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Abstract

In the USA, there were over 1,6 million people killed in motor vehicle traffic crashes over
the past 40 years. 94% of these accidents were caused by human errors. In order to con-
tribute to solve this problem, the automated driving (AD) systems are developed. How-
ever, realistic calibration and validation of highly automated driving systems requires
huge efforts. With the help of the co-simulation software AVL Model.CONNECT and the
calibration software AVL CAMEO, a KPI-model-based virtual calibration method for
automated driving functions is performed with the example of an ACC function in this
master thesis. The co-simulation is set up with IPG CarMaker, MATLAB/Simulink and
AVL Model.CONNECT, then they are connected to AVL CAMEO for the calibration
set-up. In order to reduce the efforts of ADAS/AD function calibration, the DoE method
is firstly applied to reduce the number of simulation runs. Then the behavior model of
KPIs (Key Performance Indicator) are built and the quality of the models are evaluated
with the statistic methods. Finally, KPI behavior models are verified with further sim-
ulation runs and the ACC function calibration is done. The KPI-model-based virtual
calibration method is demonstrated with the ACC function. The ego vehicle with the
calibrated ACC function has better fuel efficiency (9% reduction of fuel consumption),
better comfort performance (13,5% reduction of jerk) and safety performance (longer
headway time and headway distance to the preceding vehicle) than the ACC function
with base setting.





Kurzfassung

Allein in den USA sind in den letzten 40 Jahren mehr als 1,6 Millionen Menschen bei
Verkehrsunfällen ums Leben gekommen. 94% der Unfällen waren auf menschliches Ver-
sagen zurückzuführen. Um dieses Problem zu lösen, werden automatische Fahrfunktio-
nen entwickelt. Die realistische Kalibrierung und Validierung der hochautomatisierten
Fahrfunktionen erfordern jedoch einen enormen Aufwand. Mit Hilfe der Co-Simulations-
software AVL Model.CONNECT und der Kalibrierungssoftware AVL CAMEO wird
in dieser Masterarbeit die KPI-Model-basierte virtuelle Kalibrierungsmethode für die
automatische Fahrfunktionen am Beispiel einer ACC Funktion ausgeführt. Die Co-
Simulation wird mit IPG CarMaker, MATLAB/Simulaink und AVL Model.CONNECT
erstellt. Anschließend werden sie mit AVL CAMEO verbunden, um eine virtuelle Kalib-
rierung zu erstellen. Um den Aufwand für die ADAS-Funktionskalibrierung zu reduzieren,
wird zunächst die DoE Methode angewendet, um die Anzahl der Simulationen zu re-
duzieren. Anschließend wird das Verhaltensmodell der KPIs erstellt und mit der statis-
tischen Methode die Qualität der Modelle bewertet. Schließlich werden die Verhaltens-
modelle mit weiteren Simulationen verifiziert und die ACC Funktion wird kalibriert.
Die auf KPI-Model-basierende virtuelle Kalibrierungsmethode wird mit der ACC Funk-
tion demonstriert. Das Ego-Fahrzeug mit der kalibrierten ACC Funktion hat bessere
Kraftstoffeffizienz (um 9% Reduzierung des Kraftstoffverbrauchs), besseren Komfort (um
13,5% Reduzierung des Ruckes) und bessere Sicherheitsleistung (längere Vorlaufzeit und
Abstand zum vorausfahrenden Fahrzeug) als die ACC Funktion vor der Kalibrierung.
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1 Introduction

1.1 Motivation

In the USA alone, there were over 1,6 Million people killed in motor vehicle traffic crashes
over the past 40 years. Only in 2018, more than 36 500 people were killed and over 2
million injured in motor vehicle traffic crashes [1]. Figure 1.1 shows the fatalities and
fatality rate per 100 million VMT (Vehicle miles traveled) in motor vehicle traffic crashes
from 1975 to 2018. Because of the development of vehicle safety technologies, the fatality
rate per 100 million VMT is reduced from 3,35 to 1,13 person. But the total number of
fatalities every year does not shows a obvious reduction. Actually the total number of
vehicles keeps increasing.

Figure 1.1: Fatalities and fatality rate per 100 million VMT in USA, 1975-2018, source:
[1]

For these crashes, driver errors have been identified as the most common reasons [2].
Figure 1.2 shows the main reasons for the motor vehicle traffic crashes. There are over 2
millions motor vehicle traffic accidents collected, only 2% of the accidents are attributed
to the vehicle failure, 2% to the environments and 2% remain unclear. Most of the
accidents are caused by the human driver errors, up to 94% [2]. Because of limitations
in perception of the traffic information, duration for decision making and other failures
(e.g. distraction, impairment), the accidents happen. Figure 1.3 shows these different
types of human errors for the motor vehicle traffic crashes.
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Figure 1.2: Main reasons for the motor vehicle traffic crashes, source: [2]

Figure 1.3: Different types of human errors, source: [2]
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1.2 Advanced driver assistant system and autonomous driving

1.2 Advanced driver assistant system and autonomous driving

In order to avoid the motor vehicle traffic accidents and to save life and money, the degree
of driving automation is increasing and the vehicle control is step by step taken over by
mechatronic systems. The vision of the future is to develop a complete autonomous
vehicles, which can completely avoid the accident [3] [4].

Today, production vehicles have already a long list of driver assistant systems, which
partially assist in vehicle control, or even take over the control of the vehicle under some
special driving conditions. For example, the Adaptive Cruise Control (ACC) system,
which takes over the longitudinal control of the vehicle. It can control the vehicle to
keep a certain, safe distance to the preceding vehicle [5] [6] [7]. Besides the Adaptive
Cruise Control system there are also many other ADAS (Advanced Driver Assistant
System) systems, such as Autonomous Emergency Braking (AEB) system, which can
apply emergency braking in critical conditions without the intervention of driver [6] [7].
The Lane Keeping Assistant (LKA) system can automatically detect the lane markings
and keep the vehicle in the lane, in order to avoid the accident [5] [8].

In order to classify driving automation levels of the vehicles, six levels from 0 to 5 have
been defined by the SAE (Society of Automotive Engineers). These technical definition
describes, on the one hand, which tasks are taken by the automation system, and on the
other hand, which tasks are performed by the human drivers [9] [10]. Figure 1.4 Shows
the definition of SAE Levels of driving automation and is explained in the following.

Level 0 - ”No Automation”

In level 0, there are no automated driving functions. The driver guides the vehicle in both
longitudinal (acceleration or braking) and lateral (steering) direction. No intervention,
but only warning from the system. The driver is fully responsible for the driving [10].

Level 1 - ”Driver Assistance”

In level 1, system can support the driver by either the longitudinal or the lateral guidance
of the vehicle for a certain period (e.g. ACC), while the driver can carry out the other
activity. The driver still needs to observe the traffic and is fully responsible for the
driving. Driver responsibility is maintained by ”hands-on” detection [10].

Level 2 - ”Partial Automation”

From level 2, onwards the vehicle is in automated control. In this level the system can
take over both the longitudinal and the lateral guidance in a particular application, such
as Traffic Jam Assistant (TJA) system. The driver continuously monitors the vehicle
and the traffic while driving. He must be able to take control of the vehicle immediately
at any time and is fully responsible for the driving. Still ”hands-on” detection is needed.
The level 2 assistant system is now applied in vehicles [10] [11].

Level 3 - ”Conditional Automation”

In level 3, the automated driving system fully take over the longitudinal and lateral

3
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Figure 1.4: SAE levels of driving automation, source: [9]4



1.3 Vehicle development process - V-Model

guidance of the vehicle at certain time and/or in specified driving conditions. The
vehicle automatically adapts the speed and distance to the preceding vehicle, carries out
the lane change automatically and activates the indicator (e.g. highway pilot). The
driver can turn to other things during this time and therefore does not need to fully
monitor the system and traffics. During this period, the system takes over responsibility
for the vehicle. However, he must be able to take over the driving task with a certain
interval after being warned by the system. So the driver is partly responsible for the
driving, ”hands-on” is not needed [10] [11].

Level 4 - ”High Automation”

From level 4, the system can take over the complete driving task in specific applications,
which are defined by the road type, the speed range and the environmental conditions.
The driver doesn’t need to monitor the system and traffics or to take over the steering
tasks. The driver no longer has to be available compared to level 3. Therefore in the
fully automated driving mode the driver is no long responsible for vehicle management
[10] [11].

Level 5 - ”Full Automation”

The final stage of development is driverless driving, level 5. The vehicle can carry
out the entire driving task completely on all types of roads, in all speed ranges and
under all environmental conditions. The vehicles are equipped without a steering wheel,
accelerator pedal or brake pedal and there is no more driver in the vehicle [10] [11].

According to the current state of the art, systems of levels 1 to 2 are already ready for
series production or already on the market. The latest Audi A8 is the only one equipped
with level 3 autonomous driving [12]. And for the highly automated systems of levels 4
and 5 are technically already very well developed. But because of the legal framework
the implementation still fails, except the application of Waymo’s self-driving taxi service,
”Waymo One” since 2018 in Phoenix [13] [14].

1.3 Vehicle development process - V-Model

The vehicle development process is based on the V-Model, which describes a ”top-down”
strategy in the design phase and a ”bottom-up” strategy in the validation phase based on
requirements for the overall system. In the design phase, requirements for the respective
subsystems are derived based on the requirements for the overall system. And in the
further step, in the validation phase in the ”right branch” of the V-Model, the specifi-
cations are verified or the defined requirements are validated [15] [16]. The structural
process based on the V-Model is shown in figure 1.5.

However, because of new requirements from customer and fiercely competition from the
competitors, the vehicle is becoming more and more complex, but the development time
is required to be shortened. Figure 1.6 shows the increasing of vehicle complexity and
decreasing of the development time over time. In order to succeed in the competition,

5
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Figure 1.5: Vehicle development process based on the V-Model, source: [15]

Figure 1.6: Increasing of vehicle complexity and decreasing of the development time,
source: [17]
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1.4 Simulation

the OEMs (Original Equipment Manufacturer) as well as suppliers have to find a way,
which can help them reduce the development time and costs, but remain of even increase
the product quality and functional safety.

In addition, for testing of autonomous driving, the testing effort is much more than
traditional vehicles. Figure 1.7 shows the autonomous driving testing distance in Cali-
fornia in 2017 and 2018. For the autonomous driving testing, the companies Waymo and
GM/Cruise contribute the most to the testing distance. And the total testing distance
increased about four times form 500 000 miles in 2018 to 2 000 000 miles in 2018, which
are far more efforts than the testing of traditional vehicles. But the autonomous driving
vehicle is still far away from the series production, which means there more efforts are
needed for the testing. This is the motivation of this master thesis to perform as well
as demonstrate an KPI-model-based calibration method and contributing to real testing
with virtual testing.

Figure 1.7: Autonomous driving testing distance in California, source: [17] [18] [19]

1.4 Simulation

Due to the decreasing development time and the increasing development costs as well as
complexity of the complete vehicle, experimental test methods are increasingly being re-
placed by virtual simulation. With suitable simulation software, it is possible to validate
many test cases early in the development process. In this section the simulation in the

7



1 Introduction

area of the development of driver assistance systems is considered. The requirements for
simulation programs, are the following [5] [6] [21]:

• Ease of use

– Visual input and output

– Design of the scenarios

– Software support service

• Functional traffic environment

– Parameterization of the static and dynamic objects

– Mutual influence of the transport partners

• Configurability of vehicle properties

– Validated vehicle parameters available

– Modifiability of vehicle parameters

– Possibility of importing vehicle models from other simulation programs

8



2 Methodology

The objective of this master thesis is to develop and demonstrate a method for the
virtual calibration of ADAS function with the targets of fuel efficiency, comfort and
safety. In this thesis, an MPACC (Model Predictive Adaptive Cruise Control) function
is calibrated as an example.To this end, a co-simulation platform is applied to simulate
the function and a calibration software is employed to calibrate the function.

2.1 Co-simulation set-up

The co-simulation is controlled by AVL Model.CONNECT. In this thesis, IPG CarMaker
and MATLAB/Simulink are integrated into AVL Model.CONNECT as elements. In
figure 2.1, the simplified simulation environment and data exchange logic are illustrated.
The single blocks will be explained in the following sections.

Figure 2.1: Simulation environment

2.1.1 AVL Model.CONNECT

AVL Model.CONNECT [22] is the co-simulation platform which is used in this master
thesis. It has many different interfaces for the most of common used vehicle simulation
software. These software packages can be integrated into AVL Model.CONNECT as
elements. In this master thesis, the integrated software packages are IPG CarMaker
and MATLAB/Simulink, which are connected to the respective simulation models with
different interfaces. IPG CarMaker is connected to the specified CarMaker model with



2 Methodology

CarMaker-Model.CONNECT interface and MATLAB/Simulink to the ICOS (Indepen-
dent Co-Simulation) model with MATICOS-Model.CONNECT interface. These models
are connected with the input and output ports, which are sorted by name, unit and data
type. For example, the input ports of CarMaker model gas and brake pedal position are
connected to the output ports of MATLAB model gas and brake pedal position. Addi-
tional with the ”signals” components is the co-simulation set up. Here the ”constant”
and ”monitor” components can be added as system elements to set the model parameters
and monitor the signals. In figure 2.2, the example of the co-simulation model and ports
connection is illustrated.

Figure 2.2: Example of co-simulation model in AVL Model.CONNECT

Figure 2.3: Example of ports connection inside the bundles

In order to have a better view of the model, the input and output ports can be summa-

10



2.1 Co-simulation set-up

rized to bundles, which have several input or output ports inside but just one port out-
side. In figure 2.2, the output bundle ”PID Parameters Out” of block ”PID Parameter”
is connected to the input bundle ”PID Parameters” of the block ”MATLAB”. Inside the
bundles, the relative signals are paired, see figure 2.3. In addition, the single input or
output port can also be connected to the port inside the bundle, see figure 2.2, the out-
put ports ”DM Brake” and ”DM Gas” of block ”MATLAB” are connected to the relative
input ports inside the bundle ”From VehicleControl” of block ”CarMaker”.

Attention has to be paid to the data types of the paired ports. For the connected ports
with the same variable (e.g. speed), the different units (m/s and km/h) are allowed.
Inside AVL Model.CONNECT the SI (The International System of Units) units are
used for calculation. But for the ”signals” components (e.g. ”Constant” or ”Signal file”),
AVL Model.CONNECT would just take the values of the ports without considering the
units, such as the output port ”MaxSpeed” of ”Constant” block ”Speed Max” in figure
2.2. So it is always recommended to apply the SI units for parameters and variables.
At the same time, attention has to be paid to the scale of the ports. For example,
the scales of output ports ”DM Brake” and ”DM Gas” of block ”MATLAB” and input
ports ”From VehicleControl.Brake” and ”From VehicleControl.Gas” of block ”CarMaker”
in figure 2.2. In addition, every user defined input port must be connected, such as the
input port ”MaxSpeed”in figure 2.2, otherwise the simulation cannot be started. However
the output ports can be unconnected.

The values of every defined ports can be visible through many kinds of graphs of table,
such as ”Curve Monitor”, ”Gauge”, ”Slider”, ”Table” and so on, during the simulation.
And the value of output ports in element ”Monitor” can be varied by the ”Slider” during
the simulation. After the simulation, we can analyse the data with different graphs, such
as ”Line Chart”, ”Pie Chart”, ”2D Surface” and so on. In addition, the simulation results
of a Model.CONNECT project are stored under the project folder with the .csv format.
With this format the data can also be processed by MATLAB offline, which is beneficial
for the post-processing of the data.

Additionally, the parameters can be defined as variables, which can be accessed by
the ”signals” components as well as the calibration software AVL CAMEO, under the
”Parameters” tab. At the same time, the pre-script , which is written in python, can
also operate the variables definition in MATLAB m-file. With this we can change the
settings of MPACC function automatically with the pre-script.

Finally, the responses are defined based on the simulation results under the ”Optimiza-
tion” tab. These responses can be accessed by AVL CAMEO as measurements after the
simulation. There are several basic statistic operations (such as minimum and maximum
value, integral, the value at certain point and so on) that can be applied to the simulation
results.

11



2 Methodology

2.1.2 MATLAB/Simulink

As the most common used vehicle modeling and simulation software, MATLAB/Simulink
has many powerful toolboxes to help the developer modeling and simulating the systems
as well as the controllers. In this master thesis, the MPACC function is developed with
MATLAB/Simulink. The simulation model of MATLAB/Simulink is integrated into
AVL Model.CONNECT with the MATICOS-Model.CONNECT interface. The inputs
and outputs are replaced by the specified ICOS inputs and outputs, which can be directly
accessed as input and output ports by AVL Model.CONNECT. In figure 2.4, the ICOS
input and output blocks are displayed. With the input signals (e.g. position, speed
and acceleration of ego vehicle as well as preceding vehicle) from CarMaker model, the
control signals gas and brake pedal position are calculated and sent back to the CarMaker
model.

Figure 2.4: Example of ICOS input and output blocks

2.1.3 IPG CarMaker

IPG CarMaker [23], which is used in this master thesis, is widespread environment and
vehicle dynamics simulation software for virtual testing. It provides the vehicle dynamic
models with all necessary parameters as well as the test scenarios and environment, at the
same time, the perception sensors are also provided by IPG CarMaker with simplified sen-
sor models. The CarMaker simulation model is integrated into AVL Model.CONNECT
with a specified CarMaker-Model.CONNECT interface within AVL Model.CONNECT.
The input and output ports of CarMaker can be activated by deactivated the related mod-
ules inside CarMaker model. Figure 2.5 shows the specified CarMaker-Model.CONNECT
interface with the ”Vehicle Control”module deactivate, the input and output ports inside
the bundles ”From VehicleControl” and ”To VehicleControl” are activated.

In CarMaker project, firstly we need to select a car as the ego vehicle and set the
parameter values for ego vehicle or just take the default values. There are plenty of
vehicle parameters which can be defined by the users, from the mass and CoG (Center
of Gravity) of vehicle to the maps of engine and ratio of gears. In addition, the sensors
are also added to the ego vehicle here. There are several kinds of sensors available,
such as slip angle sensor, acceleration sensor and so on. In this master thesis, a radar
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2.1 Co-simulation set-up

sensor, which is used for detecting of the preceding vehicle, is applied in the front of the
vehicle with predefined installation position, detection range, field of view in vertical and
horizontal direction and so on. In addition, there are two types of target selection can
be selected, ”Nearest in the path” or ”Nearest”. ”Nearest in the path” means that only
the target in the same path with ego vehicle is considered, whereas ”Nearest” means all
the targets on the road are considered.

Figure 2.5: Specified CarMaker model within AVL Model.CONNECT

After the ego vehicle definition, the road is defined under the ”scenario/road” tab of
CarMaker. Firstly the road segment such as straight, junction, turn and so on, is defined.
Then we need to define the segment lanes, which can be deleted or added as you like.
In order to define the route, which is the line that vehicle follows, the reference line
should be defined firstly. In addition, the road related parameters (e.g. markings and
friction coefficient) and other infrastructure (e.g. traffic lights and signs) as well as legal
information (e.g. speed limits) can be defined by the users. Finally the start route of
ego vehicle needed to be chosen and the ego vehicle would start from this route.

The next step is to define the maneuver of the ego vehicle. Here the start velocity is
defined. Under every submaneuver the longitudinal and lateral dynamics are defined
with IPG driver, speed profile and so on. For the IPG driver, the characteristics and
limits of the virtual driver can be defined as needed. If the maneuver of the vehicle is
too complex, the speed profile can be loaded from a file. At the same time, we can also
define the end condition or have some minimaneuver-commands for the submaneuver,
in order to control the simulation.

For the traffic vehicle, it is defined under the ”traffic” tab of CarMaker. The process is
the same as the ego vehicle definition. But for the traffic vehicle, there are not so many
parameters can be defined by the user. Only the size and movement related parameters
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are available. The next step is to define the start position of the traffic vehicle which is
based on the CarMaker coordinate system and the start route which is predefined in the
road definition. The last step is to define the maneuver of traffic vehicle, which is similar
with the maneuver definition of ego vehicle. The speed profile of the traffic vehicle can
be also imported from files, which is beneficial when the required traffic maneuver is too
complicated. The only difference is to define the start condition of the traffic vehicle,
otherwise it would start at the same time with ego vehicle. In addition, we can also
define several traffic vehicles with the same process. The drawback of predefined traffic
is that they do not interact with the ego vehicle and other traffic vehicles.

In the ”IPGMovie” window of CarMaker, the simulation is visualized, see figure 2.6.

Figure 2.6: Visualization of the simulation

2.1.4 Coordinate system

The coordinate system, which is used in this master thesis, is based on the IPG CarMaker
coordinate system. In CarMaker, coordinate systems, which are called frames, with
different origins are defined [24]. However, the direction of the axes is always the same,
following DIN 70000 (see figure 2.7) [26]:

• x-axis: Points in driving direction of the vehicle

• y-axis: Points 90 degree to the left side of the x axis

14



2.1 Co-simulation set-up

• z-axis: Points upwards vertically

The reference frame for parametrization of the vehicle data set is called Fr1 (Frame One).
Its origin is located at the center rearmost point of the vehicle, on the ground, see figure
2.8.

Figure 2.7: ISO 8855 [25] / DIN 70000 coordinate system, source: [26]

Figure 2.8: Definition of CarMaker vehicle coordinate system Fr1, source: [24]
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For the entire co-simulation, the road coordinate system, which is called s-t coordinate
system, is applied, see figure 2.9 (a). It travels along the ”Reference Line”. The origin of
the s-t coordinate system lies in ”node0” on the ”Reference Line”, the s-axis moves along
the ”Reference Line” and the t-axis points left of the s-axis in a right angle of 90 degree,
see figure 2.9 (b) [24]. The s-axis is important when it comes to adding road obstacles.
Obstacle positions are specified depending on their distance from either the beginning
or end of a link or junction entrance or exit along the s-axis [24]. The t-axis is import
when the traffic vehicles are added. The lateral position of the traffic participants can
be based on the t-axis or the routes. It is needed to specify the lateral reference of the
traffics [24].

(a) Macro

(b) Micro

Figure 2.9: Definition of CarMaker road coordinate system, source: [24]
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2.2 Calibration set-up

The calibration is done with AVL CAMEO and AVL Model.CONNECT. In this thesis,
AVL Model.CONNECT is connected to AVL CAMEO with a specified system interface in
AVL CAMEO, which is called ”AVL Simulation Desktop”. The parameters and responses
are imported to the AVL CAMEO project from AVL Model.CONNECT. The variation
list is generated by AVL CAMEO through the internal DoE methods. After that AVL
CAMEO will send the variations to AVL Model.CONNECT one by one and start the
co-simulations. At the end, AVL CAMEO gets back the simulation responses, so called
measurements, and calibrate the MPACC function based on the responses processing
results. In figure 2.10 , the simplified calibration design is displayed.

Figure 2.10: Calibration set-up

2.2.1 AVL CAMEO

AVL CAMEO [27] is the calibration software used in this master thesis. It can automat-
ically start the simulation runs one by one based on a variation list, which is prepared
by AVL CAMEO, and after every simulation the measurements are sent back to AVL
CAMEO and stored, which will be processed online or offline. There are the following
four main processes for the virtual calibration with AVL CAMEO:

• System set-up

• Simulation set-up and execution

• Data processing and optimization
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• Verification

(1) System set-up

AVL CAMEO has a user-friendly predefined interface with AVL Model.CONNECT,
which is called ”AVL Simulation Desktop”. The only thing for system set-up is to create a
new ”AVL Simulation Desktop”system, choose and connect the target Model.CONNECT
version, select the simulated project and import the parameters as well as responses,
which are defined in AVL Model.CONNECT.

(2) Simulation set-up and execution

For the simulation set-up and execution, there are several steps to be followed. Firstly,
a test is created with a specified name as well as some descriptions, and it needs to be
connected to the target AVL CAMEO system, which is built in the process ”system set-
up”. After the simulation is created, we can go to the next step, preparing the simulation
runs. The operating point is defined, and inside operating point, the variables are defined
with start value, minimum and maximum value. Then the variation list is created
by using AVL CAMEO DoE (Design of Experiment) methods or just by importing
the variation list that is previously prepared. The measurements are defined after the
variation list. The third step is to run the simulation runs with the predefined start
variation point and variation list sequentially. The last step is to check the test results
after all the simulation runs have finished.

(3) Data processing and optimization

Create model evaluation and models with the test results. In this process, we can im-
port different data sets from files, tests or other model evaluations as standard data,
which is used to build the behavior models, or as verification data, which is only used
for the verification of the behavior models. After importing the data set, the outliers
can be detected with the predefined limits in AVL CAMEO. Before modeling, the raw
data can be checked with the variation distribution graphics or measurements graph-
ics. Then the models can be built with the internal algorithm RNN (Recurrent neural
network) or ”FreePloyModel”. The quality of the models can be directly checked in the
”Measured-Predicted” graphics. After modeling, the optimization process can be applied
with defined optimization target and constraints. For multi-optimization targets there
would be a trade off results, which combines the different optimization targets. Then
the possible optimization point can be selected automatically or manually by the user.

(4) Verification

The optimization points should then be simulated again for verification. The measured
results of the optimization points should fit the predicted values from the models.
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2.3 Design of Experiment

The design of experiments (DOE) is a method for statistically planning and executing
tests or simulations. The purpose of DoE is to get the relationship between inputs and
outputs with less effort [28] [29].

2.3.1 Full factorial

The full factorial design, which is the most popular design among engineers, is not practi-
cal or efficient enough if the calibrated parameters are more than three [28] [29]. Figure
2.11 shows the exponential increase of application efforts when increasing parameters. In
this example, featuring five different values for five parameters, the full factorial design
leads to more than 3000 variations.

Figure 2.11: Full factorial design with exponential increase of application efforts, source:
[28]

2.3.2 One factor at a time

Figure 2.12 shows an example of the principle for ”One factor at a time” (OFAT) design
[28] [29]. There are only two variations discussed and the response need to be minimized.
Firstly, starting with the black start point, changing the value of variation 1 and fixing
the variation 2. The black point with gray edge is the minimum response for variation
1. Then starting with the black point with gray edge, changing the value of variation 2
and fixing the variation 1. The gray point is the optimization point found by the OFAT
design. Compared to the full factorial design, OFAT design can save many efforts, but
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the disadvantages are also really obvious. The optimization point is strongly depending
on the start point, which requests a high level of experience and the pre-knowledge of
the calibrated system. Secondly, it cannot always find the global optimization point, or
even cannot find the optimization point.

Figure 2.12: Conventional ”One factor at a time” design, source: [28]

Figure 2.13: Conventional DoE, source: [28]
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2.3.3 Conventional DoE

Because of the high efforts of full factorial design and the uncertain results of OFAT
design, we introduce the conventional DoE method [28] [29], see figure 2.13. Firstly, the
simulation runs or testing runs are executed based on a variation list (the black point in
the figure 2.13) generated by a statistical method. With the results of the simulations or
testings, the behavior models of measurements are build. Based on the behavior model,
”the area of interest” is found with the optimization target and constraints. Finally, the
optimization point is searched with adding the random points in the design space and
confirmed with verification runs.

2.3.4 Active DoE

Active DoE [28] [29] [30], also called COR DoE (Customized Output Range DoE), is
another DoE method, which is developed based on conventional DoE. Figure 2.14 shows
the active DoE method. Based on the results of conventional DoE, the behavior model
of responses are built online and ”the area of interest” (the area in the dashed rectangle
in figure 2.14) is found with the optimization target and constraints. After that the
iteration points (the hollow points in figure 2.14) are generated in ”the area of interest”
based on the behavior model and simulated. With the simulation results of iteration
points, the behavior model is optimized in ”the area of interest”. Finally, the optimization
point is searched with adding the random points in the design space and confirmed with
verification runs.

Figure 2.14: Active DoE, source: [28]
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Figure 2.15 shows the process of the active DoE method. Firstly, on the basis of already
measured responses, behavior models are calculated online. If the models match the
desired model quality, the simulation will be stopped, if not, the next variation point, so
called iteration point, will be generated based on the behavior model within ”the area
of interest”: ”Minimum Output” and ”Maximum Output” of certain responses, which
are set by the users. Then the simulation would be executed with the automatically
generated iteration point and after the simulation the models are built again until the
model quality matches a termination criterion. For the generation of the iteration points,
the values of each parameters are calculated backwards with the behavior model under
given response values and constraints.

Figure 2.15: Process of active DoE

2.4 Data processing

In this section, the main data processing methods that used in this master thesis are
introduced.

2.4.1 Outliers detection

For the measurements from the simulations, there might be some outliers, which will af-
fect the qualities of the behavior models. Figure 2.16 shows the example of measurements
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with outlier.

Figure 2.16: Example of measurements with outliers

For the detection of the outliers, the average value of all the measurements, including
the outliers, are calculated, see equation (2.1) [30].

ȳ =
1

n

n∑
i=1

yi (2.1)

With the average value, calculating the standard deviation of these measurements, see
equation (2.2).

s =

√√√√ 1

n− 1

n∑
i=1

(yi − ȳ)2 (2.2)

y± = ȳ ± 3s (2.3)

For the measurements, which are not in the range of the threshold value y± defined by
equation (2.3), are treated as the outliers [30].

2.4.2 Modeling

The behavior model of measurements with the variation channels as inputs are built.
There are two model types available, RNN (Recurrent Neural Network) model and free
polynomial model [30]. We can choose the model type as well as the model order (up
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to five) for both RNN model and free polynomial model, or just build the models auto-
matically, then the system would generate all the possible models and choose the best
model. Figure 2.17 shows an example of behavior model.

The behavior model is built in a way of giving the confidence interval (space between two
green lines) of the model, which means the true behavior model will lay in the interval
with a specified confidence level (e.g. 95%) [30]. In section 2.4.4 is the generation of
confidence interval described in detail.

Figure 2.17: Example of behavior model

2.4.3 Goodness of tit for behavior model

The goodness of fit is evaluated by means of the statistical coefficients R2, R2
adj and

R2
pred [30]. R2 is the coefficient of determination, which indicates to which degree the

model explains the deviations of the measured values from a constant mean value. It
shows how precisely the model fits to the measured values and is given by the equation
(2.4) [30].

R2 =
SSR

SST
= 1− SSE

SST
(2.4)

Where

SSE: Deviation between measured value and predicted value
SSR: Deviation between predicted value and mean value
SST : Deviation between measured value and mean value

and

SSE =
∑

(yi − ŷi)2 (2.5)

SSR =
∑

(ŷi − ȳ)2 (2.6)
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SST =
∑

(yi − ȳ)2 (2.7)

SST = SSE + SSR (2.8)

Figure 2.18 shows the definition of SST SSE and SSR.

Figure 2.18: Definition of SST , SSE and SSR

R2
adj is the adjusted coefficient of determination to evaluate the quality of the model

calculation (R2), additionally taking into account the degrees of freedom of the model
equation [30]. It evaluates if the number of measured values is sufficient to determine
the model equation (R2

adj). If, for example, R2 is too large for a higher order model and

R2
adj is too small, this means that the measured values lie in the vicinity of the model

area, whereas the model equation is not determined precisely [30]. In this case, it would
be necessary to apply a lower order model (fewer degrees of freedom) to get a better
R2

adj, R
2
adj is given by the equation (2.9).

R2
adj = 1− SSE/(n−m)

SST/(n− 1)
(2.9)

Where

n indicates the number of measured values,
m indicates the number of independent model regression coefficients.

R2
pred is the goodness of prediction, which is a statistic of the goodness of prediction of

models [30]. R2
pred indicates the degree of certainty to which it can be assumed that any

point in the model area is actually true and is given by equation (2.10) [30].

R2
pred = 1− PRESS

SST
(2.10)

Where
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PRESS: Deviation between measured values from model values, the jth model does not
take yj into account), see figure 2.19.

PRESS =
∑

(yj − ŷ(j))
2 (2.11)

Figure 2.19: Predicted residual error sum of squares, source: [30]

The threshold values for goodness of fit for behavior model are shown in table 2.1.

Table 2.1: Threshold values for goodness of fit for behavior model, source: [30]

Coefficient Value range Very good Good Medium Poor

R2 0 to 1 ≥ 0.95 ≥ 0.70 ≥ 0.50 < 0.50

R2
adj −∞ to 1 ≥ 0.95 ≥ 0.70 ≥ 0.50 < 0.50

R2
pred −∞ to 1 ≥ 0.90 ≥ 0.60 ≥ 0.40 < 0.40

In addition to the statistical coefficients R2, R2
adj and R2

pred, the root mean square error
(RMSE) and normalized root mean square error (NRMSE), and they are calculated
with the following equations (2.12) and (2.13):

RMSE =

√∑n
i=1(yi − ŷi)

n
(2.12)

NRMSE =
RMSE

ymax − ymin
· 100% =

√∑n
i=1(yi−ŷi)

n

ymax − ymin
· 100% (2.13)
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2.4.4 Residual analysis

In building regression models it is assumed, that residuals (i.e. deviations of the mea-
sured value from the model values, see equation (2.14)) are distributed according to the
Gaussian distribution (Normal distribution). For this hypothesis the mean is 0 and the
standard model deviation is constant. Normal distribution can be applied to see whether
the model describes the data correctly [30].

e = y − ŷ (2.14)

If the model is good, the residuals are consistent with the normal distribution, i.e. there
is no change in the standard model deviation, the residuals are insignificantly small and
lie in a horizontal band [30]. If the number of residuals increases and the standard
model deviation changes, it can be assumed that either there is a poor fit or that there
are outliers [30].

Residual analysis is only useful if sufficient measured values are available with regard to
model complexity (number of model coefficients) [30]. In mathematical terms, residual
analysis is useful if:

n ≥ 4m (2.15)

Where

n indicates the number of measured values
m indicates the number of independent model regression coefficients

In order to get rid of the effect of the number of measurements and the number of model
coefficients, the studentized residual e∗∗, see equation (2.16), and student’s t distribution
are introduced, see figure 2.20 [30].

e∗∗ =
e

σ̂
√

1− hii
(2.16)

Where

hii is the leverage of ith measurement

σ̂ is the standard deviation of residuals

The studentized residuals should fulfill the student’s t distribution with the degree of
freedom of residuals df = n − m − 1 [31]. Figure 2.20 shows the Probability density
function of normal distribution with the average value 0 and standard deviation 1 as
well as the student’s t distribution with different degree of freedom. It shows that when
df →∞, student’s t distribution → N(0, 1).
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Figure 2.20: Student’s t distribution, source: [31]

Equation (2.17) gives the confidence interval of the residual with specified confidence
level (e.g. 95%).

e±i = ei ± σ ·
√

1− hii · tinv(1− α0,95

2
, df) (2.17)

Where

α0,95 = 0, 05 = 1− 95% means the confidence level is 95%

tinv() is the inverse of the student’s t cumulative distribution function [30]

If the confidence interval with confidence level 95% do not cross the zero line, that means
this could be an outlier. If the confidence interval with confidence level 99% do not cross
the zero line, it must be an outlier [30]. Figure 2.21 shows the residual analysis results
with 95% confidence interval. The round points are the outliers, whose 99% confidence
interval do not cross the zero line, and the triangle points are the suspected outlier with
the 95% confidence interval do not cross the zero line but close to it.

To evaluate the model, only values out of ±3σ will be used as significant residuals.

The following table 2.2 shows the threshold values of relative model quality based on the
residual results.

Table 2.2: Threshold values of model quality, source: [30]

Model quality Very good Good Medium Poor

Residual out of ±3σ ≤ 3% ≤ 7% ≤ 12% > 12%

For generation of the confidence interval with 95% confidence level of behavior model,
the equation (2.18), which is based on the equation (2.17), are applied.
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y±i = ŷi ± σ ·
√

1− hii · tinv(1− α0,95

2
, df) (2.18)

Figure 2.21: Example of residual analysis, source: [30]

2.4.5 Correlation analysis

The purpose of the correlation analysis is to identify, how much the variation channels
can influence the responses. In contrary to the existing cross correlation analysis, where
just linear influences are considered, this method also takes parabolic influences into
consideration, or even higher nonlinear effects and interactions [32].

The sensitivity analysis algorithm, which is applied in this thesis, analyses the contribu-
tion of each individual variation channel to the quality of the calculated INN (Iterative
Neural Network) behavior model. In other words, it analyses the reduction of the SSE
(see figure 2.22) by an input channel on a selected target channel [32].

The algorithm starts by considering one variation channel at one time, and computes m
(the number of all variation channels) individual INN-models by change the variation
channel until the most significant first variation channel is detected by reaching the

lowest SSE
(1)
low (SSE with only one variation channel, see figure 2.22). The SSE of
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Figure 2.22: Remained SSE with i considered variation channels, source: [32]

the individual models is compared against each other. The INN model with the lowest
SSE was modeled using the input variation channel having the greatest relevance [32].
And the Relative Significance Indicator (RSI) for the first channel is calculated by the
following equation (2.19).

RSI1st =
SST − SSE(1)

low

SSR
(2.19)

In figure 2.22, SSE , SSR and SST , see equations (2.5) to (2.7) indicate the relative
valve of the INN behavior model with m variation channels.

In the next step, with the first detected most significant channel, another channel is
considered additional and m− 1 individual INN-models are built. The most significant

second variation channel is detected by reaching the lowest SSE
(2)
low. And the Relative

Significance Indicator for the second channel is calculated by the following equation
(2.20).

RSI2nd =
SSE

(1)
low − SSE

(2)
low

SSR
(2.20)

This process is repeated iteratively until all the channels have been ranked per their
contribution to the total SSE reduction of the selected target channel. The distance
between the SST and the SSE of the best Model is set as 1 (100% SSR, see figure 2.22)
[32].
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Figure 2.23: Intersection graphic of result INN Modeling with i considered variation
channels, source: [32]

Figure 2.23 shows intersection graphic of result INN model with i considered variation
channels in AVL CAMEO. As the increasing number of variation channel, the confidence
interval of the model decrease, which means that the models are getting better.

2.5 MPACC function overview

The objective of the investigated control strategy is to allow the ego vehicle to drive with
fuel efficiency, comfort and safety. For this purpose, a model predictive control algorithm
is applied for the MPACC function, which will adaptively control the acceleration of the
ego vehicle based on the prediction model. The model recurrently predicts the motion
of preceding vehicle over a predictive horizon of 20 seconds with the traffic information,
such as preceding vehicle speed and acceleration, traffic lights and so on. In addition,
an PID controller is also applied, in order to stabilize the desired acceleration from the
MPC controller.
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2.5.1 PID

PID control is the widely employed feedback control algorithm in industrial control sys-
tem [33]. An PID controller continuously calculates an error value e(t) (see equation
(2.22)) as the difference between a reference value r(t) and a measured value y(t), then
applies a correction based on proportional, integral, and derivative terms (denoted P, I,
and D respectively), until the system is stabilized. In figure 2.24, the block diagram of
PID control is illustrated. The control input signal u(t) for the plant is given by the
equation (2.21) [33]: PID control is the widely employed feedback control algorithm in
industrial control system [33]. A PID controller continuously calculates an error value
e(t), see equation (2.22) as the difference between a reference value r(t) and a measured
value y(t), then a corrective term based on proportional, integral, and derivative com-
ponents (denoted P, I, and D respectively) is applied, in order to stabilize the system.
The error value e(t) is the input to the PID controller, which outputs the variable u(t),
that is the input to the plant, which outputs the dynamic target y(t), that is forwarded
to close the control loop. In figure 2.24, the block diagram of PID control is illustrated.
The control input signal u(t) for the plant is given by the equation (2.21) [33]:

Figure 2.24: Block diagram of PID control

u(t) = Kpe(t) +Ki

∫ t

0
e(t)dt+Kd

de(t)

dt
(2.21)

Where

e(t) = r(t)− y(t) (2.22)

2.5.2 MPC

Model predictive control (MPC) is an advanced method of process control that is used
to control a process while satisfying a set of constraints. MPC is based on iterative,
finite-horizon optimization of a plant model [34]. Figure 2.25 shows the block diagram
of MPC. In comparison to the PID control, the MPC would also consider the future
reaction of the system while calculating the next control input signal u(t).
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Figure 2.25: Block diagram of MPC

Figure 2.26: MPC control logic, source: [34]

In figure 2.26 the model predictive control logic is illustrated. At time k the current plant
state is sampled and a cost minimizing control strategy is computed (via a numerical
minimization algorithm) for a relatively short prediction horizon p in the future. The
predicted control inputs in the time horizon [p, k + p] are given to the plant model (see
figure 2.25) and the predicted system outputs were calculated by the plant model. The
cost function is calculated with equation 2.23 :

Costfunction :J(k) =

p∑
i=1

wee2(k + i) +

p−1∑
j=0

w∆u∆u2(k + j) (2.23)
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Where

we and w∆u are the weights of e and ∆u

and

∆u = u(k)− u(k − 1) (2.24)

After minimizing the cost function, only the first step u(k) of the control strategy is
implemented, then the plant state is sampled again, and the calculations are repeated
starting from the new current state k+1, yielding a new control and new predicted state
path.

2.5.3 MPACC function structure

In Figure 2.27, the structure of the MPACC function is displayed. It consists of four
parts: inputs, MPACC controller, PI controller and outputs. For the inputs, there are
several Buses, which provide the information of the ego vehicle, preceding vehicle, traffic
and so on. The MPACC controller delivers the key control algorithm of the MPACC
function, which would calculate the desired acceleration of ego vehicle based on the
input information. The next part, PI controller would control the ego vehicle to reach
the desired acceleration as fast and smooth as possible. Finally, the gas or brake pedal
position represent the outputs.

(1) Input signals

As shown in figure 2.27, the input signals are sorted by Buses, such as ”Bus EgoVehicle”,
”Bus VehicleAhead”, ”Bus MPACC”, and so on. The position, speed and acceleration
of ego and preceding vehicle are considered as the inputs inside the ”Bus EgoVehicle”
and ”Bus VehicleAhead”. In addition, in the ”Bus MPACC”we have several MPACC con-
troller settings, such as the maximum speed of the ego vehicle. For the ”Bus RoadSegments”
and ”Bus TrafficLights”, we just set them to zero in this master thesis for the reason that
they are out of interest in this thesis.

(2) MPACC controller

The MPACC controller is developed based on the model predictive control (MPC), which
adaptively controls the vehicle based on the information form the predictive models.
These models recurrently predict the motion of the preceding vehicle as well as the
ego vehicle over a 20 seconds prediction horizon based on the input information. This
information serves as input to a quadratic optimization problem, which aims to minimize
the cost function, see equation (2.25), with subjection to the Vehicle constraints, traffic
speed limits and headway limits. The task of this thesis is to calibrate these weights of
the costs in the cost function.
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2.5 MPACC function overview

Figure 2.27: The structure of MPACC function

Cost(k) =

p∑
i=1

cv1v(k + i) + cv2v2(k + i) + ca1a(k + i) + ca2a2(k + i) + cvav(k + i)a(k + i)+

cj1j(k + i) + cj2j2(k + i) + ch1γh(k + i) + ch2γ2
h(k + i) + cTrγTr(k + i)

(2.25)

The Vehicle constraints are the physical limits of vehicles.

0 ≤ v(k) ≤ vMAX = min (vMAXGeneral
, vMAXLegal

, vMAXCurve
, vMAX TL) (2.26)

aMIN ≤ a(k) ≤ aMAX (2.27)

jMIN ≤ j(k) ≤ jMAX (2.28)

The headway limits consist of minimum headway limits and maximum headway limit.

The vehicle is controlled to adapt a predefined, velocity-based headway distance. Figure
2.28 shows the minimum headway distance, which is defined by two minimum headway
limits: hard and soft limits. The hard limits must never be violated because of the
emergency situation related to a collision, at the same time the soft limit can be violated
but with a quadratically increasing cost approaching the hard limit. The cost of the
ego vehicle at the position p2 for violating the minimum headway limits is given by the
equation (2.29). For the ego vehicle at the position p1, there is no cost.

CostHWMIN
(k + i) = ch1γh(k + i) + ch2γ2

h(k + i) (2.29)
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Figure 2.28: Minimum headway limits (hard and soft)

Figure 2.29: Maximum headway limits (only soft)

Figure 2.29 illustrates the maximum headway distance, the distance between the pre-
dicted position of preceding vehicle ppr

pre and the predicted minimum position of ego
vehicle pMIN, which is also composed of two components. The first component is pro-
portional to the preceding vehicle speed at time k, also current speed, and scaled by a
”catch-up” factor, which is defined greater than one. It works when the ego vehicle is far
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2.6 Co-simulation model

away behind the preceding vehicle. The second component is a predefined limit, which
is a velocity-dependent distance based on the speed of preceding vehicle. It works when
the ego vehicle is within the desired headway distance. Both of them are allowed to be
violated with the cost of travel time cost, see equation (2.30), but not allowed to violate
the speed limits on the route.

CostTr(k + i) = cTrγTr(k + i) (2.30)

2.6 Co-simulation model

Figure 2.30: Co-simulation model in Model.CONNECT

Figure 2.30 shows the co-simulation model that is used in this master thesis. The element
”MPACC Controller” contributes to the main controller in the co-simulation, whereas
the element ”CarMaker” offers the vehicle models and co-simulation environment. The
element ”KPIs” serves as a monitor for a better observation of the measurements. In
the elements ”PID Parameter” and ”Max. Speed”, the PID controller parameters and
maximum speed are given. And the inputs and outputs of the elements are illustrated
in figure 2.31.
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2 Methodology

Figure 2.31: Inputs and outputs of the co-simulation models
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3 Simulation and calibration

In chapter 2, the co-simulation and virtual calibration set-ups are described, besides
the structure of the calibrated MPACC function is explained and the data processing
methods are introduced.

Target of this chapter is to implement the KPI-model-based (Key Performance Indica-
tor) calibration of the MPACC function with the used co-simulation environment and
calibration software. From the structure of the MPACC function, which is illustrated
in figure 2.27, the MPACC function can be divided into MPACC controller and PI con-
troller. The MPACC controller optimizes the desired acceleration of the ego vehicle
based on the inputs, whereas the PI controller controls the actual acceleration of the
ego vehicle to reach the desired acceleration and stabilizes it as fast as possible. During
the MPACC controller calibration process, the problem with losing the preceding vehicle
occurs. So the testing of ego vehicle reaching target speed is also implemented.

3.1 PI controller optimization

The only task of the PI controller is the control of the actual vehicle acceleration to reach
the desired acceleration, which is generated by MPACC controller, as fast and precise
as possible. In order to optimize the PI controller, the MPACC controller should be
deactivated from the system and a step signal is applied as the desired acceleration.

3.1.1 Scenario definition

Figure 3.1: Scenario (a) and step signal (b) for the PI controller optimization



3 Simulation and calibration

Figure 3.1 (a) shows the scenario of PI controller optimization. The ego vehicle starts
with the constant speed 60km/h and is controlled to reach the target acceleration
0, 5m/s2 with a step signal, see figure 3.1 (b), it steps up from 0 to 0, 5m/s2 at time
t = 5s. Because of the performance limit of the vehicle, the step signal steps down to 0
again at t = 15s.

3.1.2 Key performance indicator

For the optimization of the PI controller, we define three KPIs, rise time Tr, settling
time Ts and overshoot Mp. Figure 3.2 shows the sample step response. The steady-state
value yss of a step response is the final value of the output. The rise time Tr is the
amount of time required for the signal to go from 10% to 90% of its final value. The
settling time Ts is the amount of time required for the signal to stay within ±5% of its
final value for all future times. Finally, the overshoot Mp is the percentage of the first
pick value above the final value [35].

Figure 3.2: Example of step response, source: [35]

Figure 3.3: Step response of the PI controller
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3.2 ”Reaching target speed” testing

3.1.3 Optimization results

Figure 3.3 shows the step response of the PI controller. With the parameter Kp = 0, 01
and Ki = 0, 78, the PI controller has a relatively good performance with rise time
Tr = 0, 42s, settling time Ts = 0, 65s and the overshoot Mp = −0, 13%.

3.2 ”Reaching target speed” testing

Because of the speed directly related costs in the cost function, the maximum speed
that the ego vehicle can reach are different. Under some conditions the ego vehicle
cannot reach the maximum speed limit (e.g. on the motorway 130km/h). So before the
calibration, the ”reaching target speed” testing is implemetnted, in order to make sure
that the ego vehicle can reach the maximum speed limit.

3.2.1 Scenario definition

Figure 3.4: Scenario of ”reaching target speed” testing

Figure 3.4 shows the scenario of ”reaching target speed” testing. The ego vehicle starts
with the speed of 90km/h and needs to reach the maximum speed 130km/h (MPACC
set speed).

3.2.2 Key performance indicator

For this test we only consider whether the ego vehicle can reach the target speed. And
the only KPI is the final speed of ego vehicle, KPI V final.

3.2.3 Simulation and results

The cost function of the MPACC function is described with equation (2.25). For the
co-simulation and calibration, the weights of the costs are redefined as variables, also
called parameters in this thesis, see table 3.1.
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3 Simulation and calibration

Table 3.1: Definition of variables for co-simulation and calibration

Weight cv1 ca1 cj1 ch1 cTr

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Weight cv2 ca2 cj2 ch2

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Because the variables Cost Speed1, Cost Speed2 and Cost TravelT ime are directly re-
lated to the vehicle speed, in this thesis they are implemented firstly for the ”reaching
target speed” testing. The other variables are divided into three groups: Cost Acc1 and
Cost Acc2, Cost Jerk1 and Cost Jerk2 as well as Cost Headway1 and Cost Headway2.

(1) Cost Speed1, Cost Speed2 and Cost TravelT ime

Table 3.2 shows the definition of the input parameters Cost Speed1, Cost Speed2 and
Cost TravelT ime.

Table 3.2: Definition of parameters Cost Speed1, Cost Speed2 and Cost TravelT ime

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Range -10 to 10 0 0 0 1 to 20

Step 0,5 / / / 0,5

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Range 0 to 1 0 0 0 0

Step 0,02 / / / /

Number of simulation runs: 401(with one repetition point)

Figure 3.5 shows the distribution of the variations for input parameters Cost Speed1,
Cost Speed2 and Cost TravelT ime.

Figure 3.6 shows the simulation results. From the distribution of the reached variation
points (circle points) and not reached points (asterisk points), three estimated linear
boundaries are generated, see equation (3.1) to (3.3). These boundaries can be used as
limits during the calibration with AVL CAMEO.
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3.2 ”Reaching target speed” testing

Figure 3.5: Distribution of the variations for input parameters Cost Speed1,
Cost Speed2 and Cost TravelT ime

Figure 3.6: Distribution of testing results for input parameters Cost Speed1,
Cost Speed2 and Cost TravelT ime

Cost Speed2 < −1/40 · Cost Speed1 + 0, 25 (3.1)

Cost TravelT ime > 4 (3.2)

Cost TravelT ime > 5 · Cost Speed2 (3.3)

In order to investigate the influences of other variables, two variation points for these
three parameters are selected. One is Cost Speed1 = −6, 5, Cost Speed2 = 0, 8 and
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3 Simulation and calibration

Cost TravelT ime = 4, this variation point is on the estimated linear boundary with the
result of reached target speed, see figure 3.6. Another is Cost Speed1 = 10, Cost Speed2 =
1 and Cost TravelT ime = 5, which is used to test if the ego vehicle can always reach
the target speed when Cost TravelT ime is greater than 5.

(2) Cost Acc1 and Cost Acc2

Table 3.3 shows the definition of input parameters Cost Acc1 and Cost Acc2.

Table 3.3: Definition of parameters Cost Acc1 and Cost Acc2

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Range 10/-6,5 0 to 100 0 0 5 /4

Step / 1 or 10 / / /

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Range 1/0,8 0 to 100 0 0 0

Step / 1 or 10 / / /

Variation point one: Cost Speed1 = 10, Cost Speed2 = 1 and Cost TravelT ime = 5.

Variation point two: Cost Speed1 = −6, 5, Cost Speed2 = 0, 8 and Cost TravelT ime =
4.

(a) Variation points

(b) Testing results

Figure 3.7: Variation points (a) and testing result (b) for parameters Cost Acc1 and
Cost Acc2
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3.2 ”Reaching target speed” testing

Figure 3.7 shows the variation points (a) and corresponding simulation results (b) for
parameters Cost Acc1 and Cost Acc2. For the variation point two with Cost Speed1 =
−6, 5, Cost Speed2 = 0, 8 and Cost TravelT ime = 4, the Cost Acc2 has obviously
a much stronger negative effect to the maximum sped that the ego vehicle can reach.
Compared to Cost Acc2, Cost Acc1 alone has no significant effect, but together with
Cost Acc2 it also has negative effects. When the two variations are less than 20,
the ego vehicle can always reach the target speed. For the variation point one with
Cost Speed1 = 10, Cost Speed2 = 1 and Cost TravelT ime = 5, the ego vehicle can
always reach the target speed.

(3) Cost Jerk1 and Cost Jerk2

Table 3.4 shows the definition of input parameters Cost Jerk1 and Cost Jerk2.

Table 3.4: Definition of parameters Cost Jerk1 and Cost Jerk2

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Range 10/-6,5 0 0 to 100 0 5/4

Step / / 1 or 10 / /

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Range 1 /0,8 0 0 to 100 0 0

Step / / 1 or 10 / /

Variation point one: Cost Speed1 = 10, Cost Speed2 = 1 and Cost TravelT ime = 5.

Variation point two: Cost Speed1 = −6, 5, Cost Speed2 = 0, 8 and Cost TravelT ime =
4.

Figure 3.8 shows the variation points (a) and the corresponding simulation results
(b). The variation point two related to the input parameters Cost Speed1 = −6, 5,
Cost Speed2 = 0, 8 and Cost TravelT ime = 4 has obviously a much stronger nega-
tive effect to the maximum speed that the ego vehicle can reach than the variation
point one related to the input parameters Cost Speed1 = 10, Cost Speed2 = 1 and
Cost TravelT ime = 5. Compared to Cost Jerk2 , Cost Jerk1 has a smaller, but pos-
itive effect. Only when the Cost Jerk2 is less than 3, the ego vehicle can reach the
target speed. For the variation point one with Cost Speed1 = 10, Cost Speed2 = 1 and
Cost TravelT ime = 5, the ego vehicle can always reach the target speed, when the two
variations are less than 10.
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3 Simulation and calibration

(a) Variation points

(b) Testing results

Figure 3.8: Variation points (a) and testing result (b) for parameters Cost Jerk1 and
Cost Jerk2

(4) Cost Headway1 and Cost Headway2

Table 3.5 shows the definition of input parameters Cost Headway1 and Cost Headway2.

Table 3.5: Definition of parameters Cost Headway1 and Cost Headway2

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Range 10/-6,5 0 0 0 to 100 5 /4

Step / / / 1 or 10 /

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Range 1 /0,8 0 0 0 to 100 0

Step / / / 1 or 10 /

Variation point one: Cost Speed1 = 10, Cost Speed2 = 1 and Cost TravelT ime = 5.

Variation point two: Cost Speed1 = −6, 5, Cost Speed2 = 0, 8 and Cost TravelT ime =
4.

Figure 3.9 shows the variation list (a) and simulation results (b). It is obviously that the
Cost Headway1 and Cost Headway2 have no significant influence for the maximum
speed that the ego vehicle can reach.
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3.3 MPACC controller calibration

(a) Variation points

(b) Testing results

Figure 3.9: Variation points (a) and testing results (b) for parameters Cost Headway1
and Cost Headway2

Based on these testing results, the limits are defined as below:

Cost TravelT ime > 5 (3.4)

Cost TravelT ime > 5 · Cost Speed2 (3.5)

3.3 MPACC controller calibration

The functionality of the MPACC controller is to optimize the acceleration request for
the ego vehicle based on the input signals. After the PI controller optimization and
”reaching target speed” testing, the MPACC controller is calibrated with the target of
fuel consumption reduction and comfort improvement.
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3 Simulation and calibration

3.3.1 Scenario definition

Figure 3.10: Scenario of MPACC controller calibration: left) Scenario selection, right)
Reference maneuver of preceding vehicle

Figure 3.10 left) shows the scenario applied for the MPACC controller calibration. It
contains of an ego vehicle following the preceding vehicle with a predefined speed profile,
see figure 3.10 right). The speed profile of preceding vehicle is modified based on the
NEDC (New European Driving Cycle) [36] test cycle speed profile. At time 0, the initial
speed of ego vehicle and preceding vehicle are set to vego 0 = vpre 0 = 16km/h and initial
headway distance to HwD0 = 20m.

3.3.2 Key performance indicator

In order to achieve the calibration targets, fuel-efficiency, comfort and safety, the follow-
ing KPIs are defined:

• Fuel efficiency - The MPACC function should control the ego vehicle to follow
the preceding vehicle without heavy braking or acceleration, in order to reduce
the average fuel consumption (l/100km) during the whole cruise control phase. A
baseline is defined, where the ego vehicle equipped with the MPACC function under
the base setting before calibration. The KPI KpiFuelConsumpAvg (average fuel
consumption in l/100km) is defined for evaluation of the fuel efficiency of the vehicle
[37].

• Comfort of driver and passengers - The MPACC function should maximize the
comfort by reducing the jerk (the derivative of acceleration), which is defined as
variable j, see equation (3.6). Because the change of the force would lead to the
longitudinal vibration of the vehicle, which would make the driver and passengers
uncomfortable [38]. So the ego vehicle would be controlled to follow the preceding
vehicle without sudden change of deceleration and acceleration, in order to achieve
the smooth ride. The KPI KpiJerkIntegral (integration of the absolute value of
jerk) is defined [37].
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3.3 MPACC controller calibration

j =
da

dt
(3.6)

where a is the acceleration of ego vehicle

• Safety - The MPACC controller should control the ego vehicle not to crash or be
too close to the preceding vehicle. In section 2.5.3, we have defined hard and soft
constraints for the minimum headway distance. The hard limit should not be vi-
olated whereas the soft limit can be violated with cost. In order to take the ego
vehicle speed into consideration, the minimum headway time, see equation 3.7), is
also defined as the KPI for safety. So the KPIs KpiHeadwayDistanceMin (min-
imum headway time) and KpiHeadwayT imeMin (minimum headway distance)
are defined. Figure 3.11 illustrates the definition of headway distance [37].

headway time = headway distance/vego (3.7)

Figure 3.11: Definition of headway distance

3.3.3 Correlation analysis

We do not have a priori knowledge about the behavior of the MPACC controller. In
total there are 9 interdependent cost parameters (see section 2.5.3), so called weights of
cost function, that need to be calibrated. Even when applying DoE methods for defining
the inputs, it is still too complicated to calibrate all the parameters of the function at
the same time.

To get a quick overview to quantify the influence of the parameters affecting the behavior
of the ego vehicle, a correlation analysis algorithm is applied. As described in section
2.4.4, the sensitivity analysis algorithm in this master thesis analyses the reduction of
the SSE by an input parameter on a selected response, in order to get the relative
significance indicator (RSI) for each parameter.

Figure 3.12 shows the results of the parameter correlation analysis. The relative sig-
nificance indicator of the 9 cost parameters regarding the four predefined KPIs are
evaluated for the correlation between cost parameters and responses. For the KPI
KpiFuelConsumpAvg, the parameter Cost TravelT ime, has the strongest influences.
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3 Simulation and calibration

For the KPIKpiJerkIntegral, the parameters Cost Jerk1, Cost Speed2 and Cost Jerk2.
For the KPIs KpiHeadwayDistanceMin and KpiHeadwayT imeMin, the parameters
Cost Jerk2 and Cost Speed2. So the parameters Cost TravelT ime, Cost Speed1,
Cost Speed2, Cost Jerk1 and Cost Jerk2 have the priority to calibration. The other
four parameters should be calibrated after the first five parameters.

Figure 3.12: Correlation analysis

3.3.4 Simulation results with conventional DoE

In this section, the calibration process is based on conventional DoE, see section 2.3.3.
At time t = 0, with the initial velocity of ego vehicle and preceding vehicle vego 0 =
vpre 0 = 16km/h and initial headway distance HwD0 = 20m the simulation runs are
prepared. In order to guarantee stable initial conditions, the ego vehicle should keep
the speed 16km/h for 25s, see figure 3.10. Using the limit described in section 3.2.3, see
equations (3.4) and (3.5), the following settings are applied for the DoE:

(1) Simulation set-up and execution

As the first step, table 3.6 shows the definition of input parameters Cost Jerk1, Cost Jerk2,
Cost Speed1, Cost Speed2 and Cost TravelT ime for the conventional DoE.
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3.3 MPACC controller calibration

Table 3.6: Definition of parameters Cost Jerk1, Cost Jerk2, Cost Speed1,
Cost Speed2 and Cost TravelT ime (Conventional DoE)

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Range -10 to 0 0 0 to 5 0 4 to 10

Step 0,2 / 0,1 / 0,1

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Range 0 to 1 0 5 to 20 0 0

Step 0,02 / 0,3 / /

Number of simulation runs: 206 (with one repetition point)

Figure 3.13 show the distribution of the variations for conventional DoE. The design
space is filled with the variation points, especially in the corner of the design space are
filled with more variation points.

Figure 3.13: Distribution of variations (Conventional DoE)

(2) Row data processing - Outliers detection and deactivation

In the next step, outliers are detected using the method described in the section 2.4.1.
Figure 3.14 shows the results of the simulations using the conventional DoE method. The
outliers of the measurements are detected, as shown in Figure 3.15. Using the method
described in section 2.4.1, the points, which is not in the range of ȳ±3s are recognized as
outliers, see equation 2.3. The points not in the range of ȳ± 2s are treated as suspected
outliers. These outliers can be deactivated while modeling, in order to improve the model
quality.
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3 Simulation and calibration

For the measurements KpiHeadwayDistanceMin and KpiHeadwayT imeMin there
are no outliers existing. For each of the measurements KpiFuelConsumpAvg and
KpiJerkIntegral, there is one outlier for each. Before modeling, the outliers are de-
activated.

Figure 3.14: Measurements (Conventional DoE)

Figure 3.15: Outliers detection and deactivation (Conventional DoE)

(3) Behavior modeling

The third step describes the modeling of KPI behavior models with the calibrated pa-
rameters as inputs. Figure 3.16 shows the intersection graphics of the behavior model
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3.3 MPACC controller calibration

with 95% confidence level for the KPIs at certain variation point, see table 3.7.

(a) KPI KpiFuelConsumpAvg

(b) KPI KpiHeadwayDistanceMin

(c) KPI KpiHeadwayT imeMin

(d) KPI KpiJerkIntegral

Figure 3.16: Intersection graphics of behavior model for KPIs (Conventional DoE)
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Table 3.7: The parameter values of the variation point for intersection graphics (Conven-
tional DoE)

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Value -6 0 3 0 7

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Value 0,2 0 15 0 0

In figure 3.16, the solid lines are the behavior models and the gray zones with broken
line boundaries are the confidence interval with 95% confidence level, which means the
real KPI behavior lies in the confidence interval with 95% possibility.

(a) KPI KpiFuelConsumpAvg (b) KPI KpiHeadwayDistanceMin

(c) KPI KpiHeadwayT imeMin (d) KPI KpiJerkIntegral

Figure 3.17: Predicted value of KPIs (Conventional DoE)
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Figure 3.17 shows the predicted values of the KPIs calculated with the KPI behavior
models. For a perfectly correlated good model, the point with x-axis predicted value
and y-axis measured value should be located on the center line. The model quality is
evaluated by the statistical coefficients R2, R2

adj and R2
pred, see section 2.4.3. The quality

of these KPI behavior models is discussed in section 4.1.

(4) Optimization

The final step is optimization with the KPI behavior model under certain targets and
constraints. The minimization of KPIs KpiFuelConsumpAvg and KpiJerkIntegral are
defined as the optimization target functions. At the same time, the following constraints
are also defined before the optimization:

• KpiHeadwayDistanceMin: Lower limit is 5m for safety

• KpiHeadwayT imeMin: Lower limit is 0, 5s for safety

• KpiFuelConsumpAvg: Upper limit is 6, 0l/100km for fuel efficiency

• KpiJerkIntegral: Upper limit is 150m/s2 for comfort

Figure 3.18 shows the optimization results with Pareto points, which are the potential
optimization points. These points form the Pareto front in ”the area of interest”, which
is shaped by the optimization targets and constraints. The random points are generated
based on the behavior model, in order to fill the design space. The random points, which
are out of ”the area of interest”, are treated as unfeasible random points. Table 3.8 shows
the parameter values of the start point with base settings. Table 3.9 shows the parameter
values of the chosen optimization point with conventional DoE method.

Figure 3.18: Results of the optimization (Conventional DoE)
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Table 3.8: The values of parameters for the start point

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Value -5 5 5 5 5

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Value 0,5 5 5 5

Table 3.9: The values of parameters for the optimization point (Conventional DoE)

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Value -6,26 0 3,72 0 7,42

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Value 0,25 0 20 0

(5) Verification

In order to the verify the KPI behavior models, there are 20 Pareto points selected and
simulated again using the same scenario. The measurements are then compared with the
predicted values. Figure 3.19 illustrates the results of the verification for conventional
DoE method. In section 4.1, the verification results are discussed.
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(a) KPI ”KpiFuelConsumpAvg”

(b) KPI ”KpiHeadwayDistanceMin”

(c) KPI ”KpiHeadwayTimeMin”

(d) KPI ”KpiJerkIntegral”

Figure 3.19: Verification with selected Pareto points (Conventional DoE)
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3.3.5 Simulation results with active DoE

In this section, the calibration process is based on active DoE, see section 2.3.4. With
the same initial settings as conventional DoE. At time t = 0, vego 0 = vpre 0 = 16km/h
and HwD0 = 20m the simulation is prepared, see figure 3.10.

(1) Simulation set-up and execution

As the first step, for the active DoE method, the definition of input parameters Cost Jerk1,
Cost Jerk2, Cost Speed1, Cost Speed2 and Cost TravelT ime is same as conventional
DoE, see table 3.6 and figure 3.13. But following is the differences:

Maximum number of iterations is 99, which is used to optimize the behavior model online
after the conventional DoE points are executed, see section 2.3.4.

The targets for the optimization of the KPIs KpiFuelConsumpAvg, KpiJerkIntegral
and KpiTargetLost using the active DoE method are listed in table 3.10. The output
ranges of these three KPIs form ”the area of interest”. The active DoE type ”Minimize”
means that the predicted value of KPI for the next iteration point is smaller than last
iteration point. The active DoE type ”ModelLimit” means that the predicted value of
KPI for the next iteration point just need to be in the range of ”Minimum Output” and
”Maximum Output”

Table 3.10: Active DoE targets

KPI Minimum Output Maximum Output Active DoE Type

KpiFuelConsumpAvg 0 6 Minimize

KpiJerkIntegral 0 150 Minimize

KpiTargetLost -0,1 0,4 ModelLimit

(2) Row data processing - Outliers detection and deactivation

In the next step outliers are detected using the method described in the section 2.4.1.
Figure 3.20 shows the measurements and figure 3.21 shows the results of the outliers
detection using the active DoE method.As we can see in figure 3.21, for the measurements
KpiHeadwayDistanceMin and KpiHeadwayT imeMin there are no outliers existing.
For each of the measurements KpiFuelConsumpAvg and KpiJerkIntegral, there is
one outlier for each. Before modeling, the outliers are deactivated.
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Figure 3.20: Measurements (Active DoE)

Figure 3.21: Outliers detection and deactivation (Active DoE)

(3) Behavior modeling

The third step describes the modeling of KPI behavior models with the calibrated pa-
rameters as inputs. Figure 3.22 shows the intersection graphics of the behavior model
with 95% confidence level for the KPIs with Active DoE method.

Figure 3.23 shows the predicted values of the measurements based on the behavior models
with active DoE method. The quality of these KPI behavior models is discussed in section
4.1.
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(a) KPI KpiFuelConsumpAvg

(b) KPI KpiHeadwayDistanceMin

(c) KPI KpiHeadwayT imeMin

(d) KPI KpiJerkIntegral

Figure 3.22: Intersection graphics of behavior model for KPIs (Active DoE)
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3.3 MPACC controller calibration

(a) KPI KpiFuelConsumpAvg (b) KPI KpiHeadwayDistanceMin

(c) KPI KpiHeadwayT imeMin (d) KPI KpiJerkIntegral

Figure 3.23: Predicted value of KPIs (Active DoE)

(4) Optimization

The final step is optimization with the KPI behavior model under certain targets and
constraints. The optimization target functions and constraints are the same as conven-
tional DoE, see section 3.3.4. The KpiFuelConsumpAvg and KpiJerkIntegral need
to be minimized under certain the following constraints.

• KpiHeadwayDistanceMin: Lower limit is 5m for safety

• KpiHeadwayT imeMin: Lower limit is 0, 5s for safety

• KpiFuelConsumpAvg: Upper limit is 6, 0l/100km for fuel efficiency

• KpiJerkIntegral: Upper limit is 150m/s2 for comfort
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Figure 3.24 shows the optimization results with active DoE. Compared to the conven-
tional DoE method, there are more measurements in ”the area of interest” to optimize
the behavior model. Table 3.11 shows the parameter values of the chosen optimization
point with conventional DoE method.

Figure 3.24: Results of the optimization (Active DoE)

Table 3.11: The values of parameters for the optimization point (Active DoE)

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Value -7,28 0 4,69 0 8,22

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Value 0,21 0 20 0

(5) Verification

20 Pareto points are selected for the model verification. Figure 3.25 illustrates the
results of the verification for active DoE method. In section 4.1, the verification results
are discussed. Final, for the five most significant parameters, the values in table 3.11 are
taken as the calibration result.
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3.3 MPACC controller calibration

(a) KPI KpiFuelConsumpAvg

(b) KPI KpiHeadwayDistanceMin

(c) KPI KpiHeadwayT imeMin

(d) KPI KpiJerkIntegral

Figure 3.25: Verification with selected Pareto points (Active DoE)
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3.3.6 Calibration with the less significant parameters

Based on the optimization result of the first five most significant variations, the rest four
variations (Cost Acc1, Cost Acc2, Cost Headway1 and Cost Headway2) are calibrated
in another step.

(1)Simulation set-up and execution

As the first step, table shows the definition of input parameters Cost Acc1, Cost Acc2,
Cost Headway1 and Cost Headway2.

Table 3.12: Definition of parameters Cost Acc1, Cost Acc2, Cost Headway1 and
Cost Headway2

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Range -7,28 0 to 10 4,69 0 to 10 8,22

Step / 0,5 / 0,5 /

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Range 0,21 0 to 10 20 0 to 10

Step / 0,5 / 0,5

Number of simulations: 131 (with one repetition point)

Figure 3.26 show the distribution of the variations.

Figure 3.26: Distribution of variations (less significant parameters)
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(2) Measurements

Figure 3.27 shows the measurements of the simulation runs.

Figure 3.27: Measurements (less significant parameters)

From the measurements, these four KPIs just focus in a narrow range, so we just manu-
ally select the optimization point as the result, see figure 3.27. And combining with the
calibration result, see table 3.13 :

Table 3.13: The values of parameters for the optimization point

Variable Cost Speed1 Cost Acc1 Cost Jerk1 Cost Headway1 Cost TravelT ime

Value -7,28 10 4,69 10 8,22

Variable Cost Speed2 Cost Acc2 Cost Jerk2 Cost Headway2

Value 0,21 0 20 10

3.4 Validation

After the virtual calibration with KPI-model-based method, the MPACC function is
validated with the optimization point, see table 3.13.

3.4.1 Scenario definition

With the same scenario, that ego vehicle following the preceding vehicle with certain
speed profile, see figure 3.10. But the speed profile of preceding vehicle is modified based
on the WLTP (Worldwide harmonized Light vehicles Test Procedure) [39] test cycle.
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Figure 3.28 illustrates the speed profile of preceding vehicle, if the speed in WLTP test
cycle is lower than 20km/h, it would be raised to 20km/h for preceding vehicle. At time
t = 0, the initial velocity of ego vehicle and preceding vehicle vego 0 = vpre 0 = 20km/h
and initial headway distance HwD0 = 20m.

Figure 3.28: Speed profile of preceding vehicle for validation

3.4.2 Key performance indicator

For the validation, the KPIs are the same as calibration, see section 3.3.2.

3.4.3 Validation results

The simulation results of the MPACC function with the optimization point are compared
with the MPACC function with base settings before the calibration. The results are
discussed in section 4.2.1 to section 4.2.3.
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The objective of this master thesis is to preform and demonstrate a method for the
virtual calibration of the MPACC function regarding fuel efficiency, comfort and safety.
In the previous chapters, the set-up of the project, the method as well as co-simulation
environment for the calibration and the process of the virtual calibration are explained.

In this chapter, the results of the virtual calibration are discussed. The performances of
the calibrated MPACC function with respect to the fuel efficiency, comfort and safety
are compared with the MPACC function before the calibration with base settings.

4.1 DoE methods

Figure 3.17 and figure 3.23 illustrate the predicted values of the measurements based on
the behavior models for conventional DoE and active DoE methods. The goodness of fit
is evaluated by means of the statistical coefficients R2, R2

adj and R2
adj (see section 2.4.3,

table 2.1), the goodness of the behavior models is shown in table 4.1.

Table 4.1: Goodness of fit for behavior models with normal DoE and active DoE

DoE type KPI R2 R2
adj R2

adj Goodness

KpiFuelConsumpAvg 0,96 0,95 0,89 Good
Conventional KpiHeadwayDistanceMin 0,98 0,97 0,93 Very good
DoE KpiHeadwayT imeMin 0,96 0,95 0,90 Very good

KpiJerkIntegral 0,96 0,96 0,87 Good

KpiFuelConsumpAvg 0,98 0,97 0,94 Very good
Active KpiHeadwayDistanceMin 0,98 0,98 0,95 Very good
DoE KpiHeadwayT imeMin 0,98 0,98 0,95 Very good

KpiJerkIntegral 0,97 0,96 0,91 Very good

The behavior models of KPIs with conventional DoE are at least good, especially for KPIs
KpiHeadwayDistanceMin andKpiHeadwayT imeMin, they are very good. Compared
to conventional DoE the behavior models with active DoE are even better, all the four
KPI behavior models are very good. Figure 4.1 shows the distribution of the measure-
ments in ”the area of interest”, for KPI KpiFuelConsumpAvg under 6, 0l/100km and for
KPI KpiJerkIntegral under 150m/s2. For the active DoE method, the more variation
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points distributed in ”the area of interest”, which would have a better fit of the behavior
model, especially for the KPI KpiFuelConsumpAvg from 5, 8− 6, 0l/100km.

Figure 4.1: Distribution of the measurements in ”the area of interest”

Table 4.2 shows the verification results with the selected Pareto points under conven-
tional DoE and active DoE methods based on the figure 3.19 and figure 3.25. For the
conventional DoE method, at least 95% of the verification points are in the behavior
model confidence interval with 95% confidence level, which means the behavior models
are trusted under this master thesis. For the active DoE, all of the verification points
are in the confidence interval. It is obviously that with active DoE, the behavior of the
KPIs can be better modeled.

Table 4.2: Verification of behavior models with normal DoE and active DoE

DoE type KPI
Number of Points in

Percentageverification confidence
points interval

KpiFuelConsumpAvg 20 19 95%
Conventional KpiHeadwayDistanceMin 20 20 100%
DoE KpiHeadwayT imeMin 20 19 95%

KpiJerkIntegral 20 19 95%

KpiFuelConsumpAvg 20 20 100%
Active KpiHeadwayDistanceMin 20 20 100%
DoE KpiHeadwayT imeMin 20 20 100%

KpiJerkIntegral 20 20 100%

It took about two weeks for the developer of the MPACC function to manually calibrate
the MPACC function with the trial and error method. Compared to the trial and error
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method, the KPI-model based method with DoE application takes about three days for
the calibration of the MPACC funktion. One day for the co-simulation and calibration
preparation, one day and two nights for the co-simulation execution, one day for the
data precessing.

4.2 MPACC function

(a) Ego vehicle with MPACC function before calibration

(b) Ego vehicle with MPACC function after calibration

Figure 4.2: Speed profile of the ego vehicle and the preceding vehicle

In order to evaluate the virtual KPI-model-based calibration method, the performances
(fuel efficiency, comfort and safety) of the calibrated MPACC function are compared to
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the MPACC function with base settings. Figure 4.2 shows the speed of ego vehicle with
MPACC function before calibration (a) and ego vehicle with MPACC function after
calibration (b). From the speed profiles of the ego vehicle and the preceding vehicle,
we can find that the MPACC function can complete the task of speed tracking, which
is the basic function of the MPACC system. The fuel efficiency, comfort and safety
performance of the MPACC function will be discussed in the following sections.

4.2.1 Fuel efficiency

(a) Ego vehicle with MPACC function before calibration

(b) Ego vehicle with MPACC function after calibration

Figure 4.3: Gas and brake pedal position of the ego vehicle (minus value means braking)
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Figure 4.3 shows the gas and brake pedal position of the ego vehicle with the MPACC
function before calibration and with the MPACC function after calibration. The ego
vehicle with the MPACC function after calibration will avoid heavy acceleration and too
much braking, in order to reduce the fuel consumption. But for the ego vehicle with the
MPACC function before calibration, the acceleration and braking are heavier, especially
there are more braking applied to avoid collision. For these reason, the average fuel con-
sumption of the ego vehicle with the MPACC function after calibration is 6, 42l/100km,
which is 9% lower than the average fuel consumption of the ego vehicle with the MPACC
function before calibration, 7, 06l/100km.

4.2.2 Comfort

Figure 4.4: Acceleration and deceleration of the ego vehicle

Figure 4.4 shows the acceleration and deceleration of the ego vehicle with the MPACC
function before calibration and with the MPACC function after calibration. For the ego
vehicle with the MPACC function before calibration the acceleration and deceleration are
higher than ego vehicle with the MPACC function after calibration. At the same time,
the change of acceleration and deceleration of ego vehicle with the MPACC function
before calibration is also faster. Figure 4.5 shows the jerk of the ego vehicle with the
MPACC function before calibration and with the MPACC function after calibration. The
integral of the absolute jerk for the ego vehicle with MPACC function after calibration is
263m/s2, which is 13,5% lower much more lower than the ego vehicle with the MPACC
function before calibration, 304m/s2. So the ego vehicle with the MPACC function after
calibration has a better comfort performance than with the MPACC function before
calibration.
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Figure 4.5: Absolute jerk of the ego vehicle

4.2.3 Safety

In order to keep the safe distance with the preceding vehicle, on the one hand, the ego
vehicle should have a sufficient speed-based distance (headway time) to the preceding
vehicle, and on the other hand, the ego vehicle should also have a sufficient absolute
distance to the preceding vehicle. However, the distance should not be too long, because
of the cut in possibility by the other traffic vehicles, which could lead to an accident.

Figure 4.6: Headway time between the ego vehicle and the preceding vehicle

Figure 4.6 illustrates the headway time between the ego vehicle and the preceding vehi-
cle. The headway time of the ego vehicle with the MPACC function before calibration
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vibrates a lot, almost from 1, 2s (at t = 910s) to 4, 1s (at t = 1337s). Compared to
the MPACC function before calibration, the headway time of the ego vehicle with the
MPACC function after calibration varies from 1, 5s (at t = 910s) to 3, 9s (at t = 1348s).
With a shorter minimum headway time, the ego vehicle with the MPACC function after
calibration is safer as with the MPACC function before calibration.

Figure 4.7: Headway distance between the ego vehicle and the preceding vehicle

Figure 4.7 illustrates the headway distance between the ego vehicle and the preceding
vehicle. The results is the same as the headway time. For the ego vehicle with the
MPACC function before calibration, the headway distance varies from 8, 6m (at t =
912s) to 123, 2m (at t = 1337s). For the ego vehicle with the MPACC function after
calibration is from 10, 8m (at t = 912s) to 108, 1m (at t = 1348s). With a shorter
minimum headway distance and longer maximum headway distance, the ego vehicle
with the MPACC function after calibration is safer as with the MPACC function before
calibration.
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5 Summary

The object of this master thesis is to perform and demonstrate a virtual calibration
method for an ACC function. With the performed method, the MPACC (Model Predic-
tive Adaptive Cruise Control) function is calibrated regarding the fuel efficiency, comfort
performance and safety. In this chapter, the most important contents of all the previous
chapters are summarized.

Chapter 1 Introduction: In the USA alone, there were over 1,6 million people killed in
motor vehicle traffic crashes over the past 40 years. The purpose for the development of
ADAS function and AD (Autonomous Driving) vehicle is to reduce the traffic accidents,
which is mostly (94%) caused by human errors. There are already some ADAS functions
available in the production vehicles, such as ACC, AEB, LKA and so on. Based on the
SAE levels of driving automation, the driving automation are divided into 6 levels and
5 stages. In these levels, the tasks distribution between human driver and ADAS/AD
system are different. In level 0, the human driver takes the complete vehicle control
responsibility and in level 5 the vehicle would take over the complete vehicle control
responsibility. In order to develop the ADAS/AD function, the V-Model development
process is used. With the increase of vehicle complexity and decrease of vehicle develop-
ment time, new challenging appears, how to develop an ADAS/AD function with lower
costs as well as shorter development time but with higher reliability? This is the motiva-
tion of this master thesis to perform and demonstrate an KPI-model-based calibration
method with the MPACC function as example.

Chapter 2 Methodology: The simulation of the MPACC function is realized with
the co-simulation platform AVL Mode.CONNECT. With this co-simulation platform,
it is possible to connect different simulation software together and take the advantage
of each. In this master thesis, the co-simulation model is built using vehicle model
as well as simulation environment form IPG CarMaker and the MPACC function from
MATLAB/Simulink. The coordinate system for the co-simulation is from IPG CarMaker
coordinate system. The simulation is visualized with IPG CarMaker. The calibration
is executed with AVL CAMEO, which can automatically start the co-simulation with
AVL Model.CONNECT and retrieve the responses after every single co-simulation run.
With online and/or offline data processing, the MPACC function can be calibrated with
predefined KPIs. For the virtual calibration, the conventional DoE and active DoE
methods are applied to reduce the numbers of co-simulation runs, in order to reduce
the calibration efforts. The behavior models of KPIs are built in AVL CAMEO with
the results of the co-simulation runs. The outliers of the raw data are firstly detected
with statistical method and then deactivated. For the modeling there are two types of
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model available, the RNN (Recurrent Neural Network) model and the free polynomic
model, which can be automatically generated with AVL CAMEO. In order to evaluate
the goodness of fit and quality of the behavior models, the statistical coefficients R2, R2

adj

and R2
pred are introduced. They indicate how well the behavior model can model the

measurements, and how good is the quality of the model calculation and the goodness of
prediction. Then the confidence interval of the model is generated based on the residual
analysis, which analyses the residual of the measurements and predicted values, in order
to find prediction outliers and present the confidence interval based on certain confidence
levels. The correlation analysis is used to find the correlation between variation channels
and KPIs, so the most significant parameters can be selected and calibrated firstly, in
order to reduce the complexity of the calibration. It is based on the reduction of SSE
(Sum of Square of Error) for each variation channel. The to be calibrated MPACC
function will predict the motion of preceding vehicle and output vehicle control to the
ego vehicle, in order to achieve low fuel consumption and high driving comfort. Finally
the co-simulation models as well as the inputs and outputs connection between different
components in this master thesis are described.

Chapter 3 Simulation and calibration: In this chapter, the presented co-simulation
model is simulated and the MPACC function is calibrated with certain scenarios, in which
the ego vehicle follows the preceding vehicle with the specified speed profile that is based
on the NEDC test cycle. The PI controller in the MPACC function is an acceleration
controller, which controls the ego vehicle to reach the desired acceleration as fast and
precisely as possible. It is optimized firstly with step signal input for acceleration. The
corn algorithm is applied in the MPACC controller, which is then calibrated with the
predefined scenario. The KPIs regarding fuel efficiency, driving comfort and safety are
defined right after the definition of the scenarios. Before the calibration, the correlation
analysis is applied to find the most significant parameters. Then the conventional DoE
and active DoE methods are applied to calibrate the MPACC controller with the data
processing methods presented in chapter 2. After that, the behavior models are verified
with the selected Pareto points and the same scenario. Finally the other less significant
parameters are calibrated with the same process. After the calibration, the validation
process is applied regarding the fuel efficiency, driving comfort and safety with a different
speed profile of the preceding vehicle, modified from the speed profile as given by the
WLTP test cycle.

Chapter 4 Results and discussion: The results of the calibration and validation
are described and discussed in this chapter. With the conventional DoE and active
DoE methods, the efforts of the virtual calibration can be reduced significantly. The
performance of active DoE is better than conventional DoE. The ego vehicle with the
MPACC function after calibration has a 9% reduction of average fuel consumption, 13,5%
of jerk and longer minimum headway time and headway distance compared to the ego
vehicle with the MPACC function before calibration.
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5.1 Conclusion

The performed KPI-model-based virtual calibration method for ADAS function was
successfully executed with AVL CAMEO and AVL Model.CONNCET. The interface be-
tween AVL Model.CONNCET and IPG CarMaker as well as MATLAB/Simulink could
be implemented easily. With the performed KPI-model-based virtual calibration method,
we successfully calibrated the MPACC function with less application efforts. The active
DoE method has a better performance than conventional DoE method. Finally the cali-
brated MPACC function could significant reduce fuel consumption, improve comfort and
safety performance of the ego vehicle.

5.2 Outlook

In the future, the application of the virtual KPI-model-based calibration method for
complex ADAS and AD function will be a necessary process, in order to reduce the
development time and calibration efforts. In order to apply the introduced virtual cali-
bration method to a realistic vehicle development process, there are still some necessary
processes to be implemented. The calibration could be based on different scenarios and
have different parameters for the ADAS function when the vehicle runs under different
driving conditions. With the DoE method, it is also possible to implement virtual vali-
dation and testing, in order to find the corner cases, also called critical cases, which need
to be validated and tested in on-road tests.
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