
Dominik Wilhelm Mocher, BSc

Remote Traffic Analysis of Smartphone Applications

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Johannes Feichtner

Univ.-Prof. Dipl.-Ing. Dr.techn. Stefan Mangard

Institute of Applied Information Processing and Communications (IAIK)

Graz, February 2020

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which

has been quoted either literally or by content from the sources used. The text document

uploaded to TUGRAZonline is identical to the present master‘s thesis.

Date Signature

Abstract

With the increasing usage of transport encryption in mobile applications, the identifi-

cation of smartphone apps based on their produced network traffic becomes more chal-

lenging. Recent approaches apply machine learning models on the metadata contained

in network traffic to predict the corresponding application. In this thesis, we propose

three machine learning approaches to identify applications based on characteristics in

the produced network traffic. We exploit similarities of network traffic metadata and

natural language text documents to apply the existing text processing model Doc2Vec

as well as neural networks. These models are used to find unique patterns in network

traffic metadata, which can be used as a fingerprint to identify the source application.

To compare the effectiveness and performance of each model, we developed a pro-

totype and performed a case study with real-world applications. We manually collected

network traffic from Android devices and created four evaluation datasets using the ex-

tracted metadata. The neural networks were able to identify applications with up to 96

per cent precision and recall from traffic metadata, outperforming approaches based on

Doc2Vec. The contextual information of the feature combination does not seem to have

an impact on the prediction performance. From the results, we conclude that Doc2Vec

is an unsuitable model to identify applications based on the chosen metadata features.

Keywords: app identification, traffic analysis, machine learning, Doc2Vec

i

ii

Kurzfassung

Mit der zunehmenden Verbreitung von Transportverschlüsselung in mobilen Anwen-

dungen wird die Identifikation von Smartphone-Applikationen zunehmend schwieriger.

Neueste Ansätze verwenden maschinelles Lernen, um Anwendungen basierend auf Meta-

daten im Netzwerkverkehr zu erkennen. In dieser Arbeit werden drei Ansätze zur Identi-

fikation von Anwendungen anhand von Charakteristiken im Netzwerkverkehr dargestellt.

Dabei werden Gemeinsamkeiten von natürlicher Sprache und Netzwerkverkehr genutzt,

um das für die Textanalyse eingesetzte maschinelle Lernmodell Doc2Vec sowie Neuro-

nale Netzwerke anwenden zu können. Diese Modelle sind im Stande, charakteristische

Muster in Netzwerkmetadaten zu finden, die für die Identifikation der Quellanwendung

herangezogen werden können. Um die Effektivität und die Erkennungsrate der Modelle

zu vergleichen, wurde ein Prototyp entwickelt und eine Fallstudie mit mehreren An-

wendungen durchgeführt. Dafür wurde Netzwerkverkehr manuell von Android-Geräten

gesammelt, auf deren Basis vier Evaluierungsdatensätze erstellt wurden. Die Neuronalen

Netze konnten Applikationen mit bis zu 96 Prozent Genauigkeit anhand der Netzwerk-

metadaten identifizieren und damit alle Modelle, die auf Doc2Vec basieren, übertreffen.

Durch die Berücksichtigung von Kontextinformationen in den Kombinationen der einzel-

nen Merkmale konnte keine Veränderung in der Erkennungsrate festgestellt werden. Aus

den vorliegenden Ergebnissen ist ersichtlich, dass Doc2Vec nicht zur Identifikation von

Anwendungen anhand der ausgewählten Merkmale in den Netzwerkmetadaten geeignet

ist.

Stichwörter: Identifikation von Anwendungen, Netzwerkanalyse, maschinelles Ler-

nen, Doc2Vec

iii

iv

Acknowledgements

First of all, I would like to thank Johannes Feichtner for his feedback and guidance

during this work. My sincere thanks to Peter Teufl for sharing his expertise in machine

learning. I would also like to express my gratitude to my colleagues at IAIK for their

encouragement and valuable discussions on the topic. Finally, I thank my friends and

family for their support. I am especially grateful to Ursula, Eric, Theres and Wilhelm.

Dominik Mocher

v

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Problem . 3

1.3 Our Approach . 4

1.4 Outline . 5

2 Background 7

2.1 Metadata in Network Traffic . 7

2.2 The Android Network Interface . 12

2.3 Text processing . 14

3 Related Work 25

3.1 Workstation Traffic Analysis . 25

3.2 Mobile Device Traffic Analysis . 27

3.3 IoT Traffic Analysis . 29

4 Approach 31

4.1 Similarities of text processing and traffic analysis 31

4.2 Processing Network Traffic using Machine Learning 34

4.3 Approach 1 - Pure Doc2Vec . 35

4.4 Approach 2 - Dedicated Classification Network 36

4.5 Approach 3 - Doc2Vec with External Classifier 39

5 Implementation 41

5.1 Toolchain . 41

5.2 On-Device Capturing of Network Traffic 44

5.3 Preprocessing of Raw Data . 44

5.4 Model Training and Evaluation . 45

vii

5.5 Detecting Applications and Categories from Unseen Traffic 51

6 Evaluation 53

6.1 Datasets used for Evaluation . 53

6.2 Model Performance . 58

6.3 Limitations . 70

6.4 Summary . 70

7 Conclusion 75

viii

List of Figures

2.1 Graphical representation of the equation ~vuk + ~vlondon − ~vparis = ~vfrance. . 16

2.2 Using Distributed Memory Model with Paragraph Vector (PV-DM) to pre-

dict the next word from three feature vectors and the paragraph vector[15,

p. 1190]. 17

2.3 Distributed Bag of Words with Paragraph Vector (PV-DBoW) predicts

words from the paragraph without the need of input feature vectors[15,

p. 1191]. 17

2.4 Graphical representation of the Rectified Linear Unit (ReLU) activation

function. 20

4.1 Using Doc2Vec for input transformation followed by a logistic regression

classifier. 36

4.2 Classification using a convolution neural network and a dense neural net-

work. 37

4.3 Transforming documents into vectors using Doc2Vec, prior to performing

the classification with a dense neural network. 40

5.1 Structural overview of the module components. 43

5.2 Structural overview of the dedicated neural network components. 49

5.3 Structural overview of the components of Doc2Vec with external classifier. 51

6.1 Precision, recall and F1 score of the different Doc2Vec configurations. . . 61

6.2 Precision, recall and F1 score of the different neural network configurations. 65

6.3 Precision, recall and F1 score of Doc2Vec with logistic regression classifier. 69

6.4 Tensorboard Uniform Manifold Approximation and Projection for Dimen-

sion Reduction (UMAP) visualisation of model data points. 73

ix

x

Chapter 1

Introduction

With smartphones becoming a more and more important part in our everyday life,

the amount of online services we use in the form of apps increases steadily as well. A

significant amount of people tend to use mobile applications like Whatsapp1 or Skype2 for

the majority of their daily online communication. It is common to have data available by

synchronising files and folders across multiple devices or share media with smartphones

of other people. Even collaborative work can be performed using mobile applications.

These developments lead to an always-online mentality, resulting in a continuing increase

in network traffic produced by each device.

With this effect, the need to strengthen the protection of data during transport and

the privacy of the user becomes more important. For applications running on Android

or iOS, Google and Apple recommend that applications transmit data in encrypted

form using Transport Layer Security (TLS).3 4 TLS constitutes a defensive mechanism

against man-in-the-middle and injection attacks, reducing the risk of leaking possibly

sensitive data during transport. For this reason, an attacker cannot easily redirect

online banking transmissions, and authoritarian governments cannot monitor messages

of citizens without forcing the installation of government-issued certificates. Even locally

installed anti-virus programs cannot inspect the network packet payload and have to

break transport encryption.

1https://www.whatsapp.com/
2https://www.skype.com/
3https://developer.android.com/training/articles/security-tips
4https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/

Conceptual/NetworkingOverview/SecureNetworking/SecureNetworking.html

1

However, to transport a data packet between network nodes, the routing information

has to be readable in each node. As a result, this information cannot be encrypted, and

the use of transport encryption does not prevent the exposure of this metadata.

1.1 Motivation

Patterns in metadata can recur in seconds as well as in much larger time frames. In the

latter case, the observation of network traffic over such a large time frame can lead to

numerous network packets. All of those network packets have to be analysed in order to

find potential patterns. Network traffic patterns emerge from characteristics of applica-

tion program code as well as the used network infrastructure. Since these patterns are

often well-distinguishable, they can be used to identify applications and backend services.

By combining patterns produced from sufficiently many applications on a device, a fin-

gerprint can be created to recognise the device within a network environment. Although

metadata analysis methods can provide a significant amount of sensible information, it

does not violate any security principles of transport encryption.

Information gathered in this way can serve a wide range of purposes. For example,

services that require high bandwidth or low latency can be prioritised in order to opti-

mise local network infrastructure and increase the service quality. On the other hand,

this information can be used to gain an insight on applications installed on a device,

allowing to profile users and their surroundings. For instance, if the app of a specific

bank is installed, it is likely that the user has an account at this financial institute. On

a more detailed classification level, application versions that contain known bugs can be

identified remotely, if traffic patterns are distinct between multiple versions. An attacker

can make use of this knowledge to target devices running this specific app version. By

comparing traffic patterns from a known good app to abnormal application traffic, mod-

ified apps containing malware might be detected as well. This information can then be

used to inform device owners. Creating awareness to remove such modified applications

can prevent further spreading of infections. In the case that known patterns produced

by widely used libraries are contained in the network traffic, it can be determined of

which application the library is part of.

2

1.2 Problem

In order to perform meaningful analyses, the availability of an extensive amount of

metadata is critical. Additionally, the number of features contained in this metadata

is of equal importance. Although single features are useful as a first estimator of an

application or service type, purely relying on this estimation is prone to errors. In [10]

and [34], the authors base their methods primarily on hostnames of the backend services

and the responses of Domain Name System (DNS) queries. This solution has several

limitations, like the caching of DNS responses implemented in every major Operating

System (OS). This mechanism allows reusing the result from previous name resolution

queries. Due to this reuse, the cached mapping between hostnames and addresses does

not necessarily reflect recent changes in the network. This leads to the problem that

the mapping on a target device may differ from the response that the analysing machine

gets.

Another drawback of relying on the hostname is the distinguishability between ap-

plications contacting the same backend service. For example, applications often use

an authentication provider like Firebase5 from Google for user management. All ap-

plications sharing an authentication provider would, therefore, contact a domain name

belonging to this provider during the login of a user. If the application identification

relied solely on the hostname in this traffic, all apps would be classified as a single one

with relation to Google. A further scenario is the use of an advertisement framework

in multiple applications, which connects to the hostname of the advertisement service.

If these apps do not contact additional hostnames, they could be classified as the same

application similar to the previous scenario.

To overcome the limitations of the scenarios outlined in these examples, the iden-

tification of relevant features in metadata is crucial. The combination of features can

determine application-specific patterns in network traffic. In order to capture traffic

patterns, a sufficiently large amount of data is vital, as these patterns can span over a

vast amount of network packets. This extent of metadata requires a significant amount

of computational performance. Evaluating the importance of single features leading to

an identification tends to be a complicated task. Depending on the application, one fea-

ture can be more relevant than another. For instance, a well-distinguishable packet size

might lead to better identification results than a service hostname shared between two

applications. On the other hand, the packet size could be similar to a third application.

5https://firebase.google.com/docs/auth/

3

The hostname could be a better indicator in this case. For this reason, it is a complex

task to balance the weighting of features leading to a classification decision. Another

problem are features, that can change over time, like DNS information or hostnames. In

order to avoid pitfalls originating from such unreliable sources, we focus on using generic

network packet features directly related to the transmission.

1.3 Our Approach

We believe that the best way for identifying applications based on patterns in network

traffic metadata is the use of machine learning methods. This approach draws advantage

from the vast quantity of available metadata. This leads to a large corpus of training

data, which allows a more precise adaption of the model in the learning phase. Another

benefit of this approach is the fact that the detection can be performed in a short time,

once the model is trained. Although the training of a machine learning model requires

a significant amount of processing time, this task can be performed on a sufficiently

powerful workstation. The trained model can be stored for later use and does not

require retraining.

Unsupervised machine learning techniques lack the flexibility of correlating patterns

to specific targets and tend to create clusters based on similar traffic. These models do

not provide the option to define specific training targets like applications, application

categories or shared libraries. For this reason, we opted to use supervised machine

learning strategies in favour of control over the desired outcome classes, although the

preprocessing effort increases due to labelling the data. We assume that the structure

of network traffic metadata is similar to documents consisting of structured text. Thus

we adapt an approach out of this field in the form of Doc2Vec. Doc2Vec is a supervised

machine learning algorithm, tailored to determine the topic of a text document. This

algorithm is built on the widely known Word2Vec. Doc2Vec predicts the result based

on patterns in the text structure while additionally considering the context information

of word combinations and adjacent words. We train one Doc2Vec model to identify

applications, while a second one is built to detect predefined application categories.

During the training of the first model, we use application names as labels. For the

second model, these labels are replaced with categories. In both cases, the assigned

labels are considered as document topic.

In order to train both machine learning models on realistic user behaviour, we

4

capture network traffic directly on the devices during normal use of applications. For

gathering traffic, a local Virtual Private Network (VPN) server is installed on each device

and serves as the capturing point. This approach provides the advantage of correlating

names of running applications to the produced network traffic packets, which are then

used as application name labels. The collected packet features can be restructured into

documents containing single sessions, with each packet representing a single sentence.

This restructuring allows us to use Doc2Vec with network data similar to textual docu-

ments. We use the first part of the session documents for training the Doc2Vec model

in order to adapt the model parameters to network data. The other part is then used

to evaluate the classification performance of the trained model on unseen data, which

reduces the risk of fitting the model to biased data. We propose two configurations

of Doc2Vec, differing in the used learning and prediction strategy as well as two neural

network classifiers with different layer architectures. The metric results of all approaches

are compared in order to find the most accurate model for detecting smartphone appli-

cations.

1.4 Outline

This thesis is divided into several chapters. Chapter 2 gives an overview of necessary

background information. We discuss the structure of network traffic in detail, focussing

on extracting metadata and gathering additional information. Afterwards, we explain

Android-specific network components and introduce the Android VPN application Net-

guard. In addition, we discuss current supervised machine learning approaches for text

processing and emphasise multi-class classification techniques as well as the Doc2Vec

algorithm. We conclude the chapter by explaining the used evaluation metrics. In Chap-

ter 3, recent work in related fields is discussed. We start by comparing recent papers

proposing techniques for traffic analysis of workstations and compare these to methods

for mobile device traffic. Lastly, we briefly analyse existing work in the related field of

identifying Internet of Things (IoT) devices instead of smartphone applications. The

methodology of our proposed solution is then discussed in Chapter 4, where we emphasise

the connection between text processing and network traffic analysis. We present three

supervised machine learning approaches to detect smartphone applications based on

generic network traffic features and describe their theoretic aspects. Chapter 5 explains

the architecture and implementation details of each involved module. Furthermore, we

elaborate on the detection process and describe the necessary preprocessing of newly

5

captured data. Afterwards, the datasets used during the performance analysis are dis-

cussed in Chapter 6. For each approach, the classification performance on these datasets

is summarised and compared to all other models. Finally, we present our conclusions in

Chapter 7. We explain the performance differences between the tested approaches and

present our findings on whether text processing methods are suitable for network traffic

analysis.

6

Chapter 2

Background

In this chapter, we provide an overview of the foundations relevant to this thesis. It starts

with the explanation of relevant features, that can be extracted from network traffic or

queried from other public sources. Afterwards, we discuss techniques to capture traffic

packets and summarise their advantages and limitations. We then focus on the network

programming interface of the Android mobile OS and introduce Netguard, a device

local firewall application. This chapter concludes by elaborating two methods to extract

context information out of a text. We explain the underlying machine learning concepts

and approaches to measure the performance of the trained model.

2.1 Metadata in Network Traffic

With the increasing amount of encrypted network traffic in applications, the collection

of data gets more difficult. Although transport encryption schemes like TLS prevent

accessing the payload data, the associated metadata is still available. Metadata consists

of information the transport protocols need, in order to route each packet to the correct

destination. This includes identifiers for sender and recipient, timestamps of different

events like the reception of the packet or the transmission duration, but can also consist

of flags indicating the special treatment of a packet. Each metadata part on its own

provides only limited insight. Combining these parts allows drawing conclusions, for

example, whether a packet is a response or request.

7

Address Range Designation Date Whois Status

.
75./8 ARIN 2005-06 whois.arin.net ALLOCATED
76./8 ARIN 2005-06 whois.arin.net ALLOCATED
77./8 RIPE NCC 2006-08 whois.ripe.net ALLOCATED
78./8 RIPE NCC 2006-08 whois.ripe.net ALLOCATED
.
2620::/23 ARIN 2006-09 whois.arin.net ALLOCATED
2800::/12 LACNIC 2006-10 whois.lacnic.net ALLOCATED
2a00::/12 RIPE NCC 2006-12 whois.ripe.net ALLOCATED
.

Table 2.1: An excerpt of the IPv4 and IPv6 assignment administered by
IANA.12

2.1.1 Gathering Information from IP Addresses

From Internet Protocol (IP) addresses, various other data associated can be gathered.

Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6) addresses are

registered to companies or a person, the information of possessing a specific address is

often available to the public. The number of addresses obtainable, especially for IPv4,

is limited. The central organisation performing the administration of IP addresses is the

Internet Assigned Numbers Authority (IANA). The IANA distributes blocks of address

ranges to Regional Internet Registries (RIRs), which themselves manage these blocks

in their geographical region spanning across multiple countries. Based on these assign-

ments, it is possible to determine the geographic area, in which an IP address is located.

The excerpt of the IANA address assignments in Table 2.1 shows that for example the

IPv4 range 80/8 and the IPv6 addresses in 2a00/12 are assigned to Réseaux IP Eu-

ropéens Network Coordination Centre (RIPE NCC), the RIR responsible for Europe,

the Middle East and parts of Asia. Thus, it can be concluded that IP addresses from

this block are located in this service area.

The RIR itself distributes the assigned address ranges among large institutions

and Internet Service Providers (ISPs) in their area of responsibility. Individuals or

companies are able to rent single IP addresses or complete subranges from an ISP. To

track possession, each RIR has to maintain a publicly available lookup service. This

1https://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
2https://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-

assignments.xhtml

8

inetnum : 1 2 9 . 2 7 . 0 . 0 − 129 . 27 . 255 . 255
netname : TUGNET
org : ORG−TUG1−RIPE
desc r : Z e n t r a l e r In f o rmat i kd i en s t
de sc r : S t e y r e r g a s s e 30
desc r : Graz , A−8010
country : AT
source : RIPE
. . .
person : Dept . o f Communications
address : TU Graz/ Z e n t r a l e r In f o rmat i kd i en s t
address : S t e y r e r g a s s e 30
address : A−8010 Graz
address : AUSTRIA
phone : +43 316 873 6390
fax−no : +43 316 873 7699

Listing 2.1: An whois response for the IP address 192.27.2.3.

information is contained in public databases, with the respective database servers listed

in the IANA assignments. A database can be queried using the whois3 protocol. The

query contains an IP address, the database responds wether the address is part of a rented

subnet, to whom it belongs and the postal address of the organisation or individual. For

privacy reasons, detailed information of individuals is often redacted. An example of a

whois response can be seen in Listing 2.1. In order to provide offline location databases,

companies crawl whois responses for all possible IP addresses. If the coordinates are not

contained in the response, the location of the included street address is resolved as best

approximation.

In the case that the IP address associated with a hostname is part of a subnet

range, it could indicate a network of an organisation or company providing backend

services. Such services have to handle a significant amount of server load, often dis-

tributed among multiple server instances with their instance address being part of this

subrange. The distribution is performed by a load balancer, which redirects requests to

the servers in order to distribute their workload. The amount of servers used can scale

dynamically, depending on the current degree of utilisation and required computational

capacity. As such services are provided among a greater geographical region, Content

3https://tools.ietf.org/html/rfc3912

9

Delivery Networks (CDNs) are often used to serve static files. Based on the user’s lo-

cation, the hostname of the CDN service instance can resolve to different servers with

different addresses. This approach speeds up response times, as the physical proximity

brings along a faster connection and can be used for load-balancing purposes as well.

The majority of CDNs run their own data centres, providing computing power to their

customers for rent. This leads to the situation that a vast amount of large services from

different companies resolve to the same IP address range, namely that of the CDN.

In contrast to static addresses, IANA reserved three network ranges as private

addresses4 due to the limited availability of IPv4 addresses. These addresses are assigned

dynamically by a local gateway and are not routed on the internet. Instead, Network

Address Transposal (NAT) is used to replace source and destination addresses within

this range with the public gateway address.

On the level of single IP packets, associated information can be extracted as well.

Among those, the packet length and header length are of special interest, as both can

vary depending on the involved network nodes and higher-level protocols.

2.1.2 Metadata in TCP

Transmission Control Protocol (TCP) is a protocol managing stateful connections be-

tween a sender and a recipient. Prior to transmitting data, a session has to be established

between the ports of both participants. Every session starts with a handshake indicating

that both stations are ready to send or receive data. During a session, data of arbitrary

size is split into multiple packets, which are transmitted in order. Every packet received

is acknowledged, allowing to resend lost packets automatically. As soon as the packet

transfer is complete, the session ends with the connection teardown. The outgoing ports

are usually assigned dynamically, whereas static ports are associated with widely used

high-level protocols by IANA. Besides providing information which protocol uses this

data, each packet contains a number of additional flags in the header. As these are

largely dependent on the contacted service and capabilities of the sending station, the

sum of flags can be used to recognise repeating connections between these participants.

By removing the header padding, the remaining header length can differ from packet to

packet. For this reason, the length of the header without padding can serve as another

information source.

4https://tools.ietf.org/html/rfc1918

10

2.1.3 Resolving Hostnames

Hostnames can provide valuable insight into the service contacted or the company be-

hind. For example, if an application established a connection to “translate.google.com”

and transmits a large payload, it can be an indicator that text should be translated using

the translation service of Google. There are a number of ways to extract the hostname

out of network traffic and map it to the destination IP address. If the request is made

relying on Hypertext Transfer Protocol (HTTP), the request header is available in plain

text. Version 1.1 and later of this protocol require the presence of the Host field in the

header, which contains the full hostname of the destination. The more secure equiv-

alent, Secure Hypertext Transfer Protocol (HTTPS), instead preserves confidentiality,

encrypting the whole request header along with the payload. An exception to this is

the protocol extension Server Name Indication (SNI)5. SNI effects that the Client Hello

message includes the hostname as plain text in the extension field. Based on the included

hostname, the server returns the appropriate server certificate, as multiple names can be

hosted on a single machine. If the Client Hello message cannot be captured, the host-

name can be resolved for an address by querying the DNS. DNS relies on distributed

name servers, which contain a mapping between hostnames and static IP addresses. A

problem of resolving hostnames in this way is the reliability of the query result. In order

to prevent repeated queries for an IP address, the response to a query is cached locally.

The mapping of hostnames to addresses can change over time and differ even between

multiple nameservers.As a result, the cached response on a device can differ to a newly

acquired mapping on another one. Companies with offices in different geographic areas

often run their own nameservers to provide language or area-specific content and ser-

vices.6 If the address is queried from another country as the original request was made,

it could likewise lead to another hostname.

2.1.4 Traffic Gathering

For analysing network traffic, packets have to be captured. This can happen on different

points of an active connection. The first possibility is to sniff the traffic directly from

the network interface of a device. However, on most platforms, enhanced privileges are

needed to do so. Thus, a common practice is to redirect all traffic through a local proxy

or VPN server. As both methods run directly on the device, the application producing

5https://tools.ietf.org/html/rfc6066
6https://kb.isc.org/docs/aa-01149

11

each packet can be determined. This allows using filter techniques so that only traffic of

certain applications is logged. A drawback of these methods is that the implementation

of the sniffer has to be adapted for each supported OS. Instead of on-device approaches,

traffic can be captured directly on a gateway. This involves local network infrastructure

equipment like wireless access points or routers as well as remote proxies or VPN servers,

eliminating any platform dependencies. If a gateway is connected to multiple devices

transmitting data, the sniffed traffic can get large in a short amount of time, potentially

containing a considerable amount of unwanted noise from irrelevant devices. Although

traffic can be filtered for single devices based on the IP address, such filters are not easily

extendable to an application level, unless these apps are using custom ports.

A vast amount of tools to capture network traffic exists, with Wireshark7 being

one of the most widely known. It is designed as multi-platform protocol sniffer and

analyser, supporting a wide range of different protocols. Able to perform live capturing

from physical or virtual interfaces, it can provide detailed insight on all network levels.

Wireshark utilises a tailored filter syntax to display captured traffic of interest. It allows

to export and import gathered network traffic in various formats, for example in the

Packet Capture (PCAP) library structure, which is often used to exchange recorded

traffic with other programs. Additionally, multiple other tools are part of Wireshark,

like the command line interface tshark or the remote capturing application tcpdump.

2.2 The Android Network Interface

All applications developed for the Android mobile OS run in their own sandbox, which

prevents uncontrolled access to the outside world. This concept is implemented by as-

signing a device-unique User Identification (UID) to each application upon installation

and enforcement through the kernel. To access other data, hardware interfaces or to

transmit data in a network, applications need to acquire the consent of the user in the

form of permissions. Permissions are divided into multiple categories, with installation

and runtime permissions being the most popular groups. The latter, often referred to

as dangerous permissions, consists of those which potentially compromise the security

of the device or have an impact on the privacy of the user. Examples of this category

are the permissions to use the camera or record audio. Prior to using such interfaces,

an app has to inform the user about the purpose and ask for confirmation. The user

can withdraw the confirmation at any time. Install permissions involve all those, which

7https://www.wireshark.org/

12

are considered as not harmful. Thus the OS grants them automatically during installa-

tion. The user is informed about the need for access, but cannot reject them at a later

point. A prominent example is internet access. With this permission implicitly granted,

applications are able to utilise the high-level interface provided by Android for network

communication. Requests are sent asynchronously to the destination Uniform Resource

Locator (URL) by the HttpUrlCl ient class, with possible payload data serialised to

plain text. The response is delivered to an application callback. The Android OS sup-

ports HTTPS connections out-of-the-box, either by instantiating HttpsUr lCl i ent or

passing an HTTPS URL scheme to HttpUrlCl ient . Internally, the latter method

performs an upcast to HttpsUr lCl i ent . Google encourages the use of HTTPS, with

Android version 9.0 disabling plain text transmissions by default. For enhancing the se-

curity configuration of the connection, no modification of the application code is needed.

Instead, custom trust anchors or pinned certificates can be defined in an additional

resource file.

Additionally, Android enables applications to serve as VPN client by extending the

VpnService class. Although the permission needed is not considered dangerous and

thus part of the install category, the user is notified on the first application start. Fur-

thermore, the OS indicates the VPN connection as long as it is active. The VpnService

class is able to create and configure virtual IP network interfaces, which acts as file de-

scriptor in order to receive and inject packets. The application can then establish a

connection to a remote VPN server, forward all packets to it and deliver the response

back to the file descriptor.

2.2.1 Netguard - A non-root Firewall

A VPN server does not have to be a dedicated machine but can be included in an appli-

cation as well. Netguard8 utilises this idea to serve as local firewall. As it only requires

install permissions to permit or reject other applications from accessing the internet, no

rooting is needed. To allow the user to block network traffic of single applications, Net-

guard must be able to link the produced traffic to the producing application. By querying

the Android PackageManager, Netguard can determine the UID of the current active

app when a packet was sent. The PackageManager provides two more functions, which

are useful for Netguard in this context. The first is getPackagesForUid (i n t uid

) which returns the application package names assigned to a UID. With this method,

8https://www.netguard.me/

13

the network packet can be linked to the application producing it. The other method

is g e t I n s t a l l e d P a c k a g e s (i n t f l a g s) , which allows the user to define blocking

rules for all installed apps. Netguard compares the application responsible for every

encountered packet against the filter list. If the application is not allowed to access the

internet, the packet is dropped. Since all packets have to pass the virtual interface of

Netguard, the traffic can be recorded and exported in the PCAP format.

2.3 Text processing

Automatically extracting the context of arbitrary text documents is an active research

field with a vast amount of different approaches. During the creation of this thesis,

we picked two of these methods and adapted them to find patterns in the structure

of network data. Both methods are based on supervised machine learning models and

require input in the form of a labelled dataset. For both models, the dataset consists

of a number of text documents, each consisting of multiple sentences itself. To every

sentence, a textual label has to be associated, describing the related context class.

As does the majority of approaches, both models require preparation of the available

textual data in order to perform well. The first step is the removal of words, which do not

contribute to the derivation of context. A prominent category of these are conjunction

words like “and”, “or”, “but” or “for”. While being useful in a conversation between

humans, so-called stopwords are not related to specific topics and would only increase

the needed processing time and space.

After this step, the remaining words in the dataset are reduced to their respective

base form and encoded into a set of integers. This representation enables the application

of mathematical operations, as every sentence can be considered as n-dimensional vector,

where n is the length of the sentence. Such vectors are often referred to as feature vector.

The associated labels are transformed in a similar manner. Instead of being encoded as

integers, one-hot encoding is used. In comparison to the previously described integer

encoding, this method has the advantage of removing any implicit hierarchies from the

data. With this method, each label is encoded into a k-dimensional vector, with k being

the number of labels. Every vector consists of 0’s and exactly one 1, with its position

being unique for all vectors. An example of this encoding technique is given below.

14

cat −→
[
0 0 1

]
dog −→

[
0 1 0

]
mouse −→

[
1 0 0

]

As the last part of the preprocessing, the data is converted into sequences of equal

length. Shorter sequences are either padded up to the maximum length of all or to a

fixed size. In the latter case, words of longer sentences are neglected above the limit and

information is lost. For this reason, this technique is usually applied on datasets contain-

ing only a small amount of outliers, so that the tradeoff between reduced information

and increased training speed is within an acceptable boundary.

Depending on the implementation, some or all of the described steps can be in-

cluded in the framework. This is the case in the first approach, Doc2Vec [15], which is

implemented in the Gensim Framework9. Doc2Vec extends the idea of Word2Vec [23]

to process multiple sentences or documents. Word2Vec is a machine learning model that

allows deducing the relation between words. In order to do this, the model transforms

each word of a text into a word vector. Using vector algebra, the similarity of these

vectors can be measured, and the model is able to figure out whether two words are

synonyms, analogies or antonyms. An example scenario would be deriving the rela-

tion between Paris and France based on the fact of knowing that London is the capital

of the United Kingdom. In vector algebra, this can be modelled with the equation

~vuk + ~vlondon − ~vparis = ~vfrance. The graphical representation of this equation can be

seen in Figure 2.1.

The underlying neural network can use two different algorithms for deriving the

word vector from a feature vector, either continous bag of words (CBoW) or skip-gram.

The former utilises a sliding window in order to predict the middle word based on

the surrounding words. To be able to do this, the numerical representation of the

surrounding words is averaged. This means that the ordering of the words in the sentence

does not influence the outcome. Skip-gram instead uses the current word to predict

the next and previous words. With this algorithm, the influence of words is weighted

according to their distance to the current one. Both models lower the internal complexity

9https://radimrehurek.com/gensim/models/doc2vec.html

15

x1

x2

0 1 2 3 4

1

2

3

4

~vuk

~vlondon
~vparis

~vfrance

Figure 2.1: Graphical representation of the equation ~vuk+~vlondon−~vparis =
~vfrance.

of the neural network, increasing the computation performance while still providing well-

performing word vectors. However, a limitation of Word2Vec is that it does not consider

any information contained in larger structures like sentences, paragraphs or documents.

Doc2Vec overcomes this weakness by adding the context information of paragraphs

to simple word vectors. Le and Mikolov propose two methods to perform this task

in [15], which replace CBoW and skip-gram in the neural network. PV-DM predicts

the next word from a feature vector that considers the paragraph context. This context

represents information, that is missing if only the feature vector alone was used. The

paragraph context is modelled as a vector similar to the feature vectors of single words,

thus referred to as paragraph vector. During the training process, the neural network

infers these paragraph vectors and adapts the associated weights. An example of PV-

DM is shown in Figure 2.2. While the word vectors are shared over all paragraphs

in the text, the influence of each paragraph vector is limited to its own context. As

the input feature vector for the prediction depends on the current and previous words,

the ordering of these matters. For this reason, semantics between words and between

paragraphs are preserved in the trained model. In contrast to PV-DM, the paragraph

vectors used in PV-DBoW do not depend on any input words out of the paragraph.

Instead, the vector is trained to predict randomly sampled words from the paragraph

as output. This method has the advantage of a reduced memory footprint compared to

16

Figure 2.2: Using PV-DM to predict the next word from three feature
vectors and the paragraph vector[15, p. 1190].

Figure 2.3: PV-DBoW predicts words from the paragraph without the
need of input feature vectors[15, p. 1191].

PV-DM, as only the weights have to be saved during the training. The simple structure

of PV-DBoW can be seen in Figure 2.3. Although the authors state that the usage of

PV-DM alone should work well, they recommend to combine both methods in order to

achieve more consistent results across different applications.

With the described methods, the neural network is trained to classify the context. In

each training epoch, the outcome is derived according to the used method and compared

to the ground truth, being the assigned label encoding. The weights used to derive the

resulting vector are adapted accordingly, emerging in an high-dimensional vector space.

For classifying new text, the network infers a new vector for this input. The cosine

similarity to the surrounding vectors is computed and compared against others. Since

17

each vector represents one class label, the probability that the newly inferred vector

belongs to each class relates to the associated distance.

2.3.1 Deriving Context with Multi-Class Classification

Another widely used approach for text analysis is to build a neural network by defining

the layer structure oneself. In the most simple way, each layer of a neural network

consists of a number of equal neurons. When these neurons receive input, the result of

each neuron is computed using an activation function and provided as output to the next

layer. The activation function should ideally be non-linear in order to enable the model to

learn complex decisions. The neurons of every layer are connected to their counterparts

in the next, where the number of neurons can differ between layers. The connections

themselves have weights associated, which are adapted during the training phase. For

adapting the weights, the network performs the intended task, for example, classifying

the training set, and evaluates the outcome. By using backpropagation, the distance to

the correct result is measured with a loss function. Prior to the next training cycle, the

weights responsible for this outcome are adjusted using an optimisation strategy. The

training phase should last until the loss function converges, meaning that nothing new

can be learned from the input. For reducing the time needed for training the neural

network, the training dataset can be split into multiple batches, which can be processed

in parallel. A part of the training dataset can be reserved as a validation set. The model

never learns on this data but evaluates samples of it during each training epoch. As the

validation set is separated from the training dataset, the performed evaluation outputs

unbiased results of the model performance on the training set. This results can be used

as a basis for improving the model parameters.

One of the main challenges in the field of machine learning is to find well-performing

parameters for each network layer, the optimisation strategy, as well as appropriate

loss and activation functions. While the latter relies on experience, the former can be

determined empirically. Grid search is a widely used strategy to find a well-performing

model parameter combination. The model is trained for multiple iterations. Between

each iteration, one value of the model parameter set is changed according to a given

step size and the model performance is evaluated. This process of changing parameters,

training and measuring the model performance is repeated until a given number of

iterations is achieved, or a given performance threshold is exceeded.

18

For creating a neural network, we used the Keras10 framework. It abstracts differ-

ent machine learning backends like Tensorflow11 with a high-level syntax. Keras allows

creating a neural network by initialising the used layers with their respective parameters

and connecting them. The model has to be compiled with a loss function and optimisa-

tion strategy before it can be trained for a specified number of epochs using a training

and a validation dataset.

In order to process text, the first layer of the neural network has to be an em-

bedding layer. As the data preprocessing provides sequences of positive integers, this

layer transforms these sequences into vectors of the desired output length. The output

length should be chosen in a way that considers the input size of the following layer. To

perform the classification, the model utilises a dense layer. This type of layers consists

of a number of neurons of which each one has an weight assigned. Given an input in the

form of an vector ~u ∈ Rn, the weights of the training iteration i as matrix W ∈ Rm×n

and a bias vector ~b ∈ Rm, the layer can be represented with the following equation.

W(i+1) = f(W(i) · ~u +~b)

The activation function f has preferably non-linear characteristics and has to be differ-

entiable, in order to calculate the loss. A function commonly used for this application

is the ReLU function, which is defined in the following way.

f(x) = max(0, x)

As can be seen in Figure 2.4, the derivative of the function for any negative input is

0, whereas for positive integers the slope is 1. This property is important for efficient

backpropagation. The dense layer can either be used as a middle layer or as the last

layer of the network, outputting the classification results. In the latter case, the number

of neurons represents the available output classes.

There are multiple layers dedicated to decreasing the occurrence of overfitting. A

naive approach is the use of a dropout layer, which simply drops a part of the received

input. This randomly eliminates some information during the training phase. In this

way, a dropout layer can remove outliers with a given probability, leading to a more

generally applicable model. In this layer, only the percentage of removed data can be

specified. An alternative to a dropout layer is the reduction of data dimensionality using

10https://keras.io/
11https://www.tensorflow.org/

19

x

f(x)

-2 -1 0 1 2

-1

1

2

Figure 2.4: Graphical representation of the ReLU activation function.

a pooling layer. Pooling layers apply a sliding window on the input vector and reduce its

content to either the minimum or maximum value. Depending on the chosen type, these

layers are referred to as min or max pooling. A recommendation for natural language

processing is to set the size of the sliding window equal to the input size. A pooling

layer with this window size is referred to as global min or global max pooling layer.

Since the layers following a global max or min pooling layer only get the maximum or

minimum value of a feature vector, the position of the value in the vector is irrelevant.

For this reason, the layers afterwards cannot base the decision on one feature position.

Another benefit of this layer is the increase in performance, as the dimension of features

is reduced. Pooling layers are often used to reduce the output dimension of convolution

layers. This layer applies a convolution operator with a specified filter on an input,

essentially multiplying the input function with the filter resulting in a modified signal.

In mathematical terms, the convolution of two functions f and g can be expressed in

the following equation.

(f ∗ g)(i) =
m∑
j=1

g(j) · f(i− j +
m

2
)

To compile the defined layers into a usable model, a strategy to update parameters

during learning has to be defined. A widely used optimiser is Adaptive Moment Esti-

mation (Adam), an adaptive learning method. It calculates individual learning rates

20

for each parameter and takes the momentum of change into account. This momen-

tum is represented as exponentially decaying average of past gradients and allows a fast

convergence, resulting in a faster and more effective learning process.

2.3.2 Evaluating the Model Performance

To fine-tune the parameters of a neural network using grid search, metrics to assess the

performance of neural networks are needed. If the model would strictly memorise the

training data, measurements using the same dataset would be distorted. For this reason,

all metrics are evaluated with a dedicated test set. This set consists of previously unseen

data, testing the ability of the model to generalise the learned reasoning. Commonly

used key figures to rate the classification performance of a neural network are accuracy,

precision and recall. Accuracy is defined as the number of correct classifications over

the amount of all classifications, represented by the cardinality of the test set S. The

number of correct classification is often substituted using the zero-one loss L. This loss

function yields the number of misclassifications by comparing the predicted label i to

the ground truth j.

Accuracy = 1− L

|S|

L(i, j) =

0 i = j

1 i 6= j

The accuracy of a model should preferably be high on the test set. A drawback of

this metric is that it only indicates that a number of misclassifications have happened.

The metric does not express, if misclassifications are occurring mainly between two

classes or if they are distributed evenly across all.

Because of this characteristic, the prediction accuracy alone is an unsuitable metric

for model evaluation and parameter tuning. Instead, precision and recall are used since

they show more fine-grained information on the model. For calculating both metrics,

the number of true and false positives and negatives has to be computed. True positives

are samples of the dataset, that are predicted as the target category it was labelled. If

the sample would instead belong to another category, this classification would represent

a false positive. Assume a classifier that should detect all cats from a dataset consisting

21

of cats and dogs. In this case, a true positive is a cat that would be predicted as a cat.

Conversely, if a dog would be classified as a cat, the prediction would be a false positive.

Similarly to true positives, true negatives were correctly predicted as not belonging to

the queried category. In the previous example, a true negative would be a dog that

is classified as a dog. False negatives instead belong to the queried category but were

predicted as another category. This case occurs if a cat is classified as a dog. This

scenario can be seen as two-class classification problem and represented as confusion

matrix, shown in Table 2.2.

Actual

Positive Negative

Predicted
Positive True Positive False Positive

Negative False Negative True Negative

Table 2.2: This confusion matrix can be created by comparing the predicted
with the assigned labels.

The precision of a classifier measures the proportion of correctly classified positives

with respect to all samples that were classified as positives. It is defined as follows.

Precision =
TruePositive

TruePositive + False Positive

Most of the time, this metric is used in combination with recall, which calculates the

number of true positives out of all positive labelled samples. This yields the following

formula for recall.

Recall =
TruePositive

TruePositive + FalseNegative

Both metrics are computed for each prediction class of the neural network. The

results can lead to a better understanding of the classification, as similarities between

classes can be revealed by analysing mispredictions regarding a target class. Additionally,

they allow rating the model in regard to the costs of wrong predictions. Applied in an

image search engine, false positives or false negatives may have less impact than in a

breast cancer detection. For this reason, precision can be sacrificed for a better recall

rate or vice versa, depending on the use case. In most cases, it is desirable that precision

and recall are in balance since the change of one reflects in the other. For providing an

easy measurement method for such a scenario, the F1 score is taken into account. This

22

metric combines precision and recall in this formula.

F1 = 2 · Precision ·Recall

Precision + Recall

The above-described confusion matrix can be extended to a matrix of the form n×n,

with n being the number of classes. The output classes are symmetrically distributed,

such that the diagonal entries represent correct classifications. Compared to the previ-

ously described two-class classification problem, these entries reflect true positives. The

amount of incorrect classifications is split, depending on the misclassified category. An

example of a confusion matrix with three classes is given in Table 2.3, with a total of 20

samples per class.

Actual

Cat Dog Mouse

Prediction

Cat 15 4 1

Dog 4 16 0

Mouse 2 1 17

Table 2.3: An example of a confusion matrix for a 3-class classification
problem.

In a classification problem with multiple classes, a confusion matrix provides valu-

able insight into the type of error the network is making. From the resulting figures,

it can be detected if misclassification occurs between two similar classes or if it is dis-

tributed among all other classes. On a dataset with an unbalanced amount of samples

per class, the confusion matrix can reveal if classes with a greater amount of samples

perform better than others. This prevents tuning parameters of the network only on the

biggest class, neglecting categories with a smaller amount of samples.

For gaining an insight into the classification process in the intermediate layers of

the neural network, the layer output can be visualised. If the Keras framework is con-

figured to use the Tensorflow backend, data can be visualised with Tensorboard12. As a

requirement, the according interfaces have to be implemented in the prediction process.

Since the data captured in this way is high-dimensional, the dimensional complexity has

to be reduced to be human-understandable prior to displaying. Tensorboard performs

dimension reduction using Principal Component Analysis (PCA), t-Distributed Stochas-

tic Neighbour Embedding (t-SNE) [19] or UMAP [21]. PCA is a linear reduction method

that preserves the relation between data points during the transformation. For reducing

12https://www.tensorflow.org/tensorboard

23

each data point to 2 or 3 dimensions, the variance between all data points is calculated.

In order to perform the calculation, each point is projected onto hyperplanes, which pass

the centre of gravity of the point cloud. The variance is the distance between the cen-

tre of gravity and the projected point on the hyperplane. Based on these hyperplanes,

corresponding transformation vectors can be found, which are applied on each point to

convert the data to low dimensions.

T-SNE is an unsupervised non-linear reduction technique. This method tries to

retain local data relations during the transformation while avoiding the cluttering of

linear methods like PCA. Between each pair of points in high-dimension, a similarity

score is computed. During the following reduction, the distance between all points is

optimised, such that the similarity score remains near the original value. The results of

t-SNE depend largely on the chosen parameters, but can outperform PCA due to the

non-linear characteristic.

Being faster than t-SNE, UMAP is another non-linear approach based on mani-

fold learning techniques. By using simplices, topological structures are modelled onto

the high-dimensional data to create a manifold. It then reduces the manifold to low-

dimensional space, with the constraint of optimising these representation to be as close

as possible to the original topology.

As these dimension reduction techniques preserve the relation between the data,

possibly overlapping of classes can be detected. This allows adapting the associated

parameters, resulting in a better performing classifier.

24

Chapter 3

Related Work

Gathering information by observing network traffic is a well-studied field, and thus

a vast amount of research exists. Since extracting data out of plaintext traffic does

not present a challenge to an observer, most of this work focuses on encrypted traffic.

Although traffic analysis on mobile devices seems to be just an application of traditional

approaches, there are some challenges. Smartphones are highly mobile devices, switching

between different wifi networks or cellular data many times during a single day, leading to

missed or out-of-order network packets during data capturing. In extreme cases, even the

destination server can change if the user travels to another location. The first part of this

section describes robust approaches to identify protocols and programs on workstations.

These ideas are comparable to the concepts used in methods to identify smartphone

applications, which are discussed afterwards. The identification of applications based on

the produced traffic is quite similar to the problem of identifying IoT devices based on

captured traffic. The chapter closes with an overview of this topic.

3.1 Workstation Traffic Analysis

Traditional traffic analysis on workstations often relies on single features of network

traffic. Some applications, for example, are using well-known TCP or User Datagram

Protocol (UDP) ports to communicate with the corresponding backend service. If the

target machine receives network traffic on this port, the presence of this application is

leaked. In the same way, the use of transport encryption does not hide the target’s

IP address, providing a way to identify the contacted service and in a further step the

25

related application. Such identification attempts suffer from several limitations. Modern

applications often rely on CDNs like Akamai, Cloudflare or Amazon Web Services for

scalability reasons. To use a CDN efficiently, dynamically created and static application

content can be separated and served from different locations. These locations can be

distributed among different servers, resulting in multiple contacted IP addresses. Most

CDNs support adding or remove additional mirror servers based on the current load,

which can lead to frequently changing server addresses. The described reasons tend

to complicate service identification based solely on IP addresses. With the advance

of data serialisation techniques like JavaScript Object Notation (JSON), the only used

network ports in most applications are the HTTP and HTTPS default ports, providing

an effective countermeasure for methods relying only on ports.

In [14], Kim et al. combine multiple network traffic attributes into network states.

The resulting states are clustered, allowing the visual identification of anomalous traffic.

Kim et al. expand their original idea in [13] to overcome the limitations encountered

in [14] like online clustering of streaming traffic. In order to identify unexpected network

events in this data, they introduced a grid-based model. In [25], Nazari, Noferesti,

and Jalili use deep packet inspection to extract available features as ground truth data

dynamically. This data is used to update and evaluate different stream classification

algorithms, of which adaptive random forests yield the best results. As a significant

share of applications enforces transport encryption, deep packet inspection cannot be

used to extract features automatically in this way. For this reason, we rely on identifying

relevant features manually. The authors of [8] picked up the idea of using multiple

neural networks in combination. To boost the overall precision and gain advantage

from parallelisation possibilities, Dong and Li utilised one tailored neural network per

identifiable application. Depending on the number of applications in scope, this approach

could lead to a large number of models, possibly resulting in significantly longer training

times. As the models are based on two-class classification problems, the effort of labelling

training data can be substantially higher compared to the multi-class approach in our

work. In [39], the impact of the used network feature set in different machine learning

techniques is evaluated. The authors began with 111 possible features, reduced them

step-wise and tested the performance of J48, random forest, k-nearest-neighbours and

a Bayes network. They found 12 essential features which slightly increased the original

classifier accuracy. Jain describes the idea of adopting image processing convolutional

neural networks to process network data and identify used protocols in [12]. In [18],

the authors propose the combination of a convolutional neural network with a stacked

autoencoder for feature extraction. Their framework is able to classify the network

26

protocols used as well as the applications themselves. Pluskal, Lichtner, and Rysavý

present a statistical approach for protocol identification in [29], which results in a slightly

lower accuracy but better performance than Bayesian networks and random forest.

In [11] Ichino, Maeda, and Yoshiura used k-nearest-neighbours to cluster web ap-

plications based purely on the statistical information of all packet headers. They infer

protocols using a similar clustering method based on packet size, timing information

and packet direction in [38]. Compared to the work of Ichino, Maeda, and Yoshiura, the

Kullback-Leibler distance was used to infer new clusters. In order to calculate the needed

statistical information in both approaches, the complete network traffic is required. For

this reason, both approaches do not work online.

In contrast to the above, Hajjar, Khalife, and Diaz-Verdejo do not rely on features

gathered at network-level like IP addresses in [9]. By using only the first application-

layer message in a flow, the authors are able to identify protocols utilising a combination

of Gaussian mixture and Markov model, disregarding patterns introduced by user inter-

action.

3.2 Mobile Device Traffic Analysis

A vast amount of research applied or extended previously described methods to capture

network traffic of mobile devices. Conti et al. provide an overview of recent develop-

ments in this field and present their survey results in [6]. They propose a classification

system for approaches based on the goal of the analysis, the source of captured traffic

and targeted mobile platforms. The majority of examined work gathered automatically

generated network traffic directly on a mobile device, prior to applying machine learning

techniques. In addition, they discuss possible countermeasures, for example, the use of

transport encryption to prevent deep packet inspection. To counter application identifi-

cation approaches, Conti et al. suggest to either apply random padding to obfuscate the

packet size or delay network packets. These methods either increase the used bandwidth

or the computational costs significantly, both being limited resources on mobile devices.

For this reason, the proposed application identification countermeasures are not feasible

in practice.

In [37], Wang et al. adopt the method of fingerprinting website traffic originating

from workstation traffic analysis to the mobile sector. In their work, the authors com-

pare the privacy impact between the usage of a dedicated app and the use of a mobile

27

browser. They analyse packet-level traffic to find traffic patterns. By using random for-

est classifiers, Wang et al. are able to identify applications and show that distinguishable

traffic poses a serious threat to the user’s privacy. Sivan, Bitton, and Shabtai support

the results of Wang et al. in [33]. Although this work uses deep packet inspection meth-

ods and focuses only on the leakage of user location information, the authors show that

they are able to identify applications which send sensible user data to remote servers.

Smartphones are subject to malware infections in the same manner as workstations.

The detection of device infections is a challenge in which network-based application iden-

tification constitutes a well-performing solution. Arora, Garg, and Peddoju make use

of 16 network features to define a set of rules in [3]. Afterwards, a classifier identi-

fies malware-infected devices in the network based on these rules instead of features.

Conversely, Zaman et al. detect malware by inspecting packet headers instead of whole

network packets in [41]. Malicious domains are blacklisted, the destination of each packet

is checked against this list and classified as malware if a match occurs.

Packet header inspection is also the main idea in [30], which describes an extended

approach to identify user activities. The header information of encrypted wifi traffic

is used in a multi-class Support Vector Machine (SVM) to allow a fine-grained activity

inference.

In [10], the authors try to find correlations between unencrypted and encrypted

traffic of single apps. They focus on temporal, lexical and metadata similarity to iden-

tify applications. If no correlations are found, or plain traffic is not available, their

method relies on clustering the application’s DNS queries and server hostname lookup

as a fallback. As more and more mobile applications tend to use transport encryption,

the described approach will have to use the fallback method more frequently, decreasing

the detection rate. Thus more reliable techniques are needed, like combining multiple

network packet features used in our work. In [2], Alan and Kaur make use of supervised

learning models originating from web page identification methods, which analyse infor-

mation in TCP headers captured only during the launch of an application. Focussing on

this timeframe, patterns introduced by user interactions are ignored in this approach.

The authors tested their method on 1595 applications and achieved an accuracy of 88

per cent. In [31], time-series patterns are found in encrypted traffic. By implementing a

probabilistic state transition model, the authors can identify applications based on the

estimated network flow. To predict apps that a user will most likely use, the approach in

[24] utilises Call Detail Records (CDRs) of cellular network data. Mizumura et al. com-

pare the prediction performance of a SVM, k-nearest-neighbours (k-NN), decision-tree,

28

neural network, the naive Bayes method and random forest, the last one performing best

in a real-world scenario. Since mobile applications can reduce network traffic if a cellular

network connection is used, the model performance could be different if used on other

traffic from other connection types.

In [35], a framework called AppScanner is able to fingerprint applications and to

identify them in real-time. Unlike in our work, the captured network traffic of real de-

vices is split into bursts and flows. Bursts are all packets occurring beneath a given time

threshold, while flows consist of all packets inside a single burst with the same desti-

nation. Using SVM and random forest classifiers, they achieve a classification accuracy

of 99 per cent. In [36], they extended their previous method to mitigate traffic shared

between different applications and evaluated the change of application fingerprints over

time. Aiolli et al. show in [1] using supervised learning that even applications of the

same type, as well as individual user activities inside one app, can be distinguished.

They captured the traffic of several bitcoin wallet apps on real hardware, extracted net-

work features as described in [35] and used them in a SVM and random forest classifier.

Compared to our work, their classifier is tailored to detect only wallets and does not

seem to be applicable for identifying other types of apps. Chaddad et al. make use of

AppScanner in [5] to identify mobile applications in order to evaluate the performance

of packet size obfuscation as a countermeasure. In their work, Chaddad et al. are able to

change network statistics to a given target app, effectively hiding the presence of applica-

tions. As a complete contrast to previous approaches, [16] use a variational autoencoder

network to transform mobile network traffic into vision-meaningful images. This allows

for learning on unlabelled data since features are extracted automatically. The authors

achieve an identification accuracy of 99.6 per cent.

3.3 IoT Traffic Analysis

Related to identifying applications running on smartphones and workstations by using

pattern detection on corresponding network traffic is the problem of distinguishing IoT

devices in an arbitrary network environment. Martin et al. combine in [20] a recurrent

neural network with a convolutional neural network and correctly identify IoT devices

based on their network traffic in 96 per cent of all scenarios. This result is outperformed

by changing the classifier in [32], where the classification results of random forest, decision

tree, SVM, k-NN, neural network and Gaussian näıve Bayes techniques are compared.

The random forest classifier achieved the best results with an accuracy of 99.9 per cent

29

on the test set. The authors gather the first network packets until a given time threshold

is exceeded to cut off long-lasting sessions. The classification depends on the packet size

and the calculated inter-arrival time of these packets. Meidan et al. instead tested their

approach in a noisy network environment containing smartphones, workstations and IoT

devices in [22]. Their method consists of a binary and a multi-class classifier. The first

one decides whether the traffic originated from an IoT device, while the latter identifies

the type of device. Instead of network packet features, the detection process only takes

network session properties in combination with the HTTP user agent into account.

With the increasing distribution of IoT devices, the danger of malware infections on

these devices increases as well. Nguyen et al. detect such infections based on anomalous

network traffic in [27]. As a first step, the used neural network classifies device types

and builds the communication profile on statistical features. This has the advantage

that features like dynamically assigned ports are reduced to a finite number of tokens,

which boosts the detection rate and speed. Although their model is designed for anomaly

detection, we applied the same reduction of dynamic features in our work.

30

Chapter 4

Approach

In this chapter, we examine the theoretical aspects of this thesis. We begin by high-

lighting the connection between natural text and network traffic metadata and discuss

the reuse of existing text processing techniques to analyse network data of smartphones.

We propose three supervised machine learning approaches based on natural language

processing models. In the first one, we use Doc2Vec in combination with a logistic re-

gression classifier to predict applications that produced the captured network traffic in

the dataset. The second approach makes use of a tokeniser and dedicated neural net-

works to perform this task. The last approach combines Doc2Vec for processing textual

data with a dense classification network to predict the application labels.

4.1 Similarities of text processing and traffic analysis

On closer inspection, natural language text documents and network traffic exhibit certain

similarities. Arbitrary text, as well as captured traffic, consist of structured data. In

the former case, this structure is defined using a grammar appropriate for the language

in which the text is written. If network traffic is considered as another language, it can

be seen that the underlying protocols define the structure. In captured traffic logs, it is

easy to observe that an HTTP response always appears after a corresponding request.

Similarly, a TCP handshake initiates a data transfer, that ends with either the teardown

or a timeout. For this reason, we consider the structure dictated by protocols equivalent

to the grammar of a language. The foundation of this language are single packet features,

representing words. The protocol grammar dictates the possible placement of words

31

in order to form sentences, which are the representation of a single network packet.

All sentences built from packets of one TCP session can be grouped in one document.

Different to grammar consisting of static rules, words are adaptive components, and

their placement may vary. This is true as well for network traffic, in which for example

the position of the source port number inside the capture log remains the same, whereas

the port itself can be an arbitrary number between a given lower and upper bound. The

described similarity between text and traffic metadata allows for applying existing text

processing methods to predict the smartphone applications producing individual traffic

patterns. We rely on the following network packet features in order to create sentences,

with all sentences inside one TCP session considered a document.

• Source and Destination IP Address The source and destination IP addresses

can either be static or dynamically assigned. The latter category consists of private

or link-local IP addresses. This type of addresses is assigned to end-user devices like

smartphones and workstations by a gateway. The assignment happens randomly

in a given range and is only valid during a specified lease time, after which it can

be reassigned or extended to another device. Besides the indication of end-user

devices behind this address, the dynamic characteristic of private addresses only

increases the level of noise in the dataset. For this reason, we replace the private

IP address with the placeholder dynamic.

Static IP addresses in network traffic can indicate service backends. These services

can make use of load-balancer or CDNs to distribute the incoming traffic among

multiple servers. Load-balancing can be performed by using dedicated hardware

or by a DNS server. The former method does not provide any additional in-

formation since the load-balancing hardware appears as a single destination. In

the latter, multiple IP addresses are registered for a single domain name. The

server responds with a different address to each DNS query, with the changing

addresses being logged in network traffic. As these alternating addresses compli-

cate the recognition of already contacted services, we decided to generalise static

IP addresses to the containing subnet range. The subnet range usually remains

the same for all servers behind such distribution techniques, effectively treating

all servers as a single destination. However, this generalisation obscures structural

patterns of requests and responses, for example, possible redirects to dedicated

authentication servers.

From the placement of dynamic and static server addresses in the source and

destination fields of an IP packet, the packet direction can be determined. From

32

the point of view of a smartphone, a dynamic source and static destination address

imply an outgoing request, whereas a static source and dynamic destination address

indicate a response.

• Source and Destination TCP Port The first part of the available TCP port

range consists of ports associated with widely used protocols. Therefore, the pres-

ence of such well-known ports can provide insight into the protocol utilised in the

application. In most cases, smartphone apps tend to transmit data as serialised

text on top of the HTTP and HTTPS protocol, which is associated with TCP

ports 80 and 443. For exceptional use cases like sending and receiving e-mails,

custom destination ports are used, often deviating from the associated well-known

ports. In traditional traffic analysis, these custom ports are often combined with

the IP address of the destination to determine the service. Since the OS assigns

TCP ports randomly to applications initiating a transmission, they can change be-

tween multiple connections to the same service. Similarly to private IP addresses,

dynamically assigned port numbers are replaced by the placeholder dynamic. The

combination of well-known and dynamic ports is another direction indicator, use-

ful if packets transmitted between two static IP addresses are contained in the

dataset.

• TCP Packet Flags Each TCP session starts with an initial handshake, in which

the SYN and ACK flags are set. In cases where the destination of the initial

handshake is an unreachable port of an existing machine, the destination server

responds with the RST flag set and the connection is terminated. After the data

was transmitted, the session ends with a connection teardown, using the FIN flag

in combination with ACK. With these flags contained in the packet information,

the captured network traffic can be split into individual sessions. The ECE and

CWR flags are used for congestion management. If these flags are set, a connection

to a service with a high load level can be assumed. This can indicate that the

service runs on a server without an appropriate load-balancer. As patterns created

from these flags are observable, the flags of each packet are considered as another

uniqueness characteristic of a connection in addition to IP addresses and TCP

ports.

• TCP Header Length The length of the TCP protocol header varies between a

minimum of 20 bytes and a maximum of 60 bytes. This range results from the

inclusion of additional options, the most common being the maximum segment

size, window scale, selective acknowledgement and TCP timestamps. In the same

33

way as TCP flags, the presence of flags is an additional uniqueness factor of a

connection. As the content of most options changes from packet to packet, the size

of options remain the same and correlates directly to the header size.

• IP Packet Length As the underlying protocol constrains the length of IP pack-

ets, the packet length varies between a minimum of 20 bytes and a maximum of

65 535 bytes. In most cases, the maximum length is restricted by the Maximum

Transmission Unit (MTU) of the ethernet or wifi hardware used during the con-

nection. Because of this connection dependency, the packet length serves as an

additional distinction characteristic.

4.2 Processing Network Traffic using Machine Learning

To detect the smartphone applications responsible for each network packet, we apply

different machine learning models common in the field of natural language processing.

In comparison to traditional traffic analysis techniques, approaches that are based on

machine learning provide several advantages. Since captured network traffic logs can be

quite large, traditional approaches can overlook intricate patterns hidden in this amount

of data. Machine learning models are more suited to detect semantics and instead benefit

from a large number of available training examples in order to increase the classification

accuracy. The trained model itself has a small memory footprint and can classify new

input data efficiently. As a result, the prediction itself can be performed on a resource-

constrained device. During the learning phase, the model adapts itself to the dataset. It

discovers features that are important for the distinguishability and weights their impact

according to their relevance for the prediction.

Unsupervised machine learning techniques cluster similar data into one group. Since

smartphone applications can contain third party libraries like advertisement frameworks,

the traffic of these libraries would be grouped into a single cluster. To prevent this sce-

nario, we instead rely on supervised learning approaches. Although supervised models

allow inferring application context in a more detailed way, these techniques come with

the downside of requiring appropriately labelled training data. We utilise the applica-

tion name as label and associate it to every produced network packet. In order to do

so, we capture the traffic on the device itself. The gathered traffic is split and used as

a training and test set. Based on the application names in this data, we can generalise

the labels into application categories or the identifier of shared network libraries at a

34

later stage. For performing a classification on network metadata, we propose the follow-

ing three supervised machine learning techniques. The first approach adapts Doc2Vec

to process the textual input documents, as it is widely known for performing textual

analysis. A logistic regression classifier predicts the application label based on the pro-

cessed documents. We compare this model to a convolution neural network and a dense

neural network with prior tokenisation of the input documents, explained in the second

approach. In the third approach, we use Doc2Vec to create document vectors from the

dataset but combine it with a dense neural network instead of the logistic regression

classifier.

4.3 Approach 1 - Pure Doc2Vec

The first approach makes use of Doc2Vec for transforming the input documents given

in text form into vectors. The structure of this approach is shown in Figure 4.1. We

consider each TCP session as a single document, consisting of sentences in the form of the

described packet features. Doc2Vec is trained on a corpus of multiple input documents,

transforming them into document vectors. A logistic regression classifier is trained using

the associated labels in the form of application names to predict the related output

classes. Le and Mikolov state that Doc2Vec performs well on textual pattern processing

and is able to derive context from arbitrary sequential data. The used paragraph vectors

representing the document semantics are “a strong alternative to bag-of-words and bag-

of-n-grams models”[15, p. 1195], being on par with state-of-the-art methods in their

studies. In [15], the error rate of the experiment evaluation outperforms all comparable

methods. As Doc2Vec creates the vector representation directly from textual input, no

preceding tokenisation is required. It considers pattern information contained in TCP

sessions, as the document context influences the weights during the training process of

each network packet within. For unseen data, the trained model is able to infer a new

vector in the document vector space by contextual comparison to existing ones. The

comparison is performed by measuring the cosine similarity to the surrounding vectors.

In order to use the resulting measurements for performing the classification task on

arbitrary sequential data, Le and Mikolov recommend combining their algorithm with a

logistic regression classifier as the predictor.

Doc2Vec can be invoked using either PV-DM or PV-DBoW. Both algorithms cap-

ture the context information of each paragraph. The former considers the paragraph

context based on the surrounding words in order to predict the following word. The

35

[”127.0.0.3”, ”192.27.2.3”, ”33135”, ”80”, . . .]
[”192.27.2.3”, ”127.0.0.3”, ”80”, ”33135”, . . .]

. . .

Doc2Vec

Document Vectors

Logistic Regression Classifier

“Application A”

Figure 4.1: Using Doc2Vec for input transformation followed by a logistic
regression classifier.

similarity of the prediction to the ground truth is measured, and the weights of all in-

volved vectors are adapted according to the result. Thus, the order of words influences

the prediction and paragraph context. The latter algorithm does not consider the word

ordering, as the contextual information of the paragraph is learned without depending

on the surrounding words. Instead, the paragraph vector predicts randomly sampled

words from the paragraph. Although the authors recommend the usage of PV-DM, we

compare both methods in order to find the appropriate algorithm for a network traffic

dataset. As the order of packet features is artificially created, relying on the placement

of words can result in unintentionally biasing the model.

4.4 Approach 2 - Dedicated Classification Network

This approach makes use of two neural networks with different internal layer structure

for performing the multi-class classification task. Since a neural network cannot handle

the document structure used in the first approach, all sessions have to be transformed

into a token representation. In order to do so, a tokeniser replaces all words in the

document sentences by an integer. The resulting documents then consist of encoded

feature vectors, which can be used as input for an embedding layer. The afterwards

36

[”127.0.0.3”, ”192.27.2.3”, ”33135”, ”80”, . . .]
[”192.27.2.3”, ”127.0.0.3”, ”80”, ”33135”, . . .]

. . .

Tokeniser

[142, 7, 35, 19, . . .]
[7, 142, 19, 35, . . .]

. . .

Convolution Neural Network

Embedding Layer

Convolution Layer

Convolution Layer

Global Max Pooling Layer

Dense Classification Layer

Dense Neural Network

Embedding Layer

Global Max Pooling Layer

Dense Layer

Dense Classification Layer

“Application A” “Application A”

Figure 4.2: Classification using a convolution neural network and a dense
neural network.

37

following layers depend on the specific network configuration. Similar to the tokenisation

of features, the associated information of labels is removed using one-hot encoding.

The first network in this approach is a convolution neural network, in which a

convolution layer follows the initial embedding layer. During the training phase, the

convolution layer empirically fits a suitable filter function on the input features. The

filter function depends on the size of the filter kernel and the output dimensionality. It is

adapted according to the classification performance of the network. Another convolution

layer is applied with a different filter function to shape the vectors into a form suitable

for the classification layer. The classification is performed using a dense layer, of which

the number of nodes is equal to the distinct labels contained in the dataset. Afterwards,

a global max pooling is applied to the resulting vectors. This layer reduces the vector

dimensionality, as it extracts the global maximum of the vector independently from

its position. In comparison to other pooling techniques, global max pooling reduces

overfitting as there are no layer parameters to optimise in dependency of the dataset.

Although convolution neural networks tend to be more common in the field of image

recognition, recent work has shown that this type of model performs well in natural

language processing tasks too [40, 7, 17, 26, 42, 28, 4].

The second neural network is a dense classification model. Instead of a convolu-

tion model following the initial embedding layer, global max pooling is applied directly.

Afterwards, a dense hidden layer is used in the network. The number of nodes in the

hidden layer is configurable and chosen appropriate to the dataset. For performing the

final classification, another dense layer is utilised similarly to the convolution neural

network. The structure of this network resembles a multi-layer perceptron. The two

network configurations and the prior tokenisation are displayed in Figure 4.2.

During the training of both models, we optimise all layer parameters using Adam

and compute the loss of each training cycle by utilising the binary cross-entropy loss

function. These choices represent common best practice values for neural networks.

All convolution layers and the dense hidden layer use ReLU as the neuron activation

function. In the dense classification layer, we instead use softmax, since this function

limits the values of the prediction vector to the range between 0 and 1. For converting

the predicted vector into a classification label, one-hot decoding is performed on the

prediction vector in order to transform the result into the corresponding class label.

The neural networks of this approach are designed as a comparison reference to the

first approach, which is the reason that the structure has been kept simple intentionally.

The possibility to compare both approaches allows us to comprehend whether a bad

38

performing model results from an inappropriate dataset or ill-chosen network parameters.

4.5 Approach 3 - Doc2Vec with External Classifier

The last approach extends the idea of the first one, as can be seen from the structure

shown in Figure 4.3. Similar to the approach described in Section 4.3, Doc2Vec is used

to compute the document vector representation of textual documents containing single

sessions. Conversely, the afterwards following predictor is changed to a dense neural

network. Since the structure of document vectors resembles tokenised word vectors, an

embedding layer is used to process the input. As the logistic regression classifier from

the first approach can be prone to overfitting, a global max pooling layer is utilised in the

same way as in the second approach. Directly after the global max pooling layer, a dense

hidden layer allows more fine-grained control on the training parameters in comparison

to the logistic regression classifier. The last layer of the network is a dense classification

layer using a softmax activation function to perform the prediction. Analogous to the

first approach, the contextual information of the associated labels is not removed, since

no encoding is performed. Furthermore, the words contained in the session documents

are not tokenised, conversely to the second approach. As the tokenisation of words is a

simple mapping between words and integers, it does not take larger patterns between the

words into account. In contrast, the document vectors created with Doc2Vec preserve

the textual context of the input.

39

[”127.0.0.3”, ”192.27.2.3”, ”33135”, ”80”, . . .]
[”192.27.2.3”, ”127.0.0.3”, ”80”, ”33135”, . . .]

. . .

Doc2Vec

Document Vectors

Dense Neural Network

Embedding Layer

Global Max Pooling Layer

Dense Layer

Dense Classification Layer

“Application A”

Figure 4.3: Transforming documents into vectors using Doc2Vec, prior to
performing the classification with a dense neural network.

40

Chapter 5

Implementation

This chapter describes the practical aspects of the thesis. We begin by giving an overview

of the different modules involved and the interfaces used for communication between

them. Each model is then explained in detail, starting with the used tools for capturing

network traffic. Afterwards, we describe the necessary preprocessing steps in order to

use the data in the machine learning models. The implementation of the models, the

training process and the performance evaluation are detailed in Section 5.4. This chapter

finishes by discussing the detection of applications and application categories based on

freshly captured data.

5.1 Toolchain

The implementation is separated into four modules, namely traffic capturing, data pre-

processing, model training and evaluation as well as application classification. Each

module consists of one or multiple process steps and is explained in more detail in the

following sections of this chapter. For capturing network traffic, we use a modified

version of the open-source firewall Netguard. This application allows us to gather traf-

fic from multiple Android devices and determine the responsible application for each

packet. The resulting collection of network traffic files in the PCAP format and the

related application name files serve as input for the data preprocessing module running

on a workstation.

This module consists of multiple Python scripts and starts by merging all traffic

capture files into a single one. Likewise, the same script concatenates all files containing

41

the names of the recorded applications. In the following data preprocessing script, the

resulting PCAP file is split into single TCP sessions. All essential features are extracted

from the packets of each session and associated with the corresponding application label

from the related file. The resulting labelled feature vectors are serialised into multiple

Comma Separated Value (CSV) files, preserving the session structure. On this textual

representation, additional scripts can be applied to filter out undesirable applications or

alter labels or features. In the third module, the serialised session files are used to train

the machine learning classifier. The resulting model is stored on disk, allowing to use

it in the detection module afterwards without performing the time-consuming training

again.

Any newly captured traffic that should be classified using the predictor in the detec-

tion module has to be serialised in the same way as the training dataset. The predictor

then loads the model and outputs the predicted similarities of the input traffic to the

trained labels. In Figure 5.1, the structure of the modules and the interfaces are shown.

A benefit of this module separation is that single components can be exchanged with-

out influencing others. For example, the machine learning model used can be replaced

by another approach without the need to adapt the preprocessing steps. Although the

implementation heavily relies on Python scripts, the programming language of the com-

ponents can be exchanged as well.

42

Network Traffic Capturing

Netguard

PCAP Files

App Name

Files

Data Preprocessing

File

Merging

Data

Preprocessor

Filter

Categorisation

Variation

PCAP Files

App Name

Files

PCAP File

App Name

File

Serialised

Session Files
Serialised

Session Files

Model Training and Evaluation

Model Training

and Evaluation

Serialised

Session Files
Model Files

Application Classification

Predictor

Model

Files

Serialised

Captured Traffic

Prediction

Result

Figure 5.1: Structural overview of the module components.

43

5.2 On-Device Capturing of Network Traffic

In order to capture network traffic of Android applications, we extended the capabilities

of the open-source app Netguard. This device-local firewall is installed as system-wide

VPN service, meaning that all packets pass the local VPN server. As this server ter-

minates eventual tunnel encryption protocols, the packet metadata is available in plain

text. Netguard logs all passing network traffic and is able to export the log in PCAP

format. Since the ethernet header is not exported in the original implementation of Net-

guard, the exported file cannot be used directly for traffic analysis. For this reason, we

extended the application to extract the ethernet header information of each IP packet

and prepend it to every exported packet. Additionally, we log the currently active appli-

cation when a packet is encountered. The application name is exported to a dedicated

file along with a microsecond timestamp. This timestamp is added to the packet as well,

allowing a later mapping.

5.3 Preprocessing of Raw Data

For performing the necessary preparation of traffic data, the preprocessing module re-

quires the captured traffic to be in PCAP format and the application names in a textual

representation. By using the PCAP format, the preprocessing steps can be performed

on traffic captured on the device as well as on already recorded traffic of a known ap-

plication. In the latter case, a file containing the mapping of application names has to

be created manually. As the first step of the module, multiple PCAP files are merged

into a single one. Since PCAP is a binary format, we use the merge capability of the

tshark1 library. Additionally, all application name files are concatenated into one. In

the next step, the data preprocessor script loads both files and splits the network traffic

into single TCP sessions. The separation is performed using the PcapPlusPlus library2.

Each session is then processed in parallel. First, the source and destination IP addresses

and TCP ports, the TCP flags and header size, as well as the total IP packet size is

extracted from the available information and stored in a dedicated Python class. Dy-

namic features like private IP addresses and dynamic TCP ports are replaced by static

tokens, in order to decrease noise contained in the dataset. For static IP addresses, the

whois database is queried. If the response contains a subnet range, the static address is

1https://www.wireshark.org/docs/man-pages/tshark.html
2https://github.com/seladb/PcapPlusPlus

44

replaced by the subnet range. This method allows representing eventual load-balancers

or CDNs as a single destination. The timestamp of each packet is used to associate

the corresponding label, which is loaded from the application name file and accessible

from all sessions. All labelled objects of a session are finally serialised into a single CSV

file, preserving the order of packets within the session. As captured traffic can contain

sessions that are out of scope, the textual representation allows removing those. A filter

can be applied to remove all sessions of apps that are not contained in a whitelist. This

method can reduce noise in the dataset and allows to detect applications with similar

traffic, as such a scenario could confuse the reasoning of the machine learning model.

Especially for a small amount of captured network traffic, it can be beneficial to

create a more diverse dataset artificially. In order to do so, a configurable amount of

all sessions or sessions of a single application is duplicated. The features of packets

in the duplicated sessions are then altered randomly inside a given range. All altered

sessions are serialised to additional files and considered as new sessions. This method

can decrease the possibility that the model bases the decision on a single feature of a

packet or ignore others. Additionally, the session labels can be replaced in order to

group applications into app categories. If a prediction is performed for applications that

are not in the training set, only the similarity to known apps is calculated, which can

be misleading. To counter this, replacing the application name by predefined categories

provide a more generalised dataset to the cost of fine-grained detection capabilities.

5.4 Model Training and Evaluation

This module creates different machine learning algorithms, depending on the chosen

approach. The machine learning models are implemented as a single Python script, in

which the used approach and the respective parameters can be configured. The input

for this script is the directory containing the serialised session files. As each approach

provides dedicated functions to save the trained model to disk, we rely on these. For

this reason, the output files of this module differ between all approaches.

5.4.1 Approach 1 - Doc2Vec

In this configuration, the script starts by transforming the session files into documents.

From each packet within a session, a tagged sentence object is created, consisting of

the ordered list of features and the associated labels. Every session is considered a

45

document, with all transformed sessions together building the document corpus. The

document corpus is then split into a training and test set. The sessions are divided

randomly, according to a preconfigured ratio.

We use Gensim3, an open-source Python library implementing several popular ma-

chine learning algorithms for natural language processing and information retrieval, to

create a Doc2Vec model. The model is initialised with the vocabulary built from the

words contained in the training set. Afterwards, this dataset is used to train the model

for a configured number of epochs. During this process, the training set itself is randomly

split into smaller training batches. No validation set is used, as the Gensim Doc2Vec

implementation provides no support. The trained Doc2Vec model is used to infer vectors

from input documents, as the sentences are transformed into the learned vector space.

A logistic regression classifier is then fit on the resulting feature vectors. We rely on

the classifier implementation of the Scikit-Learn4 library, an open-source collection of

data analysis tools. Besides specifying the number of epochs for the training process of

the Doc2Vec model, various other parameters can be altered. The min count parameter

determines the minimal occurrence of a word in order to influence the model. If the dm

flag is set, Doc2Vec uses PV-DM instead of PV-DBoW. For both algorithms, the size

of the sliding window is configurable with the window parameter. The dimensionality

of the vector space used internally in the model can be specified by changing the vector

size. Similarly, the performance of the logistic regression classifier depends on the in-

verse regularisation parameter c. This value is represented by a positive floating-point

number and controls the regularisation strength of the classifier during fitting.

For evaluating the model performance, we use the metrics of Scikit-Learn. For all

documents in the test set created in the first part of this approach, the Doc2Vec model

infers vectors. The logistic regression classifier predicts labels for these vectors, which

are compared against the ground truth in the form of the original labels of test set

documents. Based on the outcome, we calculate precision and recall for the classifier.

From this, we can compute the resulting F1 score. Additionally, a confusion matrix

for all classes visualises the comparison outcome. The trained and evaluated Doc2Vec

model is serialised to a JSON file, whereas the logistic regression classifier is stored using

Pickle5. Pickle is a Python serialiser, which saves arbitrary objects in an automatically

determined binary format.

3https://radimrehurek.com/gensim/models/doc2vec.html
4https://scikit-learn.org/stable/
5https://docs.python.org/3/library/pickle.html

46

5.4.2 Approach 2 - Dedicated Classification Network

The second approach is built on top of the Keras6 framework, which provides an interface

for implementing different machine learning backends and unifies their syntax. The

structure of this approach is shown in Figure 5.2. Similar to the Doc2Vec configuration,

the input documents are deserialised into a list of document objects, each containing

single sessions of network packet features and associated labels. The document objects

are shuffled and split into the training and test dataset according to the configured ratio.

A tokenisation has to be performed on the packet features of both datasets. Keras

includes a tokeniser in the preprocessing module, which maps the feature words to an

integer. Since the features of a network packet are already in their base form and do

not have suffixes or prefixes, the stemming included in the tokeniser does not alter the

datasets. Likewise, the labels attached to all packets are encoded using the categorical

label encoder of the Scikit-Learn library. This encoder creates a one-hot encoding, which

is a mapping from the labels to distinct binary vectors. The values of the vectors are

set to 0 with the exception of exactly one value that is set to 1. The position of this 1

is unique in the set of all encodings.

We use the sequential model included in Keras to combine the layers of the clas-

sification network linearly. The first layer that is part of the sequential model is an

embedding layer. The length of the input vector is chosen equal to the size of the fea-

ture word vector, while the input dimension corresponds to the size of the vocabulary.

This size is given by the highest integer used during the tokenisation process. Further-

more, the dimensionality of the output vectors relates to the input size of the following

layer and is configurable. Depending on the configuration, different layers are used af-

terwards. The first network configuration creates a convolution classification network,

whereas the second constructs a dense classification network.

In the first configuration, a convolution layer is added to the sequential model after

the embedding layer. The output of this convolution layer is defined by the size of the

filter kernel and the number of filters, which directly corresponds to the output dimen-

sionality. Both parameters of the convolution layer are specified in the configuration file.

A global max pooling layer follows, further reducing the feature vector dimensionality

prior to another convolution layer. In this layer, the kernel size is fixed to the same size

as was used in the first convolution layer. The number of filters, on the other hand,

is set to a lower number, compared to the previous convolution layer. In the dense

6https://keras.io/

47

classification layer, a global max pooling layer is applied directly after the embedding

layer. Afterwards, a dense layer is used as a hidden layer. The number of neurons can

be freely specified in the configuration. The final layer of both network structures is a

dense classification layer. The amount of neurons in this layer is fixed to the number

of distinct labels in the dataset. All layers except the classification layer use the ReLU

activation function, whereas the last layer relies on the better-suited softmax function.

After the layer definition, the sequential model is compiled into a network using the

Adam optimiser and binary cross-entropy as a loss function. The model is trained for

a given number of epochs, in which the training dataset is again divided into smaller

batches. A configurable amount of the training set is used as a validation set, reducing

the number of available training examples in order to provide a more objective measure-

ment of the efficiency of the learning process. As the last step, the performance of the

model is evaluated on the test set. For every feature vector, a classification is performed.

This classification predicts the most likely label for each feature vector. The label en-

coder inversely transforms the results, as the predictions are one-hot encoded. After

this step, the transformed labels are compared to the ground truth, which is represented

by the labels associated with the feature vectors. Based on this comparison, precision,

recall and the F1 score are computed using the Scikit-Learn library. Additionally, a

confusion matrix is created to display the performance on a class level. Prior to the

classification layer, the processed feature vectors are available as raw data points. This

high-dimensional data points can be visualised in Tensorboard7. For creating the visu-

alisation, the data points are exported to metadata files. The training loss and accuracy

are visualised in a line graph to provide further insight into the effectiveness of training

parameters.

In order to reuse the trained model at a later point in time, the necessary objects

are saved to disk. The structure of layers in the Keras sequential model is written

into a JSON file, whereas the layer weights obtained in the training phase are saved

in Hierarchical Data Format 5 (HDF5). For preserving the mapping information of

features and label encodings, the used tokeniser and label encoder are serialised with

Pickle.

7https://www.tensorflow.org/guide/summaries and tensorboard

48

Session Documents

Deserialisation

Dataset Separation

Training
Dataset

Test
Dataset

Tokenisation
Tokenised
Training
Dataset

Model Training
Tokenised
Test Dataset

Model

Model Evaluation

Evaluated Model Performance Report

Figure 5.2: Structural overview of the dedicated neural network compo-
nents.

49

5.4.3 Approach 3 - Doc2Vec with External Classifier

In the third configuration, elements of the previous two approaches are combined. As

before, the script transforms the sessions from CSV format into document objects. They

are split into the training and test dataset according to a configurable ratio in a random

manner. Similar to the first script configuration, the Doc2Vec implementation of Gensim

is applied to the first dataset for a specified number of epochs.

After the training of this model, a document vector for each sample in the training

set is created using the learned vector space. Figure 5.3 gives an overview of this approach

and shows the differences to the previous one. In contrast to the second approach,

no tokenisation of features or encoding of associated labels is performed. Instead, the

document vectors are directly used as input for the afterwards following Keras sequential

model, related to the dense classification network of the previous configuration. The

initial layer of this model is an embedding layer with an input vector size equivalent to

the length of the document vectors and the input dimension corresponding to the number

of document vectors. Global max pooling is applied to reduce the risk of overfitting

prior to a dense hidden layer with a configurable number of neurons. For the activation

function, the dense layer uses ReLU. The last layer of the sequential model is another

dense layer. Other than in the previous one, a softmax activation function is chosen. In

order to perform the classification, the amount of neurons is set equal to the number of

distinct labels. The layers are compiled using Adam as an optimisation strategy while

relying on the binary cross-entropy function for computing the loss. During the following

training of the sequential model, a configurable part of the training dataset serves as a

validation set. The training itself is performed for a specified number of epochs on single

batches of the training set. The number of batches used in each epoch can be set in the

configuration.

Afterwards, the model performs a classification of the test dataset in order to mea-

sure the performance. The prediction values can be compared directly to the ground

truth. The number of correct classifications and false predictions are displayed in a

confusion matrix. Based on these results, the Scikit-Learn library is used to compute

precision, recall and the F1 score. The Keras model layer structure allows extracting

the raw data points prior to the classification layer. This information is written to a

metadata file and visualised in Tensorboard for gathering insight whether the processed

document vectors are clearly separable. Furthermore, the effectiveness of the training

process is visualised as a line graph based on the results of the loss function and the

50

Session Documents

Deserialisation

Dataset Separation

Training Set Test Set

Doc2Vec
Training
Document
Vectors

Classifier Training
Test
Document
Vectors

Model

Model Evaluation

Evaluated Model Performance Report

Figure 5.3: Structural overview of the components of Doc2Vec with exter-
nal classifier.

computed accuracy during each epoch. In the same way, as in the previous approaches,

the trained models are saved for later predictions. The Doc2Vec model and the layers of

the sequential models are exported as JSON files. Similar to the previous configuration,

the weights of the Keras layers are stored as HDF5 file.

5.5 Detecting Applications and Categories from Unseen

Traffic

The last module of the toolchain consists of a single Python script predicting the source

application of newly captured network traffic. For performing the classification, this

51

module relies on the machine learning models from the previous step. This requires

that the same preprocessing steps are applied to the input traffic as needed prior to

the training of the models. For this reason, the traffic is transformed into documents

containing single sessions. All sessions consist of sentences that, in turn, are made out of

packet feature words. The transformation is performed using the script described in Sec-

tion 5.3. Afterwards, the prediction module deserialises the resulting session documents

into session objects.

The classification process depends on the configuration of the previous module,

which is determined automatically based on the model files specified as input. If the

Doc2Vec model and the logistic regression classifier are given, the first configuration

is assumed. No further transformation of the input documents is performed, as the

Doc2Vec model creates the document vector representation of all session documents.

The logistic regression classifier then predicts the most probable labels based on the

document vectors.

The presence of the Keras model structure and the related weights in combination

with the tokeniser and label encoder indicates the second configuration. The embedding

layer of the model structure requires additional preprocessing of the document objects.

This is performed by mapping all feature words in these documents to their integer coun-

terparts using the tokeniser. The Keras model is recreated from the specified network

structure and the given weights, in order to classify each session. Since the prediction

results are one-hot encoded, the label encoder performs an inverse transformation to

restore the readable class label. In the case that the Doc2Vec model as well as the

Keras layer structure and the weights are given, the third configuration is expected. A

tokeniser or label encoder is not required, as Doc2Vec transforms the document object

into document vectors. The prediction is performed using the document vectors as in-

put for the Keras classification network, which outputs the most probable label for each

document.

If the source application of the newly gathered traffic is not in the dataset that was

used to train the model beforehand, it is predicted to be of the most similar class. In the

case that multiple documents are given as input, the prediction is performed for every

session, and the frequency of all resulting class labels is computed. The frequencies are

collected in a probability vector, which gives the most likely source applications for the

captured traffic.

52

Chapter 6

Evaluation

In this chapter, we assess the performance of the implemented machine learning models.

The first section describes the process of capturing network traffic from an Android

device. As the performance of machine learning models depends partly on the underlying

data, we created four datasets from the gathered traffic for comparing the models. These

datasets differ in the used labels, as well as the ratio between network packets and

classes. The structure of all datasets is explained in detail in the following section. We

then discuss the performance of all approaches on these datasets. For each approach,

we start by detailing the chosen model parameters before examining the results. First,

we describe the outcome of Doc2Vec with a logistic regression classifier, followed by the

performance values of the dedicated classification neural networks. The result of Doc2Vec

with a dense neural network classifier is discussed as the last approach. Afterwards, we

briefly explain the encountered limitations and propose enhancements. In the last section

of this chapter, we examine the reasons for the performance differences between the three

approaches and summarise the results.

6.1 Datasets used for Evaluation

We capture the network traffic for creating multiple evaluation datasets on an Android

smartphone running Android 5.1.1. The device is connected directly to a wireless access

point and has a customised version of Netguard installed, which is configured to allow

all network traffic to pass. Although Netguard would provide the possibility to limit the

scope to a chosen subset of apps by changing this setting, we log network packets of all

53

installed applications. This allows us to perform a more detailed analysis at a later point

and to create multiple datasets afterwards, which can consist of different applications.

In order to evaluate the machine learning models in a realistic environment, we aim

to reflect the interaction of real users in the network traffic. For this reason, we choose

not to use monkey tools for traffic generation since the focus of these programs lies on

testing the crash robustness of applications. In the process of testing an app, monkey

tools send random user events to an application in order to provoke errors. Even though

these tools are easy to configure, the outcome does not necessarily reflect human decisions

and the results following particular input are seldom reproducible. Additionally, monkey

tools in their simpler form are not able to enter credentials and fail at simple verification

methods. As an alternative, input events can be scripted to overcome these limitations.

A drawback of this approach is that scripted scenarios have to be defined manually.

With a small number of scripted scenarios, this approach results in repeated inputs

which artificially introduce recurrent patterns in the network traffic data.

Because of the described drawbacks of monkey tools and scripted scenarios, we

collect network traffic by monitoring connections during the interaction of users with

the applications on their phone. Netguard logs the produced traffic and exports the

resulting log files. Observing the interaction of real users guarantees that any patterns

contained in the network traffic can indeed occur in everyday use as well. Since users

tend to switch between multiple applications during interaction with their smartphone,

several starting functions are triggered in each phase. Most startup routines require

loading data from servers, resulting in several distinct sessions. However, a downside

of this collection method is the effort required to generate a large amount of traffic for

creating the dataset. Using the described way, we gathered 95MB of network traffic in 92

PCAP files, representing the base for the datasets described in the following subsections.

6.1.1 Application Dataset

The first dataset consists of the recorded traffic on a per-application level. For this

reason, the package identifier of each app is chosen as the label. The dataset consists

of 13 applications, as summarised in Table 6.1. These applications are chosen in a way

that for each app, at least one other application with a similar purpose is contained

in the dataset. The collected network traffic logs consist of 22 902 sessions originating

from the chosen applications, with a total of 1 197 495 monitored network packets. Al-

though all applications were executed for roughly the same amount of time, the amount

54

Package Identifier Sessions Packets

org.telegram.messenger 7648 57429
com.whatsapp 5142 40473
com.twitter.android 2625 169226
at.willhaben 2285 131992
com.spotify.music 1034 62195
com.melodis.midomiMusicIdentifier.freemium 897 36082
org.thoughtcrime.securesms 751 10563
air.com.hypah.io.slither 607 133253
tv.twitch.android.app 497 395696
com.robtopx.geometryjumplite 453 39639
com.valvesoftware.android.steam.community 426 76201
at.oebb.ts 374 28619
com.Slack 163 16127

Table 6.1: A summary of the first dataset with application identifiers as
label.

of traffic recorded in this timeframe differs. This difference in sessions and packets can

be seen from the summary as well. The disparity can result from the implementation

design and the network libraries used in each application. For example, applications like

tv.twitch.android.app and com.spotify.music produce a large number of packets in rela-

tion to their established sessions during streaming. Since both apps stream multimedia

content, this amount of packets results presumably from the large size of transmitted

media. During the evaluation process, neither equalising the number of packets nor the

number of sessions changed the outcome significantly. For this reason, we decided not to

reduce the available amount of traffic. Interestingly, only 163 sessions of the messenger

com.Slack are contained in the traffic log, although the app was used in the same extent

as other messaging applications. Upon closer inspection, we found out that com.Slack

seems to use persistent WebSockets. As these are event-driven in both sides, the share

of polling calls is probably reduced, leading to fewer transmitted packets and established

sessions. We performed the necessary preprocessing of this dataset on a cluster, taking

advantage of the parallelisation capabilities. On an Intel Xeon E5-2699 v4, the process

took about two hours using the 88 available cores.

55

Categories Sessions Packets

messenger 13704 124592
shop 3085 236812
socialmedia 2625 169226
streaming 2428 493973
game 1060 172892

Table 6.2: The resulting dataset after grouping the applications into cate-
gories.

6.1.2 Category Dataset

This dataset is a modification of the previously described application dataset. Since the

application dataset consists of single sessions documents for each app, the categorisation

module discussed in Section 5.3 is applied. This module substitutes the application

names with the related category name. In this case, the module maps all applications

to five categories, according to the purpose of each app. For this reason, com.Slack,

org.thoughtcrime.securesms, com.whatsapp and org.telegram.messenger are mapped to

the category messenger, whereas, the music streaming app com.spotify.music, the music

detection service com.melodis.midomiMusicIdentifier.freemium and the video streaming

application tv.twitch.android.app are belonging to the class streaming. Although the app

provides other features as well, the main objective of com.valvesoftware.android.steam.

community is the selling of video games. Thus, this application is considered as part of

the group shop, similar to the national railroad ticket sale app at.oebb.ts. The labels of

session documents related to com.twitter.android are replaced with socialmedia, while

com.robtopx.geometryjumplite and air.com.hypah.io.slither represent the category game.

Table 6.2 summarises the dataset. As a result of the mapping between categories and

application names, the total number of sessions, as well as the number of packets in

the dataset remained the same. Since this dataset is based on the already preprocessed

application dataset, the afterwards applied categorisation takes only a couple of minutes

on a single workstation.

6.1.3 Generating Artificial Data

Due to the high effort of manual traffic gathering, we extended the previously described

datasets with artificial packets. With these datasets, the generalisation capabilities of

the chosen models and their tendency to overfit can be evaluated even though the number

56

Categories Sessions Packets

org.telegram.messenger 9886 73237
com.whatsapp 6720 52990
com.twitter.android 3440 217659
at.willhaben 2994 175646
com.spotify.music 1328 76877
com.melodis.midomiMusicIdentifier.freemium 1167 47149
org.thoughtcrime.securesms 979 13204
air.com.hypah.io.slither 804 178387
tv.twitch.android.app 624 512565
com.robtopx.geometryjumplite 590 51739
com.valvesoftware.android.steam.community 562 102523
at.oebb.ts 479 35807
com.Slack 211 21130

Table 6.3: The summary of the extended application dataset.

Categories Sessions Packets

messenger 19173 173552
shop 4324 334959
socialmedia 3656 233527
streaming 3428 765253
game 1481 237791

Table 6.4: The category dataset after extension with additional sessions.

of samples is restricted. We apply the variation script of the preprocessing module on

the application and category dataset. This script increases the variety of features in the

respective dataset by copying a random share of each class and altering the value in a

given range. We choose to use the default value and vary 30 per cent of each session.

With this amount, the application dataset is enlarged to 29 784 sessions containing 1

558 913 packets, while the altered category dataset consists of 32 062 sessions with 1 745

082 packets. Throughout this work, we refer to the first dataset as extended application

dataset and the latter as extended category dataset. Table 6.3 shows the distribution

of sessions in the former, whereas Table 6.4 summarises the extended category dataset.

Similar to creating the category dataset, the extension process only takes a few minutes

on a workstation.

57

Configuration 1 2 3 4

Vector Size 300 300 30 300
Training Iterations 20 50 20 20
Inverse Regularisation 104 104 104 106

Table 6.5: The altered configuration parameters of the first approach.

6.2 Model Performance

All approaches described in Chapter 5 are evaluated using the four datasets with different

parameter configurations. In the beginning, we initialise these configurations with a

default parameter set and measure the performance on each test dataset. To observe

the influence of different parameters on the classification results, we alter the respective

values between multiple executions. The resulting precision, recall and F1 scores are

compared between each configuration and parameter set. For every approach, we choose

four parameter configurations that emphasise clearly differentiable aspects of the model.

6.2.1 Approach 1 - Doc2Vec

In this approach, we evaluate the performance of Doc2Vec with PV-DM and PV-DBoW

on the previously described dataset. To compare the results, we create four parameter

configurations, with the first set representing the default values. For the parameters

of the first set, we set the size of the window to 8. This number corresponds to the

length of a sentence in a document. We choose a min count of 0 and a vector size of

300. The training on the dataset is performed for 20 iterations. For the second one, we

increase the number of training iterations to 50, whereas we decrease the vector size to

30 for the third configuration. In the fourth set, we change the inverse regularisation

parameter of the logistic regression classifier from 104 to 106. The altered parameters of

the configuration are shown in Table 6.5.

For all experiments, the performance of Doc2Vec with a logistic regression classifier

is quite low. As shown in Figure 6.1, neither precision nor recall exceeds 50 per cent,

regardless of the chosen parameters. This could be an indicator that either Doc2Vec or

the logistic regression classifier is not suitable for this type of data or that there are not

enough data samples for each class. As the classifier achieved only marginally better

performance on the less fragmented category dataset than on the other datasets, the

former seems to be more likely. Using PV-DM with default parameters, the average

58

precision and recall on the application dataset reach its minimum. On the extended

application dataset, slightly better results are achieved. In contrast to the application

datasets, the category and extended category dataset perform clearly better with a

precision of 0.39, respectively 0.44. Increasing the training iterations in the second

configuration improves the performance on all datasets except the category dataset.

On the application and extended application dataset, the precision is enhanced by six

per cent, while the extended category dataset increases by five, representing the best

performance of this approach. The precision on the category dataset instead decreases

by seven per cent, from 0.39 to 0.32. For the first three datasets, no significant recall

improvement can be seen, whereas the value for the category dataset slightly decreases.

It seems that the classifier benefits especially on high fragmented datasets from increased

training iterations. Only the application dataset draws advantage from decreasing the

vector size in the third configuration. The precision improves to 35 per cent with a

recall of 0.44, while the classification performance on all other datasets declines. On

the category dataset, the third configuration yields with 37 per cent respectively 0.47

a nearly equal precision and recall as the first parameter set. The precision for the

extended application dataset drops to 20 per cent while the recall is reduced to 0.33, the

minimum values of this model. For the precision on the extended category dataset, a

decrease to 0.36 with a slightly enhanced recall of 0.46 can be seen. It could be possible

that the larger vector size includes features related to another context in each training

vector. The decrease seems to reduce this environmental noise, resulting in a better

training process in the case of the application and extended application dataset. The

increase of the inverse regularisation parameter of the logistic regression classifier results

in an improvement of precision on the application dataset, as it increases to 33 per cent

with 0.4 recall. On all other datasets, this configuration yields comparable values to the

default parameter set.

The category dataset especially benefits from using PV-DBoW, as the precision

in the first configuration achieves 44 per cent with a recall value of 0.45. All other

datasets obtain lower results, with precisions between 0.32 and 0.35 for the application

and extended category dataset and 0.24 for the extended application dataset. Except

for the extended application dataset, all recall values are in a range between 0.39 and

0.47, while the former achieves values from 0.33 to 0.4. The classifier accomplishes

better results on the application and category dataset than using PV-DM with the same

parameter set. On this datasets, the model seems to benefit from the lack of dependence

on the order of surrounding words in PV-DBoW. Interestingly, when increasing the

performed amount of training in the second configuration, the precision on all datasets

59

Configuration 1 2 3 4

CNN Filter Number 10 10 10 8
DNN Number of Neurons 10 10 10 15
Embedding Dimension 25 25 40 25
Training Epochs 10 30 5 10

Table 6.6: The parameter configurations for the convolution and dense
neural network.

decreases. The category dataset performs best with a precision of 0.32, whereas the value

on the application dataset decreases to 0.28. On both extended datasets, a precision

of 0.23 is achieved. As the recall drops as well, this decrease most probably results

from focussing on single features during the training process. If these features are not

contained in the test dataset, the model cannot accurately predict the corresponding

class. Decreasing the vector size in the third configuration results in a slight performance

boost of the application and extended application dataset by four respectively one per

cent. As before using PV-DM, datasets with fewer packets per class seem to benefit

from the reduce in surrounding context information with these parameters. On the

category dataset, the precision decreases marginally to a value of 0.42, whereas the

drop to 0.26 on the application dataset is even higher. The increase of the inverse

regularisation parameter of the logistic regression classifier in the last configuration does

not considerably change the performance on the application and category dataset. On

the extended application dataset, a small improvement to 0.31 can be seen, whereas the

precision of the extended category dataset decreases by five per cent to 0.3. Similar to

the model using PV-DM, it seems that the inverse regularisation parameter does not

influence the prediction performance of the model significantly.

In Figure 6.1, the resulting F1 scores of the performed Doc2Vec evaluation is shown.

The fluctuation in these results does not clearly indicate a pattern. By comparing the

performance on all datasets, this approach seems to be more appropriate to classify the

category dataset. Although the F1 scores of this dataset are only marginally better

than those of the application dataset, they remain more stable. The category dataset

evidently outperforms both artificially extended datasets, as the F1 score of only two

configurations exceeds the worst result of the former.

60

Figure 6.1: Precision, recall and F1 score of the different Doc2Vec config-
urations.

61

6.2.2 Approach 2 - Dedicated Classification Network

The default parameters for the evaluation of the second approach depend on the net-

work layer structure. For the convolution network, we choose a filter number of ten

and a kernel size of three for the first convolution layer. Although the second uses the

same kernel size as the first one, the number of filters is reduced to five. For the dense

neural network, the number of neurons in the dense hidden layer is set to ten. In the

embedding layer of both layer structures, we choose an output dimension of 25 and train

the network for ten epochs. Based on these values, we create three additional sets of

parameter configurations. In the second configuration set, we extend the training phase

by increasing the number of epochs to 30, in order to adapt the model better to the

training data. The third configuration reduces the performed training to five epochs but

instead extends the embedding layer dimensionality to 40. More sparse vectors in the

embedding layer could be better distinguishable, which should allow reducing the train-

ing phase while maintaining a stable classification prediction. In the last configuration,

we modify the parameters of the convolution and dense hidden layer. For the former,

the number of filters is reduced to eight, focussing more on single features and increasing

the importance of each. The number of neurons for the latter is increased to 15, which

should result in more fine-grained class decisions due to the wider variety available. All

four configurations use batch training with 300 elements per batch and a third of the

available training data as a validation set. The differences between the parameter sets

are displayed in Table 6.6.

In Figure 6.2 can be seen, that the precision on the category dataset and extended

category dataset remains quite stable at about 96 per cent for all tested configurations.

The only exception is the first parameter configuration in combination with the convo-

lution neural network classifier. In this case, the precision is reduced to 77 per cent. All

results are supported by similar high recall value, the only outlier being the first config-

uration with the convolution neural network, which achieves a value of 0.84. From these

results can be seen that the category and extended category dataset perform equally

well on both layer structures and do not strongly depend on the chosen parameters.

The application-based datasets seem more problematic, as the convolution network

with the first and second parameter configuration accomplishes precision values of about

0.73, supported by recall values of 0.8. The extended training phase of the second param-

eter configuration does not seem to have an impact on the application dataset. Unlike

the application dataset, the performance on the extended application dataset benefits

62

from additional training. Comparing the ten training epochs to 30 specified in the second

configuration, precision and recall values increase by seven per cent, from 0.77 to 0.84

for the former and from 0.82 to 0.89 for the latter. As the extended application dataset

contains more diverse features than the application dataset, a higher amount of training

could be needed to detect classes reliably. Extending the embedding layer dimensionality

while lowering the amount of training in the third parameter set results in a decreased

classification performance on the application dataset. The precision drops to 38 per cent

with a recall of 0.5. In this case, the extended application dataset outperforms the base

dataset clearly. Achieving 80 per cent precision and a recall of 0.86, the performance

of this parameter set is within comparable ranges to the first and second configuration.

It seems that packets from the application dataset can be mapped onto smaller embed-

ding vectors than the larger number of packets in the extended dataset. In this case,

the additional reduction of the amount of training results in a decreased performance.

Reducing the number of filters in the last configuration, the precision of the application

dataset drops to 0.35 with a recall of 0.49, being the worst performance of all neural

network configurations and datasets. The extended application dataset is affected in a

similar way, as the classification precision is 0.42, supported by a recall value of 0.55.

Increasing the importance of single features leads to focus on characteristics that are

only present in the training set, resulting in a less generalised model.

While using the dense classification network, the application dataset achieves a

precision value of 0.61 and a recall value of 0.52. On the extended application dataset,

the precision is comparable to the category datasets with 0.92, supported by a recall of

0.9. Again, the performance difference between the application and extended application

dataset is likely caused by assigning too much weight to features which are not present

in the test set. Since a comparable parameter configuration was used in the convolution

neural net, this decrease in performance could result from the missing self-optimization

of the convolution filters. With this layer architecture, the application dataset seems to

draw advantage from an extended training phase, as precision and recall increases to 0.93,

respectively 0.92. Interestingly, the performance on the extended application dataset

drops to a precision of 0.5 and recall of 0.62. A possible explanation would be overfitting

on the training data, which is supported by the results using the third configuration.

Since the amount of training is reduced in this configuration, the precision increases to

0.9 and recall to 0.92. As to be expected, the application dataset does not perform well

using the third configuration. The precision value drops to 0.38 with 0.54 recall. Both

the application and extended application dataset benefit from additional nodes in the

dense hidden layer. For the former, the performance improves to a precision value of

63

Configuration 1 2 3 4

Number of Neurons 10 10 10 15
Doc2Vec Training 20 50 30 20
Dense Classifier Training 10 30 5 10

Table 6.7: The parameter configurations for Doc2Vec combined with the
dense neural network classifier.

0.81, whereas the latter achieves 0.86. The recall value for both datasets exceeds 0.86. In

contrast to the previous configurations of the dense classifier, increasing the number of

neurons results in nearly equal performance on the application and extended application

dataset. Precision and recall are only marginally lower as the values for the category

datasets. For this reason, this dense network configuration seems to be suitable to apply

on all four datasets. Further extending the number of dense layer nodes did not increase

the classification performance.

The recall values match the corresponding precision values of all network classifier

experiments quite well, resulting in a similar distribution for the F1 score, shown in Fig-

ure 6.2. Generally speaking, the dense network classifier provides the best results using

15 neurons in the dense hidden layer. In this configuration, it is suited for all datasets.

Although the convolution classifier is slightly less precise on application datasets, it is

less dependent on parameters while still resulting in more than 70 per cent precision

and recall on all datasets. Nearly all problematic configurations of this classifier are

most likely caused by overfitting on features in the training set. By reevaluating the im-

portance of all feature values, it could be possible to increase the performance of these

configurations.

During additional experiments, we could observe the impact of the performed sub-

stitution of static IP addresses with their subnet ranges. While using static IP addresses,

the loss diverges during the performed training. The precision drops by about ten per

cent on all datasets, disregarding the specified parameters.

6.2.3 Approach 3 - Doc2Vec with External Classifier

Since this approach combines Doc2Vec with a dense network classification, we reuse

the parameter configurations of the previous approaches for comparability. In the first

configuration, we use a Doc2Vec window size of 8, a min count of 0 and a vector size of

64

Figure 6.2: Precision, recall and F1 score of the different neural network
configurations.

65

300. In the dense layer structure, we set the number of neurons in the hidden layer to

10. We train Doc2Vec for 20 iterations and the dense classifier for ten epochs. Based

on these values, we compare the results of three additional parameter configurations,

altering values of Doc2Vec and the dense network classifier at the same time. The

second configuration extends the amount of training by setting the Doc2Vec training

iterations to 50 and the epochs of the dense network to 30. In the third configuration,

the training of the dense network is reduced to five epochs, whereas Doc2Vec is trained for

30 iterations. Changing the number of neurons in the dense hidden layer to 15 represents

the last parameter configuration. Similar to the second approach, a batch size of 300

and a randomly chosen validation set of 30 per cent is used during the training of the

dense classifier. The parameter configurations can be seen in Table 6.7.

The change of the classifier boosts the prediction performance slightly compared to

the first Doc2Vec approach with a logistic regression classifier. The increase in precision

and recall are shown in Figure 6.3. Using the first parameter set with Doc2Vec in

PV-DM configuration, the precision improves on the application dataset by nearly 20

and on the category dataset by 17 per cent, referring to the first approach. Similarly,

the recall values increase to 0.52 and 0.58. In contrast, the extended datasets do not

benefit in the same amount. For the extended application dataset, the precision rises

by ten per cent to 0.37 and the recall by seven per cent to 0.44. The extended category

dataset achieves a nearly equal precision with a minor improvement by two per cent,

supported by a better recall of 0.51. The prediction performance of all datasets draws

advantage from an extended training phase for Doc2Vec and the dense network. On

the application dataset, the precision increases to 0.5 with a recall of 0.57, whereas

the category dataset achieves 0.6, supported by a recall of 0.61. The precision on the

extended application dataset enhances to 0.41, while an increase to 0.53 is observable

on the extended category dataset. On both datasets, the recall value improves by five

per cent to 0.49 for the extended application and 0.56 for the extended category dataset.

In further experiments, we could improve the classification performance on all datasets.

By increasing the Doc2Vec iterations to 75 and the dense classifier training epochs to

50, we boosted the performance by about ten per cent. Conversely, the precision and

recall did not enhance by extending the amount of training any further. The number of

packets per class does not seem to have a large impact on the performance, as the F1

score difference between application and category dataset is only seven per cent.

As expected, reducing the amount of training does not yield better results. Only the

category and extended category dataset achieve precision and recall values comparable

66

to the first configuration. The precision on the application dataset, on the other hand,

drops to 0.39 with a recall of 0.47, whereas the extended application dataset results in a

precision value of 0.29. This value represents the lowest performance of this approach.

Increasing the neurons instead improves the prediction performance on all datasets in

comparison to default parameters. The application dataset yields a precision of 0.48 with

a recall or 0.54, though the category dataset outperforms the former with a precision of

56 per cent, supported by a slightly better recall of 0.58. On the extended application

dataset, the increase of neurons seems to have the same effect as extending the amount

of training in the second parameter set, as it results in the same precision and recall

values. The precision on the extended category dataset instead is enhanced to a value of

0.51 with 0.54 recall. This increase in performance is similar to increasing the number

of neurons for the dense classifier of the second approach.

Testing these configurations using PV-DBoW, precision and recall improvements

of more than ten per cent compared to the first Doc2Vec approach can be seen. On

the application dataset, a classification precision of 0.47 with a recall value of 0.53 is

achieved, while the category dataset yields marginally better results with a precision

value of 0.51 and a recall of 0.55. The precision on the extended application dataset

rises to 0.48 and a recall value of 0.46, whereas the extended category dataset achieves

52 per cent precision, supported by a recall of 0.55. Increasing the amount of training

in the second parameter set slightly improves the classification results on all datasets

except for the extended categories. A marginal decline can be observed on this dataset.

On the application and extended application dataset, the precision enhances by four

respectively one per cent. The most substantial improvement can be seen on the category

dataset, where the precision increases to 0.62 per cent with a recall of 0.64. The contrary

effect is observable by reducing the amount of training. By using the third parameter

configuration, the precision on the application dataset decreases to 0.36 and the recall to

0.44, whereas on the category dataset, the lowest precision value of 0.5 is achieved. The

extended application dataset precision drops to 0.32, although supported by a recall

of 0.42. Similarly, the precision and recall of the extended category dataset decrease

to 0.45, respectively 0.49. With the last parameter set, the classification performance

increases again. The application dataset achieves a precision value of 0.53 and a recall of

0.58, the highest values on this dataset using this approach. The extended application

dataset benefits in the same way, as the precision is increased to 0.42, the maximum

value on this dataset. Furthermore, the precision on the category dataset is on par

with the extended training configuration, although the recall is slightly worse. On the

extended category dataset, the classifier achieves a precision of 0.51 with 0.55 recall. As

67

before using PV-DM, this increase is similar to the performance boost observed in the

dense neural network with configuration four in the second approach.

From the resulting F1 scores shown in Figure 6.3 can be seen, that the dense network

classifier yields more stable results on all parameter sets and reduces the fluctuation

compared to the logistic regression classifier. No significant difference between Doc2Vec

using PV-DM or PV-DBoW can be observed. Generally, the classification performance

is drastically below the convolution and dense neural network of the second approach.

The most consistent classification performance is achieved on category-based datasets.

Using PV-DBoW on the category dataset, the highest performance values are obtained,

although PV-DM results in a lower fluctuation between each configuration.

68

Figure 6.3: Precision, recall and F1 score of Doc2Vec with logistic regres-
sion classifier.

69

6.3 Limitations

From the results can be seen, that approaches based on Doc2Vec do not achieve high

precision and recall values. As a possible reason, Doc2Vec could be inappropriate for

this structure of traffic data, since the change in used parameters did not alter the results

drastically. A solution is to apply other machine learning approaches to this data. This

explanation is supported by the better performance of the neural network classifier on

the application and especially category-based datasets.

Most encountered problematic configurations of the neural networks likely result

from overfitting on the training data. Neither a dropout layer nor the use of a global

max pooling layer has proven to be an effective countermeasure, leaving only the option

to increase the dataset quality. As overfitting depends on the chosen network features

from the dataset, the importance of each feature has to be reevaluated. New features

could be added or existing ones removed to better the results. Changing the used features

would require to adapt the network parameters as well, potentially leading to completely

different models and approaches.

6.4 Summary

The classification neural networks of the second approach are clearly superior to Doc2Vec-

based approaches on the evaluated datasets. Of both layer structures, the dense neural

network slightly outperforms the convolution network on the application dataset and

the extended application dataset, while both networks are on par regarding their F1

scores on the category and extended category dataset. The achieved performance seems

to depend mainly on the dataset quality rather than the chosen configuration. For ex-

ample, on the category dataset, the same high precision and recall values are achieved

regardless of the configuration or what type of neural network was used.

The two Doc2Vec-based approaches do not achieve comparable levels of classifica-

tion performance with respect to the neural networks. An F1 score of 60 per cent is

exceeded in only three configurations, while in all other cases the performance remains

significantly below this threshold. Furthermore, these scores show that the substitution

of the logistic regression classifier with a dense network increases the performance by

at least ten per cent. The only exception is the third configuration using PV-DBoW

on the application dataset, which improves by two per cent. As the performance differ-

70

ence between application-based and category-based datasets is marginal, the number of

packets per class does not seem to be an important factor. Even balancing the unequal

amount of packets per category did not increase the performance. We cannot observe

a significant difference in prediction performance between PV-DM and PV-DBoW, re-

gardless of the classifier used. This could be an indicator that the surrounding network

packet context does not provide any additional information or that using Doc2Vec is

inappropriate for this data.

Both Doc2Vec-based approaches achieve their best F1 scores on the category dataset,

while the results on the application and extended application dataset fluctuate more

strongly. A similar pattern can be seen in the scores of the dense and convolution neural

network as well. This could indicate that either the amount of sessions per application

is not sufficient or, more likely, that the network packets are not distinctive enough to

be used in these models. Furthermore, it can be seen that the parameter sets have only

limited influence on the classification results of well-performing models. On the majority

of the dataset, the F1 score remains in a small range within each approach regardless of

the parameter configuration.

The used network features seem to be essential in this combination, as removing

single ones during our experiments resulted in a significant amount of misclassifications.

For example, when removing IP addresses or ports, the F1 score for the second approach

decreases to a maximum of 0.58, while Doc2Vec with dense network classifier achieves a

maximum of 0.39. The minimum score for the former lies at 0.24, where the latter yields

0.25. Although the first approach is not as strongly affected as others, the F1 score still

drops below 0.33, with 0.16 per cent as a lower bound.

The data points of the best-performing combinations of model and dataset were

visualised for further analysis using UMAP in Tensorboard. The resulting points are

coloured based on the related label and shown in Figure 6.4. As the data points were

recorded directly in front of the dense classification layer, the Doc2Vec approach with

logistic regression classifier could not be visualised in this way. Since UMAP projects

high-dimensional data onto three dimensions, visualised points close to each other are

not necessarily neighbours in the original space. For this reason, graphical proximity

serves only as a first indicator. Instead, Tensorboard provides the possibility to list

surrounding points based on the distance to the current selection. This measurement

serves as the foundation of our analysis.

Figure 6.4a shows the visualisation of the convolution neural network on the category

71

dataset using the fourth parameter configuration. It can be seen that multiple small

clusters are formed, of which the majority of points belongs to the same category. In

the centre of the space, the data points create a sparsely distributed point cloud, which

in itself contains regions of point concentrations of single categories.

The dense neural network on the extended category dataset in the second parameter

configuration is shown in Figure 6.4b. A similar point cloud of data points is observable

in the centre of the visualisation, though groups of categories are formed in arm-like

structures of the cloud. The upper right arm mainly consists of data points of the

category shop, whereas the majority of the messenger category can be found at the

bottom of the cloud. In the top left arm, most of the data points belong to the category

socialmedia, while the category game dominates the centre. Surrounding the central

point cloud, multiple smaller clusters and a ring-like structure are formed by data points

of the streaming category.

In Figure 6.4c, the data points resulting from Doc2Vec using PV-DM with the fourth

parameter configuration on the category dataset are displayed. Clusters of higher point

density can be seen, although the categories in these clusters cannot be distinguished

as clearly as in the previous plots. Each cluster consists of data points from multiple

categories, where the concentration of single category data points increases near the

cluster borders. In the cluster centres, points of other categories are nearby, indicating

probable misclassifications of the model. A high density of data points belonging to

the category streaming is observable in the ring-like structure. The sparse point cloud

instead consists of all categories, although smaller regions inside are dominated by single

categories.

Figure 6.4d shows Doc2Vec in the second parameter configuration using PV-DBoW

on the category dataset. In this plot, well-distinguishable concentrations of data points

can be seen, as points of the categories game, messenger and shop form their own

clusters. The group in the upper left corner of the plot is a mixture of the category shop

and socialmedia, where points of both categories are in close proximity. Although the

entwined ring structure is built by a majority of data points belonging to the streaming

category, a significant number of points from the messenger and game category can be

seen inside as well.

Based on the collected results, it seems that Doc2Vec is not suited for network

traffic classification on these datasets and that higher classification performance can be

achieved using a tailored dense or convolution neural network.

72

(a) Convolution neural network in fourth
configuration on category dataset

(b) Dense neural network in second
configuration on extended category dataset

(c) Doc2Vec with dense classifier in fourth
configuration on category dataset

(d) Doc2Vec with dense classifier in second
configuration on category dataset

Figure 6.4: Tensorboard UMAP visualisation of model data points.

73

74

Chapter 7

Conclusion

Identifying applications based on their network traffic can be useful in a wide range

of scenarios. For example, fingerprinting a device could be possible if a sufficiently

large amount of installed applications on the device can be identified. Identification

techniques can be applied in large networks to detect, whether applications containing

malware are present on user devices. By analysing the applications used in a network,

the service quality of network connections can be optimised to favour the most frequently

used apps. With the increasing use of transport encryption in smartphone applications,

traffic analysis becomes more difficult as the inspection of network packet content is

prevented. But even with traffic encryption in place, traffic metadata remains unen-

crypted. Although metadata features like hostnames can be useful as the first indicator

to determine applications or services, the result tends to be more accurate if multiple

features are combined. However, identifying meaningful features is a complex task, as

the importance of each feature strongly depends on the type of data and application.

Feature combinations often form patterns hidden in metadata. Those patterns are often

characteristic for a service or app, serving as another indicator. Patterns can span over

vast amounts of metadata. For this reason, the detection of patterns often requires to

process large quantities of network data.

In this thesis, we proposed a way to identify smartphone applications by analysing

the related network traffic metadata. The solution leaves any transport encryption used

in the network connection intact. Our method focuses on the analysis of metadata gath-

ered from network packets, as packet information is available in plain text. Since relying

on small quantities of metadata often leads to a high number of erroneous identifica-

tions. For this reason, we applied supervised machine learning models to a large amount

75

of network metadata, as these models benefit from large quantities of training data.

Such models provide the ability to detect subtle patterns in network traffic metadata.

We showed that metadata share similarities with the structure of natural language text

documents. Network protocols define structural rules equivalent to grammar. Similar to

words, the possible placement of a packet feature is dictated by the protocol, while the

value itself could vary within a given range. The features itself are part of network pack-

ets, which we, therefore, assume equivalent to sentences. Similar to sentences forming

text documents with a given context, packets can be grouped into a TCP session. For

each session, we consider the package name of the source application as the context of a

session. The session context is represented by the class label of each network packet in

the dataset. The described similarity enabled us to rely on well-established models from

the field of natural language processing, which we presented in three methods. The first

relied on Doc2Vec, a supervised machine learning model tailored to infer the context

from text documents. Doc2Vec transformed the words from the documents into a vector

space, taking the context information of sentences and documents into account. The

resulting vector space served as input for a logistic regression classifier, which predicted

the document context in the form of the application class labels. For the second ap-

proach, we used word embeddings in front of a convolution and a dense neural network

to process text documents and detect the corresponding labels. In the third approach,

we combined Doc2Vec for the word transformation with a dense neural network classifier

for the prediction.

We implemented a prototype of a network traffic-based application detector, which

is able to learn patterns contained in labelled metadata features in order to predict the

application class. Our implementation includes all proposed approaches, allowing us to

customise different model parameters. We explained the process of collecting connection

metadata along with application name labels on Android smartphones and provided a

preprocessing module for creating structured text documents to train the models. The

preprocessing module can also be applied to unseen traffic without labels, in order to

predict the most similar application class labels using the developed classification module

with a trained model.

Based on real user interaction, we collected network traffic data from multiple apps

on an Android smartphone. We transformed the network sessions in the gathered traffic

into text documents. From this text documents, we created four evaluation datasets.

The documents of the first are labelled with the corresponding application name. The

second dataset consists of the same documents grouped into categories related to the

76

purpose of the app. Both datasets were extended artificially by varying a certain amount

of features in order to introduce noise, resulting in the other two datasets. We compared

the performance of our approaches on these datasets and evaluated the influence of

various model parameters. Based on our experiments, we draw the following conclusions:

• The convolution and dense neural network outperform the Doc2Vec with logistic

regression and dense neural network classifier in every scenario. On the category

and extended category dataset, the F1 score remained at about 97 per cent, re-

gardless of the chosen parameters. The classification performance seems to depend

mainly on the selected features.

• Doc2Vec with logistic regression classifier achieved F1 scores between 21 and 40

per cent. Between the category and application dataset, a difference of about 10

per cent could be observed. As both extended datasets performed worse than the

base datasets, it seems that the logistic regression classifier is inappropriate for this

type of data. Although the change of classifier to a dense neural network increased

precision and recall values slightly, the difference to the convolution and dense

neural network is significant. It seems that Doc2Vec is not suitable for processing

network traffic in this form.

• The network parameters have an only marginal influence on the achieved precision

and recall, though exceptions can be observed using dedicated neural networks and

Doc2Vec with dense classifier on the application dataset.

• Both Doc2Vec approaches did not display significant differences between PV-DM

and PV-DBoW. This result indicates that either the context of the surround-

ing word environment did not provide any valuable further information or that

Doc2Vec is inappropriate for the selected network packet features.

77

78

Bibliography

[1] Aiolli, F. et al. “Mind your wallet’s privacy: identifying Bitcoin wallet apps and

user’s actions through network traffic analysis”. In: Symposium on Applied Com-

puting – SAC 2019. ACM, 2019, pp. 1484–1491. isbn: 978-1-4503-5933-7.

[2] Alan, H. F. and Kaur, J. “Can Android Applications Be Identified Using Only

TCP/IP Headers of Their Launch Time Traffic?” In: Security and Privacy in

Wireless and Mobile Networks – WISEC 2016. ACM, 2016, pp. 61–66. isbn: 978-

1-4503-4270-4.

[3] Arora, A., Garg, S., and Peddoju, S. K. “Malware Detection Using Network Traffic

Analysis in Android Based Mobile Devices”. In: Eighth International Conference

on Next Generation Mobile Apps, Services and Technologies, NGMAST 2014, Ox-

ford, United Kingdom, September 10-12, 2014. IEEE, 2014, pp. 66–71. isbn: 978-

1-4799-5073-7.

[4] Banerjee, I. et al. “Comparative effectiveness of convolutional neural network

(CNN) and recurrent neural network (RNN) architectures for radiology text report

classification”. In: Artificial Intelligence in Medicine 97 (2019), pp. 79–88.

[5] Chaddad, L. et al. “App traffic mutation: Toward defending against mobile statis-

tical traffic analysis”. In: IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications Workshops, INFOCOM Workshops 2018, Honolulu, HI, USA,

April 15-19, 2018. IEEE, 2018, pp. 27–32. isbn: 978-1-5386-5979-3.

[6] Conti, M. et al. “The Dark Side(-Channel) of Mobile Devices: A Survey on Network

Traffic Analysis”. In: IEEE Communications Surveys and Tutorials 20 (2018),

pp. 2658–2713.

[7] Dereli, N. and Saraclar, M. “Convolutional Neural Networks for Financial Text

Regression”. In: Proceedings of the 57th Conference of the Association for Compu-

tational Linguistics, ACL 2019, Florence, Italy, July 28 - August 2, 2019, Volume

2: Student Research Workshop. Association for Computational Linguistics, 2019,

pp. 331–337. isbn: 978-1-950737-47-5.

79

[8] Dong, S. and Li, R. “Traffic identification method based on multiple probabilistic

neural network model”. In: Neural Computing and Applications 31 (2019), pp. 473–

487.

[9] Hajjar, A., Khalife, J., and Diaz-Verdejo, J. E. “Network traffic application identi-

fication based on message size analysis”. In: J. Network and Computer Applications

58 (2015), pp. 130–143.

[10] He, G. et al. “Mobile app identification for encrypted network flows by traffic

correlation”. In: IJDSN 14 (2018).

[11] Ichino, M., Maeda, H., and Yoshiura, H. “Score Level Fusion for Network Traffic

Application Identification”. In: IEICE Transactions 99-B (2016), pp. 1341–1352.

[12] Jain, A. V. “Network Traffic Identification with Convolutional Neural Networks”.

In: Conference on Dependable, Autonomic and Secure Computing – DASC 2018.

IEEE Computer Society, 2018, pp. 1001–1007. isbn: 978-1-5386-7518-2.

[13] Kim, J. and Sim, A. “A New Approach to Multivariate Network Traffic Analysis”.

In: J. Comput. Sci. Technol. 34 (2019), pp. 388–402.

[14] Kim, J. et al. “Multivariate network traffic analysis using clustered patterns”. In:

Computing 101 (2019), pp. 339–361.

[15] Le, Q. V. and Mikolov, T. “Distributed Representations of Sentences and Docu-

ments”. In: Proceedings of the 31th International Conference on Machine Learning,

ICML 2014, Beijing, China, 21-26 June 2014. Vol. 32. JMLR Workshop and Con-

ference Proceedings. JMLR.org, 2014, pp. 1188–1196.

[16] Li, D., Zhu, Y., and Lin, W. “Traffic Identification of Mobile Apps Based on Varia-

tional Autoencoder Network”. In: 13th International Conference on Computational

Intelligence and Security, CIS 2017, Hong Kong, China, December 15-18, 2017.

IEEE Computer Society, 2017, pp. 287–291. isbn: 978-1-5386-4822-3.

[17] Liu, Z., Zhou, W., and Li, H. “Scene text detection with fully convolutional neural

networks”. In: Multimedia Tools Appl. 78 (2019), pp. 18205–18227.

[18] Lotfollahi, M. et al. “Deep Packet: A Novel Approach For Encrypted Traffic Clas-

sification Using Deep Learning”. In: CoRR abs/1709.02656 (2017).

[19] Maaten, L. v. d. and Hinton, G. “Visualizing data using t-SNE”. In: Journal of

machine learning research 9.Nov (2008), pp. 2579–2605.

[20] Martin, M. L. et al. “Network Traffic Classifier With Convolutional and Recurrent

Neural Networks for Internet of Things”. In: IEEE Access 5 (2017), pp. 18042–

18050.

[21] McInnes, L. and Healy, J. “UMAP: Uniform Manifold Approximation and Projec-

tion for Dimension Reduction”. In: CoRR abs/1802.03426 (2018).

80

[22] Meidan, Y. et al. “ProfilIoT: a machine learning approach for IoT device identifi-

cation based on network traffic analysis”. In: Symposium on Applied Computing –

SAC 2017. ACM, 2017, pp. 506–509. isbn: 978-1-4503-4486-9.

[23] Mikolov, T. et al. “Efficient Estimation of Word Representations in Vector Space”.

In: 1st International Conference on Learning Representations, ICLR 2013, Scotts-

dale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. 2013.

[24] Mizumura, N. et al. “Smartphone Application Usage Prediction Using Cellular

Network Traffic”. In: 2018 IEEE International Conference on Pervasive Comput-

ing and Communications Workshops, PerCom Workshops 2018, Athens, Greece,

March 19-23, 2018. IEEE Computer Society, 2018, pp. 753–758. isbn: 978-1-5386-

3227-7.

[25] Nazari, Z., Noferesti, M., and Jalili, R. “DSCA: an inline and adaptive application

identification approach in encrypted network traffic”. In: Proceedings of the 3rd

International Conference on Cryptography, Security and Privacy, ICCSP 2019,

Kuala Lumpur, Malaysia, January 19-21, 2019. ACM, 2019, pp. 39–43. isbn: 978-

1-4503-6618-2.

[26] Nguyen, H. T. et al. “Text-independent writer identification using convolutional

neural network”. In: Pattern Recognition Letters 121 (2019), pp. 104–112.

[27] Nguyen, T. D. et al. “DÏoT: A Crowdsourced Self-learning Approach for Detecting

Compromised IoT Devices”. In: CoRR abs/1804.07474 (2018).

[28] Parwez, M. A., Abulaish, M., and Jahiruddin. “Multi-Label Classification of Mi-

croblogging Texts Using Convolution Neural Network”. In: IEEE Access 7 (2019),

pp. 68678–68691.

[29] Pluskal, J., Lichtner, O., and Rysavý, O. “Traffic Classification and Application

Identification in Network Forensics”. In: Advances in Digital Forensics XIV - 14th

IFIP WG 11.9 International Conference, New Delhi, India, January 3-5, 2018,

Revised Selected Papers. Vol. 532. IFIP Advances in Information and Communi-

cation Technology. Springer, 2018, pp. 161–181. isbn: 978-3-319-99276-1.

[30] Saltaformaggio, B. et al. “Eavesdropping on Fine-Grained User Activities Within

Smartphone Apps Over Encrypted Network Traffic”. In: Workshop on Offensive

Technologies – WOOT 2016. USENIX Association, 2016.

[31] Sawabe, A., Iwai, T., and Satoda, K. “Identification of Smartphone Applications by

Encrypted Traffic Analysis”. In: Consumer Communications & Networking Con-

ference – CCNC 2019. IEEE, 2019, pp. 1–2. isbn: 978-1-5386-5553-5.

81

[32] Shahid, M. R. et al. “IoT Devices Recognition Through Network Traffic Analysis”.

In: IEEE International Conference on Big Data, Big Data 2018, Seattle, WA, USA,

December 10-13, 2018. IEEE, 2018, pp. 5187–5192. isbn: 978-1-5386-5035-6.

[33] Sivan, N., Bitton, R., and Shabtai, A. “Analysis of Location Data Leakage in

the Internet Traffic of Android-based Mobile Devices”. In: CoRR abs/1812.04829

(2018).

[34] Swarnkar, M. et al. “AppHunter: Mobile Application Traffic Classification”. In:

IEEE International Conference on Advanced Networks and Telecommunications

Systems, ANTS 2018, Indore, India, December 16-19, 2018. IEEE, 2018, pp. 1–6.

isbn: 978-1-5386-8134-3.

[35] Taylor, V. F. et al. “AppScanner: Automatic Fingerprinting of Smartphone Apps

from Encrypted Network Traffic”. In: IEEE European Symposium on Security and

Privacy – EURO S&P 2016. IEEE, 2016, pp. 439–454. isbn: 978-1-5090-1751-5.

[36] Taylor, V. F. et al. “Robust Smartphone App Identification via Encrypted Network

Traffic Analysis”. In: IEEE Trans. Information Forensics and Security 13 (2018),

pp. 63–78.

[37] Wang, Q. et al. “I know what you did on your smartphone: Inferring app usage

over encrypted data traffic”. In: Communications and Network Security – CNS

2015. IEEE, 2015, pp. 433–441. isbn: 978-1-4673-7876-5.

[38] Wright, C. V., Monrose, F., and Masson, G. M. “On Inferring Application Pro-

tocol Behaviors in Encrypted Network Traffic”. In: Journal of Machine Learning

Research 7 (2006), pp. 2745–2769.

[39] Yamansavascilar, B. et al. “Application identification via network traffic classifi-

cation”. In: 2017 International Conference on Computing, Networking and Com-

munications, ICNC 2017, Silicon Valley, CA, USA, January 26-29, 2017. IEEE

Computer Society, 2017, pp. 843–848. isbn: 978-1-5090-4588-4.

[40] Yao, L., Mao, C., and Luo, Y. “Graph Convolutional Networks for Text Classifi-

cation”. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI

2019, The Thirty-First Innovative Applications of Artificial Intelligence Confer-

ence, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Arti-

ficial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,

2019. AAAI Press, 2019, pp. 7370–7377. isbn: 978-1-57735-809-1.

[41] Zaman, M. et al. “Malware detection in Android by network traffic analysis”.

In: International Conference on Networking Systems and Security, NSysS 2015,

Dhaka, Bangladesh, January 5-7, 2015. IEEE, 2015, pp. 1–5. isbn: 978-1-4799-

8126-7.

82

[42] Zheng, T. et al. “Detection of medical text semantic similarity based on convolu-

tional neural network”. In: BMC Med. Inf. & Decision Making 19 (2019), 156:1–

156:11.

83

	Introduction
	Motivation
	Problem
	Our Approach
	Outline

	Background
	Metadata in Network Traffic
	The Android Network Interface
	Text processing

	Related Work
	Workstation Traffic Analysis
	Mobile Device Traffic Analysis
	IoT Traffic Analysis

	Approach
	Similarities of text processing and traffic analysis
	Processing Network Traffic using Machine Learning
	Approach 1 - Pure Doc2Vec
	Approach 2 - Dedicated Classification Network
	Approach 3 - Doc2Vec with External Classifier

	Implementation
	Toolchain
	On-Device Capturing of Network Traffic
	Preprocessing of Raw Data
	Model Training and Evaluation
	Detecting Applications and Categories from Unseen Traffic

	Evaluation
	Datasets used for Evaluation
	Model Performance
	Limitations
	Summary

	Conclusion

