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Abstract

Alzheimer’s disease is the most common form of dementia and a major challenge

for healthcare systems. Alongside clinical tests, magnetic resonance imaging shows

promise to aid in the diagnostic process. Recent advances in computing power made

processing of MR images using deep learning models feasible. The analysis of con-

temporary classification approaches showed that they mostly rely on structural MRI

data acquired with MPRAGE sequences. In this thesis the applicability of additional

image contrasts (FLAIR, R2, R2*, MTR) for Alzheimer’s disease classification with

deep convolutional neural networks is considered and compared. Furthermore, the

explanation method “deep Taylor decomposition” indicated that those networks might

learn features introduced by the applied image preprocessing. Therefore, this thesis

introduces a new method to mitigate these problems by using the generated heatmaps

during training for regularization. The proposed method leads to identification of fea-

tures in anatomically more plausible regions, while maintaining a similar classification

accuracy compared to contemporary approaches.

Key words: Alzheimer’s disease, deep learning, explainability, relevance-guided train-

ing
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Zusammenfassung

Die Alzheimer-Krankheit ist die häufigste Form der Demenz und eine wesentliche

Herausforderung für Gesundheitssysteme. Neben klinischen Tests wird die Magne-

tresonanztomographie für den Diagnoseprozess genutzt. Mit den jüngsten Fortschrit-

ten in Rechenleistung wurde die Verarbeitung von MR-Bildern mit Deep Learning

Modellen ermöglicht. Zeitgemäße Klassifikationsansätzen verwenden hauptsächlich

mit MPRAGE-Sequenzen akquirierte, strukturelle MRT-Daten. In dieser Arbeit wird

die Anwendbarkeit von zusätzlichen Bildkontrasten (FLAIR, R2, R2*, MTR) für die

Klassifikation der Alzheimer-Krankheit mit tiefen neuronalen Faltungsnetzwerken

betrachtet und verglichen. Darüber hinaus hat die Methode “deep Taylor decom-

position” gezeigt, dass die Bildvorverarbeitungsschritte möglicherweise ungewollte

Merkmale erzeugen, die von diesen Netzwerken für die Klassifikation genutzt wer-

den. Um die Problem abzuschwächen führt diese Arbeit eine neue Methode ein, um

die erzeugten Heatmaps für die Regularisierung während des Trainingsprozesses zu

ermöglichen. Die vorgeschlagene Methode identifiziert anatomisch plausiblere Regio-

nen, während eine ähnliche Klassifizierungsgenauigkeit verglichen mit zeitgemäßen

Ansätzen sichergestellt wird.

Schlüsselwörter: Alzheimer-Krankheit, Deep Learning, Erklärbarkeit, relevanz-gesteuertes

Training
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1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia [1] and a major

challenge for healthcare in the twenty-first century [2]. Worldwide, estimated 50 million

people are living with AD or a related form of dementia in 2019 [3, 4]. The disease is

most common in Western Europe and North America. In later life, it is among the top

causes for disabilities [4]. The most accurate diagnosis is obtained from the histological

examination of tissue samples from affected anatomical regions. AD-related staging

can for example be done with the Braak system [5, 6]. An overview of the pathological

evolution of AD is shown in figure 1. Unfortunatly, biopsy during life is impossible for

AD because of the high risk/benefit ratio.

Alongside mental status and neuropsychological tests, magnetic resonance imaging

(MRI) is used for diagnosis. Different MRI contrast mechanisms are considered to obtain

information about the brain. Structural imaging is among the most utilizied techniques

as AD is associated with brain atrophy, the loss of brain tissue [8, 9, 10]. In clinical

MRI spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) are the most

important biophysical parameters contributing to image contrast, or other quantitative

parameters such as T2* describing tissue properties like iron load [11]. Some of these

properties reflect the presence or even the severity of AD [12].

In the recent years deep learning techniques have become increasingly utilized in

1



1 Introduction

Figure 1: The pathological evolution of Alzheimer’s disease. Amyloid plaques and neurofibrillary tangles

spread throughout the brain as the disease progresses. Images in (a) are using the Bielschowsky

method of silver impregnation to visualize the aggregated proteins that constitute the extracellu-

lar plaques and intracellular neurofibrillary tangles. In typical cases of Alzheimer’s disease (AD),

amyloid-β (Aβ) deposition precedes neurofibrillary and neuritic changes with an apparent origin

in the frontal and temporal lobes, hippocampus and limbic system (b, top row). Less commonly,

the disease seems to emerge from other regions of the cerebral neocortex (parietal and occip-

ital lobes) with relative sparing of the hippocampus. The neurofibrillary tangles and neuritic

degeneration start in the medial temporal lobes and hippocampus, and progressively spread to

other areas of the neocortex (b, bottom row). With the advent of molecular imaging techniques

for Aβ and tau, the longitudinal dispersal of pathological changes will become amenable to

real-time in vivo study and will not be reliant on post-mortem reconstructions as depicted here.

Aβ deposition (stages A, B and C) and neurofibrillary tangles (stages I–VI) are adapted from

Braak and Braak [6]. Figure 1 and caption from [7].
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1 Introduction

medical applications, including image reconstruction [13], segmentation [14], and clas-

sification [15]. Deep learning methods achieve a high predictive accuracy particularly

for classification tasks. In many cases, they are on par with human level performance.

For the development and training of deep neural networks (DNNs) data sets with at

least a few hundred entries are necessary. Many AD classification models have been

developed using only T1-weighted structural images. These structural images are avail-

able but may not be sufficient to obtain a reliable classification. Therefore it is necessary

to include different MRI contrasts and parameters into the classification model [16].

Contrasts which have proven to contribute insight into AD diagnosis can be explored

for applicability with deep learning classification models.

Deep learning image classification models reduce high dimensional inputs (2-D, 3-D or

4-D) to a one dimensional vector. Each entry in the vector represents an output class.

Their value relates to the probability of the input belonging to this class. The reduction

of the dimensionality is achieved through so called hidden layers in the network. The

input image data is put through the weighted connections of these layers until the

output layer is reached. A trained model is capable of attributing a classification result

to a given input. However, the question how the DNN obtained this output arises?

The good performance of these models comes at the price of explainability. To interpret

the connections in a DNNs is beyond human comprehension. This is an issue for

medical applications as which parts of the input image contributed to the classification

is essential to establish trust in the prediction.

Recently, methods have been developed to explain a classification result in terms of

input, forward pass of the input through the network and output [17]. The explanation

is obtained as a heatmap with the same dimensionality as the original input. Regions

in the input image that contributed most to the classification result are represented by

high values in the heatmap. These methods visualize what the DNN focuses on.

3



2 Related Work

The application of automated image classification for AD has recently gained con-

siderable attention as large-scale multi-modal neuroimaging data became available.

Supported by the significant increase in computing power and the general availability of

massive parallel computing capabilities coming from graphics computing units (GPUs),

it became feasible to train deep and wide neural networks.

Studies focusing on the utilization of neuroimaging for AD and mild cognitive im-

pairment (MCI) classification, [18] used these methods on the modalities structural

MRI, functional MRI, diffusion tensor imaging (DTI) and fluorodeoxyglucose positron

emission tomography (PET). They reviewed publications from January 1985 until June

2016 and found high accuracies discriminating between AD and normal control (NC).

Performance was higher when multiple input modalities were combined but gener-

alization and reproducability remain unsolved problems. Reviewed methods in [18]

were also sub-categorized in terms of extracted features as a post-processing step of the

modalities. However, an explanation on a per input basis for the reviewed methods is

not given. Therefore it remains unclear if the high classification accuracies result from

clinical useful features learned from the used data. Most of the reviewed methods in

[18] utilize support vector machines (SVMs). More recent methods are based on deep

learning such as stacked auto-encoders (SAEs), convolutional neural networks (CNNs) or

combinations of them.

4



2 Related Work

In [16] the authors reviewed diagnostic AD classification approaches between 2013 and

2018 using deep learning and reported highly accurate results on their test sets. They

reported the finding that combining multimodal inputs can improve performance but

reproducability of the results outside of the development environment remains an

issue. One of the reasons is the limited size of the data sets, which stays below the

hundreds for all reviewed publications. To account for that, the review suggests that the

architecture of the used neural network should be adapted to enable transfer learning

[19] and explainability [20]. All of the reviewed approaches use (deep) CNNs, which are

widely used in computer vision. These methods do not require human intervention like

handcrafted feature engineering but instead extract features directly from the given

training data. However, this aspect of deep learning necessarily brings uncertainty over

which features would be learned. Transparency in this sense is a remaining challenge.

Explanations can take many forms and because of the high complexity and dimen-

sionsality of the CNNs, evaluating the quality of explanations or the interpretability

of a model is difficult. Within the machine learning community different models for

explanations have been proposed. Perturbation-based methods change the input and

check if the output changes accordingly [21, 22]. For example if the classifier shall tell

us whether there is a cat in an image with a cat, the cat is occluded from the image and

the output should change. When the output stays the same the model may has picked

up features not suitable to find cats. Still these methods do not tell anything about the

learned features. Additionally, they are slow and may introduce artefacts coming from

the perturbations. The second group is function-based [23] and gives explanations by

using the derivative (gradient) of the function defined by the machine learning model

∇x f (x), (1)

where ∇x is the gradient with respect to the input image. Resulting sensitivity maps

tend to be noisy because the linearization may be a oversimplification and does not

5



2 Related Work

capture the non-linear nature of the function f well enough. The third group tries to

overcome these weaknesses by adding noise and averaging results [24] or by training

and presenting local sparse models of how predictions change when inputs are per-

turbed [25]. The idea of decomposing the function f into subfunctions, which can be

more easily explained, forms the fourth group, layer-wise relevance propagation (LRP)

[26]. Deep Taylor decomposition [27] describes the theoretical groundwork for LRP and

can be implemented in a fast way.

6



3 Motivation

The goal of this work was to develop deep learning classification networks using struc-

tural T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) images, fluid-

attenuated inversion recovery (FLAIR) images, R2 images, R2* images and magnetization

transfer ratio (MTR) images. Furthermore, the MRI contrasts/parameters which are best

suited for this task have been investigated. With the explainability method deep Taylor

decomposition [27] the learned features of the different inputs are determined. Another

goal of this work was to explore the effects of skull stripping (brain extraction).

The experiments on AD classification based on MRI data showed that DNNs might learn

irrelevant features outside the brain or only learn to evaluate the quality of the used

brain extraction algorithm. Concerned by this finding, the MRI features relevant for the

classification of patients with AD when compared to NC have been examined.

Additionally, a method that allows to add prior knowledge to the training process is

propossed. It enables focusing the training on relevant features. This helps the trained

model to get invariant to certain data preprocessing steps.

7



4 Background

For the classification tasks executed for this work supervised learning methods have

been used. Supervised learning is the task of finding a function that maps an input

to an output based on example input-output pairs. A labeled data set is necessary

for the learning task. The most popular supervised learning methods are deep neural

networks. The first part of this chapter summarizes the theoretical background of what

deep learning is and how the used networks are designed and trained. The second part

focuses on the explainability methods implemented to get insight into the obtained

classification outputs.

4.1 Deep Learning

Formal tasks, that is a set of rules and instructions, are amongst the easiest problems to

solve for a computer but are among the most difficult undertakings for human beings.

In an environment where such rules can be easily inferred, an algorithm is available,

computers have a long history of being superior. In contrast, tasks which are easy to

perform for people but are hard to describe formally, like recognizing words or faces

in images, need a different approach. The idea is to allow computers to learn from

experience and understand the task in terms of a hierarchy of concepts. Each concept

is defined through its relation to simpler concepts. This solution avoids the need for

8



4 Background

formally specifying all the knowledge that the computer needs by rather gathering

the knowledge from experience. In deep learning, complicated concepts are learned

by building them out of simpler ones built on top of each other. The concepts are

represented by layers. A deep network is created by multiple connected layers.

These systems need the ability to acquire their own knowledge by extracting patterns

from raw data. Corresponding methods are are referred to as machine learning based

methods. Raw data may also be processed to support the learning task.

The inner workings of deep learning networks are described in the subsequent sections

based on [28].

4.1.1 Single-layer Networks

Deep learning networks are constructed from layers. The layers describe their behavior

and ability to capture the concepts. A layer has an input and an output, whereas the

output of a layer becomes the input of the following layer. The first layer of a network

is the data itself and the last layer is the result. All layers in between are called hidden

layers, simply because they are inside the network and not directly accessible.

The input and output of a layer can be described as vectors, where the length of

the output vector depends on the type of the layer. For fully connected layers the

transformation from input to output is done with two linear operations followed by a

non-linear function. The linear operations are

z = Wx + b, (2)

where z is the intermediate result, x is the input vector of the layer, W is the weighting

matrix connecting input to output and b is the bias. The non-linear function a used

9



4 Background

point-wise on the intermediate result z gives the output of the layer:

y = a(z) = a(Wx + b). (3)

Breaking down the matrix operations of equation 2 to the level of a single unit, the

neuron (therefore the name neural network), yields

zj = ∑
i

wijxi + bj, (4)

where the weighted sum of all input entries xi contributing to the intermediate output

zj is calculated. The output bias bj can be viewed as the threshold that must be reached

by the sum to get the neuron to fire, depending on the used activation function

∑
i

wijxi ≥ tj, (5)

where tj is accounting for the threshold. The applied activation function is another

important aspect. Different non-linear activation functions have been proposed in the

literature. Most famous the sigmoid activation function

a(zj) =
1

1 + e−zj
, (6)

shown in figure 2a and its more practical counterpart the hyperbolic tangent function

in figure 2b. Both functions have the drawback of function values not changing much

when changes in zj are big but zj is far away from 0, which is visualized by the values

of the derivates in the figures. This phenomena is called activation function saturation

and recovering from it can significantly influence the training process.

A simple and now widely used alternative is the rectified linear unit (ReLU) activation

function [29]

a(zj) =


zj zj > 0

0 zj ≤ 0
, (7)

shown in figure 2c. A smooth approximation is the softplus function [30] in figure 2d.

10
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Figure 2: Overview of different activation functions (blue) and their corresponding derivates (dashed red).
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4 Background

Although the ReLU function is non-linear altogether, for positive zj a linear response is

given. This function does not suffer from the saturation problem and the linear part

can be helpful for explainability. During the training process the weights and biases are

adjusted to obtain outputs closer to the wanted outputs. Activation functions keep the

output of a layer in a well defined range and therefore play a stabilizing role as even

small changes to weights or biases could completly change the output otherwise.

To update the weights and biases in a meaningful way, a criterion is needed. This

criterion is called objective function and should be suitable for the task at hand. It

measures the distance between the output for a given input and the desired output.

The goal is to minimize this distance, which makes it an optimization problem of the

form

Φ∗ = argmin c(Φ), (8)

where Φ∗ denotes the parameters that minimize the objective function c. The function

c is also referred to as cost function, loss function or error function. In this equation Φ

summarizes all weights and biases being optimized. As the count of variabels in Φ is

usually very high (up to millions in some network architectures), no analytical solution

to the problem can be given. Instead a gradient descent based method [31] is utilized to

calculate a numerical solution. In case of simple gradient descent the parameter update

formula is

∆Φ = −η∇Φc, (9)

where η > 0 is the step size, called learning rate in the context of deep learning, and

∇Φ is the gradient of function c with respect to the parameters Φ. The updates

Φ(i+1) = Φ(i) − η∇Φc (10)

are repeatingly calculated until a local minimum of the function c is reached. This will

improve the network output based on the given objective function. On one hand with
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4 Background

this update rule only one example would be considered at a time causing non-smooth

convergence, but on the other hand considering all data in the training set at once

could lead to getting stuck in a local minimum. To deal with this circumstances, only a

part of the training set, a mini-batch with a defined size m, is used at once, yielding the

stochastic gradient descent update

Φ(i+1) = Φ(i) − η

m

m

∑
j
∇Φc(xj), (11)

where xj is a input in the mini-batch. To make these ideas more precise, stochastic

gradient descent works by randomly picking out a small number m of randomly chosen

training inputs. Provided the sample size m is large enough it is expected that the

average value of the ∇c(xj) will be roughly equal to the average over all ∇c(x). The

method error back-propagation, published in 1986 [32], allows for an efficient way to

calculate the stated partial derivates and makes training deep networks possible. The

algorithm can be considered the working horse of deep learning and defines the error

δL in the last layer L of the network as

δL
j =

∂c
∂zL

j
. (12)

Applying the chain rule yields

δL
j = ∑

k

∂c
∂aL

k

∂aL
k

∂zL
j

, (13)

where the sum is over all neurons k in the output layer. As the activation aL
k depends

only on the weighted input zL
j when k = j, ∂aL

k
∂zL

j
vanishes when k 6= j. The previous

equation can be simplyfied to

δL
j =

∂c
∂aL

j

∂aL
j

∂zL
j

(14)

and with aL
j = a(zL

j ) the term on the right can be written as a′(zL
j ), the equation

becomes

δL
j =

∂c
∂aL

j
a′(zL

j ) (15)
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in component form and

δL = ∇ac� a′(zL) (16)

in matrix form, with � noting the Hadamard product, being the first essential equation

of error back-propagation. The second essential equation yields the error in higher layer

l

δl
j =

∂c
∂zl

j
, (17)

expressed in terms of the error in the next layer l + 1 and by applying the chain rule

the equation becomes

δl
j = ∑

k

∂c
∂zl+1

k

∂zl+1
k

∂zl
j

= ∑
k

∂zl+1
k

∂zl
j

δl+1
k ,

(18)

where in the last line the two terms on the right-hand side have been interchanged and

the definition of δl+1
k has been substituted. Differentiating

zl+1
k = ∑

j
wl+1

kj al
j + bl+1

k = ∑
j

wl+1
kj a(zl

j) + bl+1
k (19)

yields
zl+1

k

∂zl
j
= wl+1

kj a′(zl
j) (20)

and substituting back into equation 18 gives

δl
j = ∑

k
wl+1

kj δl+1
k a′(zl

j) (21)

in component form and

δl = ((wl+1)>δl+1)� a′(zl) (22)

in matrix form. The updates for the parameters of the layer are calculated by again

using the chain rule and substituting δl
j

∂c
∂bl

j
=

∂c
∂zl

j︸︷︷︸
δl

j

∂zl
j

∂bl
j︸︷︷︸

1

= δl
j (23)
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∂c
∂wl

jk
=

∂c
∂zl

j︸︷︷︸
δl

j

∂zl
j

∂wl
jk︸︷︷︸

al−1
k

= al−1
k δl

j (24)

The training process involves creating random mini-batches from the training set and

calculating the parameter updates from the cost function. It is called an epoch, when a

network has seen the whole training set for updates. The training goes on for multiple

epochs until a stopping criterion is reached. Such a stopping criterion might be a

acceptable small remaining error.

4.1.2 Multi-layer Networks

Multi-layer feedforward networks are the most essential deep learning models. They

have universal approximation capabilities [33] and therefore can be used to approximate

some function f ∗. For classification the function would map an input x to categories y.

A feedforward network defines a mapping

y = f (x, Φ) (25)

and learns the value of the parameters Φ that result in the best function approxima-

tion.

Feedforward means that there are no feedback connections in which outputs of the

model are given back into itself. Information flows through the function being evaluated

from x through the intermediate layers and finally to the output y. When networks

include feedback connections, they are called recurrent neural networks (RNNs) [34].

Feedforward networks are called networks because they are typically represented by

composing together many different functions. The model is associated with a directed
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acyclic graph describing how the functions are composed together. A function f (x)

might be formed with

f (x) = f 3( f 2( f 1(x))), (26)

creating a chain structure. The overall length of the chain gives the depth of the

model.

4.1.3 Convolutional Neural Networks

A CNN [35] is a specialized neural network for processing data that has a grid-like

topology. Examples are 2-D images or 3-D magnetic resonance (MR) images. It is called

“convolutional neural network” because the network employs a mathematical operation

called convolution, which is a specialized kind of linear operation. A convolution is

defined as an integral over two functions of real valued argument

s(t) =
∫

x(a)w(t− a)da. (27)

The convolution operation is typically denoted with an asterisk

s(t) = (x ∗ w)(t), (28)

where the first argument x is referred to as input and the second argument w as the

kernel. The output of the operation is sometimes called feature map. For working with

data in deep learning models the discretized version of the convolution is necessary:

s(t) =
∞

∑
a=−∞

x(a)w(t− a). (29)

MR images are usually a multidimensional array of data. For deep learning applications

the kernel is also a multidimensional array of parameters that is adapted by the learning

algorithm. The data arrays for the input and the kernel have finite size and it is assumed
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that these functions are zero everywhere else. Convolutions are used over more than one

axis at the time. For a 3-D MRI input convolved with a kernel the equation becomes:

S(i, j, k) = (X ∗W)(i, j, k) = ∑
m

∑
n

∑
o

X(m, n, o)W(i−m, j− n, k− o). (30)

The motivation behind convolutional networks cames from three ideas that can help

improve a machine learning system:

• Sparse interactions: Fully connected layers use a matrix of parameters with a

separate parameter describing the connection between every input unit and each

output unit. Every output unit interacts with every input unit. However, convolu-

tional networks have sparse interactions by making the kernel smaller than the

input. Fewer parameters need to be stored, reducing the memory requirement for

the model and improving its statistical efficiency. Also the number of operations

for computing the output is reduced.

• Parameter sharing: For fully connected layers each weight of the matrix is used

exactly once when computing the output of a layer. In contrast in convolutional

layers the kernel is moved over the input using the same weights at different

positions. It can be seen as tied weights because the value of the weight applied

to one input unit is tied to the value of a weight applied elsewhere. Each member

of the kernel is used at every position of the input. Only one set of parameters is

learned instead of learning a separate set of parameters for every location.

• Equivariant representations: Because of the particular form of parameter sharing

the layer has a property called equivariance to translation. Equivariance of a func-

tion means that if the input changes, the output changes in the same way. When

processing MRI inputs, convolution creates a 3-D map of where certain features

appear in the input. If the feature is moved in the input, its representation will be

moved the same distance in the output. Naturally for convolution, equivariance is

not given for other forms of translations, such as changes in the scale or rotation
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of the input.

A convolutional layer is typically followed by a pooling layer. The purpose of the

pooling layer is to replace the output of the convolutional layer with a summary

statistic of the nearby output units. Widely used is the max pooling operation [36],

which takes the maximum output within a rectangular neighborhood. Pooling helps to

make the representation approximately invariant to small translations of the input.

Key design principles of convolutional neural networks have been drawn from neuro-

science. Neurophysiologists David Hubel and Torsten Wiesel collaborated to determine

many of the most basic facts about how the mammalian vision system works [37, 38, 39].

They observed how neurons in the cat’s brain responded to images projected in precise

locations on a screen in front of the cat. They found that neurons in the early visual

system responded most strongly to very specific patterns of light, such as precisely

oriented bars, but responded hardly at all to other patterns. A convolutional network

is designed to capture properties attributed to the primal visual cortex of the brain

such as the two-dimensional structure, simple cells and their activity characterized

by a linear function of the image in a small, spatially localized receptive field, and

complex cells inspiring pooling units. Convolutional neural networks have achieved

high accuracies on data sets like ImageNet [40], resulting in their broad application.

4.2 Explainable AI

The ability to explain the reasons behind decisions is an important aspect, not only for

human interaction but also for deep learning models. Explainability helps to identify

appropriate models for the given task. Better understanding what models are doing

and why they sometimes fail makes it easier to improve them. Following the arguments
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in [41], the most important arguments for explainability in artificial intelligence (AI)

are:

• Verification of the system: Black-box systems may not be trusted by default. In

healthcare the use of models has to be interpretable and verifiable by medical

experts.

• Improvement of the system: Understanding the weaknesses of an AI system is key

to its improvement. It is easier to do such analysis on interpretable models than

on black-box models by trial and error. Getting insight into a model’s prediction

can help identify biases in model or data sets. For example, preprocessing of

the input may introduce unwanted features. Also the comparison of different

models for the same task can be enhanced because comparing classification

performance, without taking learned features into account, may lead to wrong

models. Therefore identifying an appropriate model benefits from explainability.

• Learning from the system: Training models with millions of examples may reveal

features which are not accessible by humans. Extracting these features can lead to

new insights and help find hidden laws of nature.

• Compliance to legislation: As more AI systems find their way into areas of

daily life, related legal aspects such as responsibility for made decisions receive

increased attention. Black-box models may not be able to comply to these legal

questions and therefore it is necessary that AI systems become more explainable.

In the European Union users have a right for explanation when algorithms make

decisions about them.

Following this arguments it is obvious that methods enabling explainability are neces-

sary. In recent years heatmapping, a general idea for machine learning model prediction

explanation, gained more attention and will be outlined in the next section.
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4.3 Heatmapping

Explanation of a model prediction can be done with different approaches. In this

two-step process the system first classifies the input and then an explanation method

is applied to explain the prediction in terms of the input. The resulting heatmap has

the same dimensionality as the input (in case of a volume it is also a volume), where

the voxels represent the importance for the classification result. Figure 3 summarizes

this process for the classification of an R2* map. The explanation methods sensitivity

analysis (SA) and LRP are used to generate different kinds of heatmaps.

4.3.1 Sensitivity Analysis

This method uses the locally evaluated gradient to explain the predictions. The SA

assigns the importance of each input variable i (for example image pixels or volume

voxels) as

Ri =

∥∥∥∥ ∂

∂xi
f (x)

∥∥∥∥ . (31)

As the name states this method attributes the highest scores to features which the

output is most sensitive to. The partial derivative does not explain the function value

f (x) itself, but rather its variation. The variation may be a suboptimal measure for

explaining the predictions of models. Important heatmap pixels or voxels calculated

with this method indicate which input areas need to be changed to make the input

look more or less like the predicted class. This measure assumes that the most relevant

input features are those to which the output is most sensitive rather than explaining

the prediction f (x) itself. Hence, such a heatmap would not point to input features

which are actually crucial for the prediction.
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Figure 3: Explaining predictions of an artificial intelligence (AI) system based on [41]. The input image x

is correctly classified as Alheimer’s disease. In order to understand why the system has arrived

at this decision, explanation methods such as sensitivity analysis (SA) or layer-wise relevance

propagation (LRP) are applied. The result of this explanation is the heatmap, which visualizes

the importance of each voxel. In this example the red-yellow voxels contribute most to the AI

system’s decision. With the heatmap it is possible to verify that the AI system works as intended.
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4.3.2 Layer-wise Relevance Propagation

In contrast to SA, LRP is a framework for decomposing predictions of AI systems like

feedforward neural networks in terms of input variables. It identifies pixels or voxels

which are essential for the prediction. Therefore, this method redistributes the prediction

f (x) backwards using local redistribution rules until it assigns a relevance score Ri to

each input variable (pixel or voxel). The process enforces relevance conservation which

means no relevance is added or removed during the propagation through the layers

and is formulated as

∑
i

Ri = ... = ∑
j

Rj = ∑
k

Rk = ... = f (x). (32)

Each relevance sum corresponds to a network layer and has to be equal to the prediction.

The final relevance score Ri of each input variable determines how much this variable

has contributed to the prediction.

For feedforward neural networks the redistribution itself can be done with the simple

LRP rule:

Rj = ∑
k

xjwjk

∑j xjwjk + ε
Rk, (33)

where xj is the neuron activation at layer l, Rk are the relevance scores associated to

the neurons at layer l + 1 and wjk is the weight connecting neuron j to neuron k. To

avoid divisons by zero a small stabilization term ε, which is positive when ∑j xjwjk ≥ 0

and negative else, is added. The value relevance conversation holds for ε = 0. This

rule redistributes relevance proportional to neuron activation xj and the weight of the

connection wjk. More relevance is propagated through connections with large weights

and more activated neurons xj get larger shares of relevance.

As an advanced alternative the αβ-rule was introduced in [26], treating negative and
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positive pre-activations separately:

Rj = ∑
k

(
α ·

(xjwjk)
+

∑j(xjwjk)+
− β ·

(xjwjk)
−

∑j(xjwjk)−

)
Rk, (34)

where (xjwjk)
+ = xjwjk1xjwjk>0 and (xjwjk)

− = xjwjk1xjwjk<0 denote the positive and the

negative part of xjwjk. To enforce conservation of relevance for this rule an additional

constraint

α− β = 1 (35)

is necessary. For the special case α = 1 the redistribution rule coincides with the deep

Taylor decomposition of the neural network function when the ReLU activation is used

throughout the neural network.

4.3.3 Deep Taylor Decomposition

It is desirable that heatmapping methods satisfy certain properties. The first definition

is that heatmapping R(x) is conservative, which was already introduced in equation 32.

The second definition is R(x) is positive if all values forming the heatmap are greater

than or equal to zero:

∀x, p : Rp(x) ≥ 0. (36)

This second property forces the heatmapping to assume that the model is lacking contra-

dictory evidence. So no pixels or voxels are in contradiction with the classification result.

These two properties combined form the third definition, which is heatmapping R(x)

is consistent if it is conservative and positive. There are multiple heatmapping methods

which satisfy definition three. A simple example is the uniform redistribution

∀p : Rp(x) =
1
d
· f (x), (37)

where d is the number of input dimensions.
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It is not possible in practice to state all properties explicitly which make a heatmapping

method meaningful. Instead, these definitions can be given implicitly by the choice of a

particular algorithm derived from a mathematical model. The choice of the algorithm

is constrained by definition three.

With arbitrary differentiable functions f (x) a decomposition method based on Taylor

expansion of the function at some well-chosen root x̃ can be applied. The first-order

Taylor expansion of f (x) is given by

f (x) = f (x̃) +
(

∂ f
∂x

∣∣∣
x=x̃

)>
· (x− x̃) + ε

= 0 + ∑
p

∂ f
∂xp

∣∣∣
x=x̃
· (xp − x̃p)︸ ︷︷ ︸

Rp(x)

+ε, (38)

where the sum ∑p runs over all pixels or voxels in the input, {x̃p} are the pixel values of

the root point x̃ and x̃ is chosen so that f (x̃) = 0. The summed elements are identified as

the relevances Rp(x) assigned to the input units. Second-order and higher-order terms

are denoted as ε. Most of them involve several pixels or voxels and are therefore more

difficult to redistribute. Therefore, for simplicity only first-order terms are considered.

Using the Hadamard product the heatmap can be calculated with

R(x) =
∂ f
∂x

∣∣∣
x=x̃
� (x− x̃). (39)

Choosing the free variable, the root point x̃ is a challenge. A good root is one that

removes what in the data point x causes the function f (x) to be positive, but that

minimally deviates from the original point x for the Taylor expansion to be still valid.

In the general case the root point has to be found in iterative minimization procedure

making Taylor decomposition not a good choice for explainability.

As a deep neural network consists of multiple layers, the resulting trained function

f (x) has a particular structure. Each neuron in the first layer may react to a particular
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activation pattern that is localized in the input space. In higher layers the resulting

activations patterns from the previous layer may be used to form more complex non-

linearities that involve larger numbers of input pixels or voxels. The deep Taylor

decomposition makes use of the property that a deep network can be structurally

decomposed into a set of simpler subfunctions that relate quantities in adjacent layers.

Therefore, instead of considering the whole neural network function f , the mapping

of a set of neurons {xi} at a given layer to the relevance Rj assigned to a neuron xj in

the next layer is applied. To redistribute relevance Rj onto lower-layer relevances {Ri}

Taylor decomposition is applied on the local function that relates {xi} and Rj. Taylor

decomposition of these simpler functions is easier than for the whole function f . In

particular finding root points is a lot easier. A full backward pass through the network

with this technique leads to the pixel- or voxel-wise heatmap.

Given the existence of a function that maps neuron activities {xi} to the upper-layer

relevance Rj, and of a neighboring point {x̃i} such that Rj({x̃i}) = 0, the Taylor

decomposition of

∑
j

Rj at {xi} (40)

can be written as

∑
j

Rj =

(
∂(∑j Rj)

∂{xi}

∣∣∣
{x̃i}

)>
· ({xi} − {x̃i}) + ε

= ∑
i

∑
j

∂Rj

∂xi

∣∣∣
{x̃i}
· (xi − x̃i)︸ ︷︷ ︸

Ri

+ε,
(41)

that redistributes relevance from one layer to the layer below, where ε denotes the Taylor

residual, |{x̃i} indicates that the derivative has been evaluated at the root point {x̃i},

∑j runs over neurons at the given layer, and ∑i runs over neurons in the lower layer.

With equation 41 it is possible to identify the relevance of individual neurons in the

lower layer in order to apply the same Taylor decomposition method one layer below.
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Layer-wise relevance conservation, in the sense of the first definition, is given if each

local Taylor decomposition in the network is conservative and the chain of equalities

holds true. Similarly, if the second definition holds for each local Taylor decomposition,

the positivity of relevance values at each layer is also ensured. The whole deep Taylor

decomposition is consistent in the sense of definition three, if all Taylor decompositions

of local subfunctions are consistent in the same sense.

The identification of the redistributed total relevance ∑j Rj onto the preceding layer

was identified in equation 41 as:

Ri = ∑
j

∂Rj

∂xi

∣∣∣
{x̃i}(j)

· (xi − x̃(j)
i ). (42)

Relevances Ri can therefore be obtained by performing as many Taylor decompositions

as there are neurons in the hidden layer. A superscript (j) has been added to the root

point {x̃i} in order to show that a different root point is chosen for decomposing

each relevance Rj. Still there are various methods for choosing the root point {xj} that

consider the diversity of possible input domains X ⊂ Rd. Each choice of input domain

and associated method to find a root will lead to a different rule for propagating

relevance {Rj} to {Ri}. To make the search for root points feasible, the input domain is

restricted to X = Rd
+. This restriction arises in feature spaces that follow the application

of ReLUs. In that case the search domain is restricted to the segment

({xi1wij≤0}, {xi}) ⊂ Rd
+ (43)

that contains at least one root. Injecting the nearest root on that segment into equation

42, leads to the z+ relevance propagation rule

Ri = ∑
j

z+ij
∑i z+ij

Rj, (44)

where z+ij = xiw+
ij , and w+

ij = wij1wij>0 denotes the positive part of wij. This rule

corresponds to the αβ-rule shown in equation 34 with α = 1 and β = 0. An additional
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constraint is set on the bias of the layers, where bj ≤ 0 is forced for all j. Using

this constraint guarantees the existence of a root point {x̃i} of the mapping function

and therefore ensures the applicability of standard Taylor decomposition of the local

subfunctions.
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In this chapter the applied methods are presented. The first part describes the subjects

and the database, followed by an overview of the MRI protocol set up for the data

acquisition. Furthermore, the images used as input for the development of the network

and their preprocessing are described. Finally, the networks and their trainings are

summarized.

5.1 Subjects

For the development of the classifier networks two cohorts that represent the classes

AD and NC were created. The MRI data sets from patients with probable AD were

retrospectively selected from the outpatient clinic “Department of Neurology, Medical

University of Graz, Austria”. 259 data sets from 121 patients have been included (mean

age 72± 8.8). 245 data sets from 183 age-matched healthy controls (mean age 69± 9.8)

were selected from an ongoing community dwelling study. Each subject must at least

contain a T1-weighted structural MPRAGE scan, which is necessary for registration steps.

The selected MRI data sets were acquired with the protocol described in the next section.

The rationale underlying about why each contrast was included is also given.
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5.2 MRI Protocol

Patients and controls were scanned using a consistent quantitative MRI protocol at 3

Tesla (Siemens TimTrio) taking approximately 45 minutes including a T1-weighted

MPRAGE sequence, a FLAIR sequence, a proton-density-/T2-weighted turbo-spin-echo

sequence, a spoiled fast low-angle shot (FLASH) sequence and a magnetization transfer

(MT) contrast sequence. Obtained images, subsequently calculated images (also called

maps) and their diagnostic value are described in this section.

5.2.1 MPRAGE Images

The 3-D MPRAGE sequence [42] is one of the most widely applied sequences for struc-

tural brain imaging. It is used for high-resolution whole brain T1-weighted imaging,

applied in clinical daily routine and also in research settings [43]. Images acquired

with the sequence have been widely used for classifying brain tissues in voxel-based

morphometry [44], detecting pathological changes of the brain [45] and increasing

diagnostic accuracy for AD with whole-brain volumetry [46]. Hence, these images

recently have been used with machine learning classifiers to assess structural changes

in the brain due to disease effects [15].

Motivated by these results, MPRAGE images are included in this work. An example

can be seen in figure 4. Image was acquired with resolution = 1×1×1 mm3, matrix =

176×224×256, echo time = 2.6 ms, repetition time = 1900 ms, inversion time = 900 ms.
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Figure 4: Normal control (NC) example of magnetization-prepared rapid gradient-echo (MPRAGE) image

with 1 mm isotropic resolution. Sequence is used for high-resolution whole brain T1-weighted

imaging, applied in clinical daily routine and also in research settings. MPRAGE images contain

structural information.

5.2.2 FLAIR Images

FLAIR sequences have inversion recovery time set to null fluids. It is used in brain

imaging to suppress cerebrospinal fluid (CSF) effects on the image, which enhances the

visibility of periventricular hyperintense lesions, such als multiple sclerosis plaques

[47], which are of great relevance for diagnoses. Aside from that, FLAIR images capture

structural information, useful for the AD classification task and therefore are included in

this work. An example image is given in figure 5 obtained with resolution = 0.9×0.9×3

mm3, matrix = 192×256×44, slices = 44, echo time = 70 ms, repetition time = 10 s,

inversion time = 2500 ms.

5.2.3 R2 Maps

R2 maps were estimated from a proton-density-/T2-weighted turbo-spin-echo sequence

with resolution = 0.9×0.9×3 mm3, matrix = 192×256, slices = 40, echo time = 10 ms,
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Figure 5: Alzheimer’s disease (AD) example of fluid-attenuated inversion recovery (FLAIR) image. Sequence

is used in brain imaging to suppress cerebrospinal fluid effects on the image and to capture

structural information.

echoes = 2, echo spacing = 63 ms, repetition time = 5260 ms. Because there are only two

echoes available voxel-wise computation was done by linearizing the inverse problem

Mxy[i] = Mxy[0]e−t[i]R2 , (45)

where Mxy[i] is the measured voxel intensity at echo i, Mxy[0] is the not measured

start signal and t[i] is the elapsed time at echo i. The linearized equation is solved by

minimizing the quadratic errors. Solving the inverse problem was not part of this work

but had been done previously during working on the Bachelor’s Thesis [48].

Correlation between changes in R2 maps and the presence of AD was shown in [49, 50].

Hence, R2 maps are investigated in this work. An example is presented in figure 6.

5.2.4 R2* Maps

The estimation of R2* maps from a spoiled FLASH sequence with resolution = 0.9×0.9×2

mm3, matrix = 208×256, slices = 64, echo time = 4.92 ms, echoes = 6, echo spacing = 4.92

ms, repetition time = 35 ms, was done in a similiar way as described in section 5.2.3.
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Figure 6: Normal control (NC) example of skull stripped R2 map. Changes in R2 maps may reflect on the

presence of Alzheimer’s disease (AD).

For the theoretical signal decay of the transversal magnetization with R2* an overview

is shown in figure 7.

R2* is considered as a measure of iron content in gray matter and histological and

in-vivo studies have shown that brain iron strongly accumulates, in particular in AD

patients when compared to healthy controls [51, 11, 52]. Therefore, the computed R2*

maps are included in the classifier trainings. A representative R2* map is shown in

figure 8.

5.2.5 MTR Maps

Standard MRI directly detects only signals from mobile water protons with adequately

long T2 relaxation times. In human brain tissue, this signal comes from free intra- and

extracellular tissue water, called the “free water pool”. Conversely, protons bound to

macromolecules have too short T2 relaxation times (about 10 µs) to be detected directly.

Macromolecules that bind protons in brain tissue are for example myelin proteins and

lipids. This bound proton fraction, the “bound water pool”, can be imaged indirectly by

exploiting the transfer of magnetization between both proton pools, which is caused by
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Figure 7: Theoretical transversal intensity relaxation. Intensity is given in arbitrary unit (a.u.).

Figure 8: Alzheimer’s disease (AD) example of skull stripped R2* map. R2* is considered as a measure

of iron content in gray matter and histological and in-vivo studies have shown that brain iron

strongly accumulates, in particular in Alzheimer’s disease (AD) patients when compared to

healthy controls.
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dipolar coupling and chemical exchange mechanisms. In MT imaging, an off-resonance

radio frequency pulse saturates the bound pool magnetization. Subsequent magneti-

zation transfer shifts this magnetization to the magnetic resonance visible “free water

pool”. As a consequence, longitudinal magnetization decreases and causes a reduction

of signal intensity. The degree of the MT induced signal decrease is usually assessed by

the MTR [53, 54]. The MTR scales with the amount of magnetization exchange and with

the extent of the “bound water pool” and is expressed through equation

MTR =
M0 −MSAT

M0
, (46)

where M0 describes the signal intensity of a voxel without radio frequency saturation.

MSAT is the signal intensity of the identical voxel, acquired with the radio frequency

saturation pulse [55, 56]. A common approach to assess global MTR changes is histogram

analysis.

Differences in measured MT between AD patients and NC have been found in [54]. They

conducted a voxel-based study by using non-linear registration and inclusion of a volu-

metric map to minimize partial volume effects resulting from atrophy and subsequent

CSF contamination. The authors identified reduced MTR values in AD patients mainly in

the hippocampus, temporal lobe, posterior cingulate, and parietal cortex. They have

shown that MTR abnormalities in AD occur in a disease-specific pattern, independent of

cortical atrophy. A review for MT imaging is given in [57].

Hence, for this work MTR maps are included for training deep learning classification

networks. The inputs with saturation pulse and without saturation pulse for the

calculation of MTR maps have been acquired with resolution = 0.9×0.9×3 mm3, matrix

= 192×256, slices = 40, echo time = 7.38 ms, repetition time = 40 ms. An example of a

computed MTR map is presented in figure 9.
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Figure 9: Normal control example of magnetization transfer ratio (MTR) map. MTR abnormalities in AD

occur in a disease-specific pattern, independent of cortical atrophy.

5.3 Image Preprocessing

Skull stripping (brain extraction) is an often applied preprocessing step when brain MR

images are used in deep learning classification [15, 58]. The term “preprocessing” is

used to describe image manipulations done before handing the image to the learning

task.

The brain masks necessary for brain extraction were obtained for the MPRAGE images

by executing SIENAX [59] from FSL [60]

sienax <input> -B "-f 0.35 -B",

where the parameter B declares the parameter list encompased in ”-f 0.35 -B” for the

underlying FSL BET2 program, f defines the fractional intensity threshold (values

between 0 and 1) and the second B attempts to reduce image bias and residual neck

voxels. Resulting brain mask is used to create the skull stripped MPRAGE image by

application of FSLMATHS [60]. An example is shown in figure 11.
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All acquired images for each patient are stored in their native image spaces. Thus,

the brain mask obtained from the MPRAGE image cannot be used directly on the other

contrasts. It needs to be transformed to the respective image space. Therefore, the affine

transformation matrices, transforming from each subject’s image space to the subject’s

MPRAGE space, were obtained using FSL FLIRT [60] with mutual-info cost function.

The transformation matrices were inverted and used to create the brain masks from

the MPRAGE brain mask. Because of the different field of view position and resolution

between translation source and target, the translated mask needs to be interpolated on

the target grid. As the mask image only consists of zeros and ones and the transformed

mask should also, the nearest-neighbor interpolation was used.

Image intensity normalization can help speed up the training process. It becomes

even more important when multiple inputs with different scales are feed to a deep

network. Different approaches for normalization have been proposed. Images are often

normalized to their maximum value, giving intensity values between 0 and 1. However,

images are normalized after skull stripping which leaves the normalization result highly

influenced by the quality of the skull stripping process. High-valued voxels can often

be found at the border between brain tissue and background. Moreover, quantitative

image values like in R2* maps should be normalized to the same value to preserve the

inter-subject differences. Hence, all images of the same contrast were normalized to the

same constant value. For R2 maps, R2* maps and MTR maps the constant values were

derived from physiological meaningful brain tissue values in the literature [61, 62]. In

contrast, for MPRAGE and FLAIR images the constants are estimated by inspection of

the cohorts. This normalization method does not guarantee for each image intensity to

be in the range between 0 and 1, but it does for voxels being part of the brain tissue.

Therefore, during training the network should pickup brain features more easily.
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5.4 Networks

The final utilized network is the combination of a classification network and a corre-

sponding heatmap generator. Heatmap generating is not only done after training for

inference, but already during training. This allows for guiding the training process

towards image features inside predefined regions (masks). After training of the com-

bined network, the heatmap generator is also used for computing the final heatmaps

alongside the classifier’s prediction.

5.4.1 Classifier

The classification network uses the combination of a single convolutional layer followed

by a down-convolutional layer as the main building block. The overall classification

network stacks three of those main building blocks before passing the data through

two fully connected layers. Each layer is followed by a ReLU non-linearity, except for

the output layer where a Softmax activation is applied.

5.4.2 Heatmap Generator

Based on the definition of the classification network, the structure of the heatmap gener-

ator is derived. Thus, for every layer in the classifier an explanation layer, implementing

deep Taylor decomposition [27], is added to the generator. The input, weights and

output of the forward layer are shared with the backward layer for efficient memory

usage. Using the shared properties, the explanation layer computes the redistribution of

relevances according to z+-rule in equation 44. For efficient computation it is necessary
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to implement the redistribution as matrix operations rather than as the summation of

the unit-wise calculation. Therefore, the equation is rearranged to

Ri = ∑
j

aiw+
ij

Rj

∑i aiw+
ij

, (47)

where zij has been replaced by its definition aiw+
ij and ai is the ith input to the forward

layer. With ∑i aiw+
ij reducing to aj, the outgoing activation when ReLU is applied. Hence,

the first tensor operation necessary for implementation is

S = Rl+1 � Al , (48)

where S is the intermediate result in the lth layer, Rl+1 the relevance from the higher

layer, Al the activation in the forward layer and � denoting the point-wise division.

Going back to equation 47 and inserting the unit sj from S yields

Ri = ∑
j

aiw+
ij sj. (49)

The summation runs over the jth column of the layer’s weight matrix. Given S is

a column vector it is necessary to transpose the column from the weight matrix to

compute Ri from them. For all Ri this combines to matrix equation

Rl = W>S = W>(Rl+1 � Al), (50)

where W> is the transposed weight matrix of the lth layer. The transposed operation

is very important for deep networks because they are also used during error back-

propagation. In most of the tensor libraries, like TensorFlow [63] or PyTorch [64], this

pairs are implemented for the available operations. The summarized case shows the

use of this pairs for fully connected layers, which are basically matrix multiplications.

For the implementation of this work the second important operation is the convolution.

Hence, for the relevance distribution of a convolutional layer the “transposed convolu-

tion” is applied. The operation is called “transposed convolution” because it transposes
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the given kernel before calculating the convolution. With the matrix equations for

relevance redistribution defined, the heatmap generator layers can be build for all types

of layers used in the classifier.

5.4.3 Relevance-guided Network

By combining the classification and the heatmap generator network, the “relevance-

guided network” is obtained. In overview-figure 10 it can be seen that the network

has two outputs, the classification result and the generated heatmap. The binary cross

entropy loss function is utilizied to train the classifier. It measures how far away the

current prediction is from the correct result. Using only this measure for training

would stear the network to learn any features that helps discriminating between the

two classes AD and NC. This features might not be useful in a diagnostic sense. To

account for that this work proposes a new method to focus the network on relevant

features within masks without directly manipulating the input images. Thus, to guide

the training process, the output of the heatmap generator is used to extend the loss

function of the classifier by

lossrelevance(R, M) = −1>vec(R�M), (51)

where R denotes the relevance, M is a predefined mask, vec(A) denotes the row major

vector representation of A, and 1 is a vector where all elements are set to one. Note,

that the negative sign accounts for the maximization of the relevance, and � denotes

the Hadamard product.
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Figure 10: Overview of the used relevance-guided classification network. A classification network (green)

has been extended with a relevance map generator (blue). For every layer of the classification

network a corresponding relevance redistribution layer is added to the generator network. The

output relevance map of the generator has the same resolution as the R2* map used as input

for the classifier and allows to guide the training of the classification network by adding a term

that sums relevance values inside a given brain mask to the categorical cross entropy loss.
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5.4.4 Training

Development and training was done in three stages. The explainability method LRP

[26] was implemented to get more insight into which regions of the input image are

important for the classifier. The first stage was established because FLAIR images showed

good classification performance. However, obtained heatmaps revealed preprocessing

problems, such as highly “relevant” voxels in the skull, leading to the proposed method

“relevance-guided training”. Thus, in the first stage models were trained with FLAIR

images downsampled to 2 mm isotropic in three configurations:

• FLAIR images in their native subject space without any preprocessing except for

intensity normalization.

• FLAIR images in their native subject space with skull stripping and intensity

normalization.

• FLAIR images in their native subject space without skull stripping, intensity

normalization and the relevance-guided network.

Resulting performance and heatmaps are shown in chapter 6 and encouraged the setup

of the second stage. For the second stage R2* images downsampled to 2 mm with the

following configurations were applied to test if volumetric information contained in

the input images influences the training of the classifier:

• R2* images in their native subject space with intensity normalization.

• R2* images linearly registered to individual subject’s T1 space with intensity

normalization.

• R2* images non-linearly registered to MNI152 with intensity normalization.

For all cases the skull stripping version, that is the standard classification network

with masked input, against the proposed relevance-guided method was trained and
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tested. For the third stage, models for MPRAGE, FLAIR, R2, R2* and MTR images with

their native resolutions were trained with the relevance-guided method only.

5.4.5 Implementation

Developing the networks was done with the Python programming language (Python

Software Foundation, https://www.python.org/) using Keras [65] with the TensorFlow

[63] backend. The implementation consists of the following major parts:

• Input and output: To avoid loading all data sets for training and validation into

the computer’s memory the Keras Sequence class is inherited and implemented.

The Keras framework uses the Sequence implementation to only load data sets

which are currently necessary for processing. Thus, it becomes feasible to train

the networks with the amount of MRI data used in this work. For the Sequence to

work it needs to know where to find the data on the hard disk, which is given as

base path. In the base path are the folders which make up for the classes (AD and

NC). Inside each class are the subject folders, which in turn contain the MRI data

and masks. The MRI data is stored in the NIfTI format (https://nifti.nimh.nih.

gov/) and is read and written with the Nibabel Python package [66].

• Classifier network: Keras provides high level abstractions to the TensorFlow

variables and operations. Networks can be composed with the different available

layer classes. The classifier is implemented with Conv3D, Dense (fully connected)

and Activation layers. To support the applicability of the heatmap generator, a

new Bias layer for the classifier is introduced. The Bias layer is intended to add

the bias parameter to the incoming tensor. To make sense of it, the bias operation

is suppressed in the preceding layers (Conv3D or Dense), making their output

reusable for sharing with the heatmap generator network.
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• Heatmap generator builder: Creating the heatmap generator network is achieved

through a method reversly traversing through the tensor graph of the classifier

network and adding deep Taylor decomposition layers suitable for the visited

layers. The deep Taylor decomposition layers implement the formulation in

equation 50.

• Training: The code responsible for training makes use of the previous three parts,

manages the hyperparameters and the optimizer, saves the parameters after each

training epoch and makes overseeing the training process through TensorBoard

[63], a progress visualizaton tool, possible.

• Inference: The final main part is obliged to load the selected, previously saved

parameters and use them for inference on the test set. The outputs are the class

probabilities and the corresponding heatmap for a test input image.
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Classification accuracies on the test set in table 2 show similiar performance for all three

development stages. However, comparing obtained heatmaps reveals significant differ-

ences in the learned features. The application of skull stripping and image registration

may introduce artifacts and biases into the images, which are picked up by network

during training. The relevance-guided method improved the learned features and lead

to explanations with specific brain regions, which have previously been identified to

significantly differ between AD and NC.

6.1 Preprocessing

In figure 11 a skull stripping result obtained with FSL SIENAX [59, 60] is presented.

The corresponding intensity probability histogram in figure 12 shows that single voxels

with high intensity, compared to the value range of up to 400 with higher probabilities,

remain after applying the brain mask. For comparison the intensity probability of the

same MPRAGE image without skull stripping is shown. These histogram distributions

are similar for all skull stripped MPRAGE images.

Image intensity normalization was done with constants listed in table 1. Constants for

MPRAGE and FLAIR images were defined through inspection of the data cohorts. For
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Figure 11: Skull stripped magnetization-prepared rapid gradient-echo (MPRAGE) image. For skull stripping

FSL SIENAX was used. High intensity voxels remain anterior the brain stem.
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Figure 12: Comparison of intensity propability histograms of magnetization-prepared rapid gradient-

echo (MPRAGE) image with skull stripped MPRAGE image.
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R2, R2* and MTR constants were derived from literature [61, 62] and were verified by

inspection of the data cohort.

Image contrast Normalization value

MPRAGE 450.00 a.u.

FLAIR 1000.00 a.u.

R2 0.02 1/s

R2* 40.00 1/s

MTR 0.50 a.u.

Table 1: Intensity normalization values for used image contrasts.

6.2 Networks

In the resulting classifier’s network architecture all convolutional layers are defined

to have eight kernels with size 3×3×3 each. Additionally the down-convolution layers

have the striding parameter set to 2×2×2. The down-convolution layers replace and

serve as pooling layers, reducing the dimensionality as the data flows through the

network. First fully connected layer contains 16 units, followed by the final fully

connected layer with two units. Weights of all layers were initialized with values from

the Glorot uniform distribution [67], whereas all biases were initialized with zeros. All

biases were constrained to be non-positive to fulfill the requirements for deep Taylor

decomposition.

Adam optimizer [68] with learning rate 0.001 and default parameters was used to

update the parameters during training. Training went on for 300 epochs for all con-

figurations. The data was split up into 354 training, 75 validation and 75 test subjects,
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keeping the class distribution. Current parameters were saved at the end of each

training epoch. Optimal parameters were selected retrospectivly from the list of saved

parameters.

6.3 Classification Performance

The classification performances achieved in the three development stages are presented

in table 2. For stage three the receiver operating characteristic (ROC) curves and the

corresponding area under curve (AUC) are shown in figure 13. To speed up development

the input images used in stages one and two were downsampled to 2 mm isotropic

resolution. The same classifier architecture was used for all configurations. For configu-

rations marked with “relevance-guided”, the classifier was extended with the heatmap

generator. Furthermore, the heatmap generator’s output was used to regularize the

learning task by adding the relevance loss function to the classifier’s loss.

6.4 Heatmaps

Figure 14 shows the computed heatmaps of a patient with AD for all three configurations

of stage one. Presented is an subject, which was correctly classified by all three trained

models. The overlaid brain mask (purple) was obtained from subject’s MPRAGE image

and linearly transformed to subject’s FLAIR space. FLAIR image and brain mask were

downsampled to 2 mm isotropic resolution. The highlighted regions for the model

without skull stripping concentrate outside of the brain (green), whereas the focused

regions of the model with skull stripping (blue) are at the border of the brain mask. The

map from relevance-guided training (red) on the other hand shows relevant regions

inside the brain, in the presented case it might be interpreted visually as a combination
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Stage Configuration Accuracy

1

FLAIR, native space 87 %

FLAIR, native space, skull stripped 85 %

FLAIR, native space, relevance-guided 85 %

2

R2*, native space, intensity norm., skull stripped 80 %

R2*, native space, intensity norm., relevance-guided 82 %

R2*, lin. reg. MPRAGE, intensity norm., skull stripped 82 %

R2*, lin. reg. MPRAGE, intensity norm., relevance-guided 86 %

R2*, nonlin. reg. MNI152, intensity norm., skull stripped 82 %

R2*, nonlin. reg. MNI152, intensity norm., relevance-guided 82 %

3

MPRAGE, native space, intensity norm., relevance-guided –

FLAIR, native space, intensity norm., relevance-guided 94 %

R2, native space, intensity norm., relevance-guided 90 %

R2*, native space, intensity norm., relevance-guided 83 %

MTR, native space, intensity norm., relevance-guided 88 %

MPRAGE, native space, intensity norm. 77 %

MPRAGE, native space, intensity norm., skull stripped 74 %

Table 2: Comparison of classification performances on the test set for all three stages. For stage one and

two the images were downsampled to 2 mm isotropic and accuracy was calculated for the class

threshold of 0.5. Accuracy for stage three was calculated for the class threshold obtained with

Youden’s index [69]. Training with magnetization-prepared rapid gradient-echo (MPRAGE) in stage

three was not successful.
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R2, nat. sp., int. norm., rel.-guid. (AUC = 0.94)
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T1, nat. sp., int. norm., sk. strip. (AUC = 0.77)

Figure 13: The receiver operating characteristic (ROC) curves for training stage three. Vertical dashed black

lines between black points mark Youden’s index [69].
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Figure 14: FLAIR image of a patient with Alzheimer’s disease overlaid with the brain mask (purple).

Additionally shown are the relevance maps obtained by the model without skull stripping

(green), the model with skull stripping (blue) and the relevance guided model (red). Relevance

maps are presented normalized to the maximum value.

of ventricle atrophy and white matter hyperintensities. Relevance maps are presented

normalized to the maximum value and normalized relevances above a threshold of 0.1

are shown.

The second stage was setup to test for volumetric information contained in all images.

Models were trained on native R2* maps, R2* maps affinely registered to subject’s

MPRAGE image and R2* maps non-linearly registered to MNI152 template. For all three

configurations the version with skull stripping, that is the standard classification net-

work with masked input, against the proposed relevance-guided method is compared.

All obtained mean heatmaps in figure 15 are presented in MNI152 template space.

Most important features for skull stripped version are found at the brain-skull inter-

face region for all three configurations (yellow overlays). In contrast, mean heatmaps

for relevance-guided method show relevant regions within brain tissue, with most

identified features concentrated in the basal ganglia region (red-orange overlays).

For the final stage MPRAGE, FLAIR, R2, R2* and MTR images were used for training

with the relevance-guided method. As stated in table 2, training with MPRAGE images

did not converge and therefore no classification performance is reported. Training the
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Figure 15: Mean of relevance maps from all patients and controls in the test set obtained by the relevance-

guided model (red-orange) and the model with skull stripping (yellow) trained on (A) native

R2* maps, (B) R2* maps affinely registered to MPRAGE sequence, (C) R2* maps non-linearly

registered to MNI152 template. Mean maps are overlaid on MNI152 template. To speed up the

training process all data was downsampled to 2mm isotropic resolution.
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Figure 16: Mean of relevance maps obtained by the classifier model trained with magnetization-prepared

rapid gradient-echo (MPRAGE) images (red-orange) overlaid on MNI152 template. Identified

features concentrate at the skull.

Figure 17: Mean of relevance maps obtained by the classifier model trained with skull stripped

magnetization-prepared rapid gradient-echo (MPRAGE) images (red-orange) overlaid on MNI152

template. Identified features concentrate on skull stripped border regions.

classifier without relevance-guiding on MPRAGE images in native space yields mean

heatmaps overlaid on MNI152 template in figure 16 for the configuration without skull

stripping and figure 17 for the configuration with skull stripping. Features concentrate

in brain border regions, which is even more obvious for the AD subject in figure 18,

created with the model with skull stripping. Indicated regions are concentrated at the

brain mask border.

In contrast, relevance-guided models trained with FLAIR, R2, R2* and MTR achieve high

accuracies and the computed mean heatmaps in figure 19 indicate regions with high

importance inside the brain.
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Figure 18: Relevance map obtained by the classifier model trained with skull stripped magnetization-

prepared rapid gradient-echo (MPRAGE) images (red-orange) overlaid on subject’s MPRAGE

image with brain mask (blue). Identified features concentrate at skull stripped border regions.
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Figure 19: Mean of relevance maps (red-orange) obtained by the relevance-guided model trained with

(A) fluid-attenuated inversion recovery (FLAIR) images, (B) R2 maps, (C) R2* maps and (D)

magnetization transfer ratio (MTR) maps overlaid on MNI152 template. The regions of highest

relevance are found in the brain parenchyma.
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This chapter analyzes and discusses the chosen network design, the achieved perfor-

mances and the obtained heatmaps. Furthermore, the proposed method “relevance-

guided training” is reviewed. Thereby the development framework and occured issues

are examined. Finally, the chapter closes with prospects and recommendations for

further work.

7.1 Networks

Designing deep learning networks is restricted by the memory available for training.

The development was done on a single GPU with 12 GB of memory. Extending the

classifier with the heatmap generator nearly doubles the necessary memory amount

for the overall network, because for every layer in the classifier a corresponding

redistribution layer in the heatmap generator is added. The heatmap generator has no

trainable parameters on its own but shares the parameters with the classifier. Thus,

the additional memory need is caused by intermediate computation results in the

network graph and the gradient information. Furthermore, updating the network’s

parameters is done with a stochastic algorithm only taking a batch of input images

into account at a training step. The consumed memory amount linearly increases with

the batch size. Nevertheless, the batch size was set to eight to get good estimations of
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the gradient and a smooth minimization progress of the loss function. Another design

restriction is imposed by the 3-D nature of the used images, which inherently have a

higher memory demand compared to the more common case of 2-D data. This becomes

even more evident with the applied convolutional layers and their outputs. Each layer

defines the count of output channel it produces, where each channel is again a volume.

The volumes have the same dimensionality as the input volumes unless striding is

defined. Striding is used to reduce the output dimensionality by shifting the kernel

of the convolution operation not by only one unit but by the striding size. A striding

size of 2×2×2 reduces the output size by half in each dimension, resulting in 1/8 of

the size of the input volume. For the classifier convolutional layers with this striding

setting were used instead of pooling layers because relevance redistribution with a

defined gradient can be more easily implemented for convolutional layers. Given all

these criterions, the kernel size for the convolutional layers were chosen to be 3×3×3.

Also the channel count was fixed to eight for these layers, which should be high enough

to capture image features but helps to reduce the memory burden. Subsequent fully

connected layer was designed to have 16 units in order to reduce memory need but

also to help avoid overfitting during training with fewer trainable parameters.

The heatmap generator network is created dynamically by inspection of the classi-

fication network. In order to do so, the classifier’s output tensor is used to identify

the network layer it descended from. As the identified layer knows about its input

tensor, through repeating this procedure the classifier graph can be reconstructed in

reverse. From the gathered information the combination of the redistribution layers

are derived. Each redistribution layers receives access to the corresponding forward

layer, allowing for parameter sharing and an optimized implementation of the formula-

tion. Tensors computed in the classifier’s layers are reused in the redistribution layers

whereever possible. The deep Taylor decomposition method was chosen because of

the computationally fast way it can be implemented. The TensorFlow framework [63]
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provides tensor operations and the corresponding gradient operations. These gradi-

ent operations are used making it feasible to create the heatmaps during training in

reasonable time. On the other hand, gradient operations for these applied gradient

operations need to be defined too, to allow for usage during training. Meaning the

second derivative of the central tensor operation in each layer in the classifier needs

to be defined. Furthermore the second derivative has to be unequal to zero because

otherwise the error back-propagation would become zero too and divisions by zero

would occur. The theorectical framework of deep Taylor decomposition implies the

usage of the ReLU activation function throughout the network and constraints biases to

be negative. Implementations for this work comply with these recommendations.

7.2 Classification Performance

The classification performances for all configurations are summarized in table 2, show-

ing most resulting accuracies between 80 % and 88 %. Achieved accuracies do not

compete with the high accuracies of up to nearly 100 % reported in [16, 15, 70]. In their

review [16] Jo et al. pointed out issues with generalizability and reproducability. Results

are highly dependant on the used data sets, where subjects might be preselected. In

contrast, a data set acquired consecutively from patients with AD at the outpatient clinic

of “Department of Neurology, Medical University of Graz, Austria” was used for this

work.

Nevertheless, configurations with relevance-guiding show comparable or even better

classification performance as configurations without it. Highest classification accuracy

and highest ROC-AUC value (figure 13) were accomplished in stage three with relevance-

guiding and FLAIR images. With the high contrast between the ventrical system and

surrounding brain tissue in FLAIR images, brain atrophy is the most probably feature
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picked up by the network. The mean heatmap for this configuration in subfigure A of

figure 19 highlights regions near the occipital horn of the lateral ventricels. On the other

hand, no classification performance is reported for the configuration with relevance-

guiding and MPRAGE images in stage three because trainings were not successful. This

might be because no discriminative features inside the brain could be learned by the

network and suitable features are outside the brain. Hence, for comparison training

sessions using only the classification network and MPRAGE images without and with

skull stripping were done and yielded 77 % and 74 %. Trainings did converge with

classification accuracies comparable to the other MR imaging modalities but heatmaps

in figures 16, 17 and 18 reveal that learned features concentrate at the skull or the

border of the brain mask. The learning process seems to be highly influenced by the

skull stripping algorithm.

7.3 Heatmaps

Comparing the mean heatmaps for all configurations of stage one in figure 14 depicts

how skull stripping influences the learned features of the network. Avoiding skull strip-

ping renders learned features outside of the brain, at the skull, whereas skull stripping

introduces new features used by the network. Introduced features concentrate at the

border of the brain mask. This might be due to the exploition of the volumetric informa-

tion incorporated by skull stripping. In contrast the relevance-guided method extracts

features inside the brain, most likely a combination of brain atrophy and white matter

hyperintensities. In order to test for the volumetric influence, the configurations in stage

two were designed with different registration strategies and R2* maps. Again, for all

registrations in figure 15 the relevant regions for classification with skull stripping are at

the border between brain and background. For the non-linear registration configuration
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the same MNI152 brain mask was applied on all subjects for skull stripping. Hence, all

registered brains have the same volume and other features should have been learned

by the network. Since this is not the case, the source of this effect remains unclear,

however it was demonstrated that brain extraction algorithms can be biased by the

patient cohort [71]. In contrast, when using the proposed relevance-guided approach

and independently of preprocessing, the regions of highest relevance were found in the

basal ganglia and the dentate nucleus. R2* is considered as a measure of iron content

and histological and in-vivo studies have shown that brain iron strongly accumulates in

these regions, in particular in AD patients when compared to NC [52]. Mean heatmaps

in figure 19 obtained in the third stage show highly relevant features to be inside the

brain. Positions of the features are in good agreement with AD studies [49, 50, 11, 54].

The reported accuracies paired with the per subject explanations make FLAIR, R2, R2*

and MTR images suitable for the classification task. However, relevance-guiding with

MPRAGE was not successful, an issue to be investigated in ongoing research. Avoiding

skull stripping yielded important regions for classification at the skull shown in figure

16. Also using skull stripping for MPRAGE images again resulted in focusing on border

regions between brain and background shown in figures 17 and 18.

7.4 Relevance-guided Training

In order to guide the training process the generated heatmaps are incorporated into

the overall networks loss function. In equation 51 the heatmap generator output is

multiplied with a predefined mask. The sum over the masked output is a measure for

how much information inside the mask was relevant to the current prediction. With

a softmax activation at the last layer of the classification network and the relevance

conservation rule defined by the LRP framework the total relevance in the output is
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always one. Hence, the amount of relevance inside and outside of the mask can be

viewed as percentages. In this work the relevance loss function is designed to maximize

the amount of relevance inside the mask. It is also possible to minimize the relevance

outside of the mask. In fact, experiments trying to minimize the relevance outside of

the mask did not come up with results as good as with the maximization approach.

This might be due to the objections of the two loss functions. Whereas the binary

cross entropy loss function encourages to find features in all regions of the input

image, the minimization of relevance outside the mask hinders finding features. On the

other hand maximizing relevance inside the mask encourages the search for features

instead. However, the reasons for this behavior remain unclear and are up to further

investigations.

7.5 Development Framework

With the introduction of Keras [65] creating deep learning networks became faster

as the framework deploys a well structured application programming interface (API).

New custom network layers can easily be developed and integrated. The training

process itself is provided by the Keras engine. Keras was developed as a frontend and

abstraction to multiple tensor libraries such as TensorFlow [63], Theano [72], CNTK

[73] and NumPy [74]. As of now Keras is fully integrated in TensorFlow, superseding

their initial approach of abstractions. Further development only happens within the

TensorFlow project. The TensorFlow 1 backend used for this work has a big drawback.

It enforces a “define and run” paradigm, where the whole graph has to be defined

before it is run. Errors are therefore hard to debug as they mostly occur during runtime.

A dedicated TensorFlow debug session can be used which enables defining break rules.

If a rule criterion is met, the process is interrupted and analysis can be done with
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special instructions on the command line. To overcome this problems the tensor library

PyTorch [64] provides an imperative and a graph approach. Also eager execution, an

imperative environment, was added to TensorFlow with the release of version 2. To

make use of the imperative environment, the code for this work needs to be ported and

adapted to the changes between TensorFlow version 1 and 2.

7.6 Conclusion

This work introduces a novel relevance-guided classification network for the task of AD

classification. The network allows to focus on predefined image regions, presently brain

tissue. The method incorporates brain masks into a term of the loss function during

training, which eliminates the dependency of the prediction on the quality of those

masks and consequently also offers the possibility to identify anatomical regions at a

subject-level relevant for the classification decision.

The results of this explorative work demonstrate that the preprocessing of MR images is

crucial for the feature identification by DNNs. Additionally, it shows that skull stripping

is necessary to avoid identification of features outside the brain. However, this may

introduce new features at the edge of the brain mask, which are subsequently used

by the DNN for classification. The source of the newly introduced features remains

unclear, but volumetric information might play a role in this. In contrast, when using

the proposed relevance-guided approach and independently of preprocessing, the

regions of highest relevance were found in the brain parenchyma and in anatomical

more plausible regions, which were also found in histological and neuroimaging studies

in patients with AD.

FLAIR, R2, R2* and MTR images are identified to be suitable for AD classification with
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deep learning models. In conclusion, the results are in good agreement with findings

from iron mapping studies and strongly support the hypothesis that the relevance-

guided approach is minimizing the impact of preprocessing steps such as skull stripping

and registration.

7.7 Summary and Further Work

In conclusion, this work demonstrated that classification in neurological disorders

by using deep learning approaches heavily depends on the preprocessing of the

MR images. Even more importantly, background features that are unrelated to the

underlying pathology such as the brain extraction algorithm or voxels in the skull are

not only contributing but highly relevant for the disease classification decision.

While most of the present work did not investigate and consider these aspects, the

aforementioned issues are of high importance for deep learning based AI systems, to

potentially become part of automated clinical diagnostic processes in future.

The results of this work raised a series of follow-up questions and more investigations

about the heatmaps have to be conducted for a better understanding of deep learning

based decision making. While the positions of the classification-relevant regions in

these maps were histologically plausible, an interpretation about shape or texture is

lacking and remains an open research issue. Also the proposed relevance loss function

needs further systematic analysis. Additionally, as relevance-guiding is memory-heavy,

only one image contrast was used per configuration. However, investigating multi-

ple contrasts is promising because of the biophysically different and complimentary

contrast generation mechanisms in MPRAGE, FLAIR, R2, R2*, and MTR. In this context,
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7 Discussion

it is not unexpected that combining these quantitative MRI parameters could (i) sub-

stantially improve the classification accuracy, (ii) will allow the identification of novel

pathology-induced features beyond the current knowledge and (iii) also might reveal

which MRI parameters are valuable for disease classification in a clinical setup with

limited MRI scanning time.
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