in the collection process is available to every person with a

compatible Android smartphone.

�us, in the following, we illustrate the functionalities and features o�ered by

our Android application. Additionally, we provide an in-depth introduction to the

approached methodology of capturing audio, and discuss the implementation of

secondary features, i.e., location tracking, and the visualization of geographic data.
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Figure 3.2.: To use our application, and hence

to contribute to the collection of au-

dio recordings, a user signs up by

providing a unique username and a

password. A�er signing up, we en-

able users to log in with the initially

provided user credentials.

Figure 3.3.: On the home screen, we provide a

brief introduction to our applica-

tion, thus, we brie�y explain the

goal of our work, and provide

guidelines for contributing to the

collection of audio recordings. Ad-

ditionally, the home screen enables

the propagation of recent news

throughout the community.

First, we introduce the registration, and the login, respectively, presented in Figure

3.2. To employ our Android application, and hence to participate in the collection

of audio recordings, a user signs up by providing a unique username and a pass-

word. A mandatory registration enables the association between users and the

contributed objects, i.e., recordings, locations, acoustic scenes, and events, and

hence provides the framework to administer data in respect of data protection
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regulations. Additionally, on registration, the corresponding user agrees to the

Terms and Conditions and the Privacy Policy. A�er registration, a user logs in with

the user credentials, i.e., username and password, provided on registration. To avoid

repetitive prompts for user credentials, and hence to improve the user experience,

a user remains logged in, until explicitly logged out.

A�er signing up, and logging in, respectively, the user is forwarded to the home

screen, presented in Figure 3.3. �erefore, we brie�y introduce the objective of this

application, and provide guidelines for the contribution to the collection of audio

recordings. Additionally, the home screen facilitates the propagation of recent

news, the latest features, and current bugs.
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Figure 3.4.: �e published audio recordings of

a user, providing the object identi-

�er, and the timestamp of conduct-

ing the recording, along with the

associated location, and the device

model identi�er of the correspond-

ing smartphone. Optionally, a de-

scription, and events captured dur-

ing the recording, are listed.

Figure 3.5.: To publish an audio recording, the

user provides at least the recor-

ded location. Optionally, a descrip-

tion, and events captured during

the recording, might be added. Be-

sides, we enable the user to replay

the audio recording before the pub-

lication, and to discard the audio

recording.

Next, we present the published audio recordings of a particular user in Figure 3.4.

�us, for each audio recording, we display the corresponding object identi�er, the

timestamp when the recording is conducted, the associated location, and the device

model identi�er of the smartphone used to capture the audio recording. Optionally,

a description, and events associated with the audio recording, are listed. However,

due to privacy concerns, the access to published audio recordings is restricted to
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the originator only.

To create and publish an audio recording, as presented in Figure 3.5, a user selects

the location where the recording is conducted, and might provide events captured

during the recording. Hence, the selected location has to correspond to the user’s

geographic position. Furthermore, a textual description of the audio recording

might be provided. Additionally, we enable the user to pause and resume a record-

ing, to replay captured audio, and to discard unpublished data.

Figure 3.6.: Android devices without the ability

to record unprocessed audio data

with a bit depth of 16 bit, and a

sample rate of 48 kHz are not fully

supported by our application. �us,

recording, and hence publishing of

audio is not available on, e.g., the

Samsung Galaxy S5.

In case, the employed Android device

does not support the recording of

unprocessed audio with the required

properties, i.e., Pulse-code Modulation

(PCM) encoding with a bit depth of

16 bit, and a sample rate of 48 kHz, re-

cording, and hence publishing of audio

is disabled.

For example, the Samsung Galaxy S5

does not provide unprocessed audio,

thus, the corresponding functionality

is not available, as presented in Figure

3.6.
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Figure 3.7.: To supply users with feedback on

uploaded audio recordings, we en-

able ALC with a CNN trained on

our proposed dataset, and hence

provide the classi�cation predic-

tions of audio samples w.r.t. the re-

corded location.

Figure 3.8.: Additionally to ALC, we enable

ASC on uploaded audio recordings.

�us, we provide the classi�cation

predictions of audio samples w.r.t.

acoustic scenes, i.e., Urban Green
Space and Public Square.

Furthermore, to provide feedback on published audio recordings, we enable users

to employ ALC, and ASC, on the corresponding audio samples, i.e., 10 s sequences

of the recordings. �erefore, we classify the audio samples with a CNN trained on

the samples of our proposed dataset. �us, this feature is unlocked a�er the dataset

has been established.

More speci�cally, on selecting a published audio recording, the corresponding

�le on the server is split into 10 s sequences, the 40-band log-mel spectrograms

are extracted, the classi�cation predictions are evaluated based on the particular

24



3. Methodology

CNN model—either classifying the samples to locations, or to acoustic scenes—and,

�nally, the arithmetic mean of the predictions is provided.

�us, we present the results of employing ALC, and ASC, on an approximately

300 s audio recording of Naglergasse 35, in Figure 3.7, and Figure 3.8, respectively.

Figure 3.9.: �e contributed locations, and

the position of the current user,

provided on a map view. To receive

multiple audio recordings of the

same location, the published loca-

tions are shared among the users.

Figure 3.10.: �e published locations, along

with the corresponding acoustic

scenes, optionally, with an addi-

tional description, provided by,

and shared throughout all users.

Next, we present the published locations, contributed to motivate the publishing

of locally concentrated audio recordings. Hence, to receive multiple recordings of

the same location, we share the locations between the participants. �erefore, we

provide a map view of the locations, along with the current geographic position

of the particular user, as presented in Figure 3.9. Additional functionality of the
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map view implements zooming in, and out, centering the map, and, additionally,

locking the center of the map to the user’s geographic position. Furthermore, the

location identi�er, the name of the location speci�ed by the user, and the associated

acoustic scene are provided within the corresponding list entry, as presented in

Figure 3.10. Optionally, a textual description of the location is available.

Figure 3.11.: To publish a location, the user

provides the corresponding name,

and might o�er an additional

description. Furthermore, exactly

one acoustic scene is selected

for the location. Additionally, to

provide more precise location

speci�cations, e.g., for indoor

locations, users might manually

provide the geographic position.

To publish a location, as presented in

Figure 3.11, the user provides the name

of the corresponding location, and, op-

tionally, a textual description. Addition-

ally, the acoustic scene, associated with

the location, is speci�ed by the user. To

enable high accuracy position speci�c-

ations, especially for indoor locations,

we allow users to manually provide the

geographic position if necessary.
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Figure 3.12.: �e published acoustic scenes,

and events, representing the avail-

able metadata for locations, and

audio recordings, respectively. To

receive comparable audio record-

ings, w.r.t. the provided metadata,

we share the published acoustic

scenes, and events, throughout all

users.

Figure 3.13.: To publish acoustic scenes, and

events, respectively, the particu-

lar user provides an appropriate

name, and, optionally, a more de-

tailed description to clarify the

objective.

Additionally, we present the published acoustic scenes and events, contributed

to provide standardized metadata for publishing locations, and audio recordings,

respectively. �us, along with locations, we share acoustic scenes and events

between the participants, as presented in Figure 3.12.

To publish an acoustic scene or event, the user provides a meaningful name,

optionally, a textual description, and speci�es the category, i.e., acoustic scene or
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event, as presented in Figure 3.13.

Figure 3.14.: In the se�ings, we provide links

to legal documents, i.e., Terms
and Conditions, and the Privacy
Policy, and to our website, along

with contact details. Addition-

ally, we allow the deletion of loc-

ally cached audio recordings, and

provide the possibility to log the

current user out.

Next, we present the se�ings of our ap-

plication in Figure 3.14.

�us, we grant access to legal docu-

ments, i.e., Terms and Conditions, and

the Privacy Policy, refer to the project’s

website, and provide our contact de-

tails.

While recording, the audio data is dir-

ectly streamed to the internal storage

of the device, and preserved until expli-

citly removed. Hence, due to the limited

internal storage of smartphones, locally

cached audio recordings can be manu-

ally deleted.

Furthermore, we allow users to log out,

and hence enable multiple contributors

on the same device.
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Figure 3.15.: �e homepage provided for the

public distribution of our An-

droid application. Additionally,

we grant access to legal docu-

ments, i.e., Terms and Conditions,
and the Privacy Policy, along with

contact details.

Finally, we introduce the website for

the public distribution of our Android

application. �us, in Figure 3.15, we

present the homepage, providing the

download for the Android application,

links to legal documents, i.e., Terms
and Conditions, and the Privacy Policy,

along with contact details.

Recording and Playing Audio on Android

In the following, we describe the methodology of recording audio on our Android

application, and hence discuss crucial design decisions concerning the implementa-

tion.
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To record, and play audio data on Android
6
, we implement AudioRecord7

, and Audio-
Track8

, respectively. Additionally, to preserve raw audio data, we employ the audio

source UNPROCESSED9
. Furthermore, we verify the support for unprocessed audio

recordings on the corresponding property
10

, i.e., PROPERTY SUPPORT AUDIO -
SOURCE UNPROCESSED. Otherwise, the audio source DEFAULT might be uninten-

tionally employed.

�us, we ensure, at least to a certain degree, consistent properties for recording

audio on di�erent devices, and avoid undesired preprocessing. �erefore, our ap-

plication is limited to devices with the ability to record unprocessed audio.

In general, Android supports the recording of stereophonic audio data. However, it

might depend on the particular device, and the manufacturer, whether, and if so, to

which extend the recording of stereophonic audio is available, and reliable.
1112

�us, we restrict our application to the recording of monophonic audio.

Additionally, since Android devices do not necessarily support the streaming, i.e.,

playing, of monophonic audio signals, e.g., the Nexus 6, we arti�cially assemble

stereophonic output by providing the recorded monophonic audio signal on both

channels.

Furthermore, we feature the maximum sample rate supported by the Nexus 6
13

, i.e.,

48 kHz, and provide the maximum bit depth for integer PCM encoding supported

by Android 9, i.e., 16 bit.

To store the recorded audio, we directly stream the PCM data to the internal stor-

age of the device, thus, the application is not restricted by the available Random

Access Memory (RAM). Furthermore, once an audio recording is completed, the

6https://newventuresoftware.com/blog/record-play-and-visual
ize-raw-audio-data-in-android.html (Accessed on: 2019-11-24)

7https://developer.android.com/reference/android/media/Audi
oRecord (Accessed on: 2019-11-24)

8https://developer.android.com/reference/android/media/Audi
oTrack (Accessed on: 2019-11-24)

9https://developer.android.com/reference/android/media/Medi
aRecorder.AudioSource.html#UNPROCESSED (Accessed on: 2019-10-24)

10https://developer.android.com/guide/topics/media/mediareco
rder#audiocapture (Accessed on: 2019-11-24)

11https://stackoverflow.com/questions/21810773, Michael on 2014-02-16

(Accessed on: 2019-11-24)

12https://stackoverflow.com/q/14131468, P�tzinger, Hartmut on 2014-01-27

(Accessed on: 2019-11-24)

13https://stackoverflow.com/a/32400479/6833106 (Accessed on: 2019-09-

13)
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corresponding PCM �le might be uploaded to the server.

Since we store, and upload PCM �les, the required storage and the network tra�c

are reduced by the Waveform Audio File Format (WAV) headers, and hence 44 bytes

are economized per audio recording .
14

Location Tracking and Maps on Android

Next, we introduce location tracking, along with the visualization of map tiles and

locations, on Android.

To track the user’s location, we implement the Google Play service Application

Programming Interface (API), i.e., the Fused Location Provider Client15
. On a lower

level, the Android API implements the Location Manager16
, maintaining location

providers based on Global Positioning System (GPS) as well as on surrounding

networks. However, Google’s implementation automatically instructs the appropri-

ate location provider to determine the current location. Furthermore, the location

tracking might be prioritized based on the underlying requirements, i.e., accuracy

or ba�ery life.
17

�us, for our application, we emphasize accuracy over ba�ery life.

To announce the last known location throughout the Android application, a

singleton, acting as observable, is implemented. �us, Activities18
depending on the

user’s location act as observer, and hence receive location updates once available.

Since osmdroid19
is open source and entirely free of charge, compared to Google’s

MapView, we utilize the open source project for the visualization of map tiles and

locations on our Android application.

Furthermore, to improve the availability of tiles, we host a dedicated OpenMapTiles
server, providing OpenStreetMap tiles for Austria. Since our Android application is

14http://soundfile.sapp.org/doc/WaveFormat (Accessed on: 2019-09-13)

15https://developers.google.com/android/reference/com/goog
le/android/gms/location/FusedLocationProviderClient (Accessed on:

2019-11-18)

16https://developer.android.com/reference/kotlin/android/loc
ation/LocationManager (Accessed on: 2019-11-18)

17https://stackoverflow.com/questions/33022662/android-locat
ionmanager-vs-google-play-services (Accessed on: 2019-11-18)

18https://developer.android.com/reference/android/app/Activi
ty (Accessed on: 2020-02-29)

19https://github.com/osmdroid/osmdroid (Accessed on: 2019-11-18)
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developed for educational purposes, the OpenStreetMap data is provided free of

charge by OpenMapTiles.org20
.

3.1.2. Web Service

Next, we brie�y introduce the Node.js web service, implemented to provide an

interface for the Android application to access the database, enable the user man-

agement, publish audio recordings, and remotely employ ALC, along with ASC, on

uploaded audio recordings.

�us, to provide the user management, we implement the registration and login

of users. On registration, the user provides a unique username and a password.

Consequently, on the web service, a pseudo random token is generated, and re-

turned, along with the user id, to grant access to subsequent requests. On login,

the credentials, i.e., the username and the password, are veri�ed, and the token,

generated on registration, and stored in the database, is returned to the user, along

with the corresponding user id. However, the token does not provide any additional

security, but provides the framework for more sophisticated methodologies, e.g.,

JSON Web Tokens (JWTs). To establish a dataset of audio recordings, along with the

necessary metadata, we support the creation of locations, acoustic scenes, events,

and recordings. �us, we introduce the corresponding entities, along with their

relationships, subsequently, in Section 3.1.3.

However, the main task of the web service constitutes the creation, and upload,

of audio recordings. �us, to publish an audio recording, we �rst create the cor-

responding database entry. On successful creation, the audio recording, i.e., the

PCM �le, is uploaded to the �le system of the server.
21

Finally, a�er the PCM �le has

been successfully uploaded, the corresponding database entry is validated. �us,

we prevent incomplete audio recordings within the dataset.

Finally, as a special feature, we implement the functionality to employ ALC, along

with ASC, on uploaded audio recordings, based on a pre-trained CNN.

However, since the priority of this work represents the establishment of a dataset,

and the evaluation of ALC, along with ASC, to investigate temporal and local con-

straints on training and test sets, the functionality provided by the web service is

20https://openmaptiles.org/ (Accessed on: 2019-11-18)

21https://stackoverflow.com/questions/9630430, Selva, Andro on 2012-03-

12 (Accessed on: 2019-11-25)
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limited to the basic requirements. �us, the implementation of additional features,

especially, w.r.t. security, i.e., state-of-the-art security concepts, and authorization,

is denoted as future work.

3.1.3. Database

Finally, we provide an overview of the SQLite database. �us, the database schema

is illustrated by the Entity Relationship Diagram (ERD) in Figure 3.16.

�e actual implementation might di�er in terms and de�nitions. Furthermore,

primary keys are realized as ROWID, and foreign keys are not explicitly declared.

Additionally, Acoustic Scenes, and Events, are generalized to one entity, i.e., Metadata.

However, due to the iterative development, and shi�ing requirements, we denote

further modi�cations to the database schema as future work.

3.2. Datasets

In this section, we present the datasets utilized for the evaluation of ASC and

ALC. �us, we introduce the TAU development dataset, provided for the DCASE

2019 ASC challenge and employed as benchmark for our work, in Section 3.2.1,

and proceed with our proposed dataset, especially established to investigate the

practicality and limitations of ALC, in Section 3.2.2.

3.2.1. TAU Urban Acoustic Scenes 2019, Development dataset

�e TAU development dataset
22

, based on [Mesaros2018], contains audio recordings

of 10 acoustic scenes gathered in 10 European cities. For each acoustic scene,

multiple audio recordings at various positions in di�erent locations are collected.

�e hardware solution for recording consists of an in-ear microphone along with

a professional audio recorder. �us, the audio recordings feature a bit depth of

24 bit, a sample rate of 48 kHz, and 2 channels. Each audio recording has a duration

between 2 and 3 minutes and is recorded with minimal microphone movement.

22http://dcase.community/challenge2019/task-acoustic-scene-
classification (Accessed on: 2019-10-10)
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Due to privacy concerns, audio recordings containing sensitive information are

excluded. Finally, each audio recording is split into 10 s sequences. �us, the dataset

consists of 14400 sequences (40 hours), totalling 41.5 GB.

�e TAU development dataset is provided for the DCASE 2019 ASC challenge,

hence, is intended for ASC related tasks. However, besides ASC, we investigate the

TAU development dataset for the application of ALC. Unfortunately, the dataset

neither provides audio recordings of the same location on di�erent dates, nor

the necessary metadata to determine the corresponding recording for particular

sequences. �us, sequences drawn from the same recording might be distributed

throughout the training and the test set, resulting in biased generalization estimates

for ALC.

3.2.2. Proposed Dataset for Acoustic Location Classification

Our proposed dataset includes audio recordings of 8 di�erent locations within the

city of Graz, each assigned to one of the prede�ned acoustic scenes, i.e., Public
Square and Urban Green Space. �us, in Figure 3.1, we introduce the locations along

with the corresponding acoustic scenes.

�e dataset provides 300 s of audio data for each location per recording day, as-

sembled on 3 consecutive working days (Wednesday, �ursday, Friday). �us, we

provide 7200 s of audio recordings, split into 720 10 s sequences, totalling approx-

imately 700 MB.

To achieve a decent degree of temporal intraday identity, the daily recording time

frame is restricted, starting at 9:00 am, and ending at 12:00 am. �e movement of the

recording device, i.e., the smartphone, is restricted to a minimum while recording.

�us, the smartphone is either placed on a stable surface, or held in the hand of the

recording person. �e position at the particular location remains throughout the

recording sessions, except the position is occupied. In such case, the recording is

conducted at the nearest possible position.

�e dataset is assembled with our proposed Android application, utilizing a Nexus

6 as recording device. �us, we provide 2 hours of monophonic audio recordings

with a sample rate of 48 kHz and a bit depth of 16 bit.

To avoid any bias in the labelling process, we assign the locations of the dataset to

the corresponding acoustic scene before the dataset is being analyzed. However, the

distribution of locations between Public Squares and Urban Green Spaces represents

a highly subjective task for humans.
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For example, Herz-Jesu-Kirche shows characteristics of a Public Square during mar-

ket hours, otherwise, the location tends to represent an Urban Green Space. �us,

we assign locations to the acoustic scene which �ts best for the time being recorded,

e.g., we declare Herz-Jesu-Kirche as Urban Green Space. Nevertheless, each location

belongs to exactly one acoustic scene.

A similar ambivalence, w.r.t. market hours, is observed for Kaiser-Josef-Platz, how-

ever, due to local characteristics, Kaiser-Josef-Platz is declared as Public Square
anyway.

�us, the daily recording time frame enhances the temporal identity of locations,

and hence simpli�es the manual labelling of locations, w.r.t. acoustic scenes, to a

certain degree.

Proposed Dataset

Location Acoustic Scene Figure

Am Eisernen Tor Public Square 3.17

Hauptplatz Public Square 3.18

Jakominiplatz Public Square 3.19

Kaiser-Josef-Platz Public Square 3.20

Herz-Jesu-Kirche Urban Green Space 3.21

Lessingstraße 25 Urban Green Space 3.22

Naglergasse 35 Urban Green Space 3.23

Stadtpark Urban Green Space 3.24

Table 3.1.: Locations included in our proposed dataset along with the corresponding acoustic scenes.
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Figure 3.17.: Am Eisernen Tor

Figure 3.18.: Hauptplatz

Figure 3.19.: Jakominiplatz
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Figure 3.20.: Kaiser-Josef-Platz

Figure 3.21.: Herz-Jesu-Kirche

Figure 3.22.: Lessingstraße 25

37



3. Methodology

Figure 3.23.: Naglergasse 35

Figure 3.24.: Stadtpark

3.3. Classification Process

In the following, we provide an overview of the employed classi�cation process.

�us, we introduce the applied preprocessing, along with the feature extraction,

and the normalization methodology. Furthermore, we discuss the distribution of

samples throughout the training, validation, and test set. Finally, we present the

employed training procedure, and introduce the performance measures provided

for the evaluation.

For the input of our CNN, i.e., the features, we extract 40-band log-mel spectro-

grams from the monophonic 10 s audio sequences by applying a Short-time Fourier

Transform (STFT) with hamming windows, a window size of 40 ms, and an over-

lap of 50%, and transform the resulting power spectrogram into mel-scale. �us,
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subsequently, in Section 3.3.1, we provide an introduction to the computation of

log-mel spectrograms.

�e split of the dataset into the training, validation, and test set depends on the

particular experiment. However, in general, we split the dataset into the training

and the test set, employing the majority for the training. Additionally, a small

part of the training set is separated into the validation set, and hence employed

to determine the model, i.e., the number of epochs, with the best generalization

estimate, which is consequently utilized for the evaluation of the test set.

Furthermore, we uniformly distribute the samples, w.r.t. the targets, throughout

the training, validation, and test set.

Additionally, to preserve an unbiased model, we eliminate underrepresented classes

for particular experiments.

Finally, to investigate ALC, along with ASC, with temporal, and local constraints,

we restrict the samples based on the date of recording, or the location of origin,

to either the training, validation, or the test set. However, for the evaluation of

ASC, the samples are not temporally, but locally, constrained (except for selected

experiments), as approached in [Mesaros2018], and hence samples recorded at a

later time, in comparison with samples located in the test set, might be distributed

within the training set, and vice versa.

�us, a�er spli�ing the dataset, we normalize the features to zero mean and unit

variance by subtracting the mean, and dividing the features by the standard devi-

ation of the training set.

Finally, we train the CNN on the samples provided by the training set, select the

model with the best performance on the validation set, i.e., ES, and evaluate the

selected model on the test set. �erefore, we additionally provide an in-depth intro-

duction to the approached training procedure, along with the network architecture,

and hyperparameters, subsequently, in Section 3.3.2.

For the evaluation of our experiments, we provide the precision, recall, i.e., class-

wise accuracy, F1 score, and the number of supported samples within the test

set. Additionally, we illustrate the confusion matrix, along with the normalized

confusion matrix.

�us, we provide su�cient information to investigate the practicality and limita-

tions of ALC, along with ASC, on constrained training and test sets.

Summarized, we present the employed classi�cation process in Figure 3.25.
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Figure 3.25.: Overview of the employed classi�cation process, thus, we start with the preprocessing

to obtain monophonic 10 s audio sequences with a sample rate of 48 kHz and a bit

depth of 16 bit, and proceed with the feature extraction by computing 40-band log-mel

spectrograms. Next, we split the dataset into the training, validation, and the test set,

and normalize the features to zero mean and unit variance w.r.t. the training set. Finally,

we train the CNN on the training set, employ ES to determine the best performing

model on the validation set, and provide the outcome of this model on the test set.

3.3.1. Feature Extraction

As input for the employed CNN, we utilize log-mel spectrograms, as proposed in

[Valenti2016]. However, instead of 3 s sequences and 60 mel bands, we compute

40-band log-mel spectrograms of 10 s sequences, proposed as baseline for the

DCASE 2019 ASC challenge in [Mesaros2018]. �us, we utilize a window size of

40 ms with an overlap of 20 ms, i.e., 50%, based on hamming windows.

Since the sequences of the TAU development dataset are recorded in stereo,

more speci�cally, binaural, we �rst compute the monophonic signal by averaging

both channels, i.e., computing the arithmetic mean, as approached for the TAU

Urban Acoustic Scenes 2019 Mobile dataset (TAU mobile dataset), proposed in

[Mesaros2018], to obtain comparable properties w.r.t. our proposed dataset.

First, to compute the log-mel spectrogram, a STFT is applied to the audio sequence.

�us, Figure 3.26 represents the monophonic amplitude of a 10 s sequence (airport-
london-6-275-a.wav) of the TAU development dataset, and the resulting power

spectrogram, a�er applying the STFT, is represented in Figure 3.27. Next, the
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frequencies are transformed into mel scale. �erefore, Figure 3.28 illustrates the

corresponding mel �lter bank. Finally, to compute the log-mel spectrogram, the

logarithm is applied, and therefore the outcome is represented in Figure 3.29.

Summarized, we provide the computation of n-band log-mel spectrograms, as ap-

proached by libROSA
23

, in Algorithm 4. �erefore, we utilize the libROSA package

to compute the STFT
24

and the mel �lter banks
25

. Additionally, we use the libROSA

package to provide a numerically stable computation of the logarithm
26

.

�e �nal implementation is based on melspectrogram27
, provided by libROSA.

Algorithm 4 N-Band Log-Mel Spectrogram
23

1: procedure Features(y, sr=48000,windowSize=40, overlap=20, nMels=40)

2: nF�← int(sr× 1
1000
×windowSize) . No. of samples per window

3: hopLength← int(sr× 1
1000
× overlap)+1 . No. of overlapping samples - 1

4: st�← st�(y, nF�, hopLength, window=‘hamming’) . Compute STFT

5: st�← abs(st�)
2 . Square absolut values

6: melFilterBank← mel(sr, nF�, nMels) . Compute mel �lter bank

7: melSpectrogram← melFilterBank · st� . Apply dot product

8: logMelSpectrogram← 10× log10(
melSpectrogram

max(melSpectrogram)
) . Logarithmize

9: return logMelSpectrogram

23https://librosa.github.io (Accessed on: 2019-09-06)

24https://librosa.github.io/librosa/generated/librosa.core.s
tft.html (Accessed on: 2019-10-22)

25https://librosa.github.io/librosa/generated/librosa.filter
s.mel.html (Accessed on: 2019-10-22)

26https://librosa.github.io/librosa/generated/librosa.core.p
ower to db.html (Accessed on: 2019-10-22)

27https://librosa.github.io/librosa/generated/librosa.featur
e.melspectrogram.html (Accessed on: 2019-10-22)
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3. Methodology

Figure 3.26.: Monophonic amplitude of a 10 s sequence (airport-london-6-275-a.wav) provided by

the TAU development dataset.

Figure 3.27.: Power spectrogram a�er applying the STFT based on airport-london-6-275-a.wav. To

improve the representation, the result of the STFT is logarithmized.
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Figure 3.28.: 40-band mel �lter bank to transform the result of the STFT of airport-london-6-275-
a.wav into mel scale.

Figure 3.29.: �e logarithmized mel spectrogram, i.e., 40-band log-mel spectrogram, representing the

10 s sequence airport-london-6-275-a.wav provided by the TAU development dataset.
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3.3.2. Architecture, Hyperparameters, and Training
Procedure

For the architecture and the hyperparameters of our CNN, we follow the baseline

approach for the DCASE 2019 ASC challenge proposed in [Mesaros2018].

�us, for the �rst convolutional layer, we utilize 32 �lters with a size of 7× 7 and a

stride of 1× 1 with zero-padding. �e �rst pooling layer applies max pooling with

a pool size of 5× 5. �e second convolutional layer corresponds to the �rst, but

utilizes 64 �lters. Opposed to the �rst max pooling laying, the second pooling layer

utilizes a pool size of 4× 100. A�er the second pooling layer, the output is �a�ened

and a fully connected layer with ReLU as activation function is introduced. Finally,

a so�max layer is applied to compute the class-wise predictions.

Additionally, we utilize batch normalization before activating the output of the

convolutional layers. Furthermore, 30% of the output neurons of the pooling layers,

and of the fully connected layer, are dropped during training. �e optimizer of

choice is Adam with a learning rate of 0.001, and the loss function is realized by

the categorical cross-entropy loss.

�e other parameters, w.r.t. the Keras implementation, remain unchanged.

Summarized, we present the Keras layers in Figure 3.30, along with an illustration

of the CNN in Figure 3.31.

�e network is trained for 200 epochs with batches of 16 samples. Additionally, the

training set is shu�ed a�er each epoch. To avoid over��ing, and hence to improve

generalization, we utilize ES. �us, the model with the lowest validation loss, i.e., the

CNN trained with the number of epochs providing the best generalization estimate,

is selected and evaluated on the test set. Additionally, to avoid long runtimes for

the network training, we interrupt the training a�er 20 stagnating epochs w.r.t. the

validation loss.

�e CNN is implemented in Python 3.7.3 with Keras 2.3.0, proposed in [Chollet2015],

using TensorFlow-GPU 2.0.0, proposed in [Abadi2015], as backend.

For the training of the CNN, we utilize a GeForce GTX 1060 with CUDA 10.0 and

cuDNN 7.6.2. Utilizing a GeForce GTX 1060 accelerates the training to 22 s per

epoch, compared to 136 s with an Intel i7-6700HQ (4 cores, 8 threads, 2.6 GHz),

w.r.t. ASC on the TAU development dataset.
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3. Methodology

Figure 3.30.: Implementation of the employed CNN represented by Keras layers.
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4. Results & Discussion

In this chapter, we provide the evaluation of our work. �us, we introduce multiple

experiments, and present the achieved outcomes of ASC, and ALC, employed on

the TAU development dataset, introduced for the DCASE 2019 ASC challenge,

and on our proposed dataset, especially established for the investigation of ALC.

Furthermore, we provide an interpretation of the achieved results, discussing the

practicality and limitations of ASC, and ALC, while focusing on local and temporal

constraints on the distribution of samples throughout train-test splits.

�erefore, an overview of the conducted experiments is provided in Table 4.1, and

the evaluated datasets, i.e., the TAU development dataset, and our proposed dataset,

are speci�ed in Table 4.2.

We start o� with the Proof of Concept (PoC) of our CNN implementation on the

TAU development dataset in Section 4.1. �erefore, we compare the results of our

implementation to the published results
1
of the baseline system for the DCASE 2019

ASC challenge.

Next, in Section 4.2, we introduce an enhanced ES procedure, stopping the training

once the error w.r.t. the validation set stops improving. �us, we seek to improve the

e�ciency for the evaluation of multiple large models by introducing the possibility

of stopping the training once the model has been converged, and hence avoid the

maximum number of declared epochs.

�e PoC evaluates the trained model on the test set, and the test set is additionally

utilized to determine the best generalized model. Hence, this approach introduces a

bias during the model selection w.r.t. the test set, thus, prevents a reliable evaluation.

Unfortunately, over the period of this work, the DCASE 2019 challenge �nished,

and the targets of the TAU Urban Acoustic Scenes 2019, Evaluation dataset (TAU

evaluation dataset) are not available to the public. �erefore, we utilize a part of

the training set as validation set to employ ES, and hence restrict the test set to the

1http://dcase.community/challenge2019/task-acoustic-scene-
classification (Accessed on: 2019-10-10)
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4. Results & Discussion

evaluation, as presented in Section 4.3.

�e suggested train-test split
2
restricts audio samples associated with a particular

location to either the training or the test set. Furthermore, representatives of each

city are distributed into the training, and the test set, respectively. However, for the

remainder of this work, we do not intentionally enforce samples of each city to be

present within the training as well as the test set.

For the application of ASC, we are encouraged to investigate the impact of locally

constraining train-test splits. �us, we additionally employ ASC without constraints

on the TAU development dataset in Section 4.4.

Additionally, to provide a benchmark for the evaluation of ASC on our proposed

dataset, we present the results of employing ASC with local constraints on the

TAU development dataset, including only samples associated with Urban Parks and

Public Squares, in Section 4.5.

Finally, for the TAU development dataset, we present the results of employing ALC

on locations labeled as Urban Park in Section 4.6.

Next, we introduce our proposed dataset, especially established to investigate the

impact of temporal constraints on ALC.

We start o� with the evaluation of ASC without constraints on the train-test split

in Section 4.7.

Additionally, we provide the evaluation of ASC on our proposed dataset, imple-

menting the approach of the suggested train-test split proposed for the DCASE

2019 ASC challenge, i.e., introducing local constraints, in Section 4.8.

Furthermore, in consideration of ASC on our proposed dataset, we substitute the

local constraints by temporal constraints. �us, the audio samples of the training

and the test set constitute di�erent recording dates, as presented in Section 4.9.

Finally, we proceed with the evaluation of ALC on our proposed dataset. �us,

in Section 4.10, we employ ALC without constraints on the train-test split, and

provide the evaluation of the proposed temporal constraints on ALC in Section

4.11.

2http://dcase.community/challenge2019/task-acoustic-scene-
classification (Accessed on: 2019-10-10)
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4. Results & Discussion

Table 4.1.: Overview of the conducted experiments for the evaluation of ASC and ALC on the TAU

development dataset and our proposed dataset.

Experiments

TAU Acoustic Scene Classi�cation Proof of Concept 4.1

TAU Acoustic Scene Classi�cation Early Stopping 4.2

TAU Acoustic Scene Classi�cation 4.3

TAU Acoustic Scene Classi�cation Unconstrained 4.4

TAU Acoustic Scene Classi�cation on Urban Parks & Public Squares 4.5

TAU Acoustic Location Classi�cation on Urban Parks 4.6

Proposed Acoustic Scene Classi�cation 4.7

Proposed Acoustic Scene Classi�cation with Local Constraints 4.8

Proposed Acoustic Scene Classi�cation with Temporal Constraints 4.9

Proposed Acoustic Location Classi�cation 4.10

Proposed Acoustic Location Classi�cation with Temporal Constraints 4.11

4.1. TAU Acoustic Scene Classification Proof of
Concept

In the following, we present the results of our CNN, employed for ASC on the

TAU development dataset. �us, we provide a PoC for the employed preprocessing,

classi�cation, and evaluation methodology.

Summarized, we employ a 2-layer deep CNN to classify 40-band log-mel spectro-

grams based on 10 s audio samples to the corresponding acoustic scene, i.e., an

abstraction of the location w.r.t. the acoustic environment where the recording is

conducted.

First, to adapt the characteristics of the TAU development dataset to correspond

to our proposed dataset, the stereophonic 10 s audio samples with a bit depth of

24 bit are converted to monophonic signals with a bit depth of 16 bit.

Additionally to the o�cial DCASE 2019 baseline, we enhance the employed ES

methodology. �us, the training is stopped once the error w.r.t. the validation set,

i.e., test set, stops improving for at least 20 epochs.

Furthermore, we utilize the suggested train-test split proposed for the DCASE 2019

ASC challenge, i.e., restricting samples based on the associated location to either

the training or the test set.
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4. Results & Discussion

Table 4.2.: Properties of the TAU development dataset and our proposed dataset w.r.t. the number of

samples and recordings, the duration of recordings, and the number of featured acoustic

scenes and locations.

TAU development dataset
3

Proposed dataset

Number of 10 s samples 14400 720
Number of recordings ∼ 1000 24
Duration of one recording ∼ 144 ∼ 300
Acoustic scenes 10 2
Locations 514 8

�us, the network is trained on the training set until convergence, or for a max-

imum of 200 epochs, and the most generalized model, i.e., the model trained until

the epoch resulting in the lowest test error, is utilized for the evaluation.

�erefore, in Table 4.3, we present the published class-wise accuracies for the

DCASE 2019 ASC challenge, along with the class-wise accuracies of our imple-

mentation, representing the arithmetic mean over 10 independent training runs.

Additionally, precision, F1 score, and the number of samples for each class of the

test set are provided. �us, we observe a minor di�erence of 0.66%, based on the

62.51% of the published results, and 63.17% of our implementation.

�is deviation might be deduced from the reduced bit depth, the enhanced ES

methodology, and the randomness in the parameter initialization. Furthermore,

utilizing GPUs for training NNs introduces non-determinism
3
, resulting in slight

deviations as well.

Additionally, we illustrate precision, recall, and F1 score for each acoustic scene in

Figure 4.1.

�us, Figure 4.1 shows that the results remain unbiased w.r.t. underrepresented

classes, and overrepresented classes, respectively.

Furthermore, the confusion matrix, along with the normalized confusion matrix,

are represented in Figure A.1, and Figure 4.2, respectively.

As illustrated, certain acoustic scenes are harder to classify than others, e.g., Airport
is classi�ed correctly by 53%, opposed to Urban Park, reaching an accuracy of 83%.

Furthermore, certain acoustic scene pairs appear hard to be di�erentiated, e.g.,

Airport and Shopping Mall, resulting in a misclassi�cation of Airport to Shopping

3http://dcase.community/challenge2019/task-acoustic-scene-
classification (Accessed on: 2019-10-10)
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4. Results & Discussion

Mall by 32%.

Table 4.3.: Published class-wise accuracies of employing ASC on the TAU development dataset,

along with arithmetic mean of the class-wise accuracies w.r.t. our implemented PoC,

based on the suggested train-test split, and averaged over 10 independent training runs.

Additionally, precision, F1 score, and the number of samples for each class of the test set

are provided.

Acoustic Scenes Accuracy Accuracy Precision F1 score Support

O�cial3

Airport 48.40% 53.35% 64.63% 58.33% 421
Bus 62.30% 71.37% 64.73% 67.78% 415
Metro 65.10% 58.87% 65.58% 61.89% 433
Metro station 54.50% 50.14% 61.97% 54.95% 435
Park 83.10% 82.59% 87.02% 84.67% 386
Public square 40.70% 44.73% 44.75% 44.52% 387
Shopping mall 59.40% 68.37% 54.68% 60.64% 441
Street pedestrian 60.90% 61.54% 54.53% 57.51% 429
Street tra�c 86.70% 81.59% 84.00% 82.68% 402
Tram 64.00% 59.20% 58.31% 58.52% 436

Average 62.51% 63.17% 64.02% 63.15%
+/- 0.60% 1.23% 1.44% 1.28%
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Figure 4.1.: Arithmetic mean of precision, recall, and F1 score of employing our ASC PoC on the

suggested train-test split of the TAU development dataset, averaged over 10 independent

training runs.
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Figure 4.2.: Normalized confusion matrix, illustrating the arithmetic mean, w.r.t. the class-wise

accuracies, of employing ASC on the suggested train-test split for the TAU development

dataset, averaged over 10 independent training runs.

4.2. TAU Acoustic Scene Classification Early
Stopping

In the following, we provide the results of the enhanced ES approach, introduced

for our employed training procedure.

Opposed to the o�cial DCASE 2019 ASC baseline, we interrupt the training a�er

20 epochs of stagnating validation loss. However, we keep a maximum number of

200 epochs for the training.

�us, we monitor the network on the validation set, i.e., on the test set, while train-

ing the network on the training set. Furthermore, we store the current model, i.e.,

the model parameters, every time the validation loss improves. Finally, we evaluate

the model with the lowest validation loss on the test set, i.e., on the evaluation set.

As represented in Figure 4.3, the performance of the model on unseen samples

remains constant, or even becomes worse, as soon as the validation loss stops

decreasing for a reasonable number of, e.g., 20, epochs. �us, we achieve satisfying
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results, while keeping the number of training epochs comparatively low, as repres-

ented in Figure 4.4.

However, we cannot completely eliminate the risk of missing a model, i.e., an epoch,

with a lower validation loss within 200 epochs.

Figure 4.3.: Loss and accuracy of the training and validation set of employing our PoC w.r.t. ASC on

the suggested train-test split of the TAU development dataset until 200 epochs.
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Figure 4.4.: Training and validation loss, and accuracy, respectively, of our PoC employed for ASC

on the suggested train-test split of the TAU development dataset, while stopping the

training a�er 20 epochs of non-improvement w.r.t. the validation loss.

4.3. TAU Acoustic Scene Classification

For the PoC of our CNN implementation, previously presented in Section 4.1, we

employ ASC on the suggested train-test split, proposed for the DCASE 2019 ASC

challenge. �us, we utilize the test set to determine the model with the lowest

validation loss and receive a performance estimate for the test set. �erefore, the

test set is not only utilized to evaluate the performance, but is also involved in the

training process, more precisely, in the model selection.

Since the DCASE 2019 ASC challenge expired during this thesis, and the targets

for the TAU evaluation dataset are not provided to the public, we are restricted to

the TAU development dataset.

�us, to achieve unbiased results w.r.t. the test set, we utilize 10% of the training

set as separated validation set. Additionally, the validation set is assembled to

restrict audio samples associated with di�erent locations to either the training or

the validation set.
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In Table 4.4, we provide the class-wise accuracies, along with precision, andF1 score,

averaged over 10 independent training runs, as well as the number of represented

samples for each acoustic scene of the test set.

As illustrated, the arithmetic mean of the class-wise accuracy over 10 independent

training runs drops from 63.17% to 57.19%, compared to the PoC.

�is decrease in the accuracy of 5.98% can be explained by the decreased number of

available training samples, as well as on the strict separation between the validation

and the test set.

Additionally, we illustrate precision, recall, and F1 score, for each acoustic scene,

in Figure 4.5. Finally, we represent the confusion matrix in Figure A.2, along with

the normalized confusion matrix in Figure 4.6.

Table 4.4.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, averaged over 10
independent training runs, along with the number of samples for each class, of employing

ASC on the TAU development dataset and utilizing 10% of the training set as separated

validation set. Additionally, the arithmetic mean of the class-wise accuracies for ASC on

the TAU development dataset based on the suggested train-test split, i.e., the outcomes

of our PoC, are presented.

Acoustic Scenes Accuracy PoC Accuracy Precision F1 score Support

Airport 53.35% 41.69% 58.05% 46.98% 421
Bus 71.37% 51.42% 56.47% 53.04% 415
Metro 58.87% 60.44% 56.42% 57.90% 433
Metro station 50.14% 40.32% 59.90% 47.79% 435
Park 82.59% 81.76% 85.15% 83.23% 386
Public square 44.73% 35.48% 40.82% 37.71% 387
Shopping mall 68.37% 64.78% 52.19% 56.89% 441
Street pedestrian 61.54% 60.40% 50.53% 54.62% 429
Street tra�c 81.59% 81.72% 78.75% 80.09% 402
Tram 59.20% 53.88% 45.85% 49.11% 436

Average 63.17% 57.19% 58.41% 56.74%
+/- 1.23% 2.30% 1.91% 2.46%

57



4. Results & Discussion

Figure 4.5.: Arithmetic mean of precision, recall, andF1 score, averaged over 10 independent training

runs, of employing ASC on the TAU development dataset while utilizing 10% of the

training set as separated validation set.
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Figure 4.6.: Normalized confusion matrix, representing the arithmetic mean of the class-wise ac-

curacies, averaged over 10 independent training runs, of employing ASC on the TAU

development dataset with a separated validation set, i.e., utilizing 10% of the training

set exclusively for validation.

4.4. TAU Acoustic Scene Classification
Unconstrained

Next, to investigate the impact of restricting samples based on the associated

location to either the training, validation, or test set, previously presented in Section

4.3, we provide the results of employing ASC on the TAU development dataset

without the suggested train-test split.

�us, rather than restricting samples to one set w.r.t. the labelled location, we

randomly split the TAU development dataset into a training set (70%) and a test set

(30%). Additionally, to employ ES, and hence to select the model with the highest

generalization score, we split 10% of the training set into a separated validation set.

To avoid under- and overrepresented classes, although randomly split, we ensure

to uniformly distribute, w.r.t. acoustic scenes, the samples throughout the training,

validation, and test set.
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�us, we present the results of employing ASC without constraints on the train-

test split on the TAU development dataset in Table 4.5, providing the class-wise

accuracies averaged over 10 independent training runs.

Additionally, for each of the 10 training runs, a new random split is employed, and

the training is stopped a�er 20 epochs of non-improvement w.r.t. the validation

loss.

As shown in Table 4.5, the arithmetic mean of the class-wise accuracy, averaged

over 10 independent training runs, improved from 57.19% to 76.45%.

�is increase of the accuracy by 19.26% indicates the importance of reasonable

constraints on the train-test split. Otherwise, the classi�cation accuracy does not

express the actual classi�cation performance w.r.t. generalization. [Valenti2016]

Additionally, precision, recall, and F1 score, for each class, are illustrated in Figure

4.7. Finally, the confusion matrix, along with the normalized confusion matrix, of

employing unconstrained ASC on the TAU development dataset, are represented

in Figure A.3, and Figure 4.8, respectively.

Figure 4.7.: Arithmetic mean of precision, recall, andF1 score, averaged over 10 independent training

runs, of employing ASC on the TAU development dataset without restricting samples

based on the associated location to either the training or the test set.
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Table 4.5.: Arithmetic mean of the class-wise accuracies, along with precision, and F1 score, aver-

aged over 10 independent training runs, and the number of samples representing the

corresponding acoustic scene within in test set, providing the outcomes of employing

ASC on the TAU development dataset while omi�ing the restrictions of the suggested

train-test split.

Acoustic Scenes Acc. Locally Accuracy Precision F1 score Support

Constrained

Airport 41.69% 75.42% 74.83% 74.91% 432
Bus 51.42% 81.18% 78.70% 79.78% 432
Metro 60.44% 71.25% 78.99% 74.85% 432
Metro station 40.32% 64.54% 82.37% 72.27% 432
Park 81.76% 94.56% 90.60% 92.53% 432
Public square 35.48% 65.90% 69.55% 67.50% 432
Shopping mall 64.78% 78.17% 71.93% 74.82% 432
Street pedestrian 60.40% 72.01% 62.70% 66.83% 432
Street tra�c 81.72% 86.90% 92.16% 89.40% 432
Tram 53.88% 74.54% 69.15% 71.56% 432

Average 57.19% 76.45% 77.10% 76.44%
+/- 2.30% 1.78% 1.65% 1.78%

Figure 4.8.: Normalized confusion matrix, representing the arithmetic mean of the class-wise ac-

curacies, averaged over 10 independent training runs, of employing ASC on the TAU

development dataset, leaving out the constraints of the suggested train-test split.
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4.5. TAU Acoustic Scene Classification on Urban
Parks & Public Squares

Additionally, to obtain comparable results for the evaluation of our proposed data-

set, we present the results of employing ASC on the TAU development dataset,

only including samples associated with Urban Parks and Public Squares. Since our

proposed dataset provides samples within 2 acoustic scenes, Urban Green Space and

Public Square, which relate to the acoustic scenes Urban Park and Public Square,

represented within the TAU development dataset, we provide a benchmark w.r.t.

ASC for our proposed dataset.

�us, we utilize the suggested train-test split for the TAU development dataset, but

solely include samples labelled as Urban Park or Public Square. Additionally, we

employ 10% of the training set for validation, hence, to determine the model with

the highest generalization estimate, and to stop the training a�er the validation

loss suspends for at least 20 epochs. Furthermore, we maintain the restriction for

samples associated with the same location to be either placed in the training or the

validation set.

�erefore, we present the class-wise accuracies, along with precision, F1 score, and

the number of samples for each class, of employing ASC on Urban Parks and Public
Squares of the TAU development dataset, averaged over 10 independent training

runs, in Table 4.6.

�us, we achieve a class-wise accuracy of 89.45% for the classi�cation between

Urban Parks and Public Squares of the TAU development dataset.

Additionally, precision, recall, and F1 score, for each class, i.e., acoustic scene, are

illustrated in Figure 4.9. Finally, we present the confusion matrix, along with the

normalized confusion matrix, in Figure A.4, and Figure 4.10, respectively.
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Table 4.6.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, averaged over

10 independent training runs, along with the number of samples per class represented

within the test set, of employing ASC on the TAU development dataset limited to Urban
Parks and Public Squares.

Acoustic Scenes Accuracy Precision F1 score Support

Park 87.82% 90.89% 89.27% 386
Public square 91.09% 88.31% 89.62% 387

Average 89.45% 89.60% 89.45%
+/- 0.51% 0.60% 0.51%

Figure 4.9.: Arithmetic mean of precision, recall, andF1 score, averaged over 10 independent training

runs, of employing ASC on the TAU development dataset, considering solely locations

associated with Urban Parks and Public Squares.
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Figure 4.10.: Normalized confusion matrix, illustrating the arithmetic mean of the class-wise ac-

curacies, averaged over 10 independent training runs, of employing ASC on locations

labelled as Urban Park or Public Square within the TAU development dataset.

4.5.1. Transfer TAU Acoustic Scene Classification

To investigate the capability of transferring models between related datasets, we

evaluate the CNN trained on the acoustic scenes Urban Park and Public Square of

the TAU development dataset on our proposed dataset. Hence, the acoustic scene

Urban Park corresponds to Urban Green Space, and the acoustic scene Public Square
is preserved for the evaluation on our proposed dataset.

As presented in Table 4.7, the transferred model, trained on the particular acoustic

scenes of the TAU development dataset, yields an average accuracy of 93.00%, and

a standard deviation of 1.51%, when evaluated on our proposed dataset.

Since the transferred model implies local and temporal constraints for the evaluation,

and the audio samples of our proposed dataset are recorded with a smartphone,

opposed to a professional audio recorder, employed for the samples of the TAU

development dataset, the resulting accuracies appear relatively high compared to

the results when trained and evaluated on our proposed dataset, as presented in

Table 4.8.
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�erefore, the transferred model loses 5.74%, and 2.14%, compared to uncon-

strained, and temporally constrained ASC, respectively, but gains 4.85% compared

to locally constrained ASC.

However, as the size of our proposed dataset is comparatively small, opposed to

the TAU development dataset, a generalization to acoustic scenes becomes di�cult

when introducing local constraints, and hence yields relatively low classi�cation

accuracies when trained on our proposed dataset.

�us, the outcomes emphasize the bene�ts of transferring trained models when

dealing with related datasets.

Table 4.7.: Arithmetic mean of the class-wise accuracies, precision, F1 score, and the number of

evaluated samples provided by our proposed dataset, averaged over the 10 models trained

on the acoustic scenes Urban Park and Public Square of the TAU development dataset.

Acoustic Scenes Accuracy Precision F1 score Support

Park 93.64% 92.52% 93.05% 360
Public Square 92.36% 93.59% 92.94% 360

Average 93.00% 93.05% 93.00%
+/- 1.51% 1.47% 1.51%

Table 4.8.: Outcomes of the ASC experiments evaluated on our proposed dataset.

Experiment Accuracy Reference

TAU ASC Transferred 93.00% 4.7

Proposed ASC without Constraints 98.74% 4.10

Proposed ASC with Local Constraints 88.15% 4.12

Proposed ASC with Temporal Constraints 95.14% 4.18
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4.6. TAU Acoustic Location Classification on
Urban Parks

In the following, we present the results of employing ALC on the TAU development

dataset. More speci�cally, we employ ALC on the locations labelled as Urban Park,

constituting a classi�cation task between 41 locations.

Due to the limited number of 8 locations provided by our proposed dataset, and

the number of classes, i.e., 10 acoustic scenes, which the CNN is optimized for, we

solely include locations labelled as Urban Park, rather than the whole TAU devel-

opment dataset, hence, keeping the number of classes, i.e., locations, reasonably

low. Furthermore, we provide a benchmark for employing ALC on our proposed

dataset.

�us, we randomly split the samples within the acoustic scene Urban Park into a

training set (70%) and a test set (30%). Furthermore, to enable ES, and hence to

select the best performing model, i.e., the model trained until the epoch resulting

in the lowest validation loss, we utilize 10% of the training set as validation set.

Besides, the training is stopped once the validation loss refuses to improve for at

least 20 epochs. Additionally, we ensure that the targets are uniformly distributed

w.r.t. the locations throughout the training, validation, and test set. Furthermore,

to avoid underrepresented classes, we remove locations that support less than 20
samples. To enhance the reproducibility of the results, we conduct 10 independent

training runs and employ a new random split for each run.

�us, in Table 4.9, we present the arithmetic mean of the class-wise accuracies

averaged over 10 independent training runs, along with precision and F1 score.

Hence, we achieve an averaged class-wise accuracy of 84.27% when employing

ALC on the TAU development dataset limited to Urban Parks.
Besides, the number of samples per class provided by the test set, i.e., the support,

might di�er by one sample between the training runs based on the utilized train-test

split implementation.

Since we aim to classify audio samples to the corresponding location of origin,

restricting each location to either the training or the test set, as approached for

ASC, becomes infeasible. �us, samples originated in the same recording, or a very
similar recording w.r.t. the position at the location and the time frame, are distrib-
uted throughout the training and the test set. �erefore, employing ALC, without

introducing a signi�cant temporal gap between training and test samples, draws a

tampered classi�cation estimate w.r.t. generalization [Valenti2016], and results in
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an over��ed model [Mesaros2018a], potentially unable to perform comparatively

well on unseen samples, i.e., on samples recorded on a di�erent date.

Additionally, in Figure 4.11, precision, recall, and F1 score, are illustrated. Finally,

the normalized confusion matrix is represented in Figure 4.12.

Table 4.9.: Arithmetic mean of the class-wise accuracies of employing ALC on the TAU development

dataset, averaged over 10 independent training runs, along with precision and F1 score,

illustrating the classi�cation performance between 41 locations, each represented by the

acoustic scene Urban Park.

Accuracy Precision F1 score

Average 84.27% 85.56% 84.03%
+/- 1.75% 1.60% 1.78%

Figure 4.11.: Arithmetic mean of precision, recall, and F1 score of employing ALC on locations

labelled as Urban Park of the TAU development dataset, averaged over 10 independent

training runs.
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Figure 4.12.: Normalized confusion matrix, representing the arithmetic mean of the class-wise ac-

curacies of employing ALC on locations labelled as Urban Park of the TAU development

dataset, averaged over 10 independent training runs.

4.7. Proposed Acoustic Scene Classification

To introduce our proposed dataset, represented by 2 acoustics scenes, and 8 loc-

ations, respectively, and to provide a benchmark for locally and temporally con-

strained ASC, we provide the evaluation of ASC without constraints on the train-test

split.

�us, to enhance the comparability to temporally constrained ASC, subsequently

presented in Section 4.9, we split the dataset into 3 equally sized folds—the provided

samples are recorded on 3 consecutive days and introducing temporal constraints

results in the stated distribution.

More speci�cally, we split the dataset in the training set (66%) and in the test set

(33%). Additionally, we utilize 50% of the training set as validation set to enable

ES, and hence to determine the best trained model. Furthermore, the training is

stopped a�er 20 epochs of non-improvement w.r.t. the validation loss.

For the evaluation, we conduct 10 independent training runs and randomly split
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the dataset in the training, validation, and the test set for each training run inde-

pendently. Additionally, the samples are uniformly distributed w.r.t. the acoustic

scenes throughout the sets.

�us, in Table 4.10, we present the arithmetic mean of the class-wise accuracies

averaged over 10 independent training runs, as well as precision, F1 score, and the

number of samples for each acoustic scene of the test set.

Hence, we observe an accuracy of 98.74% for employing ASC on Public Squares
and Urban Green Spaces of our proposed dataset.

�is result emphasizes the missing constraints on the train-test split, leading to

a high classi�cation accuracy, but disregarding the generalization performance

[Valenti2016].

Furthermore, the accuracy of 98.74% relates to the comparatively high accuracy of

89.45%, representing the outcome of ASC approached on the TAU development

dataset limited to Urban Parks and Public Squares, previously presented in Section

4.5.

Additionally, we illustrate precision, recall, and F1 score in Figure 4.13, along with

the confusion matrix, and the normalized confusion matrix in Figure A.5, and Figure

4.14, respectively.

Table 4.10.: Class-wise accuracies, precision, F1 score, and the number of samples for each class

present in the test set, representing the arithmetic mean of 10 independent training

runs, of employing ASC on the proposed dataset. For each training run, the samples

are randomly distributed throughout the training (33%), validation (33%), and test set

(33%).

Acoustic Scenes Accuracy Precision F1 score Support

Public Square 99.50% 98.03% 98.75% 119
Urban Green Space 97.98% 99.49% 98.73% 119

Average 98.74% 98.76% 98.74%
+/- 0.70% 0.68% 0.70%
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Figure 4.13.: Precision, recall, and F1 score of employing ASC without constraints on our proposed

dataset, representing the arithmetic mean over 10 independent training runs. For each

training run, the proposed dataset is randomly split in the training (33%), validation

(33%), and test set (33%) independently.
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Figure 4.14.: Normalized confusion matrix, representing the arithmetic mean of the class-wise

accuracies averaged over 10 independent training runs of employing ASC without

constraints on our proposed dataset.

4.8. Proposed Acoustic Scene Classification with
Local Constraints

We proceed with ASC on the proposed dataset, restricting samples based on the

associated location to either the training, validation, or test set.

Since our proposed dataset provides 2 acoustic scenes, each represented by 4 loca-

tions, we approach a 4-2-2 split, i.e., utilizing 4 locations for training, 2 for validation,

and 2 for testing. �erefore, we uniformly distribute the samples, w.r.t. the corres-

ponding acoustic scene, throughout the training, validation, and test set.

Additionally, to reduce the degree of uncertainty for the evaluation, we utilize each

location for training, validation, and testing, realized by a CV. �erefore, the 4 CV

runs, along with the corresponding locations, are represented in Table 4.11.

Based on this 4-2-2 split, the share of samples utilized for the training is represen-

ted by 50% of the proposed dataset, as opposed to 33% for the evaluation of ASC

without and with temporal constraints, previously presented in Section 4.7, and
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subsequently presented in Section 4.9, respectively.

When comparing the results of ASC with local constraints, presented in Table 4.12,

to ASC without constraints, presented in Table 4.10, we observe a decrease in the

accuracy of 10.59%. More precisely, the accuracy drops from 98.74% to 88.15%.

Hence, based on the introduced local constraints, we ensure a reasonable generaliz-

ation estimate [Valenti2016], resulting in a decrease of the accuracy by 10.59%.

Furthermore, the outcome relates to the comparison between ASC with local con-

straints and ASC without constraints, employed on the TAU development dataset.

�us, ASC with local constraints employed on the TAU development dataset results

in an accuracy of 57.19%, represented in Table 4.4, compared to 76.45% without

constraints, represented in Table 4.5. �us, resulting in a decrease of the accuracy by

19.26% for the evaluation of ASC with local constraints on the TAU development

dataset.

Additionally, in Figure 4.15, precision, recall, and F1 score, averaged over the 4
CV runs, are illustrated, as well as the confusion matrix in Figure A.6, and the

normalized confusion matrix in Figure 4.16.

However, since the standard deviation of the accuracy, w.r.t. the CV runs speci�ed

in Table 4.11, exceeds 10%, as presented in Table 4.12, we further investigate each

run individually.

�erefore, we provide the arithmetic mean of the class-wise accuracies, precision,

and F1 score, averaged over 10 independent training runs, of each CV run, in Table

4.13, Table 4.14, Table 4.15, and Table 4.16.

�us, the classi�cation performance ranges from 73.00% to 96.33%, and di�ers at

the most by 23.23% between the 2nd and the 1st CV run, presented in Table 4.14,

and Table 4.13, respectively.

However, both, the 1st and 4th CV run, reach over 96%, more speci�cally, 96.33%,

and 96.06%, as show in Table 4.13, and Table 4.16. �e 3rd run, presented in Table

4.16, results in 87.22%, hence, is ranked between the 1st, and 4th run, respectively,

and the 2nd run.

�us, the practicality of locally constrained ASC is limited by the discrepancy

between training and test locations, and hence depends on the knowledge provided

by the training data.

Consequently, to investigate the origin of the classi�cation performance for the CV

runs, we additionally provide the misclassi�cations w.r.t. the acoustic scenes, and

the underlying locations, for each CV run individually, averaged over 10 independ-

ent training runs, in Table 4.17.

Hence, for the 2nd CV run, the location Am Eisernen Tor is misclassi�ed as Urban
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Green Space by 43.89%, and Herz-Jesu-Kirche as Public Square by 10.11%, resulting

in an accuracy of 73%, as presented in Table 4.14.

Since the location Am Eisernen Tor exhibits unique background noise, not featured

by any other location within our proposed dataset, this high misclassi�cation rate of

over 40% might arise from the lack of diversity within the corresponding training

data.

�e misclassi�cation of the location Herz-Jesu-Kirche might occur due to the loca-

tion’s proximity to adjoining streets, and hence is based on the sound of passing

cars and trams. Furthermore, ringing church bells provide an unknown pa�ern to

the model, thus, might introduce another source of misclassi�cation.

Furthermore, for the 3rd CV run, the location Lessingstraße 25 is falsely classi�ed as

Public Square by 20%, limiting the accuracy to 87.22%, as presented in Table 4.15.

�erefore, the misclassi�cation rate for the location Lessingstraße 25 might raise due

to the sound of passing cars, occasionally captured within audio samples. However,

on the 1st day of recording Lessingstraße 25, construction work based sound emis-

sions are captured, constituting a more reasonable justi�cation for a proportionally

high misclassi�cation rate of 20%.

Consequently, the outcomes emphasize the challenge of classifying locations with

an unique soundscape, e.g., Am Eisernen Tor, to the corresponding acoustic scene.

Furthermore, we highlight the impact of uncommon and location-speci�c events,

e.g., construction work, and ringing church bells, w.r.t. Lessingstraße 25, and Herz-
Jesu-Kirche, respectively, on the classi�cation performance.

However, to investigate locally constrained ASC in more depth, both, an increased

number of temporally independent recordings, and a larger number of diverse

locations, constitute prerequisites to increase the variability of locations within

acoustic scenes and enable a reasonable generalization.
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Table 4.11.: Approached CV for the evaluation of ASC with local constraints on our proposed dataset,

utilized to reduce the amount of uncertainty, and hence to avoid unreliable results.

Location Acoustic Scene 1st 2nd 3rd 4th

Herz-Jesu-Kirche Urban Green Space train test val train

Lessingstraße 25 Urban Green Space train train test val

Naglergasse 35 Urban Green Space val train train test

Stadtpark Urban Green Space test val train train

Am Eisernen Tor Public Square train test val train

Hauptplatz Public Square train train test val

Jakominiplatz Public Square val train train test

Kaiser-Josef-Platz Public Square test val train train

Table 4.12.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, averaged over 10
independent training runs of each run w.r.t. the CV, presented in Figure 4.11, along with

the number of samples provided for each acoustic scene within in the test set. Hence,

providing the results of employing ASC with local constraints, utilizing 50% of our

proposed dataset for training, and 25% for validation, and testing, respectively.

Acoustic Scenes Accuracy Precision F1 score Support

Public Square 85.50% 90.53% 86.77% 90
Urban Green Space 90.81% 88.56% 88.91% 90

Average 88.15% 89.54% 87.84%
+/- 10.48% 9.15% 10.99%

Figure 4.15.: Illustration of the arithmetic mean w.r.t. the approached CV presented in Figure 4.11

with 10 independent training runs for each CV run, representing the averaged precision,

recall, and F1 score, based on the evaluation of ASC with local constraints on our

proposed dataset.
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Figure 4.16.: Normalized confusion matrix, providing the arithmetic mean of the class-wise ac-

curacies w.r.t. the CV with 10 independent training runs for each CV run, utilized for

the evaluation of ASC with local constraints on our proposed dataset.

Table 4.13.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, averaged over 10
independent training runs, of the 1st run w.r.t. the CV, of locally constrained ASC on

our proposed dataset.

Acoustic Scenes Accuracy Precision F1 score Support

Public Square 92.67% 100.00% 96.08% 90
Urban Green Space 100.00% 93.48% 96.55% 90

Average 96.33% 96.74% 96.31%
+/- 3.18% 2.66% 3.21%
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Table 4.14.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, based on the 2nd

run of the CV w.r.t. locally constrained ASC on our proposed dataset, averaged over 10
independent training runs.

Acoustic Scenes Accuracy Precision F1 score Support

Public Square 56.11% 85.47% 66.85% 90
Urban Green Space 89.89% 67.69% 76.97% 90

Average 73.00% 76.58% 71.91%
+/- 5.31% 4.59% 6.11%

Table 4.15.: Arithmetic mean of the class-wise accuracies, precision, F1 score, of the 3rd run w.r.t. the

CV, hence, averaged over 10 independent trainings runs, of ASC with local constraints

on our proposed dataset.

Acoustic Scenes Accuracy Precision F1 score Support

Public Square 94.44% 82.91% 88.01% 90
Urban Green Space 80.00% 94.30% 86.18% 90

Average 87.22% 88.60% 87.09%
+/- 6.35% 6.33% 6.42%

4.9. Proposed Acoustic Scene Classification with
Temporal Constraints

Next, we approach ASC on the proposed dataset, restricting samples recorded

on the same date to either the training, validation, or test set. �us, we propose

temporal constraints for the application of ASC.

Since our proposed dataset is composed of samples recorded on 3 consecutive

days, we obtain 3 equally sized folds. Hence, to reduce the degree of uncertainty

for the evaluation, we train and test the permutations w.r.t. the 3 folds, instead of
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Table 4.16.: Arithmetic mean, averaged over 10 independent training runs, of the class-wise ac-

curacies, precision, and F1 score, w.r.t. the 4th run of the CV, of ASC with local con-

straints on our proposed dataset.

Acoustic Scenes Accuracy Precision F1 score Support

Public Square 98.78% 93.75% 96.16% 90
Urban Green Space 93.33% 98.77% 95.94% 90

Average 96.06% 96.26% 96.05%
+/- 1.04% 0.99% 1.04%

employing 10 independent training runs on the same train-test split.

�us, the results represent the arithmetic mean of the 6 training runs w.r.t. the

permutations of the 3 folds, utilizing each fold for training, validation, and testing.

In addition, this approach avoids biased results by evaluating the performance

solely on the best, or a random, train-test permutation.

�us, in Table 4.18, we present the arithmetic mean of the class-wise accuracies w.r.t.

the 6 training runs. Furthermore, precision, F1 score, and the number of samples

for each acoustic scene of the test set are presented in Table 4.18.

As the average accuracy reaches 95.14%, we observe a decrease of 3.6%, compared

to 98.74% when employing ASC without constraints on our proposed dataset,

presented in Table 4.10.

�is decrease in the accuracy of 3.6% arises from the corrected generalization

estimate [Valenti2016], and hence is based on the introduced temporal constraints.

Furthermore, utilizing on temporal constraints, when employing ASC on the pro-

posed dataset, results in a comparatively high accuracy of 95.14%, represented

in Table 4.18, compared to 88.06% when employing ASC with local constraints,

represented in Table 4.12.

�is decrease in the accuracy of 7.08%, when employing ASC with local con-

straints, might arise from the relatively low number of 4 locations per acoustic

scene provided by our proposed dataset, and hence is based on insu�cient know-

ledge to generalize locations to acoustic scenes.

Additionally, precision, recall, and F1 score, are illustrated in Figure 4.17.

Finally, the confusion matrix, as well as the normalized confusion matrix, are

represented in Figure A.7, and Figure 4.18, respectively.
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Table 4.17.: In-depth analysis of the misclassi�ed acoustic scenes for each run of the CV w.r.t. locally

constrained ASC on our proposed dataset, and hence presenting the arithmetic mean and

standard deviation of the number of misclassi�ed samples, along with the underlying

location, for each acoustic scene and CV run, averaged over 10 independent training

runs.

CV run Target Location avg. # +/- avg. % +/-

1 PS Kaiser-Josef-Platz 7 6 7.33% 6.37%

2
PS Am Eisernen Tor 40 11 43.89% 11.72%
UGS Herz-Jesu-Kirche 9 6 10.11% 6.41%

3
PS Hauptplatz 5 8 5.56% 9.08%
UGS Lessingstraße 25 18 8 20.00% 8.65%

4
PS Jakominiplatz 1 2 1.22% 1.82%
UGS Naglergasse 35 6 2 6.67% 2.43%

Figure 4.17.: Illustration of the arithmetic mean of precision, recall, and F1 score, averaged over 6
training runs, representing the permutations of the 3 folds established for the evaluation

of ASC with temporal constraints on our proposed dataset. Hence, restricting samples

by the date of recording to either the training, validation, or test set.
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Table 4.18.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, averaged over

6 independent training runs of the employed ASC with temporal constraints on our

proposed dataset. Hence, the 6 training runs constitute the permutations of the 3 equally

sized folds, established by spli�ing the samples of the proposed dataset w.r.t. to the date

of recording.

Acoustic Scenes Accuracy Precision F1 score Support

Public Square 94.72% 95.75% 95.15% 120
Urban Green Space 95.56% 94.86% 95.12% 120

Average 95.14% 95.31% 95.13%
+/- 2.37% 2.31% 2.37%

Figure 4.18.: Normalized confusion matrix, i.e., the class wise accuracies, of employing ASC with

temporal constraints on our proposed dataset. Hence, representing the arithmetic mean

of 6 independent training runs, constituting the permutations w.r.t. the 3 folds, each

providing samples recorded on a di�erent date.
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4.9.1. Humans versus Machines

To evaluate the human ability of classifying audio samples into acoustic scenes, and

hence to provide a benchmark for the performance of arti�cial ASC, we conduct a

human based ASC evaluation on a subset of our dataset.

�erefore, 3 test persons a�empt to classify 10 s audio samples into the acoustic

scenes Public Square and Urban Green Space. Hence, to adapt the volume level to

the human auditory, the audio samples are ampli�ed by 300%.

To provide each test person with the same knowledge base, 1 audio sample of

each location, hence, 4 audio samples of Public Squares, and Urban Green Spaces,
respectively, are introduced prior the classi�cation. Additionally, photographies of

the locations are presented and characteristics of the locations are described, e.g.,

the fountain at the location Am Eisernen Tor. A�er the training, 16 audio samples, 2
of each location, are classi�ed by each test person independently. �erefore, the

corresponding audio sample is provided once to each test person, and the classi�ca-

tion takes place subsequently. Additionally, to increase the complexity, the samples

of the training and the test set are temporally constrained, hence, are recorded on a

di�erent date.

�us, in Table 4.19, we present the outcomes of the human based ASC, yielding an

average accuracy of 95.83%.

However, 2 of the 3 test persons are resident in the area where the recordings are

conducted—1 of those 2 participants has been involved in the recording process as

well—both achieving a perfect classi�cation. �e 3rd test person, not resident in the

recorded area, misclassi�ed the acoustic scene Urban Green Space, more speci�cally,

the location Herz-Jesu-Kirche, twice as Public Square.

�is misclassi�cation might be deduced from the noise of passing vehicles in the

test samples, opposed to hardly humanly audible noise in the training sample.

Furthermore, since the test persons have knowledge of the location’s distribution

within the test set, i.e., 2 samples per location, empirical decision making might be

an issue in terms of unnecessary misclassi�cations.

Summarized, humans slightly outperform arti�cial ASC within a temporally con-

strained setup, resulting in an accuracy of 95.83%, compared to 95.14% when

arti�cially classi�ed, as presented in Table 4.18. Furthermore, if the worst per-

forming test person is excluded from the evaluation, humans achieve a perfect

classi�cation performance, even outperforming unconstrained arti�cial ASC with

an accuracy of 98.74%, as presented in Table 4.10. However, the number of parti-

80



4. Results & Discussion

cipants, and the number of evaluated samples, might be insu�cient to draw �nal

conclusions.

Table 4.19.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, along with the

number of evaluated samples, averaged over the 3 participants of the Humans versus
Machines survey, hence, estimating the human ability of classifying audio samples of

our proposed dataset into acoustic scenes.

Acoustic Scenes Accuracy Precision F1 score Support

Public Square 100.00% 93.33% 96.30% 8
Urban Green Space 91.67% 100.00% 95.24% 8

Average 95.83% 96.67% 95.77%
+/- 5.89% 4.71% 5.99%

4.10. Proposed Acoustic Location Classification

In the following, we introduce ALC on the proposed dataset, starting o� the evalu-

ation without constraints on the train-test split.

To provide comparable results w.r.t. ALC with temporal constraints, subsequently

presented in Section 4.11, we split the dataset into 3 equally sized folds—since

our proposed dataset is assembled on 3 consecutive working days, implementing

temporal constraints for ALC results in the stated uniform distribution.

�us, we utilize 66% of the dataset for training, and the remaining 33% for testing.

Moreover, 50% of the training data is utilized for the validation set to enable ES,

and hence is employed to identify the best trained model, i.e., the model trained

with the number of epochs resulting in the lowest validation loss. Furthermore, the

validation set is utilized to stop the training a�er 20 epochs of non-improvement.

For the evaluation of ALC on the proposed dataset, we conduct 10 independent

trainings runs, randomly spli�ing the dataset for each run independently, while

uniformly distributing the samples w.r.t. the associated locations throughout the

folds.

As presented in Table 4.20, which provides the class-wise accuracies, along with pre-

cision, F1 score, and the number of samples per location of the test set, we achieve
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a class-wise accuracy, averaged over 10 independent training runs, of 85.17%.

Besides, the number of samples provided for each class, represented by the roun-

ded arithmetic mean over the 10 independent training runs, might deviate by one

sample due to the employed random split implementation.

We a�ribute this comparatively high accuracy of 85.17% to the missing con-

straints on the train-test split, disregarding the actual generalization performance

[Valenti2016], and hence providing an over��ed model [Mesaros2018a] w.r.t. the

recordings of the proposed dataset.

Furthermore, the outcome of 85.17% relates to the accuracy of employing ALC

on the TAU development dataset, limited to locations associated with the acoustic

scene Urban Park, resulting in an accuracy of 84.27%, as presented in Table 4.9.

When investigating the normalized confusion matrix, illustrated in Figure 4.20, we

observe notable misclassi�cations: Hauptplatz is misclassi�ed as Kaiser-Josef-Platz
by 22%, which might be explained with the recording of the 3rd day. More pre-

cisely, based on a slightly di�erent position and a higher population of people, the

humanly produced noise might excel the background of the fountain located at

Hauptplatz. Furthermore, Jakominiplatz is misclassi�ed as Kaiser-Josef-Platz by

11%, and vice versa by 12%. �is misclassi�cation seems reasonable due to the

common properties of both locations, i.e., emi�ing noise based on the population

of people as well as on passing vehicles, i.e., trams and buses.

Additionally, we illustrate precision, recall, and F1 score in Figure 4.19, along with

the confusion matrix in Figure A.8.
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Table 4.20.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, averaged over 10
independent training runs, along with the number of samples provided in the test set,

representing the results of employing ALC without constraints on our proposed dataset.

To ensure a reliable comparison for the evaluation of ALC with temporal constraints

w.r.t. to the number of samples utilized for training, we split the proposed dataset into

the training, validation, and test set, each representing 33%.

Locations Accuracy Precision F1 score Support

Am Eisernen Tor 97.99% 94.88% 96.38% 29
Hauptplatz 73.99% 86.12% 79.48% 29
Herz-Jesu-Kirche 74.30% 83.45% 78.01% 29
Jakominiplatz 88.78% 88.38% 88.41% 29
Kaiser-Josef-Platz 78.17% 67.84% 72.45% 29
Lessingstraße 25 83.55% 85.84% 84.06% 29
Naglergasse 35 91.32% 88.68% 89.72% 29
Stadtpark 93.26% 92.40% 92.66% 29

Average 85.17% 85.95% 85.15%
+/- 1.70% 1.63% 1.69%

Figure 4.19.: Arithmetic mean of precision, recall, andF1 score, representing the results of employing

ALC without constraints on our proposed dataset, hence averaged over 10 independent

training runs. Training, validation, and test set constitute 33% of the proposed dataset

respectively to provide a reasonable benchmark for ALC with temporal constraints

w.r.t. to the number of utilized training samples. Furthermore, training, validation, and

test set are randomly assembled for each training run independently.
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4. Results & Discussion

Figure 4.20.: Normalized confusion matrix of employing unconstrained ALC on our proposed dataset,

hence, representing the arithmetic mean of the class-wise accuracies over 10 independ-

ent training runs, while spli�ing the dataset into training (33%), validation (33%), and

test set (33%) for reach run independently.

4.11. Proposed Acoustic Location Classification
with Temporal Constraints

Finally, we present the evaluation of ALC on the proposed dataset, introducing

temporal constraints by spli�ing the training and the test set to constitute di�erent

dates. �is temporal constraints enable a reasonable and empirical investigation

w.r.t. the practicality and the limitations of classifying audio samples to the location

of origin.

�us, we split the samples of the proposed dataset by the date of recording and

receive 3 equally sized folds, each representing 33% of the dataset.

To avoid biased results by justifying the evaluation solely on the best, or a random

fold, the permutations of the 3 folds are utilized for training, validation, and testing,

as speci�ed in Table 4.21. Hence, we provide the arithmetic mean of the 6 CV runs

as result.
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4. Results & Discussion

�us, we train the CNN on the particular training set, interrupt the training a�er the

validation loss stops improving for at least 20 epochs, select the most generalized

model, i.e., the model trained with the number of epochs resulting in the lowest

error w.r.t. the validation set, and evaluate the selected model on the test set.

�erefore, we present the outcomes, i.e., the class-wise accuracies, precision, and

F1 score, averaged over the 6 CV runs, and the number of samples for each location

of the test set, in Table 4.22. �us, we achieve an accuracy of 63.82%, constituting

a decrease of 21.35% compared to 85.17% of employing unconstrained ALC on the

proposed dataset, as presented in Table 4.20.

�is decrease of 21.35% indicates, based on the temporal constraints, a recti�cation

of the stated classi�cation performance w.r.t. generalization [Valenti2016]. �us,

despite the worse classi�cation accuracy when implementing temporal constraints,

the outcomes represent the possibilities and limitations of ALC in a more reliable

way.

Furthermore, the normalized confusion matrix, representing ALC with temporal

constraints, illustrated in Figure 4.22, correlates with the corresponding confusion

matrix of unconstrained ALC, illustrated in Figure 4.20, apart from a throughout

worse classi�cation performance. For example, Hauptplatz is misclassi�ed as Kaiser-
Josef-Platz by 46%, compared to a misclassi�cation of 22%, when employing ALC

without constraints on the proposed dataset.

�is indicates that introducing temporal constraints dampens the overall classi�ca-

tion accuracy, while preserving susceptible classes for misclassi�cation.

Additionally, precision, recall, and F1 score are illustrated in Figure 4.21, along with

the confusion matrix in Figure A.9.

To investigate the outcome of ALC with temporal constraints on our proposed

dataset in more depth, we present the arithmetic mean of the class-wise accuracies,

precision, and F1 score, averaged over 10 independent training runs w.r.t. the 1st

CV run, i.e., utilizing the 1st day for training, the 2nd day for validation, and the 3rd

day for testing, in Table 4.23. Additionally, we illustrate the classi�cation report,

the confusion matrix, and the normalized confusion matrix, of the 1st CV run, in

Figure 4.23, Figure A.10, and Figure 4.24, respectively.

�us, as presented in Figure 4.24, Hauptplatz is misclassi�ed by 100%, falsely clas-

si�ed as Kaiser-Josef-Platz by 91%.

�is high misclassi�cation of 100% for Hauptplatz might be explained by the posi-

tion change for the recording on the 3rd day as well as on the higher population of

people compared to the 1st and 2nd day. �us, the samples recorded on the 3rd day

might miss information on the fountain, included in the recordings of the �rst 2
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days.

�is behavior emphasizes the limitations of ALC, especially, when employed on

a dataset with a limited number of samples. �us, the model might not be able to

learn a generalized representation of locations based on a single day of training

data. However, learning a generalized representation of locations over a longer

period of time might become infeasible due to an arising intraclass variability

[Schmidhofer2018].

Summarized, an extended dataset, providing daily audio recordings over a longer

time frame, i.e., over several weeks or months, might be necessary to investigate

the limitations of ALC with temporal constraints to a su�cient degree.

Table 4.21.: CV runs, i.e., permutations, of the approached 3-fold CV with temporal constraints on

training, validation, and test set, for the evaluation of ALC on our proposed dataset.

CV folds vs. runs 1st 2nd 3rd 4th 5th 6th

1st day train train val test test val

2nd day val test test val train train

3rd day test val train train val test
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4. Results & Discussion

Table 4.22.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, along with the

number of samples for each class provided by the test set, averaged over the 6 CV runs

w.r.t. to the permutations of the introduced 3-fold CV for the evaluation of ALC with

temporal constraints on our proposed dataset.

Locations Accuracy Precision F1 score Support

Am Eisernen Tor 91.11% 91.49% 90.94% 30
Hauptplatz 38.33% 34.74% 32.51% 30
Herz-Jesu-Kirche 56.67% 61.13% 57.62% 30
Jakominiplatz 72.78% 67.64% 69.61% 30
Kaiser-Josef-Platz 25.00% 26.02% 22.29% 30
Lessingstraße 25 46.67% 58.43% 48.63% 30
Naglergasse 35 86.11% 81.84% 83.51% 30
Stadtpark 93.89% 78.45% 85.09% 30

Average 63.82% 62.47% 61.27%
+/- 4.49% 5.30% 4.29%

Figure 4.21.: Illustration of the arithmetic mean of precision, recall, and F1 score, averaged over the

6 CV runs w.r.t. the permutations of the temporally constrained train-test split for ALC

on our proposed dataset.
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Figure 4.22.: Normalized confusion matrix, representing the arithmetic mean of the class-wise

accuracies w.r.t. the permutations, thus, averaged over the 6 CV runs, and hence

representing the results for the employed ALC with temporal constraints on our

proposed dataset.
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Table 4.23.: Arithmetic mean of the class-wise accuracies, precision, and F1 score, as wells as the

number of samples provided for each class by the test set, averaged over 10 independent

training runs of the 1st CV run for ALC on our proposed dataset. �us, utilizing the 1st

day, i.e., the samples recorded on the 1st day, for training, the 2nd day for validation,

and the 3rd day for testing.

Locations Accuracy Precision F1 score Support

Am Eisernen Tor 99.00% 91.99% 95.27% 30
Hauptplatz 0.00% 0.00% 0.00% 30
Herz-Jesu-Kirche 54.67% 59.64% 56.89% 30
Jakominiplatz 81.00% 98.58% 88.27% 30
Kaiser-Josef-Platz 84.33% 43.25% 56.83% 30
Lessingstraße 25 63.67% 65.58% 63.64% 30
Naglergasse 35 71.00% 80.48% 74.65% 30
Stadtpark 95.00% 73.09% 82.41% 30

Average 68.58% 64.08% 64.75%
+/- 3.04% 2.00% 2.84%

Figure 4.23.: Arithmetic mean of precision, recall, and F1 score, averaged over 10 independent

training runs of the 1st CV run w.r.t. the 3-fold CV for ALC with temporal constraints

on the proposed dataset.
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4. Results & Discussion

Figure 4.24.: Normalized confusion matrix, hence, the arithmetic mean of the class-wise accuracies,

averaged over 10 independent training runs, and thus representing the outcomes of

the 1st CV run for the evaluation of ALC with temporal constraints on our proposed

dataset. �erefore, samples recorded on the 1st day are utilized for training, samples

on the 2nd day for validation, and samples on the 3rd day for testing.
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4.11.1. Number of training samples versus classification
performance

In addition, to determine the required recording time, and the number of samples, re-

spectively, for temporally constrained ALC, we investigate the correlation between

the number of training samples and the classi�cation performance.

�erefore, we split our proposed dataset into 3 uniformly distributed folds, restrict-

ing samples by the date of recording to one of the 3 folds. Additionally, to avoid a

biased estimation w.r.t. the convergence behavior, we evaluate the permutations of

the 3 folds, as speci�ed in Table 4.21.

�us, for each CV run, we start o� with 1 training sample per location, and incre-

ment the number of samples per location by 1, until we reach 30 training samples

per location, and hence 240 training samples in total, i.e., the entire training set.

�erefore, we train and evaluate 30 models for each of the 6 CV runs, totalling 180
models. However, the corresponding validation and test set remain unchanged.

�us, in Figure 4.25, we illustrate the impact of the number of training samples on

the classi�cation performance for each CV run and training sample count, along

with the arithmetic mean, averaged over the 6 CV runs, and the corresponding

rolling average, more speci�cally, rolling arithmetic mean, with window size 5.

In addition, to estimate the number of required training samples, the horizontal

line indicates the last rolling average of the accuracy, i.e., the rolling average of the

arithmetic mean averaged over the accuracies of the models trained on the entire

training set, and the vertical line approximates the end of convergence.

�us, we estimate the number of training samples, required to provide a sophistic-

ated model w.r.t. temporally constrained ALC on our proposed dataset, with 160
samples, i.e., 20 samples per location. Hence, we propose a minimum recording

time of 200 s per location w.r.t. the training set.

However, this estimated number of required training samples arises from the eval-

uation of temporally constrained ALC based on our proposed dataset, and hence

might not hold for related datasets and similar problem statements.

Furthermore, the reliability of the estimation is restricted by the limited number of

3 recording days, and 8 locations, respectively, provided by our proposed dataset.

Hence, extending the size of the dataset constitutes a prerequisite for a more soph-

isticated evaluation.

In addition, estimating the end of convergence, and hence the number of required

training samples, on a visual basis constitutes a highly subjective task and might
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result in a biased outcome.

4.12. Summary

Finally, in Table 4.24, we present the main results of our experiments for the in-

vestigation of ASC and ALC w.r.t. local and temporal constraints on the TAU

development dataset and our proposed dataset. However, to provide the necessary

context, adjoining experiments are included in the list as well. Hence, the most

import results are explicitly highlighted.

�e �rst noteworthy outcome concerns the transferred ASC model, trained on the

acoustic scenes Urban Park and Public Square of the TAU development dataset, and

evaluated on our proposed dataset, presented in Section 4.5.1. Hence, we achieve

an accuracy of 93% for the evaluation of the transferred model on our proposed

dataset, compared to 88.15% for locally constrained ASC, and 95.14% for tempor-

ally constrained ASC, trained and evaluated on our proposed dataset, although

transferring the model implies local and temporal constraints by nature. Hence, we

highlight the capability of transferring models between related datasets.

Next, we refer to unconstrained ASC on our proposed dataset, presented in Section

4.7, resulting in an almost perfect classi�cation of 98.74%. To verify this high res-

ult, and to investigate the human ability to perform ASC in general, we conduct

a study with 3 test persons on a subset of our proposed dataset, resulting in an

accuracy of 95.83%, as presented in Section 4.9.1. However, although the training

and test samples provided to the test persons are temporally constrained, opposed

to the arti�cial approach, 2 out of the 3 test persons achieve a perfect classi�cation,

hence, empirically verify the correctness of the results of unconstrained ASC on

our proposed dataset. Furthermore, by reaching 95.83%, humans even outperform

the arti�cial counterpart, i.e., temporally constrained ASC on our proposed dataset

with an accuracy of 95.14%, as presented in Section 4.9.

Moreover, we emphasize the outcome of locally constrained ASC based on our

proposed dataset, presented in Section 4.8. �erefore, we approach a 4-2-2 split

w.r.t. the locations, and, to ensure reliable outcomes, perform a CV to evaluate

the predictiveness of each location in particular. However, the standard deviation

w.r.t. the CV runs exceeds 10%, more speci�cally, reaches 10.48%. Hence, each CV

run is investigated independently, and the origin of misclassi�cation is discussed.

�erefore, we highlight the negative impact of uncommon events captured within
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4. Results & Discussion

recordings as well as the issue of unique soundscapes, i.e., locations with a sound-

scape incomparable to a location within the training set.

Next, we point to the outcome of ALC on our proposed dataset, more precisely, the

outcome of temporally constrained ALC, as presented in Section 4.11. �erefore,

we split the dataset based on date of recording into 3 uniformly distributed folds.

Furthermore, we perform a CV w.r.t. the fold-permutations, resulting in an accuracy

of 63.82%, and hence in a decrease of 21.35%, compared to unconstrained ALC

on our proposed dataset with an accuracy of 85.17%, as presented in Section 4.10.

However, temporally constrained ALC yields a standard deviation of 4.49% w.r.t.

the 6 CV runs. �erefore, we investigate the 1st CV run in more depth, and hence

showcase the impact of temporal gaps between training and test data.

Finally, we emphasize the impact of the training set size on the classi�cation per-

formance w.r.t. temporally constrained ALC on our proposed dataset, presented in

Section 4.11.1. �erefore, we split the dataset based on the date of recording into 3
equally sized folds, and perform a CV w.r.t. the fold-permutations. Furthermore,

for each CV run, we evaluate multiple models based on a di�erent training set

size, more precisely, we start with 1 training sample per location, and increment

the number of samples per location by 1 till 30 samples per location, totalling 240
training samples. Hence, we investigate the correlation between the number of

training samples and the classi�cation performance. Consequently, we approximate

the minimum training set size, required for a sophisticated model w.r.t. temporally

constrained ALC on our proposed dataset, with 20 10 s audio samples, i.e., 200 s

audio data, per location.
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5. Conclusions

To establish a dataset of audio samples with the necessary metadata and prop-

erties to investigate the arti�cial classi�cation of audio samples to locations, we

implemented a client-server solution based on Android smartphones as recording

devices. Utilizing a dedicated mobile application, we collected audio samples at 8
di�erent locations in Graz (AUT), represented by the acoustic scenes Urban Green
Space and Public Square, on 3 consecutive working days. �us, we proposed a

dataset, providing 5 minutes of audio data for each day, and location, respectively,

totalling 720 10 s monophonic audio samples with a sample rate of 48 kHz and a

bit depth of 16 bit. Furthermore, we implemented a 2-layer deep CNN to classify

10 s audio samples based on 40-band log-mel spectrograms with a window size of

40 ms, an overlap of 20 ms, and hamming windows.

With the goal of investigating the practicality and the limitations of arti�cially

classifying audio samples to the location of origin, denoted as ALC, we conducted

several experiments on our proposed dataset, and, to provide a benchmark, on the

TAU development dataset, provided for the DCASE 2019 ASC challenge
1
.

�us, we evaluated the TAU development dataset by approaching ASC, the task

of classifying audio samples to an abstraction of the represented location, to

investigate the impact of locally constraining training and test sets, i.e., restricting

audio samples associated with one particular location to either the training or the

test set.

As demonstrated by the results, removing the local constraints directly in-

creases the classi�cation accuracy. However, removing the local constraints

also tampers the generalization estimate [Valenti2016] and enables the model to

over�t [Mesaros2018a].

Furthermore, we investigated ALC on the TAU development dataset, achieving

an accuracy of 84.27% for the classi�cation of locations within the acoustic scene

Urban Park. Since restricting audio samples based on the location of origin to either

1http://dcase.community/ (Accessed on: 2019-10-24)
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5. Conclusions

the training or the test set constitutes an infeasible approach for the application of

ALC, and the provided metadata does not allow to introduce a signi�cant temporal

gap between the training and the test data, the impracticality of enforcing general-

ization results in a high classi�cation accuracy, but in an unreliable generalization

estimate [Valenti2016].

Based on our proposed dataset, we investigated the impact of local as well as

of temporal constraints for the application of ASC. Here, we observed a lower

classi�cation accuracy for local constraints compared to temporal ones. However,

this behavior might be explained by the limited number of locations for each

acoustic scene, hence, providing insu�cient knowledge for the generalization of

locations to acoustic scenes when locally constrained.

Finally, we investigated the application of ALC with temporal constraints on our

proposed dataset. Here, introducing temporal constraints results in a decrease of the

classi�cation accuracy by 21.35%, from 85.17% without constraints to 63.82% with

temporal constraints, but provides a reliable generalization estimate [Valenti2016]

for the classi�cation of audio samples to the location of origin. However, when we

investigated the CV runs in detail, we observed a misclassi�cation of 100% for a

particular location. �us, the limitations for ALC arise from the limitations of the

underlying dataset. More precisely, our dataset provides su�cient data to estimate

the generalization performance, but lacks in knowledge to generalize the acoustic

representation of locations over a longer period of time. Summarized, introducing

local and temporal constraints on ASC, and ALC, respectively, constitutes a pre-

requisite to reliably estimate the generalization performance [Valenti2016] and is

fundamental to mitigate over��ing [Mesaros2018a].

5.1. Future Work

Due to the limited number of audio samples, i.e., 8 locations, and 3 days of collecting

audio recordings, we suggest the augmentation of the proposed dataset by including

more locations and extending the time frame to gather daily audio recordings over

several weeks, or even months, while preserving a constant and restricted intraday

time frame. Furthermore, arti�cial data augmentation, as proposed in [Chen2019],

provides promising results. However, we favour to manually augment the proposed

dataset to con�rm the empirical outcomes w.r.t. the practicality and limitations of

classifying audio samples to the location of origin.
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Additionally, we suggest to introduce a Sound Event Localization and Detection

(SELD) based methodology, as proposed in [Adavanne2018, Adavanne2019], for

the classi�cation of locations. �us, to introduce the arti�cial detection, and local-

ization, of speci�c events within audio samples. [Adavanne2018]

Based on the obtained information w.r.t. the presence, absence, and the sequence

of events, we expect an improvement for the application of ALC.

Furthermore, since the process of collecting and labelling a su�ciently large number

of audio samples constitutes a highly time-consuming task, we suggest to capitalize

on Transfer Learning (TL), as proposed in [Pan2009]. Hence, utilizing on well-

known problem statements and datasets by transferring the obtained knowledge to

ALC w.r.t. the proposed dataset. [Pan2009]

Additionally, we are looking forward to investigate the impact of di�erent recording

devices, as showcased by the DCASE 2019 ASC “with mismatched recording devices”

challenge, while collecting audio samples with our proposed Android application.

Although we collect UNPROCESSED2
audio recordings, and enforce consistent audio

properties, we have not yet empirically investigated the discrepancies between

di�erent devices.

Furthermore, the classi�cation of indoor locations, i.e., arti�cially di�erentiating

rooms based on the acoustic environment, as proposed in [Tarzia2011], represents

a promising �eld of future work. �us, we suggest to establish and investigate a

dataset which provides audio samples over a su�ciently long period of time of

indoor locations within selected buildings.

Moreover, employing an online model for ASC, and ALC, respectively, e.g., pro-

posed in [Imoto2016], might represent another future direction. �us, enabling the

training and classi�cation of audio samples once recorded, or even while recording.

[Imoto2016, Sahoo2017]

Finally, when comparing the results of the baseline classi�er, proposed for the

DCASE 2019 ASC challenge in [Mesaros2018], to the winner’s results, proposed in

[Chen2019], we look forward to optimize suitable classi�ers, speci�cally targeting

the complexity and properties of our proposed dataset for ALC.

2https://developer.android.com/reference/android/media/Medi
aRecorder.AudioSource.html#UNPROCESSED (Accessed on: 2019-10-24)
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Appendix A.

Experiments

A.1. TAU Acoustic Scene Classification Proof of
Concept

Figure A.1.: Confusion matrix, representing the accumulated results over 10 independent training

runs of employing ASC on the suggested train-test split for the TAU development

dataset.
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Appendix A. Experiments

A.2. TAU Acoustic Scene Classification

Figure A.2.: Confusion matrix, representing the accumulated results of 10 independent training

runs for employing ASC on the TAU development dataset, while utilizing 10% of the

training set for validation.
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Appendix A. Experiments

A.3. TAU Acoustic Scene Classification
Unconstrained

Figure A.3.: Confusion matrix, illustrating the accumulated results over 10 independent train-

ing runs of employing ASC on the TAU development dataset without the proposed

constraints on the train-test split.
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Appendix A. Experiments

A.4. TAU Acoustic Scene Classification on Urban
Parks & Public Squares

Figure A.4.: Confusion matrix, representing the accumulated results of 10 independent training

runs of employing ASC, considering solely locations associated with Urban Parks and

Public Squares provided by the TAU development dataset.
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Appendix A. Experiments

A.5. Proposed Acoustic Scene Classification

Figure A.5.: Confusion matrix, representing ASC without constraints on our proposed dataset,

accumulated over 10 independent training runs. Training, validation, and test are set

randomly split for each training run independently.
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Appendix A. Experiments

A.6. Proposed Acoustic Scene Classification with
Local Constraints

Figure A.6.: Confusion matrix, representing the accumulated results of employing ASC with local

constraints on our proposed dataset w.r.t. the approached CV presented in Figure 4.11

with 10 independent training runs per CV run.
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Appendix A. Experiments

A.7. Proposed Acoustic Scene Classification with
Temporal Constraints

Figure A.7.: Confusion matrix, representing the results of employing ASC with temporal constraints

on our proposed dataset, hence constituting the outcome of employing a 3-fold CV w.r.t.

the permutations. �us, spli�ing the proposed dataset by the date of recording into 3
equally sized folds, and accumulating the outcomes over 6 independent training runs.
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Appendix A. Experiments

A.8. Proposed Acoustic Location Classification

Figure A.8.: Confusion matrix, representing the outcomes of employing ALC without constraints on

our proposed dataset, accumulated over 10 independent training runs, randomly split-

ting the dataset into training (33%), validation (33%), and test set (33%), independently

for each run.
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Appendix A. Experiments

A.9. Proposed Acoustic Location Classification
with Temporal Constraints

Figure A.9.: Confusion matrix, representing the accumulated outcomes of the 6 CV runs w.r.t. the

permutations of the introduced 3-fold CV for ALC with temporal constraints on our

proposed dataset.
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Appendix A. Experiments

Figure A.10.: Confusion matrix of 10 independent training runs w.r.t. the 1st CV run of the 3-fold

CV for the evaluation of ALC with temporal constraints on our proposed dataset.
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