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Abstract

The Internet of Things (IoT) is a growing topic and a lot of intensive research
is going on to provide energy-efficient wireless communication. Bluetooth
Low Energy (BLE) is a prominent candidate among all low-power wireless
communication protocols to create IoT applications, as it promises significant
advantages of high energy-efficiency and high reliability. Although the RFC
7668 standard allows BLE devices to exchange IPv6 packets over connection-
based BLE communication, BLE devices need to maintain a BLE connection
by exchanging a number of keep-alive packets. Continuously exchanging
such keep-alive messages may not be suitable for low duty-cycle power-
constrained devices, as it may drain their batteries. Therefore, we propose
IPv6 over connection-less BLE to make low-duty cycle devices more energy
efficient.

The main contribution of this thesis is the design of an IPv6 over connection-
less BLE communication stack suitable for the architecture of the Zephyr OS
(an operating system for resource-constrained IoT devices) and its hardware-
independent implementation. Moreover, the evaluation performed in this
thesis shows that the connection-based communication provides 100 %
reliability, while 96% of reliability can be achieved with connection-less BLE
while reducing the energy consumption up to 65 % when transmitting 100

bytes of packet every 5 minutes. Moreover, the evaluation also confirms that
IPv6 over connection-less BLE requires almost 30 % less packet transmission
time and 20 % less energy compared to terminating and re-establishing a
BLE connection when needed.
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Kurzfassung

Das Internet der Dinge (Internet of Things, IoT) ist ein wachsendes Forschungs-
thema, in dem es unter anderem wichtig is energieeffiziente drahtlose
Kommunikation zu gewährleisten. Bluetooth Low Energy (BLE) ist ein her-
ausragender Kandidat unter allen drahtlosen Kommunikationsprotokollen
mit geringem Stromverbrauch für die Erstellung von IoT-Anwendungen,
da es erhebliche Vorteile einer hohen Energieeffizienz und einer hohen
Zuverlässigkeit verspricht. Obwohl der RFC 7668-Standard es BLE-Geräten
ermöglicht, IPv6-Pakete über verbindungsbasierte BLE-Kommunikation
auszutauschen, müssen BLE-Geräte eine BLE-Verbindung aufrechterhalten,
indem sie eine Reihe von Keep-Alive-Paketen austauschen. Das kontinuier-
liche Austauschen solcher Keep-Alive-Nachrichten ist möglicherweise nicht
für Geräte mit niedrigem Leistungszyklus geeignet, da dadurch die Bat-
terien schnell entladen werden können. Daher schlagen wir IPv6 über
verbindungsloses BLE vor, um Geräte mit niedrigem Arbeitszyklus en-
ergieeffizienter zu machen.

Der Hauptbeitrag dieser Arbeit ist der Entwurf eines IPv6 über einen
verbindungslosen BLE-Kommunikationsstapel, der für die Architektur des
Zephyr-Betriebssystems (ein Betriebssystems für ressourcenbeschränkte IoT-
Geräte) und dessen hardwareunabhängige Implementierung geeignet ist.
Darüber hinaus zeigt die in dieser Arbeit durchgeführte Evaluierung, dass
die verbindungsbasierte Kommunikation eine 100 % ige Zuverlässigkeit
bietet, während 96 % der Zuverlässigkeit mit einer verbindungslosen BLE er-
reicht werden kann. Gleichzeitig wird der Energieverbrauch um bis zu 65 %
reduziert, wenn alle 5 Minuten 100 Byte Paket übertragen werden. Darüber
hinaus bestätigt die Auswertung auch, dass IPv6 über verbindungslose
BLE fast 30 % weniger Paketübertragungszeit und 20 % weniger Energie
erfordert als das Beenden und Wiederherstellen einer BLE-Verbindung bei
Bedarf.
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1 Introduction

The Internet of Things (IoT) is helping the current society to become a
smarter one by allowing everyday objects to communicate with each other.
The advent of emerging low-power wireless technologies such as IEEE
802.11b (WiFi), ANT+, ZigBee, and Bluetooth Low Energy - all using the
2.4 GHz industrial, scientific and medical (ISM) radio band increased the
development of the IoT applications even further [1]. Although most of the
devices using these low-power wireless technologies are very constrained in
resources, some applications require these devices to run for several years
on constrained energy sources like coin cell batteries [16].

To connect these resource-constrained embedded devices to the Internet,
in the last few years, the Internet Engineering Task Force (IETF) group
standardized the exchange of Internet Protocol version 6 (IPv6) packets
over low-power wireless link layer technologies like IEEE 802.15.4 [24]
and BLE [18]. These standards use the Low-Power Wireless Personal Area
Networks (6LoWPAN) adaptation layer in its network stack to exchange
IPv6 packets.

However, previous studies have proven that, among several wireless com-
peting technologies using the 2.4 GHz ISM band, Bluetooth Low Energy
(BLE) is the most energy-efficient short-range wireless communication pro-
tocol [1]. Furthermore, BLE also offers several advantages as its hardware
is already widely adopted in plenty of electronic consumer devices [16]
such as mobile phones, tablets, and computers, and therefore provides easy
connectivity among BLE devices and allows direct interaction with users.
The new standard of BLE named BLE 5 introduces some interesting new fea-
tures which could be used to make IPv6 devices even more energy-efficient
and to extend the range of IPv6 over BLE networks by coding a payload at
500 Kbps or 125 kbps.

1



1 Introduction

1.1 Problem Statement

BLE has two communication modes: connection-based BLE, where two de-
vices use a BLE connection to bi-directionally exchange data, and connection-
less BLE, where broadcasts are used to transmit data uni-directionally. As
stated in the RFC 7668 - IPv6 over Bluetooth Low Energy standard, IPv6

over BLE devices use connection-based communication, where they need
to establish a BLE connection to exchange IPv6 packets [18]. A BLE con-
nection, however, needs to be maintained and therefore requires both BLE
devices to periodically exchange keep-alive packets [6]. For very low-duty
cycle applications, these mandatory keep-alive messages, however, may lead
to unnecessary energy consumption that is needed to maintain the BLE
connection.

Consider, for example, an application of a temperature sensing device that
monitors room temperature. In this scenario, the temperature sensing device
needs to transmit 100 bytes of IPv6 data periodically every 5 mins to other
BLE router devices that sends the temperature data to the Internet. This ap-
plication scenario can be achieved by establishing a BLE connection between
two devices to send IPv6 data. However, according to BLE specification, the
BLE devices need to exchange data or keep-alive packet at least every 32

sec in order to maintain the BLE connection. If the keep-alive packet is not
exchanged within this timeout, the connection is considered to be lost.

Even if we use the most power-efficient configuration of a BLE connection
(e.g., at least one keep-alive packet is exchanged within 16 sec [6]) on a BLE
device, the device turns on the radio for around 38 times within 5 mins
of application interval to maintain a BLE connection. The length of each
keep-alive packet is 10 bytes (1 byte of Preamble, 4 bytes of Access address,
2 bytes of header, and 3 bytes of CRC). In order to send a message of 100

bytes application data every 5 mins, the device exchanges 38 keep-alive
packets (10 bytes/packet) in a total of 380 bytes just to maintain a BLE
connection. Therefore, for very low duty-cycle power-constrained devices,
connection-based communication may not be power efficient, as it incurs an
overhead of maintaining the BLE connection. As per the discussed example,
the benefit of using connection-less over connection-based BLE can be up

2



1.2 Thesis Contribution

to 70%, which motivates the investigation of using connection-less BLE to
transmit IPv6 data.

However, currently, IPv6 is built solely on top of connection-based BLE,
where the fragmentation and reassembly of an IPv6 packet are handled
at the L2CAP layer of BLE. Since the L2CAP layer is only available in
connection-based communication (see Section 4.2), the fragmentation and
reassembly of an IPv6 packet need to be handled in the design of IPv6

over connection-less BLE. The other challenge is to transmit 1280 bytes of
IPv6 packet over connection-less BLE. That’s because, even though legacy
advertising (advertising feature from prior BLE standards 4.0, 4.1, 4.2 and
also exist in BLE 5, where advertiser broadcasts packets to its nearby devices
and scanner on the other end scans for those packets.) with connection-
less mode doesn’t incur the overhead of establishing and maintaining a
connection, it is not suitable for larger data packets as the maximum data it
can broadcast in an Adv. packet is limited to 31 bytes.

Moreover, to transmit an IPv6 packet over BLE, devices need to configure
the network interface by exchanging all the necessary information (network
prefix, context information and Internet parameters (Hop limit and Link
MTU)). In IPv6 over connection-based BLE communication, it is performed
after establishing a link-layer and L2CAP connection by neighbor discovery
procedure. However, in connection-less BLE communication, link-layer and
L2CAP connections are not established. Therefore, it is necessary to use
connection-based BLE to get the information required to configure a network
interface. Hence the switching between connection-based and connection-
less BLE needs to be handled in the design of IPv6 over connection-less
BLE.

1.2 Thesis Contribution

We, therefore, aim to implement IPv6 over connection-less BLE. The connection-
less approach doesn’t need to exchange keep-alive packets or establish a
connection and exchange information every single time to set up the net-
work interface, which may lead to saving a reasonable amount of energy. We
propose IPv6 over connection-less BLE and perform a detailed experimental

3



1 Introduction

study by implementing it into the Zephyr OS on the Nordic Semiconductor
nRF52 platform and measure its reliability and power consumption on real
devices. Towards this goal, we make the following contributions:

• We discuss in detail how IPv6 over connection-less BLE can be used
to broadcast large IPv6 packets and show how constrained devices
with low radio duty cycle can use it to reduce their overall power
consumption.

• We present the design and implementation of IPv6 over connection-
less BLE.

• We show how devices can dynamically switch from connection-less
to connection-based BLE and vice versa at runtime, i.e. to update the
IPv6 prefix and context information.

• We perform an evaluation of the energy consumption of the IPv6 over
connection-less BLE communication stack implemented in Zephyr OS,
and compare the energy efficiency of the IPv6 over connection-based
and IPv6 over connection-less communication. Finally, we present the
reliability of IPv6 over connection-less BLE and compare it with the
reliability of IPv6 over connection-based communication and show
that although connection-based BLE provides 100 % reliability, almost
96 % of reliability can be achieved with connection-less BLE while
reducing a power consumption of a BLE radio of a node by up to 65

% when transmitting 100 bytes of IPv6 packet / 5 mins.

1.3 Outline

The remainder of the thesis is organized as follows. Chapter 2 presents BLE
5 and its newly added features. Moreover, it summarizes the advantage of
using Extended Advertising (Ext. Adv.) for IPv6 over connection-less BLE.
It also discusses the IPv6 over BLE communication stack and explains the
Zephyr OS and hardware used in this thesis. Moreover, it focuses on existing

4



1.3 Outline

research studies related to this thesis and compares existing BLE communica-
tion stacks to select the suitable BLE stack for IPv6 over connection-less BLE
design. Chapter 3 compares the connection-less vs connection-based BLE
by performing a theoretical analysis. Chapter 4 addresses the requirement
and the design challenges of IPv6 over connection-less BLE. It describes the
detailed design of the IPv6 over connection-less BLE communication stack
developed in this thesis and Chapter 5 explains its implementation along
with the challenges faced. The performance evaluation of the implemented
IPv6 over connection-less BLE communication stack is performed in Chapter
6. Chapter 7 concludes the results and gives a summary of possible improve-
ments that can be performed to improve the performance and suggests
further research directions on IPv6 over connection-less BLE.
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2 Background

This chapter introduces the reader to Bluetooth Low Energy (BLE) 5 and
other necessary information to understand the content of this thesis. Specifi-
cally, Section 2.1 introduces BLE 5 as a newer version of the BLE standard
and its newly added key features. Besides, it also provides information
about the BLE communication stack. Section 2.2 describes the IPv6 over BLE
network stack. Moreover, it also explains its 6LoWPAN adaptation layer,
header compression and network topologies used in the IPv6 over BLE
network. Section 2.3 delivers a summary of the Zephyr real-time operating
system and its network stack used for the implementation of the design
presented in this thesis. Moreover, the embedded platform used for the
implementation and the evaluation is presented in Section 2.4. Section 2.5
explains the existing research work that is related to this thesis and lists
existing BLE stack implementations for resource-constrained devices that
can be considered while implementing this thesis work.

2.1 Bluetooth Low Energy (BLE)

This section introduces Bluetooth Low Energy 5 to a reader with its history,
key features and communication stack.

2.1.1 Bluetooth

These days, we are in regular contact with Bluetooth technology as it
has become a part of our mobile experience [2]. It also includes wireless
headphones, portable speakers, wireless keyboards, mouse, for exchanging
data over the air. It all started back in 1998 with the idea of establishing

7



2 Background

short-range radio links to exchange data among handsets without using the
tangle of wires [2]. At that time, Ericsson took an initiative and encouraged
other companies to form the Bluetooth Special Interest Group recognized
as SIG to collaborate on the technology and roll out the specifications for
the first Bluetooth standard, Bluetooth Version 1.0. It was offering around
700Kbps of throughput but in realistic conditions, it was usually notably less
[2]. The following iterations were focused on increasing bandwidth, adding
Adaptive Frequency Hopping (AFH) and Bluetooth found its way into
cellphones, speakers, computers, printers, and many electronic devices.

2.1.1.1 BLE

Another breakthrough in Bluetooth technology, version 4.0, introduced com-
pact wireless power-constrained devices by allowing them to run on small
capacity batteries for a longer time [2]. This new low-power Bluetooth is
called Bluetooth Low Energy (BLE) and also remarketed as Bluetooth Smart
in 2010 [16]. Following the success of version 4.0, SIG started considering
BLE for IoT applications and provided support to the IPv6 communication
in the later version 4.1. The data-carrying capacity of BLE data packets
was limited to 31 bytes which was then increased by almost ten times by
allowing data packets to exchange up to 251 bytes of data in BLE 4.2 [2].
This version added many new features that improved the speed of data
transmission and made it more reliable with new privacy features. The new
version of BLE, BLE 5.0, introduced in 2016 also offered some interesting
new features that expand the capabilities of BLE devices.

2.1.1.2 BLE-5 and its key features

More Physical (PHY) Modes:

BLE 5 introduces new radio physical layer (PHY) called ‘LE 2M’ which
allows an increase in communication speed by doubling the bandwidth
from 1Mbps to 2Mbps [2]. The time required to transmit and receive BLE
packets also decreases since it supports the data rate of 2M symbols per
second. This means the same data sent in BLE 5 will now take half the time
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compared to prior standards at the price of lower link-layer reliability [4].
Another significant benefit of having a 2Mbps data rate is that the radio
will turn on for a shorter period in transmitting the data, contributing an
additional significant advantage of reduced power consumption which may
lead to extended battery life [4]. Another notable change of BLE 5 is a
significant improvement in the communication range. BLE 5 introduces a
new radio PHY named ‘LE Coded’, that offers an extended communication
range up to 400% of the prior range [2]. Even in the worst case, it should
achieve a range of 200 meters outdoors and about 40 meters indoors. In BLE,
for both 1 Mbps and 2 Mbps connection modes, the payloads and packet
headers are un-coded. However, in LE Coded connection mode, these are
coded and it supports 500 and 125 kbps data rates. The lower the data rate
the longer is the range that can be achieved: with a 500 kbps data rate it is
possible to obtain nearly twice the range of standard BLE, whereas, with
125 kbps four times range can be reached [4]. As these coded packets are
approximately 2 to 8 times larger in size, the time required to transmit the
same data may increase, which may also lead to higher power consumption
[4].

Extended Broadcast Capacity:

BLE 5 provides a new communication mode, called Extended Advertis-
ing (Ext. Adv.) [4]. It allows BLE devices to broadcast up to 254 bytes of
payload in Adv. packets compared to 31 bytes in prior standards. This
allows an application to transmit larger data to other BLE devices without
even establishing a BLE connection. In addition to increase the maximum
packet length, BLE-5 proposes the use of data channels named ”secondary
advertising channels” for broadcasting up to 254 bytes of Adv. packets.

Extending the communication range by a factor of four, increasing the speed,
reducing energy consumption, and extending the data-carrying capacity of
broadcast packets, should allow wider adoption of the standard in consumer
devices, including the emerging IoT [4]. As a result, it could be likely that
BLE 5 eventually becomes one of the most preferable wireless standards
used in many IoT applications.
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2.1.2 BLE-5 Communication Stack

The BLE protocol stack consists of three major components: an application,
a BLE controller and a BLE host (see Figure 2.1). An application and a BLE
host are always a part of a single chip. However, they can be implemented
with a controller on a single chip as well. The application (App) is the
highest block of the stack, and it represents the direct interface with the
user. The host implements the functionalities of the upper layers, while the
controller implements the link layer (LL) and physical layer (PHY) [13]. The
communication between host and controller takes place via the standardized
Host Controller Interface (HCI) [6].

Figure 2.1: BLE communication stack (adapted from [13]).

• The host includes the following layers:

– Generic Access Profile (GAP)
– Generic Attribute Profile (GATT)
– Logical Link Control and Adaptation Protocol (L2CAP)
– Attribute Protocol (ATT)
– Security Manager Protocol (SMP)

• The controller includes the following layers:
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– Link Layer (LL)
– Physical Layer (PHY)

Physical Layer (PHY):

Figure 2.2: Distribution of 40 BLE channels and a location of 37 data channels (0-36) and 3

advertising channels (37-39) in the 2.4GHz ISM spectrum band [7].

BLE operates in the globally unlicensed 2.4 GHz Industrial, Scientific and
Medical (ISM) band, the same one used by Wi-Fi and ZigBee. To be precise,
the BLE radio band covers from 2.4 GHz to 2.48GHz. As can be seen in
Figure 2.2, the band is divided into 40 BLE radio channels. Three of these
channels (37, 38 and 39) are dedicated for advertising., while the remaining
37 are allotted to exchange data packets over BLE communication. To avoid
external interference in the ISM radio band with other wireless communi-
cations, BLE implements an Adaptive Frequency Hopping (AFH) for its
connections. Using the AFH, BLE devices that share a connection period-
ically change the BLE radio channel used for communication to mitigate
interference and multipath fading [5]. Two variants have been added to the
BLE 5 standard. The first one is LE 2M PHY which offers double the symbol
rate compared to the 1 Mbps BLE standard (see Section 2.1.1.2). Both the LE
1M and LE 2M PHYs are part of LE Uncoded PHY as they do not support
error correction coding stage. However, another variant supports two coding
schemes S=8 and S=2 (S is the symbols per bit) which is called as LE coded
PHY [4]. Moreover, BLE 5 also allows to use the channel 0-36 as secondary
Adv. channels. This allows BLE devices to broadcast longer Adv. packets to
other non connected BLE devices.
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Link Layer (LL):

Figure 2.3: Link layer state machine (adapted from [17]).

The Link Layer (LL) is the software (SW) part that directly interfaces with
the PHY. The LL schedules packet transmission and reception based on
parameters provided by the host. It also ensures the transmission of data and
the time synchronization between two consecutive packets from different
channels. It defines various roles a device can play, i.e., advertiser, scanner,
master, and slave.

The LL defines a state machine as shown in Figure 2.3:

• Standby: The device does not exchange packets with other devices
[17].

• Advertising: The device acts as an advertiser and broadcasts advertis-
ing packets on Adv. channels [17].

• Scanning: The device acts as a scanner and scans for packets sent by
an advertiser on Adv. channels [17].

• Initiating: The device responds to the Adv. packets and initiates the
connection [17].
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• Connection: The devices communicate with each other by acting one
as a master and another as a slave. The Master defines the timing of
transmission [17].

Host Controller Interface (HCI):

The HCI can operate over different physical communication protocols like
SPI, UART or USB [6]. The communication between the host and the con-
troller is achieved with standardized commands and events. The host sends
standardized commands defined by the HCI to the controller and can expect
the events in return as a response from the controller. Due to the standard-
ization, the different BLE hosts and controllers from different vendors can
also communicate with each other [17].

Logical Link Control and Adaptation Protocol (L2CAP):

The L2CAP receives the application data from upper layers and encapsu-
lates them into the standard BLE data packet, which can be transmitted
on data channels during connection. It also performs fragmentation and
recombination when a large amount of data needs to be exchanged [17].

Attribute Protocol (ATT):

The ATT layer allows a device to discover and set attributes of another
(remote) BLE device. These attributes can be device name, device model
number, sensor values [12]. It is a peer to peer protocol between client and
server. Attribute client and attribute server communicate with each other on
a dedicated L2CAP channel. The server provides a set of attributes that can
be read and set by the client [6]. The client and server role is independent
of the master or slave role of the device.
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Generic Attribute Profile (GATT):

The Generic Attribute (GATT) uses globally unique 128-bit universally
unique identifier (UUID) to identify profiles, services and characteristics
exposed by the connected remote device [6]. A remote device can expose, for
example heart rate monitor service and its corresponding characteristics like
heart rate and unit. For efficiency, shortened 16-bit UUID is also supported
and there are many 16-bit UUIDs defined by the Bluetooth SIG for defined
GATT profiles. GATT uses ATT as a transport mechanism to exchange the
data of the services and characteristics.

Security Manager (SM):

The Security Manager deals with encryption and authentication of data
packets using 128-bit AES cipher block. The privacy of the BLE devices is
also improved by the security manager by providing an additional method
for generating a random device address.

Generic Access Profile (GAP):

The Generic Access Profile is the highest layer in the BLE host component
of the stack. It defines the procedures used for device discovery, connec-
tion setup, service discovery and security. GAP defines four device roles:
Broadcaster, Observer, Peripheral, and Central [6]. The device can operate in
one or more GAP roles at the same time if it is supported by the link layer
of the used controller. A broadcaster periodically transmits data on Adv.
channels using Adv. events. An observer scans for these Adv. packets on the
Adv. channel. A central device acts as a master and initiates connections to
several peripherals. The peripheral accepts a connection and act as a slave
device.

2.1.3 BLE-5 Communication

The BLE 5 supports two modes of communication: connection-based and
connection-less. To transfer the data over connection-based communica-
tion, devices need to establish a connection by exchanging a number of
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connection-less packets before transmitting the actual data. However, main-
taining a connection also incurs overhead for resource-constrained devices
with a low duty cycle (e.g., sending a packet every 5 minutes as we show in
Section 6.1). The connection-less mode can be used to broadcast a data uni-
directionally and can also be used to establish a connection in connection-
based mode.

2.1.3.1 Legacy Advertising:

In the connection-less mode we can use two different advertising specifica-
tions: Legacy Advertising and Extended Advertising. As BLE 5 is backward
compatible, it also supports the Adv. packet structure and Adv. mode of
the BLE 4.x, called Legacy Advertising (Leg. Adv.). The connection-less
communication can be achieved over Leg. Adv. A legacy advertising PDU
can advertise up to 31 bytes of payload on Adv. channels [6]. In Leg. Adv.
mode, BLE devices can act either as an advertiser or a scanner.

Advertiser:

Figure 2.4: Legacy Advertising on an Advertiser (adapted from [6]).

In the advertising state, the link layer broadcasts the Adv. PDUs on one
or all three Adv. channels in each Adv. event. Fewer Adv. channels can be
selected in order to save power. However, advertising on more channels
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increases the possibility of collecting the packet on the scanner devices.
The data sent during an Adv. event on these Adv. channels carries the
same information in its protocol data units (PUDs). The time between two
consecutive Adv. events can be configured by the user application and is
defined by the advertising Interval (advInterval) parameter [6]. The advInterval
is in the range of 20 ms to 10 sec and can be set with an integer multiple of
0.625 ms. As seen in Figure 2.4, the actual interval between two Adv. events
is extended with the advDelay value. It is a pseudo-random value with a
range of 0 ms to 10 ms generated by the LL and added at the end of each
Adv. event to avoid a collision with other BLE devices [6].

Scanner:

Figure 2.5: Scanning state with scanInterval and scanWindow parameters using all three Adv.
channels (adapted from [6]).

A device needs to enter into a scanning state to receive the Adv. packets
transmitted by an Advertiser. While scanning, the link layer listens on one
or up to 3 Adv. channels. The duration of scanning on a single Adv. channel
is defined as ”scan window”, and the interval between the start of two
consecutive scan windows is set with the scanInterval parameter [6]. If the
scanWindow and the scanInterval parameters are set to the same value by the
host, the LL should scan continuously [6]. The scanning process is shown in
Figure 2.5.

The scanner supports two type of scanning, defined by the host: passive
and active. When in passive scanning, the LL only receives packets and is
not permitted to send any packet. In active scanning, the LL listens for Adv.
PDUs and, depending on the Adv. PDU type, it may request an advertiser

16



2.1 Bluetooth Low Energy (BLE)

to send additional information in order to establish a connection by sending
a scan request [6].

Legacy Advertising Packet Format:

The packet transmitted on Adv. channels in the Adv. mode, uses the Adv.
channel PDU. As we have been discussing connection-less communication
over Leg. Adv., we will particularly focus on Adv. channel PDU.

Figure 2.6: Link layer packet format for legacy advertising (adapted from [6]).

The ChSel (channel selection), TxAdd (transmitter address), and RxAdd
(receiver address) fields of the Adv. header from the link layer Adv. channel
PDU are specific to the different PDU type defined by Adv. modes [6].
PDU type 0010b indicates Non-Connectable and Non-Scannable Undirected
(ADV NONCONN IND) PDU used for connection-less transmission. The
length of the Adv. Payload is defined in the length field of the adv. header
and is valid in the range of 1 to 37 octets. Legacy packets are not allowed to
transmit more than 37 bytes as per the BLE standard.

Figure 2.7: ADV NONCONN IND PDU (adapted from [6]).

The ADV NONCONN IND PDU is used by the Advertiser in connection-
less communication mode to broadcast Adv. packets on the Adv. channels.
On broadcasting this PDUs, an advertiser does not expect any scan request
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from the scanner in order to establish a connection. This PDU is particularly
used for connection-less advertisement and shown in Figure 2.7. It is used in
the Adv.Payload field of the advertising channel PDU shown in Figure 2.6.
The TxAdd field in the Adv.Header (see Figure 2.6) indicates whether the
advertiser’s address is public (TxAdd = 0) or random (TxAdd = 1) and sets
the corresponding address in the AdvA field of the ADV NONCONN IND
illustrated in Figure 2.7. The length of the actual data can be calculated as:

AdvData = Length from Adv.Header− 6 (2.1)

The limited payload length of Leg. Adv. can be a problem for some appli-
cations. For example, the limited payload size of 37 bytes is too small to
carry all the characters in most URLs and another important data for some
applications [14]. Fortunately, BLE 5 helps these applications by introducing
Ext. Adv.

2.1.3.2 Extended Advertising:

Since the specification of BLE 5, another connection-less mode, called Ex-
tended Advertising is specified. A device using Ext. Adv. is able to transmit
a longer data packets and may use other BLE radio channels for advertising
than channels 37, 38 and 39. The channels used for Leg. Adv. are called
primary Adv. channels, while the remaining channels are also used for
advertising in Ext. Adv. called secondary Adv. channels [6].

Advertiser:

Ext. Adv. supports up to 254 bytes of user data in Adv. packets and it can
be achieved by first advertising the Extended Advertising (ADV EXT IND)
PDU on the primary Adv. channel, that points to an Auxiliary Advertising
(AUX ADV IND) PDU on a secondary Adv. channel. AUX ADV IND PDU
is the one who carries up to 254 bytes of actual user data. Ext. Adv. can
be observed in Figure 2.8. An advertising event begins by sending Adv.
PDUs on a primary Adv. channel with the first used Adv. channel index
and ends with the last used Adv. channel index. The time between Adv.
events is specified by the Adv. interval which can be set in the range of 20
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Figure 2.8: Extended Advertsing on an Advertiser (adapted from [6]).

ms to 10 sec. An Ext. Adv. event starts with an Adv. event and ends with an
AUX ADV IND PDU if the user data is limited to 254 bytes. If the device
needs to transmit more than 254 bytes of data, BLE 5 Ext. Adv. supports
AUX CHAIN IND PDUs and can be seen in Figure 2.9. This allows devices
to broadcast a large amount of data in its Adv. events.

Figure 2.9: Exteneded Advertising with AUX CHAIN IND PDUs on an Advertiser
(adapted from [6]).

Data with a length of more than 254 bytes is fragmented into several
packets. The fragmented data is transmitted on a secondary Adv. chan-
nel using AUX CHAIN IND PDUs following the AUX ADV IND PDU.
AUX ADV IND PDU points to the AUX CHAIN IND PDU and AUX CHAIN IND
PDU points to the next AUX CHAIN IND PDU and it forms a chain hence
called as Chain PDUs.

Ext. Adv. also allows skipping the number of Adv. events before advertising
AUX ADV IND. As seen in Figure 2.10, all the PDUs from both the Adv.
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Figure 2.10: Skip number of advertising events before transmitting AUX ADV IND PDU
(adapted from [6]).

events point to the same AUX ADV IND PDU. Ext. Adv. event skips one
Adv. event (e.g., Adv event 1 as shown in Figure 2.10) before transmitting
the AUX ADV IND PDU. The maximum number of events that can be
skipped are 255 [6].

Scanner:

Figure 2.11: Extended Scanning with Aux packet (adapted from [6]).

In each scanWindow, the link layer scans on a primary Adv. channel index
for Adv. packets and always scans all the primary Adv. channel indices
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before repeating the same channels. The LL can scan continuously for a
complete interval if scanWindow and scanInterval parameters are set to the
same value. As shown in Figure 2.11, on receiving a PDU with the AuxPtr
field present, the scanner should also listen to the auxiliary PDU it points to
[6]. To achieve that, the scanner scans on a specified secondary Adv. channel
on a particular time span pointed by the ADV EXT IND PDU.

Extended Advertising Packet Format:

Figure 2.12: Extended Advertising channel PDU (adapted from [6]).

As BLE 5 supports several Adv. and data PDUs, Ext. Adv. PDU can be
differentiated from other PDUs with PDU type 0111b. All other fields in the
header remain the same as in the Adv. channel PDU header of Leg. Adv.
(see Figure 2.6).

The Ext. Header Length indicates the length of the Ext. Header field and the
value varies in the range of 0 to 63 octets [6]. The AdvMode field indicates
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the mode of the advertisement and the value of the AdvMode field shall be
set to 00b for a Non-connectable Non-scannable mode to not receive any
response from the Scanner. AdvData may contain advertising data from the
host. However, the amount of actual data we can transmit is dependent on
the number of fields present in the Ext. Header and can be calculated as:

AdvData = PDU Adv. Len− (Ext. header Len + 1) (2.2)

The order of the Ext. Header fields present in the Ext. Header is the same as
the flags present in Ext. Header flag (i.e., the AdvA field is first if present,
then the TargetA field if present, etc.)[6].

The AdvA field sets the advertiser’s device address and the TargetA field
sets the scanner’s or initiator’s device address to which the Adv. packet is
directed [6].

Figure 2.13: AdvDataInfo Field (adapted from [6]).

Adv. sets are used to transmit different Adv. events with different advertise-
ment parameters (e.g., advertising PDU type, interval, PHY) simultaneously.
These different Adv. sets transmitted by a single device are identified by
Adv. Set ID (SID) [6]. The Adv. Data ID (DID) field of AdvDataInfo (ADI)
(see Figure 2.13) is set to different IDs, depending on the data set in the
payload field [6]. Different DIDs are set for different data.

Figure 2.14: AuxPtr Field (adapted from [6]).

The ADV EXT IND PDU header contains an AuxPtr field in its Ext. Header,
and carries the information about AUX ADV IND PDU advertised on
a secondary channel. As shown in Figure 2.14, AuxPtr contains a time
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offset (AUX Offset) from this primary Adv. packet and a secondary Adv.
channel (Channel Index) on which AUX ADV IND PDU will be transmitted.
Basically, the Scanner of this advertisement will be able to know exactly
when and where to listen for the AUX ADV IND PDU. The Aux Offset is
set at least the length of the ADV EXT IND packet plus Minimum AUX
Frame Space (T MAFS) which is 300 µs [6]. The Aux PHY field is set to the
PHY among LE 1M, LE 2M and LE coded used to transmit the auxiliary
packet.

2.1.3.3 Benefits of Extended Advertising:

As discussed earlier, the maximum data length in Leg. Adv. is limited to 31

bytes. To transmit longer than 31 bytes of data with legacy advertisement,
the scan response (SCAN RSP) PDU can be used, where an advertiser
can transmit additional up to 31 bytes of user data in its payload. To
transmit this additional SCAN RSP PDU, a scanner must send a scan request
(SCAN REQ) PDU to the advertiser to request additional information about
the advertiser. However, to transmit more than a total of 62 bytes of user
data a device needs to establish a BLE connection. However, with an Ext.
Adv., the user can send more than 31 bytes of data on the Adv. channels
without even establishing a connection, which can potentially be more
energy efficient for the same amount of data when no bi-directional data
exchange is necessary.

For certain applications (e.g., temperature sensing device that monitors
room temperature and sends 100 bytes of IPv6 packet every 5 min to the
router BLE device that sends the temperature data to the Internet.), it is also
important to maximize the battery life of the power-constrained devices
on the receiving end. That can be achieved by enabling devices to sleep
for a longer interval without dropping important advertised data. Figure
2.15 shows an example of how Ext. Adv. with event skip parameter is
advantageous for low duty cycle devices. If a receiver failed to receive the
Adv. packet of the first Adv. event due to its sleeping period, it gets another
opportunity to receive an Adv. packet from another Adv. event point to the
same Aux packet. With the information received by the Adv. packet, the
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Figure 2.15: Event skip example with scanning (adapted from [6]).

scanner knows when to wake up again to collect Aux packet with original
data.

2.1.3.4 Extended Advertising in BLE Stack:

As described in Section 2.1.3.2, Ext. Adv. allows BLE devices to broadcast a
large amount of data in its Adv. packets over connection-less communication.
BLE devices in Ext. Adv. act either as an advertiser or a scanner and the
design of the Ext. Adv. in BLE stack is also based on these two roles of
operation. The Ext. Adv. is enabled, disabled, and configured with the help
of commands and events that are exchanged between the host and the
controller part of the stack using the Host Controller Interface (HCI).

Advertiser

The procedure of how the host can start Ext. Adv. is shown in Figure 2.16.
The host can start Ext. Adv. by issuing HCI LE Set Extended Advertising Pa-
rameters command to the controller to set the Adv. parameters. On receiving
a command from the host, the controller generates the command complete
event and acknowledges the host that such command was successfully
executed. If the controller does not support a command, it shall return the
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Figure 2.16: HCI commands and events for enabling Extended advertising [6].

respective error code. Furthermore, the host issues HCI LE Set Extended
Advertising Data command in order to set the data used in advertising PDUs
that have a data field. Although ADV EXT IND PDU does not carry any
user data, the data set by this command is broadcasted in the payload field
of AUX ADV IND PDU and AUX CHAIN IND PDUs. HCI LE Set Extended
Scan Response Data command is issued on receiving the command complete
event for the latest command. It is used to provide scan response data
used in scanning response PDUs. For connection-less advertisement, this
command can be skipped, as the advertiser does not expect any scanning
request after the advertisement. The last but most important command to
enable the advertisement is HCI LE Set Extended Advertising Enable. The
controller only starts an advertising event when it receives a command to
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enable it. The same command is used to disable an advertisement.

Scanner:

Figure 2.17: HCI commands and events for enabling scanning [6].

Figure 2.17 shows how the host on a BLE device can use the HCI interface
to enable Extended Scanning. When entering into scanning state, the host
needs to send the HCI LE Set Extended Scan Parameters command to the
controller. The command is used to set the parameters of scanning state.
Scan window and scan interval parameters define how long and how fre-
quently a controller should scan. On receiving the command complete event
from the controller, another important command the host needs to send
is HCI LE Set Extended Scan Enable to enable scanning. After successfully
switching a radio into the scanning state, the scanner expect advertising
packets on the advertising channels. The advertising packet from other
devices trigger an event called LE Advertising Report in the controller in
order to notify the host about the received data. The termination of the
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scanning state can be achieved by setting the value of the Enable parameter
of the HCI LE Set Extended Scan Enable command to the ”Scanning disabled”
value.

2.2 IPv6 over BLE

Figure 2.18: BLE stack for IPv6 over BLE (adapted from [17]).

Even though Bluetooth was originally introduced to allow communication
among small devices, computers, and mobile phones, with the release of
RFC 7668 [18], Bluetooth devices can have independent Internet access and
the ability to exchange IPv6 packet over the Internet.

IPv6 is the state-of-the-art protocol for communication with a large number
of Internet-connected devices since it provides a larger address space and
allows each device to have its own IP address. Although BLE was not
designed to provide IPv6 connectivity, the best way to transport IPv6 packets
over BLE connection is by using IPv6 over Low-power Wireless Personal
Area Network (6LoWPAN) [16].
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2.2.1 6LoWPAN over BLE

The 6LoWPAN is a special layer designed to provide IPv6 connectivity to
the power-constrained devices. It was initially proposed to exchange IPv6

packets over IEEE 802.15.4 links [24]. Later recognizing the importance of
IPv6 connectivity for other wireless technologies, the Internet Engineering
Task Force (IETF) proposed a standard RFC 7668 [17] that enables IPv6

communication over the BLE standard by using a revisited 6LoWPAN layer.
This adaptation layer is located in between the BLE L2CAP and IPv6 layer
of the network stack, as shown in Fig.2.18.

The 6LoWPAN layer of BLE handles the encapsulation of IPv6 packets. At
the time in which the RFC 7667 was released, the maximum transmission
unit (MTU) of the BLE logical link was 23 bytes, which was to transmit
the 40 bytes of complete IPv6 header and the 8 bytes of UDP header. To
improve the performance of BLE devices with respect to IPv6 connectivity,
it was needed to implement header compression. The 6LoWPAN layer
of BLE performs the compression and decompression of IPv6 as well as
UDP headers. Due to the limited payload size of the logical link of BLE,
fragmentation, and reassembly of the 1280 bytes or larger IPv6 packets is
performed by the L2CAP layer and not by the 6LoWPAN layer like in other
6LoWPAN standards.

2.2.2 Network Topology

IPv6 over BLE uses a connection-based approach. The peripheral devices
communicate with a central device with a separate link and form a star
topology or one subnet. In a subnet, peripherals act as nodes (6LNs) and
the central device acts as a border router (6LBR). The figure 2.19 shows a
typical instance where the BLE subnet is connected to the Internet. 6LN
devices communicate through the 6LBR to the other 6LN device or to the
Internet [17]. The border router forwards the IPv6 packets between 6LN
and the Internet.

In some cases, the BLE subnet is not connected to the Internet and becomes
a private network. In that case, the 6LBR acts as a central and rout the IPv6
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Figure 2.19: BLE subnet with Internet connectivity (adapted from [17]).

packets among the 6LN, which act as Nodes of the subnet, as shown in
Figure 2.20.

Figure 2.20: BLE subnet without Internet connectivity (adapted from [17]).

2.2.3 Stateless Address Autoconfiguration

The BLE IPv6 link-local addresses of both 6LN and 6LBR are generated
based on the 48-bit Bluetooth device addresses. The link-local address of
the BLE devices is formed with the 64-bit Interface Identifier (IID) which
is formed by inserting 0xFF and 0xFE in the middle of the 48-bit device
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address and the prefix fe80::/64, as described in RFC7136 [19] and RFC 4291

standards [20].

2.2.4 Header Compression

Figure 2.21: Compressed IPv6 and UDP header (adapted from [14]).

As mentioned in Section 2.2.1, IPv6 and UDP Header compression is the
most significant function of the 6LoWPAN layer. The RFC 6282 [21] standard
has described the rules for compression of IP headers. The main idea behind
header compression is that IPv6 header of BLE packets uses some common
and redundant values which can be compressed and either fully or partially
elided and can be restored on receiving end [14]. For example, 128-bit source
and destination IPv6 address can be replaced by a 4-bit context identifier
(CID) and recovered with the help of shared contexts. Compressed format
of IPv6 and UDP header is shown in Figure 2.21.

The LOWPAN IPHC Encoding format defined in RFC 6282 [21] standard is
used to compress the IPv6 header. The encoding can be 2 or 3 bytes depend-
ing on the context. The unelided fields of the IPv6 header are appended
after the LOWPAN IPHC in compressed or partially elided format. These
2 bytes of base encoding include TraffIc class and Flow Label (TF), Next
Header (NH), Hop Limit (HLIM), Context Identifier Extension (CID), Source
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Address Compression (SAC), Source Address Mode (SAM), Multicast Com-
pression (M), Destination Address Compression (DAC) and Destination
Address Mode (DAM). The UDP header is also compressed using LOW-
PAN IPHC Encoding into 2 bytes. The compressed UDP header contains
Checksum (C), Port (P), and source port and destination port.

2.3 The Zephyr Operating System

The Zephyr OS is a real-time open-source operating system hosted by
the Linux Foundation and used for low cost, connected, and resource-
constrained IoT devices [22]. This operating system is written in C and
assembly language and runs on platforms with as few as 8kB of memory.
It is optimized for power-constrained and small memory footprint devices.
In terms of connectivity, it supports many wireless communication proto-
cols such as Bluetooth Low Energy, Wi-Fi, NFC and IEEE 802.15.4 while
providing full IP network stack with HTTP, UDP and TCP support. It also
supports low-power IoT communication standards like 6LoWPAN, CoAP,
and MQTT.

2.3.1 Data Sending (TX):

The process of sending IPv6 data over connection-based BLE using the
Zephyr network stack can be observed in Figure 2.22:

1. The network application opens the BSD socket and uses it while
sending the data. The application data is fed into the buffer and
prepared to be sent to kernel space.

2. If the socket is open for a UDP connection, the UDP header is initially
added in front of the application data in the network protocol layer.
The header of the network protocol completely depends on the socket
type. Furthermore, the IP header is added to the UDP/TCP packet.
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Figure 2.22: Network data flow while sending a Network packet in the Zephyr Network
stack (adapted from [22]).

3. In order to send the IP packet over L2 network technologies, the
interface needs to be set up and enabled. The network abstraction
layer checks the interface and, if it is set up, it passes the packet to the
lower layer.

4. The packet is checked by a dedicated L2 layer and adds its header to
the packet and sends the packet to the network device driver layer.

5. The network device driver layer sends the packet on its physical
channel.

2.3.2 Data Receiving (RX):

Whenever a device receives an IPv6 packet over connection-based BLE, the
received network packet is processed in the network stack in the following
manner:

1. The device driver layer receives the network packet. This layer assigns
a RX buffer for the received packet and passes it to the correct L2

network technologies layer.
2. The dedicated L2 technology from the L2 network technologies layer

stripes the header of the L2 layer and passes it to the upper layer.
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Figure 2.23: Network data flow while receiving a Network packet in the Zephyr Network
stack (adapted from [22]).

3. If the packet is IP-based, the Network protocol layer checks if it is
a valid IP packet by calculating the checksum and by checking the
fields of the IP header. If this is the case, then IP and UDP headers are
stripped from the packet.

4. It finds the active socket to which the received packet belongs, and
passes the data to the application layer.

5. The application layer receives the data and processes it.

2.4 Hardware

Nordic Semiconductor nRF52:

The nRF52 DK is a popular development kit for ultra-low power operations
that supports Bluetooth 5, Bluetooth mesh, ANT, NFC, and 2.4 GHz wireless
protocols [34]. The kit can be powered up by USB or external sources. It can
also be powered by a CR2032 battery for on-field testing. The application
runs on the ARM® Cortex®-M4 32-bit processor with 64 MHz clock speed.
It also offers 512 kB of flash and 64 KB of RAM. Nordic semiconductor offers
a so-called SoftDevice with a full BLE communication stack. This SoftDevice
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Figure 2.24: Nordic Semiconductor nRF52 development kit [23].

is easily available on the Internet but its source code is restricted. The
significant advantage of this SoC is that it is supported in many open-source
operating systems for resource-constrained devices like Zephyr RTOS, that
allows full access to the inner working of the BLE controller. Using Zephyr
RTOS and the nRF52 platform, we are able to have full control over the BLE
radio and can implement our approach.

2.5 Related Work

This section explains the existing scientific studies that are related to this
thesis (Section 2.5.1). It also summarises existing BLE stack implementations
for resource-constrained devices that can be considered while implementing
this thesis work (Section 2.5.2).

2.5.1 Research Studies

Yoon et al. [25] used the connection-less BLE to transfer emergency data of
Healthcare device using IPv6 packets over IPv6 over BLE (6BLE) platform.
The design uses connection-based and connection-less communication to
transmit emergency data to the emergency center. The authors focus on
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a critical medical situation when the patient’s paired smartphone is not
connected, the emergency data should reach the emergency center at any
cost. Hence, the authors suggest the use of the Advertising process to trans-
mit emergency data to the non-paired BLE devices. Since BLE advertising
packets support only up to 31 bytes in the payload, fragmentation and
segmentation have to be performed to transmit at least 66 bytes size of
emergency data including IPv6 compressed header. To transmit 66 bytes
of emergency data through advertising packets, the authors have defined
a fragmentation header that contains fragmentation dispatch, length and
fragmentation identifier that is set using 6LoWPAN. When the critical situ-
ation arises, the healthcare device starts advertising and sends fragments
using LE update Adv data HCI command. The scanner on the other end
gathers the fragments using LE Adv reports events and generates full IPv6

packet.

The evaluation of this work has been performed with 102 bytes of UDP
packet. Since the Adv. payload size is limited to 31 bytes, excluding the
fragmentation header advertising packet offers only 24 bytes for the user
data. Although the design supports IPv6 packets over the advertising pro-
cess, it would only be suitable for small IPv6 packets. Hence, this work
does not adhere to the minimum MTU size of 1280 bytes mandated by IPv6.
The authors also suggests the use of a smartphone gateway application,
which converts the BLE packet to the IPv6 packet, but it does not provide
end-to-end IP connectivity between two devices.

Spörk [16] presented the design and implementation of an IPv6 over BLE
communication stack using Contiki OS. The implemented stack is open
source, which allows others to use the code and do further research. The de-
sign of Spörk’s IPv6 over BLE communication stack introduces an additional
BLE-HAL layer. The implemented BLE-HAL layer supports CC2650 BLE
hardware and every hardware should provide a hardware-specific imple-
mentation of BLE-HAL to support IPv6 over BLE stack. Furthermore, Spörk
also indicates the possibility of a more energy-efficient IP stack than the
existing stack implementation by suggesting the use of advertising packets
to exchange IPv6 packet between network devices as future work.

In contrast to these existing researches, we used the Ext. Adv. feature of BLE
5 to transmit large IPv6 packets over connection-less communication. It uses
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Adv. PDUs to transmit these IPv6 packets to the non-connected BLE devices.
As we discussed earlier, Yoon et al. implemented a new fragmentation
header to transmit IPv6 packets using Adv. PDUs. With our approach, the
fragmentation and the reassembly of an IPv6 packet is handled by the Ext.
Adv. itself. Since each fragmented PDU carries up to 254 bytes of user data,
devices need to transmit less packets to transmit the 1280 bytes of IPv6

packet compared with Yoon et al’s. approach. This may also lead to more
energy-efficient and more reliable connection-less IPv6 communication.

2.5.2 BLE Stacks

This section summarizes the most relevant implementation of BLE commu-
nication stack for resource-constrained BLE devices.

BLE stack Open
Source

IPv6 BLE-5 REF

Contiki OS - BLE stack YES YES NO [27]
Nordic Semiconductor -
BLE stack

NO YES YES [22]

Texas Instruments - BLE
stack

NO NO YES [29]

Apache Mynewt - NimBLE YES NO YES [30]
Zephyr RTOS - BLE stack YES YES YES [22]

2.5.2.1 Contiki OS BLE Stack

Contiki is an open-source operating system for resource-constrained IoT
devices. It is designed and developed to provide standardized low-power
wireless communication to the resource-constrained devices [27]. Contiki
supports Internet protocols such as IPv4, IPv6, and 6LoWPAN. Although
Michael Spörk has provided support to the open-source IPv6 over BLE
through his thesis [16], at the time of implementation Contiki was not
supporting any BLE-5 supported hardware. Furthermore, Contiki does not
support the exchange of IPv6 packets over connection-less BLE.
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2.5.2.2 Nordic Semiconductors BLE Stack

Nordic Semiconductors supports the IPv6 over BLE 6LoWPAN adaptation
layer as defined in the RFC7668 standard draft [28]. Nordic Semiconductors
also provides support to BLE 5 features such as increased broadcast capacity,
long-range mode and 2 mbps data rate in its software development kits
(SDK). The application layer interacts with the API provided by SDK to
use the communication stack known as a SoftDevice. Nordic SoftDevices
are basically pre-compiled binary with a Bluetooth communication stack
without run time dependencies: hence, developers can not change the
functionality or add additional features to the communication stack. This
choice keeps the development cycle stable and prevents the developer
from introducing a bug during the development. The SDK, however, is a
proprietary, closed service binary that does not allow fine-grained control
over the BLE radio (e.g., provide the control over used channels for Ext.
Adv.) such control is necessary in order to create an effective IPv6 over
connection-less BLE solution.

2.5.2.3 Texas Instruments BLE Stack

TI SimpleLink BLE5-Stack Software Development Kit offers the functionality
of BLE5 with the CC2640R2F platform [29]. The controller, host, and appli-
cation part of the stack are implemented on the CC2640R2F as a single-chip
solution. The application and BLE stack is based on Texas Instrument RTOS
know as TI-RTOS. Though the BLE stack supports Ext. Adv. feature to
transmit a large amount of data in its Adv. packets, it doesn’t support IPv6

over BLE communication. Additionally, the stack is not open-source.

2.5.2.4 Apache Mynewt NimBLE

Apache Mynewt offers NimBLE, known to be the world’s first open-source
BLE stack with both host and controller implementations and is compli-
ant with BLE 5 specifications [30]. It also includes HCI implementation,
which allows devices to use the different controller and host parts from
different vendors. Though NimBLE supports Ext. Adv., 2Msym/s PHY for
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higher throughput, Coded PHY for LE Long Range features of BLE 5, it
doesn’t support IPv6 over BLE communication. The latest Apache Mynewt
1.7.0, Apache NimBLE 1.2.0 released (August 4, 2019) doesn’t support IPv6

communication nor the expected release date is available.

2.5.2.5 Zephyr RTOS BLE Stack

As explained in Section 2.3, Zephyr is an open-source operating system
designed for low-powered resource-constrained IoT devices. It offers a full
IP network stack while supporting several link-layer technologies such as
Bluetooth Low Energy, Wi-Fi, NFC and IEEE 802.15.4. Besides, it is fully
compliant with RFC 7668 standard that allows BLE devices to exchange IPv6

packets with other IP supported BLE devices. Furthermore, though the BLE
stack of the Zephyr RTOS is BLE 5 compliant and provides support to BLE
5 supported hardware, the Ext. Adv. feature of BLE 5 is not implemented in
the existing BLE stack.

However, the open-source implementation of the entire BLE stack gives
full control over the radio, which allows us to implement Ext. Adv. on
the controller as well as the host part of the BLE stack. Moreover, since
the network stack is already compliant with RFC 7668 standard, the open-
source implementation gives us an opportunity to implement an IPv6 over
connection-less solution using existing implementation.
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Connection-based BLE

There are two communication modes supported by BLE 5, one is connection-
based and the other one is connection-less. How they can be used to provide
IPv6 connectivity to IoT devices is presented in this chapter. Section 3.1
explains the connection-based communication while Section 3.2 explains
connection-less communication with all the necessary formulas required
to perform theoretical analysis. Section 3.3 compares the connection-based
BLE vs connection-less BLE in detail in terms of their radio-on time.

3.1 Connection-based BLE

Figure 3.1: Connection-based BLE communication (adapted from [37]).
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In connection-based BLE, bi-directional data transfer occurs between a mas-
ter and a slave. As shown in Figure 3.1, the connection is set up between
both devices in the connection setup phase by exchanging packets on pri-
mary Adv. channels. When the BLE connection is successfully established,
application data is exchanged over the data channels in connection events.
The timing of connection event is specified by the Connection Interval param-
eter. In each connection event, the master transmits the first packet and slave
respond to that. However, a slave can skip the number of connection events
by using the Slave Latency parameter. It means, the slave doesn’t wake up to
receive the packet from the master and does not transmit any packet in that
connection event in order to conserve energy. The maximum Slave Latency
depends on the Connection Interval and Supervision Timeout parameter. If
no packet is exchanged during maximum Supervision Timeout of 32 sec, the
connection is considered to be lost [6].

We are interested in the radio-on time required to transmit D bytes from
slave to master using the connection-based BLE mode.

The total Radio-on time of slave device is

ton = tdata + tk, (3.1)

where tdata is the time needed to transmit the actual data packets, while tk
is the radio-on time of the slave required to exchange empty packets with
the master.

The number of connection events between exchanging two subsequent IPv6

packets is calculated as:

NCE =

⌈
ta

Connection Interval

⌉
, (3.2)

where ta is the time between two IPv6 packets (application interval) [37],
while Connection Interval is the BLE parameter that decides the timing of
each connection event as discussed above.

The number of connection events required to transmit application data is

NCE data =

⌈
D
F

⌉
, (3.3)
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where D is the data in bytes, F is the capacity of connection event [37].

The slave device can skip a number of connection events using Slave Latency.
The Slave Latency can be configured and dynamically changed, but needs
to adhere to:

Slave Latency = ((Supervision Timeout)/(connection Interval · 2))− 1,
(3.4)

as shown in [6].

where Supervision Timeout is the timeout for connection as discussed above.

The total number of connection events within an application interval ta
when the slave exchanges keep-alive packets with a master is calculated
as:

Nslave CE =

⌈
NCE − NCE data

Slave Latency + 1

⌉
, (3.5)

In a connection event, when a slave wakes up to exchange the keep-alive
packet, it exchanges two keep-alive packets with a master. One is from
master to slave and the other one is from slave to master. Hence, the total
number of keep-alive packets exchanged within an application interval is
calculated as:

Nslave = Nslave CE · 2, (3.6)

The total number of bytes exchanged within an application interval to
exchange keep-alive packets is given by

Nslave bytes = Nslave · Sk (3.7)

where Sk is the size of a keep-alive (empty) packet which is a link-layer
packet without data. The keep-alive packet consists of a 1-byte preamble,
4-byte access address, a 2-byte link-layer header, and a 3-byte CRC, in total
Sk = 10 bytes.
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The total radio-on time required to exchange keep-alive packets in an
application interval (ta) can be calculated by

tk =
Nslave bytes · 8

data rate
, (3.8)

where the multiplication of 8 converts a number of bytes into a number of
bits. While data rate can be 1 Mbps for 1M PHY channel.

The radio-on time to transmit D bytes from slave to master depends on
the number of D bytes and the number of packets required to transmit it.
The maximum data-carrying capacity P of a data packet in BLE 5 is 251

bytes. Since we are considering low duty-cycled applications, we assume
the connection interval long enough to send the whole IPv6 packet in
one connection event. The total number of bytes required to send D bytes
including link-layer header is given by

Sdata =

{
dD

P e · P + dD
P e · Sk, if D mod P = 0⌊D

P
⌋
· P +

⌊D
P
⌋
· Sk + (D mod P) + Sk, otherwise

(3.9)

as shown in [37].

The total radio-on required to transmit Sdata in an application interval is
calculated as:

tdata =
8 · Sdata
data rate

. (3.10)

3.2 Connection-less BLE

In connection-less communication, an advertiser transmits packets on the
Adv. channels while the scanner scans for these packets on those channels.
As we discussed in Section 1.1, connection-based communication may not
be energy efficient for power-constrained low duty-cycled (eg., sending a
packet every 15 minutes) devices, as it incurs an overhead of establishing and
especially maintaining the connection. However, Leg. Adv. of connection-
less mode does not incur an overhead of establishing and maintaining a
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connection, but it is not suitable for larger data packets, as the maximum
data to be broadcasted using Adv. packet is limited to 31 bytes. Therefore,
we considered using an Ext. Adv. mode of connection-less BLE to remove
this limitation, as discussed in Section 2.1.3.3.

The radio-on time of an advertiser to transmit actual user data using Ext.
Adv. is given by

ton = tprimary · Nprimary chan + tsecondary (3.11)

where tprimary is the amount of time spent to transmit one EXT IND PDU
on the primary Adv. channel. Nprimary chan is the number of primary Adv.
channels used to transmit EXT IND PDU packets. While tsecondary is the
time spent to transmit actual user data using AUX IND and CHAIN IND
PDUs on secondary Adv. channels. The maximum user data or payload P
that can be transmitted using AUX IND PDU and CHAIN IND PDU is 248

bytes. The radio-on time required to transmit EXT IND PDU on primary
Adv. channel is calculated as:

tprimary =
Sprimary · 8
data rate

, (3.12)

where sprimary is the size of EXT IND PDU, which consists of 1-byte Pream-
ble, 4-byte Access Address, 2-byte Adv. Header, 13-byte Ext. Header (1-byte
Ext. Header Len and AdvMode, 1-byte Ext. Header Flag, 6-byte AdvA,
2-byte ADI, 3-byte AuxPtr) and 3 bytes CRC, in total Sprimary = 23 bytes for
1Mbps data rate.

The size of link-layer header overhead Sheader in AUX IND and CHAIN IND
PDU is 1-byte Preamble, 4-byte Access Address, 2-byte Adv. Header, 8-byte
Ext. . Header (1-byte Ext. Header Len and AdvMode, 1-byte Ext. Header
Flag, 2-byte ADI, 3-byte AuxPtr) and 3-bytes CRC, in total Sheader = 17 bytes.
The size of the complete data packet is computed as follows

Sdata =

{
dD

P e · P + dD
P e · Sheader, if D mod P = 0⌊D

P
⌋
· P +

⌊D
P
⌋
· Sheader + (D mod P) + Sheader, otherwise

(3.13)
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The total radio-on time to send the actual user data on secondary Adv.
channels using AUX IND and CHAIN IND PDU is given by

tsecondary =
Sdata · 8
data rate

(3.14)

3.3 Comparison

Here we compare the connection-based and connection-less communication
based on the number of bytes and the radio-on time required for temperature
sensing device to transmit 100 bytes of IPv6 data periodically every 5 mins to
other BLE router devices that sends the temperature data to the Internet.

The size of a packet in connection-based BLE consists of a 1-byte Preamble,
4-byte Access Address, 2-byte Adv. Header, 100-byte data, 4-byte MIC, 3-
byte CRC, in total Sdata = 114 bytes. While the number of bytes required to
exchange keep-alive packets for 5 min is 380 bytes and it is obtained from
equations (3.2)-(3.7). Therefore, to transmit 100 bytes of sensor data and
maintain a connection for 5 min, the slave device exchanges 494 bytes.

Compared to connection-based BLE, the size of AUX ADV IND PDU in
connection-less BLE consists of 17-byte Sheader and 100-byte data, in total
Sdata = 117 bytes. While the size of ADV EXT IND PDU is sprimary which is
23 bytes.

Therefore, connection-less BLE with CL 1 configuration (ADV EXT IND PDU
is transmitted on only one primary advertising channel (channel 37)) re-
quires 140 bytes while with CL 3 configuration (ADV EXT IND PDU is
transmitted on all three primary advertising channels (channel 37, 38, 39))
requires 186 bytes in total to transmit 100 bytes of sensor data.

Table 3.1: Comparison of the radio time required for sending data of 100 bytes using
connection-based vs connection-less BLE.

connection-based connection-less
Data Keep-alive packet Total CL 1 CL 3

Total bytes transmitted 114 380 494 140 186

Radio-on time (µs) 912 3040 3952 1120 1488
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The table 3.1 shows that, the number of bytes and the radio-on time required
to send 100 bytes of user data in connection-based BLE is 71 % higher
than the connection-less BLE. Moreover, around 76 % of radio-on time in
connection-based BLE is required to exchange keep-alive packets just to
maintain a BLE connection, while only 24 % of radio-on time is needed
to send actual user data in this scenario. This analysis shows that the
connection-less BLE using only one primary Adv. channel (CL 1) requires
71 % less bytes and radio time while using all three primary Adv. channels
(CL 3) requires 62 % less bytes and radio time than the connection-based
BLE when transmitting 100 bytes data/ 5 mins.

The number of packet transmissions required to transmit a successful packet
to achieve high reliability using connection-less BLE with CL 1 and CL 3

configuration is calculated as:

p = Probability of successful transmisson of packet. (3.15)

P (N packets are unsuccessful) = (1− p)N (3.16)

P (At least 1 successful |N transmissions) = 1− (1− p)N (3.17)

where N is the number of transmissions for a successful packet transmis-
sion.

The values used for reliability of connection-less BLE with CL 1 and CL 3

configuration for single-packet transmission in table 3.2 are obtained from
the experiment performed to evaluate the reliability of connection-based
and connection-less BLE in Section 6.3. While the reliability for different
number of packet transmission (N) is computed using equation 3.17.
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Table 3.2: Number of packet transmissions required to achieve high reliability at the cost of
radio-on time using connection-less BLE.

Packet
trans-

missions
(N)

CL 1 CL 3
Reliabi-
lity

Radio-
on time
(µs)

Radio
time
saving
compared
to CB BLE

Reliabi-
lity

Radio-
on time
(µs)

Radio
time
saving
compared
to CB BLE

1 54 % 1120 71 % 96 % 1488 62 %
2 79 % 2240 43 % 99.75 % 2976 24 %
3 90 % 3360 15 % 99.98 % 4464 -11 %
4 96 % 4480 -13 % - - -

The table 3.2 shows that, the 90 % of reliability can be achieved with CL 1

configuration by sending packet 3 times while spending 15 % less radio-on
time compared to connection-based BLE. Moreover, almost 62 % of radio-on
time can be saved by providing 96 % of reliability when transmitting 100

bytes packet/ 5 mins.
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This chapter presents the design of the IPv6 over connection-less BLE
communication stack. Section 4.1 and Section 4.2 explains the requirements
and design challenges of IPv6 over connection-less BLE stack. Section 4.3 and
4.4 describe the features and limitations of the implemented communication
stack. Section 4.5 discusses the design of a new L2 layer designed to transmit
IPv6 packets over connection-less BLE communication.

4.1 Requirements

This section defines the requirements that needs to be fulfilled in the design
of IPv6 over connection-less BLE.

IPv6 Compliant:

To make the IPv6 over connection-less BLE communication stack IPv6

compliant, devices must handle at least 1280 bytes of an IPv6 packet over
connection-less BLE to support the Maximum Transmission Unit (MTU) of
IPv6 protocol [8].

Handle fragmentation and reassembly of IPv6 packets:

In IPv6 over connection-based BLE, the fragmentation and reassembly of
large IPv6 packets are performed in the L2CAP layer of the communication
stack, as described in [18]. The L2CAP layer uses a logical link that runs over
a single physical link to exchange data between two devices [6]. However,
in connection-less BLE, the logical link can not be created as the physical
connection is not established between two devices. As a result, the L2CAP
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layer does not play any role in a connection-less communication and hence
it is not available in the connection-less BLE. Therefore, it is required to han-
dle the fragmentation and reassembly of the IPv6 packet in connection-less
communication.

Dynamic switching between communication modes:

In some applications, devices may require to switch from connection-less to
connection-based BLE communication to update routing information and
application configuration. For example, an application of a temperature
sensing device that monitors room temperature. In this scenario, the tem-
perature sensor needs to transmit 100 bytes of IPv6 data periodically every
5 mins to other BLE router to send the temperature data to the Internet.
Therefore, the temperature sensor may require to re-establishes an IPv6

over connection-based BLE connection to briefly check for IPv6 routing
changes (e.g., every 60 mins) to update routing information and application
configuration. Hence, the switching between IPv6 over connection-less BLE
and connection-based BLE needs to be handled in the communication stack.

4.2 Design Challenges

In the design of IPv6 over connection-less BLE stack, a challenge that needs
to be overcome is that we need to be able to transmit upto 1280 bytes of data
in order to support the MTU allowed by IPv6 [8]. Since the maximum data-
carrying capacity of Leg. Adv. packet is limited to 31 bytes, this mode is not
suitable for IPv6 packets as an uncompressed IPv6 header itself is 40 bytes.
Although Ext. Adv. feature of BLE 5 allows devices to broadcast up to 254

bytes of payload in its Adv. packet, the IPv6 packet needs to be fragmented
into small chunks to transmit 1280 bytes of IPv6 packets. Unfortunately,
as discussed in Section 4.1, the BLE L2CAP layer is not present in the
connection-less BLE to handle the fragmentation and reassembly of IPv6

packets, the challenge to handle the fragmentation and reassembly of an
IPv6 packet in connection-less BLE needs to be solved in the design of IPv6

over connection-less BLE.
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To send an IPv6 packet, devices need to exchange the necessary information
(network prefix, context information and configuration) that is required
to configure a network interface. This information is exchanged using a
network discovery procedure. In connection-based BLE, network discovery
is performed on the top of a link-layer and L2CAP connection. However,
in connection-less BLE, since link-layer and L2CAP connections are not
established, neighbor discovery can not be performed. Therefore, initially,
it is required to perform a neighbor discovery using connection-based
BLE and later switch to connection-less BLE. The main challenge while
designing the IPv6 over connection-less BLE is to dynamically switch from
connection-based to connection-less BLE. Since in connection-based IPv6

communication, all the data packets are IPv6 packets and as the Internet
protocol provides end to end connectivity, the user data sent by the applica-
tion layer of the node devices is read by the application layer of the router.
In order to request the router to switch to connection-less communication,
the IPv6 packet with special data would have been sent to the router but
it would have only read by the application layer. This makes the switching
from connection-based to connection-less BLE application layer dependent.
In this case, the handshaking needs to be implemented in the application
layer, which makes the application implementation more complex. Another
possibility could be to use the Link layer control PDU. It is nothing but the
Data channel PDU that is used to control the link-layer connection [6]. The
LL TERMINATE IND control PDU allows the other devices to know the
reason for the termination of the connection. We can use this opportunity to
inform the router to switch to connection-less communication. On receiving
LL TERMINATE IND at the link layer, the device generates an event that
informs the Host the reason for the disconnection.

4.3 Features

4.3.1 Open Source Implementation

Since the implementation of this thesis is performed in the open-source
Zephyr OS, the thesis work will be available under the 3-clause BSD license,
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which allows full open-source usage. The availability of open-source ”IPv6

over connection-less BLE” implementation may open the possibility to
perform experimental studies on the top of IPv6 over connection-less BLE by
adding additional features or performing improvements in the implemented
communication stack.

4.3.2 Toggle Communication Modes

Though this thesis provides support to unidirectional IPv6 packets over
connection-less BLE, it also allows devices to toggle between connection-
based and connection-less IPv6 communication. The toggling between
connection-based and connection-less IPv6 BLE communication can be
performed in the application layer. The devices can switch to either of these
states as per the requirement of the application.

4.4 Limitations

The communication stack implemented in this thesis has the following
limitations:

4.4.1 Specific to BLE 5

Since the Adv. PDU of BLE version 4.2 and more former versions support
up to 31 bytes of user data in its payload, we used the Ext. Adv. feature from
BLE 5 to transmit large IPv6 packets over connection-less communication.

4.4.2 Limited to Zephyr OS

Since the IPv6 over connection-less BLE is the newly proposed approach
through this thesis, currently it is only implemented in open-source Zephyr
OS. However, as the implementation is based on the HCI, it can also be
implemented in other HCI supported BLE network stacks. Currently, both

50



4.5 Design

the transmitter and the receiver of the application must use this newly
implemented BLE stack to achieve connection-less IPv6 communication.

4.5 Design

This section presents the design of the IPv6 over connection-less BLE com-
munication stack of the Zephyr OS. Section 4.5.1 discusses the changes in
the existing Zephyr OS network stack to achieve IPv6 over connection-less
BLE. Section 4.5.2 describes the design of IPv6 over connection-less BLE
communication stack and the necessary steps to achieve the connection-less
communication between a node and a router in detail.

4.5.1 Communication Stack

Figure 4.1: BLE network stack with IPv6 over connection-less BLE support.

Figure 4.1 shows the communication stack of connection-based IPv6 over
BLE (right). This figure also includes the new BLE CONNLESS layer (left)
that is required to support IPv6 over connection-less BLE.
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As discussed in Section 4.1, although the fragmentation and reassembly
of large IPv6 packets are handled in the L2CAP layer in the IPv6 over
connection-based BLE, it is a challenge to handle this in the connection-
less BLE due to unavailability of the L2CAP layer in connection-less BLE
communication. Therefore, I have designed the BLE CONNLESS layer that
handles fragmentation and reassembly of IPv6 packets in connection-less
BLE.

The operation of the BLE CONNLESS layer is role-specific. If the device
is configured as a node, the BLE CONNLESS layer receives IPv6 packets
from the 6LoWPAN layer and splits this IPv6 packet into one or multiple
fragments and send these to a controller with the help of set Ext.Adv.data

HCI command. This IPv6 packet is transmitted to the router using Ext. Adv.
with one or multiple Ext. Adv. packets. According to the BLE specification
[6], the BLE radio is able to receive Ext. Adv. packets with a maximum
payload length of 254 bytes. Therefore, the router receives a complete IPv6

packet using one or multiple Ext. Adv. packets. If the device is configured
as a router, the reassembly of these received fragments is handled at the
BLE CONNLESS layer to send the complete IPv6 packet to upper layers.
The fragmentation and reassembly of the IPv6 packet in connection-less
BLE will be discussed in detail in Section 4.5.2.3.

As specified in RFC 4944 [24], the 6LoWPAN layer also offers the fragmenta-
tion mechanism for IPv6 packets. The 6LoWPAN layer splits the datagram
into multiple fragments if it doesn’t fit into the single link-layer frame. Each
fragment carries an extra 4 or 5 bytes as a fragment header along with the
fragment data. With the 6LoWPAN fragmentation mechanism, devices need
to send an additional 4 to 5 bytes of fragment header with the user data
in each Adv. packet. Therefore, to avoid the transmission of extra bytes in
each Adv. packet the fragmentation mechanism provided by the Ext. Adv.
and used in BLE CONNLESS layer is considered instead of the 6LoWPAN
fragmentation mechanism.

Moreover, the BLE CONNLESS layer also handles the operations performed
during the toggling of IPv6 communication between connection-based and
connection-less BLE. It configures the controller to transmit and receive the
IPv6 packets over connection-less communication and passes the received
IPv6 packet to the lower and upper layer respectively. It configures the Ext.
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Adv. and updates advertising data of Ext. Adv. with the new IPv6 packet.
We will discuss the detail operation of BLE CONNLESS layer in Section
4.5.2.2 and 4.5.2.3.

This new layer is fully compatible with the architecture of the existing
Zephyr OS network stack and can be seen in Figure 4.2. In order to add
support to the BLE CONNLESS layer in the communication stack, users
need to set the CONFIG NET L2 BTLESS flag in the configuration file of
the application.

4.5.1.1 Overview of Zephyr Network Stack with BLE CONNLESS Layer

Figure 4.2: Zephyr OS Network Stack (adapted from [22]).

• Network Application: The network application opens a network con-
nection, sends/receives data, and closes a connection by either using
provided application protocols like MQTT, CoAP, LWM2M or access-
ing the BSD socket API directly [22].

• Network Protocols: UDP, TCP, IPv6, IPv4, ICMPv6, and ICMPv4 are
part of the core network protocols which are used by Application
protocols or BSD sockets to send or receive data [22].
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• Network Interface Abstraction: The system can have a number of net-
work interfaces and the basic functionality of all the network interfaces
is provided in this layer [22].

• L2 Network Technologies: This layer supports several link-layer tech-
nologies like Ethernet, IEEE 802.15.4, CAN, Bluetooth, and newly
added BLE CONNLESS. Including BLE CONNLESS some of these
technologies also support IPv6 header compression [22].

• Network Device Drivers: The device drivers handle physical commu-
nication like sending and receiving packets [22].

4.5.2 Communication:

Figure 4.3: Step 1, 2 and 3 are mandatory to follow sequentially to achieve the IPv6 over
connection-less communication. Initially, IPv6 communication is set up (step 1),
then the transition is performed from IPv6 over connection-based to connection-
less communication (step 2), later, IPv6 over connection-less communication is
handled (step 3). If a device required to switch to connection-based BLE, that is
accomplished by performing step 4.

The design of IPv6 over connection-less communication presented in this
thesis can be observed in Figure 4.3. However, IPv6 over connection-less
BLE can be achieved by performing step 1 (IPv6 communication setup),
step 2 (switch to IPv6 over connection-less BLE) and step 3 ( IPv6 over
connection-less BLE). It is mandatory to follow steps 1, 2 and 3 sequentially
to achieve an IPv6 over connection-less BLE.

For example, a node can be a thermostat that monitors the room tempera-
ture and sends 100 bytes of IPv6 packet to the router to send the sensor data
to the Internet. In IPv6 communication setup step, initially, a BLE connec-
tion is established between a thermostat and a router by exchanging BLE
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packets over the Adv. channels. Following the standardized BLE communi-
cation setup between both the devices, neighbour discovery is performed
to achieve IPv6 communication (see Section 4.5.2.1). Furthermore, since
all the necessary information is exchanged to perform IPv6 communica-
tion and devices are able to bi-directionally exchange IPv6 packets over the
connection-based communication, the transition needs to be performed from
IPv6 over connection-based to IPv6 over connection-less communication.
This switch is handled in the switch to IPv6 over connection-less communi-
cation step (step 2). In this step, the thermostat requests the router to switch
to connection-less communication by sending LL TERMINATE IND PDU
with its disconnect reason field (see Section 4.5.2.2). On receiving a custom
disconnect reason code, router perfoms all required steps (see Section 4.5.2.2)
and both the devices switch to connection-less communication to conserve
energy. Furthermore, in IPv6 over connection-less communication step, ther-
mostat transmits the IPv6 packets over Adv. channels with the help of Ext.
Adv. feature of BLE 5 and router scans for these IPv6 packets over those
Adv. channels (see Section 4.5.2.3). Moreover, as discussed in Section 4.1,
if the application demands to switch to connection-based communication
to update IPv6 information, network prefix, and context information, the
transition needs to be performed. In switch to IPv6 over connection-based
communication (e.g. to bi-directionally exchange data or to update rout-
ing information) step, thermostat device stops transmitting IPv6 packets
over Adv. channels rather it starts advertising connectable Adv. PDUs to
re-establish communication with a router (see Section 4.5.2.4). Furthermore,
both the devices establish a link-layer and the L2CAP connection and start
exchanging IPv6 packets over connection-based communication.

4.5.2.1 IPv6 Communication Setup:

The IPv6 communication setup between a thermostat and a router (6LBR)
can be observed in Figure 4.4. Initially, the thermostat acts as an Advertiser
and starts transmitting advertising BLE packets on primary Adv. channels
to all the neighboring BLE devices. By sending a connection request to the
thermostat, the router establishes a link-layer connection with thermostat.
Further, the router takes initiative to establish an L2CAP connection be-
tween both the devices. Once the L2CAP connection is established between
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thermostat and router, IPv6 communication is possible and neighbor dis-
covery can be performed. Therefore, as next step, the thermostat sends a
Router Solicitation (RS) message to the all-routers multicast address and
waits for Router Advertisement (RA) message from the router device that
carries vital information such as IPv6 prefix and contexts that will be used
in the IPv6 header compression of 6LoWPAN [16]. A thermostat registers its
non-link-local address with the router using Neighbor Solicitation (NS) and
waits for the successful acknowledgment from the router. At this point, both
devices can exchange IPv6 packets over connection-based communication.

Link-Layer Connection

The thermostat acts as an Advertiser when it is not connected to any other
BLE router and starts broadcasting connectable Adv. packets on the primary
Adv. channel. As per the Internet Protocol Support Profile (IPSP) introduced
by Bluetooth SIG and the IETF in order to enable IPv6 over Bluetooth LE, the
thermostat must implement the GATT server role and an IP Support Service
(IPSS) while the router must implement a GATT client role to discover a
thermostat using IPSS. When a router receives the Adv. packet transmitted
by a thermostat that includes a service universally unique identifier (UUID)
field of advertising data (AD) with IP Support Service UUID, it sends a
connection request to that thermostat. After receiving a connection request
from the router, the link-layer connection is established between two de-
vices. However, the router also ensures that no two devices with the same
link-local address are connected at the same time, as it knows the link-local
address of all connected devices.

BLE L2CAP Connection

Once the link-layer connection is established between a thermostat and a
router, the router takes the initiative to establish an L2CAP connection by
sending a connection request to the thermostat. On receiving the L2CAP con-
nection request, the thermostat opens the L2CAP channel which is a logical
link between these two devices to exchange IPv6 packets over connection-
based communication mode. A thermostat informs the successful opening
of the L2CAP channel by sending an L2CAP connection response to the

56



4.5 Design

Figure 4.4: The steps followed and the messages exchanged between a thermostat and a
router to configure both the devices to exchange IPv6 packets. Initially, the BLE
link-layer connection is established, second, a BLE L2CAP connection is created,
then the IPv6 prefix is exchanged and later thermostats non-link-local address
is registered at the router (adapted from [16]).
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thermostat. At this point, both the devices are connected and can exchange
data packets over the L2CAP channel.

The Maximum Transmission Unit (MTU) of L2CAP channels over Bluetooth
LE is at least 23 octets but may carry up to 251 bytes with LE Data Length
Extension feature. Hence to transmit the IPv6 packet of 1280 bytes or larger,
fragmentation and reassembly are provided by the L2CAP layer.

Router Solicitation

After the L2CAP connection is established between the thermostat and the
router, Neighbor discovery is performed and it is presented in RFC 6775

[35]. At this point, a thermostat doesn’t know a network prefix or the router
that will provide a network prefix to routing the packets over the internet.
Hence a thermostat sends a Router Solicitations (RS) which is an Internet
Control Message Protocol (ICMP) message with its link-layer address as a
Source link-layer

Address Option (SLLAO) to the all-routers multicast address and waits for
a response from the router. On receiving RS from a thermostat, a router
replies with Router Advertisement (RA) message to the address mentioned
in the SLLAO field of the RS, with parameters such as current hop limit,
IPv6 prefix information, context information that is used in the header com-
pression of 6LoWPAN and flags for how devices generate IPv6 addresses.
When the thermostat receives an RA, it creates a global IPv6 address which
is called as a Non-link-local IPv6 address and in the following step attempts
to register with a router.

Neighbor Solicitation

In order to register the created global IPv6 address with a router, a thermo-
stat sends a neighbor solicitation (NS) message with an Address Registration
Option (ARO) and SLLAO. The NS is sent with the created IPv6 address
as a source address. A router verifies received IPv6 address for duplicates
with its neighbor cache. The router maps the received IPv6 addresses with
their link-layer address to perform duplicate address detection(DAD). If
the received non-link local address doesn’t exist in the neighbor cache, it is
registered with the router as it is not a duplicate. If the received non-link
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local address does exist, its mapped link-local address is checked with the
one received with the SLLAO field of the NS message. If they are the same, it
is re-registered or error is returned. The status of the registration of the Non-
link layer address is acknowledged by sending a Neighbor Advertisement
(NA) message to the thermostat with a status field.

Now, devices are set to exchange IPv6 packets with each other.

4.5.2.2 Switching to IPv6 over Connection-less BLE

Once the IPv6 connection is established and the devices can exchange
IPv6 packets as shown in Figure 4.5, a thermostat may inform the router
to switch to connection-less communication by issuing the Disconnect

command from the application layer to the controller in order to disconnect
the BLE link-layer connecton between the thermostat and the router.

Figure 4.5: The steps followed to switch the IPv6 communication between a thermostat
and a router from connection-based to connection-less.

After successfully receiving the command from the host, the controller sends
the command status to the host and transmits LL TERMINATE IND PDU
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on a LE connection to the router. The LL TERMINATE IND PDU contains
one significant field named ErrorCode, that informs the router why the
connection is being terminated. As per the BLE specification version 5, 0x33

ErrorCode is reserved for future use, therefore, we use this code to indicate
a switch to connection-less mode. After receiving an acknowledgment from
the router, the Disconnection complete event is generated on both the
devices. The link-layer of the thermostat sends this event with ”Connection
Terminated by Local Host (0x16)” as a Reason event parameter to the
host. On the other hand, the link layer of the router acknowledges host by
Disconnection complete event with the reason for disconnection provided
by LL TERMINATE IND PDU.

Figure 4.6: The handshaking procedure used to switch the IPv6 communication between
thermostat and router to connection-less communication (adapted from [6]).

Consequently, both the devices break the link-Layer and L2CAP connection
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between them while keeping the network interface up. The network interface
is a link between network device drivers and the upper part of the network
stack which ties them together [22]. It can be observed in Figure 4.2 between
network protocols and L2 network technologies layers. During the network
connection, all the data is sent and received via a network interface.

Furthermore, on the thermostat, since the network interface is up, the
application data is encapsulated into the IPv6 packet and passed to the
BLE CONNLESS layer to transmit it over BLE link-layer technology. The
BLE CONNLESS layer plays a vital role in switching and handling both
connection-based and connection-less IPv6 communication. Since the L2CAP
connection is disconnected, as we discussed earlier, the BLE CONNLESS
layer uses the Ext. Adv. feature to transmit the IPv6 packet received from
the upper layers to the router. On receiving IPv6 packet from the upper
layers, BLE CONNLESS layer sets the Ext. Adv. parameters on the controller
using set Ext.Adv.parameters HCI command. Moreover, the received IPv6

packet is provided as user data by set Ext.Adv.data command to the
controller, which later transmitted using Ext. Adv. over the secondary Adv.
channels. The very next step is to enable Ext. Adv., which is done by using
set Ext.Adv.enable command. As a result, thermostat acts as an Advertiser
and starts advertising IPv6 packet over connection-less communication.

However, on the other end, after the termination of the link-layer and
L2CAP connection, BLE CONNLESS layer on the router issues set scan

parameter command to the controller to configure the active scanning. On
receiving command complete event from the controller, BLE CONNLESS
layer enables active scanning according to the parameters provided by set

scan parameter command. Besides, the router acts as a Scanner and starts
expecting IPv6 packets on advertising channels.

4.5.2.3 IPv6 over Connection-less BLE

As we have seen in Section 4.5.2.2, in IPv6 over connection-less BLE, the
thermostat acts as an Advertiser and starts transmitting IPv6 packets on the
Adv. channels using Extended Advertising, while the router acts as a Scanner
and scans for those IPv6 packets on the Adv. channels. Figure 4.7 shows
how the IPv6 packet is passed through the communication stack in order to
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be transmitted on the Adv. channel in connection-less IPv6 communication.
The IP and the 6LoWPAN layer perform the same operation on application
data as in connection-based communication and encapsulate and compress
the IPv6 packet with the 6LoWPAN header compression mechanism. The
compressed IPv6 packet is transferred to the BLE CONNLESS layer to
perform the further operations. As we discussed earlier, the data needs
to be passed to the controller from BLE CONNLESS layer in order to be
transmitted using Extended Adverting.

Figure 4.7: The data flow while sending the IPv6 packet through IPv6 over connection-less
communication stack.

In BLE stack, the data is transferred from the host to the controller with the
help of the HCI. The maximum data-carrying capacity of each HCI packet
excluding the HCI header is limited to 255 bytes [6]. To make the IPv6 over
connection-less communication stack IPv6 compliant, the host should pass

62



4.5 Design

Table 4.1: Fragmentation of data performed in HCI LE Set Extended Advertising Data
command [6].

Value ParameterDescription

0x00 Intermediate fragment of fragmented extended advertising data
0x01 First fragment of fragmented extended advertising data
0x02 Last fragment of fragmented extended advertising data
0x03 Complete extended advertising data

at least 1280 bytes of IPv6 packet to the controller. This can be achieved by
fragmenting the complete IPv6 packet into 255 bytes of small fragments. The
set Ext.Adv.data HCI command is used by the BLE CONNLESS layer to
pass the data to the controller using HCI packets with respective fragment
sequence values. This fragment sequence can be observed in Table 4.1. The
controller, on the other end, receives these packets and reassembles the
complete IPv6 packet according to their fragment sequence values.

Furthermore, since the AUX ADV IND and AUX CHAIN IND PDUs can
carry up to 254 bytes of user data in its payload (as discussed in Section
2.1.3.2), the fragmentation needs to be performed over IPv6 packet to pass
the complete IPv6 packet using Ext. Adv. to the router . The data-carrying
capacity of each packet varies depending on the extended header field
of AUX ADV IND and AUX CHAIN IND PDU. As discussed in Section
2.1.3.2, the fragmentation of the IPv6 packet is taken care of by the Ext. Adv.
feature at the link layer. In Ext. Adv., the IPv6 packet is treated as user data
and transmitted using AUX ADV IND and AUX CHAIN IND PDU over the
secondary Adv. channels. The AUX ADV IND and AUX CHAIN IND PDUs
contain the AuxPtr field that points to the next AUX CHAIN IND PDU car-
rying the next fragment of the IPv6 packet. Since the last AUX CHAIN IND
PDU does not contain the AuxPtr field as no more packet is transmitted, it
helps the router to recognize the last fragment or AUX CHAIN IND PDU
to perform reassembly of a complete IPv6 packet.

However, since the Extended Scanning is enabled on the router, it scans for
the Ext. Adv. packets on primary Adv. channels. On receiving Ext. Adv. PDU
on the primary Adv. channel, the scanner scans for the AUX ADV IND and
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Figure 4.8: The data flow of received IPv6 packet in IPv6 over connection-less communica-
tion stack.

AUX CHAIN IND PDUs on a secondary Adv. channel pointed by the Ext.
Adv. PDU in order to reassemble the complete IPv6 packet. These received
AUX ADV IND and AUX CHAIN IND PDUs packets are passed to the
host part of the HCI interface with the help of Adv. reports. The host part of
the HCI receives these Adv. reports and passess to BLE CONNLESS layer.
BLE CONNLESS layer reassembles these packets into one complete IPv6

packet and passes it to the upper layer to decompressed the IPv6 header.
Once the decompressed IPv6 packet is ready, it is transferred to the upper
layers to pass the actual user data to the application layer.

Channel Management

As we have discussed in Section 3.1, in connection-based communication,
both devices establish a connection and start exchanging data packets over
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the data channels (0-36), while in connection-less communication, the user
data is exchanged over the Adv. channels. As discussed in Section 2.1.3.2,
the Ext. Adv. uses secondary Adv. channels (0-36) to transmit the large
packets over the connection-less communication, therefore it is required to
perform the channel selection for the packets transmitted on the secondary
Adv. channels. The used channel of Ext. Adv. can be specified using the
AuxPtr field of the extended header of ADV EXT IND, AUX ADV IND,
and AUX CHAIN IND PDUs (see Figure 2.14). This field indicates the used
secondary Adv. channel of the upcoming PDU of the same Extended Adv.
event. To avoid the interference on the secondary Adv. channels, random
channel selection is performed periodically at the start of each Ext. Adv.
event, it means packets from the different Ext. Adv. events are transmitted
on different secondary Adv. channels while all the packets from same Ext.
Adv. event are transmitted on the same channel.

Moreover, the number of primary Adv. channels used for transmitting Ex-
tended Advertising PDUs can be controlled by the
Primary Advertising Channel Map parameter of set Ext.Adv.parameter

command mentioned in table 5.1. This parameter allows an Advertiser
to transmit Ext. Adv. PDU on only one primary Adv. channel instead of
all three channels, which limits the number of packets transmitted on the
primary Adv. channels. It may help to reduce the energy consumption of
Advertiser even further as the less number of packets are transmitted.

Handling of New Application Data:

As the data from the application layer may change over time, it must be han-
dled in the IPv6 over connection-less communication stack. BLE CONNLESS
layer starts the Ext. Adv. with a new IPv6 packet for only one Ext. Adv.
interval. The interval between two IPv6 packets is entirely handled by the
application layer which is suitable for the non-periodic applications.

4.5.2.4 Switching to IPv6 over Connection-based BLE

If the thermostat is willing to switch to connection-based mode (e.g.,
to update IPv6 prefixes or check for updates), the host issues the set
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Ext.Adv.enable command with disable parameter to stop Ext. Adv. in
case of Normal duty cycle applications. To establish the link-layer and the
L2CAP connection between both the thermostat and the router, a thermostat
starts a legacy advertisement with connectable Adv. PDUs as discussed in
Section 4.5.2.1. A router sends the connection request if the Advertising
packet received from a thermostat contains IP supported service UUID and
establishes a link-layer connection between these two devices. Once the
link-layer connection is established, a router initiates the L2CAP connection
and receives an acknowledgement from the thermostat on the successful
creation of a Logical channel.

Figure 4.9: The steps followed to switch the connection-less IPv6 communication to
connection-based communication. Initially, Extended Advertising is disabled.
Secondly the BLE link-layer connection is established and later, a BLE L2CAP
connection is created (adapted from [18]).
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Moreover, the address used on the thermostat can be a random static address
or the private address. The random static address is either burned into the
device during the manufacturing process or generated on every power
cycle. On the other hand, the devices that want to remain private use a
private address that changes periodically. In case of a random static address,
since the address doesn’t change during runtime, the network interface is
kept up while switching the IPv6 communication from connection-based to
connection-less. As a result, the network data required to transmit the IPv6

packet is retained. Consequently, the thermostat can start exchanging IPv6

packets with a router over the L2CAP channel. Besides, if the thermostat
uses a private address or device wants to perform neighbour discovery
to update the network prefix, context information and configuration, the
network interface is brought down while switching the communication from
connection-less to connection-based. The thermostat and the router follow
the same steps as explained in Section 4.5.2.1 to establish IPv6 connection-
based communication.
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This chapter presents the implementation of the IPv6 over connection-
less BLE communication stack in the Zephyr OS. Section 5.1.1 discusses
the changes performed in the existing Zephyr OS BLE stack to support
the Ext. Adv. feature. Section 5.1.2 describes the implementation of a
new BLE CONNLESS layer in the Zephyr OS network stack to support
the connection-less IPv6 communication over BLE. Section 5.1.3 gives an
overview of the challenges faced during the implementation.

5.1 Communication Stack

The implementation is based on version 1.13.0 of Zephyr OS
(https://docs.zephyrproject.org/1.13.0/). It is an open-source operating sys-
tem for resource-constrained IoT devices provided by the Zephyr Project’s
group. The source code is open source under the 3-clause BSD license and
can be found at (https://github.com/IPv6-over-connectionless-BLE/zephyr).

5.1.1 Extended Advertising

The implementation of Ext. Adv. is divided into two parts: Advertiser and
Scanner. First, we will discuss the Advertiser followed by the Scanner.

5.1.1.1 Advertiser

The Extended Advertising feature has been implemented on a Host as well
as a Controller part of the Advertiser.
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Host: The Host component of the stack is implemented in
../subsys/bluetooth/host/hci core.c.
All the commands required to activate the Extended Advertising namely:

• HCI LE Set Extended Advertising Parameters,
• HCI LE Set Extended Advertising Data,
• HCI LE Set Extended Advertising Enable

are implemented in the Host with the bt le ext adv start, set ext ad,
set ext advertise enable functions respectively.

Table 5.1: Parameters set by the HCI LE Set Extended Advertising Parameters command [6].
Parameter-name Functionality

Advertising Event Properties, Legacy/ Extended Advertising event
Primary Advertising Interval Min, Minimum interval time of an event
Primary Advertising Interval Max, Maximum interval time of an event
Primary Advertising Channel Map, Selection of primary advertising channels
Own Address Type, Public/ private own device address
Peer Address Type, Public/ private target device address
Peer Address, Target device address
Advertising Tx Power, Selection of radio power
Primary Advertising PHY, LE 1M Primary adv PHY
Secondary Advertising Max Skip, No. of Adv event skip before

AUX ADV IND packet is sent
Secondary Advertising PHY, LE 1M Secondary advertisement PHY
Advertising SID, Value of the Advertising SID subfield

in the ADI field of the PDU
Scan Request Notification Enable, Not supported.

As defined in the Host Controller Interface, commands send by the host
are received by the controller. The very first command sent by the host is
HCI LE Set Extended Advertising Parameters and that is handled by
bt le ext adv start function of the hci core.c file. It sets all the parame-
ters required for configuring Extended Advertising and the parameters set
by this command are described in Table 5.1. The command
HCI LE Set Extended Advertising Data performs a significant role by allow-
ing the host to transmit a large amount of data to the controller. As we
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discussed in Section 4.5.2.3, the HCI packet used to send a command to the
controller can carry up to 255 bytes of data excluding the HCI command
packet header. It means that the maximum amount of application data that
can be sent to the controller using an HCI packet is limited to 255 bytes.
In the case of 1280 bytes of the IPv6 packet, the complete packet must be
sent to the controller. Therefore, the fragmentation of the complete packet
requires to be performed and hence handled in set ext ad function. The
larger packet is fragmented into small chunks of data and each fragment is
sent to the controller using HCI LE Set Extended Advertising Data command.
The command is sent with the operation parameter mentioned in Table 5.2
that informs the controller about the fragment sequence. If the data is larger
than 255 bytes, the HCI LE Set Extended Advertising Data command is sent
to the controller several times with a suitable operation parameter until the
whole data is sent by the host.

Controller: The controller component of the stack is implemented in ../subsys

/bluetooth /controller /ll sw /ll adv.c and
../subsys/bluetooth/controller/ll sw/ ctrl.c. These files contain all
the implementation related to packet encapsulation, time synchronization
between packet on the primary-secondary Adv. channel, event skip and
Adv. events.

The commands received from a host are executed on a controller and the
status of the commands is sent to a host using HCI events. The Ext. Adv.
in the controller is handled by the ticker timer. The ticker implementation
is specific to BLE controller scheduling and it is nothing but a soft real
time radio/resource scheduling. It basically schedules events to access the
radio. The controller uses two ticker timer: one for Adv. events and another
for Ext. Adv. events. The timer used for Adv. events works in a periodic
manner and calls radio event adv event function (which loads the information
about AUX ADV IND PDU in AuxPtr field of an ADV EXT IND PDU) with
a fixed interval provided by the host. Packets broadcasted by the radio
with the help of this event are sent on the primary Adv. channel. Similarly,
another timer also works in a periodic manner, but the interval between
two events is dependent on the max skip parameter provided by host with
HCI LE Set Extended Advertising Parameters command. It defines the number
of Adv. events is skipped before transmitting AUX ADV IND PDU on sec-
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Table 5.2: Parameters set by the HCI LE Set Extended Advertising Data command [6].

Parameter-name Functionality

Operation, Handles fragmentation of data
Fragment Preference, Should controller perform fragmentation
Advertising Data Length, The number of octets in the Advertising Data
Advertising Data, Advertising data

ondary Adv. channels. The AUX ADV IND and AUX CHAIN IND PDUs
are transmitted in Ext. Adv. events. If the user data provided by the host us-
ing HCI LE Set Extended Advertising Data is more than one AUX ADV IND
PDU can hold, the next AUX CHAIN IND PDU is scheduled by the Con-
troller. The duration between these two packets is set to 300us as a Minimum
AUX Frame Space (T MAFS), this allows the radio to go to Rx or sleep mode
in between. Besides, the count of AUX CHAIN PDU is depended on the
size of the user data. Since the maximum amount of data that can fix in
one AUX packet with an Auxptr field of the extended header is around 246

bytes, fragmentation of the data is performed on a controller to send the
complete user data in one Ext. Adv. event.

5.1.1.2 Scanner

Host: As described in Section 2.1.3.4, the commands used to start an Ex-
tended Scanning are implemented in the host component with
../subsys/bluetooth/host/hci core.c.
All the required commands:

• HCI LE Set Extended Scan Parameters,
• HCI LE Set Extended Scan Enable,
• HCI LE Set Extended Advertising Enable

are implemented with the bt le scan start and set le scan enable func-
tion respectively.
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Table 5.3: Parameters set by the HCI LE Set Extended Scan Parameters command [6].

Parameter-name Functionality

Own Address Type, Public/ Random device Address
Scanning Filter Policy, Accepts all advertising packets
canning PHYs, Scan advertisements on the

LE 1M PHY
Scan Type, Passive/ Active scanning
Scan Interval, Interval between start of the

subsequent scan on the primary
advertising channel.

Scan Window, Duration of the scan on
the primary advertising channel.

Controller: The controller component and all the events are implemented in
../subsys/bluetooth/controller/ll sw/ll adv.c and
../subsys/bluetooth/controller/ll sw/ctrl.c.

These files contain all the code related to Adv. report event, extraction of
data from received packets and time synchronization between Ext. Adv.
packets.

On receiving an advertising packet at the physical layer, the radio triggers
an interrupt to the upper layer to examine the packet. If the PDU type of the
received PDU is 0x07 (Ext. Adv. PDU), the function called by this interrupt
extracts and stores the significant information such as channel index, Aux
offset, offset unit from the AuxPtr field of the EXT ADV IND PDU into
global variables. The saved information is used to grab the AUX ADV IND
PDU on a secondary Adv. channel. The function of an Adv. report event en-
capsulates the received data with the HCI packet format in order to forward
the data to the host. The RSSI value of the received packet is appended to
the data before delivering it to the host. Since the Advertiser transmits mul-
tiple AUX packets such as AUX ADV IND and AUX CHAIN IND PDUs
on secondary Adv. channels, the Scanner reassembles complete user data
by collecting these PDUs from secondary Adv. channels.
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5.1.2 BLE CONNLESS Layer

The implementation of the BLE CONNLESS layer that is used in this thesis
can be found in the source file ../subsys /net /ip /l2/ ble conless.c.
The existing implementation of the Bluetooth L2 layer has been used to estab-
lish an IPv6 connection between a node and a router. The BLE CONNLESS
L2 layer can operate in two different modes: node or router.

Node:

As explained in Section 4.5.2.1, once the IPv6 connection between a node
and a router is established, a node device transmits IPv6 packets to the
router over the L2CAP communication channel. To switch the communi-
cation from connection-based to connection-less, a network management
procedure handler is implemented and it is registered using a
NET MGMT REGISTER REQUEST HANDLER macro of Zephyr. The regis-
tered switch procedure handler is invoked through net mgmt() API from the
application layer at the time of switching. The switch handler initially checks
if the device is connected to a router over an L2CAP communication chan-
nel. If both devices are connected, switch handler calls bt hci disconnect

function from
../subsys/bluetooth/ host/conn.c that sends HCI Disconnect command
with the custom 0x33 reason code as explained in Section 4.5.2.2 to the
controller. On receiving connection disconnect reason 0x33, a router sends
L2CAP DisconnectReq command to the node and as a response receives
L2CAP DisconnectRsp. As a result, the L2CAP connection between these
two devices is disconnected and subsequently, the Link layer connection is
also disconnected. On termination of L2CAP and Link layer connection, a
node receives the Disconnect Complete event from a controller and sets the
state of the connection to disconnected.

The BLE CONNLESS L2 layer is designed to not expose the lower link-layer
and device drivers of Bluetooth to the higher IP stack. It is made possible us-
ing network interface structure that is declared in
..include/net/net if.h. The initialization of BLE CONNLESS L2 layer is
performed using NET L2 INIT macro that registers net bt send, net bt recv
L2 Layer handling functions with upper layers send(), recv() API respec-
tively.
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• net bt send: Since the network interface is up, the application layer
sends the user data to the network layer to prepare the IPv6 packet and
pass it to the lower layers. This function is called by the IP core stack to
send a prepared IPv6 packet. The function calls net 6lo compress() API
provided by ..subsys/net/ip/6lo.h to perform 6LoWPAN header
compression. The resulting compressed IPv6 packet is sent to the Link-
layer with the bt le ext adv start() API. It starts Ext. Adv. as explained
in Section 5.1.1.1 and acts as an Advertiser. The function returns with
either NET OK if everything is as expected or NET DROP if something
wrong happens.

• net bt recv: In connection-less IPv6 communication a node doesn’t
receive any packet from a router. This function is only valid on a router
side, hence will be explained in a router part.

Router:

On receiving a LL TERMINATE IND PDU with 0x33 error code from a node
to switch the communication from connection-based to connection-less (as
explained in Section 4.5.2.2), the disconnected() connection callback function
is invoked. If the connection terminate error code is equal to our predefined
0x33, it disconnects the connection while keeping the network interface up.
If the connection terminate reason is other than 0x33, the network interface
is brought down.

Once the Link layer and a L2CAP connection between a node and a router
is disconnected, a router starts active scanning by calling bt le scan start()
API from ../subsys/bluetooth/host/hci core.c with device found() as a
callback function. The device found() callback function is called on receiving
a complete Ext. Adv. packet from the Lower layers. The function checks if
the network interface is up, to perform further operation or it drops the
packet. The received IPv6 packet is inserted into struct net pkt and put
into the head of the network buffer using net pkt frag insert(). This buffer
is passed to the network stack via net recv data(). The network stack passes
the buffer to the L2 layer’s net bt recv() callback function which is registered
with recv() function. The net bt recv() function calls net 6lo uncompress() to
uncompress the 6LoWPAN header before passing the complete IPv6 packet
to the upper layer. The net bt recv() function returns NET CONTINUE if
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the packet is successfully uncompressed and the network stack should then
handle it or NET DROP in case of an incorrect or incomplete packet.

5.1.3 Implementation Challenges

The biggest challenge while implementing the IPv6 over connection-less
BLE communication stack was that the controller part of the Zephyr BLE
stack uses ticker timer to handle the Adv. events. As discussed earlier in
Section 2.1.3.2, an Ext. Adv. feature implemented on an Advertiser works
with two Adv. events, one Adv. event to transmit the packets on primary
Adv. channels and another one is an Ext. Adv. event to transmit packets on
secondary Adv. channels. In the existing implementation, the functionality
of an Adv. event is achieved with a ticker timer that schedules the Adv.
event periodically. The existing implementation of the ticker is complex and
there is no reference documentation available publicly [36]. The ticker can
only be used with a valid ticker id. The Advertising role offers two ticker
ids, one is to start the Adv. event and another one to stop the Advertising
role. To start the Ext. Adv. event and provide synchronization with the Adv.
event, it is required to use another ticker timer. Since the ticker ids allocated
for the Advertising role are already used, it was a challenge to use another
ticker timer to start the Extended Adv. event. The use of existing ticker ids
is done in such a way that the ticker id required to stop the Advertising role
is also used for Ext. Adv. events and the synchronization between both Adv.
and Ext. Adv. events is achieved.
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To evaluate the performance of the IPv6 over connection-less BLE imple-
mented in this thesis, we start by measuring the power consumption of
a node device using different communication parameters and compare it
with the IPv6 over connection-based communication in Section 6.1 and
6.2. In Section 6.3, we examine the reliability of IPv6 over connection-less
BLE over different distances. Section 6.4 evaluates the switching between
connection-less and connection-based communication modes.

6.1 Comparison of Connection-based vs
Connection-less IPv6 over BLE

First of all, we will have a look at the comparison of IPv6 over connection-
based vs IPv6 over connection-less BLE communication. In connection-based
communication, the router and the node device establish a standard BLE
connection and exchange all the data required to transmit IPv6 packets.
Furthermore, all IPv6 packets are transmitted over the L2CAP channel
according to RFC 7668 [18]. In connection-based mode, the BLE connection
is never terminated.

Instead, in IPv6 over connection-less communication, the IPv6 packets with
actual application data are transmitted over the connection-less communica-
tion using Extended Advertising as proposed in this thesis. Since devices
do not exchange keep-alive packets in connection-less communication, the
node device transmits fewer packets compared to connection-based BLE
communication. In this section, we will compare the power consumption
of a node device using either IPv6 over connection-based or IPv6 over
connection-less communication. For this experiment, we assume the router
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to be wall-powered, i.e. the router does not have a constrained power sup-
ply.

6.1.1 Experimental Setup

To evaluate IPv6 over connection-less BLE communication, we use two
nRF52 development kits from Nordic Semiconductor, one as a node and
one as a router. The power consumption of a node device is measured using
the Low Voltage Power Monitor FTA22D from Monsoon Solutions Inc.[15]
as a power monitoring device.

The application used on the node devices is a modified version of the echo-
client sample application of Zephyr (zephyr/samples/net/echo client.c),
that was adopted to transmit UDP packets unidirectionally. On the router,
the modified version of the echo-server sample
(zephyr/samples/net/echo server.c) is used to achieve communication be-
tween node and router. To support the 1280 bytes of IPv6 packet length, the
CONFIG NET BUF DATA SIZE parameter is set to 1280 in the application
configuration file. Without this change, the maximum IPv6 packet size of
1280 bytes would not have been achieved in both the communication modes.
Since the switching between the IPv6 over connection-less BLE and IPv6 over
connection-based BLE is implemented in (Zephyr/subsys/net/ip/l2/ble connless.c),
the CONFIG NET L2 BT CONNLESS flag is set in the configuration file to
include it during the compilation.

In connection-based BLE communication, we use the most energy-efficient
settings that are still valid according to BLE 5 specifications. The Supervi-
sion Timeout is set to 32 sec, which is the maximum achievable connec-
tion timeout [6]. However, we set the Slave Latency to 3 and the Connec-
tion Interval parameter to 3.99 sec (if it is set to its maximum limit of 4 sec,
it does not fullfill the requirement of having Supervision Timeout greater
than ((1 + Slave Latency) * Connection Interval * 2) as mentioned in [6]).

In connection-less communication, the Primary Advertising Interval pa-
rameter value is set to 100 ms. In this case, the Ext. Adv. is activated for
only one Adv. event of 100 ms, i.e the IPv6 data is transmitted only once.
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This allows the application to transmit non-periodic IPv6 packets. The in-
terval between two IPv6 packets is denoted as application interval. The
Primary Advertising Channel Map (see Table 5.1) parameter is set to chan-
nel 37 to achieve higher energy efficiency as with this advertiser uses only
one primary Adv. channel (channel 37) for advertising. The scanner on the
other end is configured for active scanning with active as a Scan Type (see
Table 5.3) and 30 ms as a Scan Interval and Scan Window, i.e. continuous
scanning. All the three primary Adv. channels ( 37, 38 and 39) are used for
scanning.

6.1.2 Result

Figure 6.1: Average power consumption of the BLE radio of a node device (excluding the
base power consumption of the device) when sending 100 bytes of IPv6 packets
with different application intervals over connection-based and connection-less
BLE communication.

Initially, we measured the base power consumption of the nRF52 board with
the Zephyr OS in deep-sleep mode (all the peripheral on board are disabled)
by using the sample program
+ (../zephyr/samples/boards/nrf52/power mgr). The average power con-
sumption with deep-sleep mode we observed during the measurement was
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781 uW. The issues [32] and [33] on the git-hub repository of Zephyr OS
indicate that at the time of Zephyr 1.13.0 released, there was no compre-
hensive power management solution in Zephyr OS which causes the higher
base power consumption for the nRF52 board. Additionally, in [32], the
user claims that with nRF52x boards burned into Nordic SDK draw 2uA
current in an idle state while with Zephyr, the current is always about 290

uA. Therefore, we subtract this base power consumption of the nRF52 board
from the measurements and focus on the power consumption of the BLE
radio through the remainder of this thesis.

Figure 6.1 shows the average power consumption of the BLE radio of a node
device in both connection-based and connection-less IPv6 communication
when sending 100 bytes of IPv6 packet with different application intervals.
The power measurement was started on the 1st IPv6 packet was sent and
stopped after sending the 100th IPv6 packet.

Figure 6.2: Average power consumption of the BLE radio of a node device (excluding the
base power consumption of the device) when sending 500 bytes of IPv6 packets
with different application intervals over connection-based and connection-less
BLE communication.

Figure 6.1 shows that the average power consumption of active radio of high
duty-cycle applications (e.g., 4-sec application interval) in connection-less
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Figure 6.3: Average power consumption of the BLE radio of a node device (excluding the
base power consumption of the device) when sending 1200 bytes of IPv6 packets
with different application intervals over connection-based and connection-less
BLE communication.

communication is around 20 % higher than the connection-based commu-
nication. Moreover, Figure 6.2 and 6.3 also show the same behaviour of a
node device with different packet size.

The reason for the higher power consumption in high-duty cycle appli-
cations could be that in connection-less communication a node device
needs to transmit extra packets on primary Adv. channels to point to the
AUX ADV IND PDU for each IPv6 packet (see Section 2.1.3.2). As we
were expecting, for low duty cycle applications the power consumption of
connection-less is lower than the connection-based communication.

Moreover, from Figure 6.1, 6.2 and 6.3 we can observe that the average
power consumption of active radio of low duty-cycle applications (e.g.,
5-min application interval) is around 70 % higher in connection-based BLE
compared with connection-less BLE communication. The interval between
two IPv6 packets has an effect on a power consumption of active radio of a
node device in connection-based BLE. As predicted by our models in Section
3.3, the reason for higher power consumption is that in connection-based
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Figure 6.4: Radio-on time of a node device to transmit 100 bytes of IPv6 packet in
connection-less communication (adapted from [38]).

Figure 6.5: Radio on time of a router and node device to transmit 100 bytes of IPv6 packet
in connection-based communication for 5 connection intervals with slave latency
3 (adapted from [38]).
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BLE the low duty-cycle node device exchanges more number of keep-alive
packets with router to maintain a BLE connection.

The active radio time of ADV EXT IND PDU from Figure 6.4 is calculated
using equation 3.12 while AUX ADV IND PDU is calculated using equation
3.13 and 3.14 respectively. However, the active radio time of Data channel
PDU from Figure 6.5 is calculated using equation 3.9 and 3.10 while the
Empty packet is calculated using equation 3.8.

The theoretical analysis from Section 3.3 shows that the radio-on time to
transmit 100 bytes of IPv6 packet in connection-less BLE is 1120 us (calcu-
lated using 3.11) for a 5 min of application interval, while in connection-
based BLE it is 3952 us (calculated using 3.1). It means, the radio-on time in
connection-based BLE is 71 % more than connection-less BLE while sending
100 bytes of IPv6 packet every 5 mins. Besides, the experimental data from
Figure 6.1 shows that the average power consumption of active radio is 0.49

uW for connection-less BLE while 1.60 uW for connection-based BLE when
sending 100 bytes of IPv6 packet every 5 mins. In this case, connection-based
BLE required 69 % more power than the connection-less BLE. Therefore,
we can say that the theoretical analysis and experimental data confirm the
same behaviour of a node device for the low duty-cycle application.

Furthermore, Figure 6.1, 6.2 and 6.3 shows that the size of the IPv6 payload
contributes to the power consumption of a BLE radio. The longer the IPv6

packet the higher the power consumption of a BLE radio.
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6.2 Connection-less Communication vs.
Re-establishing a Connection

As we discussed, Section 1.1 indicates the possibility to re-establish a stan-
dardized BLE connection for each IPv6 packet to minimize the energy con-
sumed by the keep-alive packets during connection-based communication.
We compare the time and the energy required to transmit an IPv6 packet
in connection-less communication with re-establishing a BLE connection
approach.

6.2.1 Experimental Setup

The experiment setup used to compare the connection-less communication
vs re-establishing a connection approach is similar to Section 6.1. The
Monsoon power measurement tool is used to measure the power required
to establish a BLE connection and transmit the IPv6 packet, while the time
is measured with the help of kernel clock APIs provided by the Zephyr OS
[31]. In connection-based communication, the node device initially transmits
connectable Adv. PDUs and after establishing a connection, it transmits the
actual IPv6 packet. Hence, the time is measured from the 1st connectable
Adv. PDU to the end of actual IPv6 packet transmission. On the other
hand, in connection-less communication, time measurement is started when
the application issued data to lower layers and stopped at the end of the
successful IPv6 packet transmission. Initially, we transmitted 10 IPv6 packets
with packet sequence numbers from a node to the router. The number of
packet transmissions requied to receive the first successful IPv6 packet on a
router is measured using the packet sequence number of the received packet.
As we measured the number of packet transmissions required for successful
packet transmission, we measured the time and energy required to perform
the same number of transmissions on a node device. This experiment
measures the time and energy required for the successful transmission of
100 bytes of an IPv6 packet (taking reliability into account) from the node
to the router.
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During the experiment, the Connection Interval parameter is set to 7.5 ms
to achieve a fast data transfer. The slave latency is set to 0, that means slave
skips no connection events, while the Supervision Timeout is set to 100 ms.
The advertising interval of a node device is varied from 100 ms to 500 ms
(see Figure 6.6 and 6.7) in both the communication modes. The router, on
the other hand, uses 30 ms as a Scanning Interval and Scanning Window
and scans on all primary Adv. channels in scanning mode. The experiment
is performed with two different Primary Advertising channel map param-
eter values for connection-less BLE. One with channel 37 (CL 1) and another
with all three primary Adv. channels (CL 3).

6.2.2 Result

Figure 6.6: Time required to transmit 100 bytes of IPv6 packet with connection-less com-
munication and re-establishing a connection approach from node to router.

Figure 6.6 shows the time required to transmit an IPv6 packet using different
advertising intervals, over connection-less BLE and re-establishing a connec-
tion approach. According to the experiment, the time required to transmit
an IPv6 packet by reconnecting approach is higher than the connection-less
BLE. The reason behind the higher time could be an advertising interval of

85



6 Evaluation

the node and the scanning interval of the router. The higher the advertising
interval, the longer the re-connecting time of both the devices as well as
devices also perform neighbor discovery before exchanging actual IPv6

packets. In connection-less BLE, the time required to transmit the same size
of the IPv6 packet with CL 1 is higher compared with CL 3 configuration.
It is due to the more number of IPv6 packets are required to send for a
successful reception at the router with CL 1 configuration.

Figure 6.7: Energy consumption of a node device to transmit 100 bytes of IPv6 packet with
connection-less and re-establishing a connection approach.

Figure 6.7 shows the energy required for BLE radio to transmit 100 bytes of
an IPv6 packet using connection-less BLE and re-establishing a connection
approach. In re-establishing a connection approach, the energy of BLE radio
is measured for the time required to re-establish a standard BLE connection
and transmit an actual IPv6 packet, while in connection-less communication,
it is measured from the first transmission to the successful reception of
the packet at the router. As we discussed in Section 6.1, the base power
consumption of a device is significantly high, we subtracted the base energy
consumption of a device from measurements.

We can observe from Figure 6.7, the energy consumption of a radio of a node
device to transmit the same size of an IPv6 packet using connection-less BLE
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with CL 3 configuration is lower than the re-establishing a connection ap-
proach. The reason behind the higher energy consumption of re-establishing
a connection approach is that the devices transmit multiple connectable
Adv. PDUs and exchange the number of packets for re-establishing a stan-
dard BLE connection before exchanging an actual IPv6 packet. However, in
connection-less BLE, it depends on the number of packets are sent for a suc-
cessful reception on a router. Moreover, the energy required to transmit an
IPv6 packet using CL 1 configuration is higher than the CL 3 configuration
due to the more number of packet transmission.

6.3 Reliability

This section compares the packet reception rate of the IPv6 over connection-
less BLE communication stack to the existing IPv6 over connection-based
communication stack in an office environment.

6.3.1 Experimental Setup

This experiment uses the same node and router setup as the power measure-
ment setup used in Section 6.1. To measure reliability, 100 IPv6 packets are
transmitted from a node device to the router over the distance of 1 meter and
10 meters. In connection-less communication, the packet reception rate of
IPv6 packets is measured with two different Primary Advertising channel map
parameter values (CL 1 channel and CL 3 channel). The router scans on
all the primary Adv. channels while the Scan Interval and Scan Window
parameters of the router are set to 30 ms.

6.3.2 Result

The Figure 6.8 shows the packet reception rate of the connection-based
communication and connection-less communication over the distance of 1

meter. According to the experiment, the IPv6 over connection-based commu-
nication stack has 100% of the packet reception rate, while connection-less
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Figure 6.8: Packet reception rate for 1 meter distance between node and router with differ-
ent size of IPv6 packets.

BLE is less reliable. This was expected since connection-based BLE uses
autonomous re-transmissions and Adaptive Frequency Hopping.

As the distance between the node and the router increases, the strength of
the advertised packet signal decreases and hence, due to the interference
from other co-located wireless technology signals sharing the same 2.4 GHz
ISM band, more packets get dropped. This can be seen in Figure 6.9.

Moreover, Figure 6.8 and 6.9 show that the packet reception rate of connection-
less with CL 1 configuration is lower than CL 3 configuration and connection-
based communication. However, the reliability of a CL 1 configuration
depends on which channel the scanner is scanning on during the adver-
tisement of an advertiser and hence, there is uncertainty. Therefore, the
reliability varies from around 30 % to 60 % as the advertiser is advertising
on a single primary Adv. channel. This experiment also shows that the IPv6

over connection-based BLE stack provides better reliability than the IPv6

over connection-less communication.

From Figure 6.9 and 6.8 we can see that the reliability of connection-less BLE
with CL 1 configuration is 55 % when transmitting 100 bytes of IPv6 packets
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Figure 6.9: Packet reception rate for 10 meter distance between node and router with
different size of IPv6 packets.

when transmitting 100 bytes of IPv6 packets, while with CL 3 configuration
it is 96 %.

Although the motivation of this thesis is to minimize the energy consump-
tion of low duty-cycle devices using connection-less BLE, it is less reliable
compared to connection-based BLE as discussed above. Therefore, it is
essential to provide high reliability also using connection-less BLE while
keeping the power consumption low. The theoretical analysis from Section
3.3 and Table 3.2 show that if the packet transmission is performed thrice, a
90 % of reliability can be achieved using CL 1 configuration. While almost
96 % reliability can be achieved by transmitting the same IPv6 packet using
CL 3 configuration in connection-less BLE. Therefore, we experiment to
measure the average power consumed by the BLE radio of a node to achieve
90 % reliability in connection-based and connection-less BLE.

The experimental setup used to measure the average power consumed
by a BLE radio of a node to achieve 90 % of reliability is similar to the
experimental setup used in Section 6.1. In this experiment, we perform
3 packet transmissions when using CL 1 configuration and single packet
transmissions when using CL 3 configuration in each application interval
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to achieve 90 % of reliability (see Table 3.2). The power measurement was
started on the 1st IPv6 packet was sent and stopped after sending the 100th
IPv6 packet.

Figure 6.10: The energy consumption of the BLE radio of a node device in connection-based
and connection-less BLE to achieve 90% reliability.

Figure 6.10 shows that the average power consumed by BLE radio to transmit
an IPv6 packet in connection-based BLE is application interval dependent.
Longer the interval the higher the power it requires. In connection-less BLE,
the average power consumption of BLE radio depends on the number of
packets are transmitted. From Figure 6.10 we can observe that connection-
less BLE with CL 1 configuration consumed 13 % less average radio power
while providing 90 % reliability. However, the average power consumed
by a BLE radio in connection-less BLE with CL 3 configuration reduced by
around 65 % while maintaining 96 % of reliability when sending 100 bytes
of IPv6 packet/ 5 min.

6.4 Switching between Communication Modes

This section evaluates the BLE mode switching feature implemented in this
thesis. The switching is performed from connection-based to connection-less
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and vice versa. As we discussed in Section 4.1, the BLE devices establish a
BLE connection to update routing information, network prefix, and configu-
ration. For this experiment, devices switch to connection-based BLE every 1

hour and switch back to connection-less BLE once all necessary information
is updated.

6.4.1 Experimental Setup

This experiment uses the same experimental setup used for power mea-
surements in Section 6.2. In connection-based BLE mode, the Connec-
tion Interval as 7.5 ms, Slave latency as 0 and Supervision Timeout as 100

ms is used. While in connection-less BLE mode, Primary advertising Interval
is set to 20 ms where Ext. Adv. is activated for only one Adv. event of 20 ms.
The application interval is set to 5 mins while the switching to connection-
based BLE is performed every 60 min. As Section 6.3 confirmed that the
connection-less BLE with CL 3 configuration is more reliable than CL 1

configuration, we used CL 3 configuration to transmit 100 bytes of IPv6

packet every 5 min. The experiment measures the average power consumed
by a BLE radio as well as the transmission latency of a node. The experiment
is performed for 4 hours and repeated 5 times.

6.4.2 Result

Figure 6.11 shows that the average power consumed by a BLE radio in
connection-based BLE (switching to connection-based, exchanging informa-
tion, and switching back to connection-less) is significantly high compared
to connection-less BLE. The average time required to switch to connection-
based BLE and exchange all the information is 85 ms. While the average
time required to switch back to connection-less BLE from connection-based
BLE is 22 ms.

The experiment also measures the transmission latency of a node, which can
be observed in Figure 6.11. The unsuccessful transmission of IPv6 packets
is indicated by a red cross on the x-axis of latency in Figure 6.11. The
expected
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reliability of a node device was 96 % since we used connection-less BLE with
CL 3 configuration. However, the experimental data shows 97 % reliability.
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7 Conclusions and Future Work

This chapter concludes the thesis work and proposes future work that can
be considered to enhance the performance of the IPv6 over connection-less
BLE implementation.

7.1 Conclusions

This Master thesis compares the connection-less BLE over connection-based
BLE for IPv6 communication and summarizes the benefits of connection-
less IPv6 communication for low duty cycle applications. The major con-
tribution of this thesis is the design of an IPv6 over connection-less BLE
communication stack suitable for the architecture of Zephyr OS and its
hardware-independent implementation.

The experimental studies performed in this thesis provides the first compari-
son of the IPv6 over connection-less BLE with the existing connection-based
communication. The evaluation shows that the connection-less BLE (CL
3 channels) requires 30 % less radio-on time and 20 % less energy than
the reconnect approach to transmit a successful IPv6 packet. The reliability
experiment shows that the connection-based BLE has 100% reliability over
the distance of 10 meters, while connection-less BLE (CL 3 channels) has
around 96 % reliability for 100 bytes of packets. The experiment shows that
the average power consumed by a BLE radio of a node can be reduced by 65

% by providing 96 % of reliability with connection-less BLE (CL 3 channels)
when transmitting 100 bytes of IPv6 packet/5 mins.
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7.2 Future Works

Energy Consumption:

As the implementation of the IPv6 over connection-less BLE communication
stack is hardware-independent, it would be interesting to compare the en-
ergy consumption of nRF52 development kit with another BLE 5 supported
hardware.

Apart from that, in IPv6 over connection-less mode, the router continu-
ously scans for IPv6 packets over the Adv. channels and assumed to be
wall-powered. It can be avoided by implementing synchronization between
two devices which would allow the router to wake up and scan only on the
time indicated by the node.

Security:

Currently, no security is provided over the connection-less communication.
BLE connection-based communication allows devices to use different secu-
rity levels to encrypt the communication to avoid man-in-the-middle attacks.
As a future work, the security key used in connection-based communication
could be reused in connection-less communication to encrypt the data.

Avoid Interference:

As we discussed in Section 4.5.2.3, the interference on the secondary Adv.
channel is avoided using random channel selection. In future, the Channel
Selection Algorithm #2 (CSA #2) can be implemented for connection-less
communication as it is designed to avoid interference and multipath fading
effects in connection-based communication and it makes difficult to trace
the used channel of next event.

Different PHY:

The current implementation of IPv6 over connection-less BLE doesn’t sup-
port LE coded PHY, since the LE coded is not implemented for Adv. mode
in Zephyr OS BLE stack. Therefore, as a future work, energy consumption
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and reliability can also be checked over LE coded PHY by providing support
in BLE stack.

Broadcast multicast packets:

To transmit a multicast packet, devices need to establish a connection and
transmit a multicast packet in unicast fashion. For example, if the Border
Router (6LBR) is connected to multiple node (6LNs) devices and wants to
transmit the multicast packet to all the connected 6LNs, it has to replicate
the packet and transmit it as a unicast to each node [18]. Furthermore, if the
6LN needs to transmit the multicast packet to all the other 6LNs, it transmits
such a packet as a unicast to the 6LBR, which later transmits it as a unicast
to all the connected 6LNs. This is an overhead on 6LBR as it has to transmit
several packets to achieve the multicast behavior of IPv6. Further study
can be perform to use IPv6 over connection-less BLE to transmit multicast
packet over BLE.
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