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Abstract

Semantic image segmentation is a key topic in computer vision, and a crucial part in many

applications such as medical imaging, autonomous driving or augmented reality. Conse-

quently a large portion of research has been devoted to semantic image segmentation in

the past, with recent work mostly focusing on supervised methods utilizing Convolutional

Neural Networks (CNNs). However these approaches perform only well if there is suffi-

cient labeled training data available. This is rather unfavourable since collecting pixel-wise

semantic annotations of images is particularly expensive.

In this work we tackle the task of unsupervised semantic image segmentation. And

propose a novel approach that is based on recent work in the area of unsupervised image

representation learning and mutual information estimation. We argue that semantically

similar image areas have high mutual information. Therefore we first calculate local patch-

wise image features, and then assign image areas covered by local features with high mutual

information to the same semantic segments.

Our proposed method operates entirely unsupervised end-to-end, and scales to an

arbitrary number of semantic classes. We quantitatively and qualitatively evaluate

our results on two subsets of the COCO dataset: COCO-Stuff and COCO-Persons.

The former has already been previously introduced as a benchmark for unsupervised

semantic segmentation methods, and the latter is introduced by us in this work. On

both datasets we outperform all compared methods, and achieve a relative increase

of 31% in pixel-wise accuracy on COCO-Stuff compared to the current state-of-the-art IIC.

Keywords. Semantic Image Segmentation, Deep Neural Networks, Mutual

Information, Unsupervised
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Kurzfassung

Die semantische Bildsegmentierung ist ein Schlüsselthema im Gebiet des Maschinellen

Sehens, und ein entscheidender Bestandteil vieler Anwendungen wie der medizinischen

Bildgebung, dem autonomen Fahren oder Augmented Reality. Ein großer Teil der

Forschung im Bereich der semantischen Bildsegmentierung konzentrierte sich in der

Vergangenheit auf Methoden des überwachten Lernens mittels Convolutional Neural

Networks (CNNs). Diese Ansätze funktionieren jedoch nur hinreichend wenn genügend

entsprechend gekennzeichnete Trainingsdaten verfügbar sind. Dies ist jedoch ungünstig,

da die Erstellung von Datensätzen mit pixelweisen semantischen Annotierungen

besonders aufwändig ist.

In dieser Arbeit widmen wir uns dem Problem der unüberwachten semantischen Bild-

segmentierung. Und stellen einen neuartigen Ansatz vor, der sich auf die jüngsten Ergeb-

nisse im Bereich des unüberwachten Lernens und der Abschätzung der Transinformation

stützt. Wir argumentieren, dass semantisch ähnliche Bildbereiche eine hohe Transinforma-

tion besitzen. Daher berechnen wir zunächst lokale Patch-weise Bildmerkmale, und weisen

dann Bildbereiche den gleichen semantischen Segmenten zu welche eine hohe Transinfor-

mation besitzen.

Die von uns vorgeschlagene Methode arbeitet völlig unüberwacht end-to-end und

skaliert zu einer beliebigen Anzahl von semantischen Klassen. Wir bewerten quantitativ

und qualitativ unsere Ergebnisse mittels zweier Teilmengen des COCO-Datensatzes:

COCO-Stuff und COCO-Persons. Ersterer wurde bereits früher als Benchmark für

unüberwachte semantische Segmentierungsmethoden vorgeschlagen. Und letzterer wird

von uns in dieser Arbeit eingeführt. Im Vergleich mit beiden Datensätzen übertreffen

wir alle verglichenen Methoden und erreichen eine relative Steigerung von 31% in der

pixelweisen Genauigkeit bei COCO-Stuff im Vergleich zum aktuellen Stand der Technik:

IIC.
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges and Approach . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

Computer Vision has become an important part of our daily life. Only recently applica-

tions increased remarkably due to advances in the development of image acquisition devices

and the rising availability of computational resources. This includes autonomous cars that

use cameras to navigate streets, image-based diagnostic that has become an inherent tool

for many medical professionals, and augmented reality that extends the real-world with

digital information. All of these applications rely on systems that have to automatically

answer complex questions about the content of images, e.g.: What objects are visible?

Where are they located at? What is their scale? What is the distance of a specific point

from the camera? Many of these questions can be naturally answered by humans, but it

is inherently difficult to come up with automated procedures that provide answers in an

efficient and reliable way. While digital images numerically describe the visual appearance

of a real-world scene, they contain no high-level information about its content. And ex-

tracting useful information from images is the main challenge of Computer Vision. While

the field is covering a wide range of tasks such as object detection, 3D reconstruction or

the extraction of depth information from images. We will focus in particular on semantic

image segmentation in this work.

Semantic image segmentation aims to jointly solve the task of detection and localization

of semantic entities in images. Thus, every pixel of an input image is assigned to one

1



2 Chapter 1. Introduction

(a) Autonomous driving, the left image shows pixel-wise class assignments of the right input
image. Classes are encoded by different colors e.g. persons in red, cars in blue and plants in green.
Images from the Cityscapes dataset [22].

(b) Aerial imaging, the left image shows pixel-wise class assignments of the right input image.
A similar color encoding is used as above. Images from the DroneDataset [1].

(c) Medical imaging, an area depicting an invasive carcioma is detected in a microscopy image
of breast tissue. The respective area is highlighted with a red overlay. Image from the BACH’s
dataset [5].

Figure 1.1: Applications of Semantic Image Segmentation.

out of multiple semantic classes. Figure 1.1 shows several examples how semantic image

segmentation is used in practical applications. The raw color information of images is

converted into a high-level representation of the depicted scenes in all examples. Such

representations are essential for many applications. Just consider autonomous driving as

an example, it is crucial for safe operation to reliable detect persons and their position.

Consequently an extensive amount of research has been devoted to semantic segmentation

in the past. With the vast majority of recently proposed work mainly focusing on methods

that utilize supervised learning together with Artificial Neural Networks (ANNs).

Supervised learning is a well-known paradigm in machine learning. The parameters

of an algorithm are learned by exposing it to input data together with the desired out-
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put data. Thus, an algorithm is trained to perform the desired operation by providing a

large amount of exemplary calculations. Considering supervised semantic image segmen-

tation, state-of-the-art methods require large datasets of images together with pixel-wise

semantic annotations. Unfortunately, collecting such pixel-level annotations is particularly

expensive. For example, annotating a single image of Cityscapes [22] – a commonly used

dataset for semantic segmentation that contains driving scenes – took 90 minutes on aver-

age. Another drawback of supervised learning is that the performance often significantly

decreases when the domain gap between training and input data increases. Consequently

an algorithm for semantic segmentation trained with images recorded on european streets

might perform significantly worse when used in an asian country. Clearly this dependence

on expensive large-scale human-labeled data sets considerably limits the applicability of

semantic segmentation throughout a variety of practical applications.

Various approaches have been proposed that try to alleviate annotation cost in se-

mantic segmentation. Transfer learning aims to reduce the decrease of performance due

to a domain gap between training and input data [25]. Weakly-supervised approaches

require no costly pixel-level annotations but instead only annotations at a coarser level

[26, 60, 97, 103, 115]. And semi-supervised approaches incorporate unlabeled data to-

gether with annotated data during training [46, 116]. However all of these approaches still

require human-annotated data at some point.

In this work we aim to tackle the task of semantic image segmentation without any

human-annotated data, i.e. unsupervised semantic segmentation. This poses an exciting

topic of research. Not merely because many practical applications would benefit tremen-

dously from eliminating expensive data annotation. But also because it still remains an

open question how close the performance of supervised approaches can be matched by

unsupervised ones. In the past significantly less methods have tackled unsupervised than

supervised semantic segmentation. And there is still a significant performance gap between

supervised and unsupervised methods.

1.2 Challenges and Approach

The main challenge of this work is posed by the extraction of semantic information from

images without using labeled training data, i.e. unsupervised. And furthermore incorpo-

rate this information into a unified architecture that enables the semantic segmentation

of images. In this section we first describe the main differences between supervised and

unsupervised learning, to outline the challenges of unsupervised approaches. Followed by

the introduction of recent results in the area of unsupervised image representation learn-

ing. And finally we give overview on how we aim to tackle unsupervised semantic image

segmentation.

Supervised methods are provided with labeled training images, i.e. a vast amount of

examples for each semantic class. And they can use these examples to infer characteristic

features about the visual appearance of each class. Thus, class labels are given and for
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each class common features have to be found that are shared among all examples labeled

with the same class. If these features are not only present in the training set, but also

in unseen images having the same class. They can be used to effectively classify novel

images. Since low-level appearance often varies vastly among images depicting the same

semantic classes, e.g. cars might be shown in a variety of different colors and shapes. Such

features rather need to correspond to high-level properties of semantic entities.

In unsupervised approaches only unlabeled images are given. And conclusions about

their semantic content has to be done solely from their visual appearance. This is generally

considered as an inherently difficult task. Since the visual appearance of image areas can

differ vastly even if semantically similar objects are shown. Just consider the semantic

class of persons as an example, persons can have different skin color, texture of clothing

and shape of hair. Therefore images of persons might cover a vast range of differences in

color, texture or shape. And consequently simply observing such low-level features is not

sufficient for effective semantic interpretation, rather a high-level understanding of images

is required.

Only recently, promising progress has been made in the area of unsupervised image

representation learning. Hjelm et al. [42] proposed a method for extracting high-level

information from images without any human supervision. Their Local Deep InfoMax

architecture incorporates an image encoder that extracts multiple local and a single global

feature of an image. The local features encode individual image patches, and the global

feature the entire image. Provided that the features of both types, i.e. the local and

global, are of limited capacity. Hjelm et al. [42] showed that the global feature contains

a high-level representation of the image when its average mutual information with all

local features is maximized. Their approach operates entirely unsupervised. And mutual

information maximization is done by using a similar approach as proposed by Belghazi

et al. [8]. That showed how mutual information between high-dimensional continuous

random variables can be estimated using variational lower bounds parametrized by an

ANN .

While Hjelm et al. [42] proposed how to effectively extract high-level information from

images with an entirely unsupervised approach. They did not further investigate how to

incorporate their approach in a way to solve practical tasks, e.g. image classification or

segmentation, in an unsupervised manner. To validate that their representations contain

in fact high-level semantic image information they simply used them as input for shallow

supervised classifiers. While their results are highly relevant, the gap to methods that

perform practical tasks entirely unsupervised has yet to be closed. And this is exactly

what we aim to do in this work. Even though our model is vastly different to Local

DeepInfo Max, some major considerations in our work are still based on the results from

Hjelm et al. [42].

The main steps of our method on unsupervised semantic image segmentation can

be summarized as following. For a given input image we calculate local features, each

covering overlapping image patches. As well as multiple high-level features, each covering
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the entire image. The number of high-level features is determined by the number of

given semantic classes, and each high-level feature should encode features of one semantic

class. To segment images, we then assign image areas that are covered by local features

with high mutual information to the same semantic segments. And to learn the features,

we maximize during training the mutual information between each local feature and the

high-level feature it has the largest mutual information with.

1.3 Contribution and Outline

In this work we propose a novel framework for unsupervised semantic image segmentation

based on mutual information maximization across different image representations. Our

architecture uses solely unlabeled images, and scales arbitrarily to any number of semantic

classes. Training starts from randomly initialized weights, i.e. we do not use any pre-

trained backbone networks. And we demonstrate both quantitatively and qualitatively

that our proposed method is able to extract semantic segmentations for given input images

without requiring any annotations.

For evaluation we use two datasets, whereby both are subsets of the well-known COCO

[76] dataset. The first is COCO-Stuff [12], which has previously been proposed as a

benchmark for unsupervised semantic image segmentation. And the second is COCO-

Persons, which we propose as an additional benchmark. Compared to the current state-

of-the-art: Invariant Information Clustering (IIC) [51] we achieve a relative increase in

pixelwise-accuracy of about 31% in COCO-Stuff. Furthermore we also illustrate and

discuss several problems that occur at the quantitative evaluation of entirely unsupervised

image segmentation methods.

This work is structured as following. In Chapter 2 we first introduce the concept of

mutual information together with all prerequisites from information and probability the-

ory, followed by a thoroughly discussion of several recently proposed approaches on mutual

information estimation. Chapter 3 contains an introduction about ANNs, including an

overview of Convolutional Neural Network (CNN) based methods that tackle semantic im-

age segmentation. Then we thoroughly introduce our approach on unsupervised semantic

image segmentation in Chapter 4. Followed by an extensive quantitative and qualitative

evaluation of our results in Chapter 5. Finally, in Chapter 6 we will give a conclusion of

our work, and propose several suggestions for future improvements.
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Mutual Information

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Mutual Information estimation . . . . . . . . . . . . . . . . . . . 15

2.5 Applications in Computer Vision . . . . . . . . . . . . . . . . . . 24

2.1 Introduction

Mutual information models dependencies between random variables, and has been success-

fully used in a wide range of domains such as quantum physics [134], analysing financial

markets [33], describing the behaviour of chaotic systems [34] or predicting the progres-

sion of alzheimer’s disease [31]. It also plays a crucial role in the theory behind modern

Deep Neural Networks (DNNs) [108, 125], as well as in many practical DNN architectures

[42, 51, 127]. Unfortunately, the estimation of mutual information is a complex task,

especially for high-dimensional continuous random variables. Only recently, promising

progress has been made in this area by utilizing variational bounds on mutual information

parametrized by DNNs [8], these approaches are essential for this work and thoroughly

discussed in this section.

We start this section by introducing preliminary concepts of probability and infor-

mation theory in Section 2.2 respectively Section 2.3. Followed by a review of several

approaches on mutual information estimation in Section 2.4. Finally in Section 2.5 we will

discuss recent work incorporating mutual information for unsupervised image segmenta-

tion [51] and unsupervised image representation learning [42].

7
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2.2 Probability Theory

2.2.1 Introduction

We start with the definition of the sample space Ω that is a set containing all possible

outcomes of a random experiment, and denote a single element of the sample space as

sample point ω ∈ Ω. A random variable X is then defined as a function from the sample

space Ω to the set of real numbers R:

X : Ω→ R. (2.1)

We call X(ω) a realization of the random variable X, and the set X containing all real-

izations the support set X of X. Furthermore an event E is defined as a subset of the

sample space i.e. E ⊆ Ω.

If the support X of a random variable X is a countable set, X is denoted as a discrete

random variable. In this case we use uppercase P(x) to denote the probability that X

takes the value x, whereby:

P (x) ∈ [0, 1] ∀x ∈ X and
∑
x∈X

P (x) = 1, (2.2)

and P (X) is called the probability mass function. In the other case, when the support

X of a random variable X is not a countable set, X is denoted as a continuous random

variable. The probability that X takes the value x is then denoted by lowercase p(x),

whereby:

p(x) ∈ [0, 1] ∀x ∈ X and

∫
X
P (x)dx = 1, (2.3)

and p(X) is called the probability density function.

2.2.2 Expectation

If a discrete random variable X is drawn from P (x), the expected value of X is defined

as:

Ex∼P (x)[X] =
∑
x∈X

x · P (x). (2.4)

The expectation is the average value of all possible values of X weighted by their respective

probabilities. Note that we might also write EP (x)[X] instead of Ex∼P (x)[X] if it is clear

from the context which variable is drawn from the distribution. Furthermore we can also

calculate the expected value of a function f(X) of the random variable X:

EP (x)[f(X)] =
∑
x∈X

f(x)P (x). (2.5)
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And if X is a continuous random variable the expectation can be computed as follows:

Ep(x)[f(x)] =

∫
X
f(x)p(x)dx. (2.6)

Given a constant k the following properties of the expectation operator hold:

E[kX] = kE[X] E[X ± k] = E[X]± k. (2.7)

Furthermore, if two random variables X and Y are independent, the following factorization

holds:

E[XY ] = E[X]E[Y ]. (2.8)

An important theorem when working with expectations of random variables is Jensen’s

Inequality. Given a random variable X and a convex function f then:

f(E[X]) ≤ E[f(X)]. (2.9)

And furthermore if f is a concave function, then:

f(E[X]) ≥ E[f(X)]. (2.10)

2.3 Information Theory

The field of Information Theory was established in 1948 when Claude Shannon published

his article: A Mathematical Theory of Communication [111]. Shannon for the first time

proposed quantitative models that allow to describe communication as a statistical process.

While his concepts were initially proposed to be used for applications in communication

systems, like compression or determining the error rate of noisy channels, the fundamental

concepts of Information Theory are nowadays applied in a wide range of fields like Physics,

Mathematics or Medicine and, most importantly for this work, also in Machine Learning.

In the following sections we will introduce the most important quantities of Information

Theory including mutual information in Section 2.3.7.

2.3.1 Self-information

The first quantity of Information Theory we introduce is the self-information I(x) of an

event x, which is given as:

I(x) = − logP (x). (2.11)

If the logarithm is calculated with base 2 the self-information is measured in bits, and if

the logarithm has base e it is measured in nats.

Self-information is used to quantify how much information we gain from observing

an event x, and it is inversely proportional to the probability of observing that event.
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Therefore if we observe an event with low probability we gain a high amount of information,

and contrarily if we observe a more likely event we gain a lower amount of information.

This already represents one of the most important concepts of Information Theory: The

observation of an unlikely event is more informative than the observation of a likely event.

Often self-information is also referred to as a measure of uncertainty of an event i.e.

the uncertainty about a likely event is low and the uncertainty about an unlikely event is

high.

2.3.2 Entropy

While self-information considers the outcome of a single event x, entropy measures the

amount of uncertainty in an entire probability distribution. It is defined as the expected

value of the self-information over a probability distribution P , therefore it is for a discrete

random variable X calculated as following:

H(X) = EP (x)[I(X)]

= EP (x)[− logP (x)]

= −
∑
x∈X

P (x) logP (x).

(2.12)

The entropy is always positive and it is upper bounded by the cardinality of X i.e. 0 ≤
H(x) ≤ |X |. Similarly we can also calculate entropy for a continuous random variable

X, in this case it is also referred to as differential entropy h(X) and can be calculated as

following:

h(X) = −
∫
X
p(x) log p(x). (2.13)

A simple example about entropy can be made by modeling the outcome of a coin toss.

Considering a biased coin modeled by the discrete random variable X that takes values

out of the set X = {Tails,Heads}, and the respective probabilities P (X = Heads) = q and

P (X = Heads) = 1− q. We can calculate the entropy of X as following:

H(X) = −q log q − (1− q) log(1− q). (2.14)

Figure 2.1 shows the value of H(X) as a function of q, it can be seen that the maximum

amount of information is present when when observing a fair coin toss i.e. P (X = Heads) =

P (X = Tails) = 0.5. Contrarily observing a biased coin that always shows heads or tails

provides no new information, i.e. there is no uncertainty about the outcome, and therefore

the entropy becomes zero.

In general there are multiple definitions of entropy and we introduced in particular the

Shannon entropy, other definitions include for example the Guessing entropy or the Rényi

entropy. Therefore we note that when we use the term entropy in this work we always

refer to the Shannon entropy.
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Figure 2.1: Entropy H(X) of a coin toss modelled by a random variable X as a function
of P (X = Heads). The entropy is given in bits.

2.3.3 Conditional Entropy

The conditional entropy H(Y |X) measures the amount of additional information we need

to describe the outcome of a random variable Y under the assumption that we already

know the outcome of another random variable X. Given that X and Y have the support

X respectively Y, the conditional entropy is defined as follows:

H(Y |X) = −
∑
x∈X

∑
y∈Y

P (x, y) logP (y|x). (2.15)

An important property of conditioning is that it can only reduce the entropy, therefore:

H(Y |X) ≤ H(Y ), (2.16)

with equality iff X and Y are independent. Intuitively this means knowing the content of

a random variable can only decrease the uncertainty about another random variable, but

never increase it.

As for the entropy, there also exists a counterpart of the conditional entropy for con-

tinuous random variables. Given the continuous random variables X and Y with the

respective supports X and Y the conditional differential entropy h(Y |X) is defined as:

h(Y |X) = −
∫
X

∫
Y
p(x, y) log p(y|x)dxdy. (2.17)
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2.3.4 Cross-entropy

Given two distribution P and Q the cross-entropy of P relative to Q is defined as:

H(P,Q) = EP (x)[− logQ(X)]

= −
∑
x∈X

P (x) logQ(x). (2.18)

Apparently the definition of cross-entropy is similar to that of entropy, with the difference

that the expected value is calculated with respect to an additional distribution. We can

interpret cross-entropy as the number of bits required to explain the difference of two

probability distributions, and consequently it is commonly used to measure the difference

between two probability distributions. Furthermore the cross-entropy is always larger than

entropy, except when P = Q then the cross-entropy is equal to the entropy.

2.3.5 Kullback-Leibler Divergence

Similar as the cross-entropy the Kullback-Leibler (KL) divergence is a similarity measure

between two probability distributions. It is defined as the difference between cross-entropy

and entropy:

DKL(P‖Q) = H(P,Q)−H(P ). (2.19)

And as shown in B.1 we can reformulate equation 2.19 as following:

DKL(P‖Q) =
∑
x∈X

P (x) log
P (x)

Q(x)

= EP (x)

[
log

P (x)

Q(x)

]
.

(2.20)

Similarly for continuous random variables the KL divergence can then be calculated as

following:

DKL(P‖Q) =

∫
x∈X

p(x) log
p(x)

q(x)

= Ep(x)

[
log

p(x)

q(x)

]
.

(2.21)

A typical application of the KL divergence is that a target distribution P and an approx-

imating distribution Q are given, and we want to determine how well Q approximates

P .

Important properties of the KL divergence include that if P = Q it follows that

DKL(P‖Q) = 0 since logP (x) − logP (x) = 0. And if P 6= Q the DKL(P‖Q) is always

positive, as shown in B.1.2. Furthermore it should be noted that the KL divergence is not

symmetric i.e. DKL(P‖Q) 6= DKL(Q‖P ), and therefore not a distance measure.
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Donsker & Varadhan [28] showed that the following dual representation of the KL

divergence holds:

DKL(P‖Q) = sup
f∈F
{Ep(x) [f(x)]− log

(
Eq(x) [exp(f(x))]

)
}, (2.22)

where F includes all functions that give finite values of the two expectations. By consider-

ing Equation 2.26 that shows the relation between KL divergence and mutual information,

Equation 2.22 can be used to lower bound mutual information. This was first done by

Belghazi et al. [8], and we show in Section 2.4.2.1 how the bound of Belghazi et al. can

be derived.

2.3.6 Jensen-Shannon Divergence

Another similarity measure between two probability distributions is the Jensen-Shannon

(JS) divergence:

DJS(P‖Q) =
1

2
(DKL(P‖M) +DKL(Q‖M)) , (2.23)

whereby M is a mixture density of the two probability distributions P and Q:

M =
P +Q

2
. (2.24)

Major differences between the KL divergence and the JS divergence include that the

JS divergence is bounded i.e. 0 ≤ JS(P‖Q) ≤ 1, and furthermore that it is symmetric

i.e. DJS(P‖Q) = DJS(Q‖P ). The JS divergence is therefore also often referred to as a

bounded symmetrization of the unbounded KL divergence.

Nowozin et al. [95] proposed the following variational lower-bound on the JS diver-

gence:

DJS(P‖Q) ≥ sup
T∈T
{EP [− sp (−T (x))]− EQ [sp (T (x))]} , (2.25)

where sp(x) = log (1 + ex) and T is the class of functions under that the expectations

are finite. We show how to derive this bound in Section 2.4.2.2. Furthermore Hjelm

et al. [42] showed that there is a strong monotonically increasing relationship between

DJS(p(x, y)||p(x)p(y)) and I(X;Y ) i.e. the mutual information between two random vari-

ables X and Y . Therefore maximization of the bound given in Equation 2.25 can be used

for mutual information maximization, which has been done successfully in several works

[42, 101, 127].

2.3.7 Mutual Information

Mutual information quantifies the amount of information we gain about one random vari-

able if we observe the outcome of another random variable. For two continuos random

variables X and Y it is defined as the KL divergence between the joint p(x, y) and product
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(c) Nonlinear correlated data
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Figure 2.2: Mutual information I(X;Y ) and pearson correlation ρ of two-
dimensional example datasets. Both quantities indicate a dependency between random
variables with a value unequal zero. In Figure 2.2a and 2.2b both I(X;Y ) and ρ cap-
ture correctly that there is a dependency respectively no dependency between X and Y .
However for the nonlinear correlated data in Figure 2.2c and 2.2d ρ fails to detect any
dependency contrarily to I(X;Y ). Mutual information was estimated using Histograms.

of marginal distributions p(x)p(y):

I(X;Y ) = DKL[p(x, y)||p(x)p(y)]. (2.26)

Considering the definition of the KL divergence we can express Equation 2.26 equivalently

as:

I(X;Y ) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
. (2.27)
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I(X;Y)H(X|Y) H(Y|X)

H(X) H(Y)

Figure 2.3: Venn diagram showing relationships between various information theoretical
measures.

And furthermore, Equation 2.26 can also be rewritten as the difference between the entropy

of X and the conditional entropy of X given Y :

I(X;Y ) = h(X)− h(X|Y )

= h(X) + h(Y )− h(X,Y ).
(2.28)

A visualization of this relationship is shown in Figure 2.3. Note that all of the above

definitions also hold for discrete random variables by replacing the respective quantities.

Mutual information is commonly used to measure dependency between random

variables, and contrarily to the pearson correlation coefficient ρ that only captures

linear dependencies, mutual information also captures nonlinear dependencies. Figure

2.2 shows the mutual information and pearson correlation for several two-dimensional

example datasets.

The following properties hold for mutual information I(X;Y ) of two random variables

X and Y . At first, if X and Y are independent then their mutual information is zero

i.e. I(X;Y ) = 0. This can be shown by considering that for two independent random

variables the joint distribution factors into the marginal distributions p(x, y) = p(x)p(y),

and consequently the KL divergence becomes zero. Secondly, for non-independent random

variables X and Y mutual information is always strictly positive, i.e. I(X;Y ) > 0. Since

knowing the value of one random variable cannot increase the uncertainty about another

random variable. And thirdly, mutual information is symmetric i.e. I(X;Y ) = I(Y ;X).

2.4 Mutual Information estimation

The mutual information of two random variables X and Y can be calculated using Equa-

tion 2.27 if the marginal and joint distributions of X and Y are known. Unfortunately in a

lot of practical applications we have no knowledge of the underlying distributions but only

access to data samples. Consequently a lot of methods have been proposed on estimation

of mutual information using solely data samples [34, 45, 90, 120, 121]. However mutual

information estimation is nontrivial, and especially when working with high-dimensional



16 Chapter 2. Mutual Information

continuous random variables it poses an intricate problem.

In the following we start with an overview on mutual information estimation methods

based on density estimation in Section 2.4.1. While these methods perform well with

low-dimensional data, they all fail at scaling to high-dimensional data. In this area only

recently promising progress has been made by utilizing variational bounds parametrized by

DNNs [8]. Most importantly the Donkser & Varadhan bound on the KL divergence [28],

and the bound proposed by Nowozin et al. [95] on the JS divergence. We introduced both

bounds briefly in the previous section and will show how they can be derived in Section

2.4.2.1 respectively Section 2.4.2.2. Afterwards we will discuss the Mutual Information

Neural Estimator (MINE) proposed by Belghazi et al. [8] in section 2.4.3. The MINE

is based on the Donkser & Varadhan bound on KL divergence, utilizes an end-to-end

trainable DNN architecture and was proposed to be linearly scalable in dimensionality as

well as in sample size. While Belghazi et al. primarily used toy problems to demonstrate

the effectiveness of MINE , local Deep InfoMax a recent follow-up by Hjelm et al. [42]

showed how to do unsupervised image representation learning based on ideas introduced

in MINE . We discuss local Deep InfoMax together with Invariant Information Clustering

(IIC) [51] in Section 2.5.2 respectively 2.5.1. IIC is a recently proposed clustering algo-

rithm that relies on exact mutual information computation of discrete low dimensional

random variables, which can be used for unsupervised semantic image segmentation.

Throughout this section we will consider the following setting. Given N pairs of

samples of the joint distribution p(x, y) from two random variables X and Y as S =

{(xi,yi)|xi ∈ RD,yi ∈ RD)}Ni=1, we want to calculate an estimate of the mutual informa-

tion between X and Y i.e. Î(X;Y ). Note that even though that S has been sampled from

the joint distribution p(x, y), we can also create samples from the product of marginal

distribution p(x)p(y) by simply pairing a xi with another randomly selected yj from S.

2.4.1 Density based mutual information estimation

Since knowledge of the underlying densities allows exact computation it seems natural to

tackle mutual information estimation by computing estimates of the underlying densities,

i.e. p̂ (x,y), p̂ (x) and p̂ (y). Density estimation is a well studied subject in statistics

and consequently various approaches have been made to apply it for mutual information

estimation. In particular we will discuss Histograms in Section 2.4.1.1, Kernel Density

Estimation (KDE) in Section 2.4.1.2, Density Ratio Estimation in Section 2.4.1.3 and the

Edgeworth expansion in Section 2.4.1.4.

2.4.1.1 Histograms

One of the simplest density estimation methods are Histograms, and Fraser et al. [34]

have been the first who proposed to use it for Mutual Information (MI) estimation. To

create the respective density estimates we first partition the data samples into bins, then

count the number of samples that fall within each bin, and finally turn the bin counts into
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probabilities by dividing them through the total number of samples. Note that while in

principle this approach can be used for any arbitrary dimension D, we will focus on D = 1

in the following for the ease of notation.

We first define the boundaries of K bins by their positions:

tk = o+ (k − 1)h ∀k = 1, . . . (K + 1), (2.29)

where h is the width of each bin, and o the origin. Then the number of samples from X

respectively Y that fall in the k-th bin are given as ak respectively bk:

ak = | {xi : tk−1 ≥ xi > tk}Ni=1 |, bk = | {yi : tk−1 ≥ yi > tk}Ni=1 |. (2.30)

And furthermore we also count the number of joint occurrences where X lies in the j-th

and Y in the k-th bin:

cjk = | {(xi, yi) : tj−1 ≥ xi > tj and tk−1 ≥ yi > tk}Ni=1 |. (2.31)

Finally we normalize all counts by N and insert the resulting density estimates into Equa-

tion 2.40, a mutual information estimate can then be calculated by:

Î(X;Y ) = logN +
1

N

K∑
k

K∑
j

cjk log
cjk
akbj

. (2.32)

A major drawback of histogram density estimation is that the choice of the bin width

h and the origin o have a significant impact on the estimate [113]. Even though several

approaches have been made on how to automatically select those parameters, e.g. by

Legga et al. [72], up to now there exists no universally applicable approach.

Histogram based MI estimation is commonly used in multimodal image registration,

for example in medical image analysis where images from one modality like Magnetic

Resonance Imaging (MRI) need to be combined with images from another modality like

Computed Tomography (CT). In general these images are recorded in different coordinate

systems and therefore need to be aligned properly. A comprehensive review of mutual

information in image registration can be found in [98].

2.4.1.2 Kernel Density Estimation

Another well studied approach for density estimation is KDE , and it was first proposed

by Moon et al. [90] to use it for mutual information estimation.

The resulting mutual information estimator is simply given by replacing all densities

in Equation 2.27 with respective estimates:

Î(X;Y ) =
1

N

N∑
i=1

log
p̂ (xi,yi)

p̂ (xi) p̂ (yi)
, (2.33)
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where each of these estimates is created using KDE . Simply put, in KDE a kernel is placed

on each sample and the density estimate is then given by the sum of these kernels. For

example if a Gaussian kernel is used, an estimate for the marginal density of X is given

as:

p̂(x) =
1

NhD
√

(2π)D|Σ|

N∑
i=1

exp

(
−(x− xi)

T Σ−1 (x− xi)

h2

)
, (2.34)

where h controls the kernel width and Σ is the covariance matrix. Both p̂(y) and p̂(x,y)

can be calculated similarly, and approaches on selecting h and Σ appropriately have been

discussed by Moon et al. [90].

A general problem when using KDE is the curse of dimensionality. The number of

required samples N to estimate a density up to a certain accuracy grows exponentially with

the dimension D. Considering we can estimate a density up to a certain accuracy when

N = 50 and D = 1, more than N = 106 observations are required if D = 10 to achieve the

same accuracy [92]. Even though several methods have been proposed that try to overcome

the curse of dimensionality, all of them come with additional assumptions or restrictions.

For example [78] depends on a sparsity condition of the unknown density function, or [92]

assumes a simplified vine copula model for the dependence between variables.

2.4.1.3 Density Ratio Estimation

Up to now all approaches we discussed relied on individual estimation of the densities

p(x), p(y) and p(x,y). However if we consider Equation 2.27 we can see that mutual

information involves evaluation of the following density ratio:

w(x,y) =
p(x,y)

p(x)p(y)
. (2.35)

For a lot of problems it has been shown that the estimation of a density ratio can be less

difficult compared to separate density estimation [118], this is utilized by Maximum Like-

lihood Mutual Information (MLMI) [120] and Least-Squares Mutual Information (LSMI)

[121]. Both calculate an estimate of the density ration ŵ(x,y) and then estimate mutual

information as following:

Î(X,Y ) =
1

N

N∑
i=1

log ŵ (xi,yi) . (2.36)

In particular, MLMI estimates the density ratio w(x,y) with a linear combination of

B basis functions:

ŵ(x,y) = α>ϕ(x,y), (2.37)

where the basis functions are defined as:

ϕ(x,y) = (ϕ1(x,y), ϕ2(x,y), . . . , ϕB(x,y))> . (2.38)
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Furthermore the respective weights of each basis function are given as

α = (α1, α2, . . . , αB)>, and log-likelihood maximization is used to learn the weights.

2.4.1.4 Edgeworth Expansion

Despite knowing the densities, mutual information can also be calculated when the en-

tropies h(X), h(Y ) and h(X,Y ) are known, as shown in equation 2.28. This was utilized

by Hulle et al. [45] to propose mutual information estimation by approximating these

entropies using the the Edgeworth expansion. Unfavorably the Edgeworth expansion as-

sumes that the target density is Gaussian, and therefore this approach is only suitable if all

densities follow a Gaussian distribution. Furthermore the computation of the Edgeworth

expansion is only tractable for very low-dimensional data.

2.4.2 Variational Bounds

In the following we will show how the Donsker & Varadhan bound on the Kullback Leibler

divergence [28] and the Nowozin bound on the Jensen Shannon divergence [95] can be

derived. A comprehensive review of variational bounds of mutual information can be

found in [99]. Furthermore we give in Section 2.4.2.3 a short review about the results from

McAllester and Statos [87] that derived some theoretical limitations regarding any lower

bound on mutual information.

2.4.2.1 Donsker & Varadhan Bound on the Kullback-Leibler Divergence

The Donsker & Varadhan bound on the Kullback Leibler divergence [28] was used as

following by Belghazi et al. [8] for the MINE to lower bound mutual information:

I(X;Y ) ≥ sup
f :X×Y→R

{
Ep(x,y)[f(x, y)]− log

(
Ep(x)p(y)

[
ef(x,y)

])}
. (2.39)

To derive this bound we start with the definition of mutual information given in Equation

2.27 and apply the chain rule of probability:

I(X;Y ) = Ep(x,y)

[
log

p(x|y)

p(x)

]
. (2.40)

By introducing an arbitrary variational distribution q(x|y) we get:

I(X;Y ) = Ep(x,y)

[
log

q(x|y)

p(x)

p(x|y)

q(x|y)

]
. (2.41)
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Applying the law of total expectation gives:

= Ep(x,y)

[
log

q(x|y)

p(x)

]
+ Ep(y)

[
Ep(x|y)

[
log

p(x|y)

q(x|y)

]]
(2.42)

= Ep(x,y)

[
log

q(x|y)

p(x)

]
+ Ep(y) [DKL(p(x|y)‖q(x|y))] . (2.43)

And due to the non-negativity of the KL divergence the following inequality holds:

I(X;Y ) ≥ Ep(x,y)

[
log

q(x|y)

p(x)

]
(2.44)

= Ep(x,y) [log q(x|y)] + Ep(x,y) [− log p(x)] (2.45)

= Ep(x,y) [log q(x|y)] + h(X), (2.46)

whereby we note that equality is achieved when q(x|y) = p(x|y). This lower bound

on mutual information has already been introduced by Barber & Agakov [7], and is for

example used in InfoGan [17]. Unfortunately still evaluation of q(x|y) and h(X) is required,

which is in general often untractable. However we can get rid of this dependency by using

the following energy based distribution for q(x|y):

q(x|y) =
p(x)

Z(y)
ef(x,y) Z(y) = Ep(x)

[
ef(x,y)

]
, (2.47)

where f(x, y) : X × Y → R. Inserting this distribution into equation 2.46 gives:

I(X;Y ) ≥ Ep(x,y)

[
log

p(x)

Z(y)
ef(x,y)

]
+ h(X) (2.48)

= Ep(x,y)

[
log

ef(x,y)

Z(y)

]
+ Ep(x) [log p(x)]− Ep(x) [log(p(x))] (2.49)

= Ep(x,y)[f(x, y)]− Ep(y)[logZ(y)]. (2.50)

Using Jensen’s inequality to state Ep(y) [log(Z(y))] ≤ log(Ep(y)[Z(y)]) gives:

I(X;Y ) ≥ Ep(x,y)[f(x, y)]− log(Ep(y)[Z(y)]) (2.51)

= Ep(x,y)[f(x, y)]− log
(
Ep(x)p(y)

[
ef(x,y)

])
. (2.52)

And since the inequality holds for any function f we can write:

I(X;Y ) ≥ sup
f :X×Y→R

{
Ep(x,y)[f(x, y)]− log

(
Ep(x)p(y)

[
ef(x,y)

])}
, (2.53)

which is again Equation 2.39.
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2.4.2.2 Nowozin Bound on the Jensen Shannon Divergence

Hjelm et al. [42] used the following bound on the JS divergence in DeepInfomax.

DJS(p(x, y)‖p(x)p(y)) ≥ Ep(x,y)[− sp(−T (x, y))]− Ep(x)p(y) [sp (T (x, y))] , (2.54)

where sp = log (1 + ex). Note that we already discussed the relationship between the JS

divergence and mutual information in Section 2.3.6. A general formulation, valid for any

two arbitrary distributions P and Q, of this bound was first proposed by Nowozin et al.

[95] and in the following we show how to derive it. We start with the definition of the

f-divergence, which is a measure of difference between two probability distributions P and

Q:

Df (P‖Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx, (2.55)

where f : R+ → R is a convex lower-semicontinuous function such that f(1) = 0. Note that

many common divergences used to measure differences between probability distributions

are just special cases of the f-divergence. For example the KL divergence as given in

Equation 2.21 can be derived by letting:

f(u) = u log(u), (2.56)

and the JS divergence as given in Equation 2.25 can be derived by letting:

f(u) = −(u+ 1) log

(
1 + u

2

)
+ u log (u) . (2.57)

At next we note that the convex conjugate f∗ for a lower-semicontinuos function f is given

as following [41]:

f∗(t) = sup
u∈dom(f)

{ut− f(u)}. (2.58)

Considering that f∗ is also convex and lower-continuous, and that f∗∗ = f we can also

represent f as following [95]:

f(u) = sup
t∈dom(f∗)

{tu− f∗(t)} . (2.59)

Inserting this into Equation 2.62 gives:

Df (P‖Q) =

∫
X
q(x) sup

t∈dom(f∗)

{
p(x)

q(x)
· t− f∗(t)

}
dx (2.60)
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If we let T be an arbitrary class of functions V : X → R and use Jensen’s inequality, the

following lower bound holds:

Df (P‖Q) ≥ sup
V ∈T

{∫
X
q(x)

(
p(x)

q(x)
· V (x)− f∗(V (x))

)
dx

}
(2.61)

= sup
V ∈T
{EP [V (x)]− EQ [f∗(V (x))]} . (2.62)

This lower bound on the f-divergence was first proposed by Nguyen et al. [94], and we

followed for derivation closely the work of Nowozin et al. [95]. Furthermore Nowozin

et al. proposed that the JS divergence can be restored from the bound by using f∗ =

− log
(
2− et

)
and V (x) = log 2−log (1 + exp(−T (x)), inserting these identities into Equa-

tion 2.62 gives:

DJS(P‖Q) ≥ sup
T∈T

{
EP
[
log 2− log

(
1 + e−T (x)

)]
− EQ

[
− log

(
2− elog 2−log(1+e−T (x))

)]}
(2.63)

= sup
T∈T

{
EP
[
log 2− log

(
1 + e−T (x)

)]
− EQ

[
− log

(
2− 2

1 + e−T (x)

)]}
(2.64)

= sup
T∈T

{
log 2 + EP

[
− log

(
1 + e−T (x)

)]
− EQ

[
log
(

1 + eT (x)
)]

+ log 2
}

(2.65)

And using the definition of the softplus function sp(x) = log (1 + ex) gives:

DJS(P‖Q) ≥ sup
T∈T
{2 log 2 + EP [− sp (−T (x))]− EQ [sp (T (x))]} (2.66)

≥ sup
T∈T
{EP [− sp (−T (x))]− EQ [sp (T (x))]} . (2.67)

Equation 2.54 can then simply be restored by letting P and Q be the joint respectively

product of marginal distributions of two random variables X and Y .

2.4.2.3 Formal Limitations

McAllester and Statos [87] pointed out some general limitations of any lower bound on

KL divergence. Since according to Equation 2.26 mutual information is equal to the

KL divergence between the joint p(x, y) and product of marginal distributions p(x)p(y)

of two random variables X and Y , this limitations also apply to any bound on mutual

information.

While in their results McAllester & Statos [87] assumed that the marginal distribution

p(x) of X is fully known, resulting in an even stricter limitation. We will show in the

following a slight reformulation provided by Ozair et al. [96] of the original result from

McAllester & Statos, where p(x) is assumed to be unkown:
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Theorem 1. Let p(x) and q(x) be two distributions, and R = {xi ∼ p(x)}Ni=1 and S =

{xi ∼ q(x)}Ni=1 be two sets of N samples from p(x) and q(x) respectively. Let δ be a

confidence parameter, and let B(R,S, δ) be a real-valued function of the two samples S

and R and the confidence parameter δ. We have that, if with probability at least 1− δ,

B(R,S, δ) ≤ KL(p(x)‖q(x))

then with probability at least 1− 4δ we have

B(R,S, δ) ≤ log n.

This means at least N = exp(I(X;Y )) samples are required for any lower-bound on

mutual information to achieve equality with high confidence. In other words, the number

of required samples grows exponentially with the value of mutual information.

Even though the results from McAllester & Statos pose a strong theoretical limitation

of lower bounding mutual information, it is not clear how strongly these limitations affect

performance in practical applications. Despite these limitations, several works have been

published recently that achieved promising performance incorporating mutual information

estimation similar as proposed by MINE [31, 42, 101, 127]. We attribute this to the fact

that none of these methods relies on exact numerical estimates of mutual information,

but rather all pursue the objective of maximizing mutual information of different data

representations. In this setting also less accurate estimates might be sufficient.

2.4.3 Mutual Information Neural Estimation - MINE

Belghazi et al. [8] proposed to lower-bound mutual information using the Donsker &

Varadhan bound on KL divergence parametrized by a DNN . Their MINE can be obtained

if we let f in Equation 2.53 be a DNN parametrized by θ ∈ Θ denoted as fθ(x, y) : X×Y →
R:

Î(X;Y ) = sup
θ∈Θ

Ep(x,y) [fθ(x, y)]− log
(
Ep(x)p(y)

[
efθ(x,y)

])
. (2.68)

In the following we will denote the lower-bound on mutual information resulting from

Equation 2.68 as:

V(θ) = Ep(x,y) [fθ(x, y)]− log
(
Ep(x)p(y)

[
efθ(x,y)

])
. (2.69)

To estimate mutual information at first a set of parameters θ∗ that maximizes V(θ) is

obtained, and then an estimate is given by evaluating V(θ∗). Note that V(θ) is maximized

if the network fθ assigns high values to sample pairs drawn from the joint distribution

p(x, y), and low values to sample pairs drawn from the product of marginal distributions

p(x)p(y). Therefore we can consider fθ as a discriminator.
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When training the MINE , one should consider that the gradient of V(θ) is:

∇θV(θ) = Ep(x,y) [∇θfθ(x, y)]−
Ep(x)p(y)

[
∇θfθ(x, y)efθ(x,y)

]
Ep(x)p(y)

[
efθ(x,y)

] . (2.70)

And if mini-batch based approaches like Stochastic Gradient Descent (SGD) are used to

maximize V(θ), the resulting gradient estimates of the second term are biased. Therefore

Belghazi et al. [8] suggested to replace the denominator of the second term with an

exponential moving average to reduce the bias. Furthermore they also proposed a second

bound on mutual information denoted as MINE-f that does not suffer from a biased

gradient. However, the bound is less tight than MINE .

2.5 Applications in Computer Vision

While in the previous sections we have introduced several approaches on mutual infor-

mation calculation and estimation, in this section we focus on practical applications. In

particular we discuss IIC [51] in Section 2.5.1, and local Deep InfoMax [42] in Section

2.5.2.

IIC is a recently introduced method for unsupervised semantic segmentation. Similar

to our approach, IIC is also based on the maximization of mutual information. However,

we pursue a fundamentally different concept. While IIC maximizes the mutual informa-

tion between discrete random variables modeling the class assignments, we maximize the

mutual information between high-dimensional continuous random variables that model

the semantic content visible in the image. While in IIC the mutual information is simply

calculated exactly. Our approach requires a complex estimator based on MINE . We will

show in our experiments that our approach performs significantly better than IIC .

Local Deep InfoMax is a recently introduced method for unsupervised image represen-

tation learning, and our approach to learn high-level representations of image segments

builds up on it. It is important to note that in Deep InfoMax the downstream task image

classification is not done unsupervised, only image representations, i.e. high-dimensional

embeddings, are learned unsupervised. This is a strong restriction regarding practical

usability of Deep InfoMax, since high-dimensional representations of images yet alone are

of limited usefulness. In contrast, in our work we perform unsupervised semantic image

segmentation entirely end-to-end.

2.5.1 Invariant Information Clustering

In general IIC [51] is a generic clustering algorithm based on mutual information maxi-

mization. And while it also has been shown that IIC can be used for image clustering,

we will focus on unsupervised semantic image segmentation in the following, since this

application is the most relevant to our work.
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Given N RGB images {x(i) ∈ R3×H×W }Ni=1 and image patch centers u ∈ Ω =

{1, . . . ,H} × {1, . . . ,W}. A Convolutional Neural Network (CNN) Φθ with parameters

θ takes an image x as input, and predicts for each image patch xu centered at u a class

probability vector zu ∈ [0, 1]K , where K denotes the number of classes. Furthermore

we use Z to denote a discrete random variable taking values over K = {ki}Ki=1 and let

P (Z = ki|xu) = zu,i where zu,i is the i-th entry of zu. Note that a semantic segmentation

of an input image x can be obtained by letting P (Z = ki|xu) = zu,i model the class

probabilities for the corresponding pixels at the position u.

To train the network, randomly perturbed versions x′ = gx of training images are

created, and the respective predictions are denoted as z′u. The perturbations g used by

IIC include geometric transformations such as image rotation, scaling, skewing or flipping

or photometric transformations such as random jittering of image contrast, saturation or

brightness. The training objective is to maximize the mutual information between the

class predictions of the perturbed and of the unperturbed patches for all images and patch

centers:

max
θ

1

N |Ω|
N∑
i=1

∑
u∈Ω

I(z(i)
u ; g−1z′(i)u ), (2.71)

where g−1 reverses geometric transformations. Additionally, IIC also enforces local spatial

invariance of the pixel-wise predictions by maximizing the mutual information not solely

between predictions of perturbed and unperturbed patches, but also between predictions

of adjacent image patches. For clarity we omitted this in equation 2.71.

Using Equation 2.28 we can see that the training objective of IIC given in Equation

2.71 is equal to the following:

max
θ

1

N |Ω|
N∑
i=1

∑
u∈Ω

H(z(i)
u )−H(z(i)

u |g−1z′(i)u ). (2.72)

Therefore for each image, IIC maximizes the entropy H(z
(i)
u ) while the conditional entropy

H(z
(i)
u |g−1z

′(i)
u ) is minimized. Minimizing H(z

(i)
u |z′(i)u ) causes the pixel-wise predictions

of the perturbed images to contain as much information as possible about the predictions

of the unperturbed images. Since even though we have no knowledge about the ground-

truth segmentations, we know that the segmentations of an unperturbed image x(i) and

the perturbed version x′(i) should be similar. This holds under the condition that the

perturbation g does not change the semantic content of the image. Note that H(z
(i)
u |z′(i)u )

can simply be minimized if all pixels of all images are assigned to the same segment.

However such degenerate solutions are avoided by the additional maximization of H(z
(i)
u ),

which is maximized if all classes are assigned with equal probability.
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2.5.2 Local Deep InfoMax

Local Deep InfoMax [42] performs unsupervised image representation learning by simulta-

neous estimation and maximization of high-dimensional continuous local and global image

features. Mutual information estimation and maximization is done similar as proposed by

MINE [8].

Given N RGB images {x(i) ∈ R3×H×W }Ni=1, for each image local and global features

are computed using a CNN parametrized by θ. At first local features covering overlapping

image patches are computed by Cθ(x) = {C(i)
θ }M×Mi=1 , where M2 is the number of total

local features. Then all local features are summarized to a global feature covering the

entire image by computing Eθ(x) = Fθ ◦ Cθ(x), where Fθ denotes a convolutional block

and ◦ the function composition operator. The objective of Local Deep InfoMax is to find

a configuration of the parameters θ such that the global feature calculated by Eθ(x(i))

contains a high-level representation of the input image x(i). To achieve this, Local Deep

InfoMax maximizes the average mutual information between the local and global features:

max
θ

1

M2

M2∑
i=1

Îθ
(
C

(i)
θ (X);Eθ(X)

)
, (2.73)

where Îθ denotes a mutual information estimator between local and global features.

Intuitively we can explain the training objective given in Equation 2.73 as follows.

Assuming that the global feature is of limited capacity, the encoder can not simply copy

the entire content from all local features into the global feature, but rather needs to decide

which information is passed forward. Furthermore to maximize mutual information with

all local patches, the global feature needs to contain information that is shared across as

many patches as possible to minimize the loss. This encourages the encoder to extract

high-level information into the global feature, and discard semantically uninformative

information like noise that is only locally present.

Mutual information estimation is done using the Nowozin lower-bound on the JS

divergence, which we already introduced in Section 2.4.2.2. Hjelm et al. [42] mainly

motivated their choice of using a JS divergence bound instead of the Donsker & Varadhan

KL divergence bound as proposed by MINE [8], by stating that it led to generally more

stable performance during training. The resulting estimator is given as follows:

Îθ(Cθ(X);Eθ(X)) =Ex∼p(x) [− sp (−Tθ (Cθ(x), Eθ(x)))]

− Ex∼p(x),x′∼p(x)

[
sp
(
Tθ
(
Cθ(x′), Eθ(x)

))]
,

(2.74)

where Tθ is a discriminator that takes a pair of local and global features as input and

returns a scalar. Note that while in the first expectation term the local and global fea-

tures are both calculated from the same image x, in the second expectation term two

independently sampled images are used i.e. x′ and x. This means Equation 2.73 is max-

imized if the discriminator Tθ assigns high values to a pair of local and global features
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Feature calculation

Local features

Global feat.

Figure 2.4: Local Deep InfoMax. Feature calculation: Each image is passed through
Cθ to calculate a M×M map of local features. The global feature of x is calculated by
Fθ. Discriminator Tθ: The discriminator score between x and x′ is calculated by a dot
product of the respective embedded local and global features. Bright colors indicate a large
dot-product and dark colors a small dot-product. dot denotes a pointwise dot-product, fcn
denotes a fully-connected layer and 1×1 a 1×1 convolutional layer.

both calculated from the same image, and low values if they are calculated from different

images.

In general the discriminator Tθ can be any arbitrary function, e.g. a CNN , that takes a

pair of features as input and outputs a real-valued score. However it should be considered

that the function needs to be calculated separately for every feature pair to evaluate.

Hjelm et al. proposed to calculate the score of two given features by first encoding them

through some additional layers, and then calculating the dot-product of the respective

feature encodings. Therefore, only a single forward pass through the network has to be

done, and then the score of any arbitrary feature combination can be efficiently calculated

by the respective dot-product.

Hjelm et al. [42] used the following procedure to evaluate the suitability of the high-

level features learned by local Deep InfoMax for image classification. At first, they trained

the network as described previously using a set of unlabeled images. Then they trained

supervised image classifiers taking the high-level features as input, in particular a Support

Vector Machine (SVM) and a Multi Layer Perceptron (MLP) with a single hidden layer of

200 neurons. This was repeated with representations of other unsupervised representation

learning approaches and the final classification performance of local Deep InfoMax was

superior compared to all other tested methods. For this evaluation the CIFAR-10 [65],

CIFAR-100 [65], STL-10 [20] and Tiny ImageNet [23] dataset were used.
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3.1 Introduction

Artificial Neural Networks (ANNs) are systems containing a set of artificial neurons that

are roughly inspired by the functionality of biological neurons. While the computations

done by each individual neuron are very simple, it has been shown that ANNs can perform

complex tasks by interconnecting a vast amount of neurons. Today applications where

ANNs are used cover a wide range of areas, including a lot of problems where other

available methods obtain only inferior performance, for example the translation of text

between different languages [56], teaching computers to play the game of Go at a human

level [112], creating complex language models that are able to generate naturally appearing

text [100] or protein structure analysis [110]. Also a lot of areas in computer vision are

currently dominated by ANN based approaches such as semantic image segmentation [16,

105, 122, 138], object detection [36, 114], stereo matching [15, 58, 64] or image denoising

[77].

29
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ANNs can be seen as function approximators that calculate an output by mapping

an input through a set of interconnected artificial neurons. Each individual neuron has a

set of parameters that control what computations it carries out. Consequently if we want

a network to perform a certain task a respective configuration of parameters has to be

found, this process is referred to as training.

How individual neurons are interconnected in an ANN is mainly dependent on the

respective application, and a variety of different architectures have been proposed. Most

of these architectures follow the basic concept of merging multiple neurons into layers, and

use different approaches to connect individual layers. The number of layers is then often

referred to as the depth of the network, and networks with a large depth are called Deep

Neural Networks (DNNs). In this chapter we will describe two common neural network

architectures: Feed Forward Neural Networks (FFNNs) where the input of each layer is

given as the output of its preceding layer, and Convolutional Neural Networks (CNNs)

that can be seen as a variation of FFNNs, which is well suited to process image data.

Besides those two other commonly used architectures are for example: Recurrent Neural

Networks (RNNs) where connections between layers form a directed cycle, or Deep Belief

Networks (DBNs) where connections between layers are undirected.

We will begin this chapter with a brief overview of the history on ANNs in Section

3.2. Then we will introduce artificial neurons and activation functions used by them in

Section 3.3 respectively Section 3.4. Followed by the introduction of FFNN in Section 3.5

and CNNs in Section 3.6. The training of ANN is discussed in section 3.7, and at the end

of this chapter we will give an overview on recent approaches based on CNNs for semantic

image segmentation.

3.2 History

A first mathematical description of an artificial neuron was already introduced in 1943 by

Warren S. McCulloch and Walter H. Pitts [88]. The McCulloch-Pitts (MCP) neuron was

designed to recognize if an input x belongs to one of two different classes. McCulloch and

Pitts proposed to resemble biological neurons by the following simple decision rule:

z(x) =

{
1 if

∑
i xi > Θ

0 otherwise
. (3.1)

Hence, if the sum of the components of an input x is larger than a threshold Θ the neuron

returns one and zero otherwise. The threshold Θ needs to be set manually by a human

operator. Using the proper thresholds a single MCP neuron can be used to represent

simple boolean functions such as OR, AND or NOT.

Following the MCP neuron, in 1958 the Rosenblatt’s single layer perceptron [106] and

in 1960 the Adaptive Linear Element (ADALINE) [133] were introduced. Both models

proposed methods to learn automatically the parameters of an artificial neuron by pro-
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cessing given examples from each class. This largely resembles the concept of supervised

learning as it is commonly used today. Furthermore ADALINE already used a variant of

Stochastic Gradient Descent (SGD) for training, like a lot of modern DNN models.

After these early successes in the 1950s and 1960s a major backlash against research in

ANNs followed, initiated when Marvin Minsky published his book Perceptrons: An Intro-

duction to Computational Geometry [89] in 1969. In this work Minsky drawed attention

to some major flaws concerning all ANN models introduced until then, most famously

that a single-layer perceptron is not able to model a simple XOR function.

While the work of Minsky led to a decline on ANNs research during the 1970s, it gained

again traction in the early 1980s when the connectionism movement emerged. Connec-

tionism evolves around the idea that intelligent behaviour can be achieved when a large

number of simple computational units are networked together. During this time a lot of

concepts have been introduced that are still commonly used today, like an early version

of the back-propagation algorithm introduced by Yann LeCun et al. [70], which allowed

to train an ANN with multiple hidden units to perform handwriting recognition in 1989.

Furthermore also the Long Short-Term Memory (LSTM) cell [43] was introduced in 1997,

which today is used in a wide variety of tasks that require sequence modeling such as

machine translation and speech recognition. However besides these advancements it also

became apparent that ANNs are difficult to train, and the computational resources neces-

sary for many practical applications were simply not available at that time. Consequently

most of the research in machine learning headed towards other fields such as Graphical

Models [53] or Kernel Machines [11, 109], and as a result ANN research declined again.

This second decline in ANN research ended with the introduction of novel methods

and the rising availability of the computational resources required to train deeper ANNs,

respectively DNNs. Already in 2006, G. Hinton et al. [40] introduced a method that

enabled the training of ANNs that were significantly deeper than those used by previous

approaches. It still lasted until 2012 for the widespread adoption of DNNs to start, when

Alex Krizhevsky et al. [66] introduced AlexNet. AlexNet is a CNN based architecture for

image classification that was submitted to the yearly held ImageNet Large Scale Visual

Recognition Challenge (ILSVRC), where it beat all other submissions in 2012 by a large

margin. This was the first approach showing that DNNs perform well at large-scale image

classification tasks. Since then various DNN based methods have been introduced tackling

a huge variety of problems, by far not only limited to image classification.

3.3 Artificial Neurons

The scalar output z of a single artificial neuron is calculated by first doing an affine

transformation of the input x ∈ RD, followed by a nonlinear transformation with an
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Figure 3.1: Visualization of an artificial neuron. Each individual component xi of the
input x is multiplied by a respective weight wi, the weighted components are summed up,
a bias b is added, and the result is passed through an activation function Φ(.) to calculate
the output z.

activation function Φ : R 7→ R:

z = Φ
( D∑
i=1

wixi + b
)
. (3.2)

Consequently the output of an artificial neuron depends on weights w ∈ RD and bias

b ∈ R of the affine transformation, and the activation function Φ. During training usually

the parameters w and b are changed, while the activation function Φ is invariant. Figure

3.1 shows the structure of a single artificial neuron.

3.4 Activation functions

In this section we will describe the most commonly used activation functions in DNNs and

their respective properties. Figure 3.2 shows plots of the activation functions we discuss

in this section.

We begin with the sigmoid activation function which is defined as:

σ(x) =
1

1 + e−x
. (3.3)

Historically the sigmoid activation function was commonly used. However in more recent

work it has fallen out of favor, mainly because of the following two disadvantages.

At first the vanishing gradient problem. For either large positive or large negative

input values the function saturates. Therefore even a relatively large change of the input

leads only to a small change of the output, and consequently in those regions the gradient

becomes very small. This effect can also be seen in Figure 3.2. Too small gradients are

rather unfavourable during the training of DNNs with backpropagation. Mainly because

the gradient of each neuron is proportional to the gradient of its previous neuron, and
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Figure 3.2: Common activation functions in DNNs and their derivatives. The functions
are depicted as solid blue lines, and their derivatives as dashed orange lines. Note that
the derivative for ReLU and LeakyReLU is not defined at x = 0.

therefore a neuron with a small gradient also shrinks the gradients of all following neurons.

Consequently this can lead to exponential shrinking of gradients, which as a result slows

down learning.

The second property that is often claimed as a disadvantage of the sigmoid activation

function is that its output value is not zero-centered. More specifically, the output of

the sigmoid is always positive. Consequently, the input components xi of a neuron that

receives the output of a sigmoid activated neuron as input are always positive. And

therefore the gradients of the weight components wi are either all positive or negative.

This can be unfavourable during training because an optimal step might require increasing

the value of one weight component, while decreasing the value of another. However, it

should be noted that when gradients are accumulated across multiple input samples, like

in mini-batch based training methods, this problem is reduced. Since adding up individual

gradients enables the resulting updates on each wi to have variable signs.

While also being susceptible to the vanishing gradient problem, the hyperbolic tan-

gent activation function - also called tanh - fixes the problem of sigmoid having a non

zero-centered output. The function is defined as:

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x
ex + e−x

, (3.4)

and its output ranges from −1 to 1. Furthermore given the definition of the sigmoid
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activation function in equation 3.3 it can be seen that tanh(x) is equal to a scaled and

shifted version of the sigmoid:

tanh(x) = 2σ(2x)− 1. (3.5)

A commonly used activation function in recent DNNs is the Rectified Linear Unit

(ReLU), which is defined as:

ReLU(x) = max(0, x). (3.6)

Since the gradient of a ReLU is either zero or one, it does not suffer from the vanishing

gradient problem as the sigmoid and the tanh. This is a major advantage of using ReLUs,

and often leads to superior performance compared to using sigmoid or tanh. For example

Krizhevsky et al. have shown that their network which won the 2012 ILSVRC convergences

six times faster when using ReLUs compared to using tanh [66].

One major issue still present when using ReLUs is the dying ReLU problem, where

neurons using ReLUs become inactive by outputting zero for any given input. Once a

neuron reaches this state of inactivity it is not able to escape it. Since always outputting

zero also leads to the gradient to become always zero, and therefore no further updates

are applied on the weights of the neuron during training.

To overcome the issue of dying ReLUs the LeakyReLU activation function has been

introduced. It does not output zero for negative inputs but has rather a slight slope in

the negative range, preventing the gradient to become zero. It is defined as:

LeakyReLU(x) =

{
αx x < 0

x x ≥ 0
, (3.7)

where the parameter α controls the negative slope of the activation function. In general

α is set to a small constant e.g. α = 0.01. However there also exists a variation of

the LeakyReLU activation function where α is adaptively learned with the rest of the

ANNs parameters. This variation was introduced as Parametric Rectified Linear Unit

(PReLU) and it was shown that it can lead to improved performance compared to the

ReLU . Especially at relatively deep or wide network architectures [39].

3.5 Feed Forward Neural Networks

As already described in Section 3.2 single artificial neurons are rather limited in their

expressibility. Most famously they fail at modeling a simple XOR function, which has

already been shown in 1969 [89]. More generally speaking, single artificial neurons are

only able to detect linearly separable patterns. This limitation can be overcome by in-

terconnecting multiple neurons to larger networks. And one common approach for doing

this are FFNNs, where neurons are organized in consecutive layers. Each layer contains
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Figure 3.3: Structure of a Multi Layer Perceptron. The input is propagated through
two hidden layers of neurons before the output is calculated. This structure trivially
extends to MLPs having arbitrary many hidden layers, each with a varying number of
neurons.

multiple neurons, and the input of each layer is given as the output of its preceeding layer.

Furthermore we refer to a FFNNs as a Multi Layer Perceptron (MLP) if it contains at

least three layers, and if it is fully connected i.e. all neurons of a layer are connected to all

neurons of the consecutive layer. For MLPs it has been shown that they can approximate

any continuous function with arbitrary accuracy if they contain a sufficient number of

neurons [44]. Figure 3.3 shows the structure of a simple MLP with three layers.

To describe how the activations of individual neurons in a MLP are calculated we

will use the following notation. Considering a MLP with K consecutive layers, each layer

with index i ∈ {1, . . . ,K} contains Hi neurons with their activations given as z(i) ∈ RHi ,

where z
(i)
j is the activation of the j-th neuron in layer i. For two consecutive layers

indexed by (i) and (i−1) the weights between their neurons are determined by the matrix

W (i) ∈ RHi×Hi−1 , where the entry w
(i)
jl is the weight between z

(i)
j and z

(i−1)
l . And the

biases for each layer (i) are determined by the vector b(i) ∈ RHi , where the component b
(i)
j

contains the bias for the neuron z
(i)
j . Furthermore we consider the input values x ∈ RN

as activations of an layer with index i = 0, therefore we set z(0) = x and H0 = N .

Using the above notations we can now simply calculate the output of the j-th neuron

in the i-th layer as follows:

z
(i)
j = Φ(i)

Hi−1∑
l=1

w
(i)
jl z

(i−1)
l + b

(i)
j

 , (3.8)

where Φ(i) denotes the activation function used in the i-th layer. Equivalently we can

write this using matrix multiplications as:

z(i) = Φ(i)
(
W(i)z(i−1) + b(i)

)
, (3.9)
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Figure 3.4: Exemplary calculation of a two-dimensional discrete convolution. The
shaded areas in X and W indicate the values that are used to calculate the shaded value
in the output.

where Φ(i) is applied element-wise.

3.6 Convolutional Neural Networks

While FFNNs are a simple way of connecting multiple neurons, in the area of image

processing it is much more common to use CNNs. This is motivated by the fact that

FFNNs with fully-connected neurons as described in section 3.5 have several properties

that are rather unfavorable when processing image data.

At first the number of parameters rapidly grows with the dimensionality of the data

that is processed. This is rather unfavorable because increasing the number of parameters

also increases the memory and runtime requirements, and can also cause overfitting as

described in Section 3.7.2. Secondly the spatial structure of data is not taken into account.

For example when image data is processed, it might be favorable to use an architecture

that treats spatially close pixels differently than distant ones. And thirdly fully connected

layers are not spatially equivariant. This means if we process two images containing the

same object at two different positions, the respective outputs might be vastly different,

which is undesirable in a lot of applications.

CNNs try to tackle all of the above mentioned problems. They use one or multiple

kernels to parametrize the mapping between two subsequent layers, whereby these kernels

have the same number of spatial dimensions as the input, but generally a much smaller

size i.e. number of parameters. To calculate the output of a layer these kernels are then

convolved with the input. Unlike a matrix multiplication as used in fully-connected layers,

the convolution operation explicitly considers the spatial relations between input points

and is spatially equivariant. In principle CNNs can be used to process data having any

arbitrary number of spatial dimensions e.g. one-dimensional for processing time series,

two-dimensional for images, or three-dimensional for processing volumetric data. We will

focus on the processing of two-dimensional images in this work.

In this section we will discuss the most important concepts of CNNs regarding image

processing. In particular we will introduce Convolutional Layers in Section 3.6.1, Pooling

Layers in Section 3.6.2 and Normalizaton Layers in Section 3.6.3.
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Figure 3.5: Output calculation in a convolutional layer. Example shown for Cin = 2
and Cout = 2. At first each of the two input channels is convolved with a separate kernel
for each of the two output channels, then the respective results are merged together with
an elementwise addition, and finally the output is given by stacking the two merged results
together. Note that we omit the application of the bias and activation function for clarity.

3.6.1 Convolutional Layer

A convolutional layer takes an input x ∈ RM×N×Cin and maps it to an output z ∈
RM ′×N ′×Cout , where (M × N) and (M ′ × N ′) denote the spatial dimension of the input

and output and Cin and Cout denote the number of input respectively output channels.

Having multiple input channels enables a single layer to processes multiple inputs of the

same spatial resolution together, for example the color channels of an RGB image. Fur-

thermore having multiple output channels enables a layer to compute different output

representations of the input. This means a single convolutional layer might for example

extract horizontal and vertical edges of an input image stored in separate output channels.

In the following we will first show how the output can be calculated when both input and

output have one channel, and then generalize this concept to multiple channels.

Given an input image X ∈ RM×N , where xm,n denotes the image pixel at the spatial

position m,n, the weights of the kernel denoted by W ∈ RA×A, where wa,a′ denotes the

weight at the spatial position a, a′, and the scalar bias b of the kernel. The output Z of

the layer is calculated by first convolving X and W , then adding the bias b, and finally

an elementwise application of the activation function Φ(.):

Z = Φ
(
(X ∗W ) + b

)
. (3.10)

An elementwise representation of the output Z can simply be obtained as following:

zi,j = Φ
( A∑

a

A∑
a′

xi−a,j−a′wa,a′ + b
)
. (3.11)
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Figure 3.6: Exemplary calculation of a max pooling operation with a 2× 2 window size
and a stride of 2. At each step the shaded area in Z is calculated by the maximum value in
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Figure 3.4 shows an example how a two-dimensional discrete convolution is computed.

We now consider the general case of a convolutional layer with Cin input channels and

Cout output channels. Instead of a single kernel we now have Cin ·Cout kernels, therefore for

each individual input output channel combination a separate kernel is used. Consequently

the weight matrix of the layer is given as W ∈ RCout×Cin×A×A, where we denote the kernel

that maps from the input channel i to the output channel j as W i,j ∈ RA×A. Furthermore

a different bias bj taken from b ∈ RCout is added for each output channel. The j-th output

channel can then be calculated as follows:

Zj = Φ

(
Cin∑
i=1

Xi ∗W ij + bj

)
. (3.12)

We show an example of this calculation in Figure 3.5.

It also should be noted that there exist alternative ways how multiple channels are

treated in in convolutional layers, whereby most of them have been introduced with the

purpose of increasing computational efficiency. This includes for example depthwise sep-

arable convolutions [18] or grouped convolutions [55].

3.6.2 Pooling Layer

In a lot of applications additional pooling layers are added between certain convolutional

layers to progressively reduce the spatial dimension of the data. Consequently, the first

layers of a network might process data at the full input resolution, while subsequent layers

process data at a downsampled resolution. This is mainly motivated by the following

advantages: At first computational complexity is reduced if data with a smaller resolution

has to be processed. Secondly, it increases translational invariance by merging multiple

neighbouring values in a single value. And thirdly, the effective receptive field is increased,

whereby the effective receptive field refers to the area of the input that can possibly

influence the activations of a layer.

In general a pooling layer is determined by a respective pooling operation, a window size

and the stride. To calculate the output of a pooling layer a window is slided over the input,
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Figure 3.7: Different normalization techniques used in CNNs. B denotes the batch
dimension, C the channel dimension and M,N denote the spatial dimensions of an input
image. The colored blocks indicate over which regions the normalization is calculated. In
Group Normalization the number of groups G used for normalization is variable.

and the output at each spatial position is determined by applying the pooling operation to

all pixels inside the window. The stride determines how many pixels the window is moved

in each subsequent sliding step, and consequently also controls the downsampling rate of

the layer. Commonly used pooling operations are for example taking the maximum, the

average or the minimum. An example for max pooling is shown in Figure 3.6, whereby

the same concept trivially adapts to pooling with different operations.

3.6.3 Normalization Layer

In a lot of CNNs architectures normalization layers are used. Since in a variety of cases

it has been shown that they can help to increase convergence speed and generalization

in CNNs. Whereby Batch Normalization [48] is currently the most commonly used nor-

malization layer, and we also utilize it in our experiments. We will describe it in the

following.

Given the set of activations from a convolutional layer in a single mini-batch as B =

{zb,c,m,n}, where b indexes the batch dimension (see Section 3.7 for a description about

what is referred to as mini-batches in ANN training), c the channel, and m,n the spatial

indexes. In Batch Normalization we first calculate the mean over the batch dimension of

channel c:

µc =
1

B

∑
b,m,n

zb,c,m,n, (3.13)

where B denotes the mini-batch size. And the variance over the batch dimension of channel

c:

σc =
1

B

∑
b,m,n

(zb,c,m,n − µc)2. (3.14)
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Then the output of a Batch Normalization layer is calculated as follows:

ẑb,c,m,n = γc
zb,c,m,n − µc√

σ2
c + ε

+ βc, (3.15)

where ε is a small constant for numerical stability. This first normalizes the input ac-

tivations such that they have zero mean and unit variance, followed by a channel-wise

affine transformation parametrized by γc and βc. Whereby γc and βc are learned during

the training of the network. The affine transformation after the normalization is done to

restore the representational power of the network [48]. Furthermore usually during train-

ing a moving average of µc and σc is stored which is then used for normalization during

inference. This is done since during inference one might want to pass only a single sample

through the network from which µc and σc can not be directly estimated.

It should be noted that it has been shown empirically that Batch Normalization can

significantly improve training speed and regularization [48] in certain cases. There is still

an ongoing debate about the theory behind its effectiveness. While Ioffe et al. [48] ini-

tially proposed that Batch Normalization works so well because it reduces the internal

covariate shift, which they describe as the “change in the distribution of network activa-

tions due to the change in network parameters during training”. More recent work has

actually disproven that the reduction of internal covariate shift is the major reason of

Batch Normalizations effectiveness [107]. And several studies have been conducted trying

to find alternative explanations [10, 80, 107]. Where up to now no commonly accepted

explanation has been found.

Besides Batch Normalization recently also a variety of other normalization approaches

have been introduced. Where the main difference between them is given by which activa-

tions they use to calculate the mean and variance for normalization. Layer Normalization

normalizes the activations of all channels in a layer [6], Group Normalization normalizes

groups of channels separately [135], and Instance Normalization [126] normalizes the acti-

vations of each channel separately. Figure 3.7 illustrates different normalization techniques

as they are used in CNNs processing two-dimensional data.

3.7 Training Artificial Neural Networks

Until now we have primarily focused on how to calculate the activations of a ANN using

a given input, and we assumed that the parameters of the network are given. In this

section we will now describe how the parameters of a ANN can be learned, this process

is commonly referred to as training.

Note that throughout this section we will denote the set containing all learnable param-

eters of an ANN as θ, the input of the network as x ∈ RD and the output of the network

as y. Furthermore the output of the network is calculated by y = f(x;θ) : RD 7→ R.
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3.7.1 Loss function

During training a scalar J(θ) referred to as cost or loss function is calculated. This cost

depends on the current parameters θ of the network, and the objective of training is to

find a new set of parameters that minimize the value of this cost function. A generic

formulation of J(θ) as it is commonly used in supervised learning is given as follows:

J(θ) = E(x,y)∼pdataL(f(x;θ), y), (3.16)

where the expectation is evaluated using data samples (x, y) drawn from a distribution

pdata. Furthermore L(.) is a per-example loss function that compares the output of the

network f(x; θ) with a given label y, returning low values if they are similar and large

values conversely. Therefore during supervised training we want to find a configuration of

the weights θ such that the network outputs for each given sample x the respective given

target y. Contrarily during unsupervised training solely input data x is given, therefore

equation 3.16 reduces to:

J(θ) = Ex∼pdataL(f(x;θ)). (3.17)

The function L(.) now needs to be chosen such that it is minimized by a parametrization θ

for which the network calculates the desired output, without using any exemplary output

y. In unsupervised learning it is often a major challenge to find an appropriate function

L(.) for the desired target task. We thoroughly describe how we derive a loss suitable for

unsupervised semantic segmentation in Section 4.

3.7.2 Overfitting

In general when training an ANN we do not have access to the true underlying distribution

of our data pdata. Instead, we have only access to a limited set of samples given by

the empirical distribution p̂data, whereby these samples are referred to as training data.

Consequently when minimizing equation 3.16 respectively 3.17 we can only estimate the

expected value of J(θ) using the available training data. Given the set X = {xi}Ni=1 of N

unlabeled training samples drawn from p̂data, J(θ) is therefore calculated as follows:

J(θ) =
1

N

N∑
i=1

L(f(x(i);θ)). (3.18)

However while J(θ) is now minimized using samples drawn from p̂data, it still should

be small for data drawn from pdata which is unseen during training. If there is a huge

deviation between the loss evaluated on our training data p̂data and the loss evaluated on

pdata we speak of overfitting.

Overfitting is a major problem in a lot of applications using DNNs. It occurs if

the true underlying data distribution is only insufficiently approximated by the empirical

data distribution used for training. In theory this can be counteracted by increasing the
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number of samples in p̂data and making sure they are drawn independently from pdata.

However in practice this is often difficult, because data is expensive to acquire, especially

in the supervised setting where it also needs to be labeled. This is a major advantage of

unsupervised learning. Since the amount of available training data substantially increases

for a lot of tasks by eliminating the necessity of expensive data labeling.

Another approach to overcome overfitting are regularization methods. Generally

speaking they introduce modifications during training that try to increase the

generalization ability of the network to unseen data. This includes for example weight

decay [67], dropout [117] or dataset augmentation [130].

3.7.3 Optimization

To minimize the loss J(θ) most current DNN approaches rely on first-order iterative

optimization algorithms. This includes for example Stochastic Gradient Descent [104],

Nesterov Momentum [119], RMSProb, Adam [63] and AdaGrad [29]. We will start this

section by describing Gradient Descent and Stochastic Gradient Descent. Then we will

discuss problems these approaches face at the optimization of functions with pathological

curvature, and how Momentum can be used to solve them. Finally we will describe Adam,

which is the optimizer we use in our experiments.

3.7.3.1 Gradient Descent

Gradient Descent [14] is a simple and well known method for finding a local minimum

of a function. It is based on iteratively first determinig the direction that decreases the

cost function the fastest, and then making a small change of the parameters θ in that

direction. Assuming that our cost function J(θ) is differentiable, its gradient is defined as

g = ∇θJ(θ) and points in the direction that increases J(θ) the fastest. This means if we

make a small step of θ in the opposite direction of ∇θJ(θ), the value of the cost function

decreases. Whereby the size of this step is defined by the hyperparameter η which is also

referred to as the learning rate.

An often discussed property of Gradient Descent and related methods like SGD and

Adam is that they have no guarantee of converging to a global minimum, but rather

might get stuck at a local minimum. Figure 3.8 illustrates this problem for a simple

two-dimensional function by showing how the algorithm converges to a stationary point,

depending on the point from which the Gradient Descent algorithm is started θ(0). It

is however an ongoing topic of debate how this affects training of DNN architectures in

practice. Loss functions of common DNN architectures are very high dimensional and

typically have 105 up to 108 parameters, and the structure of such high-dimensional loss

surfaces is yet poorly understood. Earlier work stated that training typically converges

to saddle points rather than local or global minima [69]. However more recent work

claims that local minima might in fact be more frequent than previously believed [38].

Furthermore it should be noted that finding the global minimum of the loss evaluated on
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Figure 3.8: Example for minimizing a function with Gradient Descent. In 3.8a one
can see that the given function has several local minima and a single global minima at
[0, 0]. We show the trajectory of the algorithm for two different initializations θ(0) in 3.8b
respectively 3.8c. While both initializations lie relatively close to each other, the global
minima is only reached in one case, in the other case the algorithm converges to a local
minima.

a training set might not even be desirable in practice, since there is no guarantee that this

global minimum also generalizes well to data unseen during training [19].

3.7.3.2 Stochastic Gradient Descent

Gradient Descent as discussed in the previous section uses the complete set of training

examples X to calculate the gradient of the loss function in each iteration. However for the

training of DNNs it is common to use mini-batch based methods. These methods use in

each iteration a small subset of samples from the complete training set X to calculate an

estimate ĝ of the gradient. This subset is commonly referred to as mini-batch, randomly
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Algorithm 1 Stochastic Gradient Descent [104]

Require: Parameter initialization θ
1: Initialize iteration counter: k ← 1
2: while k 6= maxiter do
3: Sample a mini-batch of B samples B = {x(0),x(1), . . . ,x(B)}
4: Compute a gradient estimate for current mini-batch: ĝ ← 1

B∇θ
∑

i L
(
f
(
x(i);θ

))
5: Perform step in opposite direction of gradient: θ ← θ − ηĝ
6: Increase iteration counter: k ← k + 1
7: end while

sampled from X , and its size is denoted as batch size B.

One reason to use mini-batches is that computing the exact gradient using the complete

dataset X is often computationally expensive. Instead, it is often sufficient to use an

estimate calculated with a mini-batch. Furthermore, it has been shown that the mini-

batch based methods can help to improve generalization [86] and escape local minimas

and saddlepoints.

A commonly used mini-batch based variant of Gradient Descent is SGD [104], which

is summarized in Algorithm 1.

3.7.3.3 Momentum

As described in the previous section Gradient Descent respectively SGD rely solely on

the first order derivative of the cost function to determine a descent direction at each

iteration. While this is simple, there are also certain cases where plain first-order methods

have problems. For example when optimizing loss functions with pathological curvature,

i.e. functions with a long narrow valley where the base of the valley is a direction of low

reduction and low curvature that needs to be followed to decrease the cost [83]. For such

functions Gradient Descent is prone to produce iterations following a zig-zag path instead

of going straight in the direction of a minima, this significantly slows down convergence.

Another problem present in Gradient Descent optimization is given by functions with flat

regions. In flat regions the respective gradients are small, and consequently also the speed

at which the function is traversed by Gradient Descent.

One approach to alleviate the above mentioned problems is to use second-order opti-

mization algorithms e.g. Newton’s method [83], which additionally incorporate the func-

tions curvature. However second-order methods require the calculation of the Hessian,

which is intractable for large DNNs because the computational complexity of calculating

the Hessian grows quadratically with the number of parameters. Even though several ap-

proaches have been made to decrease computational complexity of second-order methods

by approximating the Hessian, e.g. inexact-Newton methods [84, 129] and quasi-Newton

methods [9, 131]. The currently most dominant approach to DNN training is to use

first-order methods in combination with Momentum. Momentum can alleviate problems
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Figure 3.9: Visualization of Gradient Descent iterations. Figure 3.9a shows how Gradient
Descent iterates the cost function along a zig-zag path. Figure 3.9a shows how adding
Momentum helps to attenuate this problem resulting in a smoother trajectory.

attributed to the unawareness of function curvature [119], without actually requiring the

expensive calculation of second-order derivatives. Figure 3.9 shows an example of how

Gradient Descent iterates a function with pathological curvature in a zig-zag path, and

how this problem can be attenuated by using Momentum.

To add Momentum to SGD , Algorithm 1 can simply be modified by first storing an

exponentially decaying moving average of gradients at each iteration in v:

v ← αv − ηĝ, (3.19)

where α ∈ [0, 1) is a hyperparameter controlling how quickly the influence of past gradients

decays. And then applying updates to θ at each iteration using v instead of the gradient

estimate ĝ:

θ ← θ + v. (3.20)
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Algorithm 2 Adam [63]

Require: Parameter initialization θ, small constant ε for numerical stability
Require: Exponential decay rates for moment estimates β1 and β2 both in [0, 1)
Require: Step size η
1: Initialize iteration counter: k ← 1
2: Initialize 1st and 2nd moment variables: s = 0, r = 0
3: while k 6= maxiter do
4: Sample a minibatch of B samples B = {x(0),x(1), . . . ,x(B)}
5: Compute gradient estimate for current minibatch: ĝ ← 1

B∇θ
∑

i L
(
f
(
x(i);θ

))
6: Update biased first moment estimate: s← β1s+ (1− β1) ĝ
7: Update biased second moment estimate: r ← β2r + (1− β2) ĝ � ĝ
8: Correct bias in first moment: ŝ← s

1−βk
1

9: Correct bias in second moment: r̂ ← r
1−βk

2

10: Compute update: ∆θ = −η ŝ√
r̂ +ε

11: Apply update: θ ← θ + ∆θ
12: Increase iteration counter: k ← k + 1
13: end while

As a theoretical explanation how Momentum works often an analogy to physics is used.

The consecutive iterations downwards the slope of the cost function can be seen as a ball

rolling down a hill, and the velocity of the ball is modeled by v. Consecutive gradients

pointing in the same direction are leading to an increase of velocity in that respective

direction, while gradients in opposite directions are cancelled out. This can also be seen

in the example shown in Figure 3.9, where the zig-zag path is smoothed by decreasing the

strength of updates in the direction of θ0 while the strength of updates for θ1 is increased.

A more comprehensive study about why Momentum works can be found in [37].

3.7.3.4 Adam

Another commonly used optimization algorithm for DNN training is Adam [63]. To-

gether with others like RMSProb and AdaGrad [29] Adam belongs to the group of al-

gorithms that use adaptive learning rates. Simply put, they use an individual step size

for each parameter, contrarily to SGD where a global step size is used jointly for all pa-

rameters. This is motivated by the fact that the value of the cost function is often more

sensitive to the change of some parameters, while being less sensitive to the change of

other parameters. In the following we will give an introduction about the intuition behind

Adam, and refer the interested reader to the work of Kingma and Ba [63] for a more

comprehensive review.
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At each iteration Adam performs the parameter update step θ ← θ + ∆θ whereby

∆θ = −η · ŝ√
r̂︸︷︷︸

SNR

, (3.21)

and ŝ are r̂ are exponential decaying averages of the first respectively second order non-

central moment of the gradient estimates ĝ. Therefore the size of the step for each pa-

rameter is scaled by the ratio between the estimated mean and square root of uncentered

variance of g. Kingma and Ba [63] denote this ratio as Signal-to-Noise Ratio (SNR),

and argue that a larger SNR indicates the gradient estimate ĝ to be closer to the true

gradient. Therefore larger steps are made for parameters with a large SNR, respectively

smaller steps for parameters with a smaller SNR.

Algorithm 2 shows pseudo-code for Adam. The exponential decaying averages of the

first and second order non-centered moments are stored in s respectively v, and the decay

rates of these moving averages are set by the parameters β1 and β2, typical choices are for

example β1 = 0.9 and β2 = 0.999. At the beginning of training both decaying averages

are initialized as s = r = 0. However this introduces a bias on the estimate towards

smaller values, especially during the first iterations. Therefore a bias correction has to be

applied on both estimates, and the bias corrected values are stored in ŝ and r̂.

In general Adam is less sensitive to choice of η compared to non-adaptive learning

rate algorithms like SGD . This is a significant advantage in practice, since tuning the

learning rate can often be a computationally expensive process. However this does not

come without drawbacks. It has been reported that while Adam performs well in the

initial portion of training, it is often outperformed by SGD at later stages of training,

and furthermore that Adam fails to converge to an optimal solution in certain cases [102].

Consequently several works have been published trying to establish modified versions of

Adam improving performance e.g. [59, 79, 81]. Nevertheless Adam as it was proposed by

Kingma and Ba [63] is still the most dominant adaptive learning rate optimizer used for

DNN training, and we also use it in our experiments.

3.8 Convolutional Neural Networks for Semantic Image

Segmentation

The first end-to-end trainable approach on semantic image segmentation using CNNs

were Fully Convolutional Networks (FCN) introduced in 2015 by Long et al. Since then

a variety of further approaches on semantic segmentation with CNNs have been intro-

duced, including DeepLab [16], Pyramid Scene Parsing Network [139], U-Net [105] and

Gated Shape CNNs [122]. However all of these previously mentioned methods come at a

cost: they are trained supervised, and therefore require human-created, pixel-level anno-

tations of semantically consistent areas in images. Consequently various approaches have
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been introduced that try to alleviate annotation cost in semantic segmentation. Weakly-

supervised approaches require only coarse annotations such as bounding boxes i.e. location

and scale of segments [26, 60, 97, 103, 115], scribbles i.e. partially pixel-wise annotation of

segments [74, 82, 123, 124] or image-level annotations [2, 62, 71, 132]. Semi-supervised ap-

proaches require a small dataset with pixel-wise annotations and a large unlabeled dataset

[46, 116]. However all approaches mentioned above still require human-annotated data at

some point, and in this work we want to concentrate on entirely unsupervised approaches.

Until now a remarkably small amount of work on unsupervised semantic segmentation

has been published, including Invariant Information Clustering (IIC) [51], which we will

thoroughly describe in Section 5.2. Another recently introduced approach that states to

perform unsupervised semantic segmentation is SegSort [47]. SegSort uses an Expectation-

Maximization framework to map each pixel of an input image into a feature space, and

pixels that are close in this space are assigned to the same segment. While they achieve

good performance on the Pascal VOC dataset [30], their approach still relies on annotations

at multiple levels. To be more specific, they use a backbone network that is pre-trained

on ImageNet using image-level class annotations. During training they use pseudo ground

truth masks generated by a HED contour detector [137]. Whereby the HED contour

detector is trained with the annotated images of the BSDS500 [4] dataset. Therefore

SegSort can not be considered as unsupervised, and we omit it for further comparisons.

Besides the above mentioned methods there are several other unsupervised CNN based

approaches for segmentation, which are however not designed to create semantic segmen-

tation but only visually consistent segmentations. This includes the approach of [61] that

incorporates the Mumford-Shah [91] functional with CNNs. W-Net [136], that uses an

Encoder-Decoder architecture together with a normalised cut loss for regularization. And

the approach of Kanezaki et. al. where a CNN is trained such that spatially close pixels

with similar representations in the feature space are assigned to the same segments [57].
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4.1 Introduction

We start this section by briefly motivating the usage of mutual information for semantic

image segmentation in Section 4.1.1, followed by a high-level overview of our approach on

unsupervised semantic image segmentation in Section 4.1.2. We formally define the prob-

lem we want to tackle in Section 4.2, followed by a thorough description of our approach

on unsupervised semantic image segmentation in the following sections.

4.1.1 Motivation

Traditional image segmentation methods rely on low-level features like color, texture or

edges to assign pixels to segments [3, 13, 21, 32, 52, 73, 128]. While those methods perform

well at creating visually consistent segmentations, they often fail to be semantically con-

sistent. Primarily because heterogenous appearance of low-level features does not imply

semantic similarity [85].

Figure 4.1 illustrates this problem. Consider the sub-areas of the depicted person in

Figure 4.1a: face, hair and clothing are of completely different color, texture and shape.

By only observing low-level features of these areas, it is eminently difficult to detect that

they depict a single semantic entity: a person. The segmentation shown in Figure 4.1b was

created by assigning pixels with similar color to the same image segments. And it can be

seen how areas from the persons face and clothing were assigned to different segments due

to their vast difference in color intensity. Contrarily, the segmentation shown in Figure

4.1c is semantically consistent, whereby all pixels depicting the person are assigned to one

segment and all pixels depicting background segments are assigned to another segment.

We argue that mutual information is effective at determining if two image areas are

semantically similar. For example consider two sets P1 and P2 both containing pixels

depicting a person. Since the visual appearance of P1 and P2 might be vastly different,

purely pixel-based measures will most likely fail to detect that both sets are semantically

49
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(a) Input (b) Seg. 1 (c) Seg. 2

Figure 4.1: Two possible segmentations for the input image shown in (a), (b) segments
the image into dark and and bright areas, and (c) segments the image into areas depicting
a person and a background area. While both segmentations are visually consistent, only
the second segmentation is also semantically consistent.

very similar. Contrarily mutual information, as discussed in Section 2.3.7, quantifies

the decrease of uncertainty in one variable if we know the value of another. In other

words, any information in P1 that tells us something about the content of P2 increases

their mutual information. Therefore in general we can assume that P1 and P2 have larger

mutual information if they depict semantically similar areas, as if they depict semantically

completely different areas.

4.1.2 Overview

Deep InfoMax [42], which we discussed in Section 2.5.2, has already shown that mutual

information can effectively be utilized to learn high-level features of images. Their ap-

proach works entirely unsupervised, and they showed that these high-level features can

be used to determine the semantic similarity of entire images. Our approach builds up

on this concept, however we propose to learn high-level features not representing entire

images, but rather multiple high-level features, each encoding image areas depicting one

semantic class.

Similar as Deep InfoMax, we learn these high-level features by maximizing their mu-

tual information with low-level features covering overlapping image patches. However we

do not maximize mutual information with all low-level features of an image, but only

with those that cover image areas depicting the class of the respective high-level feature.

Since we do not use to ground truth annotations during training, we use mutual informa-

tion estimates to determine for each high-level feature the respective low-level features to

maximize mutual information with.
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4.2 Problem Definition

Given a set of N unlabeled images I = {x(u) ∈ X}Nu=1 with X = RC×M×N , drawn from

the empirical distribution p̂data. For each image x(u), every single pixel should be assigned

to one class out of the set of K classes Z = {0, . . . ,K − 1}. Therefore, each image in I is

segmented into a maximum number of K different segments. The corresponding semantic

image segmentation can be defined as the matrix Z with the entries:

Zi,j ∈ Z, i = (1, . . . ,M), j = (1, . . . , N). (4.1)

Furthermore all pixels that are assigned to the same segment in Z should depict seman-

tically similar areas, whereby this should not only hold for each separate image x(u) but

also across all images in I. Consequently pixels from any two images x(u) and x(v) that

are assigned to the same segment in Z should depict semantically similar areas.

4.3 Our Approach

As described in Section 4.1, for each image x(u) we extract local features covering overlap-

ping image-patches and multiple high-level features each covering the entire input image.

The local features are defined as L ∈ RU×V×P , where U = (M/d), V = (N/d) and d ∈ N+

is a downsampling rate from the resolution of x(u). Furthermore, we use Li,j ∈ RP to

denote the P -dimensional local feature at the spatial position (i, j). The high-level fea-

tures are defined as H ∈ RK×P , and we use Hk ∈ RP to denote the high-level feature that

encodes the content of the k-th segment. Furthermore, we define the mutual information

volume V ∈ RU×V×K , where each element is given by the mutual information between a

local and a high-level feature i.e. Vi,j,k = I(Li,j ; Hk).

Considering that a local feature Li,j that encodes image areas depicting pixels of the

k-th segment has a large mutual information with the k-th high-level feature Hk. A

segmentation Z′ can be calculated by determining at each spatial position of V the index

k of the high-level feature with the largest mutual information. Consequently each element

of Z′ is given by:

Z ′i,j = arg max
k∈Z

Vi,j,k, i = (1, . . . , U), j = (1, . . . , V ). (4.2)

We obtain the final image segmentation Z by upsampling Z′ to the resolution of the input

image x(u), with:

Z = up(Z′), (4.3)

where up(.) is a bilinear upsampling operation.
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Input x(u)

Feature representation
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Mutual Information Calc.

Semantic Image Segmentation

Input x(u)
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1
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Figure 4.2: Overview of our approach for two segments, i.e. K = 2. Feature repre-
sentation: We calculate for an input image x(u) local features L that cover overlapping
patches and the high-level features H that cover the entire image. Mutual Informa-
tion Calculation: We then calculate the mutual information between each local feature
Li,j and each high-level feature in Hk, where light colors indicate high and dark colors
low mutual information. Mutual Information Volume: The mutual information vol-
ume V is created by stacking the mutual information values of all K high-level features.
Semantic Image Segmentation: We calculate Z′ by arg maxk∈Z vi,j,k at each spatial
position of V, and then upsample Z′ to the resolution of the input image to get the final
image segmentation Z. Note that by increasing K our approach naturally extends to more
classes.

4.3.1 Feature Computation

To compute the local features L and high-level features H we use a Deep Neural Network

(DNN) parametrized by θ. In the following we introduce the composition of our network,

and Figure 4.3 depicts the structure in more detail.

Given an input image x ∈ X , the local feature at the spatial position (i, j) is computed

by C
(i,j)
θ : X → Y, whereby Y = RP . We denote the local feature extractor Cθ(x)
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(b) High-level feature extractor Fθ

Figure 4.3: Feature computation. (a) Main computation path: An input image x(u)

is first passed through Cθ to compute the local features L, and then a separate high-

level feature extractor F
(k)
θ is used to compute each of the K high-level features. (b)

High-level feature extractor Fθ: takes the local features L as input and computes the
high-level feature Hk. The weights of the respectively annotated blocks are shared over all
K high-level feature extractors. Table 4.1 lists the notations we used in the illustration.

Block Description

Conv, W×W, C, d Convolution with a filter size of W×W, C channels and a stride of d
BN & RELU Batch Normalization layer followed by a ReLu activation function
Linear, C Fully-connected layer with C channels
Flatten Reshapes a 2D feature map to a 1D vector
Layer Norm. Layer Normalization

Table 4.1: Notation used for the computational blocks in Figure 4.3.
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computing all U · V local features of an input image x as following:

Cθ(x) = {C(i,j)
θ }U×Vi,j=1. (4.4)

The k-th high-level feature Hk is calculated by G
(k)
θ : X → Y, whereby each high-level

feature is computed by further processing the low-level features L, i.e. the output of

Cθ(x). Therefore we use for each of the K high-level features a separate high-level feature

extractor F
(k)
θ : YU×V → Y taking all local features computed by Cθ(x) as input, G

(k)
θ is

then given as:

Gθ(x)(k) = F
(k)
θ ◦ Cθ(x) ∀k ∈ {1, . . . ,K}, (4.5)

where ◦ denotes the function composition operator.

4.3.2 Training Objective

As already described in Section 4.3, we want to maximize mutual information between

each local feature Li,j and the respective high-level feature Hk it has the largest mutual

information with. This could be done by first computing the values of the mutual infor-

mation volume V, to determine the indices k′i,j that give for each spatial position (i, j)

the respective high-level feature with the largest mutual information:

k′i,j = arg max
k∈Z

Vi,j,k i = (1, . . . , U), j = (1, . . . , V ). (4.6)

Followed by maximization of the mutual information between each Li,j and the respective

high-level feature with maximum mutual information according to k′i,j :

max
θ

EX∼p̂data

 1

UV

U,V∑
i,j

Î

(
L

(i,j)
θ (X);G

(k′i,j)

θ (X)

) , (4.7)

where Î is a mutual information estimator, which we describe in Section 4.3.4.

However this approach comes with several challenges. One should consider that we

do not know the exact mutual information values, but rather compute only estimates. In

particular at the beginning of training these estimates are entirely arbitrary, since they

depend on the randomly initialized network parameters. Relying on those estimates to

maximize the mutual information between a Li,j and an incorrectly chosenHk could easily

lead to degenerate solutions, since incorrect estimates would be reinforced. Furthermore

determining the indices k′i,j requires the usage of a non-differentiable argmax function.

To alleviate those problems, we do not make hard assignments by simply choosing for

each Li,j the corresponding Hk with maximum mutual information, but rather make soft

assignments based on an assignment probability proportional to the mutual information

estimates. Therefore we transform the mutual information volume V into a probability

volume P′ ∈ RU×V×K with each element p′i,j,k given by the application of the following
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element-wise mapping:

p′i,j,k =
exp (τ · vi,j,k)∑
k′ exp

(
τ · vi,j,k′

) , (4.8)

where τ is a hyperparameter that controls the smoothness of the resulting distribution.

For τ = 0 probability is distributed uniformly across high-level features; for τ = 1 the

distribution becomes a softmax; and for τ → ∞ all probability mass is concentrated at

the pair of local and high-level features with maximum mutual information, i.e. mutual

information estimates are treated as ground truth.

Using the probability volume P ′ we can now define the function S
(i,j)
θ : X → Y that

computes for each spatial position (i, j) a soft global feature assignment by:

S
(i,j)
θ (X) =

∑
k

p′i,j,k ·G
(k)
θ (X). (4.9)

And rewrite Equation 4.7 as following to get our training objective:

max
θ

EX∼p̂data

 1

UV

∑
i,j

Î
(
L

(i,j)
θ (X);S

(i,j)
θ (X)

) , (4.10)

4.3.3 Class Assignment Probabilities

We can use the probability volume P ′ to model the class assignment probabilities for each

pixel of an input image x. We let pi,j,k the entries of a probability volume P ∈ RM×N

that is given by upsampling P′ to the resolution of the input image x, i.e. P = up(P′).

And furthermore let Zi,j be a discrete random variable taking values from our discrete

labeling set Z, modeling the probability that the pixel at the spatial position (i, j) should

be assigned to the class zk. We can then simply interpret the entries of P as the respective

class assignment probabilities by:

P (Zi,j = zk) = pi,j,k. (4.11)

4.3.4 Mutual Information Estimation

While in the previous sections we simply used Î to denote a mutual information estimator,

we will now describe in this section how we tackle mutual information estimation in our

approach. We already thoroughly discussed several approaches on variational mutual

information estimation in Section 2.4.

At first we want to note that our approach does not rely on the exact value of mutual

information, but we rather assign pixels to segments by comparing relative mutual infor-

mation estimates. Therefore, using mutual information estimators is suitable even if they

are not of high confidence. This is also confirmed by our empirical results. For further

discussion about the formal limitations of variational mutual information estimators we
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refer to Section 2.4.2.3

Similar as proposed in Deep InfoMax [42] we will use the Nowozin lower bound on

the Jensen-Shannon (JS) divergence, which we introduced in Section 2.4.2.2, as a lower

bound on mutual information. Therefore an estimator for the mutual information present

in Equation 4.10 is given as following:

Î (Lθ(X);Sθ(X)) = EJ [− sp (−T (Lθ(X), Sθ(X)))]− EM [sp (Lθ(X), Sθ(X))] , (4.12)

whereby we omit the spatial indices (i, j) for clarity and use sp(z) = log(1 + ez) to denote

the softplus function. Furthermore T : Y ×Y → R is a discriminator function that should

assign high scores to features coming from the joint distribution J and low scores to

features coming from the product of marginal distribution M. Samples from J are drawn

by computing Lθ(x(u)) and Sθ(x(u)) both from the same image x(u), and samples from M
are drawn by computing Lθ(x(u)) and Sθ(x(v)) from two different images x(u) and x(v).

In other words, the input of the discriminator is a pair of features and the discriminator

T needs to determine if they have been computed from the same image or not.

In principle the discriminator function T can be any arbitrary function that takes a

pair of features as input and outputs a real-valued score. However this function needs

to be evaluated separately for every feature pair to evaluate. An efficient approach to

implement T was proposed by the encode-and-dot-product architecture of Local DeepInfo

Max [42], where the score of two given features is their dot product. Therefore, for each

image in a batch we only need to perform a single forward pass through Lθ and Sθ to

compute all local and global features. The score of any arbitrary feature combination can

then efficiently be calculated by the dot-product between the two respective features:

T (Hk,Li,j) = 〈Hk,Li,j〉. (4.13)

A further advantage of using the dot-product as a discriminator function T is that it

also allows to interpret the dot-product between two features as a similarity measure

proportional to their mutual information, therefore we can compute the values of P ′ as

follows:

p′i,j,k =
exp (τ · 〈Li,j ,Hk〉)∑
k′ exp (τ · 〈Li,j ,Hk〉)

. (4.14)

4.4 Matching Segments

After training we have given image segmentations that assign each pixel to one class in

Z = {z1, . . . , zK}. To quantitatively compare these segmentations with the ground truth

annotations of a dataset that assign each pixel to one class in Z ′ = {z′1, . . . , z′K} we need

to map each of the classes in Z to one class in Z ′.
To calculate these mappings, we first define a complete weighted bipartite graph G =

(V, E) with the vertices V = Z ∪ Z ′, and edges E = {(zi, z′i)}zi∈Z,z′i∈Z . Then we set each
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entry Wij of the weight matrix W ∈ RK×K to the amount of pixels that are predicted as

zi and labeled with z′j . And finally we solve the maximum weight matching problem using

the hungarian matching algorithm [68].

When we evaluate a given dataset, we use all images in the dataset to calculate W ,

solve the matching problem, and then use the same mapping for each image.
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5.1 Introduction

In this Section we provide a quantative and qualitative evaluation of our proposed model.

At first we introduce in Section 5.2 all of the datasets we use for evaluation. Then we

define in Section 5.3 all of the quantitative metrics we will use throughout this section. In

Section 5.4 an overview is given on implementation specific details. Followed by baseline

results based on K-Means clustering in Section 5.5. And finally we show and discuss the

results of our proposed model in Section 5.6.

5.2 Data

Unfortunately until now there is no public dataset available that was specifically designed

for evaluation of unsupervised semantic image segmentation algorithms. While it is in

general possible to use datasets that have been proposed for supervised algorithms, e.g.

Common Objects in COntext (COCO) [12] or Cityscapes [22]. One has to consider that

most of these datasets come with some properties that might be problematic for the eval-

uation of unsupervised methods. This includes for example huge imbalances between the
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COCO-stuff class COCO class

Building Bridge, Building-other, House, Roof, Skyscraper, Tent
Ceiling Ceiling-other, Ceiling-tile
Floor Carpet, Floor-marble, Floor-other, Floor-stone, Floor-tile,

Floor-wood food, Food-other, Fruit, Salad, Vegetable
Furniture Cabinet, Counter, Cupboard, Desk-stuff, Door-stuff,

Furniture-other, Light, Mirror-stuff, Shelf, Stairs, Table
Ground Dirt, Gravel, Ground-other, Mud, Pavement, Platform,

Playingfield, Railroad, Road, Sand, Snow
Plant Branch, Bush, Flower, Grass, Leaves, Moss, Plant-other, Straw,

Tree
Rawmaterial Cardboard, Metal, Paper, Plastic
Sky Clouds, Sky-other
Solid Hill, Mountain, Rock, Solid-other, Stone, Wood
Structural Cage, Fence, Net, Railing, Structural-other
Textile Banner, Blanket, Cloth, Clothes, Curtain, Mat, Napkin, Pillow,

Rug, Textile-other, Towel
Wall Wall-brick, Wall-concrete, Wall-other, Wall-panel, Wall-stone,

Wall-tile, Wall-wood
Water Fog, River, Sea, Water-other, Waterdrops
Window Window-blind, Window-other

Table 5.1: List of the corresponding COCO [76] classes for each COCO-stuff [12] class.

number of available samples for each respective class, and semantic classes in the ground-

truth annotations that are semantically very similar. We will discuss these problems

throughout this section. And furthermore note that we compute all of our quantitative

results by matching the class predictions of our method with the provided ground-truth

annotations of a dataset as described in Section 4.4.

We use two datasets for evaluation, COCO-Stuff [12] and COCO-Persons. Both are

subsets of the COCO [76] dataset, whereby it should be noted that evaluation on the full

COCO dataset is not feasible for our approach. And has also not been done by any other

currently available unsupervised semantic segmentation algorithm. Since both the number

of images: 330k, and the number of different classes: 91, are relatively high and therefore

difficult to handle. Using COCO-Stuff for evaluation of an unsupervised semantic image

segmentation approach was proposed by Invariant Information Clustering (IIC), and we

will describe the dataset in Section 5.2.1. The second dataset we use is COCO-Persons,

which is a novel subset of COCO proposed by us in Section 5.2.2.
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Figure 5.1: Relative pixel-wise class frequency in the COCO-Stuff [12] dataset. The classes
are vastly imbalanced.

5.2.1 COCO-Stuff

The COCO-Stuff [12] dataset divides the classes of the COCO dataset [75] into a thing and

a stuff category. The stuff classes have been used by the authors of IIC [51] to evaluate their

unsupervised semantic segmentation approach. And Table 5.1 shows how the respective

classes of COCO have been mapped to the COCO-stuff classes. The resulting dataset

contains K = 15 classes. While we want to note that COCO-Stuff has some properties

that make it a suboptimal benchmark for an entirely unsupervised algorithm, we still use

it to to get a fair comparison of our approach with IIC .

At first the classes in COCO-Stuff are chosen rather arbitrary in some cases. For

example there are separate classes for windows and for buildings, but pixels that depict

doors are also assigned to the buildings class. There is no general reason why doors should

be considered as part of a building class while windows are treated separately. This is

rather an arbitrary choice from the dataset, and expecting any unsupervised algorithm to

come up with this exact solution is unfeasable.

And secondly there is a vast imbalance in the number of provided pixels per class in the

dataset. For example only 0.4% of all pixels depict areas labeled with the class food, while

more than 15% depict plants. Figure 5.1 shows a complete enumeration of the relative

occurence probability for all classes.

To provide a fair point of comparison we use the exact same data setup as in IIC .

Consequently when we refer to COCO-Stuff, we mean the data as it was used by IIC

for evaluation. And not the dataset as it was initially proposed by [12]. In IIC the

initial COCO-Stuff dataset is reduced from 164k images to 52k images, each resized to
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128 × 128 pixels. And the 15 stuff super-categories are used as classes e.g. water, plant,

food, textile. Pixels that are labeled with thing classes are ignored during evaluation and

training. Therefore, while we pass all pixels as input to the network, we only propagate

gradients into regions labeled with stuff classes. Furthermore following IIC we also apply

a Sobel filter on the images, and use the RGB channels of each image stacked with the

filtering result as input.

5.2.2 COCO-Persons

The second dataset we use for evaluation is also a subset of the COCO [76] dataset.

However to show the versatility of our approach, we deliberately chose images with quite

different characteristics than those of the COCO-Stuff dataset. The appearance of the

most prevalent classes in the COCO-Stuff dataset is relatively homogeneous across in-

stances. For example areas labeled as sky are mostly large textureless regions or areas

labeled as plants often have a characteristic green color. In contrast, we purposely let the

classes of the COCO-Persons dataset have a vastly different appearance across images.

Each image shows one or multiple persons in a large variety of environments. And pix-

els depicting persons respectively the surroundings are labeled with two separate classes,

i.e. K = 2. Whereby the persons are shown in different poses, scales and orientations; they

have different age, gender, skin-tone and size; and the areas surrounding them are complex

and range from indoor to outdoor scenes. Therefore, we argue that creating semantically

consistent segmentations for the COCO-Persons dataset is much more challenging than

for COCO-Stuff. In total the dataset consists of 15.399 images, each resized to 128× 128

pixels.

5.3 Metrics

While a variety of metrics exist to evaluate semantic segmentation algorithms e.g.

Pixel Accuracy (PA), mean PA, Frequency Weighted Intersection-Over-Union or mean

Intersection-Over-Union (mIoU). We evaluate our results using the mIoU and the PA,

since they are one of the most commonly used metrics in semantic image segmentation

[35].

In the following we show how to derive the mIoU and the PA, following the notation of

[24]. Considering a semantic image segmentation with K different classes we let U ∈ NK×K+

be a pixel-level confusion matrix with each entry uij given as following:

uij =
∑
I∈D

∣∣{z ∈ I such that SIgt(z) = i and SIps(z) = j
}∣∣ , (5.1)

where the set D contains all images to evaluate, SIgt(z) = i is the ground-truth label of

pixel z in image I and SIps(z) = j is the prediction of pixel z in image I. Consequently we

can calculate the total number of pixels labelled with i as gi =
∑

j uij , the total number
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of pixels predicted with j as pj =
∑

i uij and the number of correctly classified pixels as∑
i uii.

Using the previously defined quantities, the PA can be calculated as the ratio between

the correct classified pixels and the total amount of pixels:

PA =

∑
i uii∑
i gi

. (5.2)

Despite its simplicity, the PA is biased in favour of overrepresented classes when evaluating

imbalanced datasets. One metric that tries to tackle this problem is the mIoU , which can

be calculated as following:

mIoU =
1

K

K∑
i=1

uii
gi + pi − uii

. (5.3)

The mIoU calculates the ratio between the intersection and the union of two sets, whereby

for segmentation these are the sets of predicted segmentation and the ground truth. It

lies in the interval [0, 1] whereby higher values indicate better segmentation performance.

Furthermore the mIoU can also be expressed as:

mIoU =
TP

TP + FN + FP
, (5.4)

whereby Tp, Fp, and Fn are the numbers of true positive, false positive, and false negative

classified pixels for all images I ∈ D and all classes K. Therefore not only the number

of correct classified pixels is considered but also the amount of false alarms and missed

values.

5.4 Implementation Details

All of our experiments were done on a single GPU with 11GB of memory, and a batch

size of 64. For training we used the Adaptive Moment Estimation (ADAM) optimizer

[63], which we introduced in Section 3.7.3.4, with a learning rate of 10−4. All experiments

were stopped after 300 epochs. And the hyperparameters λ and P were set to 1/
√

2048

respectively 2048. Additionally during training we did data augmentation by jittering

brightness, contrast, saturation and hue and randomly flipped and cropped the input

images.

To compute the results for IIC [51] we used the codebase provided by the authors,

and let all parameters unchanged. Even though they were deliberately chosen for the

COCO-Stuff dataset, we argue that they should also be reasonable for the COCO-Person

dataset. Since both are subsets of the same dataset: COCO .
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Figure 5.2: Quantitative comparison of the K-Means segmentation for the COCO-
Persons and COCO-Stuff dataset. Raw pixels: the clustering is applied on the RGB
values of the images. Learned features: the clustering is applied on pixel-wise features
learned by unsupervised representation learning approaches proposed by Doersch et al.
[27] respectively Isola et al. [49]. Note how all three approaches fail to resemble the
ground truth annotations. Black areas indicate non-stuff pixels that are ignored during
evaluation.
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5.5 K-Means Segmentation

To show that simple clustering of raw color values is not sufficient to create semantic seg-

mentations. We also compare our results to segmentations created by K-Means clustering.

K-Means is a simple generic clustering algorithm. And while being applicable in a wide

range of applications, K-Means is also commonly used for unsupervised image segmenta-

tion [54, 93]. Note however that K-Means segmentation of raw pixels, contrarily to our

work, is not explicitly designed to create semantic image segmentation.

In the following we will describe how K-Means can be used for image segmentation.

Given N d-dimensional vectors {xp ∈ Rd}Np=1, whereby each xp corresponds to an image

pixel and its value is given by the color information of that pixel. The objective is to

segment the image into K segments, i.e. assign each pixel to one out of K sets S = {Si}Ki=1,

which is done by minimizing the Within-Cluster Sum of Squares (WCSS):

arg min
S

K∑
i=1

∑
xp∈Si

‖xp − µi‖2 , (5.5)

where µi is the mean of all points in Si. One approach to solve the optimization problem

given in Equation 5.5 is Lloyd’s algorithm. At first all cluster centers µi are initialized

randomly. Secondly each pixel in X is assigned to the segment Si to which it has the

smallest euclidean distance, resulting in the following new segment assignments:

Si =
{
xp : ‖xp − µi‖2 ≤

∥∥xp − µj∥∥2 ∀j, 1 ≤ j ≤ k
}N
p=1

. (5.6)

And thirdly the cluster centers are updated using the new assignments:

µi =
1

|Si|
∑
xp∈Si

xp. (5.7)

The second and third step are then repeated until convergence, which can for example be

determined if the change at each iteration of the WCSS according to Equation 5.5 falls

below a certain threshold. Note that we always apply K-Means clustering on all images

of a dataset at once, i.e. one common set of cluster centers is found for all images. This

is necessary since we want that image areas from multiple images that are assigned to the

same class should be semantically similar. By applying K-Means on each image separately,

there would be clearly no dependence between the cluster centers.

In addition to applying K-Means on raw pixel values, we follow IIC and also create

segmentations by applying K-Means clustering on image features learned by unsupervised

image representation learning approaches. In particular the approaches of Doersch et al.

[27] and Isola et al. [49], whereby we use the implementations provided by IIC [51]. While

none of these approaches was created for semantic segmentation in particular, they still

have been created with the purpose of extracting high-level information from images. And
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Method PA mIoU

K-Means † 14.1% 0.076
Doersch [27] † 23.1% 0.131
Isola [49] † 24.3% 0.139
IIC [50] 27.7% 0.163
Ours 36.4% 0.223

Table 5.2: Quantitative results for the COCO-Stuff dataset. † Methods based on K-
Means clustering that have not been specifically designed for semantic image segmentation.

it therefore might be feasable to incorporate them for image segmentation.

We provide a qualitative evaluation of the resulting image segmentations using K-

Means clustering in 5.2, and present the quantitative results together with our results on

COCO-Stuff and COCO-Persons in Section 5.6.1 respectively Section 5.6.2. In general it

can be said that all of the K-Means based approaches we use for comparison fail to create

semantic segmentations of comparable quality than our results.

5.6 Results

In the following we will discuss the results of the COCO-Stuff and COCO-Persons dataset

in Section 5.6.1 respectively 5.6.2.

5.6.1 COCO-Stuff

Figure 5.3 shows a qualitative evaluation of our predictions for the COCO-Stuff dataset.

We trained our model to create a total number of K = 15 different segments. In the

first four shown examples our predictions are significantly better than those of IIC and

closely resemble the ground truth. In particular we want to highlight how the image

areas depicting the semantic class ’plant’ were correctly identified in all four examples.

Especially the visual appearance of the bleak trees in the third example differs vastly from

the depicted plant areas in the other three images. Detecting that they are semantically

similar to the grass in the second image and to the other trees in the first and fourth image

is challenging in an unsupervised setting.

The predictions of the examples in the last three rows all have some significant dif-

ferences compared to the provided ground truth annotations. However, even though they

do not match the ground-truth annotations of the COCO-Stuff dataset. They still pro-

vide predictions that might be considered as semantically correct. In the fifth and sixth

example in Figure 5.3 pixels that are labeled with the class ’building’ in the COCO-Stuff

dataset are predicted as ’wall’ by our approach. However both ’building’ and ’wall’ are

semantically relatively close, and it might not be reasonable to expect an unsupervised

approach to come up with a solution that differentiates between those two concepts. Fur-
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Input Ground truth OursIIC

Window Wall BuildingPlant Ground Sky StructuralFurniture

Ceiling Floor Food Rawmaterial Textile Solid Water

Figure 5.3: Qualitative evaluation for the COCO-Stuff dataset. Black areas indicate non-
stuff pixels that are ignored during evaluation. The first four examples resemble closely
the ground-truth. The following three examples contain some errors that we discuss in
Section 5.6.1.
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Method PA mIoU

K-Means † 54.3% 0.374
Doersch [27] † 55.6% 0.381
Isola [49]† 57.5% 0.403
IIC [50] 57.1% 0.394
Ours 68.3% 0.521

Table 5.3: Quantitative results for the COCO-Persons dataset. † Methods based on K-
Means clustering that have not been specifically designed for semantic image segmentation.

thermore it should be noted that our approach was still able to correctly identify that the

areas labeled as ’building’ are both semantically similar, since both were assigned to the

same class.

A similar effect can be observed in the example shown in the last row. A large portion

of the image is labeled with the class ’food’ and predicted with the class ’plant’ by our

approach. Arguably ’food’ and ’plant’ are semantically very similar, and it is therefore

reasonable to predict areas depicting food as ’plant’. Especially under the consideration

that the COCO-Stuff dataset contains only a very small amount of image areas depicting

food, as shown in Table 5.1.

Table 5.2 shows a quantitative evaluation. With a relative increase in pixelwise-

accuracy of about 31%, our approach performs significantly better than the current state-

of-the-art method: IIC .

5.6.2 COCO-Persons

Figure 5.4 shows a qualitative evaluation for the COCO-Persons dataset. We trained our

model to create a total number of K = 2 different segments. In the first four rows our

predictions closely resemble the ground truth. And we want to emphasize that the shown

examples are particularly difficult. Both, the image areas depicting the persons as well

as the surrounding areas have vastly different visual appearance. And neither IIC nor

the K-Means segmentations have been able to create any reasonable segmentations for

those examples. We argue that correctly identifying that the four persons shown in the

examples depict in fact semantically similar concepts requires a high-level understanding

of the scenes. Note also how even the small persons depicted in the background of the

first image were correctly assigned to the same segment as the person in the foreground.

In the next two rows large portions of our predictions might still be considered as cor-

rect while they do not match the dataset annotation. According to the dataset annotations

the depicted motorbikes are not belonging to the same class as the depicted persons. This

illustrates a fundamental challenge in unsupervised semantic image segmentation. It is not

clear if one of the two solutions is more correct than the other, or if both are equally valid.

Determining this would require to answer the question: Are motorbikes semantically more
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similar with persons or with streets? Which can not be definitely answered.

In the the last row an example is shown where our approach failed to create a reasonable

segmentation. Note however that in this case the segmentation probability also indicates

an uncertain prediction.

Table 5.3 shows a quantitative evaluation. While our approach reached a pixel-wise

accuracy of 68.3%, all other compared approaches perform significantly worse. Further-

more IIC fails to perform significantly better than the K-Means results, contrarily to

the results of the COCO-Stuff dataset. We attribute this to the fact that the images in

the COCO-Persons dataset contain more complex scenes than those in the COCO-Stuff

dataset, and are therefore significantly more difficult to segment.
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Input Ground truth OursIIC Class Prob.

Figure 5.4: Qualitative evaluation for the COCO-Persons dataset. The last column
shows the class assignment probabilities according to Equation 4.11, white areas indi-
cate an uncertain prediction and saturated red respective blue colors a more confident
prediction. The first four rows show successful predictions, in the next two rows the seg-
mentations are still reasonable but differ from the ground truth, and the last row shows a
failure case.
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Conclusion and Future Work

We have proposed a novel approach on unsupervised semantic image segmentation, i.e.

the semantic segmentation of images without any annotated data. Our work is based on

recently proposed methods in the field of unsupervised image representation learning [42]

and mutual information estimation [8]. And we provided both quantitative and qualitative

evaluation of our results. We achieved a relative increase in pixelwise-accuracy of about

31% on the COCO-Stuff dataset, compared to the current state-of-the-art in unsupervised

semantic image segmentation: Invariant Information Clustering (IIC) [51]. Furthermore

we illustrated and discussed some common challenges at the evaluation of unsupervised

semantic segmentation methods. In particular, class imbalances in evaluation datasets

and the ambiguity of semantic classes. We also gave a comprehensive review on recently

proposed methods for mutual information estimation based on the maximization of vari-

ational bounds parametrized by Deep Neural Networks (DNNs) in Chapter 2.

We can think of several promising directions of research for future work. At first one

could try to adapt our approach into a semi-supervised setting. And therefore incorporate

for training a large dataset of unlabeled images together with a small labeled dataset.

Even though this deviates from our entirely unsupervised setting, it still might be an

interesting approach. Since for many applications it is still feasible to manually annotate

a small amount of images.

It also should be considered that the approaches on variational mutual information

estimation using DNNs we build up on, i.e. the Mutual Information Neural Estimator

(MINE) [8], have only been proposed recently. Even though several works have been

published since then that showed their effectivity among various applications [42, 101,

127, 140]. They are still far from being thoroughly studied, and future work might come

up with improved methods. Since mutual information estimation is one crucial part of

our method, improvements in this direction might help to increase performance.

A further improvement that might benefit the field of unsupervised semantic segmen-

tation in general, would be the introduction of a novel dataset that is specifically de-

signed for unsupervised approaches. We have shown in our experiments that the currently

71
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used datasets, which all have been designed for supervised approaches, come with some

problems at evaluation. Especially the quantitative evaluation of end-to-end unsupervised

methods is particularly difficult. This is often caused by huge class imbalances or semantic

classes in the ground-truth annotations that are semantically very similar, e.g. ’building’

and ’wall’. A dataset that lacks these properties would make quantitative comparison of

different methods easier.



B
Derivations

B.1 Kullback-Leibler Divergence

B.1.1 Reformulation

In the following we show how to derive the reformulation of the Kullback-Leibler (KL)

divergence used in Section 2.3.5:

DKL(P‖Q) = H(P,Q)−H(P )

= Ex∼P [− logQ(x)]− Ex∼P [− logP (x)]

= Ex∼P [− logQ(x)− (− logP (x))]

= Ex∼P [− logQ(x) + logP (x)]

= Ex∼P [logP (x)− logQ(x)]

= Ex∼P
[
log

P (x)

Q(x)

]
=
∑
i

P (i) log
P (i)

Q(i)

(B.1)

B.1.2 Nonnegativity

In the following we use the fact that the log is a concave function and Jensen’s inequality

to show that KL divergence is non-negative for any two distributions P and Q. According

73
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to the definition of the KL divergence we have:

−DKL(P‖Q) = −
∑
i

P (i) log
P (i)

Q(i)

=
∑
i

P (i) log
Q(i)

P (i)
.

And applying Jensen’s inequality gives:

≤ log
∑
i

P (i)
Q(i)

P (i)

= log
∑
i

Q(i)

= 0.

(B.2)
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