
Adrian Spataru, BSc

Recurrent A�entive Neural Processes
Clustering for Unsupervised
Representation Learning

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submi�ed to

Graz University of Technology

Supervisor

Dr. Roman Kern

Institute for Interactive Systems and Data Science
Head: Univ.-Prof. Dipl-Inf. Dr. Stefanie Lindstaedt

Graz, February 2020

A�idavit
I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. �e text
document uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

ii

Abstract

Neural Processes can be trained e�ciently and can learn to adapt their priors to
data during inference. �ey have shown potential in various applications. However,
their most signi�cant drawback is that they under�t the data. In this thesis, we
propose a method called Recurrent A�entive Neural Processes (RANP), which build
in top of Recurrent Neural Processes (RNP) to improve the �tness of data.

Furthermore, there is a lack of research into interpretability in Neural Processes.
In this thesis, we do the �rst step into that direction and propose an extension of
RANP called Recurrent A�entive Neural Processes Clustering (RANP-Clust), which
improves clusterability of multivariate time series over RANP and RNP in various
of scenarios. Finally, we show that RANP has shown an improvement of 19% over
RNP on the UCI household electricity consumption dataset.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Time Series Clustering . 2
1.3 Representation Learning . 3
1.4 Time Series Representation Learning 5
1.5 Contribution . 7
1.6 �esis Outline . 7

2 Background Theory 9
2.1 Feed Forward Neural Networks 9

2.1.1 �e perceptron . 9
2.1.2 Training Neural Networks 11
2.1.3 Multilayer Perceptrons . 11

2.2 Autoencoder . 12
2.3 Recurrent Neural Network . 13
2.4 Long Short Term Memory . 14
2.5 A�ention Mechanism . 16

2.5.1 Scaled Dot Product A�ention 17
2.5.2 Multi-head A�ention . 17

2.6 Neural Processes . 17
2.6.1 A�entive Neural Processes 20
2.6.2 Recurrent Neural Processes 20

3 Proposed Approach 23
3.1 Recurrent A�entive Neural Processes 23
3.2 Recurrent A�entive Neural Processes Clustering 24

v

Contents

4 Experiments 29
4.1 Datasets . 29

4.1.1 Random walk Dataset . 29
4.1.2 Electricity Dataset . 33

4.2 Implementation Details . 34

5 Results 35
5.1 Random Walk - Clusters Dataset 35
5.2 Random Walk - Noise Dataset . 37
5.3 Random Walk - Context Points Dataset 37
5.4 Electricity Dataset . 39

6 Conclusion and Future Work 41

Bibliography 43

vi

List of Figures

1.1 E�ect of every factor in the hierarchy of the VQ-VAE 2 5

2.1 A graphical representation of the Perceptron 10
2.2 A graphical representation of a Multilayer Perceptron. 12
2.3 Visual representation of an autoencoder 13
2.4 A visual representation of a Recurrent Neural Network in the folded

and unfolded state. 14
2.5 A visual representation of a LSTM unit. 15
2.6 A visual representation of the Neural Process 18
2.7 A visual representation of a A�entive Neural Process 21
2.8 A visual representation of a Recurrent Neural Process 22

3.1 A visual representation of Recurrent A�entive Neural Process . . 26
3.2 Deterministic Encoder in Recurrent A�entive Neural Process Clus-

tering . 27

4.1 Random Walk context points vs target points 30
4.2 Generated Random Walks with di�erent random seeds. 31
4.3 Noise generated variations of a RW sample 32
4.4 �e e�ect of noise on RWs . 32

5.1 Accuracy Score on the Cluster Dataset 35
5.2 Deterministic latent space projected with UMAP on the 5 cluster

dataset. With each color representing the ground truth label. . . . 36
5.3 Deterministic latent space projected with UMAP on the 20 cluster

dataset. With each color representing the ground truth label. . . . 36
5.4 Accuracy Score on the Noise Dataset 36
5.5 Deterministic latent space projected with UMAP on the noise 50

dataset. With each color representing the ground truth label. . . . 37

vii

List of Figures

5.6 Deterministic latent space projected with UMAP on the noise 10
dataset. With each color representing the ground truth label. . . . 38

5.7 Accuracy Score on the Context Points Dataset 38
5.8 Deterministic latent space projected with UMAP on the noise 50

dataset with 250 context points. With each color representing the
ground truth label. 39

5.9 Deterministic latent space projected with UMAP on the noise 50
dataset with 499 context points. With each color representing the
ground truth label. 40

5.10 Normalized MSE for One-Step Predictions 40

viii

1 Introduction

In this chapter, we provide motivation and related work of this thesis. Regarding
related work, we start by giving an overview of time series clustering, followed by
representation learning, and then talk about representation learning for time series.
Finally, we will de�ne the objectives of this thesis and provide a brief description
of the outline of the thesis.

1.1 Motivation
In the age of big data and the need to process a higher quantity of data than ever
before, it becomes increasingly harder to keep a clear understanding of such data.

For the past ten years, we have seen an increase in available data [26]. One type
of these data sources is time-series data. Time series data can range from sales
�gures to sensors in a self-driving car. Most applications focus on forecasting of
time series data. Forecasting problems can range from forecasting sales for next
quarter to predict car accidents. Time series forecasting is used in many industries.
One of these industries is manufacturing. With the rise of IoT and Deep Learning,
this has pushed the latest trend called Industry 4.0 [43]. One of the main ideas
is to allow for data-driven manufacturing and making manufacturing ”smarter”.
Forecasting techniques play a signi�cant role in this. Time to live in milling or
forecasting temperature in equipment is such an example. �is leads to condition
monitoring, where not only we want to forecast the future behavior of machines,
but understand in what state is currently situated. Deep Learning methods have
shown state of the art performance in time series forecasting [37], but struggle
with interpretability since they are black-box algorithms [38].

Interpretability of Deep Learning is a new challenge for researchers. In time
series, we want to understand the reasons behind a forecast by a neural network.
In this thesis, we present two models that may help in solving this problem. More

1

1 Introduction

speci�cally, we present a model that can forecast future behavior and creates a
latent representation that eases interpretability by implicitly grouping.

1.2 Time Series Clustering
Given a set of multivariate sequences X = x1, x2, ..xn, x ∈ Rn×m where n is the
number of sequences and m the length of sequences, segregate each value in X
into discrete groups [77], based on trait or similarity measure.

Methods like k-means [1] and agglomerative hierarchical clustering [10] are
some well-known clustering algorithms. �ese methods, however, cannot model
time-dependencies. One can model time series data in k-means, by extracting time-
independent features. Such features could be the max value of a time-series, the
number of points over a certain threshold or parameters of a Fourier transformation
[55]. �is approach has been used successfully in several use-cases. However,
determining which features should be generated is not straight forward, and domain
knowledge is needed to handcra� these features. Fortunately, other methods are
available.

A classical machine learning approach is clustering with Dynamic Time Warping
(DTW) [5]. DTW is a similarity measure for comparing two time-series. Another
advantage of this method is that it can be extended to multivariate time series,
where the time series length does not have to be equal. By replacing the Euclidean
distance used in k-means with DTW [49], one can typically expect be�er results.
Furthermore, in a classi�cation se�ing, DTW with k-nearest neighbours [28] is
comparable in performance or even outperforms more complex models. Never-
theless, DTW has a time complexity of O(n2), making it hard to scale on a large
dataset. Segmented Dynamic Time Warping [29] approximates DTW and o�ers a
scalable solution with minimal loss in accuracy. A similar model called K-shapes
[44] which uses cross-correlation between the time series as a distance measure
provides competitive results.

Symbolic Aggregate Approximation [35] (SAX) is a method for discretizing
time series. It takes a subset of a time series as input and bins it based on the
number range. �is would build a sequence of discrete values, which one can
cluster hierarchically. Furthermore, with this abstract representation, forecasting
becomes simpler, as one has only to predict a sequence of le�ers. �is is also strongly

2

1.3 Representation Learning

linked to representation learning, which will be discussed in the next section.

More advanced methods treat time series as a graph. For example, Toeplitz
inverse covariance-based clustering [21] (TICC) creates from time series windows
a correlation graph. �e graph is modelled over time with a Markov random �eld
model and can be also be used to cluster the time series. For high-dimensional data,
dimensionality reduction is needed. In our thesis, we will focus on autoencoder-
based methods, but other methods have shown great results.

Functional Principal Component Analysis (FPCA) [65], applies Principal Com-
ponent Analysis over time, which is a linear dimensionality reduction method.
FPCA is one of the methods used in Functional Data Analysis and is part of meth-
ods which can be used in Representation Learning. However, if the data exhibit
complex behaviour(e.g nonlinearity) which cannot be easily reduced with FPCA,
then non-linear dimensionality reduction methods are needed.

1.3 Representation Learning
As the dimensionality and complexity of the data increases, the need for more
complex models is needed. Moreover, this increase in complexity makes the task
of a building model for clustering, outlier detection and classi�cation harder [4].
However, if we can extract useful features of our ever-increasing complex data, we
may solve problems with simple models. �is is the main idea of Representation
Learning. It is learning representations of the data that make it easier to extract
useful information when building classi�ers or other predictors [4]. Representation
Learning has been successfully applied in Speech Recognition, Signal Processing,
Object Recognition and Natural Language Processing. Furthermore, Representation
Learning is a quintessential method used in Multi-Task Learning, Transfer Learning
and Domain Adaptation.

We understand now what representation learning is, but what is a useful rep-
resentation? How does one determine, if a representation is be�er than another
representation? More speci�cally, what properties do good representation exert.
Bengio provides examples of such properties, here we list some of them:

• Smoothness: given a function f which create a representation of a given
input and x ≈ y, then f(x) ≈ f(y).

3

1 Introduction

• Natural Clustering: Given a set of inputs from di�erent categories, then the
representations of every category are tightly clustered with minimal overlap.

• Multiple explanatory factors: Di�erent underlying factors generate data.
�e representation should be able to disentangle these factors.

• Shared factors across tasks: A representation should be able to extract
factors that are shared in a variety of tasks.

In this thesis, we will focus on deep learning methods for representation learning.
Variational Autoencoder (VAE) [18] are generative autoencoder based models.
Variational Autoencoders can identify and separate the underlying factors of the
data.Beta-VAE [23] further pushes the idea and forces the VAE to represent every
factor independently in the representation vector.

Most data clustering methods use either distance or dissimilarity to distinguish
the classes. As the dimensionality of the data increases, the need for �nding good
feature representation increases. One concept is too jointly train an autoencoder
with some clustering loss. One such approach is DEC [69], which is a 2 step al-
gorithm. In the �rst step, the autoencoder is trained regularly. �en based on the
latent space, we determine a set of k cluster centers and train the autoencoder
further with a clustering loss which uses KL-Divergence.

Variational Deep Embedding (VADE) [25] extends VAE and introduces an ad-
ditional clustering loss, which models a Gaussian Mixture Model (GMM) in the
latent space. A disadvantage of GMMs is that the number of clusters needs to be
given. Non-Parametric models such as Dirichlet Processes do not need this prior
[60]. AdapVAE [74] is a VAE where we model a Dirichlet process in the latent
space. Other approaches try to discretize the latent space. One such approach is the
Vector �antized VAE (VQ-VAE) [42], which maps every latent value to a discrete
vector. �is vector is then passed to the decoder. VQ-VAE 2 [52] model proposed by
Deepmind, buildings a hierarchical VQ-VAE, which allows creating a hierarchy of
factors. In 1.1 we can see the e�ect of this hierarchical setup.

In the paper, they showed competitive results with Generative Adversarial
Networks (GAN) [19] in image generation tasks.

GANs are the start of the art approach in image generation and representation
learning in images. One notable model is StyleGan [27], which performs realistic
images and can model a big range of factors such as age, colour, glasses, hairstyle.

4

1.4 Time Series Representation Learning

Figure 1.1: Reconstructions [52] from a VQ-VAE 2 with three latent maps (top, middle, bo�om). �e
rightmost image is the original. Each latent map adds extra detail to the reconstruction.

1.4 Time Series Representation Learning
In the previous section, we explored methods like VAE, which are successfully
used in a range of problems. In their classical setup, VAE uses feed-forward neural
networks to encode the data. An issue is that Feed Forward Neural Networks cannot
encode sequences since they do not have an understanding of time-dependency
between variables. (However, they can model time-independent features, which
we can extract from time series) In this section, we will explore methods used to
encode time series data and how they are used in combination with Representation
Learning methods.

In 1989, Pearlmu�er [46] introduced the idea of recurrence in a neural network.
Recurrence allowed a neural network to use past encoded information when pro-
cessing new data (more on the next chapter). 8 years later Hochreiter [24] introduced
us to Long Short Term Memory (LSTM). A model which improves the limita-
tions of the previous model and used in a wide variety of problems. [20],[70],[71]
Since then researchers develop models which improve performance or e�ciency
of LSTMs. Highway Networks [56] is a model which builds on top LSTM by intro-
ducing ”information highways” which allows building very deep networks while
retaining information �ow. Gated Recurrent Units [7] simplify LSTM architecture
and achieve comparable or even outperform LSTM in certain use cases. FastGRNN
[32] further push the size down of these model with a �ngerprint 3-4 times smaller
of LSTM and GRU while keeping the performance similar.

In 2012, Krizhevsky introduced a deep convolutional network called AlexNet,
which for the time was the start of the art in image classi�cation. Since then

5

1 Introduction

many new architecture have appeared such as Resnet [22] and GoogleNet [58].
Convolution Neural Networks (CNN) have been successfully in Computer Vision
[66], which begs the question, do they work with time-series data? CNN’s can
capture spatial features from the data. Such properties in time series could be
seasonality which CNNs may capture. �is leads the usage of CNN in time series
[75]. Furthermore combining CNN with LSTM have shown to outperform normal
LSTM [73]. In 2016 Google’s Deepmind Wavenet model, proposed a new generative
model for raw audio [62]. A method which uses diluted casual convolution which
allows processing long sequences more e�ciently.

When it comes to representation learning of sequence data, combining methods
from Representation Learning with models, which can encode sequential data have
shown great results. For example, creating an autoencoder where LSTMs are used
for encoding and decoding the sequence. Such a model called seq2seq [57] has
shown promising results in neural machine translation tasks. By passing di�erent
inputs into the same RNN [48], we can determine similarity in the latent space
of them. One can extend the idea of VQ-VAE [42]for time series and represent a
self-organizing map in the latent space as in SOM-VAE [15]. �is enables us to see
the time-series over time in a low dimensionality space and has shown to improve
interpretability in ECG Medical data [15]. An architecture, which takes the ideas
of DEC and adapting it for time series is the Recurrent Deep Divergence-based
Clustering (RDDC) [61]. Here the author proposes to encode time series in an
RNN and in the embedding which is given from the RNN add a divergence-based
clustering loss function.

All previous method uses some kind of autoencoder setup. In [16], they pro-
posed an encoder setup only, by using an exponentially dilated causal convolutions
encoder and a triplet loss adapted for time series. Finally, there has been research in
loss function for time series. Most of the presented methods use Mean Square Error
(MSE) for calculating the reconstruction error. However, methods like DTW are
be�er suited for time-series data. One way to incorporate these methods is by mak-
ing them di�erentiable for the neural network. So�-DTW [8] is such di�erentiable
loss function and has shown to outperform MSE as a loss function.

6

1.5 Contribution

1.5 Contribution
In this thesis, following contributions have been made:

• We propose a new neural processes architecture called Recurrent A�entive
Neural Processes (RANP), which outperforms Recurrent Neural Processes in
regression tasks.

• We purpose an extension for RANP, called Recurrent A�entive Neural Pro-
cesses Clustering (RANP-Clust) which allows the model to cluster time series
as a byproduct.

• We show that l2-normalization can improve clusterability in neural processes.

1.6 Thesis Outline
In this section, we will describe the thesis outline. In chapter 2 Background �eory,
we will describe all the ”building blocks” used in our proposed method. In chapter 3,
we will present our proposed method called Recurrent A�entive Neural Processes
and an extension to this model for clustering called Recurrent A�entive Neural
Processes Clustering. In chapter 4, we will present our experiments done on the
model. We will start by describing the datasets used in the experiments, followed
by details implementations of the model. Finally, we present and discuss the results.
We conclude the thesis with chapter 5, where we give the conclusion and future
work.

7

2 Background Theory

In this chapter, we explore the building blocks used in our proposed method. We
will �rst present the basic feed forward neural networks architecture and present its
properties that are relevant to representation learning. Moreover, we will present
the di�erent architectures of neural networks with their respective properties,
which we integrated or used as inspiration for our method.

2.1 Feed Forward Neural Networks
In this section we present neural networks and provide the general theory used in
this thesis.

2.1.1 The perceptron
Arti�cial neural networks were created to mimic the biological neural network
present in human brains. �e human brain process data using a vast network
of small units called neurons. One of the most popular models for representing
neurons in the perceptron [53].

A single neuron is represented by one perceptron. �e perceptron is a function,
which takes several input X = x1, x2, ...xN , x ∈ R1, where N is the number of
inputs and return and output y. �e function is a weighted sum of the inputs, which
is then passed to the activation function. �e output of the activation function is
the output y. �e activation function can be freely selected. In the original paper,
they use a step function that outputs either 0 or 1. One should use an activation
which is di�erential and suits their task. For example, the sigmoid function can be
used for classi�cation. �e sigmoid function is de�ned as:

f(x) =
1

1 + exp(−x)

9

2 Background Theory

X1

YX2

XN

Σ

...

W1

W2

WN

b

Activation

H

Figure 2.1: �e perceptron has the input X ∈ Rn is multiplied with the weights W ∈ Rn and added
with the bias b ∈ R1. �e result of this multiplication is passed to the activation function,
which gives the output y ∈ R1. We will represent the perceptron in future �gures as H

Furthermore a perceptron which uses sigmoid [40] as the activation function is
equivalent to logistic regression [68]. In 2.1, we can see a visual representation of
the Perceptron. A perceptron with a sigmoid activation function is then de�ned
as:

y = f(XW T + b)

Where f(x) is the sigmoid activation function, W the weights and b the bias. For
regression, no activation function can be used. �is is equivalent to the linear
regression model [18]. We will discuss later on other activation functions that are
used in the thesis.

10

2.1 Feed Forward Neural Networks

2.1.2 Training Neural Networks
Until this point, we have observed how neural networks can be de�ned. In this
section, we will explore how neural networks can be learnt. To produce the desired
output y, we must �nd the correct weights W and bias b. To achieve this, one may
de�ne a cost function. If we want to build a regression model, we could minimize
the mean square error (MSE) [18] between the true output and the prediction of
the model. More exactly:

J(θ) =
1

n

n∑
i=1

(yi − ŷi)2

ŷi = f(xi; θ)

Where y is the true value, ŷ is the prediction, θ = [W ; b] are all the parameters of
the model f(x; θ) with x as the input. By providing the neural network a set of
inputs x and their true output value y, we can evaluate the error of the model. With
these elements, we can then train the neural network to minimize this error. More
exactly, we want to �nd a set of parameters θ, which has the lowest error for the
given cost function. By using gradient-based learning methods, such as stochastic
gradient descent [18], we can �nd a set of parameters θ:

θj := θj − η
∂

∂θj
J(θ)

Where every parameter in θ is updated simultaneously, and η is the learning
rate. Since most of the time, the cost function is non-convex, a global minimum is
not guaranteed.

2.1.3 Multilayer Perceptrons
A single perceptron can learn any linear function. However, in real life, most data is
o�en non-linear. Multilayer Perceptrons (MLP) [41] solve this issue by creating an
acyclic graph of neurons. In 2.2, we can observe how this may look like. �e input
is passed to multiple perceptrons. �is layer of the perceptron is called the hidden
layer. In 2.2, we illustrated an example for one layer. However, one can have more
than one hidden layer. �e outputs of the hidden layer are passed to an output layer
where the output y is calculated. �e number of perceptrons in the output layer
usually is equal to the number of output y.

11

2 Background Theory

X1

X2

XN

...

H

H

H

O Y

Hidden
Layer

Output
Layer

Figure 2.2: �e MLP passes the input X ∈ Rn to a layer of perceptron H . �e outputs of the layer
are passed to a perceptron which is part of the output layer. �e result of this layer is
the output y

2.2 Autoencoder

Real-life data is o�en highly dimensional, and we can use a feed-forward neural
network to create a low dimensional representation of our data. Autoencoders [18]
is a type of neural network which a�empts to reconstruct its input on its output.
�e network consists of 2 parts. �e encoder function h = f(x) and a decoder
function x′ = g(f(x)) where x, x′ ∈ Rn and h ∈ Rm. As the cost function, we
want to minimize the dissimilarity between input and output. �is cost function is
also called reconstruction error. One example of such reconstruction error would
be the MSE. In 2.3, we can see how such network might look like.

To get a representation of our data, we make the size of the output of our encoder
smaller than the input, hence m < n. �is forces the network to compress the
information in a way, while still being able to reproduce the original input. In this
way, we hope to encode the most important information, which is representative
of the input. We call this the bo�leneck layer. In case m ≥ n, then we risk learning
the identity function. In other words, we learn to copy the input. Fortunately,
methods like Denoising Autoencoder [64] and regularized autoencoder [18] help
in preventing learning the identity function. Our proposed model uses the idea of
autoencoder to generate low dimensional representations.

12

2.3 Recurrent Neural Network

X1

X2

XN

...

H2

HM

H1

Bottleneck

X1

X2

XN

...

...

Figure 2.3: Visual representation of an autoencoder

2.3 Recurrent Neural Network
In our thesis, our focus is on time series data, which, by nature, is a sequence
of data points. Feedforward neural networks fail to model such data, as future
points are dependent on previous points. �is is because each data point passed to
a feed-forward network is dealt with independently. Recurrent Neural Networks
(RNN) [18] solve this issue by introducing a recurrent connection from the output
of the hidden layer to the beginning of the hidden layer. �is allows the network to
use information from previous data.

In 2.4, we observe how this recursion looks like when it is unfolded. X is the
input data, S the hidden state of the network, and O is the output. We can see
that the data X1, X2, X3 is passed sequentially to the model. For the �rst input,
X1, the network acts like a normal feed-forward network, where the state S1 is
calculated based on the given inputX1. However, for the next inputX2, we observe
that S2 uses X1 and S1. �is results in a state S2, which in theory may encode all

13

2 Background Theory

S

X

O

S1

X1

O1

S2

X2

O2

S3

X3

O3

...
Unfold

Figure 2.4: A visual representation of a Recurrent Neural Network in the folded and unfolded state.

past inputs (in this example only X1) and current input. �e RNN is de�ned as the
following:

at = W axt +Raht−1 + ba

ht = tanh(at)

ot = W oht + bo

ŷt = softmax(ot)

�e neural network starts with an initial hidden layer, h0. For hidden layers at
step t, we apply the tanh activation function to the weighted sum between the
input at step xt and the previously hidden layer ht−1, where W a and Ra are the
weights and ba the bias. �e output is then calculated based on the hidden layer
with the weights W o and the bias bo. Optionally, the output values ot are then
normalized with the softmax activation function.

2.4 Long Short Term Memory
A problem with RNNs is the inability to model long-term dependencies, mostly due
to the vanishing gradient problem. In a nutshell, due to the recurrence, the gradient

14

2.4 Long Short Term Memory

from earlier states is diluted up to zero. �is results in losing information, which is
needed for modeling long term dependencies [24].

A solution to the vanishing gradient problem is Long Short Term Memory
(LSTM) [24]. LSTMs are the type of RNNs that introduce gates in the hidden state.
�ese gates allow the model to control the information �ow passed in the network.
In order to model long-term dependencies, LSTMs introduce cell states. �e cell
state �ows from time step to time step unchanged unless the gates are triggered.
�e networks input is the same as RNNs, where both input and previous hidden
state are passed into a feed-forward network:

zt = tanh(W zxt +Rzht−1 + bz)

�e LSTM has 3 gates:

• Input Gate - Controls the amount of input passed to the cell.
• Forget Gate - Controls the amount of information the cell retains from

previous time step. �is allows the model to forget unneeded information.
• Output Gate - Controls the amount of information that would �ow out of

the LSTM unit.

X_t

S_t-1 S_t

O_t-1 O_t

σ

×

σ tanh

×

+

σ

tanh

×

Figure 2.5: A visual representation of a LSTM unit.

15

2 Background Theory

�e gates are computed by the weighted sum of xt and ht−1. �is sum is passed
to a sigmoid activation function. �e sigmoid activation returns a value between
0 and 1. A value of 0 means no input to �ow, where 1 means all the input to �ow.
�e input gate it, forget gate ft and output gate ot are then de�ned as:

it = σ(W ixt +Riht−1 + bi)

ft = σ(W fxt +Rfht−1 + bf)

ot = σ(W oxt +Roht−1 + bo)

�e cell state st is calculated based on the previous cell state with the addition of
the information passed through the gates:

st = ztit + st−1ft

�e output of the LSTM unit is calculated by passing the cell state st to a tanh
activation function, which then multiplied with the output gate.

ht = tanh(st)ot

2.5 A�ention Mechanism
I am born in Germany. �erefore, I speak? French? Mandarin? �e (potential)
correct answer is German. However, how did you determine this? Because you saw
the word Germany and born, you inferences the language. What about the rest of
the words in the sentence: therefore, am, in? �ey are irrelevant to answering the
question.

�is is the main idea of a�ention mechanism and has been initially used suc-
cessfully in Neural Machine Translation. [63] [11]

A lot of applications and a�ention mechanisms have been introduced since
then. In this thesis, we limit ourselves to Multi-head A�ention [63], which have
achieved SOTA results in various domains.[9] [72] Furthermore, we will also use
DotProduct A�ention [63], which is a primary component used in multi-head
a�ention. A�ention uses keys, values, and query. �e keys and query determine
the relevance of the query to the values, mostly through their distance. �ese then
weight the values.

16

2.6 Neural Processes

2.5.1 Scaled Dot Product A�ention
�e scaled dot product a�ention uses dot multiplication of the key K and query Q
to determine the relevancy of the query to the values V . To stabilize the gradients,
this dot product is scaled with dk. �e result is then passed to a so�max to normalize
the values. �e Scaled Dot Product is de�ned as:

DotProduct(Q,K, V) := softmax(QKT/
√
dk)V

2.5.2 Multi-head A�ention
Multi-head A�ention is a fundamental unit used in state of the art Neural Machine
Translation methods. �is method works by a�ending di�erent positions in the
data passed and concatenating the output of each view. Multi-head A�ention is
de�ned as:

MultiHead(Q,K, V) := concat(head1, ...headH)W ∈ Rmxdv

headh := DotProduct(QWQ
h , KW

K
h , V W

V
h) ∈ Rmxdv

2.6 Neural Processes
Deep Neural networks can learn a single function parameterized by weights and
biases. �e result is deterministic, leading to models that cannot express uncertainty
of their predictions. A potential model that can express this uncertainty is Gaus-
sian Processes (GP) [51]. Furthermore, GPs can express complex functions with a
li�le amount of data by using di�erent kernel functions in the prior, contrary to
neural networks, where much data is required. However, GPs are computationally
expensive with time complexity of O(n3), therefore making them hard to scale on
big datasets.

On the other hand, Neural Processes [17](which are a generalization of generat-
ive query networks [13]) is a Neural Network which can also model a distribution
over functions. NPs learn the prior directly from the data, instead of using kernel
functions as in GPs. More precisely, NPs estimate the distribution by the output
value of a target set of points, conditioned on some input and context set of points.

17

2 Background Theory

�e objective function is de�ned as:

J = Eq(z|xc,yc)

[
t∑

i=1

log p(yi|z, xi) + log
q(z|xt, yt)
q(z|xc, yc)

]

J = Eq(z|xc,yc)

[
t∑

i=1

log p(yi|z, xi)
]
−KL(q(z|xc, yc)||q(z|xt, yt))

where z is the latent variable, xc, yc the context points, xt, yt the target points
and p(·) and q(·) are probability distributions. �e idea is that given some context
points xc, yc and unseen input xt, we want to predict the output yt. With q(z|xc, yc)
and q(z|xt, yt) we approximate the posterior p(z|xc, yc) and p(z|xt, yt) respectively.
With the given representations of the context or target points we approximate
a mean and variance of a Gaussian distribution, therefore q(z|·) = N(µz, σz).
In a regression se�ing, Eq(z|xc,yc)

[∑t
i=1 log p(yi|z, xi)

]
can be the equivalent to

MSE(yi, xi).

X_1 Y_1

X_2 Y_2

X_C Y_C

...

Context Points

h Z_1

h Z_2

h Z_C

...
 g

μ

σ

Z

ZX*

Y*

 Encoder Decoder

h

Figure 2.6: �e encoder passes a set of context points separately to an MLP h. We pass every
representation zc to the aggregator g and create a latent vector z. �e decoder takes the
latent vector z, and a target input x∗ and returns a target output y∗.

�e Architecture is de�ned as the following:

1. Encoder - �e encoder passes each pair of context points (xi, xi) into a MLP
and extract the representation Ri.

18

2.6 Neural Processes

2. Aggregator - �e aggregator g takes the representation Ri and combines
them into a vector r. �e aggregator needs to be invariant to the number and
order of the context points. �e original paper suggest to use the mean of the
representation as the aggregator. More exactly, r = g(r1, ...rc) =

1
c

∑c
i=1 ri,

where c are the number of context points.
3. Latent value - r is then used to create a latent distribution. Similar to Vari-

ational Autoencoder, the latent vector is assumed to be a Gaussian Distribu-
tion. We are calculating with two feed-forward networks the mean µ and
standard deviation σ. �is can be sampled during inference and is equivalent
to q(z|xc, yc) when passing context points to the aggregator or q(z|xt, yt)
when passing target points to the aggregator.

4. Conditional Decoder - �e decoder receives as input a concatenated vector
of the target input X∗ and the output Z of the latent encoder. �is concaten-
ated vector is then passed to an MLP to predict the target output Y ∗.

To train the NP, context points xc, yc are passed into the encoder, and the latent
value is calculated. �en we pass the target points xt, yt also into the encoder and
get its latent value. We can then calculate the KL-Divergence as described in the
loss with the given two latent values. Furthermore, we pass the latent value we
calculated from the context points and the input xt into the decoder and calculate
yt. In the regression se�ing, we would then calculate the MSE between the pre-
dicted output and actual output of yt. As described previously, this is calculating
Eq(z|xc,yc)

[∑t
i=1 log p(yi|z, xi)

]
in the loss.

For inference, we then pass only the context points xc, yc into the encoder, and
calculate the latent value. �en we give this latent value and a set of unseen target
inputs x∗ and calculate the output y∗.To inference the uncertainty of our predictions
from the NP, we draw Monte Carlo samples from the latent space. For example, if
the uncertainty is zero, then all outputs of the drawn samples should be the same,
mimicking a deterministic function.

Neural Process can also be used in a meta-learning context. For example, we can
train the NP with di�erent datasets D = d1, d2, ..., dn and then do the inference to
a new datasets D∗ = d1∗, ...dn∗, we hope that the prior learned in z, has relevant
information for predicting the new dataset D∗. �is has been explored by the
authors of Neural Process paper.

19

2 Background Theory

2.6.1 A�entive Neural Processes
A�entive Neural Processes (ANP) [30] improve on top of Neural Processes by adding
a�ention to the aggregator. �e idea is that some context points are more important
than others for inferring the output. A�entive Neural Processes contains two
encoders: One which is latent, equivalent to Neural Processes, and a deterministic
one. �e deterministic path passes each context point xc, yc through a encoder to
get a representation rc. �ese representations rc are passed through a self-a�ention
layer. Finally, this is passed through a cross-a�ention layer where the keys are the
input context points xc, and the query is the target value xt. �e idea is that the
deterministic path learns the local features, and the latent state learns the global
features. �e idea of having two di�erent encoders in Neural Processes has been
explored and has been shown empirically that it to outperform networks with only
a latent encoder.[33] In 2.7, we can see a visual representation of this model.

2.6.2 Recurrent Neural Processes
Neural Processes do not take temporal dependencies present in the data. Recur-
rent Neural Processes [67] extend Neural Processes to model temporal data while
keeping the advantages of Neural Processes. Recurrent Neural Processes replaces
the encoder and decoder of NP with a recurrent neural network. Since we pass it
through the RNN, the temporal dependencies of all past context points are modeled.
In 2.8, we can see a visual representation of the model.

20

2.6 Neural Processes

X_1 Y_1

X_2 Y_2

X_C Y_C

...

Context Points

h R_1

h R_2

h R_C

...

self attention

cross-attention R

X_1 X_2 X_C...
Keys

X*

Query

X_1 Y_1

X_2 Y_2

X_C Y_C

...

Context Points

h Z_1

h Z_2

h

h

Z_C

...
 g

μ

σ

Z

ZRX*

Y*

Determinstic
Encoder

Latent
Encoder

Decoder

h

Figure 2.7: A set of context points is passed to a deterministic encoder and a latent encoder. Each
encoder uses an MLP h to obtain a representation of the context points. For the latent
encoder, we pass every representation zc to the aggregator g and create a latent vector z.
In the deterministic encoder, we pass every representation rc into a self-a�ention layer.
A�erwards, we pass the output of the self-a�ention layer into a cross a�ention layer,
where the keys are the input context points xc and query the input target point x∗. �is
gives us the deterministic vector R. �e decoder takes the latent vector z, deterministic
vector r, and a target input x∗ and returns a target output y∗.

21

2 Background Theory

LSTM

X_1 Y_1

X_2 Y_2

X_C Y_C

...

Context Points

h Z_1

h Z_2

h Z_C

...
 g

μ

σ

Z

ZRX*

Y*

Determinstic
Encoder

Latent
Encoder

Decoder

h h h ...

X_1 Y_1

X_2 Y_2

X_C Y_C

...

Context Points

h R_1

h R_2

h R_C

...
R

LSTM

j

Figure 2.8: A set of context points is passed to a deterministic encoder and a latent encoder. Each
encoder uses an RNN h to obtain a representation of the context points. For the latent
encoder, we pass every representation zc to the aggregator g and create a latent vector z.
In the deterministic encoder, we pass every representation rc into an aggregator j. �is
gives us the deterministic vector R. �e decoder takes the latent vector z, deterministic
vector r and a target input x∗ and returns a target output y∗.

22

3 Proposed Approach

3.1 Recurrent A�entive Neural Processes
In this section, we present our �rst proposed method called Recurrent A�entive
Neural Processes (RANP). During the writing of this thesis, several papers [50] [76]
have proposed the same or very similar architecture. In seq2seq autoencoders, which
uses RNN as the encoder and decoder, researchers have observed be�er performance
by introducing a�ention [3]. Furthermore, we observed that the introduction of
a�ention in the aggregator of the ANP, have shown improvement over NP. In
RANP, we combine RNP and ANP in one model. �e assumption is that certain
context points are more relevant than others for predicting the target variable. Our
proposed method, as in 3.1, contains the following modules:

1. Deterministic Encoder - �e encoder passes each pair of context points
(Xi, Yi) into a recurrent neural network (LSTM in the �gure) and extract
the features Ri. �e features extracted are concatenated and are passed to
a self-a�ention layer. �e output of the self-a�ention layer is passed into a
cross-a�ention layer (can be dot product or multi-head a�ention) where the
keys are the input context points Xi and the query the target input X∗.

2. Latent Encoder - �e encoder passes each pair of context points (Xi, Yi) into
a recurrent neural network (LSTM in the picture) and extract the features Ri.
Note that this recurrent neural network is not shared with the deterministic
encoder. �e output is passed into an aggregator function g, which calculates
the mean of the given points. �e aggregated value is then passed to 2
feedforward networks µ and σ to calculate the mean and standard deviation
of the latent value.

3. Decoder - �e decoder receives as input a concatenated vector of the target
input X∗ the output R of the deterministic encoder and the output Z of the
latent encoder. �is concatenated vector is then passed to a recurrent neural
network to predict the target output Y ∗.

23

3 Proposed Approach

�e model can be trained in an end-to-end manner. Similar to the neural process,
we optimize the parameters by maximizing the maximum likelihood of target data
conditioned on the context data. �e objective function is de�ned as:

J = Eq(z|xc,yc)

[
t∑

i=1

log p(yi|z, xi)
]
−KL(q(z|xc, yc)||q(z|xt, yt))

In our experiments, we train our model in a regression se�ing.Eq(z|xc,yc)

[∑t
i=1 log p(yi|z, xi)

]
could be the MSE(yt, RANP (xt, xc, yc)) or a time series similarity measure such
as the Di�erential DTW loss. Other training se�ing such as classi�cation are not
explored in this thesis, but are possible with the model.

3.2 Recurrent A�entive Neural Processes
Clustering

In this section, we present our proposed method, Recurrent A�entive Neural Pro-
cesses Clustering (RANP-Clust). RANP-Clust is an extension of RANP, which
focuses on time series clustering. First, to improve clusterability, we add an L2-
normalization layer [2] on the deterministic latent values:

R =
R

‖R‖2

�is small addition has been shown to improve clustering in autoencoders [2].In
3.2, we can see the updated deterministic encoder. We train the model with the
same loss as RANP. �e setup has the following steps:

1. Training - �e model �rst is trained the same as in RANP with the addition
of the L2 normalization layer.

2. Clustering - A�er the model is trained, we calculate all deterministic latent
values, run the k-means algorithm [1], and determine the centroids of the
clusters. �e number of K can be either be prede�ned if we already know the
number of clusters. Alternatively, the number of clusters K can be determined
by using clustering metrics such as the silhoue�e score [54]. In our thesis,
we use the scikit-learn implementation of k-means [47].

24

3.2 Recurrent A�entive Neural Processes Clustering

3. Inference - To cluster unseen data, we pass it through the deterministic
encoder and get the deterministic latent values. We then determine the closest
centroid, which we calculated in the previous step, and assign it to that cluster.

25

3 Proposed Approach

LSTM

X_1 Y_1

X_2 Y_2

X_C Y_C

...

Context Points

h R_1

h R_2

h R_C

...
self attention

cross-attention R

X_1 X_2 X_C...
Keys

X*

Query

X_1 Y_1

X_2 Y_2

X_C Y_C

...

Context Points

h Z_1

h Z_2

h Z_C

...
 g

μ

σ

Z

LSTM

Determinstic
Encoder

ZRX*

Y*

h h h...

LSTM

...

Latent
Encoder

Decoder

Figure 3.1: A set of context points is passed to a deterministic encoder and a latent encoder. Each
encoder uses an RNN h to obtain a representation of the context points. For the latent
encoder, we pass every representation zc to the aggregator g and create a latent vector z.
In the deterministic encoder, we pass every representation rc into a self-a�ention layer.
A�erward, we pass the output of the self-a�ention layer into a cross a�ention layer,
where the keys are the input context points xc and query the input target point x∗. �is
gives us the deterministic vector R. �e decoder takes the latent vector z, deterministic
vector r, and a target input x∗ and passes into an RNN. �e decoder returns a target
output of y∗.

26

3.2 Recurrent A�entive Neural Processes Clustering

X_1 Y_1

X_2 Y_2

X_C Y_C

...

Context Points

h R_1

h R_2

h R_C

...

self attention

cross-attention R

X_1 X_2 X_C...
Keys

X*

Query

L2
Norm

LSTM

Determinstic
Encoder

Figure 3.2: Deterministic Encoder of RANP-Clust - �e output of the cross-a�ention R is passed
into an L2-normalization layer.

27

4 Experiments

In this chapter, we explore how RANP performs on a variety of tasks. In the
�rst experiment, we want to see if the addition of a�ention layers improves the
performance of RNP. For this task, we will use the datasets used in the RNP paper.

4.1 Datasets
In this section, we will present the datasets used in our experiments.

4.1.1 Random walk Dataset
To test the model forecasting and clustering capability, we created a multivariate
time series dataset based on random walks. A random walk (RW)[6] is de�ned
as:

xt = xt−1 + a

a ∼ N (µ, σ2)

where x, a ∈ Rn. We generate 5-dimensional RWs, with a length of 500. �e last
dimension of the RW is our output y, and the �rst four dimensions are our input
x. As seen in 4.1, we split the data further into context and target points. In this
example, we de�ned the �rst 100 points as context points and the rest as target
points. However, the number of points can be arbitrarily set.

To test its clustering capability, we will create a �nite number of RW samples. In
4.2, we can observe the di�erent outputs y of 3 RWs. Furthermore, for each of these
random walks, we create variations by adding random white noise (gaussian noise).
In 4.3 we can observe how these variations may look like. By creating similar, but
yet di�erent RWs, we hope that the model can cluster them. Finally, we can control
the standard deviation in the white noise. �is results in noisier RW, which makes

29

4 Experiments

Context Points Target Points

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1
X_context
X_target
y_context
y_target

Figure 4.1: �e following 5 dimensional RW is split into context and target points. One of the
dimensions is de�ned as the output y, where the rest are the input x.

the initially generated RW samples harder to distinguish. In 4.4 we can observe
this behaviour.

To understand the limitations of the model, we have generated the following
dataset:

• Cluster datasets - In these datasets, we have generated 3,5,10 and 20 inde-
pendent RWs. Each RW is 500 in length, and we set the �rst 50 points as
context points. For each of these RWs, we have generated 500 variations with
white noise. �e standard deviation of the noise is 1.0. With these datasets,
we want to see how many clusters the model can identify, given a limited
capacity. More details about the model setup will be explained in the next
section.

• Noise datasets - Each dataset contains �ve independent RWs. Each RW is
500 in length, and we set the �rst 50 points as context points. We generate
500 variations with white noise. However, the standard noise deviation is
di�erent for every dataset, with values 1, 5, 10, and 50, respectively. As the
noise increases, the clusters are becoming harder to distinguish. Here we
want to see how the model performs with di�erent levels of noise. In other

30

4.1 Datasets

Context Points Target Points

0 50 100 150 200 250 300 350 400
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
y_context_0
y_target_0
y_context_1
y_target_1
y_context_2
y_target_2

Figure 4.2: By using di�erent random seeds, we can generate di�erent looking RWs. We can visually
distinguish them not only based on the context points but also on the target points.

words, we want to test the robustness of the model to noise.
• Context dataset - Each dataset contains �ve independent RWs. We generate

500 variations with white noise. �e standard noise deviation is 50. However,
the number of context points is di�erent for every set, with 1, 50, 250, and
499 points, respectively. Given this very noise dataset, we want to explore if
the context points help in identifying the noisy clusters.

For all the datasets, we have min-max normalized them with the scikit-learn
library [47]. �e random walks were generated with the help of the tslearn library
[59]. Furthermore, we randomly select 20% as the validation set and 20% as the
test set. We compare RANP and RANP-Clust. �e objective function for all models
is the same. We treat all datasets as a regression problem. �e early stopping is
based on the validation loss. �en we calculate the deterministic latent vectors for
every value in the test set. Since RANP latent vectors are not normalized, we will
apply L2 normalization as a postprocessing step. A�erward, we will run k-means++
on the latent values as in RANP-Clust. We use the scikit-learn implementation of
k-means. �e number of K is set to the number of clusters predetermined by the
dataset. Finally, we assign the cluster labels to the true labels with the Hungarian

31

4 Experiments

Context Points Target Points

0 50 100 150 200 250 300 350 400
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Original
Noise 1.0

Figure 4.3: �e dark blue line is a one dimensional RW sample. By adding white noise (marked with
red), we can generate similar looking samples from the initially generated RW.

Context Points Target Points

0 50 100 150 200 250 300 350 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Noise 1.0
Noise 10.0
Noise 50.0

Figure 4.4: By increasing the standard deviation of the noise, we can observe more distorted RWs.

32

4.1 Datasets

matching algorithm [31] and calculate the classi�cation accuracy score. Note during
training, the model has no prior knowledge of the number of clusters. Furthermore,
during the training of the neural networks, the objective is only to minimize the
regression error. �e se�ings of the model are described in the implementation
Details section. Finally, we will project the deterministic latent space in 2D using
Universal Approximate Manifold (UMAP) as our dimensionality reduction. [39]

4.1.2 Electricity Dataset

�e Electricity Dataset [12](also known as ”Individual Household Electric Power
Consumption Dataset”) is a multivariate time series dataset. �e dataset contains
measurements for four years taken at a 1-minute interval. �e features are:

• Active Power - household minute-averaged active power (in kilowa�)
• Reactive Power - household minute-averaged reactive power (in kilowa�)
• Intesity - household global minute-averaged current intensity (in ampere)
• Voltage - minute-averaged voltage (in volt)
• Sub Metering 1 - It corresponds to the kitchen energy consumption
• Sub Metering 2 - It corresponds to the laundry room energy consumption
• Sub Metering 3 - It corresponds to an electric water-heater and an air-

conditioner energy consumption

�e dataset is split into training, validation, and test where the �rst two years are
training, third-year validation, and test the fourth year. To compare with previous
results (RNP [67] and Recurrent Neural Filters (RNF) [34]), we will set the feature
”Active Power” as our target and the rest of the remaining features as our input.
Furthermore, we used the same preprocessing steps of the data, which is described
in the RNF paper [34]. Furthermore, to compare results with our proposed model,
we trained the RNP model as described in [67]. In the next section, we will provide
details of the hyperparameters used in RANP and RANP-Clust. As in [67], the
models are evaluated for one-step prediction MSE. �e reason we selected this
dataset is to see if RANP and RANP-Clust outperform RNP in a real-life dataset.

33

4 Experiments

4.2 Implementation Details
In this section, we describe the di�erent architecture setups of our model and
baselines. In the following �gure, we can see the di�erent hyperparameters for the
di�erent datasets. We optimize all models using Radam [36]. We train all model for
300 epochs with early stopping. We use the patience of 7 epochs, meaning that if
no improvement on the validation loss for seven epochs has been achieved, then
the training will stop. All models have been wri�en and trained on Pytorch [45].
Additionally, we used Pytorch-lightning [14] to streamline the process of training
and calculating results.

For all Random Walk Datasets, we train all models with 16 LSTM Units for both
encoders and decoder. �e latent size is for all 16. We use DotProduct a�ention for
self-a�ention and Multi-head A�ention for cross-a�ention and use a learning rate
of 0.001. For the Electricity Dataset, we train all models with the same parameters
as in [67]. All models use 64 LSTM Units for both encoders and decoder. �e latent
size is equal to 4. We use dot product a�ention for self-a�ention and Multi-head
A�ention for cross-a�ention and a learning rate of 0.01. Same as in [67], we use 20
points as the context points and 60 for the target points.

34

5 Results

5.1 RandomWalk - Clusters Dataset

We have trained RNP, RANP, and RANP-Clust on the clusters dataset. As previously
described, we are trained in the models in a regression se�ing. A�er training, we
then apply k-means and calculate the accuracy. In the following Table 5.1, we
can observe that all models can cluster the data correctly when given 3 clusters.
However, we can see that by increasing the cluster size, the RNP model cannot keep
up. Furthermore, RANP-Clust outperforms RANP and RNP at all the cluster sizes.
�at said, we observed that all model achieved perfect accuracy, when increasing
the number of units in the LSTM and size of the latent space.

In 5.2, we observe the deterministic latent space of RANP and RANP-Clust.
We can observe that both models separate each cluster perfectly. In 5.3, data is
RANP-Clust has less overlapping clusters than in RANP. However, it is hard to tell,
since this is a projection and not the original space of the data.

Clusters RNP RANP RANP-Clust
3 1.0 1.0 1.0
5 0.68 1.0 1.0
10 0.79 1.0 1.0
20 0.44 0.66 0.70

Figure 5.1: Accuracy Score on the Cluster Dataset

35

5 Results

−30 −20 −10 0 10

−20

−10

0

10

20

30

(a) RANP

−20 −10 0 10 20 30

−20

−10

0

10

20

(b) RANP-Clust

Figure 5.2: Deterministic latent space projected with UMAP on the 5 cluster dataset. With each
color representing the ground truth label.

−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

(a) RANP

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

20

(b) RANP-Clust

Figure 5.3: Deterministic latent space projected with UMAP on the 20 cluster dataset. With each
color representing the ground truth label.

Noise RNP RANP RANP-Clust
1 0.68 1.0 1.0
5 0.55 1.0 1.0
10 0.89 0.75 0.95
50 0.37 0.25 0.40

Figure 5.4: Accuracy Score on the Noise Dataset

36

5.2 Random Walk - Noise Dataset

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

(a) RANP

−6 −4 −2 0 2 4 6

−2

−1

0

1

2

3

(b) RANP-Clust

Figure 5.5: Deterministic latent space projected with UMAP on the noise 50 dataset. With each color
representing the ground truth label.

5.2 RandomWalk - Noise Dataset
We have observed that RANP and RANP-Clust can cluster correctly when given
dataset with only 5 clusters. However, does the model keep performing when in-
creasing the noise? While increasing the noise, we expect a decrease in performance,
since the noise makes it harder to distinguish the cluster from each other. In the
following Table 5.4, we observe again that RANP-Clust outperforms at all noise
levels. Interesting is that RNP seems to outperform RANP when the noise levels
are high. We suspect this is due to a�ention over��ing to the noise.

In 5.5 and 5.6, we can observe the discrimitive latent space for noise level 50 and
10 respectively. In 5.6, we can observe how RANP-Clust clusters are more spread
than the ones from RANP.

5.3 RandomWalk - Context Points Dataset
Finally, we want to observe the e�ect of the context points. When given a noisy
dataset, does the accuracy improve when given more context points? In the follow-
ing Table 5.7, we can observe that RANP-Clust for all cases except one, outperforms
RANP and RNP. Furthermore, RNP outperforms RANP in all cases, and when given
250 context points, it seems to outperform RANP-Clust. We suspect that this again
due to the high noise in the dataset, making it easier for a�ention to over�t to

37

5 Results

−10 −5 0 5

−10

−5

0

5

(a) RANP

−15 −10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

(b) RANP-Clust

Figure 5.6: Deterministic latent space projected with UMAP on the noise 10 dataset. With each color
representing the ground truth label.

Context Points RNP RANP RANP-Clust
1 0.24 0.25 0.26
50 0.37 0.25 0.4
250 0.61 0.44 0.54
499 0.94 0.90 1.0

Figure 5.7: Accuracy Score on the Context Points Dataset

38

5.4 Electricity Dataset

−15 −10 −5 0 5 10

−10

−5

0

5

10

15

(a) RANP

−15 −10 −5 0 5 10 15

−6

−5

−4

−3

−2

−1

0

1

2

(b) RANP-Clust

Figure 5.8: Deterministic latent space projected with UMAP on the noise 50 dataset with 250 context
points. With each color representing the ground truth label.

noise. Finally, when given a single context point, all models perform similar to each
other.

In 5.8 and 5.9, we can observe the deterministic latent space for 250 and 499
context points. In 5.9, similarly as in 5.6, we can observe how RANP-Clust clusters
are more spread out than RANP. We remind the reader again that this is a 2D
projection with UMAP and not the actual latent space.

5.4 Electricity Dataset
With the RWs datasets, we want to explore the limitations of the model. With the
electricity dataset, we want to explore the performance in real-life datasets. In the
following Table 5.10, we present the normalized MSE based on the LSTM score for
a one-step prediction.

We observe that RANP outperforms RNP and most other architectures. However,
RNF-NP still outperforms our proposed architecture. Moreover, we observe that
RANP-Clust, with its L2-Normalization, seems to perform worse than LSTM. Based
on these results, we can see that adding a�ention to RNP does provide be�er
performance. However, if the tasks are only regression, RANP-Clust will provide
worse performance.

39

5 Results

−15 −10 −5 0 5 10 15 20

−8

−6

−4

−2

0

2

4

6

8

(a) RANP

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

(b) RANP-Clust

Figure 5.9: Deterministic latent space projected with UMAP on the noise 50 dataset with 499 context
points. With each color representing the ground truth label.

Model Normalized MSE
LSTM 1.000
VRNN 1.902
DFK 1.252
DSSM 1.131
RNF-LG 0.918
RNF-NP 0.856
RNP 1.111
RANP 0.899
RANP-Clust 1.263

Figure 5.10: Normalized MSE for One-Step Predictions

40

6 Conclusion and Future Work

In this thesis, we proposed a new architecture called Recurrent A�entive Neural
Processes for multivariate time series prediction and shown state of the art per-
formance on the Electrical consumption dataset. We will also present an extension
called Recurrent Neural Processes Clustering, which allows clustering time-series
data. We show that the addition of L2-normalization during training provides be�er
performance in clustering time-series data. Furthermore, we show how RANP-Clust
outperforms RANP and RNP in this task.

In this thesis, we barely scratched the surface. More experimentation is needed
with the proposed method in other datasets. As described in the background section,
NPs have meta-learning capabilities. One direction we could explore if RANP is
be�er or worse in meta-learning tasks than RNP. Regarding RANP-Clust, we could
combine methods explored in the introduction section. One approach would be to
add an auxiliary loss for clustering the model and for example, training a GMM as in
VADE [25], a self-organizing map in latent space as in SOM-VAE [15] or something
simple as a k-means loss trained jointly with the model.

Moreover, we would like to explore the capabilities of anomaly detection of the
model. Here there are several methods such as determining outliers based on the
reconstruction error or based on the centroids we determined a�er running the
k-means algorithm in RANP-Clust [2].

Finally, one could explore di�erent ways to encode time series data in neural
processes. We explored a method based on recurrent neural networks and a�ention
mechanism. As we discussed in the time series representation learning section, there
is a much di�erent way to encode time series data. Two exciting directions would
be to explore casual diluted convolution and models which uses only a�entions as
in Transformers [63].

41

Bibliography

[1] D. Arthur and S. Vassilvitskii. k-means++: �e advantages of careful seeding.
Technical report, 2006.

[2] C. Aytekin, X. Ni, F. Cricri, and E. Aksu. Clustering and unsupervised anomaly
detection with l 2 normalized deep auto-encoder representations. In 2018
International Joint Conference on Neural Networks (IJCNN), pages 1–6. IEEE,
2018.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review
and new perspectives. IEEE transactions on pa�ern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[5] D. J. Berndt and J. Cli�ord. Using dynamic time warping to �nd pa�erns in
time series.

[6] P. J. Brockwell and R. A. Davis. Introduction to time series and forecasting.
springer, 2016.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated re-
current neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[8] M. Cuturi and M. Blondel. So�-dtw: A di�erentiable loss function for time-
series. In Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, page 894–903. JMLR.org, 2017.

[9] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov.
Transformer-xl: A�entive language models beyond a �xed-length context.
arXiv preprint arXiv:1901.02860, 2019.

43

Bibliography

[10] I. Davidson and S. Ravi. Agglomerative hierarchical clustering with constraints:
�eoretical and empirical results. In European Conference on Principles of Data
Mining and Knowledge Discovery, pages 59–70. Springer, 2005.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[12] D. Dua and C. Graf. Individual household electric power consumption data
set.

[13] S. M. A. Eslami, D. Jimenez Rezende, F. Besse, F. Viola, A. S. Morcos, M. Gar-
nelo, A. Ruderman, A. A. Rusu, I. Danihelka, K. Gregor, D. P. Reichert, L. Bues-
ing, T. Weber, O. Vinyals, D. Rosenbaum, N. Rabinowitz, H. King, C. Hillier,
M. Botvinick, D. Wierstra, K. Kavukcuoglu, and D. Hassabis. Neural scene
representation and rendering. Science, 360(6394):1204–1210, 2018.

[14] W. e. a. Falcon. Pytorch lightning. https://github.com/
PytorchLightning/pytorch-lightning, 2019.

[15] V. Fortuin, M. Hüser, F. Locatello, H. Strathmann, and G. Rätsch. Som-vae:
Interpretable discrete representation learning on time series. arXiv preprint
arXiv:1806.02199, 2018.

[16] J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi. Unsupervised scalable represent-
ation learning for multivariate time series. In Advances in Neural Information
Processing Systems, pages 4652–4663, 2019.

[17] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. Eslami, and
Y. W. Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

[18] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. 2016.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[20] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics,
speech and signal processing, pages 6645–6649. IEEE, 2013.

[21] D. Hallac, S. Vare, S. Boyd, and J. Leskovec. Toeplitz inverse covariance-based

44

https://github.com/PytorchLightning/pytorch-lightning
https://github.com/PytorchLightning/pytorch-lightning

Bibliography

clustering of multivariate time series data. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 215–223, 2017.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pa�ern
recognition, pages 770–778, 2016.

[23] I. Higgins, L. Ma�hey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner. beta-vae: Learning basic visual concepts with a constrained
variational framework.

[24] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[25] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep embed-
ding: An unsupervised and generative approach to clustering. arXiv preprint
arXiv:1611.05148, 2016.

[26] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money. Big data: Issues and
challenges moving forward. In 2013 46th Hawaii International Conference on
System Sciences, pages 995–1004. IEEE, 2013.

[27] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pa�ern Recognition, pages 4401–4410, 2019.

[28] R. J. Kate. Using dynamic time warping distances as features for improved
time series classi�cation. Data Mining and Knowledge Discovery, 30(2):283–312,
2016.

[29] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping to massive
datasets. In European Conference on Principles of Data Mining and Knowledge
Discovery, pages 1–11. Springer, 1999.

[30] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals,
and Y. W. Teh. A�entive neural processes. arXiv preprint arXiv:1901.05761,
2019.

[31] H. W. Kuhn. �e hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

45

Bibliography

[32] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma. Fastgrnn:
A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network,
2019.

[33] T. A. Le, H. Kim, M. Garnelo, D. Rosenbaum, J. Schwarz, and Y. W. Teh. Em-
pirical evaluation of neural process objectives.

[34] B. Lim, S. Zohren, and S. Roberts. Recurrent neural �lters: Learning independ-
ent bayesian �ltering steps for time series prediction, 2019.

[35] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time
series, with implications for streaming algorithms. In Proceedings of the 8th
ACM SIGMOD workshop on Research issues in data mining and knowledge
discovery, pages 2–11, 2003.

[36] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of
the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265, 2019.

[37] S. Makridakis, E. Spiliotis, and V. Assimakopoulos. Statistical and machine
learning forecasting methods: Concerns and ways forward. PloS one, 13(3),
2018.

[38] G. Marcus. Deep learning: A critical appraisal, 2018.

[39] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[40] H. N. Mhaskar and C. A. Micchelli. How to choose an activation function. In
Advances in Neural Information Processing Systems, pages 319–326, 1994.

[41] F. Murtagh. Multilayer perceptrons for classi�cation and regression. Neuro-
computing, 2(5-6):183–197, 1991.

[42] A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation
learning. arXiv preprint arXiv:1711.00937, 2017.

[43] E. Oztemel and S. Gursev. Literature review of industry 4.0 and related
technologies. Journal of Intelligent Manufacturing, 31(1):127–182, 2020.

[44] J. Paparrizos and L. Gravano. k-shape: E�cient and accurate clustering of
time series. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1855–1870, 2015.

46

Bibliography

[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garne�, editors,
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[46] B. A. Pearlmu�er. Learning state space trajectories in recurrent neural net-
works. Neural Comput., 1(2):263–269, June 1989.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. �irion, O. Grisel,
M. Blondel, P. Pre�enhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[48] W. Pei, D. M. Tax, and L. van der Maaten. Modeling time series similarity with
siamese recurrent networks. arXiv preprint arXiv:1603.04713, 2016.

[49] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and E. J. Keogh.
Dynamic time warping averaging of time series allows faster and more accur-
ate classi�cation. 2014 IEEE International Conference on Data Mining, pages
470–479, 2014.

[50] S. Qin, J. Zhu, J. Qin, W. Wang, and D. Zhao. Recurrent a�entive neural process
for sequential data, 2019.

[51] C. E. Rasmussen. Gaussian processes in machine learning. In Summer School
on Machine Learning, pages 63–71. Springer, 2003.

[52] A. Razavi, A. van den Oord, and O. Vinyals. Generating diverse high-�delity
images with vq-vae-2. In Advances in Neural Information Processing Systems,
pages 14837–14847, 2019.

[53] F. Rosenbla�. �e perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[54] P. J. Rousseeuw. Silhoue�es: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987.

[55] H. Shatkay. �e fourier transform-a primer. 1995.

47

Bibliography

[56] R. K. Srivastava, K. Gre�, and J. Schmidhuber. Highway networks, 2015.

[57] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014.

[58] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pa�ern recognition, pages 1–9,
2015.

[59] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M. Payne,
R. Yurchak, M. Rußwurm, K. Kolar, and E. Woods. tslearn: A machine learn-
ing toolkit dedicated to time-series data, 2017. https://github.com/
rtavenar/tslearn.

[60] Y. W. Teh. Dirichlet process.

[61] D. J. Trosten, A. S. Strauman, M. Kamp�meyer, and R. Jenssen. Recurrent deep
divergence-based clustering for simultaneous feature learning and clustering
of variable length time series. In ICASSP 2019-2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 3257–3261.
IEEE, 2019.

[62] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model
for raw audio, 2016.

[63] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. A�ention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[64] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the
25th international conference on Machine learning, pages 1096–1103, 2008.

[65] J.-L. Wang, J.-M. Chiou, and H.-G. Mueller. Review of functional data analysis,
2015.

[66] V. Wiley and T. Lucas. Computer vision and image processing: a paper review.
International Journal of Arti�cial Intelligence Research, 2(1):29–36, 2018.

48

https://github.com/rtavenar/tslearn
https://github.com/rtavenar/tslearn

Bibliography

[67] T. Willi, J. Masci, J. Schmidhuber, and C. Osendorfer. Recurrent neural pro-
cesses. arXiv preprint arXiv:1906.05915, 2019.

[68] R. E. Wright. Logistic regression. 1995.

[69] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering
analysis, 2015.

[70] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and
Y. Bengio. Show, a�end and tell: Neural image caption generation with visual
a�ention. In International conference on machine learning, pages 2048–2057,
2015.

[71] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici. Beyond short snippets: Deep networks for video classi�cation. In
Proceedings of the IEEE conference on computer vision and pa�ern recognition,
pages 4694–4702, 2015.

[72] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-a�ention generative
adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

[73] J. Zhao, X. Mao, and L. Chen. Speech emotion recognition using deep 1d 2d
cnn lstm networks. Biomedical Signal Processing and Control, 47:312 – 323,
2019.

[74] T. Zhao, Z. Wang, A. Masoomi, and J. G. Dy. Adaptive nonparametric vari-
ational autoencoder. arXiv preprint arXiv:1906.03288, 2019.

[75] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao. Time series classi�cation
using multi-channels deep convolutional neural networks. In International
Conference on Web-Age Information Management, pages 298–310. Springer,
2014.

[76] J. Zhu, S. Qin, W. Wang, and D. Zhao. Probabilistic trajectory prediction for
autonomous vehicles with a�entive recurrent neural process. arXiv preprint
arXiv:1910.08102, 2019.

[77] S. Zolhavarieh, S. Aghabozorgi, and Y. W. Teh. A review of subsequence time
series clustering. �e Scienti�c World Journal, 2014, 2014.

49

	Abstract
	Introduction
	Motivation
	Time Series Clustering
	Representation Learning
	Time Series Representation Learning
	Contribution
	Thesis Outline

	Background Theory
	Feed Forward Neural Networks
	The perceptron
	Training Neural Networks
	Multilayer Perceptrons

	Autoencoder
	Recurrent Neural Network
	Long Short Term Memory
	Attention Mechanism
	Scaled Dot Product Attention
	Multi-head Attention

	Neural Processes
	Attentive Neural Processes
	Recurrent Neural Processes

	Proposed Approach
	Recurrent Attentive Neural Processes
	Recurrent Attentive Neural Processes Clustering

	Experiments
	Datasets
	Random walk Dataset
	Electricity Dataset

	Implementation Details

	Results
	Random Walk - Clusters Dataset
	Random Walk - Noise Dataset
	Random Walk - Context Points Dataset
	Electricity Dataset

	Conclusion and Future Work
	Bibliography

