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Zusammenfassung

Gepulste neuronale Netzwerke sind eine energieeffiziente Alternative zu
künstlichen Netzwerken. Ein Modell dieser gepulsten neuronalen Netzw-
erke sind die Long Short-term Memory Spiking Neural Networks (LSNN).
Ein LSNN ist eine Weiterentwicklung von einem Recurrent Network of
Spiking Neurons (RSNN). In einem LSNN wird zusätzlich neuronale Adap-
tivität modelliert und dieser zusätzliche Prozess steigert die Rechenleistung
erheblich.

In der folgenden Arbeit wird untersucht ob RSNNs auf elementare rech-
nerische Operationen trainiert werden können und ob im weiter Verlauf
diese trainierten Netzwerke als Komponente in einem größeren Netzwerk
inkludiert werden können. Als elementare Operationen wurden die Softmax
Funktion und die K-winner-takes-all Funktion ausgewählt. Zuerst wurde
gezeigt, dass RSNNs diese Funktion mit einer hohen Genauigkeit erlernen
können. Danach wurde eine Methode vorgestellt diese vortrainierten Net-
zwerke in eine LSNN einzubinden und danach das LSNN zu trainieren.
Diese Methode wurde erfolgreich auf einen Memory-Task eine temporale
Mustererkennungsaufgabe angewandt.
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Abstract

Spiking neural networks have been proposed as a promising energy-efficient
alternative to artificial neural networks. One type of spiking neural network
is the Long short-term memory spiking neural network (LSNN). An LSNN
is a recurrent network of spiking neurons (RSNN) equipped with a neural
adaptation process that enhances its computational power significantly.

Usually, LSNNs are trained from scratch, i.e., networks are largely unstruc-
tured before training. Here, we investigated whether we can train an RSNN
to perform elementary computational operations and whether we could use
such pre-trained networks as one component in a larger network structure.
As example elementary operations, we chose the softmax function and
the K-winner-takes-all function. We show that RSNNs can be trained to
perform these computational operations with high accuracy. We further
show that such pre-trained networks can be used as modules in LSNNs that
are trained to perform a memory task or a temporal pattern recognition
task.
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1 Introduction

Artificial neural networks are generally brain-inspired, but there are signifi-
cant differences. The most obvious difference lies in the way the neurons
communicate information with each other. Artificial neurons send and re-
ceive continuous values, whereas biological neurons work on a time scale
and communicate witch trains of action potentials. These action potentials
are also known as spikes because they are short electric impulses. They
transfer information in their timing and frequency. Furthermore, the spikes
are sparse in time. Therefore a single spike contains high information con-
tent and allows the brain to function with very little energy. Spiking neural
networks aim to emulate these abilities by mimicking the use of spikes.
Therefore spiking neural networks show great potential in both computa-
tional power and energy efficiency (Tavanaei et al., 2019).

However, simulations of spiking neural networks on classical computation
hardware (von Neumann architecture) are inefficient, because the asyn-
chronous nature of the spiking neural network stands in direct contrast to
the sequential and central data processing of von Neumann architecture.
Neuromorphic hardware aims at solving this problem. It mimics the struc-
ture of neurons and synapses, which allows parallel processing and locality
of the data. Additionally, the use of spikes to propagate information through
the network creates energy-efficient systems (Pfeiffer and Pfeil, 2018).

A concrete model for a spiking neural network is the Long short-term
memory Spiking neural networks (LSNN). Bellec, Salaj, et al., 2018 have
equipped a recurrent spiking neural network (RSNN) with neural adapta-
tion to develop LSNN. This extension enhances the learning capabilities of
LSNNs greatly compared to RSNNs (Bellec, Salaj, et al., 2018).
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1 Introduction

In the case of LSNNs, readout neurons generate a non-spiking output.
The network uses these outputs in a loss-function in combination with a
softmax (Bellec, Salaj, et al., 2018). The softmax function is a normaliza-
tion function, which scales a discrete input into probability space. LSNN
uses the softmax function to normalize the activation of the readout neurons.

Our goal is to replace the softmax function with a spiking neural network
and move one step closer to a fully spike-based network. Therefore we
train an RSNN with Backpropagation through time (BPTT) to perform the
calculation of a softmax function. To then test the usefulness of this trained
softmax network, we replace a softmax function in an LSNN with the soft-
max network and train the LSNN for the given task. To further exhibit
the general applicability, we trained an RSNN with BPTT to perform the
K-winner-takes-all function. The K-winner-takes-all function only actuates
the outputs corresponding to the K larges input values and the other out-
puts become zero. Neural networks use this function to implement decision
making based on network activation.

In the following, we present first the background to RSNNs, LSNNs and
BPTT. Then we give a short outlook to other approaches for spiking neural
networks. Afterwards we describe the approach for the training of the soft-
max and the results of the training. We then insert a pre-trained softmax
network in a working memory task and a classification task on the sequen-
tial MNIST dataset. In the last part, we describe our approach for training
the K-winner-takes-all selection and report the achieved results.
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2 Background

2.1 Spiking neurons

Spiking neurons are strongly inspired by biological neurons, as they also
use spikes to communicate information to each other. In biological neu-
rons, spikes are brief electric impulses. Spiking neurons receive spikes as
input, which translates to an input current. This input current changes the
membrane potential of the neuron. If the membrane potential reaches the
threshold of the neuron, the neuron generates an action potential (spike).
After the neuron generated a spike, the membrane potential resets to the
reset potential. Then the neuron enters a refractory period, where it can not
spike for a given time interval. The connections between neurons are called
synapses. Synapses only work in one direction, where the post-synaptic
neuron receives the spikes of a pre-synaptic neuron as input.

We use the leaky integrate and fire (LIF) neuron model as the theoretical
basis to describe the membrane potential. The LIF neuon model describes
the membrane potential of a neuron as the voltage across an RC circuit with
a battery for the resting potential. The resistor and the capacitor are placed
parallel to each other (Gerstner et al., 2014). This leads to the following
differential equation

I(t) =
u(t)− urest

R
+ C

du(t)
dt

, (2.1)

where I(t) in the input current, u(t) is the membrane potential and urest is
the voltage from the battery. Furthermore, R is the resistor coefficient and C
is the capacitor coefficient. The first term models the current through the
resistor and the second term models the capacitive current. We reformulate
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2 Background

the equation into a differential equation which describes the change in the
membrane potential as

τm
du(t)

dt
= −(u(t)− urest) + RI(t), (2.2)

where τm = RC is the membrane time constant.

2.2 RSNN model

An RSNN consists of a population of LIF neurons, which are recurrently
connected and receive input from input neurons. We use weights to scale
the synapses between the neurons. These synaptic weights are the trainable
parameters of the network.

We simulate the RSNN in discrete time with a timestep δt. We model the
spike trains as binary sequences zin

i , zrec
j ∈ {0, 1

δt}, where zin
i is the spike

train generated by the ith input neuron and zrec
j is the spike train generated

by the jth neuron of the RSNN population.

We assume the input current of the neuron is constant in between timesteps.
We solve the equation 2.2 by integrating over it and assuming I(t) is a
constant input current Ic and urest = 0. This yields the following equation

u(δt) = exp
(
− δt

τm

)
uinit +

(
1− exp

(
− δt

τm

))
RIc, (2.3)

for the membrane potential u(δt) for the time period of zero to δt. uinit is
the initial condition.

We use equation 2.3 to model a discrete time step from time t to time t + δt
of the membrane potential uj(t + δt) for the jth neuron in our population.
We use the membrane potential at time t uj(t) as the initial condition and
the input at time Ij(t) as the constant current. If a spike occured at time t
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2.3 LSNN

we reset the membrane potential. Therefore we subbract the term γzrec
j (t)δt,

where γ is the threshold and zrec
j (t) becomes 1

δt if a spike occurres at time t.
This yields the following equation

uj(t + δt) = exp
(
− δt

τm

)
uj(t) +

(
1− exp

(
− δt

τm

))
RIj(t)− γzrec

j (t)δt. (2.4)

If the membrane potential of a neuron crosses the threshold and this neuron
is not in the refactory period, a spike in the output spike train zrec

j of this
neuron j occurs. After the neuron emitted a spike, it enters a refractory
period with a duration of κ. In this period the neuron can not spike again.
We model this with

zrec
j (t) =

{
1
δt if uj(t) ≥ γ and ∑κ

k=1 zrec
j (t− k) = 0

0 else
. (2.5)

The network consists of a population of recurrently connected neurons of
size Nrec. Additionally, the recurrently connected neurons receive input
from Nin input neurons. Therefore, the input current of a neuron Ij(t) is the
weighted sum of all incoming spikes at time t. Ij(t) reads the following

Ij(t) = ∑
i∈Nin

W in
ji zin

i (t− d) + ∑
i∈Nrec

i 6=j

Wrec
ji zrec

i (t− d), (2.6)

where Win are the synaptic weights that scale the input from the input
neurons, Wrec are the synaptic weights that scale the input from recurrent
neurons and d is the synaptic delay.

2.3 LSNN

RSNNs do not achieve similar performances ranges as LSTM networks
(Bellec, Salaj, et al., 2018). LSTM cells have three gates, which control the
information flow of the hidden state of the cell. These gates allow the LSTM
cells to store information. (Hochreiter and Schmidhuber, 1997). Therefore
Bellec, Salaj, et al., 2018 developed the Long short-term memory Spiking
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2 Background

Neural Network (LSNN) model, which is an extension to the RSNN model
by implementing neural adaptation. Neural adaptation is one of the various
firing patterns shown by biological neurons. This pattern describes the
desensitization of a neuron to a constant stimulus (Gerstner et al., 2014).
Therefore neural adaptation equips the network additionally with a dy-
namic process, which works on a time scale in contrast to the static nature
of the synaptic weights similar to the memory capabilities of LSTM cells.

Bellec, Salaj, et al., 2018 model the process of adaptation by increasing the
firing threshold of a neuron by a fixed amount β after this neuron spikes.
Otherwise, the threshold decays back to the baseline threshold b0 with the
time constant τa. The following equation describes this relationship.

τa
dbj(t)

dt
= −(bj(t)− b0) + βzrec

j (t)δt, (2.7)

where bj is the threshold of neuron j at time t. zrec
j (t) is the spike train of

the neuron j at time t, which we use to determine if the neuron spiked. To
obtain an equation for bj for a discrete timestep δt, we integrate over the
equation 2.7 from 0 to δt by assuming zrec

j (t) is a constant. Then we set the
initial condition to bj(t) and we get

bj(t + δt) = b0 + exp
(
− δt

τa

)
bj(t) +

(
1− exp

(
− δt

τa

))
βzrec

j (t). (2.8)

In the equation for the membrane potential, we model the threshold now
with the function bj(t) instead of the constant γ, which changes equation
2.4 to

uj(t + δt) = exp
(
− δt

τm

)
uj(t) +

(
1− exp

(
− δt

τm

))
RIj(t)− bj(t)zrec

j (t)δt

(2.9)
and the spike generation for a neurons j to

zrec
j (t) =

{
1
δt if uj(t) ≥ bj(t) and ∑κ

k=1 zrec
j (t− k) = 0

0 else
. (2.10)
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2.4 BPTT

2.4 BPTT

We use backpropagation through time (BPTT) to optimize the network.
BPTT unrolls the recurrent network into a feedforward network and per-
forms backpropagation on the unrolled feedforward network (Werbos, 1990).
Figure 2.1 illustrates how different timesteps influence each other.

Figure 2.1: BPTT graph The graph shows the dependence of the variables of the network
with time. u is the state of the membrane potentials, zrec is the state of the
output spike train of the recurrent neurons, zin is the spike train of the input
and L is the loss function.

Backpropagation is an algorithm which arises from the use of gradient
descent on the network LeCun et al., 1988. Gradient descent is an opti-
mization algorithm, which uses the gradient of a function to iteratively
find parameters for a local minimum of the function. The gradient can be
interpreted as the direction and rate of the fastest increase. Therefore we
subtract the gradient to find parameters closer to a local minimum.

θk+1 = θk + µ∇θ f (θk), (2.11)

7



2 Background

where θk is the current or kth state of the parameter and θk+1 is the next
or the (k + 1)th state of the parameter. µ is the learning rate, which is a
constant that scales the step size of the parameter update. ∇θ f (θk) is the
gradient of the function f and the kth state of the parameter θ. In our case,
the function is the loss function of the neural network. The loss function
measures the degree of error by the network and reaches its minimum
if the network made no error. Therefore we use gradient descent to find
parameters for the network that minimizes this function. As loss function,
we used the mean squared error, see section 4.1.1 and section 4.2.1.

For our simulations, we used an extension of the gradient descent algo-
rithm, which is called Adam (Kingma and Ba, 2014). Adam still a first-order
iterative optimization algorithm. The algorithm uses two ways to enhance
the speed of gradient descent. The first is momentum, which uses the past
of the gradients to average out fast-changing gradients. The second is an
adaptive learning rate, which computes an individual learning rate per
parameter. It divides the learning rate by the root of a momentum term
for the squared gradients. This division decreases the learning rate for big
gradients and increases the learning rate for small gradients.

To use this algorithms the gradient of the loss function is needed. Therefore
the various states of the network have to be differentiable, which the spike
generation in equation 2.5 and equation 2.10 is not. To deal with this
problem, we use the pseudo-derivative proposed in Bellec, Salaj, et al., 2018,
for the RSNN.

dzj(t)
duj(t)

= ν max
{

0, 1−
∣∣∣uj(t)− γ

γ

∣∣∣}, (2.12)

where ν acts as a damping factor. The damping factor helps to achieve stable
performances for large unrolled networks (Bellec, Salaj, et al., 2018). The
pseudo derivative is a hat function of the normalized difference between
the membrane potential uj(t) and the threshold γ. Therefore the derivative
becomes ν at time t if a spike happened at time t. In the case of LSNN, the
pseudo derivative uses the adapting threshold bj(t) at time t instead of the

8



2.4 BPTT

constant threshold γ. This changes the pseudo derivative to

dzj(t)
duj(t)

= ν max
{

0, 1−
∣∣∣uj(t)− bj(t)

bj(t)

∣∣∣}, (2.13)

2.4.1 DEEP R

DEEP R is an algorithm for training neural networks with sparse con-
nectivity in combination with BPTT. The algorithm maintains a certain
connectivity level through training and also dynamically deactivates and
activates connections (Bellec, Kappel, et al., 2017).

In the beginning, the algorithm fixes each neuron typ either to inhibitory or
excitatory. Then DEEP R performs gradient descent updates on the weights
of the active connections. DEEP R deactivates a connection if the connection
changes from inhibitory to excitatory or vise versa during an update. Then
the algorithm randomly chooses an inactive connection and activates it. To
ensure that connectivity changes, DEEP R uses a noise term in the gradient
update step to achieve high weights and sparse connections. Also, the
algorithm uses an L1-regularization to enforce sparse connectivity. Instead
of gradient descent, DEEP R also works in combination with Adam or other
first-order iterative optimization algorithms.

9





3 Related Work

There are also other ways to deal with the problems of training a spiking
neural network. The approaches range from different pseudo derivatives
(Wu et al., 2018, Zenke and Ganguli, 2018, Shrestha and Orchard, 2018) over
a modified description of the spike function (Huh and Sejnowski, 2018) to
mapping the spiking neural network into an artificial neural network (Liu,
Chen, and Furber, 2017, Jug et al., 2012).

Wu et al., 2018 take a similar approach as described in chaper 2. They also
discretize the spiking neural network and train the network similar to BPTT.
In their work, they additionally tested different pseudo derivatives for the
spike generation. They used a rectangular function, a polynomial function,
a sigmoid function and a Gaussian cumulative distribution function.

Zenke and Ganguli, 2018 use the spike response model to model a spiking
neuron. They use the negative side of the fast sigmoid function to account
for the nondifferentiability of the spike generation. For the derivative of the
spike response model, they neglect the self kernel, which is the influence
of the past membrane potential on the derivative. They do not use back-
propagation to train the network. They use an error signal for the visible
neurons and a feedback signal for the hidden neuron. For the feedback
signal, they describe and tested three different ways. They weigh the error
signal of influenced visible neurons either symmetric, random or unform
for the feedback signal.

Shrestha and Orchard, 2018 also use the spike response model in their
approach, but they take the self kernel into account and train the network
in a backpropagation-like manner. Instead of the negative side of the fast

11
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sigmoid function, they use the spike escape rate function as a pseudo deriva-
tive for the spike generation.

Instead of using a pseudo derivative, Huh and Sejnowski, 2018 uses a differ-
ent model for the spike generation. They use a gate function, which works
on the presynaptic membrane potential instead of working with a threshold.
The gate function allows the synaptic current to be activated gradually,
rather than in an abrupt and nondifferentiable manner. They use BPTT to
train the neurons.

Jug et al., 2012 and Liu, Chen, and Furber, 2017 take a different approach
to the previously discussed ones. Instead of training the spiking neural
network, they convert the network in a shadow network. Then they train the
shadow network like an artificial neural network. Jug et al., 2012 use Siegert
neurons in the shadow network. They map the firing rates of the spiking
neurons to the Siegert neuron. The firing rates of the spiking neurons are
the input and output of the Siegert neuron. Therefore the Siegert neuron
tries to model the response of the spiking neuron to the firing rates. Liu,
Chen, and Furber, 2017 is an extension to this work. They use a different
neuron function in the shadow network to better match the behavior of the
spiking neural network. The disadvantage of this model is that the spiking
neural network uses a firing-rate code by assumption, which is typically
inefficient as many spike events are generated.

12



4 Results

In this chapter, we train an RSNN to implement the softmax function or the
K-winner-takes-all function. We have the goal to replace these functions in
a neural network setting, with an RSNN, which performs the same task. In
the first section 4.1, we tested if we can train an RSNN to learn a softmax
function and also a softmax with different linear mappings of input vector,
see Figure 4.1.

Figure 4.1: Test setup Given an input vector x, we want to train an RSNN to generate the
same output as a softmax or K-winner-takes-all function with linear mapping in
front. We denote the output vector of the RSNN with out and the target vector
or the output vector of the function to train with t∗

In the second part of chapter (section 4.2), we replaced a softmax with such
an RSNN in two LSNNs and trained the LSNNs to perform their given
task. The first LSNN performed a working memory task (Store-Recall). The
second LSNN performed classification on the sequential MNIST dataset. In

13
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the last section 4.3, we examine if we can train an RSNN to perform the
functionallity of a K-winner-takes-all function.

4.1 Softmax

The softmax function is a normalization function, which takes N real num-
bers x1, · · · , xN as an input and normalizes them into a probability distribu-
tion

pn(x1, · · · , xN) =
exp(xn)

∑N
j=1 exp(xj)

. (4.1)

Therefore after applying the function, all componets sum up to one (∑N
n=1 pn =

1) and are in the intervall between zero and one (pn ∈ [0, 1]).

4.1.1 RSNN setup

The network we used to learn the softmax tasks has a recurrent layer and
an input layer. The recurrent layer consist of N output subpopulations and
K hidden neurons, see Figure 4.2.

Input Layer

Every input m of the input layer in Figure 4.2 consists of a subpopulation
of input neurons Gin

m . For our simulations, we draw the input samples
x1, · · · , xN from an exponential distribution, see 4.1.3, 4.1.5 or 4.1.6. To
achieve useful rates for an RSNN, we multiply every input sample xn with
a constant scale frequency ρscale. Then we model the spike train of a single
neuron of every input subpopulation Gin

m with a Poisson process. Consider a
spike train zin

i,m of a neuron i of the subpopulation Gin
m in discrete time with

a time step of δt, where zin
i,m(t) ∈ {0, 1

δt}. If zin
i,m was generated by a Poisson

process with rate ρscalexm, it holds for all t:

P[zin
i,m(t) =

1
δt
|ρscalexm] = ρscalexmδt. (4.2)
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4.1 Softmax

Figure 4.2: RSNN structure The abstract structure of the network we use for learning the
softmax function.

We simulate the network in discrete time with 1 ms timesteps. Equation 4.2
with δt = 1 gives the probability for an input spike (zin

i,m(t) = 1, zin
i,m(t) ∈

{0, 1}) at some timestep t.

Recurrent Layer

The neurons of the recurrent layer are recurrently connected. The input layer
is in a feed-forward way connected to the recurrent layer. We divide the
recurrent layer into two population: the hidden population and the output
population.

The output population consists of N subpopulations Gout
n . Each of these
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N-subpopulation of the output population in Figure 4.2 consists of a group
of LIF neurons.

The hidden population Ghidden consists of an additional pool of LIF neu-
rons of size |Ghidden| to improve the computational power of the net-
work.

Network output

We denote the final output of the network as out1, · · · , outN with outn ∈ R+
0 .

The nth output outn is given by the average spike frequency of the nth
subpopulation of the output neurons. By defining Gout

n as the set of indices
of this population, we can write

outn =
1

(T − Tinit)|Gout
n |

∑
j∈Gout

n

T

∑
t=Tinit

zrec
j (t). (4.3)

We record the spikes of a neuron zrec
j , sum the spikes up and divide them by

the recorded time (T− Tinit) in seconds to calculate the spiking frequency.
We give the network an initialization time after we start the simulation,
therefore the recorded time is the absolute simulation time T minus the
initialization time Tinit.

Training

We use back-propagation-through-time with Adam and a learning rate of
0.001. We use the mean squared error between the output value outn,i of
the output instance n and sample i and their target values t∗n,i as the loss
function, which results for one batch Bs in the following:

Lmse =
1

2|Bs| ∑
i∈Bs

N

∑
n=1

(outn,i − t∗n,i)
2. (4.4)

We refer to a batch Bs as the sth subset of a dataset D (Bs ⊆ D). For training,
we used a training set with 10000 random samples and a batch size |Bs| of
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4.1 Softmax

50. We trained the network for 50 epochs. We used a validation set of 1000
random samples to identify the best performing parameters. After training,
we used a test set of 1000 random samples to measure the final performance
of the network.

General Parameters

We list all parameters of the network in Table 4.1, which where kept the
same over all tasks. For the subpopulation of the input and output we used
the same size for every subpopulation

|Gin
m | = |Gin| for m = 1, · · · , M

|Gout
n | = |Gout| for n = 1, · · · , N.

(4.5)

simulation time T 300 ms
initialization time Tinit 30 ms
input subpopulation size |Gin| 10
output subpopulation size |Gout| 10
ρscale 200 Hz
hidden population size |Ghidden| 50
timestep δt 1 ms
damping factor ν 0.3
threshold γ 0.5
synaptic delay d 1 ms
refactory period κ 1 ms
membrane time constant τm 20 ms

Table 4.1: General parameters over all tasks, for the softmax training
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4.1.2 Tasks

We performed three tasks in sections 4.1.3,4.1.5 and 4.1.6 with different
input sizes with the RSNN. In the first task section 4.1.3, we tested if we
can train the RSNN to perform the softmax calculation. We summarized the
results in Table 4.2. Additionally, we tested the effects of regularization on
the hidden population for the first task in section 4.1.4. In the second task
section 4.1.5, we asked if the RSNN can additionally learn a linear mapping
applied to the input vector before the softmax is applied, see Table 4.4. In the
third task section 4.1.6, we introduced a mapping also to represent negative
values. Table 4.5 shows the results.

For the accuracy rate, we considered the output of a sample as misclassified
if the arg max of the input and output differ. The reason is, that this is the
most important task of a softmax in a neural network setting. Otherwise,
the output becomes false because the function interprets the activation of
the network false.

4.1.3 Task Softmax with exponentially distributed input
samples

In the first task, we want to train the network to perform the softmax func-
tion. Therefore we draw samples from an exponential probability function
to get input samples. The exponential distribution has a high probability
for small values. We assume mostly, one activation is highly active for a
well-performing network. Therefore we obtain samples, which closely mimic
the activation of a neural network performing a classification task. In the
following equation, we describe the drawing process for one input sample
x, which leads to

x = (x1, · · · , xM)T with xi ∼ EXPβ. (4.6)
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The density function fβ of the exponential distribution EXPβ is given by
equation 4.7 where we used β = 0.5

fβ(x) =

{
βe−βx x ≥ 0
0 x < 0

. (4.7)

From these input samples, we calculate the softmax function and multiply
them by ρscale to get the target rates

t∗ = (t∗1 , · · · , t∗N)
T (4.8)

for the sample x. This means that the input size M is the same as the output
size N, which leads to

t∗n = ρscale
exp(xn)

∑M
j=1 exp(xj)

. (4.9)

Results

We performed the task for an input size of 4, 8, 10, 12, 16, 24 and 32. We
hypothesized that the performance of the network would drop for larger
input sizes. Table 4.2 shows that this drop in performance occurred. Figures
4.3 and 4.5 show two samples with an input size of 4 and 10. Figures 4.4
and show the training loss over time and the final test error for the input
size of 4 and 10.
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input size M output size N accuracy
4 4 0.957
8 8 0.858
10 10 0.942
12 12 0.859
16 16 0.851
24 24 0.802
32 32 0.829

Table 4.2: Task Softmax with exponentially distributed input samples accuracy for different
input output sizes.
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Figure 4.3: Task Softmax with exponentially distributed 4 dimensional input sample A)
Spikes of the Poission processes which function as input to the network. B)
Spiking activity of the output neurons. C) Comparison the averaged output
rates to the target rates.

Figure 4.4: Task Softmax with exponentially distributed 4 dimensional input loss over
time The plot shows the evolution of the training loss over time and the final
test error.
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Figure 4.5: Task Softmax with exponentially distributed 10 dimensional input sample
A) Spikes of the Poission processes which function as input to the network. B)
Spiking activity of the output neurons. C) Comparison the averaged output
rates to the target rates.

Figure 4.6: Task Softmax with exponentially distributed 10 dimensional input loss over
time The plot shows the evolution of the training loss over time and the final
test error.
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4.1.4 Task Softmax task with firing rate regularization

In task 4.1.3, we performed our simulations without controlling the spik-
ing frequencies of the neurons in the hidden population. Therefore these
neurons had a high average spiking frequency, see Table 4.3. We want to
achieve smaller spiking frequencies because this would allow to run these
networks energy-efficiently on neuromorphic hardware.

We control the spiking frequencies of the neurons contributing to the output
with the loss-function because these spiking frequencies are the direct
output of the network. There are no constraints on the neurons in the hidden
population Ghidden, in task 4.1.3. To change that, we add a regularization
part to the loss function, which punishes differences from a chosen spiking
frequency over the set of hidden neurons Ghidden

Lreg =
λ

|Ghidden|
∑

k∈Ghidden

(ρ∗ − ρk)
2 with

ρk =
1
T

T

∑
t=1

Sk(t).

(4.10)

λ determines the influence of the regularization, which is the mean-squared-
error between the chosen frequency ρ∗ and the averaged frequencies of the
neurons in the hidden population ρk over the simulation time T.

The only difference to task 4.1.3 is that we add the regularization part to the
loss-function.

Results

In Table 4.3, we compare the test loss and the average spiking frequency of
neurons in the hidden population for different λs. The target frequency for
the hidden neurons was 50 Hz.
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λ Test loss misclassified Average Spiking Frequency
0 2.011± 0.200 57.2± 3.867 133.872± 10.620
0.001 1.928± 0.314 48.6± 6.406 132.090± 11.105
0.01 1.976± 0.157 57.6± 4.586 129.950± 7.371
0.1 2.051± 0.113 54.2± 6.852 116.818± 8.829
1 2.168± 0.289 53.6± 3.136 81.773± 3.754
10 2.121± 0.212 61± 3.949 53.679± 2.123
20 2.004± 0.162 53.8± 2.785 52.673± 1.614
50 1.960± 0.060 53.6± 8.138 49.773± 0.723
100 1.919± 0.194 55.4± 7.657 50.443± 0.378
200 2.082± 0.086 58.0± 6.260 50.340± 1.168

Table 4.3: Task Softmax task with firing rate regularization averaged over five runs

The regularization part does not interfere with the performance of the
network, but controls the average spiking frequency of the neuron in the
hidden population, see Table 4.3. Although we averaged the values over five
runs, there is a small variance in the test loss and the misclassified samples.
This is because we draw a new test and training set with every simulation.

4.1.5 Task softmax with a random linear mapping

For the this task, the network has to learn in addition a random linear
mapping applied to the input prior to the softmax function. Usually, a
softmax occurs with a weight matrix used to combine the input. Therefore,
we want to examine if we can train an RSNN to learn the weight matrix
additionally. For this task, the input size M is different from the output size
N (M > N). We draw an input sample x form an exponential probability
function EXPβ with a density function fβ in Equation 4.7 (β = 0.5)

x = (x1, · · · , xM)T with xi ∼ EXPβ. (4.11)

At the next step, we draw a random weight matrix Wtarget of size (N ×M)
with each component from a Gaussian distribution with mean of 20 and a
standard deviation of 5. We first calculate the vector a and then compute
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the softmax of this vector as in the previous task, to calculate the final target
rates t∗ = (t∗1 , · · · , t∗N)

T with

a = Wtarget ∗ x

t∗n = ρscale
exp(an)

∑N
j=1 exp(aj)

.

(4.12)

Results

We performed the task for input size and output size combinations of (8,4),
(14,10), (16,12), (16,12), (24,16) and (32,24). Table 4.4 shows that a drop in
performance for larger input und output sizes occured. Figures 4.8 and
4.10 show two samples with an input size and output size combination of
(4,8) and (14,10). Figures 4.7 and show the training loss over time and the
final test error for the input size and output size combination of (4,8) and
(14,10).

input size M output size N accuracy
8 4 0.975
14 10 0.958
16 12 0.872
24 16 0.887
32 24 0.846

Table 4.4: Task softmax with a random linear mapping accuracy for different input output
sizes.
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Figure 4.7: Task softmax with a random linear mapping with 8 dimensional input and 4
dimensional output loss over time The plot shows the evolution of the training
loss over time and the final test error.

Figure 4.8: Task softmax with a random linear mapping with 8 dimensional input and
4 dimensional output sample A) Spikes of the Poission processes which func-
tion as input to the network. B) Spiking activity of the output neurons. C)
Comparison of the averaged output rates to the target rates.
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Figure 4.9: Task softmax with a random linear mapping with 14 dimensional input and
10 dimensional output loss over time The plot shows the evolution of the
training loss over time and the final test error.

Figure 4.10: Task softmax with a random linear mapping with 14 dimensional input
and 10 dimensional output sample A) Spikes of the Poission processes which
function as input to the network. B) Spiking activity of the output neurons. C)
Comparison of the averaged output rates to the target rates.
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4.1.6 Task softmax with negative input values

In the previous tasks, we were only able to model positive input values
because we encode the input values with spike rates. As rates are non-
negative, this encoding scheme does not encode negative input values. To
overcome this problem, we use two input values and subtract them to re-
ceive the actual input value. The subtraction map is up to the network to
learn. Therefore we increase the input size M by a factor of two. We take
the subtraction only in the target generation into account.

An input value of an input sample x has a positive part x+m and a negative
part x−m . We draw x+m and x−m from an exponential probability distribution
EXPβ with a density function fβ in Equation 4.7 (β = 0.5)

x = (x+1 , x−1 , · · · , x+M, x−M)T

x+m , x−m ∼ EXPβ.

(4.13)

In the target generation for a target value tn, we subtract the negative part
from the positive part. Then we calculate the target values t∗ = (t∗1 , · · · , t∗N)

T

the same as in the previous tasks

t∗n = ρscale
exp(x+n − x−n )

∑N
j=0 exp(x+j − x−j )

. (4.14)

Results

We performed the task for an input size of 8, 20, 32, 12, 42, and 42. Note that
the output size is always a factor two smaller than the input size because of
the mapping for the negative values. Table 4.5 shows a drop performance
occurred for larger input sizes. Figures 4.11 and 4.13 show two samples
with an input size of 8 and 20. Figures 4.12 and show the training loss over
time and the final test error for the input size of 8 and 20.
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input size M output size N accuracy
8 4 0.952
20 10 0.907
32 16 0.755
42 24 0.886
64 32 0.877

Table 4.5: Task softmax with negative input values accuracy for different input output sizes.

Figure 4.11: Task softmax with negative input values with 8 dimensional input and 4
dimensional output sample A) Spikes of the Poission processes which func-
tion as input to the network. B) Spiking activity of the output neurons. C)
Comparison of the averaged output rates to the target rates.
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Figure 4.12: Task softmax with negative input values with 8 dimensional input and 4 di-
mensional output loss over time The plot shows the evolution of the training
loss over time and the final test error.

Figure 4.13: Task softmax with negative input values with 20 dimensional input and
10 dimensional output sample A) Spikes of the Poission processes which
function as input to the network. B) Spiking activity of the output neurons. C)
Comparison of the averaged output rates to the target rates.
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Figure 4.14: Task softmax with negative input values with 20 dimensional input and
10 dimensional output loss over time The plot shows the evolution of the
training loss over time and the final test error.

4.2 Embedding of spiking softmax in an LSNN

Spiking Neural Networks often use the softmax function as their output,
because it scales the activation into an easy to interpret probability vector.
Additionally, the use of the softmax in combination with the cross entropy
as loss function results in a simple and easy to handle gradient for back-
propagation. Therefore we asked if our trained softmax network can replace
a softmax function in the setting of an LSNN.

We use the store-recall task from Bellec, Scherr, et al., 2019 and Sequen-
tial MNIST similar to Bellec, Salaj, et al., 2018 for the experiments. The
store-recall task is a simple working memory task. Sequential MNIST is a
classification task on the MNIST dataset, where we show the network an
image pixel by pixel.

4.2.1 Replacing the softmax

In both tasks, we use a pool of LIF neurons and adaptive LIF neurons
(ALIF) as the central part of the network. Then we encode the output of this
neuron pool with the membrane potential of linear readout neurons. Then
we normalize these values with a softmax function.
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To replace the softmax with our network, we have to change the output cal-
culation because we need spike trains as an input for our network. Therefore
we replace the part with the linear readout neurons in Figure 4.15 and 4.19

with an additional layer of LIF neurons. These input LIF neurons act as the
input neurons for the softmax network and replace the Poisson processes in
the softmax network structure. Otherwise, the softmax network part has the
same structure as the network we used for our previous tasks.

In the original LSNN with artificial softmax output, cross entropy was used
as the loss function. We change the cross-entropy to the mean-squared-error
because the gradient is different with the softmax network. The cross-
entropy Lce with a softmax for the network activations ai is

Lce =
N

∑
i=1

t∗i log outi,softmax with

outi,softmax =
exp(ai)

∑N
j=1 exp(aj)

.

(4.15)

We denote t∗i as a target value for the network output value outi,softmax.
The gradient of Lce with respect to an activation ai of the network is

∂Lce
∂ai

= outi,softmax − t∗i . (4.16)

In our case, we use the activation of the network directly as the output
value, since our pre-trained network performs the softmax calculation. The
activation of our network and also the output value outi, is the average
firing frequency of the associated output neuron group, see equation 4.3.
Therefore the cross-entroy-loss is

Lce =
N

∑
i=1

t∗i log outi. (4.17)
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The gradient of Lce with respect to the activation value and also the output
outi is

∂Lce
∂outi

=
t∗i

outi
. (4.18)

In order to obtain a gradient of the form shown in equation 4.16, we use the
mean-squarred-error

Lmse =
1
2

N

∑
i=1

(outi − t∗i )
2. (4.19)

The gradient of Lmse with respect to the activation and output outi is now

∂Lce
∂outi

= outi − t∗i . (4.20)

For training, we first train the weights for the softmax network part. There-
fore we use the same protocol as in task normal input 4.1.3. Then we train
the whole network and fix the weights of the softmax on the given task.

4.2.2 Store-recall

The store-recall task is a simple working memory task. The network receives
different input values over time. The network has to remember the value
at the time of a store command and has to output this value at the time
of a recall command. Bellec, Scherr, et al., 2019 used two input values. We
increased the input values to four because we want to justify the use of a
softmax function.

The original network received four inputs. The inputs were store, recall,
value 0 and value 1. Dedicated input neuron groups encoded the input to
the network, with a groups size of 25. They defined a command or a value
for a time period of 200 ms. In this time frame the input neurons of this
command or value spiked with a frequency of 50 Hz. The main part of the
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Figure 4.15: Bellec et al. network setup for store-recall The network consisted of input
neurons pools for every input signal, a pool of LIF and ALIF neurons and
linear readout neurons.

network is a pool of recurrently connected LIF neurons and adaptive LIF
neurons. The pool contained 10 LIF neurons and 10 adaptive LIF neurons.
Figure 4.15 shows the structure of the network.

To compute the output of the LSNN, Bellec, Scherr, et al., 2019 use the mem-
brane potentials of the linear readout neurons over the whole simulation
time and a weight matrix to sample them down to the desired output size of
2. Afterward, they average the sampled-down membrane potentials in the
period of the recall command, which gives them one value for every output.
Finally, they use the softmax to scale these two values into probability space
and get the final output values of the LSNN. They use the cross-entropy
of a target value (0 or 1 in their case) and this output values as the loss
function.

We increased the number of values that we show to the store-recall task to
four, which also increased the number of outputs to four. Then we changed
the linear readout neurons to the LIF neurons and replaced the softmax
with our network, as discribed in section 4.2.1. Figure 4.16 illustrates the
new network structure. As the final output values we condider the out-
put values of the softmax network in the time periode of the recall command.
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Figure 4.16: Network setup for store-recall We increased the possible input values to four
and replaced the linear readout neurons with LIF neurons and a pre-trained
softmax network. We do not train the weights of the softmax network.

Training

The input and output size of the softmax network is four (M=4 and N=4
in Figure 4.2). We use an input group size of 10 neurons. This means we
have 40 LIF, which act as input neurons to the softmax network, see Figure
4.16. We increased the number of neurons in the recurrently connected
neuron pool of LIF and ALIF neurons to 40 (20 LIF and 20 ALIF). We did
this because we do not want to upscale between the neuron pool and the
LIF input neurons and we also have more possible input values. We used
regularization for training the softmax network, see section 4.1.4. We set the
target frequency of the hidden neurons to 50 Hz and used a regularization
factor of 50.

For training the whole network, we used the same training protocol as
Bellec, Scherr, et al., 2019. We created randomly training samples which
were randomly generated inputs with a length of 2.4 s. We showed the
network every command (store or recall) or value (value 0, value 1, value 2

or value 3) for a time period of 200 ms. In each such period, we showed the
network a command with a probability of 1

6 . The first command is a store
command and the next command is a recall command, see Figure 4.17 for
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an example spike train of a training sample.

We randomly generated a new training set with a size of 128 and a new
validation set with a size of 128 for every new iteration. We used the
validation set to evaluate the performance of the network.

Results

The network is able to learn the store-recall task. The wrongly classified
samples in the training and valitation set converge to around zero, see
Figure 4.18, 4.17.
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Figure 4.17: Testing the softmax network in the store recall task A) The activity of the
input neurons to the LSNN network. B) The activity of the LSNN pool of the
network. C) The spiking behavior of the input neurons to the softmax part of
the network and D The activity of the hidden neurons in the softmax part of
the network. E) The spiking behavior of the output neurons of the softmax
part of the network. F) The averaged output values in 200 ms time windows.
We marked the time window of the recall command with black lines.

Figure 4.18: Loss and wrong classified samples of the store-recall task A) The top plot
shows the time course of the loss of the training set and the validation set. B)
The bottom plot shows the time course of the number of wrongly classified
samples in the training and validation set. The training set and the validation
set have a samples size of 128.
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4.2.3 Sequential MNIST

In this task, we replace the softmax with our softmax network in an LSNN
that learns the sequential MNIST. The goal of sequential MNIST is to classify
the images of handwritten digits of the MNIST dataset, similar to Bellec,
Salaj, et al., 2018.

The images consist of 28x28 pixels. We show the pixels to the network by
going through the image row by row. We scale the grey values of the image
into the interval [0, 1]. For every timestep (1 ms), we show the network one
scaled pixel value, which adds up to a total simulation time of 784 ms (784
pixels).

The LSNN contains a total of 240 neurons, where 140 of these neurons are
adaptive LIF neurons. Instead of spikes from input neurons, these neurons
receive the scaled pixel value with a weight vector w ∈ RNrec as input. This
changes equation 2.6 for the input current Ij(t) of a neurons j at time t to

Ij(t) = wj pscaled(t) + ∑
i∈Nrec

i 6=j

Wrec
ji zrec

i (t− d), (4.21)

where pscaled(t) is the tth scaled pixel of the image. Figure 4.19 shows the
whole structure of the network.

We replaced the softmax, which normalizes the membrane potential of the
readout neurons with our pre-trained softmax network, as described section
4.2.1.
Our pre-trained softmax network computes the softmax of a spike train
over a given time. We use the last 400ms of the simulation time, which is
equal to the last 400 pixels for the softmax computation. Figure 4.20 shows
the new network structure.
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Figure 4.19: Network setup for Sequential MNIST with softmax The network consists
a pool of LIF and ALIF neurons, which receive the pixels as input. Linear
readout neurons compute the output of this pool.

Figure 4.20: Network setup for Sequential MNIST with softmax network We replaced
the linear readout neurons with LIF neurons and a pre-trained softmax network.
We do not train the weights of the softmax network.
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Training

We use a group of 10 neurons per input to the softmax. Therefore we have
100 LIF input neuron for the softmax network.

We again train the softmax beforehand and then fix the weights while train-
ing the whole network to perform the given task. In the original setup the
network was optimized with BPTT and Deep R, similar to Bellec, Salaj, et al.,
2018. In the new setup, we only use DEEP R on the pool of LIF and ALIF
neurons and not the input neurons for the softmax network or the softmax
network. As in the original setup, we use a connectivity precentage of 30%,
0.01 as the regularization coefficient and no noise for DEEP R.

Results

The original setup (softmax function) achieved a test set accuracy of 0.89.
The new setup (softmax network) achieved a test set accuracy of 0.91. Figure
4.21 shows the network activity for a sample of the new setup. We took the
mean over five runs for the accuracy. We think that the softmax network
performs better since the softmax network computes the output over a time
period. The last pixels of most images have a scaled pixel value of zero. A
scaled pixel value of zero translates to no input. Therefore the network stops
spiking because there is no new input to the network. We think because of
the additional layers and early timesteps, which contribute actively to the
output, the LSNN with the softmax network can maintain information for a
longer period in the network.
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Figure 4.21: Testing the softmax network in the sequential MNIST task A) The input
image. B) The scaled pixel values over in sequential order (row by row). The
red line marks the starting time of the output calculation. C) The activity of
the LSNN pool of the network. D) The spiking behavior of the input neurons
to the softmax part of the network and E The activity of the hidden neurons in
the softmax part of the network. F) The spiking behavior of the output neurons
of the softmax part of the network. G) The output of the whole network for
every class. The correct class is labeled with a star ”*”.

4.3 K-winner-takes-all

K-winner-takes-all identifies the K-largest components of an input vector
x ∈ RN of size N.

yi(x1, · · · , xN) =

{
1 ranksi(x) < K
0 else

with ranki(x) =
∣∣∣{j|xj > xi}

∣∣∣,
(4.22)

where x is the input and yi is the ith output. The function ranki gives the
number of components larger than the ith component. If xi is in the K-largest
numbers of x, yi is one.

4.3.1 RSNN setup

We use almost the same network setup as for the softmax tasks, compare
section 4.1.1. The input layer again consists of subpopulations Gin

n of input
neurons. The output layer also consists of subpopulation Gout

n of output
neurons. To increase the computational power of the network, we again use
the population of hidden neurons Ghidden. The neurons of the hidden pop-
ulation and the neurons of the subpopulation for the output are recurrently
connected. Figure 4.22 shows the whole structure.

This time, we only use an identity matrix as mapping on the input vector.
Therefore the output size N is equal to the input size. We again use a Poisson
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Figure 4.22: RSNN structure The abstract structure of the network we use for learning the
K-winner-takes-all function.

process to create spike trains for the neurons of the input populations, see
equation 4.2. To calculate the output values out1, · · · , outN of the network,
we again use the average spiking frequency of their dedicated subpopulation,
see equation 4.3.

Training

We do not use the mean squared error as a loss function anymore. For the
K-winner-takes-all function, we do not need exact output rates. We only
need to distinguish between zero or one. Therefore we choose a frequency
that acts as a border. Every output with a frequency higher than the border,
we interpret as one. Every output with a frequency equal or lower, we
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interpret as a zero. Therefore the mean squared error is a bad fit since the
mean squared error punishes every deviation form a chosen target. Instead,
we use a loss function similar to the hinge loss.

We linearly punish outputs, which are on the wrong side of their desired
border. In the loss function, we use two different borders: ρzero and ρone.
This choice creates outputs, which better visually resemble a K-winner-
takes-all function, see Figure 4.24, 4.30, 4.28 and 4.26. This decision had no
impact on the performance of the network. The following equation shows
the loss for one sample.

L =
N

∑
n=0

(1− t∗n)max{0, outn − ρzero}+ t∗n max{0, ρone − outn}, (4.23)

where N is the output size, ρzero is the maximum for a zero in Hz and
ρone is the minimum for a one in Hz. outn is the nth output of the network.
t∗n is the target for the nth output (t∗n ∈ 0, 1).

Additionally, we use the regularization of section 4.1.4, which is the mean
squared error between a choosen frequency and the average frequency of
the neurons in the hidden population Ghidden, see equation 4.10. Since our
loss function equation 4.23 does not punish high frequencies if the output
should be a one, we want to control high frequencies in hidden neurons.

We use back-propagation-through-time with Adam and a decaying learning
rate. We start with a learning rate of 0.01.We decrease the learning rate
every 10 epochs by a factor of 0.8.

We used a training set with 10000 random samples and a batch size of 50
for learning. We used a validation set of 1000 random samples to identify
the best performing parameters. After learning, we used a test set of 1000
random samples to measure the final performance of the network.
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Generel Parameters

We listed all parameters for the network in Table 4.6.

simulation time T 400 ms
initialization time Tinit 100 ms
input subpopulation size |Gin| 10
output subpopulation size |Gout| 10
ρscale 100 Hz
ρzero 20 Hz
ρone 50 Hz
hidden population size |Ghidden| 50
timestep δt 1 ms
damping factor ν 0.3
threshold γ 0.5
synaptic delay d 1 ms
refactory period κ 1 ms
membrane time constant τm 20 ms

Table 4.6: General parameters for K-winner-takes-all training

4.3.2 Task K-winner-take-all

We draw samples from an exponential probability function to get input
samples.

x = (x1, · · · , xN)
T with xi ∼ EXPβ, (4.24)

where x is the drawn input samples from EXPβ. EXPβ has the probability
density function descirbed in equation 4.7 and we set β to 0.5.

We use the equation 4.22 to generate the target values for a given input
sample.
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Results for 1 K-winner

In this example we choose 1 winner (K = 1). We performed the task with
different input sizes. Then we compared the performances of the network
in Table 4.7. We consider an output to be correct, if the rates are on the right
side of the border ρzero. This means if the output should be one the rate
has to be greater than ρzero and Vise versa. The network achieves great
results with small input sizes but struggles with larger. Figure 4.24 and 4.26

show two samples as examples and Figure 4.23 and 4.25 show the training
loss over time and the final test loss for a 5 and 10 dimenional input.

input size N accuracy
5 0.952
10 0, 84
16 0.83
24 0.649
32 0.487

Table 4.7: Task K-winner takes all with 1 Winner (K = 1) accuracy for different input sizes.

Figure 4.23: Task K-winner-takes-all 5 dimensional input and 1 Winner loss over time
The plot shows the evolution of the training loss over time and the final test
error.
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Figure 4.24: Task K-winner-takes-all 5 dimensional input and 1 Winner sample A)
Spikes of the Poission processes which function as input to the network.
B) The spiking activity of the output neurons. C) The averaged output rates
and the border ρzero. The star ”*” labels the output, which should have won.

Figure 4.25: Task K-winner-takes-all 10 dimensional input and 1 Winner loss over time
The plot shows the evolution of the training loss over time and the final test
error.
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Figure 4.26: Task K-winner-takes-all 10 dimensional input and 1 Winner sample A)
Spikes of the Poission processes which function as input to the network. B)
The spiking activity of the output neurons. C) The averaged output rates and
the border ρzero. The star ”*” labels the output, which should have won.

Results for 3 K-winners

In this example we choose 3 winners (K = 3). We performed the task with
different input sizes. Then we compared the performances of the network
in Table 4.8. The network achieves great results with small input sizes but
struggles with larger. Figure 4.30 and 4.28 show two samples as examples
and Figure 4.29 and 4.27 show the training loss over time and the final test
loss for a 5 and 10 dimenional input.
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input size N accuracy
5 0, 94
10 0, 858
16 0.648
24 0.433
32 0.225

Table 4.8: Task K-winner takes all K=3 accuracy for different input sizes.

Figure 4.27: Task K-winner-takes-all 10 dimensional input and 3 Winners loss over time
The plot shows the evolution of the training loss over time and the final test
error.
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Figure 4.28: Task K-winner-takes-all 10 dimensional input and 3 Winners sample A)
Spikes of the Poission processes which function as input to the network. B)
The spiking activity of the output neurons. C) The averaged output rates and
the border ρzero. The star ”*” labels the output, which should have won.

Figure 4.29: Task K-winner-takes-all 5 dimensional input and 3 Winners loss over time
The plot shows the evolution of the training loss over time and the final test
error.
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Figure 4.30: Task K-winner-takes-all 5 dimensional input and 3 Winners sample A)
Spikes of the Poission processes which function as input to the network. B)
The spiking activity of the output neurons. C) The averaged output rates and
the border ρzero. The star ”*” labels the output, which should have won.
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5 Discussion

We demonstrated that one can train an RSNN to learn the softmax function
and the K-winner-takes-all function. Furthermore, we replaced the softmax
function with our softmax network in two LSNNs and successfully trained
the LSNNs afterward. The first LSNN performed a working memory task,
see section 4.2.2. The second performed classification on the sequential
MNIST dataset, see section 4.2.3.

We show the RSNN can learn the softmax combined with an additional
linear mapping of the input vector, see section 4.1. The first additional map-
ping was a random matrix on the input vector. The second was a mapping
that allowed us to represent negative values. Although the RSNN achieved
good results, the performance of the network dropped for larger input sizes,
see Tables 4.2,4.4 and 4.5.

In the second part, we replaced a softmax function with our pre-trained
network. The replacement is rather straight forward. Instead of using the
membrane potential of the readout neurons as activations, we use the spike
trains of the readout neurons as input to our softmax network, see section
4.2.1. We also change the loss function from the cross-entropy to the mean
squared error because the removal of the softmax function changed the
gradient.

The first LSNN in which we replaced the softmax is a network performing a
working memory task (Store-recall). The goal of the task is to achieve an ac-
curacy of over 0.95 on a validation set. Our LSNN with the softmax network
was able to achieve this, see section 4.2.2. The second task is a classification
task on the sequential MNIST dataset. In this secenario, the LSNN with our
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softmax network achieved a better accuracy on the test set as the LSNN with
the softmax function, see section 4.2.3. These two results are promising for
the softmax network. In the case of the sequential MNIST task, the softmax
network can help to maintain information in the network longer, which
ultimately helped with the performance of the network. Although to fully
understand the effects of the softmax network on the performance of the
network, more experiments are necessary.

For the K-winner-takes-all functions, we changed the loss function from the
means squared error to a function similar to the hinge loss, see section 4.3.1.
The choice of output interpretation made the mean squared error unprac-
tical to use. The RSNN managed to achieve good performances for small
input sizes, but Tables 4.7 and 4.8 show a noteworthy decline in accuracy
for larger input sizes.

5.1 Outlook

Altogether our results show an interesting first look on this topic. We
achieved good results with almost straight forward implementations. How-
ever, we think the performance of the softmax network can be inproved
because we did not fine-tuning the hyperparameters of the RSNN. The same
holds for the K-winner-takes-all network. Also, the effects of the softmax
network in an LSNN have to be further studied. The fact that the LSNN with
the softmax network outperformed the LSNN with the softmax function
will probably not hold for every scenario. Furthermore, we did not integrate
the K-winner-takes-all network in an LSNN. It would be interesting to see
how the network compares to a K-winner-takes-all function in an LSNN in
terms of performance.
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