
Lindenbauer Dominik, BSc

Integrating Confidential Transactions
into Distributed Ledger Technologies

Master’s Thesis

to achieve the university degree of
Diplom-Ingenieur

submitted to
Graz University of Technology

Supervisor
Dipl.-Ing. Daniel Kales BSc.

Univ.-Prof. Dipl.-Ing. Dr.techn. Christian Rechberger

Institute for Applied Information Processing and Communications

Faculty of Computer Science and Biomedical Engineering

Graz, April 2020

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the used
sources.

Graz,

Date Signature

ii

Abstract

The interest in cryptocurrencies has significantly increased in the last couple
of years, and with it also the various other applications of blockchains have
become more prominent. One of the main differences of cryptocurrencies to
conventional systems is that no dedicated authority, usually in the form of
banks, is required. Distributed ledger-based systems are administered by their
underlying data-structure, the blockchain.
Similar to account numbers, users are identified by a unique value called address.
Users may transfer their assets to any other user by proposing transactions to
the system, which can then be verified by anyone with access to the blockchain
at a later point in time.
Due to the fact that the blockchain is public, a curious party can gather
information about transferred amounts and balances of different users, even
though their identities are unknown. Hence such systems trade the necessity of
a central authority with the user’s confidentiality.
In this thesis, we will describe how distributed ledger-based payment systems
can be enhanced in a way such that no sensitive information needs to be stored
on the ledger in plain text anymore.
We show how cryptographic primitives, such as encryption schemes and zero-
knowledge proofs, can be used to construct a confidential transaction protocol.
Our protocol then allows users to transfer their assets secretly to others without
disclosing any sensitive information, while the fundamental concept of public
verification is preserved.

iii

Kurzfassung

Das Interesse an Kryptowährungen ist in den letzten Jahren immer mehr
gestiegen, dabei wurden auch andere Anwendungsmöglichkeiten von Blockchains
abseits von Währungen diskutiert. Eine der größten Unterschiede von Krypto-
währungen zu konventionellen Währungssystemen ist, dass keine zentrale Ver-
waltungsbehörde, normalerweise in der Form von Banken, benötigt wird.
Systeme die auf einem verteilten Register beruhen verwalten sich eigenständig
durch die Verwendung von Blockchains.
Ähnlich wie mit Kontonummern sind auch Nutzer in solchen Systemen durch
einen eindeutigen Wert, hier Adresse genannt, identifiziert. Benutzer haben
weiters die Möglichkeit Beträge an Dritte zu überweisen, indem sie Trans-
aktionen an das System schicken. Diese können dann von jedem mit Zugriff
auf das Register zu einem späteren Zeitpunkt verifiziert werden.
Infolgedessen, dass die Blockchain öffentlich erreichbar ist, kann ein Benutzer
mit böswilligen Absichten sensible Informationen, wie Beträge und Kontostände,
vom Register ableiten auch wenn die tatsächlichen Identitäten verborgen bleiben.
In diesen Systemen wird also die Abwesenheit einer zentralen Verwaltung mit
der Geheimhaltung von Nutzerinformationen getauscht.
In dieser Arbeit wird beschrieben, wie verteilte Währungssysteme verbessert
werden können, sodass keine sensiblen Informationen mehr einsehbar sind. Es
wird gezeigt wie kryptographische Primitive, wie Verschlüsselungen und Zero-
Knowledge-Beweise, verwendet werden können um ein geheimes Überweisungs-
protokoll zu definieren. Das entwickelte Protokoll erlaubt es Benutzern Beträge
geheim an andere zu überweisen, während dabei das grundlegende Prinzip der
öffentlichen Verifikation erhalten bleibt.

iv

Contents

Abstract iii

Kurzfassung iv

1 Introduction and Ledger Overview 1
1.1 Ledger Description . 2

1.1.1 UTXO . 2
1.1.2 Account Model . 3
1.1.3 Ledger . 3
1.1.4 Asset Transfer . 5

1.2 Changes for a Confidential Distributed-Ledger 6
1.3 Contributions of this Thesis . 8
1.4 Outline . 9

2 Preliminaries 10
2.1 Abstract Algebra . 10
2.2 Elliptic Curve Cryptography . 11
2.3 Diffie-Hellman Problem . 12
2.4 Cryptographic Hash Function 13
2.5 Blockchain . 14
2.6 Public-Key Encryption . 15

2.6.1 ElGamal . 16
2.6.2 Elliptic Curve ElGamal 17
2.6.3 Homomorphic Property of Elliptic Curve ElGamal 18

2.7 Commitment Scheme . 19
2.7.1 Pedersen Commitment 20
2.7.2 Elliptic Curve Pedersen Commitment 20

2.8 Discrete Logarithm Recovery . 21
2.8.1 Babystep-Giantstep . 22

v

Contents

2.9 Zero-Knowledge . 22
2.9.1 Σ-Protocols . 27
2.9.2 Range-Proofs . 29
2.9.3 Bulletproofs . 30

2.10 Digital Signature Scheme . 35
2.10.1 Schnorr Signature . 36

3 System Setting 38
3.1 Cryptographic Setting . 38

3.1.1 Homomorphic Cryptosystem 38
3.1.2 Convincing . 40

3.2 System Parts . 40
3.3 Additional Properties . 42

4 Confidential Transaction Protocol 43
4.1 Spender . 43

4.1.1 Amount Representation 44
4.1.2 Encrypt Transaction Amount 44
4.1.3 Commit to Amount . 45
4.1.4 Proof of Equality . 45
4.1.5 Positive Amount Proof 51
4.1.6 Quantity Proof . 52
4.1.7 Re-Encrypt Balance . 54
4.1.8 Sign Transaction . 57
4.1.9 Send Transaction . 58

4.2 Verifier . 59
4.2.1 Address Verification . 59
4.2.2 Signature Verification . 60
4.2.3 Proof Verifications . 60
4.2.4 Update World State . 62

5 Implementation Results 64
5.1 General Setting . 64
5.2 Implementation Framework . 65
5.3 Evaluation Results . 65
5.4 Transaction Size . 68
5.5 Graphical Demo . 71

vi

Contents

6 Conclusion and Further Work 74

Bibliography 77

vii

List of Figures

1.1 A common blockchain structure. 4
1.2 Balance update in the account model setting. 5

2.1 Schnorr’s protocol: Proof of discrete logarithm. 25
2.2 Schnorr’s identification protocol. 27
2.3 Vector shrinking for inner product arguments. 32
2.4 Inner product argument scheme. 32

4.1 Proof of equality of ElGamal cipher-text and Pedersen commit-
ment. 46

4.2 Quantity proof scheme. 54
4.3 Encryption equivalence scheme. 56
4.4 Verification process. 61
4.5 VerifyEncryption subroutine. 62
4.6 VerifyRange subroutine. 62
4.7 VerifyEquivalence subroutine. 63

5.1 Interface to construct and send transactions. 71
5.2 Illustration of a constructed confidential transaction. 72

viii

List of Tables

5.1 Bulletproof: Construct EC Operations. 66
5.2 Bulletproof: Verify EC Operations. 66
5.3 Equivalence Proof: EC Operations. 66
5.4 Encryption Proof: EC Operations. 67
5.5 Construct Transaction: EC Operations. 67
5.6 Verify Transaction: EC Operations. 67
5.7 Static sizes of transaction parts. 69
5.8 Range Proof sizes depending on input bit-width. 69
5.9 Transaction sizes depending on balance and amount bit-width. . 70

ix

1 Introduction and Ledger
Overview

Today there exist a lot of crypto-currencies such as Bitcoin [Nak08], Ethereum
[But14], Monero and many more. The interest in these technologies has also
significantly grown in the last couple of years, especially due to the increasing
presence in the media.
In contrast to other currency systems, crypto-currencies do not require a central
authority because all necessary information about the users balances is stored
in an immutable data-structure. Taking proven solutions into account, the first
choice for storing this information is almost always a blockchain.
Users may transfer amounts of assets to another party by proposing transactions
to the system. For this purpose users are identified by a unique value called
an address, similar to an account number. Another significant difference to
traditional digital payment systems is that anyone who has access to the
blockchain may verify new transactions. The blockchain is distributed among
all users, so everyone holds a copy of it. A valid transaction will cause a state
change, which needs to be broadcast to all participants, so that everyone is
kept up to date. Anyone with access to the current state is then able to replay
all occurred transactions to verify that everything is correct and consistent.
By this design an honest but curious party may be able to track a users activity
even though the identities behind these addresses are unknown. At a later point
in time an account may be linked to a person, which leads to a total break of
privacy.
Another problem would be that if a user receives his salary by blockchain-
transactions, his landlord is able to see/track this persons salary and as an
effect may charge more rent.

1

1 Introduction and Ledger Overview

A distributed-ledger based asset system consists of the following actors:

1. Users: Users hold assets and can transfer them to other users by proposing
a transaction. A user is identified by a unique value called an address.

2. Nodes: Nodes verify the validity of these transactions, and will on success
add them to the ledger. If the system allows it, users are also able to act
as nodes.

The goal of this thesis is to describe a transaction protocol that enhances
the confidentiality of users by disabling the possibility of deducing sensitive
information with a focus on the transferred amounts.

1.1 Ledger Description

There exist multiple design options for a distributed ledger, which mainly differ
in how transactions are handled and also in the information stored in every
block. Standard transaction models are the UTXO1 and the account model.
The most prominent distributed ledger system using the UTXO approach is
Bitcoin. Ethereum [Woo17] [But14] on the other hand is a representative using
the second approach. In the following, we will briefly describe the ideas of both
principles.

1.1.1 UTXO

Transactions in the UTXO approach are defined in the following way: they
consist of transaction-inputs and transaction-outputs; outputs describe the
receivers and inputs are references to previous outputs. The balance of a user
is implicitly stored on the ledger and is defined by the sum of all unspent
transaction outputs. A transaction output is considered unspent, if it has not
been referenced by any transaction input. Users may only spend outputs which
belong to them. Projecting this approach into the real world, transactions in
the UTXO model could be seen as paper bill transactions. Every user possess
a wallet holding multiple bills. When a user wants to spend money, he needs

1Unspent transaction output.

2

1 Introduction and Ledger Overview

to use enough bills to cover the expense and may also receive some change in
return.
To make this process more clear consider the following example: a user owns
two outputs with a respective amount of 5 and 7. To now compose a transaction
with an expense of 8 he declares both outputs as transaction-inputs and defines
two new outputs. One of this outputs sends 8 coins to the recipient and the
other one, which defines the change, defines the spending user as receiver.

1.1.2 Account Model

The account model, like used in Ethereum [But14], is a more intuitive approach
because it is similar to how banks handle digital transactions. Transactions
will be proposed to the verifiers, which will then check that the spending
party’s balance is large enough and that the receivers account exists. When all
requirements are fulfilled, the authority will update the involved balances.
In this setting, a transaction could be seen as a global state change, where
the balances of all users define the current state. In contrast to the UTXO
model described before, the account model is more ore less an analogy to
the credit/debit card system banks use. However, the bank setting requires a
third party, which needs to be trusted by all users. In the distributed ledger
setting, no central authority is needed because everyone will be able to check
the integrity of the current state by replaying all occurred transactions.
For the rest of this thesis, we will consider the account model as the reference
transaction approach2.

1.1.3 Ledger

In the setting of a distributed ledger-based payment system, almost always, a
blockchain is used to keep track of the current system-state. A blockchain is
essentially a single linked list, where each entry or block holds a reference to the
previous one in the list, as depicted in Figure 1.1. The list itself is designed in
a way, s.t once a block has been inserted it cannot be deleted anymore without

2Keep in mind that all descriptions may be adapted to also work with a UTXO based
transaction system.

3

1 Introduction and Ledger Overview

destroying the list. Due to the immutability of the list, a blockchain may be
used to store system information which is then protected against tampering by
design. A more detailed explanation on how this data-structure can be utilized
in the case of a payment system will be described in section 2.5

Figure 1.1: A common blockchain structure.

In the following we will shorty revisit the general parts of a distributed ledger-
based payment system:

• To keep track of the current state a blockchain, as described above, is
used.

• As previously stated a distributed ledger-based payment system defines
two actors: Users and Nodes. Users are the actual owners of the assets,
and nodes will take care of the transaction verifications.

• A transaction is a message, which proposes a state transfer. When Alice
wants to engage an asset transfer with Bob, she will send a message
saying: “I Alice want to transfer n units from my account to Bob’s”, to
the nodes. Consider a more practical example:
At the current state Alice holds 10 and Bob holds 5 units. Alice wants
to transfer 5 of them to Bob; she will compose a transaction holding
this information and sends it to the nodes. One of the nodes will verify
that Alice has enough units and the claimed spending account is actually
owned by her3. If the verification succeeds, the nodes will execute a state
transfer by updating the balances of Alice and Bob.

3In addition also other checks may be necessary, which will be described in later sections.

4

1 Introduction and Ledger Overview

1.1.4 Asset Transfer

Transactions are messages which transfer assets from the spending account
to the receiver’s. As with conventional digital money transfers the following
conditions must hold:

• A user may only transfer as many assets as he currently posses. This
statement is equivalent to the inequality b ≥ a, where a denotes the
amount to be transferred, and b denotes the current balance of the
spender.

• The spender must prove the ownership of the sending account; otherwise,
every user would be able to propose transactions from any other account.

User accounts are stored on the system; a valid transaction will lead to a state
change by updating the involved balances. An illustration of the balance update,
regarding the account model, can be found in Figure 1.2.

Address: abcd
Balance: N

Account
Address: efgh
Balance: M

Account
Transaction
Amount: a

Address: abcd
Balance: N - a

Account
Address: efgh
Balance: M + a

Account

- +
Update Update

from to

Figure 1.2: Balance update in the account model setting.

5

1 Introduction and Ledger Overview

1.2 Changes for a Confidential
Distributed-Ledger

With this basic structure described in section 1.1, we will now propose some
necessary adaptions for a confidential distributed ledger-based payment sys-
tem.

In the basic design, the amounts involved in a transaction are represented in
plain form, which allows nodes to check the transaction validity. In a confidential
setting no information about the amounts should be disclosed in any form,
neither direct nor indirect, hence all sensitive information must be obfuscated,
but should still be recoverable later. Due to this requirements one would quickly
think about the use of encryption schemes. These schemes allow one to hide
information in a sense that only parties holding a secret key will be able to
recover the plain information again.

There exist two main type of encryption schemes: symmetric and asymmetric. In
a symmetric setting the same key is be used during encryption and decryption.
In the setting of a crypto-currency this would mean that every user would need
to hold a symmetric key with every other user of the system; otherwise a user
will not be able to verify the validity of a proposed transactions from another
party, which clearly destroys the possibility of public verifiability. The effort of
key exchange and key revocation makes this approach highly impractical for
this setting. In addition every user would than be able to decrypt every amount
of every transaction, which would have the same effect as using no encryption
at all.
An asymmetric cipher on the other hand works as follows: the scheme is defined
by two different keys, a private and a public part. The public part is used for
encryption and the respective private counter-part is used during decryption.
Such a scheme allows one to encrypt information for a dedicated recipient. This
approach is way more practical compared to the symmetric approach, because
every user only needs to hold one key-pair instead of a list of keys, which could
grow really large.
When projecting this idea into our setting, this would mean that a spender will
be able to encrypt the transferred amount with the receivers public-key, but
another significant problem arises: with this approach only the receiver will be
able to decrypt the amount again, which further destroys the paradigm of public

6

1 Introduction and Ledger Overview

verification. Also the users balances will not be updatable without decryption.
A transaction protocol should preserve the ability of public verifiability, while
at the same time no decryption during the process is required.

Even though this idea looks quite impractical at first glance, there exist cryp-
tosystems which suite these requirements. They allow one to perform defined
operations on encrypted values, yielding valid encryptions of the operation
performed on the plain values, without the necessity of decryption. Encryption
schemes which allow this fall into the group of homomorphic-encryption
schemes. A more detailed explanation of these schemes and why they are useful
in our setting, will be presented in later parts of this thesis.

The amounts are now represented in a way where no information about the
plain value can be deduced anymore, while still allowing dedicated operations.
The use of a homomorphic public-key encryption scheme solves the problem of
sensitive information disclosure, but creates a new one: by definition cipher-texts
do not leak anything about the enclosed plain values, so a classic verification
without decryption will not be possible anymore.
To still allow public verification of transactions, encryption must be combined
with another cryptographic primitive that allows one to prove the truth a
statement, while the secret remains hidden.

Proof of Knowledge We previously stated that encryption alone will not
be sufficient enough to fulfill all of the predefined requirements. In addition
to an encrypted amount, also cryptographic proofs need to be present in a
transaction. The necessity of such proofs is a significant difference compared to
the basic design of a distributed ledger-based payment system.

Recap the actual verification process: the integrity of the ledger is preserved by
validating that the spender is actually in possession of the assets and that the
spending account’s balance is large enough.
In the classical design, the balance verification is trivial, because all amounts
are available in clear text. When considering the confidential design, the nodes
will no longer be able to check this property by performing a simple comparison.
As a result another way of describinp and verifying these properties needs to
be found. This is where proof systems come into play.
A cryptographic proof-protocol consists of two parties: the prover and the

7

1 Introduction and Ledger Overview

verifier. The prover wants to convince the verifier that a given statement is true
without disclosing any other information than the truth of the statement.
Appropriate proof-schemes can be used to prove statements of arbitrary com-
plexity, which will fit our requirements. By utilizing such proof-schemes, the
spender can prove that the spent amount is smaller than his current balance,
without disclosing these values.
The basic approach of these schemes is usually built on the challenge-response
paradigm, which requires interaction of both parties. The possibility of verifica-
tion at a later point in time should be preserved, so the used protocol must be
non-interactive, otherwise spender and receiver need to be online at the same
time.
However the chosen proof system should be capable of efficiently expressing
all required statements; in our case non-interactive Σ-protocols will be used,
which will be described in subsection 2.9.1.

1.3 Contributions of this Thesis

In this thesis, we will describe how homomorphic cryptosystems, such as ElGa-
mal [ElG85] and Pedersen-commitments, [Ped92] can be used in combination
with zero-knowledge protocols to describe a confidential transaction protocol.
We used self-developed and established Σ-protocols to define a confidential
transaction protocol that satisfies all of the required constraints. For integrity
protection, we defined a scheme that builds upon bulletproofs [Bün+18], and
ensures that no malicious transaction will result in a valid verification.To ver-
ify the utility of our protocol, we also provide a library implementation in
C/C++.

8

1 Introduction and Ledger Overview

1.4 Outline

The upcoming parts of this thesis are structured in the following way: in
chapter 2 we will discuss the cryptographic background; in this context also all
necessary primitives will be presented. Chapter 3 defines the general system
framework on which the protocol specification presented in chapter 4 will be
based on.
In chapter 5 we present our implementation results, regarding the computational
overhead compared to a basic transaction protocol. The last chapter of this
thesis concludes our work and describes which directions future work could
look into.

9

2 Preliminaries

In this section, we will discuss all necessary cryptographic primitives and their
preliminaries.

2.1 Abstract Algebra

Some of the upcoming primitives will build upon concepts of abstract algebra.
In the following we will describe the basic parts:

Definition 2.1.1 (Group). A Group G is a set which is closed under an
operation ×, so ∀a, b ∈ G : a× b ∈ G holds. Additionally a group satisfies the
following properties:

Associative : ∀a, b, c ∈ G : a× (b× c) = (a× b)× c
Identity: ∃e ∈ G,∀a ∈ G : a× e = a.
Inverse: ∀a ∈ G,∃a−1 ∈ G : a× a−1 = e.

The “power” gn, for an element g ∈ G, is defined by applying the group operation
n times to g e.g. gn = g × g...× g︸ ︷︷ ︸

n times

.

Consider a practical example: Set G = (Z∗11, ·), with Z∗11 = {1, ..., 10} denoting
the set of integers modulo 11 without 0, and g = 2 ∈ G. By applying the group
operation multiple times to g, we observe that every other element x ∈ G can
be represented as such a power: 2 = 21, 3 = 28 (mod 11), ..., 10 = 25 (mod 11).
The order of a group G, denoted as |G|, describes the number of elements in
the group. Following this a cyclic group is defined as:

Definition 2.1.2. A Group G is called cyclic if there exists an element g ∈ G
s.t. every element x ∈ G can be represented as a power of g.

10

2 Preliminaries

For our purposes we will need to operate on groups of large prime order p.
Furthermore a group is called an abelian group if a×b = b×a for every a, b ∈ G
holds. Additionally consider the definition of a field F:

Definition 2.1.3 (Field). A field F is a set which is closed under two operations
·,+. Additionally F satisfies the following properties:

1: F is an abelian group under +
2: F \ {0} is an abelian group under ·

According to the field definition a finite field is defined as follows:

Definition 2.1.4 (Finite-Field). A field F which contains finitely many ele-
ments.

The number of elements in a field is always a prime power p, denoted as Fpn .
A prime field denoted as Fp, then denotes the field of congruence classes of
integers modulo p, with the set {0, ..., p− 1} describing the elements of Fp.
Finite fields serve as fundamental building blocks in the field of cryptology. For
example, they are used to define elliptic curves but also in the context of other
fundamental cryptographic primitives.

2.2 Elliptic Curve Cryptography

With the previous definitions in mind, we will now explain the very basic
concepts of elliptic curves in a cryptographic setting.
An elliptic curve E, defined over a prime field Fp, is the set of solutions (x, y) ∈ F2

with x, y ∈ Fp, of equations of the the Weierstrass-form: y2 = x3 + ax + b.
A point on E, is then defined by the tuple (x, y). According to the previous
definition of a generator, a point P is called a base point of E if every other
point Q ∈ E can be represented as a multiple of P , Q = nP . The neutral
element, in terms of addition, is defined as O = (0,∞), so P +O = P holds1.
Analogously an inverse of a point is defined as follows: P + P−1 = O.
Elliptic curves allow one to adapt a scheme defined in a group setting to an

1O is often referred to as the point at infinity.

11

2 Preliminaries

elliptic curve variant while preserving the security guarantees implied by the
scheme. Given a power of generator gn ∈ G, the elliptic curve adaption would
be described by nP where P denotes the base point. Considering the element
multiplication in a group setting with q = ga, r = gb ∈ G and qr = ga+b, the
elliptic curve variant is described as: Q = aP , R = bP , Q+R = (a+ b)P .
Additional details and evaluations can be found at [Kob87].

2.3 Diffie-Hellman Problem

Some of the upcoming security guarantees will be based on the Decisional-
Diffie-Hellman Assumption, which is described in the following setting: let
G be a cyclic group of order q with generator g. Further let x, y, z ∈ Zq be
exponents of g, yielding the triple (gx, gy, gz). The DDH-Assumption (Decisional-
Diffie-Hellman Assumption) is then defined as: given this triple it should be
infeasible to decide if gz = gxy holds. It is obvious that one would succeed with
probability 1/2 by simple guessing. Hence the DDH-Assumption holds if there
exists no p.p.t. (probabilistic polynomial time) algorithm which decides this
problem with non-negligible probability better than 1/2.
The DDH-problem is related to the discrete logarithm problem, DLP, in cyclic
groups which is defined as: given a cyclic group G with generator g and order q
and an element b = gx ∈ G, a value y solving the equation b = gy is defined as
the discrete logarithm of b. Finding such a value y becomes significantly harder
with a growing group order, and further becomes infeasible if q is a large prime.
In an elliptic curve setting this problem will be defined as EC-DLP: given a
base point of E as P and another point Q ∈ E find the smallest integer n for
which Q = nP holds.
The DDH problem is also related to the computational-Diffie-Hellmann
Assumption, CDH, which is defined as: given two values ga and gb compute gab.
We observe that if the CDH problem can be efficiently solved, also the DDH
assumption does not hold.
Both problems are also related to the DLP: if there exists a p.p.t. algorithm
which calculates x = logg g

x also the CDH can be solved by calculating x =
logg g

x and setting (gy)x, which further also breaks the DDH.
So we know that if the DLP can be solved also the CDH and DDH can be solved,
and if the CDH can be efficiently decided also the DDH can be decided.

12

2 Preliminaries

Consider the following notation: A ≤p B, describing that if there exists a p.p.t.
algorithm which solves the problem B also an algorithm solving A can be found.
We say that the computational complexity of A can be reduced to B, so A is
not harder then B.
With this notation an order of the above problems can be described: DLP ≥p
CDH ≥p DDH.
When the DDH is considered to be hard, also the CDH and DLP are consid-
ered hard. The hardness of the DDH problem is thus the strongest security
assumption in cyclic groups.

2.4 Cryptographic Hash Function

A hash function maps a message input of arbitrary length to a fixed length
output space. The output will then serve as a fingerprint for the given message.
More formally a hash function is defined as: H : F∗2 → Ft2, H(M) = T . For
hash functions to be used in a cryptographic setting, additionally the following
properties must hold:

1. Preimage Resistance: given H(M) = T , it should be infeasible for an
attacker to calculate M from T .

2. Second Preimage Resistance: given a messageM , it should be infeasi-
ble for an attacker to find a second messageM ′ 6= M , s.t. H(M) = H(M ′)
holds.

3. Collision Resistance: it should be infeasible for an attacker, to find
two distinct messages M 6= M ′, s.t. H(M) = H(M ′) holds.

Hash functions that fulfill the above properties are called cryptographic-hash-
functions. Only algorithms that follow the standard presented in [NIS15], such
as the SHA-2 algorithm family, should be used for cryptographic purposes.
The field of application for this primitive is widely spread; it ranges from
message authentication and integrity protections to serving as building blocks
for data structures such as blockchains and Merkle-trees [Mer88].

13

2 Preliminaries

2.5 Blockchain

As shortly described during the introduction, blockchains suite the requirements
of a distributed ledger-based payment system very well. In this section, we will
explain this structure in more detail and describe how it can be utilized.
A blockchain is a single linked list, where each entry or block holds a reference
to his predecessor. Cryptographic hash-values of the entries implicitly define
the links; a primitive such as SHA-256, which fulfills the fundamental properties
defined in section 2.4, should be used for the hash-value calculation.
The design ensures that once a block has been inserted, it may not be removed
without destroying the list. To replace an entry, one would need to update all
links in the following blocks. Due to the second-preimage-resistance property,
it is also infeasible to find a different entry that hashes to the same value. If
such entries could be found, an attacker would be able to tamper with the list,
because a block could be swapped with a malicious one without notice.
New blocks will be appended to the end of the list; hence the data-structure
also keeps track of all occurred insertions. Once an entry has a predecessor and
a successor, an insertion cannot be deleted anymore.

block{
header,
block_content

}

A block consists of meta information, here described as header and the actual
content. In the most trivial case the field header only holds a hash-value of
the previous block, which further describes the link to its predecessor. More
sophisticated designs may also include additional information, like the solution
to a hash puzzle as described in [Nak08].
In the following we will explain how such a data-structure could be used in
the setting of an asset system: a payment system’s state is defined by all users
balances, a blockchain can hence be used to administer this information, by
storing the necessary system information in blocks. By design such a blockchain
then describes the state history of the system, with the last block defining the
current state. In the setting of a payment system a block may hold a list of
transactions which caused the state changes. A users balance is then defined by
counting up all ever received and spent transactions. Due to the immutability

14

2 Preliminaries

of a block-chain, users will not be able to deny a spent or received transaction.
When all transactions are saved blocks, anyone with access to the chain may
verify the current state and it’s integrity, by replaying all occurred state transfers.
Each user may hold a copy of this chain to perform the sanity checks. When
a new state change occurs the new information will be broadcasted all users,
which will check the validity of the new state. On success the respective copies
are updated by appending the new information to the chains.
A blockchain may hence be a very useful data-structure in the setting of a
payment system, because it supports administration of the world-state without
a central authority. Users may check the validity of the current state at any
time, by replaying the stored state-history.

2.6 Public-Key Encryption

Encryption is a very useful tool in the fields of cryptography; it allows com-
municating parties to keep their information secret by making sure that an
eavesdropping party will not be able to deduce any sensitive information from
the messages. In a symmetric setting the same secret information, called a key,
will be used to transform the plain messages. Only the parties holding the key
will then be able to decipher these messages again. As described previously,
such a symmetric approach would be highly impractical in the setting of a
distributed ledger-based payment system.
The asymmetric approach on the other hand, works as follows: each party holds
a key-pair, which consists of a public and a private part. The public part will be
announced, so that every other party of the system will be able to use this in-
formation. The secret part, as implied by the name, will be kept secret. Usually
the public-key will be calculated by evaluating a function which depends on
the secret information. Each party of the system can then encrypt messages for
any other user’s public-key. Only the party holding the corresponding private
key will then be able to decipher these messages again.
[RSA78] defined the properties of a public-key cryptosystem:
Each party announces a public encryption procedure E, and keeps the corre-
sponding public procedure D secret. Given these two procedures the following
holds:

15

2 Preliminaries

1. Applying D to E(M), yields the plain message M. D(E(M)) = M
2. E and D are defined by non complex algorithms.
3. Announcing E will not yield any sensitive information about D.

E and D are general methods, E(M) can be calculated by using the public
encryption key. D, on the other hand, can only be used to obtain M form
E(M) by providing the secret key. So the security of D depends on keeping
the private key secret.

2.6.1 ElGamal

The homomorphic-encryption scheme, ElGamal[ElG85] satisfies our previously
required properties and is defined as follows:

Definition 2.6.1 (ElGamal). ElGamal is an asymmetric key encryption scheme
which is based on the Diffie-Hellman key exchange [DH76] and is defined over
a cyclic group G. The scheme consists of three algorithms: KeyGen, Encrypt,
Decrypt.

KeyGen(1k) : let G be a cyclic group of order q with generator g. On input
of security parameter k return a key-pair with sk ∈ Zq as private key
and h := gsk ∈ G as public key. Publish the tuple (G, g, q, h) as public
information and keep sk secret. This algorithm is performed once by the
receiving party.

Encrypt(m, h) : on input of a message m ∈ G and public encryption-key h
compute the cipher-text as follows: sample a random element y←$ Zq and
set the shared secret to s := hy. Compute c1 := gy and c2 := ms, the
cipher-text is then described by the tuple (c1, c2).

Decrypt((c1, c2), sk) : on input of cipher-text tuple and secret key sk, decryption
is performed as follows: given c1 and sk, the decrypting party is able to
calculate the shared secret as: s = csk1 = gsky = hy. The plain-text m ∈ G
is then extracted by computing m = c2s

−1 = mss−1 = m.

Remarks It is easy to see that an encryption under a public key h = gsk

can only be decrypted by a party holding the corresponding secret key sk.
Considering this property, one would be able to break this scheme by calculating

16

2 Preliminaries

sk from h. As described above this is equivalent to solving the discrete logarithm
problem, which is considered to be infeasible.
In addition a fresh value y←$ Zq should be used for every encryption under the
same public-key, otherwise the cryptosystem would not be considered secure due
to the following property: given a cipher-text C = (c1, c2) and the corresponding
plain-text m ∈ G, an adversary would be able to obtain the shared secret,
for this encryption, by computing s = c2m

−1 = smm−1. If y is reused, the
shared secret s will be the same for more than one cipher-text. Following this
an attacker would be able to retrieve the corresponding plain-text from any
other cipher-text encrypted under the same y and h. Hence it is essential to
sample a fresh value y for every encryption, in this context y is also called an
ephemeral-key. Otherwise a known plain-text attack would allow an attacker to
break every encryption performed under this public-key.

2.6.2 Elliptic Curve ElGamal

To obtain the elliptic curve variant of the scheme described in subsection 2.6.1,
the following adaptions need to be performed:

• Replace cyclic group G by a suitable elliptic curve E.
• All group operations need to be replaced by equivalent elliptic curve

operations.

Taking this adaptions into account we obtain the following definition for an
elliptic-curve-based ElGamal variant:

Definition 2.6.2 (EC-ElGamal). As the cyclic group variant, also EC-ElGamal
consists of three algorithms: KeyGen, Encrypt, Decrypt.

KeyGen(1k) : let E be an elliptic curve, defined over a prime field, with order
N and base point P . On input of security parameter k return a key-pair
with sk ∈ [1,N −1] as the private-key and publish Y := skP as the public
key.

Encrypt(M,Y) : on input of a message M ∈ E and public encryption-key Y
compute the cipher-text as follows: sample a random element z ∈ [1,N−1]
and set the shared secret to s := zY . Compute c1 := zP and c2 := s+M .
Return the cipher-text as tuple (c1, c2).

17

2 Preliminaries

Decrypt((c1, c2), sk) : on input of cipher-text tuple (c1, c2) and secret key sk,
decryption is performed as follows: compute s = c1sk. c1 is calculated as
zP and s is defined as zY = zskP , hence the decrypting party is able to
calculate the shared secret by using the private key and c1. The plain-text
M ∈ E is retrieved by computing M = c2 − s = s+M − s = M .

The elliptic curve variant of ElGamal behaves in the same way as the scheme
defined in subsection 2.6.1. According to the cyclic group setting, this adaption
would not be considered secure if there exists a p.p.t. algorithm that efficiently
computes sk from Y . Therefore the security of this scheme depends on the
elliptic-curve-discrete-logarithm problem.

2.6.3 Homomorphic Property of Elliptic Curve ElGamal

We will now show how the elliptic curve adaption for this cryptosystem can be
used to fulfill our previously defined requirements. Consider two cipher-texts
encrypted with EC-ElGamal under the same public-key, yielding cipher-texts
C1 = (z1P, z1Y + M1) and C2 = (z2P, z2Y + M2). Given this the following
property holds:

C1 + C2 = (z1P, z1Y +M1) + (z2P, z2Y +M2)

= ((z1 + z2)P, (z1 + z2)Y + (M1 +M2))

= Encrypt(M1 +M2)

(2.1)

Given two cipher-text, encrypted under the same public-key, it is possible to
calculate a valid encryption of the sum of the corresponding plain-texts by
performing the operation described above.
Considering the requirement that no plain information should be present
during the protocol, this scheme can be utilized in the following way: given the
encrypted balance of the receiver as b and the encrypted amount as a, both
encrypted under the receiver’s public key, the balance-update can be computed
as b⊕ a, where ⊕ denotes the operation defined in Equation 2.1. The receiver
will then be able to decrypt its balance with the corresponding private key2.

2The same holds for the spender by using the inverse operation 	.

18

2 Preliminaries

Remarks The encryption scheme ElGamal is only capable of encrypting values
in the message space, which is defined by the underlying group or elliptic curve,
so messages need to be represented accordingly.

2.7 Commitment Scheme

Commitments are cryptographic primitives which allow one to commit to a
secret, by computing a value called a commitment, which depends on the secret
but simultaneously does not leak anything about the plain value. Once com-
mitted it should not be possible to change the commitment without destroying
it. The secret can then be revealed at a later point in time by providing a
so called opening, which are essentially the parameters used to calculate the
commitment in the first place. The verifier will then use this information to
check if the commitment is correct, by recomputing it. Commitments need to
fulfill two important cryptographic properties: Hiding and Binding.

Hiding means that no information, whether direct nor indirect, about the secret
value can be deduced from the announced commitment. Binding on the other
hand means that once committed it should not be possible to change the secret
value after the announcement.

Seen in a more abstract way, one could interpret a commitment as a locked
box where a sheet of paper holding the secret is placed in. The box itself will
not leak any information about the secret and no-one will be able to change it
without destroying the box. In this abstraction the corresponding key will be
interpreted as the opening, which will be handed out to the verifier at a later
point in time. The verifier is then be able to check the claimed statement of
the committer after he has opened the box.

19

2 Preliminaries

2.7.1 Pedersen Commitment

A Pedersen-Commitment provides the desired properties described above and
was first presented in [Ped92].

Definition 2.7.1 (Pedersen Commitment). Pedersen commitments allow one
to commit to a secret value and reveal it at a later point in time, while preserving
the secrecy and integrity of the committed value. This primitive is defined by
three algorithms: Setup, Commit, Open:

Setup(1k) : given a cyclic group G of prime order p select g, h← G as generators
of group G. Announce g, h, Gp as public parameters, such that no-one
knows loggh.

Commit(m, g, h) : on input of secretm, set γ←$ Zp and calculate the commitment
as C ← gmhγ. Set the opening to O ← (m, γ). Return O and C

Open(C,O) : on input of commitment C and corresponding opening O, parse
O as (m, γ). Calculate C ′ ← gmhγ output m if C = C ′ holds, otherwise
return ⊥.

Remarks Pedersen commitments are computational-binding due to the fol-
lowing property: suppose the committer is able to find two pairs (x, γ), (x′, γ′)
s.t. gxhγ = gx

′
hγ
′ , with x 6= x′ holds, the committer is able to compute loggh,

because a = (x− x′)/(γ − γ′) holds. So the binding property depends on the
DLP which is considered to be infeasible.
This scheme is also information-theoretic hiding: given x, γ, x′ there exists an
γ′ s.t. gxhγ = gx

′
hγ
′ holds. Due to the properties of the underlying group the

probability that either x or x′ have generated C is identical.

2.7.2 Elliptic Curve Pedersen Commitment

As with ElGamal the plain version of this commitment scheme can be imple-
mented in an elliptic curve setting by applying the same adaptions as described
in Definition 2.6.2. Following this an EC-Pedersen-Commitment is described as
follows:

Definition 2.7.2 (EC-Pedersen-Commitment). Like the plain form, the elliptic
curve variant defines three algorithms: Setup, Commit, Open:

20

2 Preliminaries

Setup(1k) : given an elliptic curve E over a prime field of order q, sample two
points G←$ E and H←$ E and announce them as public parameters, s.t.
the no-one knows the EC-DLP of H.

Commit(x, g, h) : on input of secret x, choose γ←$ Zp and calculate the commit-
ment as C ← mG+ xH. Set the opening to O ← (m,x). Return O and
C

Open(C,O) : on input of commitment C and corresponding opening O, parse O
as (m,x). Calculate C ′ ← mG+xH output m if C = C ′ holds, otherwise
return ⊥.

Remarks Pedersen commitments have a similar structure as Definition 2.6.2,
hence this primitive also defines a homomorphic property. Given two Pedersen
commitments, C1 and C2, calculated with the same generators G and H,
yielding C1 = x1G+ γ1H and C1 = x2G+ γ2H the following holds:

C1 + C2 = (x1G+ γ1H) + (x2G+ γ2H)

= ((x1 + x2)G+ (γ1 + γ2)H)

= Commit(x1 + x2)

The structure of a Pedersen-commitment allows one to homomorphically calcu-
late a valid commitment to the sum of the plain values x1, x2 without knowing
neither opening to C1 nor C2.

2.8 Discrete Logarithm Recovery

Numeric values can not be used as direct message input to the encryption
scheme described in subsection 2.6.1. Hence the actual message input for a
numeric value a ∈ Zp will be defined as M = ga ∈ G. The actual secret is
then the value a. Calculating a from M and g is equivalent to solving the
discrete logarithm problem, which provides a significant security guarantee of
the described primitives. So the decrypting party needs to break this guaranty
in order to recover the actual numeric value.
The discrete logarithm problem grows in difficulty, depending on the order of
the group, which is usually a huge large prime, and the actual exponent x of
gx. Primitives like subsection 2.6.1 are only considered to be secure, regarding

21

2 Preliminaries

the DLP if the exponent is significantly large because then the recovery of x
becomes infeasible.
The calculation of the discrete logarithm will become feasible if the exponent is
small enough. Note that an attacker will still not be able to recover the message
from a corresponding cipher-text, under the condition that the primitive is used
correctly. Solving the DLP is hence only reasonable if M is already present.
For the general case, this means that only the deciphering party needs to solve
the small DLP in order to recover the numeric secret. A malicious party will
only be able to recover the secret if also the message can be recovered, which
further means that the attack can solve the general DLP, and the encryption
itself is no longer considered secure.
In the following section, we will present an algorithm that efficiently computes
small discrete logarithms.

2.8.1 Babystep-Giantstep

In this section we will present an algorithm which is capable of solving the
DLP: x = logg a, with gx = a for small x in reasonable time. The algorithm is
defined by a space-time trade-off, and a meet in the middle approach.
First set m := d

√
ne, with n describing the maximum recoverable value. Second

calculate a list of baby-steps as: ∀j ∈ {0, ...,m− 1} calculate gj and save the
tuple (j, gj) in an appropriate data-structure.
The second step is defined as follows: ∀i ∈ {0, ...,m− 1} calculate σ = ag−mi,
as giant-step. For every intermediate σ search for a match gj = ag−mi = gxgm−i,
if found return x = i ·m+ j. The algorithm is dominated by the construction
of the list holding the baby-steps, yielding a runtime of Θ(

√
n) and a memory

consumption of Θ(
√
n) For further evaluations, and improvements we refer to

[BL12]. Algorithm 1 depicts a listing of the described algorithm.

2.9 Zero-Knowledge

As described multiple times in this thesis, the transaction protocol will operate
on hidden values. No information about the plain values will be present, hence a

22

2 Preliminaries

Algorithm 1: Babystep-Giantstep
Data: a ∈ G, n ∈ N upper bound in |G|, g ∈ G as generator of the group
Result: return logg a if 0 ≤ a ≤ n, ⊥ otherwise
m := d

√
ne;

baby_steps[m] = empty;
for j in {1, ...,m− 1} do

insert gj into baby_steps;

for i in {1, ...,m− 1} do
σ = ag−mi;
if found σ in baby_steps[j] then

return i ·m+ j;

return ⊥;

cryptographic protocol which proves knowledge of these values, while revealing
nothing else besides the truth of the statement, needs to be used.

To provide a better understanding of the concept behind these schemes, a well
known practical example called the Ali Baba Cave, first presented in [Qui+89],
will be be presented in the following.
Imagine a round-shaped cave with only one entrance. At the inside there are
two paths connected through a magic door in the middle, for convince these
paths will be called A and B. The magic door only opens if the person standing
in front of it knows a secret passphrase.
A Person called Peggy wants to prove to Victor that she knows this passphrase
without actually telling it to Victor. For Victor to be convinced the following
protocol will be initiated by Peggy: Peggy enters the cave and either takes path
A or B, after that Victor enters the cave s.t. he has eyes on both paths. Victor
then asks Peggy to come out at either path A or B, here two cases have to be
distinguished:

• Peggy took a path, and Victor asks her to come out at the same one.
• Peggy took a path, and Victor asks her to come out at the other one.

Looking at case one we see that Peggy actually does not need to know the
secret, because she can simply turn around and will appear at the requested
path. In the other case Peggy actually needs to know the passphrase, otherwise

23

2 Preliminaries

she will not be able to appear at the correct path. We realize that a cheating
prover (one who does not know the passphrase) will succeed in this setting
with probability 1/2.
To actually convince Victor that Peggy really knows the secret passphrase, the
protocol needs to be repeated k times, which reduces the success probability
for a cheating prover to (1/2)k. A significantly large choice of k will turn this
probability negligible small.

Now that the general idea of these schemes has been presented, we want to
concretize their conditions: proof-systems are defined over two actors, prover
P and verifier V , and have the following properties:

Completeness: if the provided statement is true and both parties follow the
protocol accordingly, a honest verifier will always be convinced of this
fact by a honest prover.

Soundness: if the provided statement is false, no cheating prover will be able
to convince a honest verifier, except with negligible probability ε, that
the given statement is true.

Zero-Knowledge: if the provided statement is true, a cheating verifier will
not be able to learn anything more besides this fact. More generally: all
information which can be observed by the cheating verifier could have
been generated by its own, without interacting with the honest prover at
all.

Proof schemes which provide these properties are called Zero-Knowledge-
Protocols, which were invented by [GMR89]. In the following we will examin
a well understood protocol, first presented in [Sch91], which provides the above
properties. The protocol has been discussed in [Sch19] and consists of three
messages: announcement, challenge and response, an illustration of the scheme
is depicted in Figure 2.1.

First we want to discuss the soundness property of the protocol. A cheating
prover will be able to convince a honest verifier by correctly guessing the
challenge value c even though he does not know the secret value x. Therefore
he needs to prepare the announcement in advance, such that response r will
be accepted. Considering the challenge set {0, 1}, the prover prepares the
announcement in the following way: for c = 0 he sets a = gu and r = u, for
c = 1 the announcement is calculated as a = gu/h and the response is set to
r = u. In both cases the announcement does not depend on the actual secret

24

2 Preliminaries

Prover P Verifier V
(x = logg h)
u ∈R Zn
a← gu

a−−−−→
c ∈R {0, 1}

c←−−−−

r ←n

{
u, if c = 0

u+ x, if c = 1

r−−−−→ gr
?
=

{
a, if c = 0

ah, if c = 1

Figure 2.1: Schnorr’s protocol: Proof of discrete logarithm.

value x. We observe that a cheating prover will only be able to prepare for one
of this cases at a time; hence the verifier will be convinced with probability
1/2.

Theorem 1 (Soundness). If a prover is able to calculate a valid response r for
both cases c = 1 and c = 0, after the announcement a has been revealed, then
he must now the secret value x.

Proof. A prover is able to calculate two valid responses r0, r1 for challenge
c = 0 and c = 1, respectively. These values simultaneously satisfy gr0 = a and
gr1 = ah, leading to h = gr1−r0 , which implies that the prover knows x, since
r1 − r0 = x (mod n) holds.

Second we take a look at the zero-knowledge property of this scheme. In this
context zero-knowledge means that a cheating verifier will not be able to obtain
any information besides the truth of the statement.
This property can be examined by defining a p.p.t. algorithm that allows the
verifier to simulate valid conversations. The simulator does not require the
secret value, but the resulting conversations will follow the same probability
distribution as real ones, which further means that an observer will not be able to
distinguish them. A malicious verifier will thus not be able to extract anything
about the proven value form a transcript, because all present information
could have calculated by the verifier itself. In other words this means that no
information about the secret is disclosed during the protocol.

25

2 Preliminaries

We now define two p.p.t. algorithms, one for real conversations and one for
simulations.

Real Conversations:
Input: secret x

1. u←$ Zn
2. a← gu

3. c←$ {0, 1}
4. r ← u+ cx
5. return (a, c, r)

Simulated Conversations:
Input: public information h

1. c←$ {0, 1}
2. r←$ Zn
3. a← grh−c

4. return (a, c, r)

Theorem 2. Honest-Verifier -Zero-Knowledge An honest verifier (one that
follows the protocol), would be able to produce valid conversations by executing
the simulator-algorithm, which would then be indistinguishable from real
conversations.

Proof. We observe that the simulator can produce valid conversations because
the constraint gr is satisfied. c and r are selected uniformly at random; therefore,
the announcement a is random, and hence the conversation is random. c and u
are selected uniformly at random during the real scenario; thus, r and a are
also random. Both conversations are, therefore, indistinguishable.

For our purpose, the honest-verifier -zero-knowledge property is sufficient enough
for further details on the zero-knowledge property we refer to [Sch19] and
[Sch91].
We observe that the scheme described in Figure 2.1 allows a cheating prover to
convince a honest verifier with probability 1/2 of a false statement. Taking the
explanation at the beginning of this section into account, the success probability
for a cheating prover can be significantly reduced by engaging the protocol
many times.
This approach clearly produces a large execution overhead. The basic scheme,
illustrated in Figure 2.1, can be adapted in a way, s.t. the probability of
convincing the verifier of a false statement is negligible small, while only one
protocol execution is required. The following illustration describes the necessary
adaptions:

26

2 Preliminaries

Prover P Verifier V
(x = logg h)
u←$ Zn
a← gu

a−−−−→
c←$ Zn

c←−−−−
r ←n u+ cx

r−−−−→ gr
?
= ahc

Figure 2.2: Schnorr’s identification protocol.

The improved scheme enlarges the challenge space. The challenge c will then be
selected at random. A cheating prover will thus only succeed with probability
1/n. By choosing an appropriately ample challenge space, no additional execu-
tions are needed anymore, because the probability 1/n will become negligibly
small.

Analysis Considering this adaption, we now want to evaluate if the desired
properties still hold. Soundness can be shown in a similar way to Theorem 1. If
a prover is able to produce valid conversations after the announcement of a the
prover must know the secret, because the following property holds: given that
gr0 = ahc0 and gr1 = ahc1 hold simultaneously, also h = g(r0−r1)/(c0−c1) must
hold, therefore the prover must know the secret x otherwise he would have not
been able to calculate r0 and r1 after the announcement of a.
Honest-verifier-zero-knowledge can be shown by adapting the simulator accord-
ingly, the challenge as well as the response will be sampled at random from
Zn. A valid conversation (a, c, r) will occur with the same probability in both
cases, therefore simulated and real conversations are still indistinguishable.

2.9.1 Σ-Protocols

Sigma protocols concretize the scheme depicted in Figure 2.2. The simulator
will be adapted such that it also takes the challenge c as additional input. A
scheme/protocol is to be said a Σ-Protocol if the following properties hold:

27

2 Preliminaries

Completeness: if the provided statement is true and both parties follow the
protocol accordingly, a honest verifier will always be convinced of this
fact by a honest prover.

Special Soundness: given two accepting conversations (a, c0, r0) and (a, c1, r1)
with c0 6= c1, there exists a p.p.t. algorithm E which allays computes a
witness ω.3.

Special honest-zero-knowledge : There exists a p.p.t. simulator algorithm,
which on input of v and challenge c ∈ C 4, produces accepting conversa-
tions with the same probability distribution as real conversations between
prover and verifier.

In general Σ-protocols consist of three steps/messages: announcement, challenge
and response. A protocol of this form obviously requires interaction between
prover and verifier. As stated in previous sections of this thesis, a transac-
tion protocol applicable to the desired setting should be non-interactive. To
achieve this the scheme described in Figure 2.2 will be turned non-interactive
by applying the following changes: instead of sampling c←$ Zn at random, the
prover will calculate the challenge by applying a cryptographic hash-function
H to all public parameters. The idea behind this is that H produces pseu-
dorandom outputs and is therefore a suitable replacement for selecting c at
random. Following this the challenge will now be calculated as follows: given
a cryptographic hash-function H : {0, 1}∗ → Zn set challenge c← H(g‖a‖h).
With this adaption a prover can now calculate all necessary information on its
own. The properties of the used hash-function ensure that, even though c is
now a deterministic value, the verifier will still be convinced of the provided
statement. This method is know as Fiat-Shamir-heuristic [FS87], which can
be applied to every interactive Σ-protocol, to turn it into a non-interactive
variant.

3A witness ω denotes the private input of the verifier to calculate a valid response r
4v denotes the common input to prover and verifier.

28

2 Preliminaries

In a formal way, a non-interactive Σ-protocol, for Figure 2.2, is described as:

1. u←$ Zn
2. a← gu

3. c← H(g‖a‖h)
4. r ←n u+ cx

5. everyone is then able to verify that gr ?
= ahc holds, by calculating the

challenge c from announcement a.

2.9.2 Range-Proofs

[GMW91] showed that all languages in NP have zero-knowledge proofs, so we
know that it is possible to prove our desired statements in zero-knowledge.
When considering obfuscated values it is necessary to ensure that operations on
these values will yield valid results. Given a ring Zp with p := 11, values greater
than p will behave like negative numbers. To make this more clear, consider a
really basic and practical example: (1 + 1) (mod 11) = (5 + 19) (mod 11) =
(5− 3) (mod 11). By taking adequate large numbers, the structure of Zp hence
allows one to perform subtraction.
For our case we need to ensure that such large values are not allowed in the
protocol, because the presence of negative numbers would significantly endanger
the integrity of the system e.g. a user would be able to steal coins from others.
Range proofs are a useful tool which allows one to convince a verifier that a
hidden value, like in a Pedersen commitment, lies in a provided range and will
hence cause no overflow 5.
Considering our setting, the spender would to show that a committed value lies
in a given range. This could be done by proving that an arithmetic circuit which
implements this requirement is satisfied. Looking at the method of [Boo+16],
this would mean that the circuit needs to implement the commitment scheme
itself, which would lead to a significant increase in complexity. This fact has
been stated by [Bün+18]. They invented a system allowing one to prove that a
committed value lies in a given range, while keeping the proof size as short as
possible. In the following the concept of [Bün+18] as well as the suitability for
our requirements will be described.

5In this context an overflow means that a value is larger as the defined set and will hence
be reduced mod p.

29

2 Preliminaries

2.9.3 Bulletproofs

Bulletproofs [Bün+18] provide the possibility to prove that a value hidden in
a Pedersen commitment lies in a provided range, while keeping the proof-size
logarithmically short in the input-size. They used the inner-product argument
discussed in [Boo+16] as a building block to define their system.

An inner-product argument allows one to prove the following: given two vectors
g, h ∈ Gn defined as (g1...gn) , with gi ∈ G denoting a generator of G, and a
scalar value c ∈ Zp. A prover P can show the knowledge of two vectors a, b
∈ Znp , with 〈a,b〉 =

∑n
i=0 aibi denoting the dot product, such that the following

property holds:
P = gahb ∧ c = 〈a,b〉

So the inner-product argument provides a proof-system for the following relation:

{(g,h ∈ Gn, P ∈ G, c ∈ Zp : a,b ∈ Znp) : P = gahb ∧ c = 〈a,b〉} (2.2)

The knowledge of vectors a, b could simply be shown, by sending them to the
verifier, which is essentially the opening O for P . The relation of Equation 2.2
can further be improved by adding c as a part of the commitment P :

{(g,h ∈ Gn, u, P ∈ G; a,b ∈ Znp) : P = gahbu〈a,b〉} (2.3)

Inner Product Argument. As stated previously, such a statement could be
proven be sending both vectors. The verifier then recomputes c and checks
if equality holds. In this scenario the proof-size and verification time grows
linearly, depending on the input vectors. [Bün+18] showed how to reduce to
complexity to O(log2 n): Consider two vectors a,b ∈ Zn

p for which c = 〈a,b〉
holds :

a =

 a0
...

an

 b =

 b0
...
bn


The prover splits these vectors into two parts of equal size n′ = n/2, yielding:

alo =

 a0
...

an′−1

 ahi =

 an′
...

an

 blo =

 b0
...

bn′−1

 bhi =

 bn′
...
bn



30

2 Preliminaries

Further in the explanation we will use the following notation: alo = a[:n′], ahi =
a[n′:] and blo = b[:n′],bhi = b[n′:]. To now prove knowledge of vectors a,b, prover
P and verifier V engage the following protocol: P receives a challenge value
x←$ ZP from V and calculates a′ = a[:n′]x+a[n′:]x−1 and b′ = b[:n′]x

−1+b[n′:]x:

a′ =

 a0x+ an′−1x
−1

...
an′x+ anx

−1

 b′ =

 b0x
−1 + bn′x

...
bn′−1 + bnx


With a′ and b′, c′ is calculated as: c′ = 〈a′,b′〉. The following structure can be
observed for c′:

c′ =〈a′,b′〉
=〈a[:n′]x+ a[n′:]x−1,b[:n′]x

−1 + b[n′:]x〉
=Σn′

i=0(a[n′:]ix+ a[:n′]ix
−1) · (b[:n′]i

x−1 + b[n′:]i
x)

=Σn′

i=0(a[:n′]ix · b[n′:]i
x−1) + (a[n′:]ix

−1 · b[:n′]i
x−1)+

(a[:n′]ix · b[n′:]x) + (a[n′:]ix
−1 · b[n′:]i

x)

=Σn′

i=0(a[:n′]i · b[n′:]i
) + (a[n′:]i · b[n′:]i

)+

Σn′

i=0x
−2(a[n′:]i · b[n′:]i

)+

Σn′

i=0x
2(a[:n′] · b[n′:]i

)

=〈a,b〉+ x2〈a[:n′],b[n′:]〉+ x−2〈a[n′:],b[:n′]〉
=c+ x2L+ x−2R

(2.4)

Looking at the last line of Equation 2.4, it is easy to see that the result
depends on c, which is the claimed statement, as well as two values L and
R, which depend on the actual representation of a and b and the challenge
value x. Regarding subsection 2.9.1, the tuple (L,R), will be treated as the
announcement and the tuple (a′,b′) as the respective response.
We observe that this scheme can be repeated recursively by setting c = c′ and
a = a′,b = b′, until the vectors a′, b′ both reach length one. Every step reduces
the length of the current vectors by 1/2, hence the complexity is defined by
O(log2 n). To get a better understanding of the shrinking of the proven vectors,
an illustration can be found in figure Figure 2.3.

31

2 Preliminaries

a

alo ahi

a'

a' = alo x + ahi x
-1

blo bhi

b'

b

b' = blo x
-1 + bhi x

Figure 2.3: Vector shrinking for inner product arguments.

In the last step the verifier will be able to check that c′ = a′ · b′ holds. Taking
values c′, L, R of previous steps, the verification procedure can be rewinded to
then check c against c′ and L, R of this step.
Taking this approach into account a proof-scheme for the relation defined in
Equation 2.3 is defined as follows:

Prover P Verifier V
n′ = n/2

L← g
a[:n′]
[n′:] · h

b[n′:]
[:n′] · u

〈a[:n′],b[n′:]〉

R← g
a[n′:]
[:n′] · h

b[:n′]
[n′:] · u

〈a[n′:],b[:n′]〉 L,R−−−−−→
x←$ Zp

x←−−−−
a′ ← a[:n′]x+ a[n′:]x−1

b′ ← b[:n′]x
−1 + b[n′:]x

a′,b′−−−−−−→
P ′ = gx−1a′

[:n′] gxb′[n′:] · h
b′
[:n′]h

x−1b′
[n′:] · u〈a

′,b′〉

P ′
?
= Lx

2 · P ·Rx−2

Figure 2.4: Inner product argument scheme.

32

2 Preliminaries

The two parties reengage the scheme, as described before, log2 n times. In the
end, the verifier will be convinced that the prover indeed knows two vectors
a,b for which 〈a,b〉 holds.
Bulletproofs [Bün+18] build upon this approach to define a range proof-system:
given a value v ∈ Zp and let V ∈ G be the corresponding Pedersen commitment
to v using blinding factor γ←$ Zp. A proof system can be defined to convince a
verifier that v ∈ [0, 2n − 1] holds. Their developed scheme convinces a verifier
of the following relation:

{(g, h ∈ G, V, n : v, γ ∈ Zp) : V = gvhγ ∧ v ∈ [0, 2n − 1]}

Bullet proofs Considering the conditions of an inner-product argument, the
bulletproof range-proof system is defined over the following setup: represent the
value v as bit vector aL = (a0, ..., an−1) ∈ {0, 1}n s.t 〈aL,2n〉 = v is satisfied;
with 2n = {20, 21, ..., 2n−1} being a vector of powers of two. Further trough the
explanation the notation yn = {y0, ..., yn−1} will be used to describe a vector
of n powers of the base y. The general idea of [Bün+18] is to show that the
vector aL is indeed a bit-representation of v as well as that every entry in aL
is either 0 or 1; otherwise arbitrary values could be used to compose aL s.t
〈aL,2n〉 holds. So additionally the proof-system must ensure that the following
constraints hold:

〈aL,2n〉 = v ∧ aR = aL − 1n ∧ aL ◦ aR = 0n (2.5)

So only valid vectors aL ∈ {0, 1}n will result in a successful verification. In
the end the verifier will be convinced that the prover knows v, which also
has a bit representation in {0, 1}n and therefore v must lie in the range
[0, .., 2n−1]. Bulletproofs furthermore allow one to proof that Equation 2.5 holds,
by providing a single inner-product argument. This can be done due to the
following properties:
To show that a provided vector λ only consist of zeros, namely λ = 0n is
satisfied, the verifier sends a challenge value x←$ Zp to the prover. The prover
then shows that λ ◦ xn = 0n holds6. This property can be utilized to rewrite
the required constraints as an inner-product relation. Given a challenge value

6◦ denotes the element-wise product of two vectors which is defined as x ◦ y ∈ Zn
p =

(x0y0, .., xnyn)

33

2 Preliminaries

x←$ Zp, to following inner-product constraints are equivalent to Equation 2.5:

〈aL,2n〉 = v ∧ 〈aL, aR ◦ xn〉 = 0 ∧ 〈aL − 1n − aR,xn〉 = 0 (2.6)

We observe that 〈aL, aR ◦ xn〉 = 0 and 〈aL − 1n − aR,xn〉 = 0 only hold
if aR = aL − 1n is satisfied. This composition can further be merged into
one equation by adding an additional challenge value z←$ Zp, yielding the
following:

z2 · 〈aL,2n〉+ z · 〈aL, aR ◦ xn〉+ 〈aL − 1n − aR,xn〉 = z2v

It is easy to see that this equality will only be satisfied if Equation 2.6 is
also satisfied. By doing the math this equation can be rewritten into a single
inner-product argument:

〈aL − z1n,xn ◦ (aR + z1n) + z22n〉 = z2v + δ(x, z) (2.7)

with δ(x, z) = (z − z2)〈1n,xn〉 − z3〈1n,2n〉. δ(x, z) depends only on the chal-
lenge values as well as constant vectors, hence the verification can be calculated
easily by the verifier. The vectors in Equation 2.7, contain information about
aL. To ensure that no information about v is disclosed, the prover needs to
choose two additional vectors sL, sR ∈ Znp which will then be used to blind the
vectors aL − z1n and xn ◦ (aR + z1n) + z22n of.
Taking all of this into account the actual protocol defines three vector polyno-
mials l(X), r(x), t(X) ∈ Zp[X], of the following structure:

l(X) = (aL − z1n) + sL ·X
r(X) = xn ◦ (aR + z1n + sR ·X) + z22n

t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X2

(2.8)

The prover will hence be able to engage the protocol with l(x) and r(x) for
x ∈ Z∗p, without revealing any information about v. Additionally the following
structure can be observed for t(X):

t(X) = 〈l(X), r(X)〉
= 〈(aL − z · 1n) + sL ·X,yn ◦ (aR + z1n + sR ·X) + z22n〉
= vz2 + (z − z2) · 〈1n,yn〉 − z3 · 〈1n,2n〉+ t1 ·X + t2 ·X2

= vz2 + δ(x, z) + t1 ·X + t2 ·X2

34

2 Preliminaries

If the prover can show that the constant term in t(X) satisfies the desired
property in Equation 2.7, the verifier will be convinced that the statement is
true. To achieve this, the prover commits to the coefficients t1 and t2; t(x) will
then be evaluated at a randomly chosen challenge point.
Bulletproofs allow a verifier to prove that a committed value v can be rep-
resented as bit-vector aL ∈ {0, 1}n, which implies that the value v must lie
in the range [0, ..., 2n − 1]. This primitive suite the required constraints for
a confidential transaction protocol very well. The protocol further fulfills all
necessary properties described in subsection 2.9.1 and can thus be used as a
tool to preserve the integrity of the ledger.
For more details on Bulletproofs and their possible other fields of application
we refer to [Bün+18].

2.10 Digital Signature Scheme

Digital signature schemes allow one to verify the authenticity of signed infor-
mation. The concept was was first discussed in [DH76].
Digital signatures can be considered as the digital counter part to hand written
ones. Such schemes are usually, like public-key encryption schemes, defined in
a “asymmetric” way. Different keys will be used for signing and verification;
the private part will be used for signing and the public counterpart is then
used for verification. A digital signature provides the possibility to calculate a
signing-key depended value of a provided message, which can then be verified
by anyone at a later point in time.
Furthermore a digital signature should not leak anything about the used signing
key. It should also not be possible for an adversary to calculate valid signatures
for arbitrary messages of his choice, by deducing information from valid signa-
tures produced by a dedicated party. Every digital signature-scheme must fulfill
the above mentioned requirement. [GMR95] further defined what is considered
to be a break of a signature scheme:

• Total break: obtaining the private signing-key. A total break would
allow the attacker to sign arbitrary messages on behalf of party A.

• Universal Forgery: obtaining a signing algorithm equivalent to A.
• Selective Forgery: forge a signature for a a priori selected message.

35

2 Preliminaries

• Existential Forgery: forge a signature for a message m the attacker
has not obtained a message/signature pair beforehand.

A digital signature scheme provides the following cryptographic properties:

1. Authenticity: a signature should ensure authenticity, which is the as-
surance that the source of the provided signature is the one its claims.

2. Integrity: it should not be possible to change the message a signature
has been issued for, while the signature stays valid.

3. Non-Repudiation: it should be impossible to deny a previous action.

A digital signature can be used to ensure that transactions can only be issued
by the actual owner of the assets. The signature will be provided as part of the
transaction, and its validity is verified during the verification process.

2.10.1 Schnorr Signature

Schnorr’s-identification protocol, as described in Figure 2.2 can be transformed
into a digital signature scheme by applying the Fiat-Shamir heuristic: given
message M , set the challenge to c← H(a‖M) as described in [Sch19].

Definition 2.10.1 (Schnorr Signature). The Schnorr signature scheme consists
of three algorithms: KeyGen, Sign, Verify

KeyGen(1k) : let G be a cyclic group of prime order p with generator g ∈ G.
Set private-key x←$ Zp and public-key h = gx.

Sign(x,M) : On input of private-key x and message M , choose u←$ Zp and
set a ← gu. Set challenge value c to c ← H(a‖M) where H denotes a
cryptographic hash function. Set response r ←p u+ xc. Return the tuple
(c, r) as signature of M .

Verify((c, r), h,M) : On input of signature tuple (c, r), public-key h and Message
M , accept (c, r) as signature of M iff. H(grh−c‖M) = c holds, otherwise
return ⊥.

Remarks In section 2.9 we described that Figure 2.2 is special-honest-zero
knowledge. So an honest verifier would be able to generate accepting conversa-
tions by executing the described simulator algorithm. But in the general case

36

2 Preliminaries

of a cheating verifier, the success-probability will be 1/n.
If it could be shown that Schnorr’s-identification protocol is indeed zero-
knowledge, this would mean that signatures could be forged. The general
zero-knowledge property requires the possibility of simulating accepting conver-
sations for an arbitrary verifier. For the challenge space Zn, there exist no such
p.p.t. algorithm which fulfills this requirement, because the probability of guess-
ing the correct challenge c is 1/n. Hence on average n tries are needed to obtain
an accepting transcript. If a simulator, producing accepting conversations with
the same probability distribution as real conversations for an arbitrary verifier,
exists a cheating prover would be able to compute valid signatures for a mes-
sage M without knowing the signing key. So the honest-verifier-zero-knowledge
property provides a significant security guaranty. For further details on this
property we refer to [Sch19].
The signature scheme is obtained by applying the Fiat-Shamir heuristic as
previously described. The message M will be added as additional input to
the hash-function, due to the properties of a cryptographic hash function the
distribution of c will not change, therefore the adapted scheme can be used as
a signature scheme.

37

3 System Setting

In this chapter, we will define the surrounding conditions a distributed ledger-
based payment system should be composed of, such that the upcoming protocol
description will be directly applicable.

3.1 Cryptographic Setting

In this section, we will define the dedicated cryptographic setting needed
to enable the actual definition of a confidential transaction protocol. In the
upcoming descriptions we will use the following notation: the variable a denotes
the transferred amount and b denotes the balance of the specified user. If not
clear from the text a subscript may be added to the variable b to define the
owner.

3.1.1 Homomorphic Cryptosystem

As explained before, simply hiding the amounts is not sufficient enough, be-
cause the protocol requires operations on the amounts. When considering a
transaction from one account to another, the corresponding balances need to
be updated after the transaction has been executed. The spender’s balance will
be decremented and the receiver’s balance will be incremented by the provided
amount. In the classical design, where both of these values are available in
plain form, the update is trivial.

Considering a system, where all of these values are no longer available in
plain-text, the trivial operations need to be adapted accordingly.
A primitive which supports this requirements could be a commitment scheme as

38

3 System Setting

described in Definition 2.7.2. Amounts and balances would then be represented
as Pedersen-commitments. Due to the described homomorphic-properties a
commitment to the updated balance can be computed without knowing the
actual plain values. However this primitive has a significant disadvantage: only
the spender knows the transferred amount, so without the opening the receiver
will not be able to recover its updated numeric balance. Taking this into account
Pedersen-commitments will not be directly usable to hide the sensitive numeric
values. The opening information needs to be made available to receiver, which
could be done using an additional secure channel. However this may require
both parties to be online at the same time, and obviously also breaks with the
goal of non-interaction between spender and receiver. So this approach will not
cover all desired requirements.

To omit the necessity of interaction, we will instead use ElGamal as described in
Definition 2.6.2, as our cryptosystem. This scheme works similar to the described
commitment scheme, but does not require any additional communication.
The properties described in subsection 2.6.3 allows the computation of a valid
encryption of the updated balances. Only the party holding the corresponding
secret key, will then be able to decrypt their updated balances again. So in
general the advantage of this approach is that no interaction between the
involved parties is needed in order to recover the new balance values, which
fits our desired design goals.
Amounts of assets as well as balances will be present as ElGamal cipher-texts.
The plain values are positive integers, hence an encoding for integers to elliptic-
curve points must be defined. To encrypt numeric values with EC-ElGamal, the
values will be represented as multiples of the base-point P . The message input
will then be defined as: M ← aP . Considering two encryptions under the same
public key, using the same message encoding, the following property holds:
referring to equation Equation 2.1 with M1 ← a1P , M2 ← a2P representing
the messages and C1, C2 representing the encryptions of M1 and M2, it is easy
to see that the homomorphic addition of C1 and C2 yields Encrypt((a1 +a2)P).
Hence a valid encryption for the encoding of a1 + a2 can be obtained by only
using the cipher-texts.

39

3 System Setting

3.1.2 Convincing

Because the amounts and balances are encrypted and thus no information about
the plain values can be deduced, the spender needs to provide a proof showing
that a > 0 holds and that the encrypted amounts are correctly computed as
enc_amounti ← Enc(a, pki) and enc_amountj ← Enc(a, pkj). To ensure that
only valid amount can be transferred, additionally the inequality a ≤ b must
hold.
To prevent tampering with the system, all of these properties need to be proven
in a way s.t. no information about the plain values will be leaked.

Consider the following transaction proposal: User A currently holds 15 units
and wants to transfer -10 units to user B. We omit a proof for a > 0 and just
rely on the fact that user A knows a value a s.t. enc_amounti ← Enc(a, pki)
and enc_amountj ← Enc(a, pkj) holds, and that also his balance is correctly
encrypted. Considering this case, the constraint b ≥ a will also hold. When
this transaction is confirmed and a balance update is executed, user A actually
steals 10 units from user B.
The inequalities a > 0 and a ≤ b thus ensure the integrity of the ledger.
We observe that the second inequality can be rewritten to b− a ≥ 0, so both
inequalities can be proven by using bulletproofs. A more detailed explanation on
how bulletproofs can be utilized in this context will be presented in chapter 4.

3.2 System Parts

Ledger The system’s state is stored in a blockchain, as described in section 2.5.
Considering consistency reasons, it will be necessary to fix the elliptic curve,
namely its parameters, which will be used throughout the protocol so that
every depending primitive operates on the same curve.
The payment system keeps track of all balances of every user while keeping
them secret. Due to the properties of ElGamal, an observer won’t be able to
deduce any information about the numeric balances and amounts.

Block. One block is essentially one entry of the list. A block holds the
necessary information to define the actual state. In our case, a block contains

40

3 System Setting

a list of valid transactions. Transactions move assets from the spender to the
receiver, by defining from to relations. The balance of every user will be saved
in the world state, similar to [But14], which essentially is a database relating
to the meta-information stored in the blockchain. The nodes have access to
this world state and will execute the balance updates. The stored transactions
can then be used to validate the state history. The consistency and integrity of
the system will be preserved by ensuring that only valid transactions will be
added to the ledger.

Users Users are the actual owners of the assets. The system provides the
possibility to transfer an arbitrary amount a, which satisfies a ≤ b to any other
user of the system. Users will propose these asset-transfers as transactions to
the nodes. Nodes will be able to collect multiple transaction requests to define
a new block. For simplicity, we will consider one transaction per block so that a
single valid transaction will cause a state change. Keep in mind that the state
handling will not have an impact on the transaction protocol.
Users hold a key-pair as described in section 2.6. To carry out a transaction,
the spending user needs to know the receiver’s public-key. Hence the system
needs to provide a possibility to query these keys; otherwise, transactions will
not be possible. Besides, users will also hold another key-pair as describe in
section 2.10, which will be used to sign and verify transactions. The according
signatures will be verified by the nodes during the verification process.
Users are identified by a unique value called address, which will be used to
identify the spender and receiver of a proposed transaction. Keep in mind that
the users balances are only protected from malicious parties if the decryption
and signing key are kept secret.

Nodes Nodes are designed as dedicated parts of the ledger. They are re-
sponsible for verifying transactions. Consistency and integrity of the system
needs to be ensured, thus only well formed and valid transactions will cause a
state change. Transactions contain values, which have been constructed using
the according primitive. Malformed or invalid information will not lead to a
successful verification with overwhelming probability.

41

3 System Setting

Transactions contain multiple cryptographic proofs, and are only considered
valid iff. the following properties hold:

• The senders and receivers addresses are valid. So they identify users of
the system.

• The spenders signature is valid.
• All provided proofs are valid.

We observe that transactions can necessarily be seen as a combination of
different proofs. Even though the amounts are encrypted, the verifier does not
need to decrypt them in the verification process. Proof verifications will thus
dominate the verification of transactions.
When the system should be capable of handling many transactions per second,
proof-systems that support a fast verification while being reliable may be
considered.

Transactions A transaction is essentially a container holding all information
necessary to describe an asset transfer from one party to another. All contained
proofs should be non-interactive to allow verification at a later point in time.
A detailed description of the actual transaction structure will be presented in
subsection 4.1.8

3.3 Additional Properties

Keep in mind that a payment system may differ from the described system
setting. Some systems should be capable of managing multiple assets. To achieve
this, the actual ledger will consist of multiple blockchains. Every single chain
will keep track of one asset, resulting in every user holding different balances
for different assets.
It could also be of interest to define a permission scheme, so only permissioned
users will be allowed to issue transactions or inspect the blockchain itself.
Even though these options exist and may be desirable to achieve different goals,
the verification process itself will not be different.

42

4 Confidential Transaction
Protocol

In this section we will describe a confidential transaction protocol which will
fulfill all required constraints. Every part of the protocol will be described in
detail. Protocol parts including cryptographic primitives will be analyzed in
terms of their security.

The confidential transaction protocol will describe three actors: Spender, Re-
ceiver, Verifier/Node. In the following we will describe every step for each actor
in detail, which will then compose the whole protocol. The protocol will not
require any interaction between spender and receiver as well as between spender
and verifier. Hence the described transaction protocol is non interactive and
can therefore be split into separate parts.

4.1 Spender

The protocol is initiated by the spender, by sending a composed transaction to
the nodes.
The meta-information of the transactions is decided by the spender and is
defined as:

• Amount: the desired numeric amount to transfer to the receiver.
• Receiver: the recipient of the transferred units.

This information will be used as starting point of the transaction composition.

43

4 Confidential Transaction Protocol

To construct a valid transaction, the spender performs the following steps:

1. Represent the amount in a form applicable to the cryptosystem defined
in subsection 2.6.1

2. Encrypt the amount w.r.t the spenders and receivers public key using
ElGamal yielding values xs and xr.

3. Calculate a commitment C to the amount a, depending on encryption xs
and xr.

4. Construct a proof describing that the amount encrypted in xs and xr is
the same as in commitment C.

5. Construct a proof describing that the amount is strictly positive using
the algorithm described in subsection 2.9.2.

6. Construct a proof describing that the amount is less than or equal to the
spender’s balance using the algorithm described in subsection 2.9.2.

7. Re-encrypt the currently stored balance in the world state.
8. Sign the transaction with the corresponding private key to prove ownership

of the transferred units, using the primitive defined in subsection 2.10.1.
9. Propose transaction for verification.

In the following, each step of this workflow will be explained in detail.

4.1.1 Amount Representation

As previously described, ElGamal is only capable of operating with elements ap-
plicable to the system, so the numeric amount amust be represented accordingly.
Further, the homomorphic property of ElGamal should allow a confidential
balance update of the involved users. For this to work in the desired way, the
amount a, as well as the balance bi of every user, will be represented as powers
of the decided generator g ∈ G, M = ga.

4.1.2 Encrypt Transaction Amount

The previous step yields a representation for the amount, which will then be
used as message input during encryption.
Encrypt the representation of amount a two times w.r.t the spender’s and
receiver’s public key denoted as ys, yr yielding: xs = (C1, C2) = (gr, gayrs) and

44

4 Confidential Transaction Protocol

xr = (C1, C2) = (gr
′
, gayr

′
r) with r, r′←$ Zp. The spender then adds xs and xr

to the transaction.

4.1.3 Commit to Amount

Calculate a Pedersen-commitment to amount a as C = gahγ with γ←$ Zp and
h ∈ G denoting a generator of the group s.t. no-one knows logg(h). During the
calculation of C, the same generator g ∈ G must be used as in subsection 4.1.2.
The spender then adds the commitment C to the transaction.

4.1.4 Proof of Equality

To prevent a user from tampering with the system state, it must be ensured
that only correctly computed values will lead to a successful verification. To
prevent the encryption of arbitrary values, which could lead to a unrecoverable
system state, the protocol must provide a possibility to check the correctness
of these values.
Hence it must be ensured that the same amount has been encrypted in both
cipher-texts, xr and xs. Otherwise the integrity of the ledger can not be
guaranteed. In the following a Σ-protocol, which proves this relation will be
described. s

Scheme. A proof showing the equality of a Pedersen-commitment to an
ElGamal-cipher-text, in terms of the same hidden value x, is defined in the
following setting: given a cyclic group G of order p, a private/public key-pair,
as described in Definition 2.6.1, is defined as sk = α and y = gα1.
According to the description of Definition 2.6.1 an ElGamal-cipher-text is
defined as: (C1, C2) = (r, s) = (gr, gxyr). A Pedersen-commitment in this
context is then defined as: C3 = gxhγ with γ←$ Zp.
Given this setup the following depiction illustrates the corresponding Σ-protocol,
which proves that an ElGamal cipher-text and a Pedersen-commitment hide
the same secret value:

1sk denotes the secret key and y denotes the corresponding public key.

45

4 Confidential Transaction Protocol

Prover P Verifier V
P(x, r, γ, g, h, y,G) V(C1, C2, C3, g, h, y,G)
v1, v2, v3←$ Zp
q1 ← gv1yv2

q2 ← gv1hv3

q3 ← gv2
q1,q2,q3−−−−−−−→

c←$ Zp
c←−−−−

z1 = v1 + cx
z2 = v2 + cr
z3 = v3 + cγ

z1,z2,z3−−−−−−−→
gz1yz2

?
= q1C

c
2

gz1hz3
?
= q2C

c
3

gz2
?
= q3C

c
1

Figure 4.1: Proof of equality of ElGamal cipher-text and Pedersen commitment.

Analysis. We now want to analyse this scheme in terms of correctness,
special-soundness and special honest-verifier-zero-knowledge.

Correctness: To show the correctness property of the scheme provided in
Figure 4.1, the equations need to be evaluated:

gz1yz2
?
= q1C

c
2

gv1+cxyv2+cr
!

= gv1yv2gcxycr

gv1yv2gcxgrc = gv1yv2gcxgrc

(4.1)

gz1hz3
?
= q2C

c
3

gv1+cxhv3+cγ
!

= gv1hv3gcxhcγ

gv1hv3gcxgcγ = gv1hv3gcxhcγ

(4.2)

46

4 Confidential Transaction Protocol

gz2hz3
?
= q3C

c
1

gv2+cr
!

= gv2gcr

gv2gcr = gv2gcr

(4.3)

Special Honest-Verifier-Zero-Knowledge: A scheme provides special honest-
verifier-zero-knowledge, as described in subsection 2.9.1, if there exists a p.p.t.
algorithm S which, on input of public information and challenge value c,
produces simulated conversations ((q1, q2, q3); c; (z1, z2, z3)), which are indistin-
guishable from real conversations produced by R2. A simulator algorithm S
for the scheme provided in Figure 4.1 is defined as:

Simulated Conversations:
Input: C1, C2, C3, c, g, h, G

1. z1, z2, z3←$ Zp
2. q1 = gz1yz2C−c2

3. q2 = gz1hz3C−c3

4. q3 = gz2C−c1

5. return ((q1, q2, q3); c; (z1, z2, z3))

Proof. Considering a communication transcript produced by S, we observe that
the response tuple (z1, z2, z3) is generated uniformly at random. Given this, the
calculated announcement tuple (q1, q2, q3) will also be random. The constructed
conversation will be accepted because the required constraints are satisfied,
even though the secret values x, γ, r are unknown to the verifier. The response
tuple (z1, z2, z3), as well as the announcement tuple (q1, q2, q3) calculated during
R will depend on uniformly selected random values v1, v2, v3 as well as c←$ Zp
and will therefore follow the same distribution as in S. Hence constructed
conversations of S and R will occur with the same probability distribution and
are therefore indistinguishable. More formally S ∼= R holds3.

2R, denotes the real conversation protocol.
3∼= the output of left operator p.p.t. algorithm occurs with the same probability distribu-

tion as the output of the right operator algorithm.

47

4 Confidential Transaction Protocol

Special Soundness: The special soundness property, as described in subsec-
tion 2.9.1, can be shown in the following way: after the announcement of tuple
a = (q1, q2, q3) a prover is able to calculate two valid responses for distinct
challenges c 6= c′, which yields accepting conversations ϕ1 = (a; c; (z1, z2, z3))
and ϕ2 = (a; c′; (z′1, z

′
2, z
′
3)).

As an analogy, scheme Figure 4.1 can be seen as a virtual machine Z which
implements the protocol. After the announcement a has been published, a
snapshot of the current state will be taken. Z will be resumed and another
virtual machine Z ′ will be initialized with the previously taken snapshot. So
both executions start with the same announcement, hence also values (v1, v2, v3)
will be the same, but the challenge values will be different in both executions.
Accepting conversations Z → ϕ1, Z ′ → ϕ2, can only be calculated iff. the
prover knows the secret values x, γ, r. A cheating prover, as previously stated,
will only succeed with negligible probability.
To show this property a p.p.t. extractor algorithm E can be defined, which
on input of the tuple (a; c, c′, (z1, z2, z3), (z

′
1, z
′
2, z
′
3)) always calculates a witness.

The according algorithm E , for scheme Figure 4.1 is defined as follows:

Extractor E :
Input: a, c, c′, (z1; z2; z3), (z′1; z′2; z′3)
S1: Extract secret value r from z2, z′2:

z′2 − z2 = (v2 + c′r)− (v2 + cr)

= c′r − cr
= r(c′ − c)

r =
z′2 − z2
c′ − c

S2: Extract secret value γ from z3, z′3:

z′3 − z3 = (v3 + c′γ)− (v3 + cγ)

= c′γ − cγ
= γ(c′ − c)

γ =
z′3 − z3
c′ − c

48

4 Confidential Transaction Protocol

S3: Extract secret value x from z1, z′1:

z′1 − z1 = (v1 + c′x)− (v1 + cx)

= c′x− cx
= x(c′ − c)

x =
z′1 − z1
c′ − c

Output witness ω = (x, r, γ).

Given the extractor algorithm we now show that the output of E is indeed valid:
given the returned witness r = (z′2 − z2)(c′ − c) we can rewrite the claimed
statement gr as:

gr = g(z
′
2−z2)/(c′−c)

gr(c
′−c) = gz

′
2−z2

Cc′−c
1 = gz

′
2−z2

Cc′
1

Cc
1

=
gz
′
2

gz2

gz2 =
gz
′
2Cc

1

Cc′
1

(4.4)

We know that both conversations are accepted, so gz2 = q3C
c
1 and gz′2 = q3C

c′
1

must hold simultaneously. By inserting each value individually in the above
equation we obtain:

q3C
c
1 =

gz
′
2Cc

1

Cc′
1

gz
′
2 = q3C

c′

1

gz2 =
q3C

c′
1 C

c
1

Cc′
1

gz2 = q3C
c
1

Hence (z′2− z2)(c′− c) is a correct witness for both conversations, so the prover
must indeed know the secret value r, otherwise he would have not been able to
correctly compute z2 and z′2 in the first place.

49

4 Confidential Transaction Protocol

Knowing that r = (z′2− z2)(c′− c) is a valid witness, we now want to show that
x = (z′1− z1)/(c′− c) is also correct. The statement gxyr can be rewritten to:

gxyr = g(z
′
1−z1)/(c′−c)y(z

′
2−z2)/(c′−c)

gx(c
′−c)yr(c

′−c) = g(z
′
1−z1)y(z

′
2−z2)

C
(c′−c)
2 = g(z

′
1−z1)y(z

′
2−z2)

Cc′
2

Cc
2

=
gz
′
1yz

′
2

gz1yz2

gz
′
1yz

′
2Cc

2

Cc′
2

= gz1yz2

(4.5)

As in Equation 4.4, we know that gz1yz2 = q1C
c
2 and gz

′
1yz

′
2 = q1C

c′
2 must

hold:

q1C
c
2 =

gz
′
1yz

′
2Cc

2

Cc′
2

gz
′
1yz

′
2 = q1C

c′

2

gz1yz2 =
q1C

c′
2 C

c
2

Cc′
2

gz1yz2 = q1C
c
2

So x = (z′1 − z1)/(c′ − c) is also a correct witness for both conversations. As
shown in Equation 4.4, the prover is already bound to the secret value r. z2
and z′2 will be used to check both claimed statements gr and gxhr. Hence a
prover will only be able to calculate two valid responses z1, z′1, considering the
fact that he is already bound to r, by also knowing the secret value x. Finally
we evaluate the correctness of the extracted witness γ = (z′3 − z3)(c′ − c), with
already proven correct witness x = (z′1 − z1)/(c′ − c):

gxhγ = g(z
′
1−z1)/(c′−c′)h(z

′
3−z3)/(c′−c′)

gx(c
′−c)hγ(c

′−c) = gz
′
1−z1hz

′
3−z3

C
(c′−c)
3 = g(z

′
1−z1)h(z

′
3−z3)

Cc′
3

Cc
3

=
gz
′
1hz

′
3

gz1hz3

gz
′
1hz

′
3Cc

3

Cc′
3

= gz1hz3

(4.6)

50

4 Confidential Transaction Protocol

As in the previous steps we know that both statements gz1hz3 = q2C
c
3 and

gz
′
1hz

′
3 = q2C

c′
3 are satisfied:

q2C
c
3 =

gz
′
1hz

′
3Cc

3

Cc′
3

gz
′
1hz

′
3 = q2C

c′

3

gz1hz3 =
q2C

c′
3 C

c
3

Cc′
3

gz1hz3 = q2C
c
3

Equation 4.6 shows that also the extracted value γ = (z′3 − z3)(c
′ − c) is a

correct witness for both conversations. As in the previous step z1, z′1 will be
used to verify both statements gxhr and gxhγ. z1, z′1 already satisfy gxhr and
we know that gxhγ must also be true. So the prover is bound to the values x
and r; otherwise the evaluation would have failed. Considering this and the
fact that γ = (z′3 − z3)(c′ − c) is a valid witness for both conversations. We
know that the prover must also know the secret value γ. The desired special
soundness property thus holds for scheme Figure 4.1.
The provided scheme describes a proof-system for the following relation:

{(g, h, y ∈ G, C,X : x, r, γ ∈ Zp) : C = gxhγ ∧X = (gr, gxyr)} (4.7)

To convince a verifier that both cipher-texts and the commitment encapsulate
the same value a, a prover needs to engage the scheme two times with the pairs
(V, xs) and (V, xr).
So essentially the spender shows that xs ⇔ C ⇔ xr holds4.
In order to carry out non-interactive-transactions, so no interaction between
spender and receiver should be necessary, the described scheme will be turned
non-interactive by applying the Fiat-Shamir heuristic: calculate challenge c as
c←p H(q1‖q2‖q3).
The spender will then add the statements π1 ← xs ⇔ C and π2 ← xr ⇔ C to
the transaction.

4.1.5 Positive Amount Proof

The integrity of the ledger must be preserved. To prevent possible integrity
violations as described in subsection 2.9.2, the spender needs to provide a

4X ⇔ C, with X as ElGamal cipher-text and C as Pedersen commitment, denotes that
the relation in Equation 4.7 is satisfied.

51

4 Confidential Transaction Protocol

proof showing that the amount hidden in C, xs and xr is “positive”, so no
“overflow” will be possible. The scheme described in subsection 4.1.4 ensures
that xs ⇔ C ⇔ xr holds, which serves as a precondition for a ≥ 0. To show this
property, the following needs to be done by the spender: construct a bulletproof
as described in subsection 2.9.3, with V = C and v = a, to prove the relation:

{(g, h ∈ G, C, n : a, γ ∈ Zp) : C = gahγ ∧ a ∈ [0, 2n − 1]}

By showing this relation, the verifier will be convinced that a ∈ [0, 2n− 1] holds
and hence the hidden amount must be positive. The spender will then add a
bulletproof, showing this relation, as φ to the transaction.
We will set n to 32 in our case, therefore the amount must be representable a
32-bit unsigned integer. The scheme described in [Bün+18] needs to be turned
non-interactive by applying the Fiat-Shamir heuristic, to omit the necessity of
interaction and to allow verification at a later point in time.

4.1.6 Quantity Proof

A spender may not transfer more assets than he actually possesses, therefore
the spender must convince the verifier of the following inequality: a ≤ b. As
previously stated, this inequality can be rewritten to: b − a ≥ 0, which is
equal to the statement that the difference between the current balance and the
transferred amount satisfies (a− b) ∈ [0, 2n − 1].
The proof system described in subsection 2.9.3 only convinces a verifier that
a prover knows a value v, hidden in a Pedersen-commitment V = gvhγ, s.t
v lies in a desired range. With no further restrictions to the choice of v, a
prover would be able to commit to an arbitrary value v and then prove that
v ∈ [0, 2n − 1] holds. Hence it must be ensured that the proven value is of the
form v = b − a. To achieve this we define the following workflow: Construct
a Pedersen commitment to the current balance b of the spender as P = gbhγ,
by using the same generators g, h ∈ G as in C = gahγ. Given an ElGamal
cipher-text of the spenders current balance b as xb = (gr, gbyr), construct a
proof µ showing the relation xb ⇔ P as described in subsection 4.1.4. If µ is
valid, then the verifier will be convinced that P is a Pedersen commitment to
b. Next construct a bullet-proof ρ, as described in subsection 4.1.5, showing
that b ∈ [0, 232 − 1] holds. Given ρ and proof φ from the step described in

52

4 Confidential Transaction Protocol

subsection 4.1.5, the verifier will forthermore be convinced that a and b are
both positive; so a, b ≥ 0 holds. With these preconditions, the spender is then
able to construct a proof for the following relation:

{(g, h ∈ G, C, P, n : (b− a), γ ∈ Zp) : V = gb−ahγ−σ ∧ v ∈ [0, 2n − 1]} (4.8)

The prover is the only who knows the plain values a and b, as well as used
blinding factors γ and σ in C and P . Hence a proof satisfying the relation
shown in Equation 4.8 can be constructed.
During the verification process the homomorphic-property described in sec-
tion 2.7.2 will be used to achieve the following: given commitments C and P
compute V ′ = P − C = gb−ahγ−σ. We observe that the prover must use the
blinding factor γ − σ when construct V , otherwise the proof will be considered
invalid. The verifier will then check the provided statement against the com-
puted value V ′.
On success the verifier will be convinced that a ≤ b holds, because both values
are positive and due to the homomorphic property of Pedersen-commitments
the verifier will be able to compute a valid commitment to a− b, which will
then be used to check the claimed statement. The check will only success if
the prover indeed used v := (b − a) and (γ − σ) as the blinding factor to
construct the proof in the first place. A false-positive evaluation will only occur
with negligible probability. The spender will then add two bulletproofs to the
transaction: one which proves that the balance is positive further defined as ρ
and a second one showing that the difference between the balance and amount
is “positive” defined as τ .
To make the workflow more clear consider the illustration depicted in Fig-
ure 4.2.

53

4 Confidential Transaction Protocol

Paramters:

C : Commitment to amount a, with C = gahγ.
b : Current balance of the spender.
a : Amount of units to transfer, a ∈ [0, 232).
h : Generator h ∈ G, must be the same as in C.
g : Generator g ∈ G, must be the same as in C.

Quantity Proof (Spender):

S1. Calculate commitment P = gbhσ, with σ←$ Zp
S2. Construct proof ρ← {P = gbhσ ∧ b ∈ [0, 232)}, as described in

subsection 2.9.3
S3. Commit to (b− a), V = gb−ahσ−γ

S4. Construct proof τ ← {V = gb−ahσ−γ ∧ (b− a) ∈ [0, 232)}, as in
subsection 2.9.3

S5. return (P, ρ, τ)

Figure 4.2: Quantity proof scheme.

4.1.7 Re-Encrypt Balance

The scheme described in subsection 4.1.6 allows one to proof that the inequality
a ≤ b holds. The presented workflow requires the calculation of value µ, which
proves the equality of the users current balance and the provided balance
commitment. All balances are stored in the form of ElGamal cipher-texts
(gr, gbyr), a valid transaction will lead to a balance update by utilizing the
linear homomorphic property of the cryptosystem. The involved parties will
then be able to decrypt these updated values by using their secret keys.
Recap the property of homomorphic addition, as described in subsection 2.6.3,
of two cipher-texts under the same public key: C1 = (gr, gayr) , C2 = (gr

′
, gbyr

′
),

C1⊕C2 then yields C3 = (gr+r
′
, ga+byr+r

′
). The value C3 can then be decrypted

to recover a+b 5. We observe that the two ephemeral keys r, r′ will be combined
to a new value γ = (r + r′).
Given this the following problem arises: as previously described the spender

5To actually recover (a+ b), the algorithm described in algorithm 1 needs to be applied
to ga+b.

54

4 Confidential Transaction Protocol

encrypts the amount two times, by selecting the ephemeral keys at random. By
updating the balances of the involved parties, the current and new ephemeral
key will be combined. The spender obviously knows these values used during the
encryption and hence also knows the updated value for his encrypted balance.
The receiver on the other hand does not know this temporary value and will
therefore not be able to construct proofs which require the knowledge of this
discrete value. Due to the DLP the receiver will also not be able to calculate
loggg

r+r′ , otherwise the security guarantees of the system will not hold and the
whole protocol will not be considered secure.
An obvious solution to this problem would be that the spender sends the used
ephemeral key to the receiver, using an additional secure channel. This aproach
clearly requires interaction and therefore breaks with the design goals of the
protocol. If a user wants to spend his assets again he will need to perform all
previously described steps. The workflow described in subsection 4.1.6 requires
a cipher-text holding the spenders current balance, as well as a Pedersen commit
to the balance. The current balance is stored in the world state, but a user may
not know the according discrete ephemeral key, which is necessary to calculate
the necessary proof.
We observe that not the actually stored encrypted balance needs to be used to
verify the proofs but only a cipher-text which holds the balance. By providing a
self computed encryption of the current balance, the proof could be calculated
because the ephemeral key will be known. The spender needs to convince
the verifier, in this case the node, that the provided cipher-text encrypts the
same value as stored on the system. On success the verifier knows that the
provided encryption holds the same value and can therefore be used during the
verification process. We will now describe a scheme which proves the following
relation:

{(g ∈ G, B, C, y : (b = x) : B = (gr, gbyr) ∧ C = (gr
′
, gxyr

′
)} (4.9)

The prover convinces the verifier that the same value is encrypted in both
cipher-texts B and C. This is equal to the statement that the difference of
B and C yields an encryption of zero. By subtracting C from B, we obtain
the following: C 	 B = (gr−r

′
, g0yr−r

′
) = (gp, (gp)x). We observe that this

structure is equivalent to a Schnorr-proof as described in Figure 2.2, for which
the required properties such as soundness and zero-knowledge have already
been shown. With C 	 B = (C1, C2) = (gp, (gp)x), the plain scheme will be
utilized in the following way:

55

4 Confidential Transaction Protocol

Prover P Verifier V
P(x,C1,G) V(C1, C2,G)
u←$ Zp
a← C1

u a−−−−→
c←$ Zn

c←−−−−
r ←n u+ cx

r−−−−→ C1
r ?

= aC2
c

Figure 4.3: Encryption equivalence scheme.

As before correctness can be shown by evaluating the required equation:

C1
r ?

= aC2
c

gp(u+cx) = gup(gxp)c

gupgcxp = gupgcxp

Special-Soundness as well as honest-verifier-zero-knowledge holds because the
scheme is exactly the same as the one described in Figure 2.2 with g = g(r−r

′)

and h = gx = gx(r−r
′) = y(r−r

′).
With this scheme the spender will be able to attach a self computed encryption
of the balance, for which the discrete ephemeral key is known, and hence allows
the spender to compute all other necessary proofs. The spender will add the
self computed cipher-text as value y alongside with the described proof as value
α to the transaction.

Remarks With this system at hand a spender is able to proof that a self
computed encryption holds the same plain value as the currently stored one.
A distribution ledger-based payment system which is built upon this protocol
may hence allow a balance replacement. More precisely a user may request
a replacement of the currently stored value in the world state with his self
computed one. Essentialy a user would thus be able to re-randomize its stored
balance in the world state.

56

4 Confidential Transaction Protocol

4.1.8 Sign Transaction

As the last step of the transaction construction, the spender will sign the
obtained transaction with its dedicated signing-key, which furhter serves as a
prove of account ownership. For this purpouse any digitial-signature scheme
which fulfills the required properties described in section 2.10 can be used. In
our case we will use the scheme presented in subsection 2.10.1. The provided
signature then proves the ownership of an account, because only the holder of
the secret signing-key will be able to construct a valid signature.
Considering all previously described steps and the according values which need
to be calculated during each of them, the following transaction structure can
be obtained:

transaction {
from,
to,
C,
P,
y,
x_s,
x_r,
alpha,
pi_1,
pi_2,
mu,
phi,
rho,
tau,
signature

}

• from: The senders address.
• to: The receivers address.
• C: A Pedersen commitment to amount a.
• P: A Pedersen commitment to the current balance b.
• y: Self computed encryption of the spenders current numeric balance.
• xs: Encryption of amount a under the spenders public key.

57

4 Confidential Transaction Protocol

• xr: Encryption of amount a under the receivers public key.
• α: Encryption proof showing that the currently stored balance and

provided cipher-text in y hold the same plain value.
• π1: Equivalence proof showing that xs ⇔ C holds.
• π2: Equivalence proof showing that xr ⇔ C holds.
• µ: Equivalence proof showing that y ⇔ P holds.
• φ: A range-proof showing that the numeric amount satisfies a ∈ [0, ..., 232).
• ρ: A range-proof showing that the numeric balance satisfies b ∈ [0, ..., 232).
• τ : A range-proof showing that the numeric balance of the sender is greater

or equal to the actual amount, namely b ≥ a holds.
• signature: A digital signature, which proofs that the spender is the

actual owner of the transferred assets, and the transaction has not been
changed.

The serialization of this representation, as well as the private-key x, will then
be used as inputs to the Sign algorithm of the selected signature scheme. The
spender will then add the obtained signature as the last entry to the transaction.
This value proves knowledge of the private-key x, which convinces the verifier
that the user is indeed the owner of the spending account. The signature
also provides integrity protection against tampering, because only unmodified
transactions will result in a successful signature verification.

4.1.9 Send Transaction

The successful execution of the steps presented in subsection 4.1.1 - 4.1.8, will
result in a transaction object as defined in subsection 4.1.8. As the last step, the
spender proposes the constructed transaction for verification to the nodes.

58

4 Confidential Transaction Protocol

4.2 Verifier

Nodes of the system will take care of the verification process, by checking
proposed transactions for their validity. They have access to the current state,
namely the encrypted balances of the users. On successful verification the
nodes will perform a state transfer by applying an update to the involved
users balances. These updates will be performed by utilizing the homomorphic
property of ElGamal. The verified transaction will then be added to a block,
which will then itself be added to the ledger.
The ledger contains the transaction history of every user up to the current point
in time. The design of the blockchain ensures that no tampering of this history
is possible. The current state of the system can then be verified by replaying
every occurred transaction. In practice the verifying node will need to parse
the serialized transaction-package to reconstruct the structure defined before.
During the explanation the variable T will be used to describe the currently
verified transaction. The notation T [λ] will be used to describe a field access of
transaction T . The system state will be defined by variable Θ, which defines a
list of accounts. Θ[x] then represents the current balance of a user identified
by address x. Additionaly the world state holds every users encryption and
signature verification key.
The verification-process is defined by the following steps:

1. Check that spender and receiver are members of the system.
2. Verify the provided signature.
3. Verify all provided proofs.
4. Update the world state.

As for the spender these steps will now be concretized:

4.2.1 Address Verification

Verify that the values T [from] and T [to] are valid addresses, so these values
describe valid identifiers for users of the system. On successful verification,
proceed with the next step, otherwise reject the transaction.

59

4 Confidential Transaction Protocol

4.2.2 Signature Verification

Verify the validity of the provided signature by using the stored public-key as
well as the serialized transaction as message as input to the Verify algorithm
described in subsection 2.10.1. On success, the verifier knows that the trans-
action has not been changed and was issued by the claimed spender. If the
verification fails, the transaction will be rejected.

4.2.3 Proof Verifications

As stated multiple times throughout this thesis, the central part of the verifica-
tion process will be dominated by proof verifications. These proofs are necessary
in order to ensure that only correct values have been used to construct the
transaction in the first place. A malicious transaction will only be considered
valid with negligible probability, due to the properties of the used crypto and
proof-systems. The process will be executed in a hierarchic manner, which
means that once a check fails, the whole verification fails and hence results in a
rejection of T .

The procedure depicted in Figure 4.4 illustrates the mentioned hierarchic
verification process, which will be executed by the node step by step.
First it needs to be checked that the provided balance-encryption hides the
same value as the one which is currently stored in the world state. Therefore
the verifier will engage the subroutine, illustrated in Figure 4.5, with the
calculate homomorphic difference between the given and saved encrypted
balance, as described in subsection 4.1.7, as parameter. This statement is the
main precondition of the verification process, because if this statement does
not hold, there is no point in verifying the rest of the proofs.
Second the process will continue with the verification that the provided Pedersen-
Commitment in C hides the same value as the encryptions in xs and xr. To do
so the verifier engages the subroutine depicted in Figure 4.7.
Third the verification of the range-proof provided in the field φ, stating that
a ∈ [0, 232) holds, will be performed. When both statements are valid the verifier
will be convinced that xs, xr indeed hold the same value, which additionally
lies in the required range. A balance update by homomorphic addition and
subtraction will hence cause no integrity violations.

60

4 Confidential Transaction Protocol

Paramters

G: Group G of order p.
g: Public generator g ∈ G
h: Public generator h ∈ G
pk: Public key of spender.
T : Transaction

Proof Verifications:

S1. abort if: not VerifyEncryption(T [y], Θ[T [from]])
S2. abort if: not VerifyEquivalence(T [C], T [xs], T [π1],G, g, h, pk)
S3. abort if: not VerifyEquivalence(T [C], T [xr], T [π2],G, g, h, pk)
S4. abort if: not VerifyRange(T [C], T [φ])
S5. abort if: not VerifyEquivalence(T [P], T [y], T [µ],G, g, h, pk)
S6. abort if: not VerifyRange(T [P], T [ρ])
S7. Set V ′ ← T [P]	 T [C]
S8. abort if: not VerifyRange(V ′, T [τ])
S9. return >

Figure 4.4: Verification process.

Furthermore, the verifier checks that P is indeed a commitment to the current
balance. Due to the first step, the verifier knows that the spender provided
a valid self-computed encryption of the balance, therefore this value can be
used to check that P ⇔ b holds. So as the next step the subroutine depicted
in Figure 4.7 will be executed with P and y as parameters. If P is valid the
actual sanity-check besides the existence of the spender and receiver can be
performed: as stated multiple times a user may not transfer more assets, than
he currently holds. If all previous checks are successful the verifier knows that
the spender committed to a value a which is also present in the encryptions
xs, xr, he further knows that P holds a commitment to the current balance.
Pedersen-commitments, as shown in Definition 2.7.2, are linearly homomorphic,
hence a commitment to the difference between b and a can be computed without
knowing the actual plain values. The computed commitment can then be used
to verify the necessary statement a ≤ b.
For this to work the spender is required to construct a proof for commitment
V = gb−ahσ−γ, where γ, σ are the used blinding factors in C and P , which

61

4 Confidential Transaction Protocol

Input:

X: ElGamal cipher-text to verify, X = (C1, C2).
α: Tuple (a, r) as described in Figure 4.3.

Verify Encryption:

S1. Verify that C1
r ?

= aC2
c holds, return > on success ⊥ otherwise.

Figure 4.5: VerifyEncryption subroutine.

Input:

V : Commitment to verify, V = gahγ.
β: Proof to verify against Commitment V .

Verify Range:

S1. Verify β return > if V = gahγ ∧ a ∈ [0, ..., 232) holds, else return
⊥.

Figure 4.6: VerifyRange subroutine.

are only know to the spender. If any other commitment has been used to
construct the proof, this statement will only be considered valid with negligible
probability.
The verification of the proof provided in the field τ is then the last step of the
whole process and finally completes all integrity checks.
After all check have passed the node can safely proceed with the balance update,
because the transaction transfers a valid amount.
The described checks will be performed in this hierarchic order, meaning that
as soon as any of them fails the transaction will be rejected immediately.

4.2.4 Update World State

Update the system state by applying the actual balance update. This can be
done by utilizing the linear homomorphic property of ElGamal. The spenders
balance will be updated by subtracting the transferred amount from it. The
receivers balance on the other hand will be increased by performing a homo-

62

4 Confidential Transaction Protocol

Input:

C3: Pedersen commitment to verify.
X: ElGamal cipher-text to verify, X = (C1, C2).
β: Tuple ((q1, q2, q3); (z1, z2, z3)).
G: Group G of order p.
g: Generator g ∈ G.
h: Generator h ∈ G.
y: Public key of spender.

Verify Range:

S1: set c←p H(q1, q2, q3)

S2: verify gz1yz2 ?
= q1C

c
2, on fail return ⊥

S3: verify gz1hz3 ?
= q2C

c
3, on fail return ⊥

S4: verify gz2 ?
= q3C

c
1, on fail return ⊥

S5: return >

Figure 4.7: VerifyEquivalence subroutine.

morphic addition.
The current balance of spender and receiver will be denoted as Bs = Θ[from] =
(gu, gbsyus) and Br = Θ[to] = (gv, gbryvr). The respective encryption of a is fur-
ther given as xs = (gw, gayws) and xr = (gx, gayxr). Subscripts s, r indicate the
corresponding values for spender and receiver and bs, br denote the respective
numeric balance.
By utilizing the property described in Equation 2.1 we obtain the following:
Bs 	 xs = (gu−w, gbs−ayu−ws) and Br ⊕ xr = (gv+x, gbr+ayv+xr), which are valid
encryptions of the updated balances. These values gbs−a, gbr+a will then only be
recoverable by decrypting the new cipher-texts using the corresponding private
key. To obtain the updated numeric values (bs − a) and (br + a) the algorithm
described in algorithm 1 will be used by each user.
Additionally the node will formulate a new block including the valid transaction
T . To complete the state transfer, this block will then be added to the ledger.
Then newly added block will then define the new state.

63

5 Implementation Results

In this section, the actual implementation and its results will be presented.
Also, some general evaluations in terms of necessary elliptic curve operations,
as well as dedicated benchmarks, will be presented.

5.1 General Setting

The whole protocol presented in chapter 4 has been implemented as a C/C++
library, using the 2011 standard for C and the 2017 standard for C++. The
main goal of the implementation was to evaluate the transaction composition
and verification in terms of performance and implementability, so no actual
payment system has been implemented. Note that the provided library may be
used to implement an actual distributed ledger-based payment system.
To keep track of all users and their balances, the class bc_system can be used.
This class takes serialized transactions as input and verifies them, by executing
the process described in section 4.2; on success, the involved users balances will
be updated by utilizing the homomorphic property of ElGamal encryptions.

Remarks Our implementation is not capable of instantiating a fully oper-
ational payment system. The goal of this thesis is to demonstrate how the
presented protocol could be used. However, our work could be extended to
represent a fully operational distributed ledger-based payment system.

64

5 Implementation Results

5.2 Implementation Framework

Many of the used primitives, such as ElGamal or Pedersen, as well as the
presented proof-schemes, require a cyclic-group setting. The implementation
of these schemes has been done using the elliptic curve secp-k1 as defined in
[Bro10].
As stated the protocol will use range-proofs to preserve the integrity of the ledger.
For this purpose, we used the reference C-implementation of the bulletproof
protocol, licensed under MIT [Ele], which also operates on the curve secp-k1.
This library already provides the construction and verification of bulletproofs,
as well as an implementation of Pedersen-commitments, and Schnorr-signatures.
The library itself also implements elliptic curve operations, which are not
exposed by the API. In order to implement the necessary schemes used in
chapter 4, the library has been adapted in a way such that a dedicated interface
for elliptic curve operations is provided.
For serialization and storage purposes, the C++ JSON-library [Loh] licensed
under MIT is used. The provided benchmark results of our implementation
have been generated by using the library [Goo], licensed under Apache-2.0.

5.3 Evaluation Results

In this section the actual implementation results will be presented. We will
focus on the abstract performance of this protocol in terms of elliptic curve
operations, such as point addition and scalar point multiplication per routine.
The presented results also include a dedicated performance evaluation in terms
of runtime in milliseconds, which have been performed on a i7-4790 CPU at
3.60GHz.
The transaction construction and verification process is split into several sub-
routines. Each subroutine will have a different impact on the whole protocol
performance. We will therefore take a look at the significant parts, to provide
a good overview on how these routines influence the overall performance.

First we want to evaluate the range-proof operations. Table 5.1 and Table 5.2
show the number of EC-operations needed during construction and verification,
depending on the bit-width of the proven value.

65

5 Implementation Results

bit-width point-add scal-mult ms
8 4 28 1.19
16 8 56 2.36
32 16 112 4.71
48 24 168 7.12
64 32 224 9.42

Table 5.1: Bulletproof: Construct EC Operations.

bit-width point-add scal-mult ms
8 0 16 1.03
16 0 32 2.06
32 0 64 4.13
48 0 96 6.21
64 0 128 8.27

Table 5.2: Bulletproof: Verify EC Operations.

We observe that the number of required operations grows linearly in the bit-
width of the proven values.
The transaction build process also requires the construction of equivalence
proofs, as defined in section Figure 4.3. The evaluation of the respective
subroutine implementation is depicted in Table 5.3.

point-add scal-mult ms
prove 2 5 0.301
verify 5 8 0.415

Table 5.3: Equivalence Proof: EC Operations.

By definition these subroutine is static in the number of operations. Further
the spender needs to include an encryption proof as defined in subsection 4.1.7.
The results for this routine can be found in Table 5.4.

66

5 Implementation Results

point-add scal-mult ms
prove 0 1 0.091
verify 1 2 0.125

Table 5.4: Encryption Proof: EC Operations.

Like the previous routine, this part is also static in the number of operations by
definition. From the presented data we observe that the transaction construction
and verification will be dominated by bulletproof operations. Due to this fact
one may consider to restrict the allowed bit-widths, to maximize the number
of processable transaction.
The illustrations in Table 5.5 and Table 5.6, conclude the overall results
regarding the complete process. These tables show how many elliptic curve
operations are necessary to construct and verify transactions with different
balance and amount bit-widths as inputs.

balance-bw amount-bw point-add scal-mult ms
16 16 35 196 10.7
32 16 51 308 13.4
32 32 59 364 16.2
48 16 75 403 24.2
48 32 83 459 26.5

Table 5.5: Construct Transaction: EC Operations.

balance-bw amount-bw point-add scal-mult ms
16 16 19 123 7.77
32 16 19 183 12.8
32 32 19 215 15.0
48 16 19 251 16.3
48 32 19 283 18.7

Table 5.6: Verify Transaction: EC Operations.

To get an idea of how these numbers are obtained, consider the concrete number
of subroutine-executions as described in section chapter 4. The spender needs to

67

5 Implementation Results

execute the equivalence-proof subroutine three times and the encryption-proof
subroutine once. Further, the spender computes two Pedersen-commitments
and three ElGamal encryptions as well as one Schnorr-signature.
The verifier, on the other hand, needs to compute two homomorphic commit-
ment subtractions as well as one point addition during the signature verification
process.
These executions result in a static number of elliptic curve operations, namely
28 scalar multiplications and 11 point additions for construction and 27 scalar
multiplications and 19 additions for verification. The remaining number opera-
tions will be dominated by bulletproof constructions and verifications, which
depend on the bit-width of the proven values.
On our test machine, we would achieve a throughput of about 128 transactions
per second, for balances and amounts representable with 16 bits. Considering
48-bit balances and 32-bit amounts, the throughput would be 53 transactions
per second.
Keep in mind that the verification process is implemented on a single thread,
and could hence be improved by splitting the work onto multiple threads.

5.4 Transaction Size

In this section, we will provide an overview of how different input sizes impact
the overall transaction size. While investigating this fact, we observed that the
size of the corresponding range-proofs depends on the bit-with of the input
values. The transaction structure defined in subsection 4.1.8,can hence be split,
regarding the influence on the overall transaction size, into a static and dynamic
part. The static sizes of a transaction, presented in bytes, can be found in
Table 5.7.

68

5 Implementation Results

size count total
sha-256-hash 32 2 64
Pedersen-cm 33 2 66
Schnorr-sig 64 1 64
enc-proof 96 1 96
ElGamal-ct 128 3 384
eq-proof 288 3 864

Table 5.7: Static sizes of transaction parts.

The values presented above, result in a static size of 1538 bytes for confidential
transactions of the defined structure, presented in subsection 4.1.8.
The dynamic size-part, on the other hand, will be made up by the range-proofs.
Table 5.8 shows how different input bit-widths influence the corresponding
range-proof size.

bit-width size
8 643
16 1283
32 2564
48 3845
64 5126

Table 5.8: Range Proof sizes depending on input bit-width.

From the data presented above, we observe that the range-proof size grows
linearly in the input bit-width. Depending on the actual proven values, a
transaction’s total size thus ranges from 3,467 KB to 16,916 KB.
Keep in mind that not all involved values must be of the same bit-width.
Hence the representability, of balances and amounts in terms of bit-widths,
heavenly impacts the overall transaction size. Table 5.9 illustrates how different
bit-widths impact the overall transaction size.
In a setting, where transactions need to be stored on the ledger, one may
consider only to allow transaction amounts which are representable in a certain
bit-width, to keep the storage overhead as low as possible.

69

5 Implementation Results

balance-bw amount-bw proof-size total
16 16 3849 5227
32 16 6411 7949
32 32 7692 9239
48 16 8973 10511
48 32 10254 11792
48 48 11535 13073

Table 5.9: Transaction sizes depending on balance and amount bit-width.

70

5 Implementation Results

5.5 Graphical Demo

To get a better feeling for the practical usage of this protocol, also a graph-
ical version building upon the developed library has been implemented. An
illustration of the implemented interface is depicted in Figure 5.1.

Figure 5.1: Interface to construct and send transactions.

One may select a provided user of the system by choosing from the drop-
down. The field current balance will then be filled with the currently stored
ElGamal cipher-text of the selected user. By providing the secret decryption-

71

5 Implementation Results

and signing-key, a click on update will decrypt the current balance, and the
according numeric value will be recovered by executing the algorithm described
in algorithm 1.
The receiver of the transaction can be selected from the provided dropdown,
which shows all other users of the system. As the last step, the numeric amount
to be transferred needs to be provided.
With a click on compose, the steps described in subsection 4.1.1-4.1.8 will
be executed. The constructed transaction can then be examined by clicking
on the hash value. An example of a transaction representation can be found
in Figure 5.21. With a click on send, the transaction will be proposed for
verification.

Figure 5.2: Illustration of a constructed confidential transaction.

1Note that the range proofs value is cut for better readability

72

5 Implementation Results

The system will then verify the validity of the transaction as described in
Procedure Figure 4.4. On success a message will be shown indicating that the
transaction is valid and a state transfer has been performed.
If the transaction was rejected, an according error message indicating why the
transaction has been considered invalid will be presented. The state transfer
can be observed by clicking on the update button, which again retrieves the
current balance from the system and recovers the according numeric value by
executing the algorithm described in algorithm 1.

73

6 Conclusion and Further Work

The goal of this thesis was to develop a confidential transaction protocol for a
distributed ledger-based asset system. In the general setting, a user needs to
provide sensitive information such as the transaction amount and his current
balance in plain form to allow public verification at a later point in time.
We showed how this necessity could be eliminated by utilizing homomorphic
cryptosystems as well as zero-knowledge proofs.

Every sensitive information will now be present in encrypted form, meaning
that only the user itself will be able to decipher this information again. To
still preserve the ability of public verification, we showed how zero-knowledge
protocols could be used to convince the verifier that the necessary computations
have been performed correctly. We also showed how homomorphic cryptosys-
tems could be used in this context to update persistent values such as a user’s
balance, without decrypting the values in the process.
Users may transfer numeric assets secretly to any other user, by following
the steps described in chapter 4. The transaction will not contain any plain
information about the secret values, but it can still be verified at a later point
in time. Further, a verifier will not learn anything besides the validity of the
proposed transaction.
To demonstrate the performance and applicability of the described protocol, we
also provided an implementation in the form of a C++ library. This implemen-
tation has been analyzed in terms of computational overhead; the according
results can be found in section chapter 5.

Further work may take a look into how the described protocol may be improved.
For this purpose, one may consider other homomorphic encryption schemes,
which do not require a discrete-logarithm recovery. Hence ElGamal could
be replaced by Paillier [Pai99] or another suitable cryptosystem. The flat
performance may also be improved by evaluating the influence of different
underlying elliptic curves.

74

6 Conclusion and Further Work

The described protocol enhances the confidential regarding numeric assets
transactions, but systems may hold assets that are not representable in numeric
form. Due to [GMW91] we know that every statement in NP can be proven in
zero-knowledge. So the protocol could be extended by also considering proof-
schemes that apply to other types of assets.
Additionally the protocol could be extended such that it allows users to prove
that a specific transaction has not exceeded the tax-free amount. This may
be necessary when thinking about asset transfers between trade areas with
different regulations. An extension may also include the possibility for a user
to prove that its current balance independent from a transaction, which could
especially be useful when a user does its taxes. For this purpose, a certificate
could be designed, which can then be verified by the regulation authority at a
later point in time.
In any way we showed how to establish confidentiality in the setting of a
distributed ledger-based asset system by hiding any sensitive information.
The validity of these hidden values is proven in zero-knowledge, which allows
verification at a later point in time without the presence of any sensitive
information.

Limitations The presented protocol only enhances the confidentiality of the
users, so no curious party will be able to deduce any information about the
transferred amounts. However, even though no direct information about the
users is present, the transaction habits can still be tracked, and at a later point
in time, a user’s identity may still be compromised.

Related Work and Directions There exist other approaches like Mimblewim-
ble [Poe16], ZeroCash, [Ben+14] and [Max], which improve the security of users
in terms of privacy and confidentiality. Anyhow these approaches are only
defined in the setting of a UTXO based transaction model, while the presented
protocol in chapter 4 is applicability to both approaches.
To improve the protocol regarding the problem of traceability and likability, an
approach similar to the cryptocurrency Monero [Sab13] could be considered.
Here untraceability is achieved by utilizing ring-signatures, as described in
[RST01]. The idea is to sign a transaction on behalf of a group of users. A

75

6 Conclusion and Further Work

verifier will then be convinced that one user of the group signed the transac-
tion while not knowing who exactly constructed it. This approach makes it
nearly impossible to trace a user’s transaction habit because, with increasing
transactions, the number of possible user interactions grows exponentially. The
unlinkability, on the other hand, is solved by describing one-time receiving
address; for more details on how this property is achieved see [Sab13].

In the last years many protocols and new approaches on how security can
be enhanced in distributed ledger-based payment systems have emerged. The
growing interest in these systems and the accompanying increase in users may
also make it more attractive for parties with malicious intent to gain profit out
of vulnerable designs. The development and improvement of new and already
established solutions, regarding confidentiality and privacy in a distributed
ledger-based asset system, is thus an essential field of research.

76

Bibliography

[Ben+14] Eli Ben-Sasson et al. “Zerocash: Decentralized anonymous pay-
ments from Bitcoin”. In: Security and Privacy (SP), 2014 IEEE
Symposium on. IEEE. 2014 (cit. on p. 75).

[BL12] Daniel J. Bernstein and Tanja Lange. “Computing Small Discrete
Logarithms Faster”. In: Progress in Cryptology - INDOCRYPT 2012.
Ed. by Steven Galbraith and Mridul Nandi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 317–338. isbn: 978-3-642-
34931-7 (cit. on p. 22).

[Boo+16] Jonathan Bootle et al. “Efficient Zero-Knowledge Arguments for
Arithmetic Circuits in the Discrete Log Setting”. In: Advances in
Cryptology – EUROCRYPT 2016. Ed. by Marc Fischlin and Jean-
Sébastien Coron. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 327–357. isbn: 978-3-662-49896-5 (cit. on pp. 29, 30).

[Bro10] Daniel R. L. Brown. SEC 2: Recommended Elliptic Curve Domain
Parameters. https://www.secg.org/sec2-v2.pdf. Version 2.
2010 (cit. on p. 65).

[Bün+18] B. Bünz et al. “Bulletproofs: Short Proofs for Confidential Transac-
tions and More”. In: 2018 IEEE Symposium on Security and Privacy
(SP). May 2018, pp. 315–334. doi: 10.1109/SP.2018.00020 (cit.
on pp. 8, 29, 30, 33, 35, 52).

[But14] Vitalik Buterin. Ethereum: A next-generation smart contract and
decentralized application platform. 2014. url: https://github.
com/ethereum/wiki/wiki/White-Paper (cit. on pp. 1–3, 41).

[DH76] W. Diffie and M. Hellman. “New directions in cryptography”. In:
Information Theory, IEEE Transactions on 22.6 (1976), pp. 644–
654 (cit. on pp. 16, 35).

77

https://www.secg.org/sec2-v2.pdf
https://doi.org/10.1109/SP.2018.00020
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

Bibliography

[Ele] Andrew Poelstra ElementsProject. Optimized C library for EC oper-
ations on curve secp256k1. https://github.com/ElementsProject/
secp256k1-zkp (cit. on p. 65).

[ElG85] Taher ElGamal. “A public key cryptosystem and a signature scheme
based on discrete logarithms”. In: Advances in Cryptology. 1985,
pp. 10–18 (cit. on pp. 8, 16).

[FS87] Amos Fiat and Adi Shamir. “How to prove yourself: Practical
solutions to identification and signature problems”. In: Advances
in Cryptology—CRYPTO’86. 1987, pp. 186–194 (cit. on p. 28).

[GMR89] Shafi. Goldwasser, Silvio. Micali, and Charles. Rackoff. “The Knowl-
edge Complexity of Interactive Proof Systems”. In: SIAM Journal
on Computing 18.1 (1989), pp. 186–208. doi: 10.1137/0218012.
eprint: https://doi.org/10.1137/0218012. url: https://doi.
org/10.1137/0218012 (cit. on p. 24).

[GMR95] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital
Signature Scheme Secure Against Adaptive Chosen-Message Attacks.
1995 (cit. on p. 35).

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. “Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge
proof systems”. In: Journal of the ACM (JACM) 38.3 (1991),
pp. 690–728 (cit. on pp. 29, 75).

[Goo] Google. A microbenchmark support library. https://github.com/
google/benchmark (cit. on p. 65).

[Kob87] Neal Koblitz. “Elliptic Curve Cryptosystems”. In: Math. Comp. 48
(1987), pp. 203–209 (cit. on p. 12).

[Loh] Niels Lohmann. JSON for modern C++. https://github.com/
nlohmann/json (cit. on p. 65).

[Max] Greg Maxwell. Confidential Transactions. https://people.xiph.
org/~greg/confidential_values.txt (cit. on p. 75).

[Mer88] Ralph C. Merkle. “A Digital Signature Based on a Conventional
Encryption Function”. In: Advances in Cryptology — CRYPTO
’87. Ed. by Carl Pomerance. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1988, pp. 369–378. isbn: 978-3-540-48184-3 (cit. on
p. 13).

78

https://github.com/ElementsProject/secp256k1-zkp
https://github.com/ElementsProject/secp256k1-zkp
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://github.com/google/benchmark
https://github.com/google/benchmark
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt

Bibliography

[Nak08] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem”. In: www.bitcoin.org (2008) (cit. on pp. 1, 14).

[NIS15] NIST. “Secure Hash Standard (SHS)”. Version 4. In: FIPS PUB
180 (2015) (cit. on p. 13).

[Pai99] Pascal Paillier. “Public-key cryptosystems based on composite de-
gree residuosity classes”. In: Advances in cryptology—EUROCRYPT’99.
1999, pp. 223–238 (cit. on p. 74).

[Ped92] Torben Pryds Pedersen. “Non-interactive and information-theoretic
secure verifiable secret sharing”. In: Advances in Cryptology—CRYPTO’91.
1992, pp. 129–140 (cit. on pp. 8, 20).

[Poe16] Andrew Poelstra. Mimblewimble. https://download.wpsoftware.
net/bitcoin/wizardry/mimblewimble.pdf. 2016 (cit. on p. 75).

[Qui+89] Jean-Jacques Quisquater et al. “How to Explain Zero-knowledge
Protocols to Your Children”. In: Proceedings on Advances in Cryp-
tology. CRYPTO ’89. Santa Barbara, California, USA: Springer-
Verlag New York, Inc., 1989, pp. 628–631. isbn: 0-387-97317-6.
url: http://dl.acm.org/citation.cfm?id=118209.118269
(cit. on p. 23).

[RSA78] Ronald L Rivest, Adi Shamir, and Len Adleman. “A method for
obtaining digital signatures and public-key cryptosystems”. In:
Communications of the ACM 21.2 (1978), pp. 120–126 (cit. on
p. 15).

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a
Secret”. In: Advances in Cryptology — ASIACRYPT 2001. Ed. by
Colin Boyd. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 552–565. isbn: 978-3-540-45682-7 (cit. on p. 75).

[Sab13] Nicolas van Saberhagen. CryptoNote v2.0. https://cryptonote.
org/whitepaper.pdf. 2013 (cit. on pp. 75, 76).

[Sch19] Berry Schoenmakers. Lecture notes cryptographic protocols. https:
//www.win.tue.nl/~berry/CryptographicProtocols/. 2019
(cit. on pp. 24, 26, 36, 37).

[Sch91] C.P. Schnorr. “Efficient signature generation by smart cards”. In:
Journal of Cryptology 4.3 (1991), pp. 161–174 (cit. on pp. 24, 26).

79

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
http://dl.acm.org/citation.cfm?id=118209.118269
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://www.win.tue.nl/~berry/CryptographicProtocols/
https://www.win.tue.nl/~berry/CryptographicProtocols/

Bibliography

[Woo17] Gavin Wood. Ethereum: A secure decentralised generalised transac-
tion ledger EIP-150 REVISION (759dccd - 2017-08-07). 2017. url:
https://ethereum.github.io/yellowpaper/paper.pdf (cit. on
p. 2).

80

https://ethereum.github.io/yellowpaper/paper.pdf

	Abstract
	Kurzfassung
	Introduction and Ledger Overview
	Ledger Description
	UTXO
	Account Model
	Ledger
	Asset Transfer

	Changes for a Confidential Distributed-Ledger
	Contributions of this Thesis
	Outline

	Preliminaries
	Abstract Algebra
	Elliptic Curve Cryptography
	Diffie-Hellman Problem
	Cryptographic Hash Function
	Blockchain
	Public-Key Encryption
	ElGamal
	Elliptic Curve ElGamal
	Homomorphic Property of Elliptic Curve ElGamal

	Commitment Scheme
	Pedersen Commitment
	Elliptic Curve Pedersen Commitment

	Discrete Logarithm Recovery
	Babystep-Giantstep

	Zero-Knowledge
	Sigma-Protocols
	Range-Proofs
	Bulletproofs

	Digital Signature Scheme
	Schnorr Signature

	System Setting
	Cryptographic Setting
	Homomorphic Cryptosystem
	Convincing

	System Parts
	Additional Properties

	Confidential Transaction Protocol
	Spender
	Amount Representation
	Encrypt Transaction Amount
	Commit to Amount
	Proof of Equality
	Positive Amount Proof
	Quantity Proof
	Re-Encrypt Balance
	Sign Transaction
	Send Transaction

	Verifier
	Address Verification
	Signature Verification
	Proof Verifications
	Update World State

	Implementation Results
	General Setting
	Implementation Framework
	Evaluation Results
	Transaction Size
	Graphical Demo

	Conclusion and Further Work
	Bibliography

