
Linda Kolb, BSc

Using Artificial Intelligence to Classify
Activities Captured in Smart Homes

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, April 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

13.04.2020

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Dipl.-Ing.
Dr. techn. Roman Kern for the continuous support of my Masters thesis. I
am very thankful for his guidance during the time of research and writing
this thesis.

I would like to acknowledge the support of Dr. Bin Wang, Dr. Joseph
Rafferty and Professor Christopher Nugent from Ulster University campus
Jordanstown when advising me on what research topic to choose and their
help during the initial phase of this academic work.

Last but not the least, I would like to thank my mother and my friends for
supporting me spiritually throughout working on this project.

iii

Abstract

Due to a rapid increase in the development of information technology,
adding computing power to everyday objects has become a major discipline
of computer science, known as “The Internet of Things”. Smart environments
such as smart homes are a network of connected devices with sensors
attached to detect what is going on inside the house and what actions can
be taken automatically to assist the resident of the house.

In this thesis, artificial intelligence algorithms to classify human activities of
daily living (having breakfast, playing video games etc.) are investigated.
The problem is a time series classification for sensor-based human activity
recognition.

In total, nine different standard machine learning algorithms (support vector
machine, logistic regression, decision trees etc.) and three deep learning
models (multilayer perceptron, long short-term neural network, convolu-
tional neural network) were compared. The algorithms were trained and
tested on the ucami Cup 2018 data set from sensor inputs captured in a
smart lab over ten days. The data set contains sensor data from four different
sources: intelligent floor, proximity, binary sensors and acceleration data
from a smart watch.

The mutlilayer perceptron reported a testing accuracy of 50.31%. The long
short-term neural network showed an accuracy of 57.41% (+/-13.4), the
convolutional neural network in 70.06% (+/-2.3) on average - resulting
in only slightly higher scores than the best standard algorithm logistic
regression with 65.63%. To sum up the observations of this thesis, deep
learning is indeed suitable for human activity recognition. However, the
convolutional neural network did not significantly outperform the best
standard machine learning algorithm when using this particular data set.

v

Acknowledgements

Unexpectedly, the long short-term neural network and the basic multilayer
perceptron performed poorly.

The key drawback of finding a fitting machine learning algorithm to solve a
problem such as the one presented in this thesis is that there is no trivial
solution. Experiments have to be conducted to empirically evaluate which
technique and which hyperparameters yield the best results. Thus the
results found in this thesis are valuable for other researchers to build on
and develop further approaches based on the new insights.

vi

Kurzfassung

Aufgrund der jüngsten Entwicklungen in der Informationstechnologie ist
die Ausstattung alltägliche Objekte mit einem eingebetteten Computer
zu einer bedeutenden Disziplin der Informatik geworden, bekannt unter
dem Namen “Internet der Dinge”. Intelligente Umgebungen wie zum
Beispiel ein “Smart Home” besteht aus einem Netzwerk verbundener Geräte.
Diese Geräte können mithilfe von Sensoren feststellen, was im Inneren des
Hauses passiert und welche Aktivitäten automatisiert werden können um
die Bewohnern des Hauses zu unterstützen.

In der vorliegenden Masterarbeit werden Algorithmen der künstlichen
Intelligenz untersucht um menschliche Aktivitäten des alltäglichen Lebens
(frühstücken, Video Spiele spielen etc.) zu klassifizieren. Das Problem ist eine
Klassifizierung von Zeitreihendaten für sensorbasierte Aktivitätenerkennung.

Insgesamt wurden neun verschiedene Standard Algorithmen des maschinellen
Lernens (Support Vector Machine, logistische Regression, Entscheidungsbäume
etc.) und drei Deep Learning Algorithmen (mehrlagiges Perzeptron, Long
Short-term Neural Network, Convolutonal Neural Network) verglichen.
Die Algorithmen wurden mit dem Datensatz des ucami Cup 2018 mit
Sensordaten eines Smart Labs, die über zehn Tage lang aufgezeichnet
wurden, trainiert und getestet. Der Datensatz besteht aus Sensordaten
vier verschiedener Quellen: Bodensensoren, Näherungssensoren, binäre
Sensoren und Beschleunigungsdaten einer Smart Watch.

Die Experimente zeigten eine Korrektklassifikationsrate von 50,31% für das
mehrlagige Perzeptron, 57,41% (+/-13,4) für das Long Short-term Neural
Network und 70,06% (+/-2,3) für das Convolutonal Neural Network. Das
Convolutonal Neural Network schnitt am besten ab, dicht gefolgt von
dem Standard Algorithmus logistische Regression. Die Resultate dieser
akademischen Arbeit zeigten, dass bei diesem speziellen Datensatz die

vii

Acknowledgements

Deep Learning Algorithmen nicht signifikant bessere Ergebnisse erbrachten
als die Standard Algorithmen.

Beim Finden eines optimalen Algorithmus des maschinellen Lernens, um
ein komplexes Problem wie das in dieser Arbeit beschriebene zu lösen,
ist einer der größten Nachteile, dass es keine triviale, eindeutige Lösung
gibt. Verschiedene empirische Experimente müssen ausgeführt und evaluiert
werden, um eine passende Technik und die dazugehörigen Hyperparamenter
zu finden, welche das beste Resultat liefern. Aufgrund dessen sind die
Ergebnisse dieser Masterarbeit für andere Wissenschaftler äußerst wertvoll
und geben neue Einblicke, auf die neue Forschung gebaut werden kann.

viii

Contents

Acknowledgements iii

Abstract v

Kurzfassung vii

1. Introduction 1
1.1. Problem Statement . 2

1.2. Contribution to Research . 6

1.3. Thesis Outline . 9

2. Related Work 11
2.1. Background . 11

2.1.1. Internet of Things . 11

2.1.2. Artificial Intelligence . 14

2.1.3. Neural Networks . 23

2.2. State of the Art . 39

2.2.1. Solutions by other Scientists using the same Data Set . 40

2.2.2. Other Approaches for Solving Sensor-Based Activity
Recognition . 44

3. Use Cases & Requirements 47
3.1. Use Cases . 47

3.2. Requirements . 47

3.2.1. Functional Requirements 50

3.2.2. Non-Functional Requirements 50

4. Data Preparation 53
4.1. Data Collection . 53

4.2. Exploratory Data Analysis . 56

ix

Contents

4.3. Data Preprocessing . 60

4.3.1. Sensor Data Alignment into 5 Second Samples 60

4.3.2. Normalisation . 63

4.3.3. Feature Selection . 63

5. Chosen Classification Algorithms 69
5.1. Tools . 70

5.2. Standard Classification Algorithms from scikit-learn 70

5.3. Deep Learning Algorithms . 71

5.3.1. MLP from scikit-learn 71

5.3.2. Keras Models: CNN and LSTM 72

5.4. On the Fly Prediction with Node-RED Environment 78

6. Evaluation 79
6.1. Comparison of Machine Learning Algorithms 79

6.1.1. Logistic Regression from sci-kit learn 85

6.1.2. MLP from sci-kit learn 85

6.1.3. Detailed Comparison of the Deep Learning Models
LSTM Network and CNN from Keras 88

6.2. Evaluation of Tools . 93

7. Conclusions 97
7.1. Future Work . 99

A. Code Snippets 103

B. Library Versions of Used Tools 107

Bibliography 109

x

List of Figures

1.1. Machine Learning Process . 7

2.1. Device-to-gateway communication model as IoT architecture 13

2.2. Relation between artificial intelligence, machine learning and
deep learning . 16

2.3. Data Preprocessing Steps . 21

2.4. Components of a single layer perceptron 24

2.5. Different activation functions in comparison 25

2.6. Neural Network with One Hidden Layer 26

2.7. Neural Network with Two Hidden Layers 29

2.8. Recurrent Neural Network Graph 31

2.9. LSTM Cell . 33

4.1. Layout of binary sensors . 54

4.2. Layout of proximity sensors . 55

4.3. Layout of intelligent floor modules 55

4.4. Frequencies of Activities . 57

4.5. GANTT Chart showing which activities the resident performed 58

4.6. Durations per activity in the training data set 59

4.7. Preprocessing Pipeline . 61

4.8. Plot showing sparse Data Set 64

4.9. Heatmap of Pearson correlation 65

4.10. Acceleration Data from Wrist Watch 66

5.1. MLP Architecture . 72

5.2. Input Tensor for CNN and LSTM network 73

5.3. LSTM Architecture . 75

5.4. CNN Architecture . 76

5.5. CNN Layers . 77

xi

List of Figures

5.6. Node-RED flow . 78

6.1. Metrics of different Machine Learning Algorithms 82

6.2. Training Time of different Machine Learning Algorithms . . . 83

6.3. Cross Entropy Loss of different machine learning algorithms 84

6.4. Confusion Matrix for Logistic Regression 86

6.5. Confusion Matrix for Multilayer Perceptron Neural Network 89

6.6. Confusion Matrix for LSTM Network 90

6.7. Confusion Matrix for CNN Network 92

6.8. Different metrics of the deep learning models LSTM and
CNN over the epochs. 93

6.9. Different metrics of the 10 runs of the experiments using
LSTM and CNN . 94

B.1. Implementation Tools . 108

xii

1. Introduction

Due to recent development of wide area networks and an increasing
digitalisation of everyday appliances, new ways of using computers to
improve the living quality of humans have evolved. Sensors are becoming
inexpensive and less power consuming which facilitates technological
extensions of ordinary objects. Those objects can be pieced together to
an ubiquitous net of interconnected devices known as the Internet of
Things (IoT). The devices communicate with each other based on standard
communication protocols .

One application of IoT that is discussed in this thesis is human activity re-
cognition in environments that contain devices with additional technological
enhancements connecting them to the internet which make them “smart”.
An example for such an environment is a smart home where sensors detect
when a person lies down in the bedroom to sleep. Once the smart home
system picks up on the activity using sensors, it categorises the event as
“sleeping” using a classification algorithm. The system assists the person and
switches the heating system of the room off without any human interference.
Thus, a monitoring smart home collects sensor data, detects events, reacts
and assists the resident when needed.

The topic of human activity recognition to enable assisted living is relevant
to the world’s society because of various possible applications. For exam-
ple, Ann and Lau, 2014 lists areas such as surveillance systems, healthcare,
eldercare and human computer interaction. Eldercare is attracting considerable
interest since the population shifting to a distribution containing more
elderly people than young ones. New ways of dealing with eldercare have
to be found which makes it a research field with great potential. The goal is
to enable elderly people to stay in their own home for as long as possible
instead of sending them to nursing homes which might not be a long-term

1

1. Introduction

option due to financial reasons. Other promising use cases of human activity
recognition are assistance with coordination and scheduling. It becomes
easier for the home owner to manage tasks as for example sustainable and
economic heating or waste management.

1.1. Problem Statement

This thesis tries to answer the research question: To which extend can
artificial intelligence help to classify activities captured in smart environments?
Artificial intelligence describes systems that act “intelligently” which means
that the system simulates intelligent decisions and imitates a human as
mentioned by Turing, 1950 as the “imitation game”. For a human, it would
be fairly easy to put a label on an observed human activity. However, a
computer must learn how to distinguish between different activities and
what action has to be taken accordingly. Using labelled sensor data to train
a machine learning model to recognise certain activities by their features
is categorised as a supervised learning task Chollet, 2018, p. 135-136 and
generally known as time series classification in the domain of human activity
recognition.

Massive amounts of data are required to ensure that a generalised model
can actually differentiate between the vast amount of human activities. The
data set used to train the model of this project is the data set from the
Ubiquitous Computing and Ambient Intelligence (ucami) Cup 2018 which
is explained in detail in Espinilla, Medina, and Nugent, 2018. Labelled data
sets for activity recognition are seldom available due to the time-consuming
effort and necessary infrastructure of creating them. Therefore this extensive
data set is particularly valuable to researchers in the field of human activity
recognition. The data was captured inside a controlled environment that
tried to simulate a real life apartment called a smart lab. A 24 year old
male student has pretended to live in the smart lab for ten days. The data
set includes data from four different sources with labels for 24 different
categories of activities of daily living. The captured sensor recordings are
split into a labelled training set from seven days and three days worth of

2

1.1. Problem Statement

test data. The sensor data consists of chronological signals from the sensor
devices which is commonly known as a time series.

The list of activities and their definition according to Espinilla, Medina, and
Nugent, 2018 are presented in Table 1.1.

Activity Name Description of Activity
Take medication This activity involved the inhabitant going to the

kitchen, taking some water, removing medication from
a box and swallowing the pills.

Prepare
breakfast

This activity involved the inhabitant going to the
kitchen, taking some products for breakfast. This
activity can involve (i) making a cup of tea with kettle
or (ii) making a hot chocolate drink with milk in the
microwave. This activity involves placing things to eat
in the dining room, but not sitting down to eat.

Prepare lunch This activity involved the inhabitant going to
the kitchen, and taking some products from the
refrigerator and pantry. This activity can involve (i)
preparing a plate of hot food on the fire, for example
pasta or (ii) heating a precooked dish in the microwave.
This activity also involves placing things to eat in the
dining room, but not sitting down to eat.

Prepare dinner This activity involved the inhabitant going to
the kitchen, and taking some products from the
refrigerator and pantry. This activity can involve (i)
preparing a plate of hot food on the fire, for example
pasta or (ii) heating a precooked dish in the microwave.
This activity also involves placing things to eat in the
dining room, but not sitting down to eat.

Breakfast This activity involved the inhabitant going to the
dining room in the kitchen in the morning and sitting
down to eat. When the inhabitant finishes eating, they
place the utensils in the sink or in the dishwasher.

3

1. Introduction

Lunch This activity involved the inhabitant going to the
dining room in the kitchen in the afternoon and sitting
down to eat. When the inhabitant finishes eating, he
places the utensils in the sink or in the dishwasher.

Dinner This activity involved the inhabitant going to the
dining room in the kitchen in the evening and sitting
down to eat. When the inhabitant finishes eating, they
place the utensils in the sink or in the dishwasher.

Eat a snack This activity involved the inhabitant going to the
kitchen to take fruit or a snack, and to eat it in
the kitchen or in the living room. This activity can
imply that the utensils are placed in the sink or in the
dishwasher.

Watch TV This activity involved the inhabitant going to the living
room, taking the remote control, sitting down on the
sofa and when he was finished, the remote control
was left close to the TV.

Enter the
SmartLab

This activity involved the inhabitant entering the
SmartLab through the entrance at the main door and
putting the keys into a small basket.

Play a video
game

This activity involved the inhabitant going to the
living room, taking the remote controls of the TV and
XBOX, and sitting on the sofa. When the inhabitant
finishes playing, he gets up from the sofa and places
the controls near the TV.

Relax on the
sofa

This activity involved the inhabitant going to the living
room, sitting on the sofa and after several minutes,
getting up off the sofa.

Leave the
SmartLab

This activity involved the inhabitant going to the
entrance, opening the main door and leaving the
SmartLab, then closing the main door.

Visit in the
SmartLab

This activity involved the inhabitant going to the
entrance, opening the main door, chatting with
someone at the main door, and then closing the door.

4

1.1. Problem Statement

Put waste in the
bin

This activity involved the inhabitant going to the
kitchen, picking up the waste, then taking the keys
from a small basket in the entrance and exiting the
SmartLab. Usually, the inhabitant comes back after
around 2 min, leaving the keys back in the small
basket.

Wash hands This activity involved the inhabitant going to the
bathroom, opening/closing the tap, lathering his
hands, and then rinsing and drying them.

Brush teeth This activity involved the inhabitant going to the
bathroom and brushing his teeth and opening/closing
the tap.

Use the toilet This activity involved the inhabitant going to the
bathroom and using the toilet, opening/closing the
toilet lid and pulling the cistern.

Wash dishes This activity involved the inhabitant going to the
kitchen and placing the dirty dishes in the dishwasher,
and then placing the dishes back in the right place.

Put washing
into the
washing
machine

This activity involved the inhabitant going to the
bedroom, picking up the laundry basket, going to
the kitchen, putting clothes in the washing machine,
waiting around 20 min and then taking the clothes
out of the washing machine and placing them in the
bedroom closet.

Work at the
table

This activity involved the inhabitant going to the
workplace, sitting down, doing work, and finally,
getting up.

Dressing This activity involved the inhabitant going to the
bedroom, putting dirty clothes in the laundry basket,
opening the closet, putting on clean clothes and then
closing the closet.

Go to the bed This activity involved the inhabitant going to the
bedroom, lying in bed and sleeping. This activity is
terminated once the inhabitant stays 1 min in bed.

5

1. Introduction

Wake up This activity involved the inhabitant getting up and
out of the bed.

Table 1.1.: The activities of daily living that are represented in the data set along with their
description.

The idea is to use the data set to train a model which is able to distinguish
between the above listed activities. The model can be incorporated into the
IoT system of a smart home. Depending on what events are being detected
in the house, the system can take action and use other installed devices such
as the thermostat or a light bulb to be switched on or off.

The machine learning process for this problem statement is shown in
Figure 1.1. To start the machine learning process, the raw data which
potentially contains noise or errors needs to be preprocessed first. Then the
machine learning algorithm can be applied to the data set. After testing
different hyperparameters, a fitting model is chosen to be integrated into
the smart home system. The system shall predict new samples on the fly - a
live classification of unseen data.

1.2. Contribution to Research

It is a non-trivial task to deal with a large amount of data which comes
with using sensors. Moreover, selecting an algorithm to find a pattern in a
particular data set can be a challenge. Thus, the core problems in artificial
intelligence are preprocessing the raw data to receive meaningful features
and finding effective classification algorithms. The contribution of this thesis
to research in this field is an analysis of what kind of time series classification
algorithms for activity recognition already exist and how they compare.

The theoretical way of searching for a solution to the research question is to
study different methods other researchers have used to incorporate artificial
intelligence into performing human activity recognition in the context of IoT.

6

1.2. Contribution to Research

raw
data preprocessing

iterate until
data is ready

preprocessed
input data

apply
machine
learning

algorithms

integrate
model to

smart home
system

online
prediction

choose
model

Figure 1.1.: This figure shows the machine learning process of the human activity recogni-
tion problem of this thesis. The raw data needs to be preprocessed first. Then
the machine learning algorithm can be applied to the data set. After testing
different hyperparameters, a fitting model is chosen to be integrated into the
smart home system. The system can predict new samples online.

7

1. Introduction

The main objective is to compare existing algorithms and settle on fitting
methods for the classification problem of this thesis.

Regarding the practical part of this work, experiments with different machine
learning algorithms are conducted to test the conclusions from the literature
review. The mentioned data set from ucami Cup 2018 is processed and
several standard machine learning and deep learning models are evaluated
to classify the samples form the data set. Since sensor-based human activity
recognition in a smart environment has only developed recently, few re-
searchers have addressed the problem of finding an appropriate solution.
Previous work has mainly focused on standard machine learning algorithms
such as support vector machines or decision trees. Particularly deep learning
methods such as neural networks have barely been used in the context of
human activity recognition with time series data.

Applications for deep learning algorithms are more known in the domains
of image classification and natural language processing. To the community, it
is interesting to see if deep learning performs better than standard machine
learning techniques. Setting up a neural network and training it is more
time consuming than other machine learning algorithms. With this in mind,
the reader of this thesis gains valuable insights whether spending more
time on the implementation and execution of the algorithm provides better
results when using this particular data set.

After the models investigated in this thesis have been trained, validated and
tested, confusion matrices as well as other metrics are obtained to compare
the performance of the classification. The data set has already been explored
by other researchers who performed alternative classification approaches.
Their existing results are compared to the metrics of the algorithms used in
this thesis.

A commonly known problem in artificial intelligence is the fact that collecting
good data sets to try out algorithms needs a high amount of resources such
as time, budget and adequate infrastructure. Supporting the community
with sharing data sets and the experiments of different techniques applied
to the same data set can help data scientists learn from each other and
develop new algorithms. The academic work presented in this thesis aims
to add more understanding to what algorithms can be used in the context.
Especially an exploration of how deep learning can be applied as a new

8

1.3. Thesis Outline

innovative technique proves valuable for other researchers in this field.
Furthermore, the search for the most effective hyperparameters and methods
to choose and improve a neural network architecture can be of use for other
developers. Additionally, readers can benefit from learning about how
Node-RED can be integrated to connect devices to build an IoT platform.

1.3. Thesis Outline

Chapter 2 discusses what an IoT platform can look like and elaborates on the
challenge of using sensors inside of smart homes. Furthermore, the formal
definitions of artificial intelligence, machine learning and deep learning are
given and the theoretical background of the used deep learning algorithms
are explained. An overview of the state of the art in the field of human
activity recognition is also part of this chapter, including an analysis and
comparison of the solutions of other programmers that participated in the
ucami Cup 2018.

The proposed classification of this thesis is intended to be used in a smart
home. Chapter 3 lists three use cases that could be solved by a smart system
using the classification algorithm in the problem domain of assisted living.
Additionally, functional and non-functional requirements for sensor-based
IoT platforms are suggested.

Chapter 4 explores the data preparation pipeline of the data set in detail
to explain to the user how the data is prepared before it is fed to the
classification algorithms. The chapter starts by looking at how the data was
collected, followed by a deeper look into the data set and its particularities.
The feature selection process is justified.

Chapter 5 includes the used classification algorithms and lists the parameters.
It is split into standard machine learning algorithms and deep learning
algorithms. The network architectures of the chosen deep learning algorithms
are described. The actual code snippets of the algorithm configurations is
shown in A as part of the appendix. B lists the versions of the used tools
and libraries.

9

1. Introduction

Finally, the results of the algorithms are depicted and compared in Chapter 6.
The chapter uses metrics such as accuracy, recall, precision, F1 score, MCC
and categorical cross-entropy to grade the performance of the algorithms.
Moreover, confusion matrices visualise which activities are wrongly classified.

Chapter 7 summarises the work of this thesis and ends with some concluding
remarks. Further ideas about how to build on the knowledge gained from
this academic work are proposed.

10

2. Related Work

This chapter shall provide the reader with basic knowledge about the major
topics of this thesis. Section 2.1 discusses background information about the
Internet of Things, artificial intelligence and its subordinate method neural
networks. Section 2.2 presents existing solutions related to the problem
domain of sensor-based human activity recognition.

2.1. Background

To comprehend the topics presented in this thesis, section 2.1.1 starts with
an introduction to the information technology discipline called Internet of
Things. In particular, sensor-based smart environments and its challenges
are discussed. Human activity recognition is explained in detail as it is the
main area of application for the machine learning algorithms presented
in this thesis. Time series data sets are explored since they are closely
related to activity recognition. Section 2.1.2 introduces artificial intelligence
with regards to supervised learning, especially classification. The concept
of neural networks is the focus of the classification solution in Chapter 5,
therefore it is described in detail in section 2.1.3. Two deep learning algorithms
(CNN, LSTM) are investigated in detail.

2.1.1. Internet of Things

Internet of Things (IoT) is a vastly growing topic in information technology
and finds its application in various fields. According to Sharma, Shamkuwar,
and I. Singh, 2019, the definition of IoT corresponds to a high number
of objects being connected to the internet, either by wire or wireless, to

11

2. Related Work

enable a better data transfer, make use of data analytics to infer meaningful
information from the data and base decisions on this new knowledge.
The idea is for those objects to improve aspects of human life such as
waste management or health. Small everyday life decisions are being taken
over by computing devices, for example refrigerators or thermostats. A
possible architecture according to Sharma, Shamkuwar, and I. Singh, 2019

is the device-to-gateway communication model (see Figure 2.1 for a visual
understanding). For example, a local area network (LAN) connects the
sensor devices to a gateway. The sensors send their data to the gateway
which forwards the data to a cloud service that stores the data. This service
could also act as an application service or the application service could be a
separate entity.

Smart Environments

R. Singh et al., 2019 claims that the application of automation in homes,
cities, offices and industry has become increasingly popular. Sensors are
placed in such environments to enable everyday objects to take over tasks
related to their surroundings. To indicate that an environment or a single
object possesses additional computational power to broaden and automate
their function adds the prefix smart to them. Autonomous IoT systems of
interconnected devices in an enclosed space such as a city or a building help
with coordination and makes processes more efficient.

One example of a smart environment connected to this thesis are smart
homes. The generally known term for gathering sensor data, extracting
knowledge and learn which actions to take to improve the living quality of
a resident of a smart home is called Ambient Assisted Living Paola et al.,
2017. Possible examples for sensor devices in the network of a smart home
are sensors to measure temperature, lighting or humidity. The use cases
of a smart home are diverse and depend on what sensors and devices are
installed inside the smart home. Potential use cases related to smart homes
are further investigated in Chapter 3.

Using sensors comes with a range of challenges. Power consumption,
real life processing, managing memory space and enabling the devices
to communicate with each other are just some of the hardware requirements

12

2.1. Background

cloud service

application service

LAN

gateway

sensor
device

sensor
device

sensor
device

Figure 2.1.: Device-to-gateway communication model for as IoT architecture according to
Sharma, Shamkuwar, and I. Singh, 2019: A local area network (LAN) connects
the sensor devices to a gateway. The sensors send their data to the gateway
which forwards the data to a cloud service that stores the data. This service
could also act as an application service or the application service could be a
separate entity.

13

2. Related Work

that arise in IoT applications with interconnected sensors. The requirements
for a smart home using the algorithms presented in this thesis are discussed
in the Chapter 3 in detail. Concerning the machine learning aspects of
senors in smart environments, special attention has to be drawn to the data
cleaning - dealing with missing values and detecting outliers. Data cleaning
is part of the preprocessing which is explained below.

Human Activity Recognition

Human activity recognition is the study to classify human activities occurring
in daily life. Depending on the activities that are intended to be predicted,
different sensors are used to obtain the needed information. In this thesis,
activities of daily living are investigated (having breakfast, going to bed,
playing video games etc.). Since those activities can not simply be judged
from sensors related to the motion of the person, further sensors need to be
installed in the smart environment the person is situated in.

2.1.2. Artificial Intelligence

The usage of mathematics to compute new knowledge from bare figures
and thus enable computers to decide like humans has become immensely
popular. The basic principle is that a computer is presented with an input
and an associated task. The computer uses a set of rules to process the
input and gives an answer on how to solve the task. Many new terms
have arisen alongside this development that are topic of this thesis: artificial
intelligence (AI), machine learning and deep learning. Chollet, 2018, p. 33-59

gives a differentiation of the meanings of those words which is summarised
in the next paragraph.

AI is defined by Chollet, 2018, p. 35 as “the effort to automate intellectual
tasks normally performed by humans”. This definition opens up a wide
variety of usage areas for AI, spanning from playing chess to predicting
the stock market. In the case of playing chess, the computer simply has
to follow a set of pre-defined rules. On the other hand, the problem of
predicting how the stock market will evolve in the future requires the

14

2.1. Background

computer to look at previous data and learn from it. This procedure is
known as machine learning - a subgroup of AI where the programmers
are not explicitly instructing the computer on how to process the data, but
instead the computer learns and crafts the rules on its own by looking at
the fed information. The learned rules are exploited to get new original
ways of how to automate processing incoming data and subsequently solve
a task.

To define the term learning precisely, the machine benefits from looking
at past experiences when solving similar problems just as the new one
presented to the machine. The algorithm tries to find a fitting generalisation
method to learn from them and be able to handle new problems.

Machine learning is based on statistics and tries to build intelligent systems
that are able to learn from data and solve problems which do not have
an algorithmic solution (e.g. hand-coded rules that are unable to adapt on
their own to fluctuations in the incoming data). One example to illustrate
machine learning is supervised learning. It requires input data (for example
the subject line of an email), an expected output (if the email is spam or not)
and a measurement of success as feedback if the algorithm is performing
correctly or not. While the machine learning algorithm is viewing the
input data, it is trained to learn from what the expected output should
be, comes up with rules and is being punished in case the prediction is
wrong. These rules can be a single mathematical function, representing the
mapping of the input to the output. Deep learning is a sub field of machine
learning (see Figure 2.2 for how AI, machine learning and deep learning
are related to each other) and focuses on building successive (deep) layers of
increasingly meaningful representations instead of using just one (shallow)
representation. The generated model is compound and can solve highly
complex problems.

The outcome of the learning process is a model, a representation of the data.
The model can also be called a hypothesis - an educated guess that needs to
be evaluated. According to Géron, 2017, p. 39-40, there are three different
types of learning explained in the following list:

• Supervised learning: The input data comes with labels that define the
class identity of a data point. The idea is for the machine learning
algorithm to train how to predict this label correctly from viewing

15

2. Related Work

Artificial Intelligence

Machine Learning

Deep Learning

Figure 2.2.: Graph showing the relation between artificial intelligence, machine learning and
deep learning. Artificial intelligence encapsulates various different methods,
one of them being machine learning. Deep learning is a sub field of machine
learning.

labeled data points and getting feedback from how accurate one
prediction was. Logistic regression is an algorithm based on this type
of learning. A use case is spam email detection.
• Unsupervised learning: The input data does not come with labels. The

data is explored by the algorithm and - according to the observation of
the features in the data - the data points are. for example, aggregated
to groups, detected as outliers or patterns are discovered. One example
is k-means clustering and a possible use case is clustering customers
into segments.
• Reinforcement learning: This is a behaviour-based type of learning and

is built on a reward system. The model receives rewards depending
on how it behaves and reacts to inputs in certain situations. The goal
for the algorithm is to maximise the sum of its rewards by only taking
the decisions that are rewarded.

16

2.1. Background

Supervised Learning

The learning type represented in this thesis is supervised learning. A typical
training data set contains N samples {(x1, y1), ..., (xN, yN)}, x ∈ X denoting
the inputs and y ∈ Y the output data. In the case of classification, the output
data is a scalar representing the class the input data point belongs to. The
goal of supervised learning is to find a decision function f : X 7→ Y,
associating each input xn with an output yn. The inputs are often called
feature vectors xn ∈ Rd. Each feature vector holds d features which is mapped
to an output. The supervised learning algorithm for classification looks at
every input feature vector and tries to predict the class using guidance from
an error function (also called loss function). The goal is to predict new unseen
data points based on the classification knowledge the machine learning
algorithm has gained.

The input data set in this thesis is represented as a data table. The relevant
terms when working with classification are sample, feature and target value.
A sample is a row in the data table and represents one instance that is
processed by the machine learning algorithm. A feature is a column in the
data table. Every sample has a variable that is associated with this feature.
The aim is for the features to be independent of each other to ensure that
the features do not represent the same knowledge. Redundancy creates
overhead in the computation. The target value is the ground truth - the class
label that the machine learning algorithm should learn to predict. Each input
sample is associated with an output - a predicted one and the target value.
A class label is a symbol representing this class such as spam and not spam in
the context of spam email detection. In the input data set, the class name
text is mapped to an integer number. The class labels are usually mutually
exclusive - only one class can be associated with one sample. The machine
learning algorithm will create a model based on what it learned from trying
to predict the target value. It is also possible that the algorithm lists for each
data sample how probable it is that the data point belongs to each available
class using a percentage as measurement. The class probability that has the
highest percentage is the one chosen as the dominant one.

To get feedback on how well the model generalises to predict new unseen
data points, the model should be tested to monitor its performance. To

17

2. Related Work

realise this, input data can be held back for evaluation. Géron, 2017, p. 77-
78 mentions the following sets :

• Training: This set is used to train the model. The model tries to learn
how to predict the target label of a data point. The parameters (for
example weights) are fit to this data set.
• Validation (optional): This set is used to tune the parameters of a

classifier during the training phase and give some guidance by measuring
the performance of the model during training. For example, this data
set can give an independent indication when to stop training. Just
checking with the training set might lead to a bias.
• Testing: This set is used to test the model’s performance (generalisation

and predictive power) when classifying unseen data.

Géron, 2017, p. 77 suggests that a good set up is to use 80 % of the data for
training and 20 % for testing and to use cross-validation (the training set
is split up into complementary subsets which are used as validation and
training sets in different combinations). Often several different models are
created. The model with the best performance on the validation set should
be chosen.

Time Series Classification

The data set from this project consists of multiple time series aggregated
into a single one. A time series observes one or multiple random variables
over time. For certain problems, it is relevant to not just look at a stationary,
steady state view of the sample, but look at the problem in a more dynamic
way, taking into account how variables change over time by adding recurrent
dynamics Rolls and Treves, 1998, p. 351. Time is discrete since it consists of
a series of equal time steps. A time series data set contains - in the context of
sensor-based machine learning - a single value xt of the same sensor feature
measured at time step t (t = ...,-1, 0, 1, 2,...) Rolls and Treves, 1998, p. 351.
Time series data is distinguished into univariate and multivariate. Univariate
time series analysis only observes one variable over time, multivariate time
series analysis considers multiple variables. A multivariate time series T is

18

2.1. Background

a series of ordered observations collected sequentially over time and can be
denoted as follows:

xi(t); [i = 1, ..., n; t = 1, ..., m]

where: i = index of the measurements collected at each time point t
n = number of variables observed over time, n > 1 for multivariate
m = number of observations

The aim of time series analysis is to detect trends or seasonalities in the
data. Time series classification intents to classify a novel data point by
looking back at the other samples in time. Furthermore, it is possible to
use machine learning to give a forecast of what value will occur in the
future. The problem presented in this thesis is a multivariate time series
classification using sensor data from a span of ten days. The input data for
a time series classification problem is a 3D data tensor of shape (samples,
time steps, features) Chollet, 2018, p. 103.

A couple of challenges come with learning from time series data: The
model shall be able to handle sparse data sets and the right preprocessing
measurements have to be investigated. Additionally, labelling is often a
hard task for this type of data set, thus unlabelled data might be present
in the data set. Labels are important since the model needs to have a
feedback system to reliably learn from results and optimise its parameters
accordingly.

Feature selection (extracting only features that are relevant for the problem
at hand) for time series classification does not just rely on the captured data.
Often additional statistical features are extracted. Time series data shows
high fluctuation in the value of a feature. To smooth down the spikes in the
data to get a feeling for the trend of the data, data points can be aggregated
to a mean over a range of time steps. Often a single data point does not
give an interpretable representation of the data - the mean might be more
interesting to the data analyst. For example, when tracking temperature of
a lake over a year, it might be enough to just include one data sample per
day representing the mean temperature of the lake.

19

2. Related Work

Typical machine learning algorithms that are already massively investigated
in the domain of sensor-based time series classification are either nonlinear
or ensemble algorithms1. Ensemble methods are models which are built
on top of many other models to combine their classifiers and achieve a
better performance Géron, 2017, p. 167. The nonlinear supervised learning
algorithms are logistic regression, naive bayes, decision tree, support vector
machine and k-nearest neighbours. The used ensemble algorithms are
random forest, bagging, extra tree and gradient boosting.

Logistic regression is a classification algorithm that is set out to find a
connection between the input features and the probability of a particular
class as outcome using the sigmoid function. Naive bayes is a probabilistic
classifier based on Bayes’ Theorem. A decision tree is an easily interpretable
predictive model based on a set of rules organised as a tree structure. Support
vector machines find a hyperplane to use as a classification criteria. K-nearest
neighbours uses the feature similarity to classify a data point by a majority
vote of its k neighbours. Random forest builds several decision trees and
chooses the class that was predicted most often. Bagging runs multiple
weak learners independently from each other and operates a deterministic
averaging process to decide on the class. The extra tree classifier works
similar to the random forest, but uses randomised decision trees called extra
trees. Gradient boosting lets weak learners run sequentially and combines
them additively.

Data Processing Pipeline

For the training of machine learning algorithms, often massive amounts
of data are necessary to achieve a reliable model. Before the data can be
used, it has to be preprocessed. Figure 2.3 shows a typical preprocessing
pipeline.

First, data has to be collected. The data collection process can be costly and
time-consuming. When working with sensors, extensive infrastructure is
necessary. Additionally, when dealing with a supervised learning problem,

1Machine Learning Mastery - Machine Learning Algorithms for Human Activity Recognition
2019.

20

2.1. Background

data
collection

data
cleaning

feature
standardisation/

normalisation

preprocessed
data

feature
selection

raw
data

Figure 2.3.: The data preprocessing steps are: data collection → raw input data → data
cleaning → feature standardisation/normalisation → feature selection →
preprocessed data.

the input data needs to be labelled. The labelling task can hardly be
automated and requires human resources.

Raw input data can be noisy (containing errors or outliers) and inconsistent
(missing values). Outliers are anomalous data points, representing an extreme
sample compared to the majority of other data samples. Left untreated,
outliers can create a skew variable distribution for this feature. This misrepre-
sentation of the data can result in a negative effect on the machine learning
algorithm. There are various statistical and machine learning approaches
to deal with outlier removal. Samples with errors or missing values can
either be omitted or replaced by calculating a mean, median or mode of the
feature and use this value instead of the missing or wrong entry.

With complex problems, the features are often not just a small set, but a large
amount of properties which each only bring little info on its own. Therefore
the features must be combined in the most meaningful way. Thus, a crucial
part of the preprocessing pipeline is feature selection. During this step, only
features relevant to the problem are extracted. Features that represent similar
information should be combined to a single feature. Redundant information
slows down the computation. In some cases it is not obvious which features
contain relevant information for the machine learning problem. To check
if features correlate with each other, the Pearson correlation is used in this
thesis. The Pearson correlation quantifies the relationship between two
features with a value between -1 and 1. The closer the number is to -1 or 1,
the more correlated the two features are. If the value is 0, the features are
linearly independent. A good method to analyse visually how features are
correlated is creating a heat map from the result of the Pearson correlation.
Furthermore, the variance of a feature can be examined. The smaller the
variance, the less likely is it that this feature provides a high amount of

21

2. Related Work

information. A variance threshold is defined to select only high variance
features according to that threshold. This method needs to be reviewed
closely as it can eliminate features that are relevant nonetheless.

Multivariate time series data is often high dimensional. To further reduce the
high amount of features, dimensionality reduction is a suggested technique
to decrease the dimensions and provide a compressed input data more
suitable the machine learning algorithm. Dimensionality reduction may
improve the performance of the machine learning algorithm. Additionally,
the dimension transformation speeds up the training time and the data table
will take up less memory space Géron, 2017, p. 42. A method to decrease
the dimensionality and remove outliers from the input data set is principal
component analysis. This unsupervised statistical method checks if features
of the data set are redundant and then projects the data set to a lower
dimensional linear space while maximising the variance of the projected
data Bishop, 2006, p. 561 . A compressed representation of the data set
(without information redundancy, outliers or noise) is gained which acts as
the new input to the machine learning algorithm.

After meaningful features have been extracted, the data types of the resulting
data set shall be reviewed to further preprocess them.2 defines the types of
data in statistics as follows :

• Categorical data: nominal (discrete units) or ordinal (discrete and
ordered units)
• Numerical data: discrete (can be counted but not measured) or continuous

(can be measured but not counted)

To facilitate learning, the input data has to be prepared for the machine
learning algorithm. Rashid, 2017, p. 94 suggests that inputs should be scaled
to small values from 0.01 to 0.99 or -1 to +1 for neural networks, depending
on the problem. Numerical features should be scaled - standardised or
normalised. Standardisation transforms the input values to have a mean
of 0 and a standard deviation of 1 while normalisation re-scales the values
simply to a range from 0 to 1.

2Towards Data Science - Data Types in Statistics 2019.

22

2.1. Background

2.1.3. Neural Networks

The main machine learning algorithms that are explored in this thesis are
neural networks, also referred to as artificial neural networks. They can solve
classification as well as regression problems, but the following explanation
will focus on classification only. Neural networks come from a biological
inspiration and were first introduced in their modern form by Rosenblatt,
1958 as a concept called the single layer perceptron, known as the simplest
form of a neural network. The principle idea is to recreate how the human
brain works. The name neural network comes from neurons in a brain.
Biologists discovered that brain cells consist of a network of neurons
connected to each other with synapses: The synapses transmit information
via chemical transmission, only leading to a reaction if the combined impulse
from the synapses are above a threshold Rolls and Treves, 1998, p. 3. The
perceptron is modelled similarly to this discovery. Its components are shown
in Figure 2.4. One neuron receives signals from multiple other neurons and
- based on the weighted sum of the signals - the neuron might send a signal
itself. The perceptron takes this idea to form its elementary building blocks
Several inputs are weighted and then summed up. The result is compared
to a threshold limit. The generated predictive output from this threshold
check is binary: 1 if the result exceeds the threshold, 0 if it is below. The
perceptron can solve linearly separable problems such as creating a decision
boundary for a binary classification problem or modelling logical gates
such as AND, OR and NOT. Nevertheless, other researchers discovered
certain limitations of the perceptron . For example, it cannot solve the XOR
input-output mapping because the perceptron is only capable to fit to linear
decision boundaries and the XOR gate is a non-linear pattern. Scientists
suggested an extension to the perceptron, defining neural networks how
they are used today.

In broad terms, what was added to improve the perceptron was a more
powerful activation function to smooth down the output function in contrast
to the binary decision used in the classic single layer perceptron. An
activation function transforms the result into a classification decision, mapping
the input values to required output values. Various activation functions
exist. The perceptron relies on a unit step activation function while the
sigmoid function is a popular activation function for non-linearly separable

23

2. Related Work

Figure 2.4.: The principal components of the single layer perceptron, the simplest version
of a feedforward neural network, are shown in this image. Inputs are weighted
and then summed. The unit step function is used as an activation function,
generating binary outputs in a range of [0,1]. The error function calculates the
error which is then used for backpropagation to update the weights and thus
receive a more accurate prediction in the next iteration.

problems. Both function shapes are compared in Figure 2.5. Additionally,
multiple layers were introduced to the neural networks to enable them
to solve complex problems. The single layer perceptron and the multi-
layered perceptron are classified as feedforward neural networks. Feedforward
refers to the fact that this type of neural network does not form a cycle or
receive input from an external source. Information is only fed forward to
the subsequent layers in the network. In the network architecture shown
in Figure 2.5, one neuron is connected with each neuron of the next layer.
Therefore this architecture of a neural network is called a fully-connected
network.

The core components of a modern feedforward neural network are one
input layer, one or more hidden layers and one output layer (see Figure 2.6).
The interconnected neural units learn and infer rules from observational
data. The layers are connected with weights that moderate input impulses.
The input layer does not perform any operations on the data, it just serves
the data to the first hidden layer. A hidden layer takes the inputs, multiplies
weights with the inputs, creates a sum and uses an activation function to
generate the output of the neuron. The output layer transforms the data
from the last hidden layer to a predictive output for classification. The
goal is to find the adequate weights w for the function f that models the
relationship between the output labels yn that correspond to the observation

24

2.1. Background

(a) Unit Step Function (b) Sigmoid Function

Figure 2.5.: Different activation functions are compared in this figure. The unit step function
or heaviside step function shown on the left is an activation function resulting in
binary values. The image is taken from Weisstein, n.d.(a). The sigmoid function
on the right is a popular activation function for neural networks. This function
is also used for logistic regression and sometimes referred to as the logistic
function. It is differentiable and continuous. The image is taken from Weisstein,
n.d.(b).

and the input features xn as in Equation2.1.

yj = f (xn; w) (2.1)

The algorithm of a neural network starts with initialising the weights to 0 or
randomly chosen small values. Then, the features of a data point are taken
as an input to calculate the weighted sum in each neuron, following the
equation in Equation 2.2. A bias is added as an additional constant before
the activation function is applied.

pj = −∑
i

wij ∗ xi + bj (2.2)

where: xi = input from neuron i
wij = weight assigned to the connection between neuron i and j
bj = bias term

Then the activation function determines the predicted class for this particular
sample. The current state-of-the-art activation function is the Rectified Linear

25

2. Related Work

Input Layer Hidden Layer Output Layer

Output 1

Output 2

Input 1

Input 2

w1,1
w1,2

w2,1
w2,2

1 1 1

2 2 2

w1,1
w1,2

w2,1
w2,2

Figure 2.6.: This graph shows the elementary building blocks of a neural network. It
consists of an input layer, at least one hidden layer and an output layer. The
shown neural network contains only one hidden layer. The nodes are connected
by weights.

Unit (ReLU) since they have shown to train better than sigmoid activation
functions Patterson and Gibson, 2017, p. 131. The ReLU function is denoted
in Equation 2.3. It returns 0 for inputs ¡ 0, but when the input rises above 0,
the function models a linear relationship.

oj = max(0, pj) (2.3)

The prediction is checked against the ground truth using a loss function
to calculate the error. The goal is to find the weights w that minimise the
chosen error function which is done by maximising the likelihood L to find
the most likely explanation of the data and find a model that fits best, as
shown in Equation2.4.

w = arg max
w

L (2.4)

The error function which was used for the neural network models in this
thesis is the categorical cross-entropy loss (also called log loss or softmax loss)
since it is the default loss function for multi-class classification3. The target
labels are one-hot encoded, meaning that the labels are transformed to
a matrix. The matrix has the labels as columns and the amount of data
samples as rows. For each data sample, there is a 1 marking the correct class

3Machine Learning Mastery - How to choose loss functions when training deep learning neural
networks 2019.

26

2.1. Background

label and a 0 for all other columns. The predicted outputs are transformed
in the output layer by the softmax activation function (see Equation 2.5). The
transformation creates a column vector containing probabilities in the range
[0,1]. Each probability states how likely it is that the data sample belongs to
a class. Naturally, the sum of all probabilities equals to 1. The class label with
the highest probability is the one that is most likely to be true to the class
from the observational data. The softmax function basically calculates the
ratio of the exponential of a single parameter yi to the sum of exponential
parameters of all values coming from the last neuron before the output
layer.

S(yi) =
expy

i

∑
j

expy
j

(2.5)

where: yi = single input parameter in vector
∑
j

expy
j = sum of exponential parameters of all values in the inputs

The loss function then compares the results from the softmax function to
the one-hot encoded target labels. The loss is calculated for each label per
sample and then sums the losses up as shown in Equation 2.6. Using the
natural log penalises the loss - the more wrong the prediction is, the larger
is the loss.

J(θ) = −
M

∑
c=1

(yo,c log(po,c)) (2.6)

where: M = the number of classes
log = the natural log
y = binary value indicating if class label c is correct observation o
p = predicted probability for observation o is of class c

There is a high amount of possible weight permutations, but no analytical
solution. Thus the weights need to be found in an iterative process. In

27

2. Related Work

case the sample is misclassified, the weights are adjusted with the help
of a learning rate. The learning rate is a scalar representing the rate how
quickly or slowly the weights are updated during each step of the iteration.
A risk is that the target is overshot when setting the learning rate too
high. If the output was predicted correctly, the weights are left as they
are. The sample is processed again to train the predictive ability of the
model. This iterative process of calculating the loss and then updating the
weights is called backpropagation. This algorithm processes the weights in
a backwards motion and converges on a minimum of the error function.
Backpropagation for the models of this thesis used the stochastic gradient
descent algorithm (see Equation2.7 for the formula) to find the minimum of
the chosen differentiable error function Rashid, 2017, p. 73. The basic idea is
to check the slope of the function and progress in the direction where the
minimum of the function lies. The gradient descent guides the way to the
minimum until convergence. It is similar to a hiker trying to climb down a
hill in the dark and checking where the slope goes down with a flashlight.
Taking big steps down the hill might end up in overshooting and missing
the minimum. This can be solved by an adaptive learning rate: The learning
rate is the size of the steps the gradient descent algorithm takes to reach the
minimum of the function Rashid, 2017, p. 70.

repeat until convergence:

θj ← θj − α
∂

∂θj
J(θ) (2.7)

where: α = learning rate
J(θ) = loss function

An optimiser specifies exactly how the gradient of the loss function will be
used when updating the weights during backpropagation. The optimiser
used in the training of the deep learning algorithms of this thesis was
Nadam (Dozat, 2016), which combines the Nesterov momentum with the
popular Adam algorithm (Kingma and Ba, 2014).

28

2.1. Background

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Output 1

Output 2

Input 1

Input 2

w1,1
w1,2
w2,1

w2,2

1 1 1 1

2 2 2 2

w1,1
w1,2
w2,1

w2,2

w1,1
w1,2
w2,1

w2,2

Figure 2.7.: A neural network consists of an input layer, at least one hidden layer and an
output layer. The shown neural network has an input layer, two hidden layers
and an output layer. The nodes are connected by weights. A neural network
with more than one hidden layer is defined as a multilayer perceptron and is a
deep learning method.

During the learning process, a neural network runs several independent
training loops with the same input data to increase the accuracy of the
model. The gradient descent algorithm starts each time with different initial
weights to ensure that the global minimum is found while climbing down the
hill Rashid, 2017, p. 77. Finally, all the valleys of the gradient descent are
compared and the lowest one is taken as the global minimum.

As already explained, neural networks map inputs to target labels using
hidden layers to learn the output. A special sub field of machine learning is
deep learning. Deep learning in the case of neural networks builds a pipeline
of various simple transformations, using more than one hidden layer
between input and output for learning. A deeper level of feature abstraction
is established in the training phase. Deep learning neural networks are
defined as multilayer perceptrons. A neural network with only one hidden
layer is a non-deep or shallow neural network.

A growing body of literature has investigated deep learning as a new way of
solving machine learning problems. The learning ability of deep learning has
only come to light recently due to the increasing flow of data and the need
to process the data for problem solving. Since problems with large amounts
of data are appearing more often now in computer science, deep learning
has increased in popularity since it can deal with a large amount of input
data. In the following sections, two particular deep learning algorithms for
sequence modeling are explored: convolutional neural networks and long
short-term memory recurrent neural networks. The choice to use these two
types of neural networks next to a plain feedforward multilayered neural

29

2. Related Work

network resulted from the insights gained by the literature review.

Long short-term Memory Recurrent Neural Network

As already mentioned, deep learning is constructed with a deep structure
showing a formation of several hidden layers. Other neural network ar-
chitectures evolved out of the standard feedforward neural network as it
is described above. One of them is called recurrent neural network (RNN).
An advantage mentioned in the literature is that RNNs work especially
well for modelling sequence data and can produce a sequence as an output
where the last element is the predicted next value for the input sequence.
The algorithm is typically applied in speech recognition, natural language
processing or stock prediction. An RNN benefits from a sequential memory
that can learn from the time steps that have happened in the past. This
recurrent factor is built into the RNN cell architecture by adding a loop that
passes previous information forward (see Figure 2.8). The thus established
looping mechanism stores the information in a hidden state. The hidden
state is a representation of the previous inputs and allows information to
be propagated from one step to the next, making RNNs are a perfect fit for
sequences and lists.

Bengio, Simard, and Frasconi, 1994 found out that RNNs suffer from
the vanishing gradient effect during the execution of the backpropagation
algorithm. This problem occurs when the gradient is becoming smaller and
smaller towards the layers in the beginning of the network, causing the
magnitude of the the recursive update to the weights to be insignificant.
The more steps are processed, the less information from the initial steps is
present. The gradient ceases to attribute much to the learning of the early
layers of the network due to the gradient update (see Equation 2.8 for the
gradient update rule).

new weight = weight− learningrate ∗ gradient (2.8)

This vanishing gradient effect can be compared to the RNN having a
short-term memory, preventing the network from learning from long-term
dependencies . A long short-term memory (LSTM) network is an evolved

30

2.1. Background

Figure 2.8.: At each learning step iteration, the network is not only fed the next data point
xt but also information from the hidden state ht calculated by the previous data
point. Thus local dependencies can be learned since the output of the previous
sample comes back as an input to the next. The components of the RNN are
shown from bottom to top: input, hidden state, output. The variables U, V and
W are the weights of the RNN. Image taken from Deloche, n.d.(b) (CC BY-SA
4.0).

version of the basic RNN and was first introduced by Hochreiter and
Schmidhuber, 1997. Standard RNNs can not learn from time steps that
are way back in the sequence Bengio, Simard, and Frasconi, 1994, but
LSTMs are able to connect the information and learn from the long-term
dependence. Therefore LSTMs work well for long sequences.

The neuron cell of an RNN is replaced by an LSTM cell which only keeps
relevant information and additionally can connect information from the fast
to the present task, revealing context that has appeared further back in the
sequence. An LSTM cell basically contains a more extensive series of matrix
computations. At each time step t in the input sequence, the computation of
the hidden state is a function taking the input vector xt and the hidden state
coming from the previous time step ht−1 (see Equation 2.9). The output
of the cell yt is also gained by a function including the previous state and
inputs coming from the current time step t.

ht = f (ht−1, xt) (2.9)

Data in an LSTM is processed sequentially, just like a basic RNN. What
is different are the operations inside of a cell which allow for the LSTM

31

2. Related Work

to forget or keep information. The LSTM cell is displayed in Figure 2.9.
The core components unique to an LSTM neural network are the cell state
(additionally to the hidden state) and gates (forget gate, input gate, output
gate). Information is added or removed to the cell state of the neural network,
moderated by the gates which are neural networks itself that learn what
information is relevant to keep and what can be omitted. The cell state ct
is the long-term state and the hidden state is for short-term memory. In
a forward pass, the long-term state travels through the forget gate where
some memories are dropped. Then, new memories selected by the input
gate are added to ct. The result from the addition is the output for the
long-term state and is passed straight on. Further on, ct is copied, send
through a tanh activation function and element-wise multiplied by the output
gate, producing the hidden state ht. Tanh regulates the outputs so that
they stay between 1 and -1. The new cell state and new hidden state are
transmitted to the next time step. The three gates are results from matrix
computations involving the previous hidden state and the feature input
from the data point that is fed to the network at the current time step. The
main layer similar to the layers in a basic multilayer perceptron analyses
the current inputs and the previous hidden state, resulting in the output Gt.
The gates moderate what memory is stored and what is forgotten, applying
the sigmoid activation function with a range of [0,1]. Since the outputs of
the gates are element-wise multiplied with other variables of the cell, the
gates regulate exactly what is kept and what disappears since any number
multiplied by 0 is 0 and any number multiplied by 1 is the number. Each
gate can be seen as a single layer neural network with weight matrix that
needs to be learned during training using gradient descent.

Each of the gates possesses a different purpose:

• Forget gate: Regulates what memories of the long-term state from the
previous cell should disappear by multiplying Ft with ct−1.
• Input gate: Decides by using It what info from Gt needs to be added to

the long-term state.
• Output gate: Determines what the next hidden state should be by

taking into account what parts of the long-term state are relevant (Ot).

Naturally, it is possible to stack multiple layers of LSTM cells to create a
deeper network.

32

2.1. Background

Figure 2.9.: The components of the LSTM are shown from bottom to top: input xt, hidden
state ht and cell state ct, output ot. Image taken from Deloche, n.d.(a) (CC
BY-SA 4.0).

Convolutional Neural Networks

Unlike the LSTM network, the convolutional neural network (CNN) does not
include a recurrent factor. CNNs are especially popular in the problem
domain of image classification, but have shown their applicability in the
area of human activity recognition as well. As the application area of image
classification suggests, CNNs work well with spatial relationships in data.
The algorithm can generate a sequence as an output or a class.

A CNN learns feature filters which are convoluted with the input to detect
edges and thus shapes in the input data. A convolution is a non-linear
mathematical operation used instead of general matrix multiplication Goodfellow,
Bengio, and Courville, 2016, p. 327. The convolution operation which is
essentially an element-wise multiplication and addition can be denoted as
in Equation 2.10.

s(t) = (x∗w)(t) (2.10)

33

2. Related Work

where: w = probability density function, in the context called kernel
x = input
s(t) = feature map
∗ = the convolution operation
t = time index t

The kernel is a two dimensional array of parameters (weights) that are
adapted by the training of the CNN by using backpropagation, just as the
other neural networks presented in this thesis. The kernel contain zeros and
values where information is stored, referred to as sparse weights. When
using several kernels, they are stacked on each other and are called a filter
which is three dimensional. The kernel is usually smaller in size than the
input to reuse it to detect meaningful features by re-applying the kernel with
a sliding window approach. The result of the kernel applied to the input is
called a feature map. For time series data, a one dimensional convolution is
performed which means that the kernel slides over a single dimension. Time
series data just consists of one value in contrast to color images which have
three separate channels of red, green and blue. Time series data could be
loosely compared to a grey scale image in this context. Several convolutions
can be performed subsequently to learn more complex features as the
network goes deeper.

To reduce the likelihood of overfitting, a max pooling layer (first defined by
Zhou and Chellappa, 1988) is often chosen to prevent the feature maps from
becoming too receptible to small variations in the data. The algorithm works
simply by taking a specified amount of neighbouring values in a matrix,
creating a pool of those values and taking the maximum to transfer to the
output of this layer. One dimensional max pooling is used in this thesis and
works, as the name says, only on values of one single row in the matrix.

Methods to improve Classification Results

When working with neural networks for classification, it is common to
conduct multiple experiments by running the training algorithm with
different hyperparameters to reach the best model performance. Usually
with machine learning there is no definite perfect solution - different models

34

2.1. Background

have to be defined, trained and tested empirically as it is done in the
presented work. In this section, the methods that were used to evaluate
and improve the performance of the classifiers are discussed. The goal is to
provide the reader with a general understanding of the methodologies used
to extract the results documented in the evaluation.

There are various ways of grading the predictive ability of a model. The
chosen metrics to measure the model performance in this thesis are accuracy,
recall, precision, F1 score, Matthews correlation coefficient (MCC) and the
categorical cross-entropy loss. The exact formulas for accuracy, precision,
recall, F1 score and MCC according to Patterson and Gibson, 2017, p. 38-40

are defined as follows in Equations 2.11, 2.12, 2.13, 2.14 and 2.15.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.11)

Precision =
TP

TP + FP
(2.12)

Recall =
TP

TP + FN
(2.13)

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(2.14)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.15)

where: TP = true positives (positive class is correctly predicted)
FP = false positives (positive class is incorrectly predicted)
TN = true negatives (negative class correctly predicted)
FN = false negatives (negative class is incorrectly predicted)
ŷ1, ŷ2, ..., ŷn = predicted values
y1, y2, ..., yn = observed values (ground truth)
n = number of observations

35

2. Related Work

The accuracy is the mere proportion of correct guesses and can be misleading
in case the classes are unbalanced. Detailed analysis can be achieved by
tracking the aforementioned metrics precision, recall, F1 score and MCC.
The F1 score is the harmonic mean of precision and recall reduced to a
single measure. Additionally, a confusion matrix is often used to evaluate
the prediction results of a classifier. A confusion matrix is basically a table
stating the predicted labels and the actual labels for a classifier Patterson
and Gibson, 2017, p. 36. This way it is possible to see exactly which classes
are classified correctly and which are misclassified. The MCC gives a value
between -1 and +1, trying to represent the confusion matrix with just a
single value. +1 means a perfect prediction of the model, 0 is no better
than a random prediction and -1 represents total disagreement between the
prediction and the ground truth.

In machine learning, the researcher always searches for the best result -
the most fitting model. Examining the metrics can give clues of what goes
wrong in the prediction. To improve the model, either the preprocessing
can be improved or the machine learning algorithm creating the model
can be engineered differently. Improving the preprocessing means going
back to exploring the raw input data and adding additional data cleaning
such as outlier detection or selecting different features than used in the last
run of the machine learning algorithm. Furthermore, hyperparameters are
parameters for tuning the network to learn from the input data better and
faster Patterson and Gibson, 2017, p. 28. Hyperparameters can be optimised
by empirically training networks with different settings and choosing
the hyperparameters that end up with the best result. Hyperparameter
optimisation can be time-consuming because many different combinations of
settings exist and each time the model has to be trained from scratch. Testing
a number of possible combinations of hyperparameters and evaluating their
performance is called grid search. Here, the number of possible combinations
that have to be examined grows exponentially with every hyperparameter
that is added.

From examining different hyperparameters, the programmer ends up with
several different models. To choose the best model, the metrics as listed
above can be used to assess how well the classification problem is solved.
Additionally, the model selection can be based on further information such
as over- and underfitting. Both are challenges the model construction is

36

2.1. Background

frequently faced with. Overfitting occurs when the model is too complex
and thus unable to generalise. The model has basically only learned how
to align its prediction to samples from the training data set and is unable
to deal with new unseen data samples. Possible solutions are simplifying
the model (for example reducing the features), collect more training data
(if the data set is sparse) or clean the training data better (remove the data
errors and outliers). Underfitting occurs when the model is too general
and fails to be accurate enough for the particular data set. In this case, a
more complex model should be chosen, better features should be fed to the
learning algorithm or the set constraints on the model should be reduced.
After improving the model, it should be just right - not too general and
not too complex. Achieving this state is a struggle that can mostly only
be solved by going through various iterations of making changes to the
training data, the hyperparameters or the setup of the chosen model. Géron,
2017, p. 71-74

When encountering insufficient quantity of training data and thus overfitting,
adding data points based on existing data but with minor alterations can
be used as additional training. This process is known as Data augmentation. In
the field of image detection, data augmentation is performed by transforming
the image, for example rotating the image. In the context of time series data,
the data points can be downsampled. Where it makes sense, downsampling
is a method to split the samples into smaller slots of time. For example, a
time step of 30 minutes could be downsampled into six slots of five minutes
leading to more training data. Minor relevance in the scope of this work is
given to data augmentation since samples cannot be artificially created as
with images.

The learning rate can be optimised to battle overfitting. Many experiments
have to be observed to compensate random effects when climbing down
with gradient descent. If the learning rate is high, the optimum can be
reached faster, but it is also possible that the step is too large and the best
answer to the problem is missed Rashid, 2017, p. 154 . A small learning
rate will lengthen the training process.

A technique called regularisation is a measure against overfitting by constraining
the model. One method tested in the practical part of this thesis is dropout.
Dropout randomly drops a neuron preventing it from taking part in the

37

2. Related Work

forward pass or in the backpropagation to force the neural network to
generalise Patterson and Gibson, 2017, p. 63. L1 and L2 regularisation add
an additional term to the cost function that is minimised. The idea is to
penalise larger weights to make them smaller and therefore reduce the
complexity of the model.

To achieve faster convergence, batch normalisation can be used. The batch
size refers to the amount of training samples that are used in one iteration
(forward pass, then backpropagation) of the training process. Batch norma-
lisation normalises the activations of the previous layer at each batch and
reduces the sensitivity of the weight initialisation during training Patterson
and Gibson, 2017, p. 264.

To achieve the best result, neural networks are trained several times with the
same hyperparameters and the same training data. These runs are called
epochs and naturally make training take longer Rashid, 2017, p. 155. The idea
is that the gradient descent algorithm to minimise the loss function starts
randomly at different initial points and might end up in a local minima
instead of the global one. Trying out several runs, the global minimum can
be found.

Besides tuning the hyperparameters, a direct way of interfering with the
training and validation procedure to get a network that generalises well is
by introducing early stopping. During the iterative process of learning, the
validation error should drop with each epoch until it reaches a minimum.
The model should not be trained any further because this will lead to
the model fitting to the data set even more and thus loosing its ability to
generalise. The model will overfit and the validation error starts to increase
from there. The training needs to be stopped once the validation error is at
its lowest point. This point can solely be found by conducting experiments
and monitoring the validation error to find its global minimum. A simple
solution is the usage of early stopping to end training once the validation
error has not decreased for a pre-defined number of epochs.

Furthermore, the network architecture can be changed up. It is good practise
to first try out a shallow network with just a few layers, then a deep
network and compare their results. From looking at the performance, the
programmer can lean into a direction and try out further network architec-
tures with different hidden nodes according from what was observed in the

38

2.2. State of the Art

previous training runs. There is no definitive answer to how many hidden
layers should be used - it has to be explored with experiments of different
model variations.

Until here, several approaches to improve the model’s performance were
discussed. The need for looking into those possibilities was the reason that
the deep learning models presented in this work suffered from overfitting.
Nonetheless, there is a vast amount of further methods to tackle problems
within the model which were not included in this section.

2.2. State of the Art

In this section, cutting edge papers related to the problem domain of
multivariate time series classification are discussed. The literature review
mainly focused on supervised machine learning algorithms. The solutions
to solve the classification task that have already been implemented by
other researchers using the same data set from the ucami Cup 2018 are
explored.

Relevant literature is researched using keywords from the following list:

• ucami 2018

• Activity recognition in smart environments
• Activity recognition classification
• Sensor-based activity recognition
• Multivariate time series classification
• CNN activity recognition
• CNN with LSTM

Appropriate search engines for literature research in this domain are Semantic
Scholar4, the sensors section of the MDPI Open Access Journal5 and Google
Scholar6. Additionally, the website of the Ulster Institutional Repository7

at Ulster University has related papers to the problem statement of this

4Semantic Scholar 2019.
5Sensors - MDPI Open Access Journal 2019.
6Google Scholar 2019.
7Ulster Institutional Repository, Ulster University 2019.

39

2. Related Work

thesis. The papers explaining and analysing the chosen data set where taken
from the proceedings of the ucami 2018 conference. The relevance of found
papers is determined by the year it was published in and by the similarity
to the problem domain.

2.2.1. Solutions by other Scientists using the same Data Set

The chosen data set from the ucami Cup 2018 has already been analysed by
different researchers to settle on a good classification solution. An overview
of the algorithms, the features and the testing accuracy is displayed in 2.1.
Some of them presented strong results based on the testing accuracy of how
many classes were classified correctly.

Karvonen and Kleyko, 2018 approached the problem with a domain
knowledge-based solution. They chose to use only input data from the
binary sensors out of all four data sources included in the data set. The paper
states that conventional machine learning algorithms such as support vector
machines do not consider the temporal relationships between activities. The
presented solution is an expert system similar to a finite state machine with
an accuracy of 81.3%. A finite state machine models a sequence of states and
the transitions between these states. The states represent the activities. This
type of system has the advantage that the inferred rules of the expert system
are easy for humans to understand. Especially in the ehealth sector, the
users of this system should be able to comprehend and reproduce how the
classification was done. An issue with this type of solution is that once the
resident of the smart home changes the daily habits, the system struggles to
classify the activities correctly. Another problem with sequences and this
data set is that the data was captured in a controlled environment. The
test person in the lab might have behaved differently because the person
was aware that the activities are recorded. Furthermore, humans might
switch their habits or might be interrupted. This means that the sequences
modelled in the finite state machine would be out of order and could not
be classified anymore. Another factor mentioned by the authors is that the
data set is fairly small to provide a reliable input to train the model.

The details of the solution proposed by Lago and Inoue, 2018 describe

40

2.2. State of the Art

Author Year Algorithm Features Testing
Accuracy

Karvonen and
Kleyko, 2018

2018 expert system
similar to a
finite state
machine

binary sensors 81.3%

Lago and
Inoue, 2018

2018 hybrid model
(hidden
markov chain
and logic
model)

binary and
proximity
sensors

45.0%

Salomón and
Tı̂rnăucă, 2018

2018 weighted finite
automata

binary,
proximity
and floor
sensors

90.65%

Jiménez and
Seco, 2018

2018 multi-event
naive Bayes
classifier

binary,
proximity,
acceleration
and floor
sensors

60.5%

Razzaq et al.,
2018

2018 Filtered-
Classifier
(Weka tool)

binary,
proximity,
acceleration
and floor
sensors

47%

Ceron, López,
and Eskofier,
2018

2018 J48, Ib1,
support vector
machines,
random forest,
AdaBoostM1

(best result)
and bagging

binary,
proximity,
acceleration
and floor
sensors

62.77%

Table 2.1.: Overview table of publications using the same data set as in this thesis, ordered
by the appearance in the text. The table displays which algorithm was used,
which features where selected and how well it performed according to the testing
accuracy. The available features originated from four different data sources of
the ucami Cup 2018 data set: intelligent floor, proximity, binary sensors and
acceleration data from a smart watch.

41

2. Related Work

a combination of a probabilistic and a descriptive model. They applied
the binary sensor and proximity sensor data as inputs for the activity
recognition process. The probabilistic model is based on a hidden markov
chain and represents each activity as a state. The transitions of the hidden
markov chain model the sequences of activities. Since the test person in the
smart home lab switches from activity to activity, the result is a sequence
of observations which fits for the application of hidden markov chains.
The emission probabilities for the markov chain were calculated using a
neural network and considered the mean duration for every type of the 24

activities. Thus it was possible to calculate the probability of staying in the
same activity or changing into a different activity. The description-based
part of the model relied on the verbal description of every activity given
by the data set description. The logic was implemented using Java classes,
but due to the difficulty of transforming the activity descriptions into logic,
the activities “wash hands” and “wash dishes” were skipped. Based on the
description of each activity, it was possible to determine events and use them
to mark the end and start of each activity. The overall accuracy was 45.0%.
The hybrid model performed poorly on activities with a short duration
such as “put washing into washing machine” or “visit in the SmartLab”.
Both could not be recognised at all by the classifier. The advantage of a
description model is that it can classify activities that the model has never
seen before since the model relies on the proper description of the class.
Nevertheless, if the sensor that marks the end of an activity is not triggered,
the end of the activity is not recognised and the state change is completely
missed. Then it is impossible for the hidden markov chain model to update
the state and change to the most probable subsequent activity.

Salomón and Tı̂rnăucă, 2018 solved the time series classification problem
with the given data set using a semi-supervised machine learning algorithm
with a weighted finite automata (similar to the finite state machine by
Karvonen and Kleyko, 2018) and regular expressions. Additionally to using
the binary senors, their contribution also incorporated the floor sensor
data to figure out the test person’s position in the room through frequency
distribution. One automaton was trained for each segment of the day to
determine the flow of activities for the segments. The weights between the
states of the state machine were calculated by how often this particular
path was taken. With a semi-supervised process, the description of each

42

2.2. State of the Art

activity was gained by first training an automaton per activity, transform it
into a regular expression and then hand-tweaking the result. The regular
expression denoted which sensors were typically active and in which order,
for each individual activity. By combining the transition probabilities of the
automata for each segment and the regular expression that represented each
activity, the activities could be classified. The proposed system resulted in
an accuracy of 90.65%. They argue that the errors in their prediction model
were mainly caused by wrong predictions of starting and ending times of
the activities. They believe this was due to the human transcribers making
errors and additional noise in the data set.

Jiménez and Seco, 2018 presents a multi-event naive Bayes classifier to
estimate which activities were performed. A naive Bayes classifier is a
probabilistic method based on Bayes’ theorem. This approach took the input
information from all four data sources. Performing the classification with
the test data set reached an accuracy of 60.5%.

In Razzaq et al., 2018 the researchers achieved a 94.0% accuracy for training
data and a 47.0% accuracy for the test data set using a FilteredClassifier from
the Weka Tool Weka 3: Data Mining Software in Java 2019. The large difference
between the training and testing accuracy is a sign for overfitting of the
classifier. This system used all available sensor data to train the model. The
FilteredClassifier was implemented with the default StringToWordVector
filter and with random forest as the base classifier. The Weka filter took
over the preprocessing - cleaning up the data set and altering it for the
classifier.

Ceron, López, and Eskofier, 2018 submitted a solution using the CRoss
Industry Standard Process for Data Mining (crisp-dm) methodology for
data mining projects. The six phases of this methodology according to Wirth
and Hipp, 2000 are:

1. Business understanding
2. Data understanding
3. Data preparation
4. Modeling
5. Evaluation
6. Deployment

43

2. Related Work

The system by Ceron, López, and Eskofier, 2018 took input data from the
event streams of the binary senors, the proximity data, the acceleration
data from the smart watch and the location data from the intelligent floor.
The used models were J48, Ib1, support vector machines, random forest,
AdaBoostM1 and bagging. AdaBoostM1 generated the best results out of
the list. A problem that was mentioned by the authors is that the data set
has a class imbalance: There are not enough samples of the activities “wash
dishes” and “Playing video game” to predict those activities reliably. The
activities related to eating meals of the day were aggregated into one single
event. For example, “dinner”, “lunch” and “breakfast” were summarised
as the activity “eating”. This step was also performed to the activities
related to preparing those meals. The bodily movements of those activities
are indistinguishable, only the time of the day is different. Merging those
activities increased the classification accuracy by 13%. Even though the
10-fold-cross-validation on the given training set resulted in a classification
accuracy of 92.1%, the accuracy for classifying activities of the test data set
was only 60.1%, 62.77% without the zero class (class used for samples that
are not associated to any out of the 24 defined classes).

2.2.2. Other Approaches for Solving Sensor-Based Activity
Recognition

According to Razzaq et al., n.d., the main issue with standard pattern
recognition methods (support vector machines, hidden markov models,
naive bayes) used for sensor-based activity recognition is that the features
are always extracted with hand-crafted approaches, based on experience
and domain knowledge of the data scientist programming the model. The
extracted features end up being rather shallow e.g. statistical features like
mean or variance. This limitation might not be enough to learn complex
activities such as the data from the ucami Cup 2018. Another problem with
activity recognition is that usually the labeled data set is small due to the fact
that it had to be labeled by someone and a large amount is needed to learn
activities that might not always yield exactly the same sensor data in the
same way. Additionally, most standard pattern recognition algorithms learn
from static data, but sensor data for activity recognition comes in sequences

44

2.2. State of the Art

of sensor data observations. Each each sample has different sensor events
that only make sense when being considered sequentially. Taking into
account the nature of the data set of this thesis, deep learning models can
perform abstract feature extraction and model building simultaneously. One
option of a deep learning model relevant to the problem domain of activity
recognition are CNNs. When using time series data, CNNs can leverage the
abilities of detecting local patterns Razzaq et al., n.d.

Hammerla and Plötz, 2016 explored several deep learning algorithms
for human activity recognition using wearables in their paper. Different
benchmark data sets were used to compare deep feed-forward neural
networks, CNNs and recurrent neural networks based on LSTM. Their
results show that bi-directional LSTMs performed significantly better than
other state-of-the art classification algorithms.

45

3. Use Cases & Requirements

The classification algorithms for activity recognition presented in this thesis
are intended to be used in a smart home environment. In this chapter, the
use cases and requirements for a hypothetical smart home based on the
proposed algorithm proposed in this thesis are analysed.

3.1. Use Cases

This section includes three different use case diagrams to demonstrate in
detail how a user might interact with a system based on the proposed
classification of this thesis. The presented use cases are related to currently
relevant topics like the growing percentage of elderly people in the world’s
society (ehealth, eldercare), saving energy and efficient disposal of waste
(waste management).

The general idea is to classify activities of daily living with data from a
smart home, analyse the data, track anomalies and take action accordingly.
The tables 3.1, 3.2 and 3.2 describe the potential use cases in detail. The
description explains the use cases using a Sensing-Logic-Action approach.
Sensing describes the data sources for receiving the sensor information,
logic characterises the analysing and decision making part of the system and
action defines what action the system will take in this specific use case.

3.2. Requirements

This section lists the requirements the smart home that uses the proposed
algorithm is confronted with.

47

3. Use Cases & Requirements

Title Turning off the heating after the inhabitant
goes to sleep

Problem
description

The inhabitant of the smart home goes to
sleep and wants the heating to be off to save
energy.

Sensing Location data from intelligent floor, binary
and proximity sensor data (for example
proximity sensors of the bed), acceleration
data from wrist watch.

Logic The person lies down in the bed and
stays there for more than one minute. The
logic part of the system recognises that the
activity “go to the bed” has started.

Action The smart home system turns off the
heating in case it is on.

Table 3.1.: A use case for turning off the heating once the inhabitant goes to sleep.

Title Tracking meal preparation for the elderly
Problem
description

An elderly person might not be able to
prepare a meal by themselves or forget to
have a meal regularly.

Sensing Location data from intelligent floor, binary
and proximity sensor data (for example
magnetic contact and proximity sensors for
the fridge), acceleration data from wrist
watch.

Logic A segment of the day (morning, afternoon,
evening) ends without the activity of
eating which means that this activity has
been skipped. The involved activities are
Act05 “breakfast”, Act06 “lunch” and Act07

“dinner” .
Action A delivery service is notified to provide a

meal for the inhabitant.

Table 3.2.: A use case for tracking meals using the proposed system.

48

3.2. Requirements

Title Efficient waste management in the home
Problem
description

The activity “put waste in the bin” is
monitored to ensure that waste is picked
up once the waste bin outside of the smart
home is full.

Sensing Location data from intelligent floor, binary
and proximity sensor data (for example
magnetic contact and proximity sensors
for the trash), acceleration data from wrist
watch.

Logic The logic part of the system tracks how
often this activity happens and when the
waste collection was last called. The related
activity is Act15 “put waste in the bin”.

Action The related action is to call waste collection
after a pre-defined number of occurrences
of this activity.

Table 3.3.: A use case for tracking waste disposal using the proposed system.

49

3. Use Cases & Requirements

3.2.1. Functional Requirements

The functions that the system must provide can be multifaceted and individually
adapted to the inhabitant of the smart home to improve the quality of living
by automation and assistance. Additionally, the functionalities depend on
the sensors that are installed in the home and the according smart devices
acting on the activities. Proposals for potential usage scenarios that the
smart home could be faced with are listed above in the Section 3.1.

3.2.2. Non-Functional Requirements

An IoT platform must fulfill a high number of non-functional requirements.
First and foremost, the classification algorithm used for the activity recog-
nition must be reliable and robust. Since the era of artificial intelligence
just started, the society might have doubts about the trustworthiness of
artificial intelligence. Often artificial intelligence is mentioned as a black
box for its users. Thus peeking into the reliability of the decision making
process of a system is especially important when the computer must decide
in situations which have a significant impact on a human’s life such as in
the health sector. Therefore the decisions of the system must be accurate,
transparent and comprehensible which is hard to achieve in the case of high
level artificial intelligence algorithms.

Moreover, the system needs to be able to processing real time data and
ensure the connectivity and mutual compatibility of different protocols and
standards. IoT applications are set up as an inter-connected network to be
able to realise communication between the devices, the data storage service
and the actual application service. In the case of this thesis, sensors detect
activities and send the data to a destination in the embedded system. Due
to the many possibilities of sensors that could be used in the context of
activity recognition, the system must be able to manage communication
with a range of different devices. When dealing with a vast number of
distributed devices, fault detection should be implemented to prepare for
when sensors are sending wrong data or have low battery or suffer from
some other technical fault. The network’s fault tolerance also ties in with
the requirement of reliability.

50

3.2. Requirements

According to Priyadarshini, Bagjadab, and Mishra, 2019, the main security
requirements for an Internet of Things system are:

• Availability of service: The smart home has to constantly be available
and therefore be protected against denial of service attacks.
• Authentication, authorisation, accounting: Only people who own the

privilege to enter the system should be able to.
• Data privacy, data confidentiality, data integrity: Since smart homes

are possibly dealing with sensible data, it is essential that the captured
data is being protected by proper encryption mechanisms.
• Energy efficiency: When dealing with devices intended for long-term

use, it is important to use power efficient products with a longevity.

Another important quality attribute that needs to be discussed in relation
with the topic of smart environments is scalability. In IoT, scalability is a
considerable challenge due to the increasing complexity of using a high
number of different devices in a network and ensuring the flow of data.
An IoT system generates a massive amount of information, therefore an
adequate architecture must be set up to store the data and process it.

Due to the high number of computations that are associated with deep
learning, the proper hardware is necessary to speed up the training of the
algorithm. For example, instead of central processing units (CPUs), graphical
processing units (GPUs) can be used to make the training fast. Evidently,
the usability of control panels or other types of inputs to control the smart
home system has to be checked, for example by conducting usability tests
with real users.

51

4. Data Preparation

This chapter focuses on the preparation of the data that serves as an input
for the machine learning algorithms presented in this thesis. The chapter
describes how the raw data was initially captured. Then, the performed
preprocessing steps are explained. The choices for the preprocessing steps
are based on the theoretical concepts already explained in this thesis. The
same input data set is used for the machine learning algorithms. An
exploratory analysis of the data set gives the reader a chance to get to
know the data. The chosen programming language for preprocessing the
data is Python1, including the powerful tools Pandas2 for manipulating the
data structures and matplotlib3 for the plots.

4.1. Data Collection

The sensor data used for this project is gained from the data recorded inside
an experimental smart lab setup at the University of Jaén. The data set was
published for the ucami Cup which was a competition for human activity
recognition. A single resident, a 24 year old student, carried out 24 different
activities of daily living in the smart lab.

The smart lab tries to reproduce the environment of a real life apartment
and to capture what the resident is doing inside of the lab. The smart lab
measures 25 square meter and has five different areas inside of it: entrance
hall, kitchen, living room with a work desk and bedroom with an integrated
bathroom (see Figure 4.3 for the interior of the lab). Several sensors have

1Python Programming Language 2019.
2Pandas - Python Data Analysis Library 2019.
3Matplotlib - Plotting in Python 2019.

53

4. Data Preparation

Figure 4.1.: Layout of binary sensors in smart home lab. Reprinted from Espinilla, Medina,
and Nugent, 2018 (CC BY-NC 4.0).

been placed inside of the lab in order to record the resident’s actions. The
sensors collecting the data are deployed in close proximity or even directly
attached to objects of interest. The four types of data sources included in
the ucami data set are:

• 30 binary sensors transmitting a binary value for either magnetic
contact, motion or pressure (see Figure 4.1 for their layout)
• Proximity data between a smart watch worn by an resident and a set

of 15 Bluetooth Low Energy (BLE) beacons positioned as can be seen
in Figure 4.2
• Acceleration data from 3 axes generated by a smart watch
• Location information provided by an intelligent floor with 40 tiles (see

Figure 4.3)

As the layouts of the deployed sensors show, the devices capturing the data
are stationary except for the acceleration data coming from the wrist watch.
The objects are placed close to areas inside the smart lab that are related to
the activities defined in Table 1.1.

54

4.1. Data Collection

Figure 4.2.: Layout of proximity sensors in smart home lab. Reprinted from Espinilla,
Medina, and Nugent, 2018 (CC BY-NC 4.0).

Figure 4.3.: Layout of intelligent floor modules in smart home lab. Reprinted from Espinilla,
Medina, and Nugent, 2018 (CC BY-NC 4.0).

55

4. Data Preparation

The basic idea of creating the proposed system is to develop techniques and
tools to provide solutions for improving assistance in smart homes. Using a
model for activity recognition can predict what kind of activity the resident
of the smart home is performing. Depending on the activity, actions can be
taken during the activity or after it is over. For example, the smart home
can assess how often the resident has taken the trash out. After a specific
amount of time, the smart home system can alert the waste collection to
collect all the trash bags. The description of the activity “put waste in the
bin” is: “This activity involved the resident going to the kitchen, picking
up the waste, then taking the keys from a small basket in the entrance
and exiting the Smart Lab. Usually, the resident comes back after around
2 min, leaving the keys back in the small basket.” The related sensors to
this activity are the binary sensor for the magnetic contact on the trash bin
and on the door, the intelligent floor tiles in the kitchen and in the entrance
and the proximity sensors on the door and garbage can. There are eleven
samples of this activity in the training set and four in the test set.

4.2. Exploratory Data Analysis

When comparing frequencies of each activity from the training set and the
testing set in Figure 4.4, it is clear that the classes are unbalanced since there
are high differences in the frequencies. 169 activities were recorded in total
in the training set. The activity that is seen most often in the training set
is “Brush teeth” with 21 counted occurrences. The activities “Relax on the
sofa”, “Visit in the SmartLab” and “Play a video game” only occurred once
in the training set. In the testing data set of only three days worth of data,
there are 77 activities. Two activities do not occur in the testing data set:
“eat a snack” and “put washing into washing machine”. Furthermore, there
is a significant difference in the frequencies between the training and the
testing set. The activity “relax on the sofa” which is only present once in
the training set, was tracked eight times in the testing set.

Between the activities, there are times where sensor data is present, but no
activity is assigned. When preprocessing, those samples are labelled with
“no activity” in the data set. The “no activity” samples were omitted of the

56

4.2. Exploratory Data Analysis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Frequencies

Take medication

Prepare breakfast

Prepare lunch

Prepare dinner

Breakfast

Lunch

Dinner

Eat a snack

Watch TV

Enter the SmartLab

Play a videogame

Relax on the sofa

Leave the SmartLab

Visit in the SmartLab

Put waste in the bin

Wash hands

Brush teeth

Use the toilet

Wash dishes

Put washing into the washing machine

Work at the table

Dressing

Go to the bed

Wake up

A
ct

iv
it

ie
s

7

7

6

7

7

6

7

5

6

12

1

1

9

1

11

6

21

10

2

6

2

15

7

7

3

3

2

3

3

2

3

0

1

5

1

6

5

1

4

3

9

2

3

0

3

8

4

3

Frequencies of Activities in Testing and Training Dataset

training

testing

Figure 4.4.: Bar Chart visualising the frequencies of each activity in the training and testing
data set. It is visible that there is an imbalance of the frequencies of the activities.

57

4. Data Preparation

Figure 4.5.: This GANTT Chart shows which sequence of activities the resident performed
in the morning segment of the 31st of October, 2017.

data set in the end because they barely occur in the testing set since the
labelling process worked differently there. Figure 4.5 shows an example
of the activities in the morning segment of the 31st of October, 2017. The
activities are happening in sequential order, never in parallel. In between
the recorded activities, there are gaps that result from sensor data with
timestamps that are not assigned to any activity. The GANTT chart shows a
typical morning: The resident wakes up, uses the toilet, washes his hands,
prepares breakfast, eats breakfast, brushes his teeth, dresses himself and
then leaves the smart lab. The activities “wake up”, “prepare breakfast”
and “breakfast” itself take the longest time. The shortest activities from that
morning are “leave the smart lab” and “use the toilet”.

In Figure 4.6 the durations of the activities taken from the training set
are visualised. A few outliers are visible in the box plot. The activities
that tend to result in the longest durations are “put washing into the
washing machine”, “work at the table” and “watch TV” Nevertheless, the

58

4.2. Exploratory Data Analysis
B

re
ak

fa
st

B
ru

sh
te

et
h

D
in

ne
r

D
re

ss
in

g

E
at

a
sn

ac
k

E
nt

er
th

e
S

m
ar

tL
ab

G
o

to
th

e
b

ed

L
ea

ve
th

e
S

m
ar

tL
ab

L
un

ch

P
la

y
a

vi
de

og
am

e

P
re

pa
re

br
ea

kf
as

t

P
re

pa
re

di
nn

er

P
re

pa
re

lu
nc

h

P
ut

w
as

hi
ng

in
to

th
e

w
as

hi
ng

m
ac

hi
ne

P
ut

w
as

te
in

th
e

bi
n

R
el

ax
on

th
e

so
fa

T
ak

e
m

ed
ic

at
io

n

U
se

th
e

to
ile

t

V
is

it
in

th
e

S
m

ar
tL

ab

W
ak

e
up

W
as

h
di

sh
es

W
as

h
ha

nd
s

W
at

ch
T

V

W
or

k
at

th
e

ta
bl

e

Activities

0

200

400

600

800

1000

D
ur

at
io

n
in

se
c

Boxplot of Activities compared by their Duration (Training Set)

Figure 4.6.: The durations per activity in the training data set are shown as a box plot.

59

4. Data Preparation

activity “watch TV” has a large interquartile range which indicates that
there are various samples with highly fluctuating durations for this activity
in particular.

4.3. Data Preprocessing

Before the data is fed to the machine learning algorithm, the raw data needs
to be preprocessed. The preprocessing pipeline is displayed in Figure 4.7.
First the sensor data needs to be synchronised into samples representing a
slot of a predefined time. Then, the data has to be checked for categorical
values, e.g. text data can be transformed into nominal numbers. The emerging
features should be standardised and normalised where it makes sense.
Afterwards, feature selection is performed which results into the preprocessed
data ready to be used for the machine learning algorithm.

The data is split into a testing and a training set: Seven days worth of data
were used for the training, three days were used for the testing. The raw data
set is segmented into different times of the day - morning, afternoon and
evening. The testing data is preprocessed in the same way as the training
data.

4.3.1. Sensor Data Alignment into 5 Second Samples

The sensors have different frequencies at which data is being transmitted.
The highest amount of sensor information comes from the acceleration data
source, collected with a sample frequency of 50 Hz. Because the frequencies
of the data are not the same, the sensor data needs to be aggregated to
form proper input samples. First, each of the data sources is merged into
samples of a duration of five seconds. This step is done because it is easier
for a model to recognise an activity with a broader time slot that has more
information stored to hint at what activity could be performed currently.
Different durations were tested, but five seconds seemed to be a good length
for each sample.

60

4.3. Data Preprocessing

raw
data

check for
categorical

values

feature
standardisation/

normalisation

synchronise
sensor data

into time slots
representing
one sample

feature
selection

preprocessed
data

Figure 4.7.: The raw data is preprocessed before the data is fed to the machine learning
algorithm. First the sensor data needs to be synchronised into samples
representing a slot of a predefined time. Then, the data has to be checked for
categorical values, e.g. text data can be transformed into nominal numbers. The
emerging features should be standardised and normalised where it makes sense.
Afterwards, feature selection is performed which results into the preprocessed
data ready to be used for the machine learning algorithm.

61

4. Data Preparation

Sometimes it happens that multiple values of the same sensor are present
for the same five second slot. Then the sensor data has to be aggregated to
a single value. The floor data is transformed into one feature per floor tile
module and is set to 1 if there is sensor data available for that particular
time slot. Otherwise the value is 0 meaning there is no sensor data coming
from a module. The binary sensors and proximity sensors are added as one
feature per device. The binary sensors already come in a binary format,
1 signaling that there is motion, pressure or no magnetic contact present.
The value stays at 1 for all subsequent samples until a 0 is received from
the sensor meaning that there is no motion, pressure or missing magnetic
contact anymore. If there are multiple entries for the same object in the
same time slot, the value is summarised to 1 in case there is a 1 in the
merged samples coming from the sensor during that slot. Otherwise the
value for that object is 0. The proximity sensor data is measured using a
Received Signal Strength Indicator (RSSI) which translates to how close an
object with a proximity sensor attached is to the wrist watch worn by the
resident. Thus, the proximity data is added with 0, meaning no proximity
at all. Due to the quality of the signal, the RSSI is preprocessed in the way
that any measurement greater than -97 means proximity - the higher the
value, the closer the distance to the object placed inside the apartment. If
the RSSI measure gives evidence for proximity, the value for the respective
device is 1, otherwise it is 0. When merging the proximity data into the slots,
1 is used if there is a 1 present in the data to aggregate. The acceleration
data is included with the three axes X, Y and Z, each as their own feature.
The mean of the sensor values is taken when merging the data into the five
seconds slot.

After resampling the existing sensor data into five seconds slots, the data
from all four data sources is merged using the continuous timestamp from
the captured sensor data for alignment. If there is sensor data missing for
any of the floor, binary sensors or proximity features, 0 is assigned to this
value since no data being present is a high sign that there is nothing of
interest happening around those sensors. For the acceleration data, the last
valid observation is propagated forward to fill missing data.

Since the activities related to the different meals of the day depend strongly
on the segment (morning, afternoon, evening) during which the data was
captured, the segment is added as its own feature. By adding the segment

62

4.3. Data Preprocessing

to the features, the model should be able to differentiate between breakfast,
lunch and dinner. After adding all the features, the activity label is added to
the data table according to the timestamp. When there is sensor data present,
but no activity assigned to it, the sample is labelled with “no activity” which
can be seen as its own, additional class added to the 24 activities of daily
living presented in in Table 1.1. Since the samples of the “no activity” class
mostly occur in the training set but are barely present in the testing set,
this class is eliminated. The imbalance of the presence of the “no activity”
happened due to different ways of labelling the data.

4.3.2. Normalisation

The features from the binary sensors, proximity and from the intelligent
floor are binary making it irrelevant to perform standardisation or nor-
malisation. The only ordinal data in the data set is the acceleration data
and the segment of the day. This data sources are normalised using the
MinMaxScaler from the scikit-learn preprocessing class which scales the
values in a range between 0 and 1. An experiment showed that using no
normalisation does not change the outcome of the algorithms significantly.
The idea of normalisation is to bring the features into a similar range which
can lead to faster convergence.

The preprocessing steps result in 5.344 samples for training and 2.920

samples for the testing.

4.3.3. Feature Selection

After merging the sensor data into five second slots with inputs from all
four data sources, it becomes apparent that the original data set includes
a great amount of features and an extremely sparse input matrix (see
Figure 4.8). Feature selection is performed to evaluate which features
actually bring valuable information for the model creation. A Pearson
correlation is calculated to check if certain features in the training set have a
linear relation. When looking at the result of the Pearson correlation, it is
noticeable that the binary sensors “kitchen faucet (C015)”, “cutlery (C03)”

63

4. Data Preparation

0 10 20 30 40 50 60 70 80

Features

0

20

40

60

80

S
am

pl
es

First 100 Samples of training Data Set

Figure 4.8.: This plot shows the first 100 samples of the training data set. The plot visualises
the non-zero values of the 2D input array. The data set is sparse, only the
acceleration data is present in every sample since it was collected at a high
frequency.

and “laundry basket (C012)” are not present in the training set and neither
in the testing set. The sensor “Remote XBOX (C07)” is only present in the
testing set, with an occurrence of 1 only once. Due to the fact that the model
will not be able to learn anything from those sensors, the four features are
removed. The resulting heatmap of the Pearson correlation of the features
in the training set is visible in the Figure 4.9. When analysing the Pearson
correlation even further, it is visible that the adjacent floor tiles have a
minor association with each other. The sofa pressure sensor (binary sensor)
in the living room and the proximity sensor of the kettle in the kitchen
have a very high association of 92.6%. This is interesting since they are in
completely different spots in the apartment. Some features from sensor data
collecting devices that are placed close to each other in the smart lab show
an association of medium strength, for example the proximity sensors from
the bed and the pyjamas drawer.

Since there are 40 modules for the intelligent floor which is quite a large
number of features, it was tested if the number of spatial features could be
reduced by collapsing those features into rooms (entrance, bedroom, kitchen,
living room). The aggregation was applied according to the drawings of the
tile arrangement. This feature reduction results in a lower accuracy and is
therefore not used in the final run of the machine learning algorithm. After
analysing the data from the floor tiles further, it becomes visible that there

64

4.3. Data Preprocessing

Figure 4.9.: Heatmap of the Pearson correlation of the features training data set. Just by
looking at the colours of the matrix it is apparent that only a few features show
a correlation.

65

4. Data Preparation

0.2

0.4

0.6

0.8

1.0
X

A
cc

el
er

at
io

n
X

30 sec X Rolling Mean

X Mean

0.0

0.2

0.4

0.6

Y
A

cc
el

er
at

io
n

Y

30 sec Y Rolling Mean

Y Mean

11:
10:

00

11:
15:

00

11:
20:

00

11:
25:

00

11:
30:

00

0.0

0.2

0.4

0.6

0.8

1.0

Z
A

cc
el

er
at

io
n

Z

30 sec Z Rolling Mean

Z Mean

Acceleration Data (Morning Segment 2017-20-31)

Figure 4.10.: Acceleration data from a wrist watch. All 3 axes (X, Y and Z) are shown with
the mean and a rolling mean of 30 seconds.

is never any data coming from the edge tiles near the door: tile “01,10” and
“02,10”. Both are excluded from the data set.

Taking the mean of the acceleration data as an additional feature smooths
down spikes in the acceleration data while keeping the trend as can be seen
in Figure 4.10. This step influences the performance of the classification by
a small decrease of the accuracy percentage which is why this statistical
feature is not added. Another idea could be to add a rolling mean (aggregating
multiple data points to one mean value) of a certain amount of seconds as
another feature as it is visualised in the plot.

The feature selection process results in the following 83 features being used
for the algorithms described:

66

4.3. Data Preprocessing

• Binary senors: only 26 sensors where selected (binary)
• Intelligent floor: 38 modules (transformed to binary input data) (binary)
• Acceleration from a wrist watch: X, Z and Y axis (scaled between 0

and 1)
• Proximity data from 15 different objects (scaled between 0 and 1, 1

meaning the highest proximity)
• The segment of the day: morning (0), afternoon (1), evening (2): This

feature is particularly important to distinguish between breakfast,
lunch and dinner due to the time of the day.

The samples are related to each other. To represent the sequential dependence
of the samples, lagged features from the sample before are used. This
procedure adds the features of forty five second time steps of the previous
samples, resulting in 3.403 features per sample. Thus one sample has
features from the last 3.33 minutes included.

To reduce features and improve the accuracy, principal component analysis
is performed on the data. Nevertheless, the feature reduction only worsens
the accuracy and is therefore not chosen as a preprocessing step for the
machine learning pipeline of this project.

67

5. Chosen Classification
Algorithms

The problem presented in this academic work is a classification of human
activities based on multivariate time series data coming from sensors. The
formal problem definition is as follows: For each (xi, yi) ∈ T×C where xi is
a time series sample observed at time step t originating from the multivariate
time series T and yi is the class label from the class set C = {1, 2, 3, ..., 24}.
Each class in C is an activity of daily living. One sample can only belong
to a single class. The task of human activity recognition is to construct a
classifier that models a function such as in Equation 5.1.

ϕ : T × C → {1, 2, 3, ..., 24} (5.1)

This chapter focuses on the implementation of the chosen algorithms
to solve the problem. The chapter starts with a short description of the
implementation tools. Further, twelve different machine learning algorithms
based on the already explained theoretical concepts are presented. See
Chapter 6 for the evaluation of the their predictive abilities. Nine of the
machine learning algorithms are chosen as a baseline comparison. Their
results can be compared to other researchers using the same data set and
algorithm. Furthermore, the development of the three deep learning models
chosen as novel solutions to the problem is described. The hypothesis
formed by the literature review of the thesis is that they will show a better
predictive performance than the standard algorithms.

69

5. Chosen Classification Algorithms

5.1. Tools

The chosen programming language is Python1 including the powerful
tools Pandas2 and NumPy3 (preprocessing) and scikit-learn4 (standard
classification algorithms and multilayer perceptron) as well as Matplotlib5

and Plotly6 (plots for visualisation). The neural network library Keras7 is
used for the CNN and LSTM neural networks. Keras is based on the machine
learning platform TensorFlow8 . The hyperparameter optimisation for the
Keras models are implemented using Talos9. Node-RED10 and Flask11 are
used to simulate an IoT system to predict in real time. The application of
each tool and its version is listed in the appendix B.

5.2. Standard Classification Algorithms from
scikit-learn

A list of nine basic pattern recognition algorithms from the scikit-learn
library in Python is chosen to test their predictive accuracy on the human
activity recognition data set:

• Logistic Regression
• Gaussian Naive Bayes
• Decision Tree
• Support Vector Machine (radial basis function kernel)
• K-Nearest Neighbors

1Python Programming Language 2019.
2Pandas - Python Data Analysis Library 2019.
3NumPy - Python Package for Scientific Computing 2019.
4scikit-learn - Machine Learning in Python 2019.
5Matplotlib - Plotting in Python 2019.
6Plotly - Python Graphing Library 2019.
7Keras - Library for neural networks 2019.
8TensorFlow - Open Source Machine Learning Platform 2019.
9Talos - Hyperparameter Optimization for Keras Models 2019.

10Node-RED: Low-code programming for event-driven applications 2019.
11Flask - Python web framework 2020.

70

5.3. Deep Learning Algorithms

• Random Forest
• Bagging
• Extra Tree
• Gradient Boosting

These machine learning algorithms are selected to compare their predictive
abilities with the deep learning algorithms. Some of the options were already
tested by other researchers who used the same data set. This way it is
possible to validate the preprocessing choices that are made in this thesis and
analyse how the results are different from the metrics the other researchers
found. The algorithms are executed with the parameters as shown in Listing
A.1 in the appendix. Since logistic regression proves to be the best algorithm
when analysing the metrics, the hyperparameters of this algorithm are
optimised using grid search to achieve the best possible performance.

5.3. Deep Learning Algorithms

Recent development in artificial intelligence explore deep learning and
show how neural networks can prove as more powerful solutions than
non-deep algorithms. In addition to the standard classification algorithms
listed earlier, three deep learning algorithms are selected to analyse their
predictive ability: MLP, LSTM and CNN. The classic MLP is chosen since it
is an easy start into deep learning. From the literature review, several other
researchers mentioned that LSTM networks are a perfect fit for the problem
domain. As a third option, the CNN is selected to evaluate if this popular
deep learning technique is applicable for human activity recognition.

5.3.1. MLP from scikit-learn

A simple multilayer perceptron (MLP) with the parameters listed as in Listing
A.1 is chosen to be trained. The MLP hyperparameters are found with grid
search. This algorithm uses the categorical cross-entropy loss function and
stochastic gradient descent. An adaptive learning rate is added to the model,
with the initial learning rate being 0.0001. The activation function is ReLU.

71

5. Chosen Classification Algorithms

Figure 5.1.: The network architecture of the MLP neural network consists of five layers
with five neurons in each layer. The input contains the features for a single data
point and the output layer consists of one probability per class.

The hyperparameter shuffle is set to false since the samples should stay in
the sequence they were captured in. Early stopping is applied to prevent
overfitting and stop when the validation score is not improving. The neural
network is built with five hidden layers, each of them having five neurons.
20% of the training data set are held back for validation. The batch size is
set to a rather small number - five. As it can be seen in Figure 5.1, the MLP
has five layers with five neurons in each layer. The choice of layers and their
neurons is based on trials with high as well as small numbers of layers and
neurons. The models were evaluated simply on their training and testing
accuracy. The input contains the features for a single data point and the
output layer consists of one probability per class.

5.3.2. Keras Models: CNN and LSTM

The CNN and LSTM network are implemented with Keras. The input for
the neural networks is a tensor with the shape samples x time steps x
features per step (see Figure 5.2). For one iteration, the depth of the tensor
is reduced to the batch size. 40 lagged time steps are used, meaning that the
input data includes data from 41 time steps in total. Each time step consists
of 83 features. The output of the deep learning networks has the dimensions
batch size x classes using the softmax activation function. Per class, the
predicted probability (a value between 0 and 1) of the sample belonging
to the class is given. The maximum value is evaluated to determine the
most probable class. The ground truth of the neural networks is a one-hot
encoded matrix with the classes as columns (filled with binary values), as it
is required by the algorithm.

72

5.3. Deep Learning Algorithms

Figure 5.2.: The input for the CNN and LSTM network is a 3D tensor with the shape
samples x time steps x features per step.

The amount of the hidden layers and the hidden neurons in each layer is first
tested with a deep network with many layers and then with a more shallow
approach with only a small amount of layers. The complexity increases
the more hidden layers are present. Many hidden layers affect the training
duration since more time is necessary to backpropagate through all those
neurons. Both algorithms rely on the categorical cross-entropy loss function
and stochastic gradient descent. As an optimizer, Nadam is selected with
the suggested default parameters according to the Keras documentation.
The shuffle flag of the Keras models is set to false as with the MLP. The
learning rate is set to a small value because it shows a higher accuracy. Batch
normalisation applied to the input speeds up the training, but when it is
applied to the CNN and LSTM in this project, the model does indeed learn
faster but the accuracy drops significantly. Therefore batch normalisation is
not used.

73

5. Chosen Classification Algorithms

LSTM

The hyperparameters for the LSTM network are chosen as shown in Listing A.2
in the appendix after tweaking them with various trial and error runs. The
network consists of the following layer setup: LSTM layer with 8 neurons→
fully connected layer (dense layer) with 8 neurons and ReLU as activation
→ softmax output layer. L2 regularisation is used against overfitting. 50

epochs are used for the training. Early stopping is applied with 5 epochs of
patience, meaning that if the validation loss is not changing for 5 consecutive
epochs, the training is stopped. 20% of the input data is set up for the
validation of the model. The batch size is 4 samples. To combat overfitting,
L2 regularisation is applied to the LSTM layer and fully connected layer.
Furthermore, dropout is tried but the accuracy of the model drops and thus
dropout is removed in the end version of the model.

CNN

The network architecture is shown in Figure Figure 5.4. The network
consists of the following layer setup: 1D convolution (64 filters, kernel size 2,
ReLU activation)→ 1D max pooling with size 2→ flatten→ fully connected
layer (64 neurons, ReLU activation)→ dropout→ softmax output layer. 1D
convolution is chosen since it is the default for time series classification. The
filter of the convolution is one-dimensional.

Since the CNN proves to be the best performing algorithm, its hyperparameters
are tuned to get the best possible model. Using a hyperparameter optimisation
for Keras called Talos12, the hyperparameters for the CNN are found (see
in Listing A.2 in the appendix). The Talos code is available in Listing A.5.
The batch size is set to 5, epochs and early stopping are the same as with
the LSTM network. 25% of the training samples are held back for validation.
L2 regularisation results in a slightly lower accuracy which is why it is
omitted.

The layers of the CNN and the dimensions of the inputs and outputs are
visualised in Figure 5.5. The 1D convolution layer has 64 filters (a kernel size

12Talos - Hyperparameter Optimization for Keras Models 2019.

74

5.3. Deep Learning Algorithms

Figure 5.3.: The network architecture of the LSTM consists of: LSTM layer with 8 neurons
→ fully connected layer with 8 neurons ReLU as activation→ softmax output
layer.

75

5. Chosen Classification Algorithms

Figure 5.4.: The network architecture of the CNN consists of: 1D convolution (64 filters,
kernel size 2, ReLU activation)→ 1D max pooling with pooling window size 2

→ flatten→ fully connected layer (64 neurons, ReLU activation)→ dropout→
softmax output layer.76

5.3. Deep Learning Algorithms

1D Convolution 1D MaxPooling Flatten +Dense

1@41x83
1@40x64 1@20x64

1x64

1x24

Figure 5.5.: In this graph, the layers of the CNN are visualised with the input and output
sizes of the tensors. For simplicity, the batch size is displayed as 1 in the graph.

of 2 is applied to each filter). With 64 filters, the layer can detect 64 different
features. With an input matrix height of 41 and a kernel size of 2 (length
of the 1D convolution), the sliding window of the convolution processes
40 steps (41-2+1). The resulting output matrix is batch size x 40 x 64. The
single convolution layer is already enough to learn the features. The 1D
max pooling layer slides a window of height 2 across the output data from
the convolution layer and replaces it with the maximum value of the values
in the pool of the window. Thereby max pooling reduces the likelihood
of overfitting of the learned features since the maximum value is taken by
the sliding window approach. The output is a matrix with the dimensions
batch size x 20 x 64, halving the input. To prepare the output as an input for
the fully connected layer, the matrix is flattened. The layer has 64 neurons
and uses the ReLU function for activation. To reduce overfitting even more,
dropout with a rate of 0.5 is applied to the output layer. This means that
50% of the neurons of the layer are chosen at random to drop out. The input
units of those neurons are set to 0 at each update during training which
reduces the chances of the network to become overly sensitive to smaller
variations of the data. Finally, the output layer calculates the probability
distribution for 24 classes with a softmax activation function. Naturally, all
probabilities add up to the sum of 1. The categorical cross-entropy loss is
then calculated by comparing the probability scores and true labels of the
samples.

77

5. Chosen Classification Algorithms

Figure 5.6.: A Node-RED flow to simulate sensor data coming in from the devices and
being transmitted to a REST API is implemented. The flow reads in the input
data from a CSV, selects one data point every 5 seconds and sends it to the API
with a HTTP GET request. The API returns the predicted class.

5.4. On the Fly Prediction with Node-RED
Environment

An IoT system using one of the classifiers as listed above is simulated using
Node-RED and Flask. A REST API is built with Flask which loads the saved
model from the training phase (the code is available in Listing A.4 in the
appendix). To simulate the sensor input, a flow in Node-RED (see Figure 5.6)
is set up to send JSON data to the API. For simplicity, the input data for the
live prediction is read in from a CSV file by a Node-RED node and contains
the testing data, already set up with 40 lagged features attached to one data
point. One sample is transmitted via a HTTP GET request to the API every 5

seconds. As a classifier, the best CNN model of the ten training experiments
is taken. The API loads the trained model, takes the received data point for
prediction and returns the predicted class as a string.

78

6. Evaluation

In this chapter, the results of the machine learning algorithms used for
the classification of different activities of daily living are compared. The
chosen metrics were accuracy, recall (weighted), precision (weighted), F1

score (weighted), Matthews correlation coefficient (MCC) and categorical
cross-entropy loss. Recall, precision and F1 score were weighted to deal with
the class imbalance of the data set. The definitions of these metrics are given
in Chapter 2.1. Importantly, the tests with the deep learning models from
the Keras library did not converge at the same result each run - 10 tests had
to be executed and averaged to get a stable comparison with the standard
machine learning results which showed constant results. The experiments
were conducted with the following system:

• Operating System: Ubuntu 18.04.3 LTS
• CPU: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz
• RAM: 8GB

In addition to the evaluation of the experiments, a short comparison of
the used machine learning libraries Keras and sci-kit learn is part of this
chapter.

6.1. Comparison of Machine Learning Algorithms

The metrics of the results of the machine learning algorithms are displayed in
Figure 6.1 and in Table 6.1. The best classification result from the experiments
in this thesis was obtained by the CNN model with an accuracy of 70.06%.
The training accuracy and training accuracy are similar for all algorithms

79

6. Evaluation

except for the CNN. A higher training accuracy compared to the testing
accuracy is often a sign of overfitting.

From analysing the metrics, it becomes apparent that the precision metric
has a higher spike in the bar chart than the rest of the metrics. With the
formula in mind, the precision measurement illustrates that the models
did not classify a high amount of false positives in comparison to the
true positives. Most of the true positives were simply never predicted. For
the support vector machine and random forest algorithms, the recall was
higher than precision. The standard algorithm that resulted in the overall
best performance was logistic regression with an accuracy of 65.63%. This
means that using the model obtained from logistic regression, 65.63% of the
samples can be classified correctly. The worst result came from the gaussian
naive bayes algorithm. Naive Bayes works with the assumption that all
input features are conditionally independent. Since some features have a
strong strength of association according to the Pearson correlation, this
might be the reason that the algorithm performs poorly. Logistic regression
still works well when features are correlated. Interestingly, Jiménez and
Seco, 2018 reported an accuracy of 60.5% when using a multi-event naive
bayes classifier. As in this thesis, the developers also incorporated all four
sensor sources, but with different preprocessing choices. Ceron, López,
and Eskofier, 2018 developed several different methods and noted the
following training accuracy when applying 10-fold-cross validation for the
same algorithms used in this project:

• Support vector machine: 89.4%
• Random forest: 90.3%
• Bagging: 89.8%

The best result when training was gained by the AdaBoostM1 algorithm
which was why this algorithm was explored further. In the end, the testing
accuracy for classifying activities of the test data set was only 60.1%, 62.77%
without the zero class (class used for samples that are not associated to
any out of the 24 defined classes). The developers decided to aggregate
the activities related to eating meals of the day into one single event. For
example, “dinner”, “lunch” and “breakfast” were summarised as the activity
“eating”. This step was also performed to the activities related to preparing
those meals. Merging those activities increased the classification accuracy by

80

6.1. Comparison of Machine Learning Algorithms

Algorithm Train
Accuracy

Test
Accuracy

Recall Precision F1
Score

MCC Loss

Logistic
Regression

66% 65.63% 67.02% 71.44% 63.11% 64.48% 3.98

Gaussian
Naive
Bayes

34% 33.54% 43.33% 55.75% 39.64% 32.13% 22.95

Decision
Tree

43% 42.93% 42.93% 48.39% 40.03% 40.27% 19.71

Support
Vector
Machine

53% 52.73% 61.39% 47.93% 50.23% 51.98% 1.15

K-Nearest
Neighbors

35% 34.92% 42.99% 47.16% 31.54% 28.46% 20.86

Random
Forest

46% 46.10% 61.17% 50.00% 50.90% 44.51% 2.28

Bagging 48% 47.69% 48.70% 55.31% 43.36% 45.81% 10.77

Extra Tree 56% 55.38% 56.50% 62.15% 51.30% 55.18% 9.22

Gradient
Boosting

56% 56.18% 57.36% 64.41% 51.62% 55.31% 2.45

MLP 50% 50.31% 51.37% 58.71% 48.66% 47.67% 2.29

LSTM 57% 57.41% 60.68% 63.26% 56.53% 55.15% 1.65

CNN 83% 70.06% 71.87% 73.36 % 69.80% 68.13% 1.19

Table 6.1.: Metrics of different machine learning algorithms

13%. For the data preparation steps in this thesis project, the activities were
not merged and the segment of the day was added to provide a guide for
the model how to differentiate between those activities. Furthermore, the
zero class was omitted from the data points. When comparing the results
from this thesis to Ceron, López, and Eskofier, 2018, it seems that the
models by the other researchers suffered from overfitting. The experiments
with the standard algorithms described in this chapter do not show hints of
overfitting.

A remark on the preprocessing choices is that changing the ways of preprocessing
(sampling the sensor data in time slots in particular) can have a significant

81

6. Evaluation

Lo
gi
st
ic
Re
gr
es
sio
n

Ga
us
sia
n
Na
ive

Ba
ye
s

D
ec
isi
on
Tr
ee

Su
pp
or
t V
ec
to
r M

ac
hi
ne

K-
Ne
ar
es
t N
eig
hb
or
s

Ra
nd
om

Fo
re
st

Ba
gg
in
g

Ex
tra

Tr
ee

Gr
ad
ien
t B
oo
st
in
g

M
ul
til
ay
er
Pe
rc
ep
tro
n

CN
N

LS
TM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Metrics for different Machine Learning Algorithms

Accuracy

Recall

Precision

F1

MCC

Figure 6.1.: Bar chart of metrics of different machine learning algorithms performed on the
data set.

effect on training time and outcome. Furthermore, the problem with uneven
class distribution in the different input data sets has to be addressed.
Especially if classes are not present in the same amount in training and
validation set, the model has a hard time learning.

Figure 6.2 shows the training time in seconds of the algorithms. The
training duration varies greatly. It is apparent that the training time for
the LSTM was much longer than the training time of the CNN. Notably,
the CNN converged faster but showed the better accuracy. From looking
at the standard algorithms, it seems that a shorter training time does not
immediately mean a better performance. The training times for gaussian
naive bayes, decision tree, k-nearest neighbors and extra tree were extremely
short, nevertheless the best model performance from the standard algorithms

82

6.1. Comparison of Machine Learning Algorithms

Lo
gi
st
ic
Re
gr
es
sio
n

Ga
us
sia
n
Na
ive

Ba
ye
s

D
ec
isi
on
Tr
ee

Su
pp
or
t V
ec
to
r M

ac
hi
ne

K-
Ne
ar
es
t N
eig
hb
or
s

Ra
nd
om

Fo
re
st

Ba
gg
in
g

Ex
tra

Tr
ee

Gr
ad
ien
t B
oo
st
in
g

M
ul
til
ay
er
Pe
rc
ep
tro
n

CN
N

LS
TM

0

100

200

300

400

500

600

700

T
ra
in
in
g
T
im

e
in

se
co
n
d
s

105.9

0.48 2.66

193.76

1.24
25.34 16.45 0.44

744.87

149.1

59.46

278.0

Training Time for different Machine Learning Algorithms

Figure 6.2.: Bar chart of average training times in seconds for different machine learning
algorithms performed on the data set.

was from logistic regression. The MLP took about double the time to train
than the CNN. In general, the solution must not rely on faster computation
(which can be achieved by hardware improvements), it also should look for
a better solution to solve the problem.

The categorical cross entropy loss is compared in Figure 6.3. From studying
the chart, the loss was the lowest for the support vector machine, followed
by the CNN and LSTM. The highest loss was reported for the gaussian
naive bayes algorithm which also showed weak performance. The loss of
the gaussian naive bayes was actually not that high compared to the other
algorithms even though its accuracy was the lowest.

83

6. Evaluation

Lo
gi
st
ic
Re
gr
es
sio
n

Ga
us
sia
n
Na
ive

Ba
ye
s

D
ec
isi
on
Tr
ee

Su
pp
or
t V
ec
to
r M

ac
hi
ne

K-
Ne
ar
es
t N
eig
hb
or
s

Ra
nd
om

Fo
re
st

Ba
gg
in
g

Ex
tra

Tr
ee

Gr
ad
ien
t B
oo
st
in
g

M
ul
til
ay
er
Pe
rc
ep
tro
n

CN
N

LS
TM

0

5

10

15

20

L
os
s

1.42

22.95

19.62

1.15

20.86

2.28

10.49
9.17

2.43 2.73

1.14 1.67

Categorical Cross-Entropy Loss for different Machine Learning Algorithms

Figure 6.3.: Bar chart of cross entropy loss of different machine learning algorithms
performed on the data set.

84

6.1. Comparison of Machine Learning Algorithms

6.1.1. Logistic Regression from sci-kit learn

Logistic regression was the best performing standard algorithm according to
the experiments. The confusion matrix for the logistic regression algorithm
is available in Figure 6.4. Most of the activities had a high chance of being
predicted correctly. The activities “wash dishes” and “Visit in the SmartLab”
were not predicted for any of the testing samples even though there were
data points present from those classes. Other standard algorithms showed
difficulties of predicting those two classes. The confusion matrix illustrates
that the biggest problem for the model was to spot the activity “relax on the
sofa”. This activity was often misclassified as “lunch”, “dinner” and “watch
TV”. This is probably because the correlation of the kettle sensor and the
the sofa pressure sensor that was seen in the Pearson correlation already.
Those sensors were mainly involved in the four activities mentioned. The
confusion matrices for the other models show as well that the models had
difficulties classifying the activity “relax on the sofa” correctly. Interestingly,
“play a video game” was nearly always wrongly classified as “watch TV”.
There was only one occurrence of this activity in the test and in the training
set which might be the reason why the model cannot learn the patterns of
this activity. Furthermore, the activities are fairly similar. “Use the toilet”
was recognised as the activity “dinner” for most of the samples. The activity
“wash dishes” was mostly confused with “put waste in the bin”.

The logistic regression classification algorithm calculates the probability of
each activity and then takes the label which results in the maximum of those
probabilities. In Table 6.2 shows the probabilities of one sample. The highest
value result was returned for activity “wash hands”, but it was actually
activity “brush teeth”. For real life samples where there is no clear majority
vote for a single class and the model is unsure of the right label, the IoT
system could give the top candidate activities.

6.1.2. MLP from sci-kit learn

The multilayer perceptron performed on the data set with an accuracy of
50.31%. Nevertheless, its predictive ability was beaten by the CNN and
LSTM models and several of the standard machine learning algorithms.

85

6. Evaluation

Figure 6.4.: Confusion matrix for the classification results of Logistic Regression performed
on the data set using scikit-learn.

86

6.1. Comparison of Machine Learning Algorithms

Activity Probability
Take medication 0.00

Prepare breakfast 0.00

Prepare lunch 0.00

Prepare dinner 0.00

Breakfast 0.00

Lunch 0.00

Dinner 0.00

Eat a snack 0.00

Watch TV 0.00

Enter the SmartLab 0.00

Play a video game 0.00

Relax on the sofa 0.00

Leave the SmartLab 0.00

Visit in the SmartLab 0.00

Put waste in the bin 0.00

Wash hands 0.03

Brush teeth 0.93

Use the toilet 0.03

Wash dishes 0.00

Put washing into the
washing machine

0.00

Work at the table 0.00

Dressing 0.00

Go to bed 0.00

Wake Up 0.00

Table 6.2.: Class probabilities for one sample using logistic regression

87

6. Evaluation

The confusion matrix is displayed in Figure 6.5. It is visible that the model
misclassified many activities, especially the activity “relax on the sofa”
which posed a problem to the other classifiers as well. As in the case of
logistic regression, the activities “wash dishes” and “Visit in the SmartLab”
were not predicted for any of the testing samples. Looking at the metrics,
the model’s precision value was much higher than the other four metrics,
highlighting that the percentage of true positives was high in comparison to
false positives.

6.1.3. Detailed Comparison of the Deep Learning Models
LSTM Network and CNN from Keras

Surprisingly, the results from the LSTM model were not outperforming the
standard algorithms nor the MLP and CNN as it was concluded from the
literature review. The average accuracy was 57.41% (+/-13.4) over 10 runs.
The averaged loss is 1.65 (+/-0.51). The cause for the weak performance
might be that the training data set is fairly small for a deep learning problem
(5.344 samples for training and 2.920 samples for the testing), leading to
overfitting. Several ways to combat the overfitting of the model were tried,
but it seems that the model is simply not a good fit since other models
performed significantly better. Figure 6.6 displays the confusion matrix of
the LSTM model. The model plotted in the confusion matrix could not
recognise the class “put washing into the washing machine” even though it
was present in the testing data. As the other confusion matrices have shown,
the activity “relax on the sofa” is misclassified by the LSTM as well. Instead
the predictions were “breakfast”,“lunch” and “work at the table”.

The performance of the CNN was similar to the best results from the
standard algorithms with an average of 70.06% (+/-2.3) of accuracy in 10

runs. The averaged loss is 1.19 (+/-0.11) which is the second lowest after the
support vector machine algorithm. Notably, the training accuracy was much
higher than the testing accuracy with 83%. This can be a sign of overfitting
of the model. Figure 6.7 displays the confusion matrix of the CNN model.
The model plotted in this heatmap was unable to predict the activity “eat a
snack” at all, even though it was present in the testing set. The plot shows
that the model had the same problem as the other algorithms - it could

88

6.1. Comparison of Machine Learning Algorithms

Figure 6.5.: Confusion matrix for the classification results of the multilayer perceptron
performed on the data set using sci-kit learn.

89

6. Evaluation

Figure 6.6.: Confusion matrix for the classification results of the deep learning model LSTM
performed on the data set using Keras.

90

6.1. Comparison of Machine Learning Algorithms

hardly classify the activity “relax on the sofa” and predicted “dressing”,
“lunch”and “dinner” instead. Many methodologies to combat overfitting
were tested. Batch normalisation applied to the input layer ends up with
an accuracy of 25%, much lower than without. L2 regularisation resulted in
61%. L2 regularisation was thus not used, but applied to the LSTM since
there it did result in a slightly better performance. From the success of the
CNN model over the other trained classifiers it is concluded that the input
data is more similar to an image with one channel, showing spatial features
in a single dimension.

Figure 6.8 illustrates how training and validation loss behave over the
epochs of the CNN and LSTM model. The training loss for the first couple
of epochs shows up slightly higher than the validation loss. This means
that the model is better at predicting unseen data than on the training data
which could be caused by a validation set with very different data. The
training accuracy shows a well-formed curve close to 90%. For the LSTM,
the accuracy improved linearly over the epochs, but the validation loss did
not seem to become significantly smaller, but instead increased slightly. The
training loss nevertheless decreased steadily.

The deep learning algorithms from Keras were run 10 times to get an
averaged result since the outcome can be different each run. The runs are
compared in Figure 6.9. These graphs were created using the Tensorboard
visualisation1. There are two clusters visible - one is the CNN and one is
from the LSTM. For the CNN, the different functions for each run were
similar and nearly logarithmic. The LSTM runs showed a higher variance in
their performance. The LSTM took more time to train than the CNN and
the function has a more linear growth. From this analysis, it is clear that the
CNN converged faster than the LSTM since early stopping is used. Early
stopping which forces the deep learning algorithm to stop learning before
the model overfits was applied to the CNN and LSTM. For the CNN, the
training was stopped at epoch 21 on average. In case of the LSTM, the early
stopping specifications were several times not met and the LSTM ran for
the full 50 epochs.

The random probability of predicting the right class would be 4.16% with
balanced occurrences of classes in the data set. Taking this as a baseline,

1TensorBoard - Visualisation for Tensorflow and Keras 2019.

91

6. Evaluation

Figure 6.7.: Confusion matrix for the classification results of the deep learning model CNN
performed on the data set using Keras.

92

6.2. Evaluation of Tools

(a) Training loss, validation loss and
training accuracy curves of LSTM
model

(b) Training loss, validation loss and
training accuracy curves of CNN
model

Figure 6.8.: Different metrics of the deep learning models LSTM and CNN over the epochs.

the overall performances of the algorithms in this thesis provide a much
more accurate prediction. For this particular data set, it seems a simple
architecture is already good enough, no need to add more complexity to
the model. Arguably, logistic regression proves its predictive ability, trains
fast and and is easy to implement.

6.2. Evaluation of Tools

Two different machine learning libraries were used in this project: Keras
(built on top of TensorFlow) and sci-kit learn. TensorFlow is already a
highly optimised library for deep learning. Nevertheless, Keras goes a step
further and brings a new level of usability with it. It is much easier for
developers to understand the code and there is less need to fully grasp
the mathematics behind the called functions due to how easy the built-in
functions are. There is an extensive documentation and a growing user
base. The sci-kit learn library exists longer than Keras. The library has it’s
focus on standard machine learning algorithms and meets its users with a
well-written documentation and great community support. Additionally,
sci-kit learn possesses preprocessing tools. All in all, both libraries are
excellent for machine learning, but they do serve different purposes with

93

6. Evaluation

(a) Training accuracy of CNN and
LSTM

(b) Training loss of CNN and LSTM

(c) Validation accuracy of CNN and
LSTM

(d) Validation loss of CNN and LSTM

Figure 6.9.: Different metrics of the 10 runs of the experiments using LSTM and CNN over
the epochs.

94

6.2. Evaluation of Tools

their distinguished set of available algorithms. An exception would be the
multilayer perceptron. This model can be built with both libraries.

95

7. Conclusions

This thesis provides an evaluation of different machine learning techniques
for classifying activities of daily living in a smart home. This chapter
concludes with a final statement about the the main results from this project
and recommendations for further work on this topic.

To sum up the observations of this thesis, the best performing standard
algorithm in terms of accuracy was logistic regression with 65.63%. Compared
to Ceron, López, and Eskofier, 2018 who worked on a similar solution
ending up in 60.1% accuracy, the results of the static machine learning
methods of this thesis show a performance improvement. Additionally, it
must be noted that Ceron, López, and Eskofier, 2018 merged the meal
activities into a single activity which, of course, increased the accuracy
because there are less classes to predict. The multilayer perceptron reported
an accuracy of 50.31%. The LSTM model showed an accuracy of 57.41%
(+/-13.4), the CNN in 70.06% (+/-2.3) on average - resulting in only slightly
higher scores than the best standard algorithm logistic regression. Surprisingly,
the deep learning classifiers were not able to significantly outperform the
standard algorithms used in this project.

These results can either be a sign that there was only a weak pattern to be
learned from the input data or that the algorithms were not a good choice.
From the literature review, it became apparent that human activities of daily
living can barely be judged from examining static input samples including
aggregated data from a few seconds. The features identifying a certain
activity might not all be present in that single sample, but might have been
included in a previous sample or are part of future samples. Static machine
learning algorithms like logistic regression have difficulties with detecting
patterns in sequences of sensor data. With this in mind, it is surprising that
the LSTM (which has a recurrent factor included) performed so badly.

97

7. Conclusions

Improvements of the hyperparameters for the better performing CNN
model were intensively investigated. Unfortunately, it became clear that
the data set led to overfitting, no matter which hyperparameters were tried
for the deep learning models. The reasons were most likely the insufficient
quantity of data and the class imbalance. Additional factors might have
been non-representative training data or irrelevant features.

The key drawback of finding a fitting machine learning algorithm to solve
a problem such as the one presented in this thesis is that there is no
straightforward, trivial solution. Machine learning is a powerful tool, but
the right technique and method has to be found for each particular problem.
Experiments have to be conducted to empirically evaluate the results and
fine tune the preprocessing and hyperparameters. Every researcher in the
field of machine learning is met with the challenge of interpreting the
performance metrics such as training and testing accuracy correctly and
adapting the chosen machine learning method to build a better model.
Investigating a variety of different options takes a substantial amount of
time, thus already existing experiments with the same data set are valuable
to build on.

Next to introducing deep learning to human activity recognition, this project
also evaluated existing machine learning libraries. Until now, the library
scikit-learn has reached a mature level of documentation and possesses a
substantial community. TensorFlow and especially Keras have just evolved
recently, setting their focus on deep learning. Scikit-learn proves especially
useful due to its simplicity. With Keras, the implementation of the model
has gotten majorly easier than with TensorFlow, but is still more complex
than with scikit-learn.

To summarise, it is shown that the applicability of deep learning for human
activity recognition is given and it is a suitable classifier. In general, the
volume of reviewed literature showed that not much progress has been
made with using deep learning for the problem domain, but will most
definitely be made in the future. Some directions for further research are
proposed in the following section.

98

7.1. Future Work

7.1. Future Work

Future work should concentrate on finding other data sets for HAR and
thus validate the results of this thesis. Finding a good solution that applies
to many different HAR data sets will be a challenge for a long time.
Furthermore, here is a vast amount of possible activities in the context
of daily living which are not part of the ucami Cup 2018 data set.

The preprocessing methods used in this project leave room for improvement.
Not much time was invested in the feature selection for the presented
solution. Future work might take up on this issue and perform a more
extensive analysis of the feature extraction and assess which combinations
of feature inputs improves the model’s prediction ability.

Extensions on the presented models could by done by experimenting more
with other deep learning architectures such as a VGG or GoogLeNet or
trying a hybrid model using CNN layers paired with LSTM layers. For the
LSTM in particular, the hyperparameters could be explored further.

Concerning the implementation using Node-RED, additional real-life plots
of the model could be included in the Node-RED dashboard. Actual devices
could be connected instead of simulating the data inputs. Of course, a whole
system with an actual user interface and the sensor infrastructure should
be implemented for a smart home using the proposed machine learning
algorithms.

Concluding, there is much left for other researchers to investigate and build
on the approaches used in this thesis.

99

Appendix

101

Appendix A.

Code Snippets

Listing A.1: The machine learning algorithms from the scikit-learn library in Python are
executed using mostly default parameters.

#sci -kit learn machine learning algorithms

self.regressor = LogisticRegression(random_state =0, solver=’lbfgs ’,

multi_class=’multinomial ’, max_iter =5000)

self.gnb = GaussianNB ()

self.dt = tree.DecisionTreeClassifier ()

self.svc = SVC(C=1.0, decision_function_shape=’ovr’, degree=3, gamma=’

auto_deprecated ’, kernel=’rbf’, probability=True)

self.knn = KNeighborsClassifier(n_neighbors =5)

self.rf = RandomForestClassifier(n_estimators =1000, max_depth =10, random_state

=0)

self.b = BaggingClassifier ()

self.et = ExtraTreesClassifier ()

self.gb = GradientBoostingClassifier ()

self.ada = AdaBoostClassifier ()

self.mlp = MLPClassifier(activation=’relu’, early_stopping=True ,

hidden_layer_sizes =(5 ,5), max_iter =500,

shuffle=False , solver=’sgd’, validation_fraction =0.2,

batch_size =5, learning_rate=’adaptive ’,

learning_rate_init =0.0001)

Listing A.2: The hyperparameters for the long short-term memory recurrent neural network
using the Keras library are executed with the parameters shown in this code
sample.

n_outputs = 24 # number of classes

model = Sequential ()

model.add(LSTM(8, input_shape =(train_X.shape[1], train_X.shape [2]),

kernel_regularizer=regularizers.l2 (0.0001)))

model.add(Dense(8, activation=’relu’, kernel_regularizer=regularizers.l2

(0.0001)))

model.add(Dense(n_outputs , activation=’softmax ’))

optimizer = optimizers.Nadam(lr=0.0001 , beta_1 =0.9, beta_2 =0.999 , epsilon =1e

-07, schedule_decay =0.004)

103

Appendix A. Code Snippets

model.compile(loss=’categorical_crossentropy ’, optimizer=optimizer , metrics =[’

acc’])

early stopping

es = EarlyStopping(monitor=’val_loss ’, mode=’min’, verbose=1, patience =5)

fit network

history = model.fit(train_X , train_y , epochs =50, batch_size =4, verbose=2,

shuffle=False , validation_split =0.2, callbacks =[es])

Listing A.3: The hyperparameters for the convolutional neural network using the Keras
library are executed with the parameters shown in this code sample.

n_outputs = 24 # number of classes

epochs = 50

model = Sequential ()

model.add(Conv1D(filters =64, kernel_size =2, activation=’relu’, input_shape =(

train_X.shape [1], train_X.shape [2])))

model.add(MaxPooling1D(pool_size =2))

model.add(Flatten ())

model.add(Dense (64, activation=’relu’))

model.add(Dropout (0.5))

model.add(Dense(n_outputs , activation=’softmax ’))

optimizer = optimizers.Nadam(lr=0.0001 , beta_1 =0.9, beta_2 =0.999 , epsilon =1e

-07, schedule_decay =0.004)

model.compile(loss=’categorical_crossentropy ’, optimizer=optimizer , metrics =[’

acc’])

early stopping

es = EarlyStopping(monitor=’val_loss ’, mode=’min’, verbose=1, patience =5)

fit network

history = model.fit(train_X , train_y , epochs=epochs , batch_size =5, verbose=2,

shuffle=False , validation_split =0.25 , callbacks =[es])

Listing A.4: A Node-RED flow to simulate sensor data coming in from the devices and
being transmitted to a REST API is implemented. The flow reads in the input
data from a CSV, selects one data point every 5 seconds and sends it to the
API with a HTTP GET request. The API returns the predicted class.

import flask

from tensorflow import keras

import pandas as pd

from flask import request , jsonify

from pandas.io.json import json_normalize

app = flask.Flask(__name__)

app.config["DEBUG"] = True

@app.route(’/api/prediction ’, methods =[’POST’])

def precict ():

Validate the request body contains JSON

if request.is_json:

104

Parse the JSON into a Python dictionary

req = request.get_json ()

sample_df = json_normalize(req)

timesteps = 40

#sample_df = sample_df.drop ([" TIMESTAMP "], axis =1)

sample_df = sample_df.astype(float)

x_test , y_test = sample_df.iloc[:, :-1], sample_df.iloc[:, -1]

n_features = 83

x_test_reshaped = x_test.values.reshape(x_test.shape[0], timesteps +

1, n_features)

optimizer = keras.optimizers.Nadam(lr=0.0001 , beta_1 =0.9, beta_2

=0.999 , epsilon =1e-07, schedule_decay =0.004)

model = keras.models.load_model(’models/CNN -1.h5’, compile=False) #

todo: get right model

model.compile(loss=’categorical_crossentropy ’, optimizer=optimizer ,

metrics =[’acc’])

y_pred = model.predict(x_test_reshaped)

y_class = y_pred.argmax(axis=-1)

y_class = y_class + 1

y_pred_pd = pd.DataFrame(y_class , columns =["class"])

y_test_pd = pd.DataFrame(y_test.tolist (), columns =["class"])

activity_map = {0: "no activity", 1: "Take medication", 2: "Prepare

breakfast", 3: "Prepare lunch", 4: "Prepare dinner",

5: "Breakfast", 6: "Lunch", 7: "Dinner", 8: "Eat a

snack", 9: "Watch TV", 10: "Enter the SmartLab",

11: "Play a videogame", 12: "Relax on the sofa", 13: "

Leave the SmartLab", 14: "Visit in the SmartLab",

15: "Put waste in the bin", 16: "Wash hands", 17: "

Brush teeth", 18: "Use the toilet", 19: "Wash

dishes",

20: "Put washin into the washing machine", 21: "Work

at the table", 22: "Dressing", 23: "Go to the bed"

,

24: "Wake up"}

predicted_class = y_pred_pd["class"].map(activity_map)

y_test_pd = y_test_pd.astype(float)

actual_class = y_test_pd["class"].map(activity_map)

prediction_result = "The new data point is predicted to be the

activity {} ({}). The ground truth activity is {} ({}). ".format(

predicted_class [0], y_class [0], actual_class [0], int(y_test [0]))

if(y_class [0] == int(y_test [0])):

prediction_result += "The system predicted correctly! "

else:

prediction_result += "The system predicted wrong! "

105

Appendix A. Code Snippets

print(prediction_result)

Return a string along with an HTTP status code

return prediction_result , 200

else:

The request body wasn ’t JSON so return a 400 HTTP status code

return "Request was not JSON", 400

app.run()

Listing A.5: The hyperparameters for the CNN model were optimised using Talos.
def evaluate_CNN_model_talos(self , train_X , train_y , x_val , y_val , params):

n_output = 24 # number of classes

model = Sequential ()

model.add(Conv1D(params[’first_neuron ’], kernel_size =2, activation=params[

’activation ’], input_shape =(train_X.shape[1], train_X.shape [2])))

model.add(MaxPooling1D(params[’pool_size ’]))

model.add(Flatten ())

model.add(Dense(params[’second_neuron ’], activation=’relu’))

model.add(Dropout(params[’dropout ’]))

model.add(Dense(units=n_output , activation=’softmax ’))

model.compile(loss=params[’losses ’], optimizer=’adam’, metrics =[’acc’])

early stopping

es = EarlyStopping(monitor=’val_loss ’, mode=’min’, verbose=1, patience =3)

print(model.summary ())

fit network

out = model.fit(train_X , train_y , epochs =50, batch_size =5, verbose=2,

shuffle=False , validation_data =[x_val , y_val], callbacks =[es])

return out , model

106

Appendix B.

Library Versions of Used Tools

The chosen programming language is Python1 including the powerful tools
Pandas2 and NumPy3 (preprocessing) and scikit-learn4 (machine learning
algorithms) as well as Matplotlib5 and Plotly6 (plots for visualisation). In
terms of deep learning, the neural network library Keras7 are used. Keras is
based on the machine learning platform TensorFlow8 . The hyperparameter
optimisation for the Keras models are implemented using Talos9. Node-
RED10 and Flask11 are used to simulate an IoT system to predict in real
time. The application of each tool and its version is listed in Figure B.1.
The source code of this thesis is available under the MIT license on Github:
github.com/kolbl/HAR_master_thesis.

1Python Programming Language 2019.
2Pandas - Python Data Analysis Library 2019.
3NumPy - Python Package for Scientific Computing 2019.
4scikit-learn - Machine Learning in Python 2019.
5Matplotlib - Plotting in Python 2019.
6Plotly - Python Graphing Library 2019.
7Keras - Library for neural networks 2019.
8TensorFlow - Open Source Machine Learning Platform 2019.
9Talos - Hyperparameter Optimization for Keras Models 2019.

10Node-RED: Low-code programming for event-driven applications 2019.
11Flask - Python web framework 2020.

107

github.com/kolbl/HAR_master_thesis

Appendix B. Library Versions of Used Tools

visualisation

Tools

seaborn
(0.9.0)

Plotly
(3.9.0)

matplotlib
(2.2.3)

analysis,
modelling

scikit-learn
(0.20.0)

TensorFlow
(1.13.1)

Keras
(2.2.4)

Python
(3.6.7)

AutoKeras
(0.4.0)

hyperparameter
optimisation

Talos
(0.4.9)

data
representation

Pandas
(0.23.4)

NumPy
(1.16.1)

package
manager

pip
(19.3.1)

IoT
system

simulation

Node-RED
(0.19.6)

Node.js
(8.10.0)

Flask
(1.1.1)

Figure B.1.: Implementation tools used for the project of this thesis.
108

Bibliography

Ann, Ong Chin and Bee Theng Lau (Nov. 2014). “Human activity recog-
nition: A review.” In: 2014 IEEE International Conference on Control
System, Computing and Engineering (ICCSCE 2014). Penang, Malaysia:
IEEE, pp. 389–393. doi: 10.1109/ICCSCE.2014.7072750 (cit. on p. 1).

Balas, Valentina et al. (2019). Internet of Things and Big Data Analytics for Smart
Generation. Vol. 154. Intelligent Systems Reference Library. Springer
International Publishing. isbn: 9783030042035. doi: 10.1007/978-3-
030-04203-5.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning
long-term dependencies with gradient descent is difficult.” In: IEEE
Transactions on Neural Networks 5.2, pp. 157–166. doi: 10.1109/72.279181
(cit. on pp. 30, 31).

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning.
Springer. isbn: 9780387310732 (cit. on p. 22).

Ceron, Jesus, Diego López, and Bjoern Eskofier (Dec. 2018). “Human Activity
Recognition Using Binary Sensors, BLE Beacons, an Intelligent Floor
and Acceleration Data: A Machine Learning Approach.” In: The 12th
International Conference on Ubiquitous Computing and Ambient Intelligence
(UCAmI 2018). Vol. 2. 19 1265. Punta Cana, Dominican Republic: MDPI.
doi: 10.3390/proceedings2191265 (cit. on pp. 41, 43, 44, 80, 81, 97).

Chollet, François (2018). Deep Learning with Python. Manning. isbn: 9781617294433

(cit. on pp. 2, 14, 19).
Deloche, François (n.d.[a]). LSTM Cell. Wimikedia. url: commons.wikimedia.

org/wiki/File:Long_Short-Term_Memory.svg (cit. on p. 33).
Deloche, François (n.d.[b]). RNN Graph. Wimikedia. url: commons.wikime

dia.org/wiki/File:Recurrent_neural_network_unfold.svg (cit. on
p. 31).

Dozat, Timothy (2016). “Incorporating Nesterov Momentum into Adam.”
In: url: cs229.stanford.edu/proj2015/054_report.pdf (cit. on p. 28).

109

https://doi.org/10.1109/ICCSCE.2014.7072750
https://doi.org/10.1007/978-3-030-04203-5
https://doi.org/10.1007/978-3-030-04203-5
https://doi.org/10.1109/72.279181
https://doi.org/10.3390/proceedings2191265
commons.wikimedia.org/wiki/File:Long_Short-Term_Memory.svg
commons.wikimedia.org/wiki/File:Long_Short-Term_Memory.svg
commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
cs229.stanford.edu/proj2015/054_report.pdf

Bibliography

Espinilla, Macarena, Javier Medina, and Chris Nugent (Dec. 2018). “UCAmI
Cup. Analyzing the UJA Human Activity Recognition Dataset of Activities
of Daily Living.” In: The 12th International Conference on Ubiquitous
Computing and Ambient Intelligence (UCAmI 2018). Vol. 2. 19 1267. Punta
Cana, Dominican Republic: MDPI. doi: 10.3390/proceedings2191267
(cit. on pp. 2, 3, 54, 55).

Flask - Python web framework (2020). url: fullstackpython.com (visited on
01/04/2020) (cit. on pp. 70, 107).

Géron, Aurélien (2017). Hands-On Machine Learning with Scikit-Learnand
TensorFlow. O’Reilly. isbn: 9781491962299. url: oreilly.com/library/
view/hands-on-machine-learning/9781491962282/ (cit. on pp. 15, 18,
20, 22, 37).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning.
MIT Press. url: www.deeplearningbook.org (cit. on p. 33).

Google Scholar (2019). url: scholar.google.co.uk/ (visited on 04/09/2019)
(cit. on p. 39).

Hammerla, Nils Y. and Shane Halloran Thomas Plötz (2016). “Deep, Con-
volutional, and Recurrent Models for Human Activity Recognition
using Wearables.” In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence (IJCAI-16), pp. 1533–1540. url: ijcai.
org/Proceedings/16/Papers/220.pdf (cit. on p. 45).

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory.”
In: Neural Computation 9.8, pp. 1735–1780. doi: 10.1162/neco.1997.9.8.
1735 (cit. on p. 31).

Jiménez, Antonio R. and Fernando Seco (Dec. 2018). “Multi-Event Naive
Bayes Classifier for Activity Recognition in the UCAmI Cup.” In: The 12th
International Conference on Ubiquitous Computing and Ambient Intelligence
(UCAmI 2018). Vol. 2. 19 1264. Punta Cana, Dominican Republic: MDPI.
doi: 10.3390/proceedings2191264 (cit. on pp. 41, 43, 80).

Karvonen, Niklas and Denis Kleyko (Dec. 2018). “A Domain Knowledge-
Based Solution for Human Activity Recognition: The UJA Dataset
Analysis.” In: The 12th International Conference on Ubiquitous Computing
and Ambient Intelligence (UCAmI 2018). Vol. 2. 19 1261. Punta Cana,
Dominican Republic: MDPI. doi: 10.3390/proceedings2191261 (cit. on
pp. 40–42).

Keras - Library for neural networks (2019). url: keras.io (visited on 06/05/2019)
(cit. on pp. 70, 107).

110

https://doi.org/10.3390/proceedings2191267
fullstackpython.com
oreilly.com/library/view/hands-on-machine-learning/9781491962282/
oreilly.com/library/view/hands-on-machine-learning/9781491962282/
www.deeplearningbook.org
scholar.google.co.uk/
ijcai.org/Proceedings/16/Papers/220.pdf
ijcai.org/Proceedings/16/Papers/220.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/proceedings2191264
https://doi.org/10.3390/proceedings2191261
keras.io

Bibliography

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic
Optimization.” In: url: arxiv.org/pdf/1412.6980.pdf (cit. on p. 28).

Lago, Paula and Sozu Inoue (Dec. 2018). “A Hybrid Model Using Hidden
Markov Chain and Logic Model for Daily Living Activity Recognition.”
In: The 12th International Conference on Ubiquitous Computing and Ambient
Intelligence (UCAmI 2018). Vol. 2. 19 1266. Punta Cana, Dominican
Republic: MDPI. doi: 10.3390/proceedings2191266 (cit. on pp. 40,
41).

Machine Learning Mastery - How to choose loss functions when training deep
learning neural networks (2019). url: machinelearningmastery.com/how-
to-choose-loss-functions-when-training-deep-learning-neural-

networks/ (visited on 12/23/2019) (cit. on p. 26).
Machine Learning Mastery - Machine Learning Algorithms for Human Activity

Recognition (2019). url: machinelearningmastery.com/evaluate-machi
ne-learning-algorithms-for-human-activity-recognition/ (visited
on 11/29/2019) (cit. on p. 20).

Matplotlib - Plotting in Python (2019). url: matplotlib . org (visited on
05/23/2019) (cit. on pp. 53, 70, 107).

Node-RED: Low-code programming for event-driven applications (2019). url:
nodered.org (visited on 10/11/2019) (cit. on pp. 70, 107).

NumPy - Python Package for Scientific Computing (2019). url: numpy.org
(visited on 11/08/2019) (cit. on pp. 70, 107).

Pandas - Python Data Analysis Library (2019). url: pandas.pydata.org (visited
on 05/23/2019) (cit. on pp. 53, 70, 107).

Paola, Alessandra De et al. (Jan. 2017). “A Context-Aware System for
Ambient Assisted Living.” In: Ubiquitous Computing and Ambient Intelligence:
11th International Conference (UCAmI 2017). Vol. 10586, pp. 426–438. isbn:
978-3-319-67584-8. doi: 10.1007/978-3-319-67585-5_44 (cit. on p. 12).

Patterson, Josh and Adam Gibson (2017). Deep Learning. O’Reilly. isbn:
9781491914250 (cit. on pp. 26, 35, 36, 38).

Plotly - Python Graphing Library (2019). url: plot.ly (visited on 11/08/2019)
(cit. on pp. 70, 107).

Priyadarshini, Sushree Bibhuprada B., Amiya Bhusan Bagjadab, and Brojo
Kishore Mishra (2019). “The Role of IoT and Big Data in Modern
Technological Arena: A Comprehensive Study.” In: vol. 154. Intelligent
Systems Reference Library. Springer International Publishing. Chap. 2,

111

arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.3390/proceedings2191266
machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
machinelearningmastery.com/evaluate-machine-learning-algorithms-for-human-activity-recognition/
machinelearningmastery.com/evaluate-machine-learning-algorithms-for-human-activity-recognition/
matplotlib.org
nodered.org
numpy.org
pandas.pydata.org
https://doi.org/10.1007/978-3-319-67585-5_44
plot.ly

Bibliography

pp. 13–25. isbn: 9783030042035. doi: https://doi.org/10.1007/978-3-
030-04203-5_2 (cit. on p. 51).

Python Programming Language (2019). url: python.org (visited on 05/23/2019)
(cit. on pp. 53, 70, 107).

Rashid, Tariq (2017). Neuronale Netze selbst programmieren. O’Reilly. isbn:
9783960090434 (cit. on pp. 22, 28, 29, 37, 38).

Razzaq, Muhammad Asif et al. (Dec. 2018). “Multimodal Sensor Data
Fusion for Activity Recognition Using Filtered Classifier.” In: The 12th
International Conference on Ubiquitous Computing and Ambient Intelligence
(UCAmI 2018). Vol. 2. 19 1262. Punta Cana, Dominican Republic: MDPI.
doi: 10.3390/proceedings2191262 (cit. on pp. 41, 43).

Razzaq, Muhammad Asif et al. (n.d.). “Multimodal Sensor Data Fusion
for Activity Recognition Using Filtered Classifier.” In: doi: 10.3390/
proceedings2191262 (cit. on pp. 44, 45).

Rolls, Edmund T. and Alessandro Treves (1998). Neuronal Netzworks and
Brain Function. Oxford University Press. isbn: 9780198524335 (cit. on
pp. 18, 23).

Rosenblatt, Frank (1958). “The perceptron: A probabilistic model for information
storage and organization in the brain.” In: Psychological Review 65.6,
pp. 386–408. issn: 0033-295X. doi: 10.1037/h0042519. url: dx.doi.org/
10.1037/h0042519 (cit. on p. 23).

Salomón, Sergio and Cristina Tı̂rnăucă (Dec. 2018). “Human Activity Re-
cognition through Weighted Finite Automata.” In: The 12th International
Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI
2018). Vol. 2. 19 1263. Punta Cana, Dominican Republic: MDPI. doi:
10.3390/proceedings2191263 (cit. on pp. 41, 42).

scikit-learn - Machine Learning in Python (2019). url: scikit- learn.org
(visited on 05/23/2019) (cit. on pp. 70, 107).

Semantic Scholar (2019). url: semanticscholar.org (visited on 04/09/2019)
(cit. on p. 39).

Sensors - MDPI Open Access Journal (2019). url: mdpi.com/journal/sensors
(visited on 04/09/2019) (cit. on p. 39).

Sharma, Neha, Madhavi Shamkuwar, and Inderjit Singh (2019). “The Histroy,
Present and Future with IoT.” In: vol. 154. Intelligent Systems Reference
Library. Springer International Publishing. Chap. 3, pp. 27–51. isbn:
9783030042035. doi: https://doi.org/10.1007/978-3-030-04203-5_3
(cit. on pp. 11–13).

112

https://doi.org/https://doi.org/10.1007/978-3-030-04203-5_2
https://doi.org/https://doi.org/10.1007/978-3-030-04203-5_2
python.org
https://doi.org/10.3390/proceedings2191262
https://doi.org/10.3390/proceedings2191262
https://doi.org/10.3390/proceedings2191262
https://doi.org/10.1037/h0042519
dx.doi.org/10.1037/h0042519
dx.doi.org/10.1037/h0042519
https://doi.org/10.3390/proceedings2191263
scikit-learn.org
semanticscholar.org
mdpi.com/journal/sensors
https://doi.org/https://doi.org/10.1007/978-3-030-04203-5_3

Bibliography

Singh, Rajesh et al. (2019). “Internet of Things Enabled Robot Based Smart
Room Automation and Localization System.” In: vol. 154. Intelligent
Systems Reference Library. Springer International Publishing. Chap. 6,
pp. 105–133. isbn: 9783030042035. doi: https://doi.org/10.1007/978-
3-030-04203-5_6 (cit. on p. 12).

Talos - Hyperparameter Optimization for Keras Models (2019). url: github.com/
autonomio/talos (visited on 06/14/2019) (cit. on pp. 70, 74, 107).

TensorBoard - Visualisation for Tensorflow and Keras (2019). url: www.tensor
flow.org/guide/summaries_and_tensorboard (visited on 06/27/2019)
(cit. on p. 91).

TensorFlow - Open Source Machine Learning Platform (2019). url: tensorflow.
org (visited on 11/08/2019) (cit. on pp. 70, 107).

The 12th International Conference on Ubiquitous Computing and Ambient Intelligence
(UCAmI 2018) (Dec. 2018). Vol. 2. 19. Punta Cana, Dominican Republic:
MDPI.

Towards Data Science - Data Types in Statistics (2019). url: towardsdatas
cience.com/data-types-in-statistics-347e152e8bee (visited on
12/12/2019) (cit. on p. 22).

Turing, Alan M. (1950). “Computing Machinery and Intelligence.” In: Mind
59.October, pp. 433–60. doi: 10.1093/mind/LIX.236.433 (cit. on p. 2).

Ulster Institutional Repository, Ulster University (2019). url: uir.ulster.ac.
uk/ (visited on 04/09/2019) (cit. on p. 39).

Weisstein, Eric W. (n.d.[a]). Heaviside Step Function. From MathWorld - A
Wolfram Web Resource. url: mathworld.wolfram.com/HeavisideStep
Function.html (cit. on p. 25).

Weisstein, Eric W. (n.d.[b]). Sigmoid Function. From MathWorld - A Wolfram
Web Resource. url: mathworld.wolfram.com/SigmoidFunction.html
(cit. on p. 25).

Weka 3: Data Mining Software in Java (2019). url: cs.waikato.ac.nz/ml/
weka/ (visited on 04/09/2019) (cit. on p. 43).

Wirth, Rüdiger and Jochen Hipp (2000). “CRISP-DM: Towards a Standard
Process Model for DataMining.” In: Proceedings of the Fourth International
Conference on the Practical Application of Knowledge Discovery and Data
Mining, pp. 29–39. url: pdfs.semanticscholar.org/48b9/293cfd4297f
855867ca278f7069abc6a9c24.pdf (cit. on p. 43).

113

https://doi.org/https://doi.org/10.1007/978-3-030-04203-5_6
https://doi.org/https://doi.org/10.1007/978-3-030-04203-5_6
github.com/autonomio/talos
github.com/autonomio/talos
www.tensorflow.org/guide/summaries_and_tensorboard
www.tensorflow.org/guide/summaries_and_tensorboard
tensorflow.org
tensorflow.org
towardsdatascience.com/data-types-in-statistics-347e152e8bee
towardsdatascience.com/data-types-in-statistics-347e152e8bee
https://doi.org/10.1093/mind/LIX.236.433
uir.ulster.ac.uk/
uir.ulster.ac.uk/
mathworld.wolfram.com/HeavisideStepFunction.html
mathworld.wolfram.com/HeavisideStepFunction.html
mathworld.wolfram.com/SigmoidFunction.html
cs.waikato.ac.nz/ml/weka/
cs.waikato.ac.nz/ml/weka/
pdfs.semanticscholar.org/48b9/293cfd4297f855867ca278f7069abc6a9c24.pdf
pdfs.semanticscholar.org/48b9/293cfd4297f855867ca278f7069abc6a9c24.pdf

Bibliography

Zhou, Yi Tao and Rama Chellappa (1988). “Computation of optical flow
using a neural network.” In: IEEE 1988 International Conference on Neural
Networks 2, pp. 71–78 (cit. on p. 34).

114

