TU

Grazm

Alexander Wachter, BSc

Design and Implementation of 6LoCAN,

a 6Lo adaption layer for
Controller Area Networks

Master’s Thesis
to achieve the university degree of
Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Markus Schuss BSc
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eugen Brenner

Institute of Technical Informatics

Graz, February 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master's thesis.

Date Signature

Eidesstattliche Erkiarung

Ich erklare an Eides statt, dass ich die vorliegende Arbeit selbststandig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wortlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene
Textdokument ist mit der vorliegenden Masterarbeit identisch.

Datum Unterschrift

Abstract

Nowadays, there is an ongoing trend towards end-to-end IPv6 for con-
strained devices. This way, the devices can benefit from the vast amount
of application and transport layer protocols, defined on top of the Internet
Protocol. Examples for such application layer protocols are MQTT, CoAP,
HTTP, or transport layer protocols such as UDP, TCP, and TLS. However,
most devices on the Internet use Link-Layers that do not fit the needs of
constrained devices like power consumption, price, or PCB footprint.

The Controller Area Network (CAN) is a very robust and simple bus. Lots
of tiny microcontrollers have an integrated CAN controller that only needs
an external transceiver to connect to a bus. This bus is usually used in the
automotive and industrial domains. An example is the CANopen protocol,
designed and used for automation. However, the protocols for the CAN bus
serve a dedicated purpose and are not as flexible as the Internet Protocol.

Therefore, this work proposes 6LoCAN, an abstraction layer for the CAN
bus, which combines the great flexibility of IPv6 with the benefits of the
CAN bus. With 6LoCAN, it is possible to connect small microcontrollers to
the Internet, with only little effort. Those devices can then use application
layer protocols to communicate with devices that have Link-Layers of all
kinds, like Wi-Fi, Ethernet, or Bluetooth, without the need for a gateway.
Meanwhile, 6LoCAN has an IETF standard proposal and a reference imple-
mentation in the Zephyr Real-Time Operating System, as an outcome of
this work.

Kurzfassung

Heutzutage erscheinen vermehrt elektonische Kleingerite die iiber Ende-
zu-Ende IPv6 kommunizieren. Auf diese Weise profitieren solche Gerite
von den vielen Anwender- und Transport-Protokollen, die auf dem Inter-
net Protokoll basieren. Beispiele fiir solche Anwender-Protokollen sind
MQTT, CoAP, HTTP oder Transport-Protokolle wie UDP, TCP und TLS.
Nichtsdestotrotz verwenden die meisten Gerite im Internet Verbindungss-
chichten, die den Anforderungen wie Energieverbrauch, Preis oder Flachen-
verbrauch auf der Leiterplatte von Kleingeréten nicht besonders gut erfiillen.

Controller Area Network (CAN) ist ein sehr einfacher und robuster Bus.
Viele kleine und giinstige Mikrokontroller haben einen integrierten CAN
Modul. Diese bendtigen nur noch einen Bus-Treiber Baustein um sich mit
dem Bus zu verbinden. Der CAN Bus wird hauptséachlich im Automobil
und Industrie Sektor verwendet. Ein Beispiel dafiir ist das CANopen Pro-
tokoll. Nichtsdestotrotz sind die verwendeten Protokolle fiir eine dedizierte
Aufgabe geschaffen und verfiigen nicht iber die Flexibilitit des Internet
Protokolls.

Deswegen stellt diese Arbeit 6LoCAN vor, einene 6Lo Abstraktionsschicht
fiir den Controller Area Network Bus, welche die Flexibilitdt des Internet
Protokolls mit den Vorteilen des CAN Bus verbindet. Mit 6LoCAN ist es
moglich einfache Mikrokontroller, mit geringem Aufwand, mit dem Internet
zu verbinden. Diese Geréate konnen wiederum uber die Anwenderschicht-
Protokolle mit gerdten kommunizieren, die eventuell ganz andere
Verbindungsschichten wie Ethernet, Wi-Fi oder Bluetooth verwenden. Fiir
6LoCAN existiert mittlerweile ein Vorschlag fiir einen Standard bei der
IETF und eine referenz Implementierung im Zephyr Echtzeitbetriebsystem,
welche im Zuge dieser Arbeit entstanden sind.

Contents

Abstract
1 Introduction

2 Background Knowledge
2.1 Controller Area Network .

2.1.1 Wiringand BusAccess

2.1.2 CAN Frames
2.2 ISO-TP Transport Protocol
23 IPv6
2.3.1 IPv6 Addresses . .
2.3.2 IPv6 Header
233 ICMPv6.

2.3.4 Neighbor Discovery Protocol
2.3.5 Stateless Address Autoconfiguration

24 6lo......... ...,

2.4.1 IP Header Compression

25 Zephyr
2.6 Zephyr Network Stack . .

3 6LoCAN design
3.1 Addressing Schema
3.1.1 Unicast Address . .
3.1.2 Multicast Address .
3.1.3 Address Generation

3.1.4 Link-Layer Duplicate Address Detection
3.2 Stateless Address Autoconfiguration

3.3 ISO-TP for 6LoCAN
3.3.1 Multicast

Contents

3.3.2 Ethernet Border Translator

4 Implementation
4.1 TheZephyr CANAPI
4.1.1 Zephyr CANframe
4.1.2 Zephyr CANfilter
4.1.3 Sending CANframes
4.1.4 Receiving CANframes
4.2 6LoCAN Implementation.
4.2.1 6LoCAN Network Device Driver
4.2.2 6LoCAN Link-Layer

5 Evaluation
5.0.1 Link-Layer Duplicate Address Detection
5,02 Ping

6 Conclusion

Bibliography

Vi

51
51
52
52
53
53
54
59
60

63
65
66

69
71

List of Figures

2.1 CAN Physical Bit Transmission 4
2.2 CANWiring i 4
2.3 Simplified CAN Transceiver 5
24 CAN FrameFormat 6
25 CANBaseFrame 7
2.6 CAN Extended Frame 7

2.7 Bit Stuffing Example for 0x780 Identifier 8
2.8 Example Sequence of a Segmented Packet with a BS of three 10
2.9 Subnet Prefix of anIPv6 address 13
2.10 Link Local Unicast address 14
2.11 Multicastaddress 14
2.12 Global Unicastaddress 15
213IPv6Header 16
2.14 Internet Control Message Protocol Format 18
2.15 IPv6 Header Encapsulation 19
2.16 Neighbor Solicitation Message Example 20
2.17 Neighbor Advertisement Message Example 20
2.18 Router Solicitation Message Example 22
2.19 Router Advertisement Message Example 22
2.20 Stateless Address Autoconfiguration 24
2.21 6lo Adaption layer example 25
2.22 IPHC Frame Format 26
223TPHCFormat. 27
2.24 Context ID Format 28
2.25 Next Header Compression for UDP Headers 30
2.26 Link-Local IPv6 an UDP header to IPHC example 31
2.27 Zephyr Network Stack 6LoCAN RX example 34
3.1 Address to Identifier Mapping 38

Vil

List of Figures

Viii

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Unicast Node-Address to Identifier Mapping
Multicast-Group to Identifier Mapping
Link-Layer Duplicate Address Detection Request Frame . .
Link-Layer Duplicate Address Detection Response Frame .
Link-Layer Duplicate Address Detection
Example Multicast Sequence
Ethernet Border Translator Schematic.
6LoCAN to Ethernet Address Translation

3.10 Ethernet to 6LoCAN Address Translation

4.1
4.2

5.1
5.2
5.3
5.4
5.5

Zephyr Network Stack 6LoCAN RX example
Zephyr Network Stack 6LoCAN TX example

TestSetup
Link-Layer Duplicate Address Detection Measurement . . .
UDP Transfer 128 byte, BS=0, STmin=0.
UDP Transfer 128 byte, BS=8, STmin=0.
UDP Transfer 128 byte, BS=8, STmin=5.

1 Introduction

Nowadays, there is an ongoing trend towards end-to-end IPv6 for con-
strained devices. This trend is called the Internet Of Things (IoT). It means
that many devices are connected, using internet technology. Some devices
like smartphones or personal computers usually have a connection to the
Internet out of the box, but more and more devices that usually don’t have
a connection to the Internet become connected devices. Examples are light-
bulbs, fridges or building automation systems [17]. The advantage of using
the Internet Protocol is that there are plenty of standardized application
layer protocols like CoAP or MQTT, that can be used for those devices.
"Project Connected Home over IP” [1], for example, is a project from global
players like Apple, Google, Amazon, and many more, that is trying to estab-
lish a standardized interface for home application, based on the Internet
Protocol. With this kind of interface, devices from different vendors and
different communication mediums, like Wi-Fi, Ethernet, or Bluetooth Low
Energy (BLE), can work together seamlessly.

The Eclipse Sparkplug working group [9] is currently working on defining
a standard to use MQTT in the Industrial IoT. This initiative shows that
there is a high demand for IP technologies in the industry.

There are lots of Link-Layer technologies already in use. They all have their
domain-specific use-case. Ethernet or Wi-Fi are mostly used for high-speed
data links suitable for the typical use case of a PC or smartphone. When
using these technologies for tiny devices like a light-switch, problems like
high costs, large PCB footprint, or high energy consumption may arise.
The IoT, as we have it today, is mostly based on wireless technologies,
but sometimes it is just not feasible to use a wireless link. Wireless links
are prone to electromagnetic disturbances and have problems with range,
especially when used in buildings with massive walls. The CAN-bus is
a very robust and cheap bus that is widely used in the automotive and

1 Infroduction

industrial automation (CANopen [2]) domain. It is also used for heating
systems and thus already used in building automation today.

The combination of IPv6 and the CAN bus could be very useful to solve lots
of challenges with technology we are already using today. With 6LoCAN,
it is possible to connect devices with a wired bus to any other device that
works with IPv6.

2 Background Knowledge

2.1 Controller Area Network

Controller Area Network (CAN) is a serial two-wire bus specified as Clas-
sical CAN in the Bosch CAN specification [5] and extended in the CAN
FD specification [6]. One wire is the CAN High (CAN H), the other CAN
Low (CAN L). The bus can either be in the recessive state, which is seen
as a logical one, or in the dominant state, which is seen as logical zero.
The so-called "wired-AND” structure enforces a dominant bit to override a
recessive bit. For transmitting a recessive bit, the bus is in the idle state,
where both lines are at the same voltage level. For writing a dominant
bit, the CAN H wire is tied to the positive voltage supply, and the CAN
L wire is tied to a low level. Figure 2.1 shows this principle. CAN use a
Non-Return-to-Zero Coding (NRZ), which means that the level at the bus
is held for the entire bit time. A bit stuffing mechanism provides reliable
synchronization for the time of the frame transmission. The idle level for
both wires should be kept at a constant level about half the supply level.
However, the physical layer is neither fully specified by the Bosch CAN
specification [5] [6] nor the ISO CAN specification [15] and is left to the
system integrator.

2.1.1 Wiring and Bus Access

For wiring, a two-wire twisted pair cable with an impedance of 120} is
used. The topology is a line topology where stubs are allowed, but with a
maximum length, depending on the bus speed. On the first and last node of
the bus line, terminating resistors with a value 1202 avoid reflections on
the bus line. An example with two nodes is shown in Figure 2.2.

2 Background Knowledge

CAN
Node 3

dominant — CANH
= — CANL
>
Q
— .
o [recessive
oo
o]
=
o
>
>
Time
Figure 2.1: CAN Physical Bit Transmission
CAN CAN
Node 1 Node 2
CANH
o
N
—
CANL

Figure 2.2: CAN Wiring

120

2.1 Conftroller Area Network

A CAN-transceiver, like shown in Figure 2.3 connects the controller to the
bus. This transceiver converts the logic-level signals from the controller
(CAN RX and CAN TX) to the bus levels and vice versa. The dominant
timeout protects the bus from a persistent dominant state in case of a faulty
CAN controller.

CAN TX o——| Dominant Timeout — Driver

+ o oCAN H
CAN RXo “@

- * ocCAN L

4

Figure 2.3: Simplified CAN Transceiver

The bitrate limit depends on the length of the bus [22]. However, the highest
bitrate is limited to 1 Mbit per second for Classical CAN [5] and 8 Mbit
for the data field of CAN Flexible Data-Rate (CAN FD)[6]. Table 2.1 shows
some example length and bitrate combinations for Classical CAN. For CAN
FD, the bitrate is only increased during the data field phase and could be
eight times higher than the values in the table.

2 Background Knowledge

Table 2.1: Maximum bus speed

Length | Max. Speed
[m] [Kbps]
40 1000
100 500
200 250
500 100
1000 50

2.1.2 CAN Frames

Té Arbitration Field | Control Field | Data Field | CRC Field § EOF

Figure 2.4: CAN Frame Format

The Medium Access Control (MAC) specification defines the CAN frame
format, as shown in Figure 2.4. CAN uses so-called identifiers to identify
the frames. Identifiers do not address nodes but identify the data that is
being sent. There are four basic frame formats. The "CAN Base Frame
Format” with an 11-bit identifier; the "CAN Extended Frame Format” with
a 29-bit identifier and their FD variants. Frames start with the ”"Start of
Frame” (SOF) bit. This bit is always dominant and signalizes the start of
the frame and synchronizes the nodes. The Arbitration Field includes the
Base identifier and the "Remote Transmission Request” (RTR) bit in case
of a basic frame. For the extended frame format, the Identifier Extension
(IDE) bit signalizes the identifier extension. In this case, the IDE-bit and
the remaining 18 bits of the identifier are also part of the Arbitration Field.
Nodes can use the RTR-bit to signal other nodes a request for transmission.
For example, trigger a sensor read.

Figure 2.5 and Figure 2.6 shows examples for a Basic and Extended Frames.
CAN FD frames are outlined in more detail in the Bosch CAN FD specifica-
tion [6].

In the Arbitration Field, collisions of multiple sending nodes are allowed.

2.1 Conftroller Area Network

Arbitration Field Control Field Data Field

DLC DATA 8

Figure 2.5: CAN Base Frame

Base Identifier

r0

RTR
IDE

|
SOF

Arbitration Field Control Field Data Field

Base Identifier Identifier Extension

SRR

IDE

RTR
rl
r0

DLC DATA 8

|
SOF

Figure 2.6: CAN Extended Frame

The fact that a dominant bit always overrides a recessive bit resolves col-
lisions in a way that the frame with the lowest identifier always wins.
Senders that want to write a recessive bit but get overridden by a dom-
inant bit must abort their transmission silently. Aborted frames can be
retransmitted when the bus is in the idle state again.

The Control Field includes the reserved bit r0, the IDE, and the Data
Length Code (DLC) for Basic frames and reserved bit r1, r0, and the DLC
for Extended frames. DLC indicates how many bytes are transmitted during
the data phase. Table 2.2 lists the codes and number of bytes. The maximum
number of bytes for Classical CAN frames is eight, and the maximum
number of bytes for CAN FD is 64.

Table 2.2: Data Length Codes

| DLC | Bytes |
0-8 0-8
9 12
10 16
11 20
12 24
13 32
14 48
15 64

2 Background Knowledge

The data field can be either empty or as many bytes as indicated by the
DLC.

After the data field, the CRC field follows. The length of the CRC field
depends on the length of the data field. A 15-bit CRC is used for all CAN
frames up to eight data bytes. For data field length up to 16 bytes, a 17-bit
CRC is used. A 21-bit CRC is used for a data field length of more than 16
bytes. The CRC is calculated over the whole frame, from SOF to the end of
the data field.

All nodes that received the frame correctly acknowledge their reception by
putting a dominant bit into the ACK field. The Field after the ACK field is
the ACK-Delimiter and is always recessive.

EOF is the "End Of Frame”. It is always seven recessive bits. The Inter
Frame Space is at least three recessive bits called Intermission. Any node
can override this Intermission with dominant bits to signal an Overload
condition.

Sl1l1(1]1 00000.00

Figure 2.7: Bit Stuffing Example for 0x780 Identifier

The bit-stuffing mechanism provides reliable synchronization during the
transmission of the frame. Five consecutive bits of the same value force a so-
called stuffing bit. The stuffing bit is a bit with the inverted value of the bits
before and must be ignored by the receivers. Stuffing bits change the length
of the frame. An example is shown in Figure 2.7. In the example stuffing
bits, highlighted in red, extends the identifier field to 13 bits. Additionally,
it shows that SOF must be taken into account for stuffing.

Intentional violations of the stuffing rule are called Error Frames. Over-
riding six consecutive bits with a dominant bit is an Error Active Frame.
Six recessive bits are called Error passive frame. This rule allows signaling
error conditions during all phases, including the EQOF, in case of a CRC
mismatch.

2.2 ISO-TP Transport Protocol

2.2 ISO-TP Transport Protocol

ISO-TP is a short name for the transport protocol specified in ISO15765
[16]. It specifies a transport protocol and network layer service operating
in Controller Area Networks. It was initially designed for road vehicle
diagnostic services but it is not limited to them. ISO-TP overcomes the
limited frame size of CAN frames and allows us to send packets up to
4095 bytes and in the latest version extended to 4 gigabytes. For this, the
packets are segmented, transmitted in CAN frames, and reassembled on
the receiver. Additionally, a flow-control mechanism is defined to steer the
timing of the frames.

The header data is called Process Control Information (PCI). The first
nibble is the PCI-Type. Following four PCI types are defined:

Single Frame

First Frame
Consecutive Frame
Flow Control Frame

The rest of the PCI depends on the PCI-Type. After the PCI, the rest of the
frame is filled with payload data. Single frames are used when the payload
data plus one byte for the PCI fits into a single CAN frame. For Classical
CAN, it is a payload length of seven bytes. For CAN FD, it can be up to 63
bytes. The other three PCI types are used for payload lengths larger than a
single frame can carry.

A segmented packet starts with a "First Frame” (FF) from the sender to
the receiver. The First Frame contains information about the total payload
data length. The receiver sends back a "Flow Control” frame (FC). This
FC frame can either signal "Continue To Send”, "Wait”, or that the packet
would ”"Overflow” the receiver. Furthermore, the FC frame contains a Block
Size (BS) and Minimal Separation Time (STy,;,). When the FC frame is of
type CTS, the sender continues with sending "Consecutive Frames” (CF).
When BS is zero, the sender sends as many CF frames as needed to transfer
the payload data. Otherwise, the sender has to stop after BS CF frames
and wait for another FC frame. ST,,;, defines a minimum separation time
between two frames. A ST,,;, of zero is allowed. If the receiver answers

2 Background Knowledge

with an FC-Frame with the Flow-State OVFLW, the sender has to abort the
transmission. In case the sender does not receive an FC-Frame within one
second, it aborts the transmission. The Flow-State WAIT causes a reset of
the sender timeout. Receivers cancel the reception of the packet when no
CF frame is received within one second.

Figure 2.8 shows an example sequence with a BS of three.

Sender Receiver

\ .
First Frame

"

J—
Flow Control Frame

-

\ .
Consecutive Frame

E——

S Trn in

Consecutive Frame

e BS

_)
Consecutive Frame

—

—
Flow Control Frame

-

_)
Consecutive Frame

—

\ .
Consecutive Frame

E——

R R

Figure 2.8: Example Sequence of a Segmented Packet with a BS of three

Table 2.3 shows examples of classical CAN frames with all PCI types.
Elements labeled with data 0 to data 6 are payload data.

10

2.2 ISO-TP Transport Protocol

Table 2.3: ISO-TP Protocol Control Information

Byte: 0

7.4 \ 3..0 1 2 3 4 5 6 7
SF 0 SF DL | dataO | datal | data 2 | data 3 | data 4 | data5 | data 6
0 SF DL | dataO | data1 | data 2 | data 3 | data 4 | data 5
FF 1 FF DL data O | datal | data2 | data3 | data4 | data 5
0 FF_DL data O | data 1
CF 2 SN data 0 | datal | data 2 \ data 3 \ data 4 | data 5 | data 6

FC 3 FS BS STmin

Table 2.4: Flow-States

] Type \ Number ‘
CTS (Continue To Send) 0
WAIT (Wait) 1
OVFLW (Overflow) 2

SF is the Single Frame and has the PCI-type-number 0. For Single Frames
with maximum payload data size of seven bytes, the Single Frame data
length (SF_DL) is encoded in bit zero to three of the first PCI byte. CAN
FD frames can have a frame data length up to 64 bytes in a single frame.
Single frames with more than seven bytes of data encode the data length in
the second PCI byte.

FF is the First Frame and has the PCI-type-number 1. The data length
(FF_DL) of the packet is encoded in byte zero and byte one of the PCI. Byte
one is the lower octet, and bit zero to bit 3 of byte 0 contains the upper
nibble of the 12-bit data length. For a data length bigger than 4095 bytes,
bit zero to three of byte zero and byte one is set to zero. The data length is
then encoded in byte two to five.

CFs are Consecutive Frames, containing payload data and a sequence
number (SN). The PCI-type-number is 2, and the sequence number is
located at the lower nibble of byte zero. The sequence number is a counter
that is set to one for the first CF and incremented by one for every frame
and wraps around at 15. When the sequence number wraps around, it

11

2 Background Knowledge

starts with zero again. The sequence number is used to detect out of order
or lost frames.

FCs are Frame Control Frames and have the PCI-type-number 3. The lower
4-bit nibble of the first byte contains Flow State. The numbers are shown in
Table 2.4. The second byte, Block-Size (BS), defines how many CF frames
the sender is allowed to transmit until he has to wait for an FC-Frame
again.

2.3 IPv6

IP (Internet Protocol) covers the Internet layer of the Internet Protocol Suite
(Table 2.5) [4]. Internet Protocol version six (IPv6) was first introduced in
RFC2460 [11] as an RFC Draft-Standard in December 1998 and got finally
standardized with RFC8200 [7] in July 2017. It solves some problems from
its predecessor, the Internet Protocol version four (IPv4) [14].

The most significant improvements are:

Extended address range (from 32 bits to 128-bits)
Stateless Address Autoconfiguration
Simplification of the header

Use of Neighbor Discovery protocol

Next header instead of header options

RFC8200 defines some important terminologies: A "node” is a device with
an IPv6 stack. "Link” refers to the lowest layer defined in Table 2.5, and
“interface” is the node’s attachment to a link.

Table 2.5: Internet Protocol Suite
] Layer \ Example ‘
Application | HTTP, HTTPS, CoAP, MQTT
Transport | TCP, UDP
Internet | IPv4, IPv6, ICMP
Link Ethernet, IEEE 802.15.4, CAN

12

2.3 IPv6

Table 2.6: IPv6 Address Types

] Type \ Prefix ‘
Unspecified Address | ::/128 (all zero)
Loopback :1/128
Multicast FF00::/8
Link-Local Unicast | FE80::/10
Global Unicast everything else

2.3.1 IPv6 Addresses

IPv6 addresses are written in a hexadecimal representation of 16-bit blocks,
separated by colons. Leading zeros can be omitted, and all zero blocks can
be written as two colons (::). The all-zero blocks can span more than a single
16-bit block, but can only be used once in a representation. RFC5952 [18]
describes the recommended text representation of IPv6 addresses.

For example, the address fe80:0000:0000:0000:0000:00ff:fe00:1234 can be
written as fe80::ff:fe00:1234

An IPv6 address prefix can be written as IPv6-address / prefix-length. For ex-
ample fe80::00ff:fe00:1234/64 is interpreted as fe80:000:0000:0000 address
prefix.

RFC4291 [12] defines five types of addresses, identified by their higher-
order bits. The address types are shown in Table 2.6.

n bits 128-n bits

Subnet Prefix Interface Identifier

Figure 2.9: Subnet Prefix of an IPv6 address

Unicast IPv6 addresses can generally be treated as if they have no internal
structure. Nevertheless, more sophisticated nodes may be aware of subnets,
which logically group addresses. Figure 2.9 shows how the address is split
into the subnet prefix and an Interface Identifier (IID). Routers, for example,

13

2 Background Knowledge

can use subnets to create hierarchical boundaries. The IID needs to be
unique within the subnet and identifies an interface on a link (lowest layer
on Table 2.5). All Unicast addresses not starting with the binary value 000
must have an IID according to the Modified EUI-64 format with a length
of 64 bits. Addresses of this format can be derived from the link-address
as described in RFC4291 [12] Appendix A. If the address is derived, for
example, from an Ethernet MAC address, it has a universal scope and
is globally unique. IIDs derived from link addresses that are not globally
unique must be unique in the local scope.

10 bits 54 bits 64 bits

1111111010 0 Interface Identifier

Figure 2.10: Link Local Unicast address

An interface can have several addresses, but must at least have one Link-
Local Unicast address. The Link-Local Unicast address is formed as shown
in Figure 2.10.

8 bits 4 bits 4 bits 112 bits
11111111 | flags | scope Group ID
O/R|P|T

Figure 2.11: Multicast address

The multicast address format depicted in Figure 2.11. The highest byte is
the multicast prefix 0xff, followed by four bits flags, and four bits scope. For
the flags, only the T flag is of interest in this work. The T-flag signals an
unassigned address when it’s set to one. If the T-flag is zero, the address is
a "well-known” address. The scopes are listed in Table 2.7.

14

2.3 IPv6

Table 2.7: Multicast Scopes
| Number | Scope \

0 reserved

1 Interface-Local

2 Link-Local

3 reserved

4 Admin-Local

5 Site-Local
6-7 unassigned

8 Organization-Local
9-D unassigned

E Global

F reserved

Some predefined multicast addresses are, for example:

ff01::1 Interface-Local All-Nodes multicast address

ff02::1 Link-Local All-Nodes multicast address

ff02::2 Link-Local All-Routers multicast address

ff02::2 Site-Local All-Routers multicast address
ff02:0:0:0:0:1:ffXX:XXXX Solicited-Node multicast address

The Solicited-Node multicast address is formed by the prefix {ff02:0:0:0:0:1:ff::/104
concatenated with the low-order 24 bits of the unicast or anycast address.

n bits m bits 128-n-m bits

Global Routing Prefix Subnet ID Interface Identifier

Figure 2.12: Global Unicast address

A Global Unicast Address, as shown in Figure 2.12 consists of a global
routing prefix, a subnet ID, and the IID. Global unicast addresses not
starting with binary 000 always have an IID length of 64 bytes, same as the
Link-Local Unicast address. The global routing prefix is a value assigned
to a site and distributed by the routers on that site. The Subnet ID is an

15

2 Background Knowledge

identifier of a link within the site. The global unicast address is used to
address single nodes that are not Link-Local, for example, a node on the
internet.

A node must at least listen to the following addresses:

The Link-Local addresses assigned to the interfaces

The loopback address

The All-Nodes multicast address

The Solicited-Nodes multicast address for each anycast and multicast
address

All multicast addresses for multicast groups the node has joined

2.3.2 IPv6 Header

0 ‘ 8 ‘ 16 ‘ 24 32
Version | Traffic Class Flow Label
Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 2.13: IPv6 Header

16

2.3 IPv6

The IPv6 header, as shown in Figure 2.13, has a fixed size of 40 bytes. The
fixed length makes it easier to process IPv6 headers and allows simple
compression schemes like IPHC [24].

The 4-bit Version field is always 0x6 for IPv6. Traffic-Class has a length
of eight bits where the six most significant bits correspond to the Differ-
entiated Service (DS) [3] and the remaining two bits are used for Explicit
Congestion Notification (ECN) [8]. The 16-bit Payload Length field is an
unsigned integer, defining the remaining length of the packet. This num-
ber excludes the IP header but includes all possible next headers. The
next header field identifies the header type of the following extension- or
protocol-header, if any, or "No Next Header” (59) if there aren’t any.

The concept of Next Headers instead of options makes IPv6 very flexible.
Any number of options headers may follow the IPv6 header in a chained
manner. Therefor, every option header includes another next header field,
forming a chain until the next header is an upper-layer protocol or the "No
Next Header” option.

The Hop Limit is a counter, initialized by the node that issued the packet,
with the desired limit of how many times this packet may be forwarded.
Every hop that forwards, a router, for example, decrements the hop limit
by one. When the limit reaches zero, the packet is discarded, and the node
sends a message back to the source to inform about the discarding.

The Source Address is the IP address of the interface, and the Destination
Address is the IP address of the desired receiver. The Source Address and
Destination Address both have a length of 128 bits.

IPv6 supports fragmentation, where a packet is cut into smaller fragments
at the sender, transported, and reassembled at the destination. For frag-
mentation, the Fragment Header is used. Packet fragmentation is only
allowed at the sender. Routers are not allowed to fragment packets. IPv6
requires a minimal Maximum Transfer Unit (MTU) of 1280 bytes, which
is the minimum link MTU that must be supported by every node on the
internet. Links that are not capable of transferring packets of at last 1280
bytes must apply fragmentation and reassembly at the Data-Link Layer.

17

2 Background Knowledge

Table 2.8: ICMPv6 Types defined by RFC4443

| Type | Name

Description \

1 Destination Unreachable

Packet cannot be delivered to
its destination

2 Packet Too Big

Router cannot forward the packet
because it exceeds a link-MTU

3 Time Exceeded

Router received a packet with a
hop-limit of zero or decremented
it to zero

4 Parameter Problem

Node detected a problem on a header
field that cannot be resolved

128 | Echo Request

A request to reply back to the sender

129 | Echo Reply

The reply to the Echo request

2.3.3 ICMPvé

16 ‘ 24 32

Type Code

Checksum

Message Body

\—/////—\

Figure 2.14: Internet Control Message Protocol Format

ICMPv6 is a Transport-Layer protocol defined in [10]. Figure 2.14 depicts
the ICMPv6 header format. Table 2.8 shows ICMPv6 Types defined di-
rectly by the ICMPv6 RFC. Other types are defined in the respective RFCs

defining ICMPv6 messages.

18

2.3 IPv6

Internet Protocol Suite Frame

[Application] ~

Transport ’ NextHeader | App data ‘

Send
9ATED9Y

‘ IPv6 Header App data ‘

Next Header

v Link Header IPv6 Header Next Header App data ‘

Link

[)
[e
[J

Figure 2.15: IPv6 Header Encapsulation

2.3.4 Neighbor Discovery Protocol

Figure 2.15 shows how the data and headers of the upper layers get en-
capsulated in an IPv6 datagram that gets finally encapsulated in a frame.
IPv6 works on 128-bit addresses, but nodes use different addresses on their
Link-Layer to transmit the frames. This so-called Link-Layer address could
either be the address of the receiver directly on the link or the Link-Layer
address of the router in case the receiver is not in the same Link-Local
network. The Link-Layer address of the next hop or the destination, in
case of a Link-Local transfer, needs to be discovered first. IPv6 uses the
Link-Layer Neighbor Discovery protocol (NDP) [21] for this task. NDP
packets are encapsulated in ICMPv6 (Internet Control Message Protocol)
messages. The nodes use a so-called Neighbor Cache to learn the relevant
addresses of its neighborhood. Addresses that have been resolved once stay
in the cache for a predefined time. For this time, the address does not need
to be resolved but can be taken from the cache.

NDP defines two message formats for finding direct neighbors.

e Neighbor Solicitation Message Format
e Neighbor Advertisement Message Format

19

2 Background Knowledge

0 8 16 ‘ 24
135 (Type) 0 (Code) Checksum
Reserved
Target Address
1 (SLLAO) 1 (Length) Source Link-Layer Address ...
Figure 2.16: Neighbor Solicitation Message Example
0 8 16 ‘ 24
136 (Type) 0 (Code) Checksum
R|S|O Reserved
Target Address
2 (TLLAO) 1 (Length) Target Link-Layer Address ...

Figure 2.17: Neighbor Advertisement Message Example

20

32

32

2.3 IPv6

Neighbor Advertisement messages propagate a node’s Link-Layer address
to other nodes. They are broadcasted when the node joins a network or can
be requested by a Neighbor Solicitation message (NS). NAs not requested
by an NS are called unsolicited advertisements and typically sent to the all-
node multicast address. The node can send an NA message to the solicited-
node multicast address and wait for an NA from the targeted node to resolve
an address. The node can send an NS message to the targeted nodes unicast
address to check if the node is still available.

Figure 2.16 shows an example of a Neighbor Solicitation message. The
ICMPv6 Type of an NS is 135, and the code is always zero for an NS
message. The Target Address field contains the IPv6 address of the node,
where the NA should be requested. The Target Address is followed by the
option field. In case the source of the IP header is not the unspecified address
(:2), the option field must include the Source Link-Layer Address option
(SLLAO). The length field of a Link-Layer Address Option (LLAO) describes
the total length of the option field in eight-bytes units. For example, if the
Link-Layer address has a length of six bytes or smaller, the length field is
one.

The answer to an NS message is the Neighbor Advertisement message
(NA). Figure 2.17 depicts an example of such an NA message. The ICMPv6
type field is always 136, and the code is always zero for an NA message.
The R-bit implies that the node, sending the NA, is a router. A set S-bit
means that the NA message is sent as a response to an NS message. The
O-bit indicates that this NA message should override a possibly cached
Link-Layer address from a previously sent NA. The Target Address can
either be the address of the solicitation node or the all-nodes multicast
address in case of an unsolicited NA or an unspecified source address.

NDP defines two message formats for finding routers on the link.

e Router Solicitation Message Format
e Router Advertisement Message Format

Router advertisement messages (RA) propagate information about routers
on the link. Unsolicited router advertisements are sent out to the all-nodes
multicast address by the routers periodically. A node can also request a
router advertisement by sending out a Router Solicitation (RS) message to

21

2 Background Knowledge

0 8 16 ‘ 24
133 (Type) 0 (Code) Checksum
Reserved
1 (SLLAO) 1 (Length) Source Link-Layer Address ...

Figure 2.18: Router Solicitation Message Example

0 8 16 ‘ 24
134 (Type) 0 (Code) Checksum
Cur Hop Limit [M|O| Reserved Router Lifetime
Reachable Time
Retrans Timer
3 (P1I0) 4 (Length) Prefix Length |L|A| Reservedl
Valid Lifetime

Preferred Lifetime

Reserved2

Prefix

2 (SLLAO) 1 (Length) Source Link-Layer Address ...

Figure 2.19: Router Advertisement Message Example

22

2.3 IPv6

the all-routers multicast group. The router will then answer with an RA to
the issuer’s unicast address. The RS message is shown in Figure 2.18.

The RA message is shown in Figure 2.19. The ICMPv6 Type of an RA is
134, and the code is always zero for an RA message. The Current Hop
Limit field tells the receiving node which hop-limit should be used for
outgoing packets. Zero means unspecified. The M and O flags are DHCPv6
related and not relevant for this work. The Router Lifetime field is an
unsigned 16-bit value in units of a second. It specifies the lifetime associated
with the default router. The Reachable Time specifies a time interval in
milliseconds for which a node can assume that an already discovered node
is still reachable. The last timer field, the Retrans Timer, defines the time
between the retransmission of a Neighbor Solicitation message in units of
milliseconds. The RA example has two option fields included. The Prefix
Info and the SLLAO. The SLLAO includes the source Link-Layer address
like the RS message. The Prefix Info option (PIO) tells the receiving node
information about the prefix used for address autoconfiguration. The length
value indicates the number of bits used as the prefix. The prefix is always in
the upper address bytes since the address in this option has the same length
ass an entire address. The L-Flag indicates that the prefix is on-link, which
means that it can be reached directly without any router involved. The A-
Flag signals the prefix can be used for Stateless Address Autoconfiguration.
Valid Lifetime and Preferred Lifetime signal the SLAAC for how long the
address is valid and for how long it should be used. All-ones (0xffffffff)
values signal infinite lifetime.

2.3.5 Stateless Address Autoconfiguration

IPv6 nodes use the Stateless Address Autoconfiguration (SLAAC), defined
in RFC4862 [23], to configure the interface’s addresses. The SLAAC mecha-
nism generates Link-Local and global addresses. The Link-Local address
is formed by combining the Link-Local prefix with the IID, and global ad-
dresses use the prefix learned from RA messages, combined with the IID.
Figure 2.20 shows the routine to perform SLAAC. When an interface is ini-
tialized, it assigns itself a tentative Link-Local address, formed as described
above. Then the node sends out an NS message with the Target Address of

23

2 Background Knowledge

Create tentative yes
Link-Local address
Send NS message
with tentative Link-
Local address (DAD)

Wait for NA message
with tentative Link-Local

address (DAD) or Timeout

NA
received?

yes (DAD failed)

Alternative
address?

no (DAD succeeded)

Apply Link-Local address
Send RS

DAD failed

Create tentative
global address

Send NS message
with global address
from RA prefix (DAD)

/ Wait for NA message with

global address from RA
prefix (DAD) or Timeout

NA yes (DAD failed)
received?

no (DAD succeeded)

Apply global address

Figure 2.20: Stateless Address Autoconfiguration

24

2.4 6lo

the tentatively chosen address. The source IPv6 address is the unspecified
address (::) and the destination IPv6 address is the solicited multicast ad-
dress. This process is called Duplicate Address Detection (DAD). If there
is a node on the link, using the same address, it returns an NA message,
indicating a duplication, and the node then discards the tentative address
and depending on the configuration, generates a new address. After the
DAD, the node has a Link-Local address assigned and can send an RS. All
routers in the network answer the RS with an RA message where the node
can get the prefix information from. With this prefix information, the node
forms a global address and starts listening to that address.

2.4 élo

Application HTTP CoAP MQTT
Transport UDP TCP ICMPv6
Internet 1Pv6

6lo Adaption 6LoWPAN 6LoCAN

Link 802.15.4 CAN Ethernet

Figure 2.21: 6lo Adaption layer example

6lo is the name of an Internet Engineering Task Force (IETF) Working
Group (WG). The 6lo WG focus on IPv6 connectivity over constrained nodes.
The nodes are constrained in the sense of limited power, memory, and
lack of some required Link-Layer services. The WG is working on IPv6-

25

2 Background Knowledge

over-foo adaption layers, using specifications from 6LoWPAN technologies
like RFC4944 [19] and RFC6282 [24]. 6lo technologies usually have a 6lo
adaption-layer, as shown in Figure 2.21.

2.4.1 IP Header Compression

For this document, the concept of the Adaption layer and the IP Header
Compression (IPHC) is of importance. The IPHC reduces redundant infor-
mation in the 40 bytes IPv6 header. The payload length, for example, is
usually known from the Link-Layer packet size and is therefore always
elided. The version field is also always elided because the compression is
only defined for IPv6. Fields that can be recovered from Link-Layer infor-
mation can be fully elided. Fields filled with default parameters can either
be entirely elided or chosen on a set of default values. On a Link-Layer
where the Interface Identifier (IID) is generated from the Link-Layer ad-
dress, the IPv6 header with a Link-Local source and Link-Local destination
address, the IPv6 addresses in the header are redundant and can be recon-
structed from the Link-Layer headers. This saves up to 38 bytes of data.
The compression can either be stateless or context-based. A context is a
global routing prefix that is known by all nodes and has an index. This
4-bit index can then be used instead of transmitting the 64-bit prefix. The
distribution of the contexts is out of scope and not defined by aby standard
yet.

011 IPHC In-line IPv6 Header Fields | NHC | In-line Next Header Fields | Payload 8

Figure 2.22: IPHC Frame Format

The IPHC dispatch is a bit-field at the beginning of a packet, as shown in
Figure 2.22. The dispatch signals a IPHC compressed packet. IPv6 header
fields that cannot be fully elided are carried in-line after the IPHC bit-
field. The order of the in-lined data follows the order of the IPHC bit-field
from left to right. If the Next Header is compressible, the Next Header
Compression (NHC) field follows the In-Line Header Fields. Next-Header
fields that cannot be fully elided, follow the NHC.

26

2.4 6lo

16 bits

0 1 1 TF NH HLIM | CID | SAC SAM M |DAC DAM

Figure 2.23: IPHC Format

The IPHC bit-field, including the three-bit dispatch (011), has a length of
16 bits, as shown in Figure 2.23.

TF (Traffic-Class, Flow Label):
The first two bits define the Traffic-Class and Flow Label compression (TF).
The meaning of the values is stated in Table 2.9.

Table 2.9: Traffic-Class and Flow-Label Compression
| Code | Description |
00 | ECN + DSCP + 4-bit Pad + Flow Label (4 bytes)

01 | ECN + 2-bit Pad + Flow Label (3 bytes), DSCP is elided.
10 | ECN + DSCP (1 byte), Flow Label is elided.
11 | Traffic-Class and Flow-Label are elided.

NH (Next Header):

When this bit is set, the next header field is compressed, and the LOW-
PAN _NHC (Next header compression) is following the in-line field. Other-
wise, the Next header byte is carried in-line.

HLIM (Hop Limit):
The HLIM field defines the compressed Hop Limit.

Table 2.10: Hop Limit Compression
] Code \ Description ‘

00 | No compression. Carried in-line
01 | The hop limitis 1

10 | The hop limit is 64

11 | The hop limit is 255

27

2 Background Knowledge

CID (Context Identifier Extension):

If set, an 8-bit Context Identifier is carried in-line. The format is shown in
Figure 2.24. If a context-based compression is used for source or destination-
address, context zero is used.

8 bits

SRC CID DST CID

Figure 2.24: Context ID Format

SAC (Source Address Compression):
If set, the source address compression is context-based. If not, it is state-
less.

SAM (Source Address Mode):
The source address compression mode is interpreted differently for context-
based or stateless compression.

The enumeration for stateless source address compression is shown in
Table 2.11.

Table 2.11: Stateless Source and Destination-Address Compression

| Code | Description | In-lined bits |
00 | No compression. Address is carried in-line 128
01 The Prefix is fe80::/64. 64

The IID is carried in-line
10 The Prefix is fe80::ff:fe00:XXXX/112. 16
The last 16 bits are carried in-line
The Prefix is fe80::/64.
11 | The IID is reconstructed from the 0

Link-Layer address.

The enumeration for context-based source address compression is shown in
Table 2.12.

28

2.4 6lo

Table 2.12: Context-Based Source- and Destination-Address Compression

| Code | Description | In-lined bits |
00 | The unspecified address :: 0
01 The Prefix is taken from the context. 64

The IID is carried in-line.

The Prefix is taken from the context.
Bits not covered by the context are
filled with ::ff:fe00:XXXX.

The last 16 bits are carried in-line
The Prefix is taken from the context.
11 | The IID is reconstructed from the Link-Layer 0
address, if not covered by the context.

10 16

M (Multicast Compression):
If set, the destination address is a multicast address.

DAC (Destination Address Compression):
If set, the destination address compression is context-based. If not, it is
stateless.

DAM (Destination Address Mode):

The interpretation of the destination address compression mode depends
on the combination of multicast compression and destination address com-
pression.

The enumeration for stateless non-multicast compression is shown in table
Table 2.11 and is the same as the compression for the source address.

The enumeration for context-based destination address compression is the
same as the compression for the source address, with the exception that
case 00 is not allowed, and is shown in Table 2.12.

The enumeration for stateless multicast destination address compression
is shown in

Another significant compression is the Next Header Compression, specif-
ically the UDP header compression. The format is shown in Figure 2.25.
The first five bits are the dispatch for UDP header compression.

29

2 Background Knowledge

Table 2.13: Stateless Multicast Destination-Address Compression

| Code | Description \

In-lined bits ‘

00 | No compression. Address is carried in-line 128
01 | The address takes the form ffXX:: XX:XXXX:XXXX 48
10 | The address takes the form ffXX:: XX:XXXX 32
11 | The address takes the form ff02::XX 8

Bytes marked as XX are carried in-line.

8 bits

1 1 1 1 0|C| P

Figure 2.25: Next Header Compression for UDP Headers

C (Checksum): If C is set, the Checksum of the UDP datagram is elided or
carried in-line otherwise.

P (Ports): The enumeration of the port compression is shown in Table 2.14

Table 2.14: Stateless Multicast Destination Address Compression

| Code | Description

\ In-lined bits ‘

00 | No compression. Both ports are carried in-line 32

01 Source-Port fully in-lined. 94
Destination port takes the form 0xfOXX

10 Destination Port fully in-lined. o4
Source port takes the form 0xfOXX

11 | Source- and Destination Port take the form 0xfObX 8

Bytes marked as XX are carried in-line.

Figure 2.26 depicts an optimal compression of a Link-Local IPv6 packet
with UDP. The Traffic-Class (TC) and Flow-Label (FL) field can be fully
elided because they are zero. All-zero TC and FL are a realistic scenario
for Link-Local traffic and even for the most routed traffic. The UDP Next-
Header-Field can be elided because we can use Next-Header-Compression

30

2.4 6lo

0 ‘ 8 ‘ 16 ‘ 24 32
0x6 0x00 (TC) 0x00000 (FL)
0x68 (Payload length) 0x11 (UDP) 0x40 (HLIM)

fe80::ff::fe00:0123
(Source Address)
(derived from Link-Layer)

fe80::ff::fe00:0abc
(Destination Address)
(derived from Link-Layer)

0xfOb3 (SRC Port) 0xfOba (DST Port)

Length Checksum

48 bytes from the original header result in following 4 bytes:

Figure 2.26: Link-Local IPv6 an UDP header to IPHC example

31

2 Background Knowledge

for UDP. A Hop-Limit of 64 can be compressed with no in-line data added.
The IPv6 Source Address and destination address can be compressed to zero
in-line data. The Link-Local prefix can be fully elided, and the IID can be
reconstructed from the Link-Layer address. The UDP header is compressed
by using the UDP Next Header Compression. The source and destination
ports are chosen in a way that they can be efficiently compressed to a single
byte. This efficient compression works for addresses of form 0xf0bX, where
the last nibble can be chosen. The checksum is elided in this example. It
can be elided if the link-layer already has a mechanism for checking the
correctness of the data.

Efficient compression heavily depends on the IPv6 address and ports used.
To have an efficient compression, the IDD should be derived from the Link-
Layer address, and the prefix should either be link-local, or a context should
be distributed among all nodes. RFC6282 does not define how to distribute
the IPHC context; neither does this work do. Applications that are aware of
the fact that IPHC is used, should use ports from 0xfOb0 to 0xfObf to allow
efficient UDP Next Header Compression.

2.5 Zephyr

Zephyr is a Real-Time Operating System (RTOS) launched by Intel and now
hosted by the Linux Foundation as the Zephyrproject. The kernel is derived
from WindRiver’s Rocket kernel, and the Zephyr project source code is
publicly available on GitHub under the Appache 2 license. The development
is community and industry-driven with vendor-neutral governance. Major
System on Chip (SoC) vendors are members of the project and provide
funding. Zephyr is designed for small scale connected devices, but it can
also run on an x68 application processor. Is supports various architectures
like ARM, x64, ARC, RISC-V, and Xtensa. For each architecture, a set of
SoCs and development boards are supported.

32

2.6 Zephyr Network Stack

2.6 Zephyr Network Stack

Zephyr has a native IPv4 and IPv6 network stack built-in. The stack is
authored and maintained by the Zephyr community. It supports TCP and
UDP transport and all ICMP packets required by the IP standards. The
interface provided to the user is a POSIX Sockets API. Currently the
following Link-Layers are supported:

Ethernet

6LoWPAN (IEEE 802.15.4)

IPSP (Bluetooth Low Energy)

6LoCAN (Controller Area Network), as an outcome of this work

Figure 2.27 depicts an overview of the Zephyr stack. On the bottom, there
are the implementations of the low-level network device drivers. They are
responsible for handling the interrupts, sending, and receiving raw data.

The next layer is the Link-Layer Technologies Layer. This layer takes care of
the Link-Layer headers, and in the case of 6lo Technologies, performs frag-
mentation, reassembly, IPv6 header-compression, and uncompression.

The Network Core Layer is kind of a dispatcher for packets. It accepts
raw packets from the network and put them into the networking work-
ing queues, depending on the packet priority. This layer is the boundary
between the driver context, that could possibly be an interrupt, and net-
working context. The networking context consists of multiple work-queue
threads for receiving and sending. The work-queue threads have different
priorities, to support traffic classification by priority. The number of threads
can be chosen by a configuration option.

The Network Interface Abstraction Layer defines a common API for Link-
Layer implementations, handles the IP addresses of the interface and
provides a generic way to read the Link-Layer addresses.

The Networking Protocols Layer parses the IP headers, checks the ad-
dresses, and decides if the packet is addressed to this node or should be
discarded. It also parses the next header and invokes the corresponding
transport protocol.

33

2 Background Knowledge

Networking Application

Application Protocols

‘ CoAP ’ ‘ LWM2M ’

‘ MQTT ’ ‘ ete. ’

Sockets API

Net-Context API

Transport-Layer Protocols

‘ TCP ’ ‘ UDP ’
e
=
i
‘ ICMPv4 ’ ‘ ICMPv6 ’ 8 %
wn +
& ||
—
g g
Q
Z|| &
Networking Protocols g
=
o
‘ IPv4 ’ ‘ IPv6 ’ 5
2
13
[
4
Network Core

Network Interface Abstraction Layer

Link-Layer Technologies

‘ Ethernet ’ ‘GLOWPAN ’ ‘ 6LoCAN ‘ IPSP ’

Network Device Drivers

Ethernet CAN 802.15.4 Other
drivers drivers drivers drivers

Figure 2.27: Zephyr Network Stack 6LoCAN RX example

34

2.6 Zephyr Network Stack

The Transport-Layer Protocols Layer parses and validates the transport
layer protocol header. In the case of ICMP, the packets are handled by this
layer, while TCP and UDP packets are handed over to the Net-Context API
by the IP layer.

The Net-Context API layer checks for registered handlers and if a handler
is found, forwards it to them. The Sockets API registers the handlers,
that takes the packet from the Net-Context and forwards it to the user
application. The Sockets API follows the POSIX [13] BSD sockets API
standard.

35

3 6LoCAN design

The goal of 6LoCAN is to support IPv6 traffic over the CAN-bus with as little
overhead as possible. The payload-data size for classical CAN is eight bytes
and for CAN-FD it is 64 bytes. To satisfy the minimum MTU requirement
of 1280 bytes, an efficient fragmentation and reassembly mechanism is
required.

Sending IPv6 headers over Classical CAN would at least require six CAN
frames, assuming the fragmentation and reassembly header-only takes one
byte. Six frames for only sending the header is not efficient, and therefore,
a header compression algorithm is applied. In the current design, IPHC
from 6LoWPAN is used. In an optimal scenario, the IPv6 and UDP header
can be compressed to a size as small as four bytes.

For fragmentation and reassembly, we are using the well known ISO-TP
protocol. ISO-TP can transfer packets with a size of up to 4095 bytes,
which is sufficient for the minimal MTU requirements of IPv6. It also
provides a flow-control mechanism for unicast transfers. ISO-TP does not
support multicast transfers, and therefor 6LoCAN uses a slightly modified
version that has some simplifications and allows a multicast transfer. The
fragmentation headers designed for 6LoWPAN have a size of four bytes for
the first fragment and five bytes for consecutive frames [19]. For classical
CAN, this is more then the half of the frame payload, which is not efficient
enough, and therefore the decision was made not to use it.

CAN uses identifiers to identify frames instead of addresses to address
nodes. However, or IPv6 traffic, we need a way to address dedicated nodes.
For this purpose, we introduced an addressing schema that translates
node addresses to identifiers. This schema uses the 29-bit addresses only,
and the 11-bit identifiers can still be used for other traffic than 6LoCAN.
The node-addresses defined by the addressing schema have a length of 14

37

3 6LoCAN design

bits and can either be statically assigned or randomly chosen during the
initialization of the interface. Node-addresses need to be unique on the bus.
To verify the uniqueness of the node-address, we introduced a Link-Layer
duplicate address detection.

This work also defines a translator from the 6LoCAN network to an Ethernet-
based network. We named this translator mechanism a 6LoCAN border
translator. The translator makes it possible to connect 6LoCAN nodes with
Ethernet nodes on the same Link-Local domain. The translator can then be
connected to another node, an Ethernet-Switch, Router, or whatever device
using Ethernet. The translator is stateless and has a fixed address. Because
of the fixed address, it does not need to be advertised among nodes, but we
can only have a single translator within a 6LoCAN network.

3.1 Addressing Schema

1 14 14

M DEST SRC

Figure 3.1: Address to Identifier Mapping

6LoCAN uses 14-bit node addresses to identify nodes on the bus. A node
address has to be unique on the bus to avoid collisions. The Link-Layer
duplicate address detection, defined in subsection 3.1.4, prevents node
address collisions. The addressing schema describes how to map the 14-bit
source and destination node-address to a 29-bit CAN identifier, as shown
in Figure 3.1. The resulting CAN identifier is a combination of the source
address, destination address, and a multicast bit. Because of the fact that
a node address must be unique on the bus, the combination of the source
and destination address always results in a unique identifier. This property
is essential because collisions on the bus can only be resolved during the
arbitration phase. If two nodes would send frames with the same identifiers,
a collision in the data-phase could happen that cannot be resolved. Mapping
only the destination address int the identifier would extend the address-
space but leads to collision when two nodes try to send data to the same

38

3.1 Addressing Schema

Table 3.1: 6LoCAN address layout

] Address | Description \
0x3DFE - 0x3FFF | Reserved
0x3DFE LLDAD
0x3DF1 - 0x3DFD | Reserved
0x3DFO0 Ethernet Translator
0x0100 - 0x3DEF | Node addresses
0x0000 - 0xO0FF | Reserved

receiver. Mapping only the source address to the identifier would not lead
to collisions, but the nodes would need to inspect every packet, and the
destination address would need to be included in every frame payload.
With having the destination-node address as part of the identifier, the
6LoCAN node can use masked CAN filters to only receive frames dedicated
to the node. This method reduces the number of interrupts for receiving
and parsing frames. A dedicated multicast-bit marks frames as multicast
frames. A node can use a masked CAN filter to receive multicast traffic
from the attached multicast groups only.

Table 3.1 describes the address layout. Nodes can use any address from
0x0100 to 0x3DEF. Other addresses are either reserved or used for a partic-
ular purpose.

The conclusion of the addressing schema leads to the following properties:

14-bit address-space on the bus.

The identifier uniquely identifies traffic from one node to another.
The combination of source and destination address prevents collisions
outside the arbitration-field.

e CAN filters that only pass relevant frames can easily be applied to
the identifiers.

39

3 6LoCAN design

3.1.1 Unicast Address

1 14 14

0 DEST Node-Address SRC Node-Address

Figure 3.2: Unicast Node-Address to Identifier Mapping

Figure 3.2 depicts the mapping from source node-address and destination
node-address to the CAN identifier for unicast traffic. The uppermost bit,
the multicast bit, is set to zero. The destination node-address is located in
the upper 14 bits, and the source node-address is located in the lower 14
bits.

3.1.2 Multicast Address

1 14 14

1 Multicast-Group SRC Node-Address

Figure 3.3: Multicast-Group to Identifier Mapping

Figure 3.3 depicts the mapping from source node-address and the multicast
group to the CAN identifier for multicast traffic. The uppermost bit, the
multicast bit, is set to one. The desired multicast group is located in the
upper 14 bits, and the source node-address is located in the lower 14 bits.
The multicast group corresponds to the lower 14 bits of the IPv6 multicast
address. As shown in section 2.3 Figure 2.11, the Group-ID is located at the
lower 112 bits of the IP address. Using the lower 14 bits is very efficient
because all well-known multicast groups fit in that range. The node can
also receive messages with a multicast Group-ID larger than 14 bits, but
these messages may be ambiguous and need to be filtered afterward by the
IPv6 address.

40

3.1 Addressing Schema

3.1.3 Address Generation

Every node is addressed by a 14-bit address as described in section 3.1. A
node can either have a statically assigned address, or it can pick a random
address whenever it connects to the bus or restarts the interface. In the
case of a random address assignment, multiple nodes might attempt to
claim the same address at the same time. Two nodes with the same address
would be a violation of the requirement that every node must have a unique
address on the bus. To prevent this situation, subsection 3.1.4 describes a
mechanism to detect address duplications on the bus. A node that tries to
claim an address already in use can then choose another address and rerun
the detection for duplicate addresses.

Random address assignment allows nodes to join the network without any
prior knowledge of the other nodes and without being provisioned first. It is
especially useful for nodes that do not have an interface to enter an address
or lack of none volatile memory. The drawback is that the address of a node
may change their address whenever it reenters the network.

3.1.4 Link-Layer Duplicate Address Detection

To evaluate the need of the Link-Layer duplicate address detection lets
first calculate the probability that two devices choose the same address,
when they use an independent random number to assign their address.
The address space a node can take its address from is 0x0100 to 0x3DEF
(15599). Let us assume that we have 100 nodes on the bus. Depending on
the transceivers used and wiring, this is a realistic electrical limit.

Let N be the number of possible addresses, n the number of nodes, and
P the probability for a collision. The number of possible permutations of
addresses and nodes is N = 15599109,

The number of permutations without a collision is
N-(N=1)-..-(N = (n—1)).

Using the Laplace formula gives Equation 3.1.

41

3 6LoCAN design

N©
ITx) 3.0
p=1-"= o)
Nn Nn
P=1—-— 10/ ~02724 3.2
15599100 0.27 3.2)

Equation 3.2 is the result of our example with 100 nodes.

The probability of having a collision is therefor 27.24%. For most applica-
tions, this number unacceptable, and a mechanism to prevent collisions
needs to be applied.

For this reason, we introduced the Link-Layer duplicate address detection
(LLDAD). LLDAD works on the Link-Layer only and utilizes a special CAN
frame type, the Remote Transmission Request (RTR).

1 14 14

0 Tentative Address entropy

Figure 3.4: Link-Layer Duplicate Address Detection Request Frame

The collision detection begins with sending an LLDAD-request. The LLDAD-
request is an RTR frame with no data. The 29-bit identifier has the same
address-layout as a unicast 6LoCAN frame, but the source address is filled
with entropy, and the destination address is filled with the tentative address
as shown in Figure 3.4. The entropy prevents collisions in case another
node tries to acquire the same address at the same time. The probability of
not having a collision with 100 nodes, performing LLDAD at the same time,
is calculated in Equation 3.3. The equation uses a slightly modified formula
from Equation 3.1 with an address range extended by the 14-bit entropy.

B 100! - (15599'214

100)N
P = osge iy ~ 0.99998 (3.3)

42

3.2 Stateless Address Autoconfiguration

1 14 14

0 0x3DFE Tentative Address

Figure 3.5: Link-Layer Duplicate Address Detection Response Frame

After the LLDAD-request is sent, the node waits at least 100ms for an
LLDAD response frame. The response-frame is not an RTR frame and does
not contain data. The identifier of the response is shown in Figure 3.5.
The destination-address is the LLDAD response address 0x3DFE, and the
source address is the address of the node that already owns the address,
which is the same address as the tentative address. If there is no LLDAD-
response frame with the tentative address as the source address on the bus,
the tentative address is considered to be unique and becomes the address
of the node. If the node receives an LLDAD-response, the LLDAD is failed,
and in case the address was randomly chosen, it can retry with another
random address. If the address was statically assigned, the node is not
allowed to use the address and, therefore, cannot bring up the interface.

Figure 3.6 depicts the procedure of the LLDAD.

3.2 Stateless Address Autoconfiguration

The process of creating an IPv6 address is defined in subsection 2.3.5.
However, forming the interface identifier depends on the underlying Link-
Layer. The process of creating an interface identifier does not strictly follow
the rules of RFC4291 [12] Appendix A. Instead of taking the 14-bit node
address and zero fill it to the left, we use the method of creating an identifier
from a 48-bit identifier. The reason for this is that this method was also
chosen for 6LoWPAN (RFC4944 [19]) and the header compression is most
efficient when the interface identifier if formed in that way.

For example, a node with the node-address of 0x1234 would create the
interface identifier ::ff:fe00:1234/64.

Since the node address is only guaranteed to be unique on the bus-segment,
the IPv6 Duplicate Address detection, as described in subsection 2.3.5,

43

3 6LoCAN design

[Interface Up]

Chose Tentative Link-
Local Address (static
address or random)

|

/ Send LLDAD-Request /

Wait for LLDAD-Response
or 100ms Timeout

LLDAD-
Response
received?

es (LLDAD failed Random
address?

no (LLDAD succeeded)

[Use Tentative Address as Node Address] [i

Figure 3.6: Link-Layer Duplicate Address Detection

44

3.3 ISO-TP for 6LoCAN

needs to be performed. If the DAD failed, the node can either pick a new
node-address or form an interface identifier that is not related to the node-
address. The latter would result in an inefficient header compression and
should, therefore, be avoided.

3.3 ISO-TP for 6LoCAN

IPv6 defines that the minimal MTU is 1280 bytes, but a CAN frame has a
payload length of eight bytes for classical CAN and 64 bytes for CAN-FD.
To satisfy the minimal MTU requirement, 6LoCAN uses a slightly modified
version of ISO-TP. Some features like the address extension are not useful
and, therefore, not used and not supported. The maximum packet size is
limited to 4095 bytes, to limit the PCI of the first frame to two bytes. TSO-
TP does only support unicast data transfer, but for IPv6, it is necessary
to have multicast traffic too. Hence, we defined a way to have multicast
transmissions, but without flow control.

3.3.1 Multicast

For multicast packets, we cannot have flow control, because there is more
than one node receiving the packet and therefore, more than one node that
would answer with a flow control frame. The sender cannot handle flow
control for more than one receiving node because he does not know who and
how many receivers there are.

Figure 3.7 shows the sequence of a multicast transfer. 6LoCAN defines that
there has to be a pause between the First Frame and the first Consecutive
Frame of at least 1ms. This pause allows all receiving nodes to set-up
the CAN filter and allocate memory for the reception of the frame. The
STin has to be chosen such that the slowest node on the bus can handle
the reception. Multicast traffic is slower and maybe more unreliable than
unicast transfers. For packets that fit in a Single Frame packet, multicast
works the same way as unicast does.

45

3 6LoCAN design

Sender Receiver

\ .
First Frame

—_—

1ms

Consecutive Frame

—
\ .
Consecutive Frame
I [
Consecutive Frame
T
v 4

Figure 3.7: Example Multicast Sequence

46

3.3 ISO-TP for 6LoCAN

CAN CAN CAN
Node Node Node

Switch/ Borde
Router/ ETH ETH TO‘" f " CAN
Ethernet Node ranslator

Figure 3.8: Ethernet Border Translator Schematic

3.3.2 Ethernet Border Translator

The Ethernet Border Translator is a concept for connecting a 6LoCAN bus
segment to an Ethernet network. It is neither a router nor a switch. It
only translates the packets from one Link-Layer to another, which means
that the nodes stay in the same Link-Local domain. The advantage of
this concept is that the translator is fully stateless and does not need any
configuration and knowledge of the network. It allows us to use small
devices with very little memory to be used as Border Translators. In case
the 6LoCAN network segment needs a router, the Border Translator can be
used to connect the 6LLoCAN network to an ordinary Ethernet router. The
Ethernet Border Translator can also be used to connect multiple 6LoCAN
bus segments, using a standard Ethernet Switch. With the Ethernet Border
Translator, we can use already existing Ethernet equipment for routing
6LoCAN traffic in the network. The advantage of keeping the devices in the
same Link-Local domain is that multicast discovery protocols still works.

The translator has a fixed CAN node address (0x3DF0). With having a fixed
address for the translator, the other nodes do not need a mechanism for
discovering translators. 6LoCAN nodes do not need to know if a destination
node the want to reach is in the same network, or connected via a trans-
lator. The sending node only needs to perform a neighborhood discovery
as described in subsection 2.3.4. The border translator then forwards the
neighbor solicitation message, and if the node is behind the translator, the
answer will be forwarded by the translator. Since the address of the trans-
lator is well known, a node automatically knows that the packet is from

47

3 6LoCAN design

outside the CAN bus segment, if the source node-address is the translator
address. Packets forwarded from Ethernet to 6LoCAN carry the original 48
bit Ethernet MAC address directly after the ISO-TP First Frame header.
Since the First Frame header has a size of two bytes, the inlined address
always fits in the remaining frame data. A node receiving a packet from
the border translator now replaces the node-address with the in-lined MAC
address and saves it to the neighborhood cache. The node can now decide
from the size of the address, stored in the neighborhood cache, if the packets
need to be sent to the translator or to a node within the same bus-segment.
Packets originating from a 6LoCAN node with a destination behind the
translator are sent to the node-address of the translator and carry the des-
tination Ethernet MAC-address inline. The border translator reassembles
the packet, uncompresses the IPv6 header, and forwards the packet to the
destination MAC-address. The source MAC-address is the 14-bit 610CAN
node-address extended by a 34-bit prefix. For packets from Ethernet to
6LoCAN, the translator compresses the IPv6 header and performs an ISO-
TP transmission to the destination node. The destination node-address is
taken from the last 14 bits of the destination MAC-address.

For neighborhood discovery packets, originating from the 6LoCAN network,
with a Link-Layer address option (see subsection 2.3.4), the translator has
to inspect the packet and extend the address in the option to match the
extended Ethernet MAC-address.

6LoCAN 3 Ethernet

Extend with Prefix

(DE:AD:BE:EF) :
I \
|

) N SRC MAC
0 |DEST (0x3DF0)| SRC (0x123) | Inlined DEST MAC RN DEST MAC (DE-ADBEEF-01:29)

I
I
I

_/’

Figure 3.9: 6LoCAN to Ethernet Address Translation

Figure 3.9 shows how the 6LoCAN node address is extended to an Ether-
net MAC-address and Figure 3.10 shows how the Ethernet MAC-address
address is extended to a 6LoCAN node address.

48

3.3 ISO-TP for 6LoCAN

Ethernet' 6LoCAN

Take the last 14 bits \
I

» 0 | DEST (0x123) | SRC (0x3DF0) Inlined SRC MAC

I

DST MAC |
(DE:AD:BE:EF:01:23) SRC MAC !
|

—

Figure 3.10: Ethernet to 6LoCAN Address Translation

49

4 Implementation

The 6LoCAN protocol is implemented into the Zephyr RTOS and made
its way to the 2.0 release. The implementation was made in two phases.
First we introduced a generic CAN API and an implementation of it for the
STM32 microcontroller platform. In the second phase, I implemented the
6LoCAN translation layer into the Zephyr networking stack.

4.1 The Zephyr CAN API

Before this work, the Zephyr RTOS was lacking a CAN API, so the first
step was to create a platform-agnostic API. The API should only support
features defined by the CAN specification [5], to ensure that the network or
application layer can rely on the API features.

The first API had an interface for the following features:

e Configure the mode and bitrate of the controller.

e Send a frame

e Attach a CAN filter and submit a callback whenever the filter matches
on a frame

e Attach a CAN filter and submit the frame to a message queue when-
ever the filter matches

e Detach attached filters

It also defined containers for CAN frames and CAN filters called zcan_frame
and zcan_filter. The containers provide a platform-agnostic way to handle
frames and filters. The specific driver implementation is responsible for con-
verting the zcan_frame and zcan filter to the respective register values.

51

4 Implementation

The Zephyr community agreed on my API proposal and the implementation
for the STM32 platform and it was merged merged into Zephyr version
1.12. The API evolved over the time and got extended by an API the get
the bus state and recover from bus-off state. Additionally people from the
Zephyr community added two other driver implementations. One for an
external CAN controller (MCP2515) and one for NXP platforms, based on
NXPs flexcan IP.

4.1.1 Zephyr CAN frame

struct {
id_type : 1;
rtr : 1
ext_id : 29;
dlc;
datal[8];

}i

The struct above shows a simplified version of a Zephyr CAN frame. It is a
container for a CAN frame and includes the identifier type, the identifier, a
flag for RTR frames, the data length code, and the data data.

4.1.2 Zephyr CAN filter

struct zcan_filter {

id_type : 1;
rtr : 1;
ext_id : 29;
rtr_mask N

ext_id_mask : 29;

}

The struct above shows a simplified version of a Zephyr CAN filter struct. It
is a container for a CAN filter and includes the identifier type, the identifier,
the RTR bit, and the masks for the identifier and RTR-bit. The mask signals
which bits of the identifier should be taken into account during the filtering.
Bits that are set to one are compared and bits that are zero are ignored.
Lets take an example of a filter with an identifier of 0x123 and a mask of

52

4.1 The Zephyr CAN API

0xff. Frames with the identifier 0x123, 0x223, or generally 0xX23, where
X is any number, would pass the filter. Frames with the identifier 0x124,
0x133, or generally OxYXX, where XX is not 0x23, will not pass the filter.

4.1.3 Sending CAN frames

int can_send(struct +*dev, const struct *Mmsqg,
timeout, callback_isr,
void xcallback_arg);

The Send API is defined as shown above. It takes a pointer to the CAN
device, a pointer to the frame container, a timeout, a callback function and
an argument that is passed to the callback function. The function sends the
frame as soon as a mailbox is ready to send a message. If a NULL pointer
is passed to as the callback function, the call blocks until the message is
sent. Otherwise the callback is called when the message is sent.

4.1.4 Receiving CAN frames

int can_attach_isr (struct ~dev,
isr, void #*callback_arg,
const struct zcan_filter xfilter);

The main receiving function is shown above. It takes a pointer to the CAN
device, the function that should be called when a frame that passes the filter
is received, an argument that is passed to the callback and the CAN filter.
The function returns a filter-id to uniquely identify the attached filter. The
filter-id is used for detaching the filter when needed. The CAN controller
reads any message on the bus and compares the identifier to the attached
filters. If a filter matches, the respective callback is called. If the identifier
matches more that one filter, the function called depends on the metrics
of the CAN controller. The callback is called in an interrupt context and
therefor is not allowed to block and should keep the execution time as low
as possible.

int can_attach_workg(struct *dev, struct k_work_g *work_g,
struct zcan_work =*work,
callback,

void =xcallback_arg,
const struct zcan_filter *xfilter);

53

4 Implementation

The can_attach_workq function is a wrapper for the can_attach_isr, that
calls the callback function in the context of the provided work queue instead
of an ISR context.

int can_attach_msgg(struct xdev, struct k_msgqg xmsg_dg,
const struct zcan_filter *xfilter);

The can_attach_msgq function attaches a message queue instead on a call-
back. Whenever a frame that matches the filter is received, it is put into the
message queue. The message queue can then be read within a thread.

4.2 6LoCAN Implementation

A Link-Layer Implementation in Zephyr consist of two layers. The Net-
work Device Driver and the Link-Layer implementation (L2), which are
highlighted in Figure 4.1. For the 6LoCAN implementation, the Network
Device Driver is an abstraction of the Zephyr CAN API that installs the
respective frame filters, handles the incoming CAN frames in an interrupt
context, puts them into network packets, sets the Link-Layer address of
them, and and hands the packet over to the receiving work-queue. For
sending CAN frames, the abstraction only forwards the raw CAN frames.
The 6LoCAN Link-Layer implementation does the parsing of the ISO-TP
header, fragmentation and reassembly, and IPHC header compression and
decompression. The device driver implementation is explained in detail
in subsection 4.2.1, and the L2 implementation is explained in detail in
subsection 4.2.2.

54

4.2 6LoCAN Implementation

Networking Application

R\

1T

—/

Sockets API

N\

(10

N

Net-Context API

Transport-Layer Protocols

‘ ICMPv4 ’ r\ ICMPv6 ’

\
9
TCP
Networking Protocols @

IPv4 ’ ‘ IPv6 ’

(O)

Network Core
(2N N 5)
Network]]nterface Abstractlon Layer

Link-Layer Technolqggies @ @

‘ Ethernet ’ 6LoWPAN ’ ‘ 6LoCAN ‘ ‘ IPSP ’

Network Device Drivers
Ethernet CAN 802.15.4 Other
drivers drivers drivers drivers

Figure 4.1: Zephyr Network Stack 6LoCAN RX example

55

4 Implementation

Figure 4.1 shows an example of receiving a UDP packet.

10.

11.

56

1.

o

The CAN network device driver uses the CAN API to receive the raw
CAN frames. The frames are copied into network packets and handed
over to the Net Core. The Net Core accepts the packet and puts it into
a receiving work-queue, depending on the priority of the packet.

. When the receiving queue is scheduled, the packet is handed over to

the Network Interface.

The Network Interface calls the 6LoCAN L2 implementation with
the received packet, which analyzes the frame content. The L2 imple-
mentation performs the reassembly (ISO-TP) and when the packet is
complete, the IPHC decompression.

. If the packet is complete and decompression is successful, the reassem-

bled packet is passed back to the Network Interface.

The packet is then forwarded to the Net Core.

The Network Core checks the IP header version and if it is IPv6,
the IPv6 implementation is called. The IPv6 implementation checks
the IPv6 headers and discards the packet if the destination does not
match any addresses of the interface.

Depending on the next header field, the specific transport layer imple-
mentation is called. In this Example, it is UDP.

The UDP implementation parses the UDP header, checks the check-
sum and length of the packet, and returns the result to the IPv6
implementation.

If the packet is valid, the IPv6 implementation passes the packet to
the Net-Context API.

The Net-Context API checks for registered sockets on the destination-
port.

If a socket is listening to the destination-port, the Socket-API passes
the packet to the networking-application.

4.2 6LoCAN Implementation

Figure 4.2 shows an example of sending a UDP packet.

o

. The Application sends a chunk of data by using the Socket-API.
. The Socket-API binds the request to the context of the opened socket

and uses the API to send the data.

The Net-Context implementation calls the IPv6 implementation to
fill the IPv6 headers. The interface information, like the source IP
address, is taken from the interface associated to the Net-Context.
The Net-Context implementation calls the UDP implementation to
fill the UDP headers.

The packet is then handed over to the network core.

The network core calls the Network Interface abstraction, which fills
the Link-Layer addresses (from either neighborhood discovery or
cache).

. The Network Interface abstraction then puts the packet into the

sending work-queue. The work-queue thread then calls th 6LoCAN
Link-Layer. The Link-Layer creates a ISO-TP context and performs
the fragmentation.

. For every frame that is sent, the CAN network driver is called.

57

4 Implementation

Networking Application
N
(1IN
N
Sockets API
PN
(2N
N
Net-Context API
Transport-Layer Protocolp @ @
‘ ICMPv4 ’ ‘ ICMPvp ’
‘ TCP ’ ‘ UDP ’
Networking Protocols
e || []

Network Core

N\
(6N
g

Network Interface Abstraction Layer

Link-Layer Technologies @

‘ Ethernet ’ ‘GLOWPAN ’ ‘ 6LoCAN ‘ ‘ IPSP ’

Network Device Drivers e
Ethernet CAN 802.15.4 Other
drivers drivers drivers drivers

Figure 4.2: Zephyr Network Stack 6LoCAN TX example

58

4.2 6LoCAN Implementation

4.2.1 6LoCAN Network Device Driver

The 6LoCAN Network Device Driver is responsible for receiving and send-
ing RAW CAN frames. For this purpose it is using the Zephyr CAN API.
The API exposes five functions:

Interface Initialization
Enabling/Disabling
Sending

Attaching Filters
Detaching Filters

Interface Initialization binds the driver context to an interface, calls
the initialization function of the 6LoCAN Link-Layer and registers the
multicast monitor. The multicast monitor is called whenever a multicast
group is added to an interface.

Enable is called from the 6LoCAN Link-Layer whenever the interface
changes its state from up (enabled) to down (disabled) or vice versa. If
the interface is going to be brought up, then this function attaches the
unicast CAN filter. This filter receives unicast frames where the destination
address matches the interface link-local address. If the interface is going to
be brought to the down state, the unicast filter is detached.

Send forwards the incoming frames to the Zephyr CAN API without any
modification.

Attach Filter and Detach Filter are wrappers for the Zephyr CAN API,
and work the same way the Zephyr CAN API do. They are used to attach
filters for the Link-Layer Duplicate Address Detection (LLDAD), from the
6LoCAN Link-Layer.

Whenever a frame on the bus matches the unicast filter, the receiving
function is called. This function allocates a net packet that is large enough
to hold the frame payload, the source and the destination Link-Layer
address. The addresses are taken from the frame identifier and copied into
the packet, followed by the frame payload. The resulting packet is then put
into the receiving work-queue of the network stack, which later passes it to
the 6LoCAN Link-Layer.

59

4 Implementation

The multicast monitor is responsible for attaching filters for the correspond-
ing multicast group. The filter matches the the last 14 bits of the IP address
and the multicast flag. The source address is ignored for the comparison.
For receiving the frames, the same receiving function is used, as it is used
for unicast frames.

4.2.2 6LoCAN Link-Layer

The 6LoCAN Link-Layer gets the raw CAN frames from the 6LoCAN
Network Device Driver in the thread context of the receiving queue. It is
responsible for handling the ISO-TP transfers that can either be a single
frame or a fragmented transfer consisting of many frames. If the packet does
not fit into a single frame, the fragmentation, reassembly and flow control
is also managed by this layer. Fragmented packets are associated with a
context that represents a single ISO-TP transfer. This context contains
all the information necessary to handle the segmentation, reassembly and
flow control. The LLDAD is also performed from this layer whenever the
interface is initialized.

Whenever a frame arrives, the ISO-TP PCI type is checked to determine
what to do next with the frame.

Single frames can be handled in one shot and therefor need no additional
context. The implementation removes the ISO-TP header, checks the length
and performs the IPHC decompression. After that, the packet is processed
by the higher layers.

If a First Frame arrives, the implementation reads the total packet length
and allocates a new packet that is able to carry the reassembled data. To
keep track of the reassembly process, an ISO-TP context is allocated and
linked with the newly allocated packet. The context contains the actual
state of reassembly, timeout timers, a remaining data counter, sequence
number and the block counter. The context is then initialized with the data
from the first frame, the residual data is copied to the packet and a if the
it is not a multicast transfer, a Frame Control Frame is sent back to the
sender.

60

4.2 6LoCAN Implementation

For Consecutive frames, the implementation checks if is a context that is
in the state of receiving consecutive frames and is linked to a packet from
the same sender. If a context could be found, the data in the Consecutive
Frame is added to the packet. If the counter for remaining data in this
context reaches zero, the reassembled packet is pushed to the receiving
queue and ands up in this implementation again. On the finished packet,
IPHC decompression is performed and the upper layers continue processing
the packet.

Outgoing packets can either be single frames, if they are short enough, or
need to be split into several frames. The frame Identifier is composed from
the Link-Layer addresses. The Link-Layer source and destination address
is already defined by the packet. If the packet can be sent as a single frame,
the implementation creates a CAN frame with an ISO-TP Single Frame
header and the data from the packet. If the packet needs several frames,
the implementation allocates an ISO-TP sending context, initializes it with
the information from the packet, and sends out the ISO-TP first frame. The
implementation is then waiting for a Frame Control Frame to continue
with sending the Consecutive frames. The implementation sends as many
consecutive frames as necessary to complete the transfer.

o}

5 Evaluation

For evaluation purposes, 6LoCAN is implemented in the Zephyr RTOS
network stack.

Table 5.1: Resource demand of 6LoCAN

] Layer \ RAM \ ROM ‘
CAN Driver 256 | 3878
Network CAN Driver 328 | 1354
IPHC 4 | 2779
6LoCAN 1664 | 6534
Networking
(incl. 6LoCAN, without drivers) 34016 | 57269

Table 5.1 shows the RAM and ROM demand of the 6LoCAN implementation.
The build is the echo_server sample application, built on Zephyr 2.2 with
6LoCAN enabled. It includes the IPv6 network stack, TCP, and UDP. The
sample uses 64 net buffers for each, receiving and sending. One buffer can
hold up to 128 bytes, which results in 8192 bytes for sending and 8192
bytes for sending. As shown in the table, the 6LoCAN does not add an
excessive amount of RAM and ROM. The sample uses 64 net buffers each,
for receiving and sending. As shown in the table, the 6LoCAN does not add
an excessive amount of RAM and ROM. Most of the RAM is used for the
sending and receiving buffers. The 6LoCAN contexts use 1024 of the 1664
bytes of RAM. The ROM overhead of 6LoCAN in the entire network stack
is only 11.4 %.

Figure 5.1 shows the setup used for all evaluated data in this section. USB
is used as a power supply and provides a UART terminal. The boards
are flashed with an application that transfers data when issuing a com-
mand over UART. The boards are connected to the CAN-bus with a CAN-

63

5 Evaluation

CAN H

CANL

GND

CAN CAN CAN
Transceiver Transceiver Transceiver
a a A
>4 > Z >4 > Z. > > Z
ISAl-Ae & ISAlis & HixK o 3
STmicro NXP STmicro
Nucleo-F746ZG FRDM-K64F Nucleo-F746ZG
USB Ethernet
USB
USB
Host-PC
USB ‘

64

Figure 5.1: Test Setup

Logic-Analyzer

CAN RX

transceiver. One board also has Ethernet, connected to the host. This Eth-
ernet port serves as the Boarder-Translator. The Logic-Analyzer is used to
determine the exact timing of the frames.

5.0.1 Link-Layer Duplicate Address Detection

Figure 5.2: Link-Layer Duplicate Address Detection Measurement

Two boards are programmed with the same fixed address (0x1234) to
evaluate the Link-Layer Duplicate Address Detection. Figure 5.2 shows a
capture of the LLDAD. The black trace is the CAN_RX line and therefor
shows the logic levels on the bus. The brown trace is the CAN_TX line and,
therefore, only shows the data sent by the node that issues the LLDAD. The
first CAN frame is the LLDAD request. The identifier used is 0x48d3c0d
(DST: 0x1234, SRC (entropy): 0x3C0D) and the RTR bit is set. The second
frame is the response from the other node, already using the same address.
The identifier is 0xf7f9234 (DST: 3DEF, SRC: 0x1234). The node that caused
the address duplication noticed the duplication and disabled the interface.
[00.001] <inf> net_12_canbus: DAD failed

Interface 0x2002dde0 (CANBUS) [1]

Interface is down.

65

5 Evaluation
5.0.2 Ping

This section shows the evaluation of a Ping command. One board has a fixed
address of 0x1234, and the other board has a randomly chosen address. The
logs below show what is going on during the brin up of the interface and

pings.
First node with the address 0x1234:

Interface bring up
[00.471] Sending Multicast Listener Report v2 type 143 code 0 from :: to ff02::16
[00.471] Sending Multicast Listener Report v2 type 143 code O from :: to ff02::16
[00.471] Sending Neighbor Solicitation type 135 code 0 from :: to ff02::1:ff00:1234 <—DAD)
[00.472] Sending Router Solicitation type 133 code 0 from :: to ff02::1
[01.472] Sending Router Solicitation type 133 code 0 from fe80::ff:fe00:1234 to ff02::
[01.479] Router Solicitation received type 133 code 0 from fe80::ff:fe00:314e to ff02::
0
0

[02.472] Sending Router Solicitation type 133 code from fe80:: ff:fe00:1234 to ff02:
[02.479] Router Solicitation received type 133 code from fe80:: ff:fe00:314e to ff02::

NS

Start of the Neighbor Dicovery from the pinging node
[03.577] Neighbor Solicitation received type 135 code from fe80:: ff:fe00:314e to ff02::1:ff00:1234
[03.577] Sending Neighbor Solicitation type 135 code from fe80:: ff:fe00:1234 to ff02::1:ff00:314e
[03.577] Sending Neighbor Advertisement type 136 code from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e
[03.600] Neighbor Solicitation received type 135 code from fe80:: ff:fe00:314e to ff02::1:ff00:1234
[03.600] Sending Neighbor Advertisement type 136 code from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e
[03.609] Neighbor Advertisement received type 136 code from fe80:: ff:fe00:314e to fe80:: ff:fe00:1234

0
0
0
0
0
0

Pings
[03.618] Echo Request received type 128 code 0 from fe80::ff:fe00:314e to fe80::
[03.618] Sending Echo Reply type 129 code O from fe80:: ff:fe00:1234 to t
[04.573] Echo Request received type 128 code 0 from fe80::ff:fe00:314e to fe80::
[04.574] Sending Echo Reply type 129 code 0 from fe80:: ff:fe00:1234 to fe80::

0

0

:fe00:1234
:fe00:314e
:fe00:1234
:fe00:314e
:fe00:1234
:fe00:314e

[05.574] Echo Request received type 128 code from fe80:: ff:fe00:314e to fe80::
[05.574] Sending Echo Reply type 129 code from fe80:: ff:fe00:1234 to fe80::

Second node with the address 0x314e:

Interface bring up
[00.101] Sending Multicast Listener Report v2 type 143 code O from :: to ff02::16
[00.102] Sending Multicast Listener Report v2 type 143 code O from :: to ff02::16
[00.102] Sending Neighbor Solicitation type 135 code 0 from :: to ff02::1:ff00:314e
[00.102] Sending Router Solicitation type 133 code 0 from :: to ff02::1

[01.103] Sending Router Solicitation type 133 code 0 from fe80::ff:fe00:314e to ff02::
[01.107] Router Solicitation received type 133 code 0 from fe80:: ff:fe00:1234 to ff02::
[02.103] Sending Router Solicitation type 133 code O from fe80:: ff:fe00:314e to ff02::
[02.107] Router Solicitation received type 133 code 0 from fe80:: ff:fe00:1234 to ff02::

e

First Ping
[03.198] Sending Echo Request type 128 code 0 from fe80:: ff:fe00:314e to fe80:: ff:fe00:1234

====== Start of the Neighbor Dicovery to find out the Link—Layer address of fe80:: ff:fe00:1234 =======
[03.199] Sending Neighbor Solicitation type 135 code 0 from fe80:: ff:fe00:314e to ff02::1:ff00:1234
[03.215] Neighbor Solicitation received type 135 code 0 from fe80:: ff:fe00:1234 to ff02::1:ff00:314e
[03.216] Sending Neighbor Solicitation type 135 code 0 from fe80:: ff:fe00:314e to ff02::1:ff00:1234
[03.216] Sending Neighbor Advertisement type 136 code 0 from fe80:: ff:fe00:314e to fe80:: ff:fe00:1234
[03.224] Neighbor Advertisement received type 136 code 0 from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e
[03.245] Neighbor Advertisement received type 136 code 0 from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e

66

First Ping reply and remaining two Pings
[03.253] Echo Reply received type 129 code O from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e
[04.199] Sending Echo Request type 128 code 0 from fe80:: ff:fe00:314e to fe80:: ff:fe00:1234
[04.208] Echo Reply received type 129 code 0 from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e
[05.200] Sending Echo Request type 128 code 0 from fe80:: ff:fe00:314e to fe80:: ff:fe00:1234
[05.209] Echo Reply received type 129 code O from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e

The Ping command:

uart:”$ net ping fe80:: ff:fe00:1234

PING fe80:: ff:fe00:1234

8 bytes from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e: icmp.seq=0 ttl=64 time=54 ms

8 bytes from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e: icmp.seq=1 ttl=64 time=9 ms
8 bytes from fe80:: ff:fe00:1234 to fe80:: ff:fe00:314e: icmp.-seq=2 ttl=64 time=9 ms

The first ping takes 45 ms longer than the following two pings. This addi-

tional time is due to the Neighbor Discovery (ND). The nodes first have to
discover the Link-Layer addresses before they can exchange the data.

Table 5.2: UDP data throughput and protocol overhead

Payload BS STmin | IPv6 | ISO-TP | Frames | Measured
bytes | Block Size ms bytes | bytes # ms
128 0 0 8 24 21 22.63
128 8 0 8 30 23 24.66
128 8 5 8 30 23 105.17
1024 0 0 8 152 149 161.24

Table 5.2 shows the protocol overhead and the time needed to send UDP
data packets. The IPv6 row shows the overhead coming from the IPv6
protocol, and the ISO-TP row shows the overhead coming from the ISO-TP
protocol. If the data would be transferred using raw ISO-TP, eight bytes
could be saved. This value is constant, regardless of the packet-size. If the
data would be transferred using raw CAN frames, it would take 16 frames
to send 128 bytes and 128 frames for 1024 bytes.

67

5 Evaluation

| DO ¥ DI Y mmnmmmxmnmmmmmmmm lIXI]I(M O OO0 OO0 OO D OO0 00D 'y

Figure 5.3: UDP Transfer 128 byte, BS=0, STmin=0

Figure 5.3is a capture of an UDP transfer with 128 bytes. It uses the fastest
possible parameter set with a BS of zero, which means that there are no
additional FC frames to wait for and no separation time.

m H \HH O Y A
[\\IIIIII]III]I[IIIIIIIIIIII[IIIIJ

I O G e Ehaas
Mmm 0111 11080 R nllmi lmun nmm MIMIH umm mmn (Il mmmnmnmnm

Figure 5.4: UDP Transfer 128 byte, BS=8, STmin=0

Figure 5.4 is a capture of an UDP transfer with 128 bytes. It uses a BS
of eight, which means that every eight frames, the sender has to wait for
another FC frame with a CTS state. The separation time is zero.

Figure 5.5: UDP Transfer 128 byte, BS=8, STmin=5
Figure 5.5 is a capture of an UDP transfer with 128 bytes. It shows a

combination of a BS of eight and a separation time of five ms. The separation
time can, for example, be used to reduce the load on the bus.

68

6 Conclusion

6LoCAN brings end-to-end IPv6 to small-scale microcontrollers with only
a few additional components, like the CAN transceiver. It can be used for
non-realtime communication and bulky data transfers. If configured to use
a random address assignment, it is zero-configuration capable and does
not require any settings or persistent memory. Nodes can join a 6LoCAN
network seamlessly. The nodes could, for example, be identified with host-
names and multicast DNS discovery. The CAN-bus is not the most efficient
bearer for IPv6 traffic, because of the small frame payload of eight bytes
for classic CAN, but with the 64-byte payload of CAN-FD, packets with
small payload can even fit a single frame. By using IPv6 instead of raw data
transfers, it is possible to use any application-layer protocol that works on
top of IP. With IPv6, it is, for example, possible to encrypt the traffic using
the well known TLS protocol [20]. Devices that already have native IPv6
support can easily be connected to large-scale networks like the internet.
6LoCAN supports multicast groups natively, and therefore, very efficiently.
Packets to dedicated groups are only received by nodes that subscribed to
the group. This property could be used for efficient implementations of a
publisher and subscriber models like MQTT. Since 6LoCAN only uses the
29-bit extended addresses, the 11-bit standard address range is still usable
for other protocols. An 11-bit standard address always has a higher priority
on the bus than an extended address, and therefore the standard address-
range can still even be used for high priority traffic, like real-time events.
It could also share the bus with other existing protocols like CANopen.
CANopen could, for example, be used for machine control, as ith has been
used before, and 6LoCAN could be used for interfacing control panels.

The 6LoCAN standard-draft [25] was submitted to the Internet Engineering
Task Force (IETF) in October 2019.

69

Bibliography

[1]1 Zigbee Alliance. Project Connected Home over IP. https:/www.connectedhomeip.com/.
Feb. 2020 (cit. on p. 1).

[2] CAN in Automation. CANopen — The standardized embedded network.
https://www.can-cia.org/canopen/. Feb. 2020 (cit. on p. 2).

[3] Fred Baker et al. Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers. RFC 2474. Dec. 1998. DOI:
10.17487 /RFC2474. URL: https://rfc—-editor.org/rfc/
rfc2474.txt (cit. on p. 17).

[4] Robert T. Braden. Requirements for Internet Hosts - Communication
Layers. RFC 1122. Oct. 1989. DOI: 10.17487/RFC1122. URL: https:
//rfc—editor.org/rfc/rfcll22.txt (cit. on p. 12).

[6] CAN Specification 2.0. Specification. Stuttgart, DE: Robert Bosch
GmbH, Sept. 1991 (cit. on pp. 3, 5, 51).

[6] CAN with Flexible Data-Rate. Specification. Gerlingen, DE: Robert
Bosch GmbH, Apr. 2011 (cit. on pp. 3, 5, 6).

[7] Dr. Steve E. Deering and Bob Hinden. Internet Protocol, Version 6
(IPv6) Specification. RFC 8200. July 2017. DOI: 10.17487/RFC8200.
URL: https://rfc—editor.org/rfc/rfc8200 . txt (cit. on
p. 12).

[8] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. The Addi-
tion of Explicit Congestion Notification (ECN) to IP. RFC 3168. Sept.
2001.DOI1: 10.17487/RFC3168. URL: https://rfc—editor.org/
rfc/rfc3168.txt (cit. on p. 17).

[9]1 Eclipse Foundation. Eclipse Sparkplug Working Group. https://sparkplug.eclipse.org/.
Feb. 2020 (cit. on p. 1).

71

https://doi.org/10.17487/RFC2474
https://rfc-editor.org/rfc/rfc2474.txt
https://rfc-editor.org/rfc/rfc2474.txt
https://doi.org/10.17487/RFC1122
https://rfc-editor.org/rfc/rfc1122.txt
https://rfc-editor.org/rfc/rfc1122.txt
https://doi.org/10.17487/RFC8200
https://rfc-editor.org/rfc/rfc8200.txt
https://doi.org/10.17487/RFC3168
https://rfc-editor.org/rfc/rfc3168.txt
https://rfc-editor.org/rfc/rfc3168.txt

Bibliography

[10] Mukesh Gupta and Alex Conta. Internet Control Message Protocol
(ICMPuv6) for the Internet Protocol Version 6 (IPv6) Specification. RFC
4443. Mar. 2006. DOI: 10.17487 /RFC4443. URL: https://rfc-
editor.org/rfc/rfc4d443.txt (cit. on p. 18).

[11] Bob Hinden and Dr. Steve E. Deering. Internet Protocol, Version 6
(IPv6) Specification. RFC 2460. Dec. 1998. DOI: 10.17487 /RFC2460.
URL: https://rfc—editor.org/rfc/rfc2460 . txt (cit. on
p. 12).

[12] Robert M. Hinden and Stephen E. Deering. IP Version 6 Addressing
Architecture. RFC 4291. Feb. 2006. DOI: 10.17487/RFC4291. URL:
https://rfc-editor.org/rfc/rfcd4291.txt (cit. on pp. 13, 14,
43).

[13] IEEE and the Open Group. “IEEE Standard for Information Technology—
Portable Operating System Interface (POSIX(R)) Base Specifications,
Issue 7.” In: IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-
2008) (Jan. 2018), pp. 1-3951. 1SSN: null. DOI: 10.1109/IEEESTD.
2018.8277153 (cit. on p. 35).

[14] Internet Protocol. RFC 791. Sept. 1981. DOI: 10.17487 /RFC0791.
URL: https://rfc-editor.org/rfc/rfc791.txt (cit. on p. 12).

[15] Road vehicles — Controller area network. Part 1: Data link layer and
physical signalling. Standard. Geneva, CH: International Organiza-
tion for Standardization, Dec. 2003 (cit. on p. 3).

[16] Road vehicles — Diagnostic communication over Controller Area Net-
work (DoCAN). Part 2: Transport protocol and network layer services.
Standard. Geneva, CH: International Organization for Standardiza-
tion, Dec. 2016 (cit. on p. 9).

[17] M. Jung, C. Reinisch, and W. Kastner. “Integrating Building Automa-
tion Systems and IPv6 in the Internet of Things.” In: 2012 Sixth
International Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing. July 2012, pp. 683—688. DOI: 10.1109/
TMIS.2012.134 (cit. on p. 1).

72

https://doi.org/10.17487/RFC4443
https://rfc-editor.org/rfc/rfc4443.txt
https://rfc-editor.org/rfc/rfc4443.txt
https://doi.org/10.17487/RFC2460
https://rfc-editor.org/rfc/rfc2460.txt
https://doi.org/10.17487/RFC4291
https://rfc-editor.org/rfc/rfc4291.txt
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.17487/RFC0791
https://rfc-editor.org/rfc/rfc791.txt
https://doi.org/10.1109/IMIS.2012.134
https://doi.org/10.1109/IMIS.2012.134

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Bibliography

Seiichi Kawamura and Masanobu Kawashima. A Recommendation
for IPv6 Address Text Representation. RFC 5952. Aug. 2010. DOI:
10.17487 /RFC5952. URL: https://rfc-editor.org/rfc/
rfc5952. txt (cit. on p. 13).

Gabriel Montenegro et al. Transmission of IPv6 Packets over IEEE
802.15.4 Networks. RFC 4944. Sept. 2007. DOI: 10.17487 /RFC4944.
URL: https://rfc—editor.org/rfc/rfcd944 . txt (cit. on
pp. 26, 37, 43).

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. Aug. 2018. DOI: 10.17487 /RFC8446. URL: https:
//rfc—editor.org/rfc/rfc8446.txt (cit. on p. 69).

William A. Simpson et al. Neighbor Discovery for IP version 6 (IPv6).
RFC 4861. Sept. 2007. DOI: 10.17487/RFC4861. URL: https://
rfc-editor.org/rfc/rfc4861.txt (cit. on p. 19).

Controller Area Network Physical Layer Requirements. Application
Report. Texas Instruments, Jan. 2008 (cit. on p. 5).

Susan Thomson, Thomas Narten, and Tatuya Jinmei. IPv6 Stateless
Address Autoconfiguration. RFC 4862. Sept. 2007. DOI: 10.17487/
RFC4862. URL: https://rfc-editor.org/rfc/rfcd862.txt
(cit. on p. 23).

Pascal Thubert and Jonathan Hui. Compression Format for IPv6
Datagrams over IEEE 802.15.4-Based Networks. RFC 6282. Sept.
2011. DOI: 10.17487/RFC6282. URL: https://rfc-editor.org/
rfc/rfc6282.txt (cit. on pp. 17, 26).

Alexander Wachter. IPv6 over Controller Area Network. Internet-
Draft draft-wachter-6lo-can-00. Work in Progress. Internet Engineer-
ing Task Force, Oct. 2019. 17 pp. URL: https://datatracker.
ietf.org/doc/html /draft —wachter—-6lo-can-00 (cit. on
p. 69).

73

https://doi.org/10.17487/RFC5952
https://rfc-editor.org/rfc/rfc5952.txt
https://rfc-editor.org/rfc/rfc5952.txt
https://doi.org/10.17487/RFC4944
https://rfc-editor.org/rfc/rfc4944.txt
https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC4861
https://rfc-editor.org/rfc/rfc4861.txt
https://rfc-editor.org/rfc/rfc4861.txt
https://doi.org/10.17487/RFC4862
https://doi.org/10.17487/RFC4862
https://rfc-editor.org/rfc/rfc4862.txt
https://doi.org/10.17487/RFC6282
https://rfc-editor.org/rfc/rfc6282.txt
https://rfc-editor.org/rfc/rfc6282.txt
https://datatracker.ietf.org/doc/html/draft-wachter-6lo-can-00
https://datatracker.ietf.org/doc/html/draft-wachter-6lo-can-00

	Abstract
	Introduction
	Background Knowledge
	Controller Area Network
	Wiring and Bus Access
	CAN Frames

	ISO-TP Transport Protocol
	IPv6
	IPv6 Addresses
	IPv6 Header
	ICMPv6
	Neighbor Discovery Protocol
	Stateless Address Autoconfiguration

	6lo
	IP Header Compression

	Zephyr
	Zephyr Network Stack

	6LoCAN design
	Addressing Schema
	Unicast Address
	Multicast Address
	Address Generation
	Link-Layer Duplicate Address Detection

	Stateless Address Autoconfiguration
	ISO-TP for 6LoCAN
	Multicast
	Ethernet Border Translator

	Implementation
	The Zephyr CAN API
	Zephyr CAN frame
	Zephyr CAN filter
	Sending CAN frames
	Receiving CAN frames

	6LoCAN Implementation
	6LoCAN Network Device Driver
	6LoCAN Link-Layer

	Evaluation
	Link-Layer Duplicate Address Detection
	Ping

	Conclusion
	Bibliography

