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Abstract

Computing 3D depth information through stereo methods is a well researched topic of com-

puter vision and has lead to countless variations and approaches over the years. However

the applicability to transparent objects is still considered as one of the few unresolved dis-

ciplines to this date. The conventional principle of computing depth cues from finding

correspondences in two or more images leads to poor results due to ambiguities caused

by transparent materials. In this thesis we thus explore an alternative approach which is

based on the local orientation analysis of light field data in the domain of epipolar plane

images. In this context we discuss the principles of structure tensor approaches and their

intrinsic properties. Starting with the basic case for opaque Surfaces we will subsequently

explain how tensor models can be extended to higher order, such that depth ambiguities

from transparent surfaces can be resolved. Furthermore we show our findings and im-

provements to the method. Based on a voxel volume projection approach we present two

variants of a refinement method which allows us to obtain improved results for scenes

including transparent objects. Since this work is part of a project which originates from

an industrial context, we assume certain conditions regarding the acquisition setup and

the data throughout the course of this thesis. However the presented method is equally

applicable to a more generalized setting.





Kurzfassung

Die Berechnung von 3D-Tiefeninformationen mit Hilfe von Stereo-Methoden ist ein gut

erforschtes Themengebiet der Computer Vision und hat im Laufe der Jahre zu unzähligen

Variationen und Ansätzen geführt. Die Anwendbarkeit auf transparente Objekte gilt jedoch

bis heute als eine der wenigen noch ungelösten Disziplinen. Das herkömmliche Prinzip

der Berechnung von Tiefeninformationen aus der Suche nach Korrespondenzen in zwei

oder mehr Bildern führt aufgrund von Mehrdeutigkeiten, die durch transparente Materi-

alien verursacht werden, zu unzufriedenstellenden Ergebnissen. In dieser Arbeit unter-

suchen wir daher einen alternativen Ansatz, der auf der lokalen Orientierungsanalyse

von Lichtfelddaten im Bezug auf Bilder innerhalb epipolarer Ebenen basiert. In diesem

Zusammenhang diskutieren wir die Prinzipien von Struktur-Tensoren und deren intrin-

sische Eigenschaften. Ausgehend vom Basisfall für opake Oberflächen werden wir weit-

erführend erklären, wie diese Tensoren auf Modelle höherer Ordnungen erweitert wer-

den können, sodass Mehrdeutigkeiten bezüglich der Tiefenschätzung von transparenten

Oberflächen behandelt werden können. Darüber hinaus präsentieren wir unsere Erken-

ntnisse und Verbesserungen der Methode. Basierend auf einem Projektionsansatz mittels

Voxel-Volumina stellen wir zwei Varianten einer Verfeinerungsmethode vor, die es uns er-

laubt, verbesserte Ergebnisse für Szenen mit transparenten Objekten zu erhalten. Da diese

Arbeit Teil eines Projektes aus einem industriellen Kontext darstellt, gehen wir im Verlauf

dieser Arbeit von bestimmten Bedingungen bezüglich des Aufnahmesystems und der Daten

aus. Die vorgestellte Methode ist jedoch auch auf ein allgemeineres Umfeld anwendbar.
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1. Introduction

1.1 Motivation

Inspired by the human visual apparatus, research in computer vision dedicates significant

effort towards bringing visual perception and understanding to the digital domain. For a

majority of tasks from day to day life, we naturally rely on our eyes. However, mimicking

this through visual computing is far from trivial. This gave rise to numerous research fields

over the past few decades. Among others, a very important one is the spatial perception

of a scene in 3D. In analogy to the natural process of stereopsis, it is also possible for ma-

chines to generate 3D information from a set of digital images through stereo vision [32].

Stereo vision (also stereo matching) is an essential discipline of computer vision and is

crucial for tasks such as tracking, pose estimation, object identification and scene under-

standing. Each of these tasks can be used to solve numerous problems in different areas,

however a vast amount of research originates from applications in the context of industrial

production and quality control. To ensure persistent levels of product quality, visual com-

puting can be used for an automated inspection of objects or entire scenes on macroscopic

as well as microscopic levels. Detecting defects or anomalies in production is a powerful

and efficient way to ensure industry standards. Also the validation of certain measure-

ments can be a desired application. However, image noise, occlusions, reflections, surface

conditions and many more border constraints render this a challenging problem. While

there is a fair amount of research available which focuses on these problems, very little

work has been published to address the acquisition of non-opaque surfaces. A successful

acquisition of the 3D shape of transparent/semi-transparent objects from stereo vision

is very hard to achieve since the scene can appear deceiving and ambiguous. Suppose a

given scene with a transparent object in front of an opaque background, see fig. 1.1. In

such a case the information obtained from acquired images is a composition of the trans-

parent object and the background. In conjunction with other unwanted effects such as

reflection or refraction it is a non-trivial task to separate this composition in a way such

that the depth information regarding the transparent object as well as the background

can be retrieved. Even for human inspection it can sometimes be hard to determine the

shape of transparent objects. Without prior knowledge and understanding of the scene,

determining shape information in such a scenario would pose an equally hard task for a

human.

Needless to say, the ability to acquire 3D information from transparencies is a desirable

tool for research and industry alike. One reason for example is due to the fact that many

modern production processes commonly involve the use of transparent materials, e.g.

15



transparent plastics or glass. Applications in packaging are very common, however also

others such as consumer utilities, optics or medical health-care can be found frequently.

The goal of this thesis is to present a method that represents a reliable solution for the

depth estimation of scenes with transparent materials, that is compatible with a given

inline computational imaging setup [1] developed by the Austrian Institute of Technology

(AIT). Most approaches which are suitable for this setup deliver unsatisfying results when

applied to a scene with transparent objects. This is why this work intends to present a

new approach dedicated to compute depth information for such distinct applications.

(a) Image from image pair (b) Depth map (c) 3D point cloud

Figure 1.1: Exemplary result from a modern stereo method with a (semi-)transparent object.
Notice that many estimates of the transparent object originate from the background of the scene,
hence the depth map shows a lot of discontinuities between the object surface and the background.

1.2 Related work

The depth reconstruction of transparent objects is considered as one of the few unresolved

disciplines of computer vision. Due to the challenging nature of the problem there has

been a sparse amount of publication on the topic ever since. In a general setting there have

been very few solution based on very distinct approaches over the last two decades. To

tackle the basic problem of depth ambiguities, early work of Szeliski et al. [46] addresses

stereo matching in conjunction with two layer ambiguities (foreground and background) as

in the case of depth discontinuities and occlusions. Tsin et al. [59] present an approach to

transparencies where compositions of colour are solved through spatial-temporal differenc-

ing between different stereo images. Based on active stereo, another interesting approach

utilizing tomographic reconstruction in the visible light spectrum has been presented by

[47]. Miyazaki et al. [34] present a method in which they estimate shapes of transparent

surfaces using an inverse polarized raytracing approach. A very recent approach to full

3D reconstruction of transparent objects has been presented in [57]. In this paper the au-

thors propose a method based on a full 360◦ acquisition in conjunction with a structured

light source. Multiple surface and silhouette constraints are then used to refine the model

iteratively. Another approach based on RGB-D data has been proposed by [24].

Whilst the more recent approaches are very promising all by themselves, it is necessary to

point out that most of them require dedicated hardware and setups which are not applica-

ble to our needs. Recall that it is a necessary criterion of this thesis to present a solution
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that is compatible with the aforementioned scanning setup [1], [50]. Thus the scope of

this thesis is limited to passive methods only. Unfortunately, most of the few available

solutions are based on active methods.

There have been promising publications by Wanner and Goldlücke on their work on struc-

ture tensors for 4D light fields [51]. Their principle is closely related to multi-view stereo

matching. However in their approach, scene information is obtained from a 4D light field

description instead of a multitude of individual images. In their later work in [52] the

authors extend their approach to scenes with transparent and reflective surfaces. Instead

of the traditional procedure of computing a single depth estimate from a given dataset,

they extend the structure tensor approach such that it is possible to obtain depth esti-

mates for transparent surfaces. Note that although their light field description is made

up of two spatial- and two angular dimensions it is still applicable to our case. With

our inline scanning setup we are able to acquire light field data in two spatial- and one

angular dimension. Although we have less angular information we chose this structure

tensor based method as the basis for our proposed solution. This will become clearer in

the course of the upcoming sections. Note that there has also been a related learning

based solution by Johannsen et al. [25], where the problem is tackled by solving sparse

coding problems based on a dictionary of patterns. However solving a number of local

sparse coding problems is computationally extremely demanding which likely proves to be

impractical for industrial applications.

We will later introduce a method to refine depth estimates through the projection into

a discretized voxel volume. This refinement method was inspired by other projection

methods for combining multiple depth maps as for example through signed distance func-

tions [12], [21], [55], [15].

1.3 Outline

As mentioned previously, the goal of this thesis is to highlight the complex of problems

of depth estimation for scenes with transparent materials. Additionally we present a new

approach to solve this problem under the requirements given by the acquisition setup [1],

[50] in an industrial context. Thus this thesis will start by discussing preliminaries related

to the principles of depth estimation from multiple images and will gradually explain the

extension to light field descriptions. Furthermore we will coarsely explain the principle of

the used acquisition setup and the light field data acquired from it. Moreover we will also

show how depth information can be obtained from a given light field.

Since our presented solution is based on depth estimation through structure tensor meth-

ods as in [51], we will subsequently discuss the principles and intrinsics of the basic struc-

ture tensor model thoroughly. In the course of this discussion we will highlight the deriva-

tions of the model for better understanding and review different aspects of the method

along with intermediate results. Moreover we will also present relevant findings and im-

provements.

From there we will shift the focus of the discussion to higher order structure tensor models

as in [3]. In the same manner as for the basic counterpart, we will extensively examine

these tensors. The key properties concerning the depth reconstruction for transparent ma-
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terials will also be evaluated along this line. Since each of these different models assumes

a certain number of depth layers, we will also show the effects of different models on data

with different amounts of layers. With these model based solutions at hand we will later

present a model independent refinement scheme in two distinct variants. Based on voxel-

volume projection methods, we are going to show how we combine depth estimates in a

way such that we obtain a smooth solution for scenes which include transparent materials.

Additionally we will explain our implementation in greater detail. We finalize this thesis

with a discussion of the end results and point out findings regarding different aspects.
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2. Preleminaries on Light Fields

and Depth Computation

Before we focus on the main body of this thesis, we want to give an introduction to the

basic principles and ideas relevant for the subject. This shall create a good foundation for

a better understanding of the content which will be presented in the subsequent chapters.

2.1 Depth from Stereo Matching

In this section we are going to briefly discuss the origins of depth computation through

stereo. Note that this work is strictly speaking based on computing 2.5D estimates, how-

ever, since 2.5D is a special case of 3D and for the sake of simplicity, we will continue to

refer to 3D depth estimates instead.

The key idea behind stereo matching is to compute each point of a scene in 3D space by

correlating pixels from different images. The relative rotation and translation between

both camera orientations must be known. While this principle is valid for arbitrary re-

lations from one image to another, the computation of depth is vastly simplified if there

is no rotation and the translation between camera centres is aligned with one image axis

(parallel stereo). This constraint is used in stereo matching to simplify the computation

of disparity from local neighbourhoods around each image pixel [19], [14], [18], [37].

Consider the example in fig. 2.1. With the given (stereo) setup, the depth estimate z of

any point in the scene can be easily computed by the relative horizontal disparity d, the

focal length f and the baseline b. The epipolar plane intersects the image plane and forms

an epipolar line [19]. Along this epipolar line the disparity d can be computed through

(y1− y2). Note that x1 = x2. The distance z from the scene point SP1 to the image plane

can thus be computed through the following geometric rule:

z = f

(
b

d
− 1

)
= f

(
b

y1 − y2
− 1

)
(2.1)

Notice that disparity and depth are inversely proportional. The principle of stereo match-

ing from two images has been a fruitful research topic ever since [60], [33], [45], [26]. Of

course there have been numerous extensions and variations to the principle. One of the

most common is the extension to the case of multiple images instead of only two. The
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Figure 2.1: Principle illustration of stereo matching with two aligned cameras. A scene is imaged
from two different camera-centres C1 and C2. The corresponding feature point from the scene
(SP1) is projected to P1 and P2 in the respective image plane. The focal length is depicted by f ,
the baseline by b and the sought depth estimate by z.

basic idea is to capture more images in-between to increase the robustness w.r.t finer de-

tails or image noise [36], [48]. This is referred to as multi-view matching. The principle

of computing depth by finding correspondences between multiple image pairs is closely

related to the method of computing depth estimates from a light field. In the next section

we will show this relation in further detail.

2.2 Light Fields

Based on the idea of computing depth estimates from multiple images, there is also a

more sophisticated method. If we interpret each given image as a single layer comprised

of voxels instead of pixels by giving it a unitary 3rd dimension and from there proceed to

stack said layers along this new dimension, we obtain a volume as in fig. 2.2. This volume

can be described through a so called light field [58], [30]. A light field (LF) describes

the function of light at each point in 3D space from different perspectives and was first

introduced to computer vision in [30]. The most general case of a light field is described

by the plenoptic function [4] in 7D:

L(θ, φ, λ, t, Vx, Vy, Vz)

where θ, φ describe the ray direction of observation, λ is the wave length, t the time and

Vx, Vy, Vz describe the coordinates of the camera centre in space which consequently is

the location from which each image is captured. In conventional imaging application with

20



Figure 2.2: Collection of P input images stacked on top of each other. The depicted images
originate from the scene 45 dataset from [20].

a static setting where only grayscale or RGB images are described, the complexity of

the light field reduces to 5D. Instead of describing each point of a scene by the observed

direction of the two angles θ, φ one can alternatively use image coordinates x and y. The

light field thus is described by

L(x, y, Vx, Vy, Vz)

Depending on the degrees of freedom of the camera movement (3D/2D/1D) there is a

multitude of methods to acquire such light fields. One option is to use plenoptic cameras

as presented by Perwass et al. [38], [39] or using a conventional camera, mounted onto

linear rails driven by a stepper motor [51]. A different approach has been presented by

Štolc et al. [50] where a stationary multi-line-scan camera captures a 3D light field from

an object, which is moved on a linear rail. The scene acquired from this setup is described

through a light field of the form

L(x, y, s). (2.2)

Here x denotes the vertical sensor resolution of the camera and y denotes the acquisition

during movement. Furthermore s denotes the index of the sensors scanlines. A simplified

depiction of this acquisition setup is shown in fig. 2.3. Since each scanline forms one image,

this definition of the light field is equivalent to the stacked voxel volume defined in the

beginning of this section. Because this acquisition setup will be the basis for all of the lab

data recorded and evaluated in this work, we will focus on this LF definition from now on.

Throughout the course of this thesis the phrase LF stack may also appear. Note that this

is just another term for the light field description or the voxel volume interpretation.

Recalling the epipolar properties from section 2.1 we can now apply this knowledge to the
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Figure 2.3: A conceptual illustration of the inline acquisition setup from [50] and [1]. The
principle is based on the relative movement between the camera and the scene. Different scanlines
on the camera sensor acquire the scene from different angles. Each scanline forms an image of the
light field stack.

Figure 2.4: Light field L(x, y, s) depicted as a volume in x, y, and s. The plane Π intersects the
volume at x∗ to illustrate the epipolar plane image Ex∗(s, y). Images from scene 45 dataset from
[20].
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light field L(x, y, s). From the aforementioned acquisition setup [50] we know that due to

the constrained multi-line principle, all images share the same epipolar planes w.r.t the

movement direction. By intersecting these epipolar planes with each image plane, this

therefore results in the same epipolar lines in all images. Thus by fixing x at any value x∗

within the range of image height across all images, we obtain an image that is known as an

epipolar plane image (EPI), see [51]. In the notational form of the light field description

it thus can be denoted

L(x∗, y, s) := Ex∗(s, y). (2.3)

Fig. 2.4 depicts such an light field as a volume with the dimensions M ×N × P . M and

N denote the original image height and width. Notice that the faces on the sides of the

volume show the corresponding EPIs of the light field. From the earlier example it can be

seen, that the EPI at x∗, Ex∗(s, y) is depicted as well. As an easier way of comprehending

epipolar plane images, one can also imagine dissecting the volume at plane Π. A detailed

look at the EPI pattern reveals, that corresponding scene points across all input images

form a traceable line or pattern in the EPI. Notice that different lines at each location

in Ex∗(s, y) have different slopes which indicates different depths from the 3D scene, see

fig. 2.5. By computing the slope of the pattern for each location it is thus possible to

compute depth information.

Figure 2.5: Epipolar plane image Ex∗(s, y). Notice how different lines/patterns have different
angles α1, α2 what indicates different depth. Images from scene 45 dataset from [20].

In section 2.1 it was shown, that depth can be computed from the disparity of a feature

in two images. With the light field description discussed in this section, equivalent can

be achieved by estimating the line/pattern angles of the epipolar plane images. Note that

although both approaches allow to compute depth estimates, they are not identical. The

numerical relation between both approaches is briefly evaluated in section 3.3.

To summarize, by using this light field representation it follows that it is possible to infer

the depth of any scene point by estimating the angle of the local pattern structure in the

corresponding epipolar images. The actual angle estimation from a local neighbourhood

can be achieved in different ways. A local approach is the testing of hypotheses as pre-

sented by Soukup et al. [44]. The principle is that a fixed number of angular hypotheses

are tested against a local pattern and evaluated based on some cost measure. The best

hypothesis is then used to infer the depth estimate. Note that this approach assumes

constant radiance across all P images. Problems may occur in case the constant radi-

ance assumption is violated by e.g. reflections or transparencies/occlusions. A different

approach has been presented by Wanner and Goldlücke [51] based on the use of so called
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structure tensors. The key idea is that their approach is able to estimate local pattern

orientations based on a statistical analysis of gradient information in the EPI domain. Be-

cause an estimate can be computed directly, there is no need for evaluating a hypothesis.

As mentioned earlier, the use of structure tensors will be the key principle throughout this

thesis. In the later course of this thesis we will explain how this principle can be extended

to the application of light field descriptions with transparent materials.

2.3 Data

This section will briefly discuss the structure and properties of data used throughout this

paper. Most of the results presented in this thesis originate from acquisitions through

the inline computational imaging (ICI) setup [1], [6], based on the principle introduced

earlier in [50]. One point to emphasize is, because the referenced setup is equipped with

two light sources it is possible to acquire one light field dedicated to each light source

individually. This will be a useful advantage as it will be shown in a later section. The

light field dimensions from this setup are denoted M ×N ×C×P . The spatial dimension

M corresponds to the vertical resolution of the camera sensor, N is the number of scanline

acquisitions along the direction of movement and defines the spatial resolution. C denotes

the number of colour channel times the available illuminations. Since the data acquired

for evaluation is in RGB and we use two light sources, one from the left and one from the

right, the parameter C = 6. The RGB light fields are thus stacked along this dimension.

As denoted in section 2.2, P denotes the number of images, which implies the number

of inline scanlines used for acquisition, i.e. the angular resolution. More specifically the

resulting light field dimension thus is M ×N × 6× P .

Most setups which allow light field data to be acquired are limited w.r.t. to angular

views (i.e. images taken from different angles). Usually this is conjoined by a trade-off

between spatial and angular resolution. Due to this shortcoming, effort has been invested

into computing super-resolution light fields from sparser sampled acquisitions. There are

multiple methods to achieve this. Rossi et al. [40], [41] provide a graph-based method,

Yoon et al. [61] and Gul et al. [16] present methods based on CNNs. However, angu-

lar and spatial resolution is crucial to acquire fine details and to combat noise. From

our findings, this has also another significant impact on the results for scenes including

transparent/semitransparent materials. Due to the fact that transparent surfaces impose

very little to no structures in EPIs, which are usually very fine, a high angular and spa-

tial resolution is crucial to computing depth estimates through light field based methods.

Fig. 2.6 depicts a comparison of epipolar plane images with varying resolution. Because

of the lower spatial and angular resolution in one of the images, it is difficult to make out

continuous structure or traceable lines which is of high importance for the used method.

This will be clearer upon the explanation of the used method in the upcoming sections. S.

Wanner [54] provides a more detailed insight about limitations in disparity between adja-

cent views and shows that if disparity gets too high, it is no longer possible to perform an

orientation estimation.
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(a) High resolution EPI

(b) Low resolution EPI

Figure 2.6: Comparison between an EPI with high spatial- and angular resolution and a low
resolution EPI. Note how the lines in the low resolution EPI show a staircasing effect.

One of the benefits of using the aforementioned inline setup (ICI) is, that the spatial

as well the angular setup can be selected through enabling and disabling scanlines and

choosing the acquisition interval. This convenient fact lets us thus choose P and N . In

our acquitions we found that a high angular resolution (P > 30) works well. The vertical

resolution given by the sensor upper bounds the resolution in x. Comparable datasets

which are available online e.g. [23], [53], [20] usually work on lower spatial and angular

resolutions. An example for densely sampled light fields is given by [5]. However, since

research on light fields in conjunction with transparent materials has been very sparse,

there is very little we can compare to. We found only one dataset which is dedicated

towards transparent materials (’Maria’ dataset from [53]). This dataset was published by

the same authors that presented [52]. Note however that in their work they only show

results on data with planar reflective or transparent surfaces. In this thesis however we

will study depth estimation for transparent objects with more general shapes and forms.

25





3. Depth Estimation for

Lambertian Surfaces

During the course of the previous chapter we conveyed the most crucial basics related to

this thesis. In this section we are going to discuss the core principles and findings based on

the aforementioned method. More specifically, we will focus on the depth estimation for

scenes where it is assumed that each scene point fulfils the Lambertian assumption. For

this assumption to hold true, it is obligatory that a scene point as part of a (Lambertian)

surface reflects radiance in all directions equally [28]. Because we use the aforementioned

light field description, this assumption means that the imposed lines and structures in the

EPI domain are clean and continuous. Another property of this assumption is that pattern

patches in the EPI domain will have exactly one orientation. In case this assumption

is violated, these properties will not hold. This can be the case for transparencies or

occlusions in a scene, however, we are going to discuss this in a later chapter of this thesis.

In the course of this chapter we instead will focus on the the applicability of structure

tensors to the task of depth estimation. As briefly mentioned in section 2.2, the structure

tensor can be used to determine pattern or line orientations in an image. Since the first

order structure tensor model, which will be discussed in the upcoming parts, is capable

of estimating exactly one orientation, it will also be referred to as the single orientation

structure tensor (SOST). Before we dive into the derivation of the first order model in

further detail, we will briefly discuss the interpretation of pattern orientations and the

corresponding angular estimates. Since our solution relies on angular estimates instead

of disparities, we have spent plenty of time investigating the problems that may arise

with this representation. Most known structure tensor based implementations assume

disparities for their results. However it is crucial to have continuous angular estimates

for the refinement method as presented by our extension in chapter 5. In addition the

results need to be consistent with those from higher order structure tensors which will be

introduced in chapter 4.

3.1 Pattern Orientations and Angular Estimates

The range of a valid angle ξ for the denotation is constrained to be ξ ∈
(
π
2 ,−

π
2

)
, as this

is the range for which the tangent function is unambiguous. It follows the definition of

the orientation vector w(ξ) = [cos(ξ), sin(ξ)]T. The drawback of this is that lines in EPIs

are effectively limited to the interval ξ ∈
[
0, π2

]
. Because we use angular estimates instead
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of disparities as our result, this representation will lead to problematic discontinuities in

the structure tensor estimates. In our framework we aim to distribute our full angular

resolution over the whole available range as best as possible, to get the maximum out of

our data. Thus it is necessary to map the angular estimates from EPI lines or patterns to

our desired range. This means that we have to utilize those angles in ξ ∈
[
π, π2

]
as well.

If flipped by a factor of π, the angles in this interval correspond to ξ ∈
[
0,−π

2

]
. With

our acquisition setup we are able to acquire light fields where EPI lines with angles over

the full interval of ξ ∈
[
π
2 ,−

π
2

]
can occur, see fig. 3.1. The angular range can be shifted

by changing the focal point of our setup. Details about this will not be discussed in this

thesis - for further reading we refer the reader to the adequate references [50], [44]. The

problem with selecting the angular range in our lab data in this way is that depths that

correspond to ξ ≈ π
2 are directly neighbouring those corresponding to ξ ≈ −π

2 which leads

to these unwanted discontinuities in our results. Note that this is not the case for example

in the synthetic data of Heber and Pock [20] as depicted in fig. 2.5, since in their data

only angles ξ ∈
[
0, π2

]
occur.

Figure 3.1: EPI with different pattern orientations. Notice that the depth for the local pattern
at y1 is close to ξ = −π2 and at the same time is close to the pattern orientation at y2. The

orientation vectors for ξ̂ point only ’up’.

Although sticking with this behaviour would not render further processing steps inappli-

cable, it is hard to interpret the correctness and quality of our results. This is why we

employ the following measures to enforce smoothness and continuity of our results.

As a first step, we flip all angular estimates −π
2 < ξ < 0 by π. This gives us our new

continuous range (π, 0]. The need for flipping the orientation can easily be determined by

checking the sign of the second component of the orientation vector w(ξ). Additionally

because we want our estimates to reside around 0, we offset ξ̂ by a factor of −π
2 . This

then leads to our angular range as illustrated by the pattern patches in fig. 3.2.

Figure 3.2: Pattern patches with the range of ξ̂ annotated correspondingly.

A direct comparison with the EPI given above (fig. 3.1) shows clearly, that because of

orientations in both quadrants of ξ ∈
[
−π

2 ,
π
2

]
this is the most effective method of defining
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the notation for our angular estimates.

Fortunately for the results from the first order case this does not require any mapping

whatsoever. Instead through the direct computation, as it will be shown in the upcoming

section, it is possible to enforce the resulting vector to fulfil w(ξ)T · [0 1]T > 0. Possible

effects of this discontinuity behaviour are depicted in fig. 3.3.

(a) Central input image (b) Angular estimate ξ (c) Angular estimate ξ̂

Figure 3.3: Effects of the angular interval correction as introduced in section 3.1. Notice that
for subfigure b) the results are discontinuous and flipped around ξ = 0◦. The angular result ξ̂, as
presented by us, can handle data sets with orientations across the whole range

[
−π2 ,

π
2

]
.

3.2 Single Orientation Structure Tensor (SOST)

Next we are going to discuss the mathematic principle behind the first order or single

orientation structure tensor. The derivations below will follow [3] and extend it for further

clarity. Recalling our goal of estimating the orientation w(ξ) of a local pattern in the EPI

domain, we define a patch within a region Ω from a grayscale image f : IR2 → IR given by

a function

f(x) = f(x+ kw) ∀x ∈ Ω (3.1)

where k ∈ IR denotes a step size and x ∈ IR2 denotes the bivariate image coordinates in y

and s. From previously, we know that w(ξ) = [cos(ξ), sin(ξ)]T denotes the orientation of

our pattern. In the context of the Lambertian assumption as described in the beginning of

chapter 3, it is also the direction along which the radiance in an EPI patch stays constant.

This means that the gradient along this direction must vanish. Thus the following can be

denoted [27], [8]

∂f(x)

∂w(ξ)
= w(ξ)T · ∇f(x) = 0 ∀x ∈ Ω (3.2)
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The given constraint is fulfilled by an energy term. This energy term can be formulated

as

E1(ξ) =

∫
Ω

(
w(ξ)T∇f(x)

)2
dΩ = 0 (3.3)

As a general side note, the gradient which is applied in the EPI domain is denoted by

∇f(x) =
[
∂f(x)
∂y , ∂f(x)

∂s

]T
. Condition eq. (3.3) can be reformulated in the following way

E1(ξ) = w(ξ)T

∫
Ω

∇f(x)∇f(x)TdΩ

w(ξ) = w(ξ)TS w(ξ) (3.4)

Through this reformulation the first order structure tensor S is introduced. The formal

definition of the tensor in a continuous setting thus follows

S =

∫
Ω

[
d2
y dyds

dyds d2
s

]
dΩ. =

∫
Ω

[
S11 S12

S12 S22

]
dΩ. (3.5)

Note that through its composition this must be a symmetric, positive semi-definite matrix.

dy denotes the gradient in y while ds denotes the gradient in s.

Our general goal now is to find a solution to w(ξ) such that E1(ξ) becomes 0. Note that

the energy function E1(ξ) can only be zero if the whole image patch has a perfect single

orientation pattern structure with no noise or variations along w(ξ) whatsoever. In real

world data this is practically never the case, thus E1(ξ) will never reach 0. The next best

thing that can be done though is to keep the energy as minimal as possible. As a side note,

this is similar to the idea of a principle component analysis (PCA) where the orientation

with the least variability after projection is sought. We are thus searching for the optimal

solution φ to the target function

argmin
φ

E1(φ) = w(φ)TS w(φ) s.t. w(φ)T · w(φ) = 1 (3.6)

Constraining the direction vector as denoted above serves the purpose of excluding the

trivial solution w(φ) = 0. The solution to this problem can be solved through the Lagrange

function

L(w, λ) = w(φ)TS w(φ) + λ(1− w(φ)T · w(φ)) (3.7)

This leads to the optimality conditions

∇wL(w, λ) = S w(φ)− λw(φ) = 0

∇λL(w, λ) = w(φ)T · w(φ)− 1 = 0
(3.8)
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From this notation it can be derived, that finding the optimal solution to the problem is

equivalent to performing an eigenvalue analysis of the structure tensor S

S w(φ) = λw(φ) w(φ)T · w(φ) = 1 (3.9)

where w(φ) represents the right hand side eigenvector. Thus we have shown, that the

resulting eigenvectors indicate the orientations of the pattern patch within the region Ω.

The upcoming section will explain the eigenvalue analysis further.

3.2.1 Eigenvector Analysis

In the previous section we derived, that the orientation of an image patch in the region

Ω can be computed by an eigenvalue analysis. Let λ1 and λ2 be the eigenvalues of S

where λ1 > λ2 and let v1 and v2 be their corresponding eigenvectors. It is clear that the

eigenvector v1 corresponding to the largest eigenvalue λ1 of the structure tensor S points

in the direction of the strongest variability, i.e. the direction of the gradient. Since the

second (smaller) eigenvector v2 must be orthogonal to v1 one can compute the orientation

of a pattern from the smaller eigenvector v2. This is exactly the vector that minimizes

eq. (3.6). The residual of the energy at the optimal solution φ∗ thus is given by

E1(φ∗) = λ2. (3.10)

This means that a low residual indicates a high confidence for the single orientation as-

sumption [3] of the image patch. Equivalently this must indicate an image patch in the

vicinity of Ω that has a consistent, low noise orientation. On the contrary we can formu-

late the statement, that a high value for λ2 indicates a high variation along the optimal

orientation estimate which in turn might imply noise, a multi-orientation pattern or vio-

lation of the constant radiance assumption (i.e. reflection, occlusion etc.).

Since S is a symmetric 2 × 2 matrix, the relevant parameters can easily be computed in

closed form. By definition they must fulfil

(S − λ1,2I)v1,2 = 0. (3.11)

Which leads to the characteristic polynomial

det(S − λI) = 0. (3.12)
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By solving for λ we get:

0 = λ2 − λ(S11 + S22) + S11S22 − S2
12

λ1,2 =
(S11 + S22)

2
±
√

(S11 + S22)2

4
− (S11S22 − S2

12)

λ1,2 =
trace(S)

2
±
√

trace(S)2

4
− det(S)

From eq. (3.11) it follows, that an eigenvector v =

[
vy

vs

]
must fulfil

(S11 − λ)vy − S12vs = 0 (3.13)

Both eigenvectors can be derived from this, however for computing the angle of the pattern

patch we are only interested in the eigenvector corresponding to the smaller eigenvalue

which is v2. This eigenvector points in the direction perpendicular to the gradient direc-

tion. Inserting λ2 into eq. (3.13) gives

0 =

(
S11 −

(S11 + S22)

2
−
√

(S11 + S22)2

4
− (S11S22 − S2

12)

)
vy − S12vs

vs =
S11 − S22 +

√
(S11 − S22)2 + 4S2

12

2S12
vy

v2 =

[
vy

vs

]
=

vy
2S12

[
2S12

S11 − S22 +
√

(S11 − S22)2 + 4S2
12

]

Since only the relation between vy and vs is known, it is up to interpretation on how

to exactly compute the orientation vector. [3] and [54] restrict the vector to unit length

through normalization and set one of either vy or vs to 1. With hindsight to section 3.1

we conveniently have the option to enforce vs > 0, by setting vs = 1. This ensures that

the angular result does not need to be flipped by π and is already in the correct range for

computing our angular result. The angular estimate ξ̂ can thus be computed through

ξ̂ = tan−1

(
vs
vy

)
− π

2
(3.14)

As an interesting alternative, the next section will present a different though process that

leads to solving the problem of pattern orientation through a least squares problem.
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3.2.2 Pattern Orientation through LSP

An alternative idea of finding the same orientation is to formulate a least squares problem

(LSP) from all pixel-wise gradients of an image patch in a region Ω. Since the gradient

points into the direction of the highest variability, we need to find the orientation that

is most orthogonal to the cumulative gradient. Thus to find the optimal solution w∗, it

would be also possible to find the solution to the least squares problem

min
w∈IR2

1

2

Ω∑
i

(gT
i w)2 (3.15)

Note that this notation does not include the structure tensor S but instead uses gradient

information directly. An example for this principle is depicted in fig. 3.4. The second plot

in this figure depicts the point cloud of gradients which also represents the principle of the

structure tensor in some indirect way. Since the structure tensor is comprised of gradient

information this point cloud may serve as a bridge to the related eigenvalue analysis.

However note that the least squares cost function is convex and thus cannot be extended

to multiple orientations. Therefore it will not be investigated further. This section shall

only serve the purpose of helping the reader to get a better understanding w.r.t. pattern

orientations.

(a) Pattern patch Ω (b) Gradients and eigenvectors

Figure 3.4: The left image depicts an example of a pattern patch sampled from region Ω (24×24).

The orientation of this patch is ξ̂ = −60◦. 20% of Gaussian distributed noise has been added. The
right image shows a point cloud of pixel-wise gradients gi = [dy, ds]

T (black) and the normalized
eigenvectors v1, v2 from the eigen analysis of the structure tensor. Note that v2 aligns with the
pattern orientation on the left and has an estimated orientation of −59, 73◦ in this example.

3.2.3 Robustness and Smoothing

Up to this point the mathematical principles of the structure tensor have been introduced.

This section will be dedicated to the discussion regarding the robustness of the structure

tensor with respect to different metrics. The structure tensor S in eq. (3.5) is defined
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as a symmetric 2 × 2 matrix. When using the structure tensor for estimating pattern

orientations in epipolar plane images, it is usually the case, that a weighting function on

an inner-/ and an outer-scale is used [51]. This is done to make the structure tensor better

scalable such that it can be adapted specifically to the scale of the pattern which helps to

prevent aliasing affects. Another reason is, that because the structure tensor is based on

the product of image gradients, sensitivity to noise is a concern. The weighting functions

help to suppress sensitivity to noise. With these weighting functions the structure tensor

can be denoted as

S =

∫
Ω

Gσo ∗

[
d̂y

2
d̂yd̂s

d̂yd̂s d̂s
2

]
dΩ. (3.16)

Here d̂y and d̂s denote the gradient in y and s, smoothed by a Gaussian kernel with a

inner scale of σi, i.e. d̂y = σi ∗ dy. Since in our case the gradients are computed from

central differences and direct differences at the image borders, we use a convolution with a

Gaussian row- and column-vector respectively. For a 3×1 or 1×3 kernel the (intermediate)

inner smoothing operation would look like

d̂y = dy ∗
[
0.25 0.5 0.25

]

d̂s = ds ∗

0.25

0.5

0.25


This way we only smooth along the direction of the gradient operation and not across

it. Another way of computing robust image gradients is through Gaussian derivatives [2].

This combines Gaussian smoothing with the computation of image gradients in one step.

N (y, s|σ) =
1

2πσ2
e−

1
2
y2+s2

σ2

∂N (y, s|σ)

∂y
= − y

2πσ4
e−

1
2
y2+s2

σ2

∂N (y, s|σ)

∂s
= − s

2πσ4
e−

1
2
y2+s2

σ2

If f(x) denotes the input image, then the gradient image could be computed from the

convolution

d̂y = f(x) ∗ ∂N (y, s|σ)

∂y
(3.17)
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d̂s = f(x) ∗ ∂N (y, s|σ)

∂s
(3.18)

The Gaussian derivatives can also be used to compute the second order gradients in the

same manner.

∂2N (y, s|σ)

∂y2
=
y2 − σ2

2πσ6
e−

1
2
y2+s2

σ2

∂2N (y, s|σ)

∂y∂s
=

sy

2πσ6
e−

1
2
y2+s2

σ2

∂2N (y, s|σ)

∂s2
= −s

2 − σ2

2πσ6
e−

1
2
y2+s2

σ2

In [29], Köthe proposes multiple improvements on the regular structure tensor for applica-

tions in the context of corner-/feature- detection. One of the propositions is to up-sample

given image patches to avoid aliasing. The author states that this can be combined with

Gaussian derivatives. Through Gaussian deconvolution the Gaussian derivatives thus can

be used to compute the smoothed derivatives of an up-sampled image patch all at once.

We evaluated both methods, however we could not determine an improvement for the ori-

entation analysis. Due to the increased computational effort for up-sampling to a higher

resolution we decided to use regular computation of derivatives with subsequent smooth-

ing as described above. This also gave similar results as compared to using Gaussian

derivatives (without up-sampling). Wanner [54] also investigated Sobel [56] and Scharr

[7] operators and compared them to Gaussian derivatives. From the authors findings it

can be deduced, that Gaussian derivatives perform best across different structure tensor

scales. In general, from the findings during our evaluations we observed, that higher spa-

tial resolutions require also higher angular resolutions and thus the structure tensor needs

to be defined on larger scales. This is consistent with the findings from the reference.

In the notation eq. (3.16) from above, Gσo denotes the weighting operation on an outer

scale. This outer operation is usually achieved through convolution with a Gaussian Kernel

with standard deviation σo. However, because we found that residual border artefacts from

computing the gradient in the EPI domain influence our estimates heavily, we decided to

test other methods as alternatives. The idea is to mitigate the influence of those border

artefacts. The results from this experimental evaluation will be presented in section 3.2.5.

Since this outer scale operation in conjunction with the integration resembles sort of a

cumulative aggregation over the elements of the structure tensor, it will also be referred

to as the aggregation step.

It is necessary to point out, that from our findings this inner scale intermediate weighting

in conjunction with the outer scale aggregation step is crucial to the stability of the

method. Without both steps the method turns out to operate on a scope that is too

local. As mentioned above, the method is prone to noise due to the fact that the structure

tensor is a construct from products of gradients. This sensitivity to noise especially applies

for structure tensor models of higher order, which will be clear once we discuss them in
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a later part of this thesis. Through the robustness study presented in this section, we

can be certain that our chosen metrics are optimal with respect to our structure tensor

implementation. Nevertheless, we require some way of measuring certainty that validates

orientation estimates locally. This leads to the discussion about confidence in the single

orientation structure tensor hypothesis which will follow in the subsequent section.

3.2.4 Single Orientation Confidence

In the previous sections we described how to compute robust depth estimates from analysing

pattern- and line-orientations in the EPI domain based on the structure tensor. Since this

is a model based approach, we need to choose a confidence estimate that supports our

model hypothesis. As mentioned in section 3.2.1, the reliability of a single orientation

hypothesis is supported by the residual of the energy term as in eq. (3.6). Recall that the

residual is given by the smaller eigenvalue λ2.

As an additional metric we want to have strong gradients orthogonal to the orientation

of the image patch within Ω. This is the case if the larger eigenvalue λ1 is large relative

to λ2. It follows, that in order to make a statement about the confidence in the single

orientation hypothesis, we can analyse the results from the eigenvalue analysis. Based on

this, Bigün et al. [8] propose to simply compute the difference between both eigenvalues

C1 = λ1 − λ2 (3.19)

This confidence measure all by itself gets the correct idea, however the measure proves to

be problematic in case λ2 = 0. The range of confidences in this case is reliant on the value

of λ1. Proposed by the same paper there is also another measure that is applicable in the

same manner.

C2 =
λ1 − λ2

λ1 + λ2
=

(
√
S11 − S22)2 + 4S2

12

(S11 + S22)2
(3.20)

This measure is called coherence. Due to the simple structure of the closed form solution

for the eigenvalues it can be computed from the structure tensor S directly. This confidence

measure scales perfectly on the interval [0, 1]. We also chose this confidence measure for

our implementations. As it will be shown in the later course of this thesis, it is very

important that different model hypotheses are comparable to make reliable decisions for

transparencies. Our choice for C2 is additionally supported by the convenient scale and

good expressiveness on the hypothesis. Examples depicting the confidence according to

the presented confidence measure C2 are presented in fig. 3.9.

3.2.5 Evaluation of Different Aggregation Methods

During the discussion in section 3.2.3 we mentioned an experimental evaluation of different

aggregation methods on the outer scale of the structure tensor. This evaluation will be

highlighted in this section. The goal of this evaluation is to find the most stable aggregation

method w.r.t noise and border artefacts. For this evaluation we created a small test
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framework, in which we are able to compare structure tensor estimates on a small scale

based on different aggregation methods. As a reminder, the aggregation method denotes

the weighting and summation on an outer scale, see eq. (3.16). In this framework we

create a window of size 9× 9× 1× 21 (x× y× 1× s) and synthesize a pattern with a given

orientation ŵ(ξ̂). An illustration is shown in fig. 3.5. From this synthesized window we

compute the orientation w(ξ̂) and compare the result to ŵ(ξ̂).

Figure 3.5: Synthesized window for testing different aggregation methods. In this figure the
orientation points into a direction with an angle ξ̂ = 45◦

Our evaluation is conducted in a way where we compute w(ξ̂) with 50 equally dis-

tributed orientations ŵ(ξ̂) on the interval [85◦,−85◦]. The elements of the structure tensor

S are aggregated and evaluated by the following methods:

Sum

This method simply sums up all the estimates in the given window and parses the

result to the eigenvalue analysis. Note that this method can be combined with the

outer scale weighting as in section 3.2.3 since applying a box filter (i.e. sum) multiple

times converges to the same result compared to applying a Gaussian filter.

Mean

Simple mean over all elements within the aggregation window.

Weighted Mean

This aggregation method is similar to the previous one, but each individual element

in the sum is weighted with the corresponding confidence C2 as in section 3.2.4.

Median

Collecting all elements in the aggregation window and computing the median of the
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resulting distribution.

Highest Confidence

From all the elements from within the window we choose the element with the

highest corresponding confidence as the result for further computation through the

eigenvalue analysis.

Mode

Collecting all elements in the aggregation window and computing the mode of the

resulting distribution.

On top of the synthesized pattern window we add different levels of additive noise, which

is sampled from a zero-mean normal distribution. From there we evaluated each method

over the entire interval, see fig. 3.6. Each aggregation method is tested 3 times with dif-

ferent levels of noise. The averaged results of the SSE (sum of squared errors) over the

entire angular range are depicted in table 3.1.

From the results it can be seen, that the most reliable method is given by summing up

all elements from the aggregation window. Other methods like mean or weighted mean

perform comparably, however this no surprise since mean and sum are closely related. Fur-

thermore through further empirical testing with different aggregation windows and line

widths we were able to confirm the results presented in this section. The results support

the standard aggregation method as it is defined in eq. (3.16). Another argument sup-

porting the chosen aggregation method is, that for whole light fields, border regions make

out a smaller percentage as compared to the small framework in this evaluation. This is

especially true for border regions in s- and less so in y-direction due to the relatively high

spatial resolution and lower angular resolution. Overall the affected regions resemble only

a small portion of the whole light field. Since the most robust method is given by the

regular sum, we chose to use a box filter on the same scale as the outer smoothing kernel

and aggregate 3 times. This gives us combined approximation of a Gaussian kernel and

thus combines the weighting and the aggregation.

PSNR in dB
SSE

Sum Mean Weighted Mean Median Highest Confidence Mode

26.02 253.31 259.50 272.26 2117.79 731.77 2017.18

16.48 274.94 258.64 277.86 1950.74 643.60 8138.10

12.04 288.95 331.21 387.54 965.24 754.27 57324.56

Table 3.1: The averaged results (over 3 runs) from the conducted tests on aggregation methods.
The numbers represent the sum of squared errors over the entire tested angular range in degrees
(◦).
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(a) PSNR= 26.02 dB (b) PSNR= 12.04 dB

Figure 3.6: Exemplary results for tested aggregation methods over the evaluated angular interval
[85◦,−85◦] at different noise levels.

3.3 Relation to Stereo Matching

In section 2.2 we mentioned that orientation analysis in light fields and classical stereo

matching are linked. The following section shows a naive analytical link between both

approaches.

Recall eq. (3.5) and consider a theoretical region Ω of 1 pixel, i.e. computing the eigen-

vector for each individual pixel, then it is guaranteed that the smaller eigenvalue λ2 = 0

since

det

([
d2
y dyds

dyds d2
s

])
= 0

This simplifies the computation of the eigenvector v2 to

v2 =

[
vy

vs

]
= vy

[
1
dy
ds

]
(3.21)

A simplified illustration for this can be seen in fig. 3.7. This figure shows an EPI with

some pixel values forming lines with some arbitrary orientation. Let Dstereo denote the

disparity from stereo matching based on the mean absolute error within a certain region

between s = 1 and s = P in some local neighbourhood N. For the sake of simplicity,

consider the winner takes all (WTA) result as in

DStereo ∈ argmin
d

N∑
x

|L(x∗, y, P )− L(x∗, y, 1)| . (3.22)

Note that the disparity is reciprocally linked to the angle of the line. Let NΩ be the

number of pixels in the sampled region Ω and recall the eigenvector from eq. (3.21). Then
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the following can be denoted

1

NΩ

∑
Ω

vs
vy

=
1

NΩ

∑
Ω

ds
dy
' P − 1

DStereo
(3.23)

It thus can be seen that the principles behind both approaches are linked. This relation

is not so straight forward in case a larger region Ω is considered. A major difference

between both methods is, that stereo matching is fairly independent from angular and

spatial resolution. For stereo matching, higher resolutions mostly benefit properties like

accuracy or robustness to noise. However for the orientation analysis in the EPI domain,

sufficient spatial and angular resolution is a necessary prerequisite.

. . . . . . . . . .
. . . . . . . . . ..
. . . . . . . . ..
. . . . . . . ..
. . . . . . ..
. . . . . ..

.

. .

. . .

. . . .

Figure 3.7: EPI illustration depicting the link between slope and disparity.

3.4 Contrast Normalization

Contrast normalization is a preprocessing step to make input data better suited for subse-

quent analysis. For our application we decided to preprocess our light field data to improve

applicability of orientation analysis with structure tensors. Recall from section 3.2 that a

given image patch benefits from strong homogeneous patterns within the observed region

Ω. Thus we decided to employ local contrast normalization by a high-pass filtered variant

of the self quotient image (SQI) normalization method presented by Wang et al. [17]. Our

variation of the algorithm can be found in algorithm 1. The motivation for this prepro-

cessing step is the improvement towards reflective and/or texture-less surfaces. Also very

weak pattern lines that originate from small structures on transparent surfaces, shall be

enhanced such that the application of the structure tensor to data with transparent objects

is improved. This preprocessing is applied at the very beginning of our implementation

pipeline. See fig. 3.8 for a depiction of the effects on the light field data before and after

the contrast normalization.
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Algorithm 1 Contrast normalization using a Gaussian filter kernel σkp

1: procedure High-Pass Medium-Contrast filtering(I) . I, In, Id, Io ∈ IRMxNx3xP

2: In ← I − σkp ∗ I . High-pass filtering

3: Id ← (σkp ∗ I2
n)

1
2 + ε . Division by 0 offset ε = 10−6

4: Io ← In
Id

5: Io ← Io
6 + 0.5 . Scaling

6: return Io
7: end procedure

(a) (b) (c) (d)

(e) Central EPI before normalization

(f) Central EPI after normalization

Figure 3.8: Effects of the proposed contrast normalization. a) shows the angular estimate without
prior contrast normalization. b) shows the angular estimate with prior contrast normalization. c)
depicts a grayscale input image. d) depicts the corresponding output image. e) and f) depict
epipolar plane images from before and after the contrast normalization step.

From fig. 3.8 observe that the imbalanced contrast in the EPI images between the object

and the background is equalized across the whole EPI. Also notice how specular regions

which are heavily saturated before normalization, impose a balanced contrast after this

preprocessing step. As denoted in algorithm 1, the size of the equalized local region is

determined by σkp. For our application we use filter kernels that are large in the spatial

directions x and y but small in the direction of s. As an example for a light field of the

size (1177× 1152× 1× 17) we use a 3D kernel with the dimensions (9× 9× 1× 3). This

exemplary selection has been made empirically. Kernel sizes may be scaled according to

the dimensions of the light field. We have not conducted a test to evaluate a whole range

of different kernel sizes, however we could observe, that the overall improvement is fairly

constant across different scales of the normalization kernel. In fig. 3.8 the impact on the

resulting estimates can be seen. Notice how the results are much smoother as opposed to

the result without our contrast normalization technique. Also observe that there are far

less regions where estimates are at the limits of the total angular range π
2 and −π

2 .
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3.5 Single Orientation Results

This section presents some results which we obtain from the single orientation structure

tensor model. Recall that a general input light field is given by L(x, y, s) with the dimen-

sions [M ×N ×3×P ] where the 3rd dimension denotes the channel index, i.e. RGB. Since

we compute the single order structure tensor estimate as discussed in this chapter, we

obtain an angular estimate ξ̂ for every element of the light field. Thus the resulting stack

of estimates is Λξ̂(x, y, s), with the same spatial and angular dimensions [M×N×1×P ] as

the input light field stack. In section 3.2.4 we discussed the confidence measure to support

our model hypothesis. In the same manner as for the angular estimates, our implementa-

tion also yields a confidence result stack C2(x, y, s) with the same dimensions. In all these

stacks we refer to sref = P+1
2 as the central view or reference view. Fig. 3.9 depicts the

central view L(x, y, sref) for different datasets with corresponding estimates Λξ̂(x, y, sref).

Recall section 2.3 where we stated, that our lab data has the dimensions [M ×N × 6×P ]

where 6 channels come from two RGB light field stacks (left- and right-illumination).

Naturally it follows that we obtain two results for Λξ̂(x, y, s) and C2(x, y, s) instead of

one. This will be important for our later explanation in section 5.1.1.

This concludes our discussion on the depth estimation for Lambertian surfaces. As we

have shown in the course of this chapter, the regular single orientation structure tensor

delivers insufficient results if subjected to transparent surfaces. In the next chapter we will

investigate the extension of the basic single orientation model to models of higher order.

Through this, we will show how we can improve upon the depth estimation of transparent

surfaces.
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Figure 3.9: Angular depth results ξ̂ for different data sets. The images in the first column depict
the central view of a given LF L(x, y, sref). The third column depicts the corresponding estimate
Λξ̂(x, y, sref) and column 4 the corresponding ground truth for all synthetic datasets. Furthermore

the second column shows the confidence C2(x, y, sref). Notice how non-Lambertian surfaces, i.e.
the tape in ’Coin & Tape’ and the transparent fork in ’Fork’ cause the estimate to alternate between
the background and the foreground. It can be seen that the depth estimate fails in regions where
the confidence C2 is low.
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4. Depth Estimation for

Transparent Surfaces

In the previous chapter we explained the use of structure tensors for the depth estimation

of Lambertian surfaces. In this context we also discussed the first order model as our

chosen method for this kind of task. We now want to extend this principle for scenes

where part of the scene does not fulfil the Lambertian assumption, i.e. scenes with non-

Lambertian surfaces. Examples for non-Lambertian surfaces are reflective or transparent

surfaces. From the definition of the Lambertian assumption in chapter 3, it can be deduced,

that for those surfaces the reflected radiance is non-uniform w.r.t different viewing angles.

Due to the violation of this constant radiance assumption, which was the basis for our

principles in the previous chapter, we have to reconsider our model. In this chapter we

are going to discuss structure tensor methods that can be utilized in the case of non-

Lambertian surfaces. Therefore we are going to extend the single orientation- structure

tensor by introducing double orientation- structure tensors as presented by Aach et al. [3].

Wanner et al. [52] show how to apply this principle to light field data for the depth

estimation of transparent and reflective surfaces. Since the reconstruction of depth for

reflective surfaces is not an objective for this thesis, we are going to limit our discussions

to transparent surfaces only. Note however that the principles for both types are closely

related.

In the upcoming sections we will discuss the extension of the first order structure tensor to

higher order models and show how this is relevant for the computation of depth estimates

of transparent materials.

4.1 Transparent Materials for Light Fields

In [52] Wanner and Goldlücke describe how transparent objects in front of an opaque

background impose structures in epipolar images. With the assumption of a two layered

scene, i.e. a transparent surface at the front and an opaque layer behind, we want to apply

a method to estimate two depth hypotheses at once. The most crucial observation made by

the referenced paper is that transparent materials impose multi-orientation patterns lines

in the EPI domain and that the depth estimation can be solved through multi-orientation

analysis in EPI patches, as for example in fig. 4.1. Since the task of computing more

than two estimates exceeds the scope of this thesis, we will hold onto the assumption of

double layered scenes. One method for estimating multiple overlaid orientations is given
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(a) Central view of the light field (b) Illustration of the scene

(c) Epipolar plane image

Figure 4.1: Subfigure a) depicts the central view of a light field with a non-Lambertian (trans-
parent) surface, i.e. clear tape. Since it is hard to comprehend a scene with transparencies, b)
illustrates the scene for a better understanding. The scene consists of a strip of clear tape spanned
over a coin. Subfigure c) depicts an epipolar plane image of this scene. Note how the transparent
surface imposes double orientation patterns in the EPI.

by extending the previously discussed structure tensor approach to a higher order model.

The derivation of the method will be given in section 4.2. This current section shall

demonstrate how transparent materials influence acquired data and how we can use this

to our advantage.

As depicted in fig. 4.2, suppose a given image patch from an epipolar image is described

by a function f(x) within a region Ω. Furthermore assume that the given function is a

composition of signals f1(x) and f2(x) which are either additively overlaid

f(x) = f1(x) + f2(x) ∀x ∈ Ω (4.1)

or disjunct w.r.t. to some subregions Ω1 and Ω2 [3]

f(x) =

{
f1(x) ∀x ∈ Ω1

f2(x) ∀x ∈ Ω2
(4.2)
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The composition as in eq. (4.2) is typically found in occluded regions. Occlusions occur

where the visibility assumption of certain scene points is violated, i.e. these scene points

can not be found in all of the P images of the LF. This kind of scenario is usually imposed

by steep edges and objects close to the camera.

Since it is transparent/semi-transparent surfaces which impose an additive multi-orientation

pattern in EPIs, the more interesting composition for our application is the one from

eq. (4.1). Nevertheless we will discuss one structure tensor model for each case separately

since both models contribute to our subsequent steps.

(a) Additive composition as in eq. (4.1)

(b) Disjunct composition as in eq. (4.2)

Figure 4.2: Composition of two image patches in an additive and disjunct manner.

With our double orientation assumption we can now observe that scenes with transparent

surfaces impose additively overlaid double-orientation-patterns in EPIs. This is illustrated

in fig. 4.1 c). Instead of one orientation w(ξ̂), two orientations u(θ̂) and v(γ̂) are present.

As mentioned earlier, we will discuss double orientation analysis from EPI patches in the

upcoming sections. Thus we will show how to compute two orientations u(θ̂) and v(γ̂) for

regions Ω through double orientation structure tensors.

4.2 Double-orientation Analysis

This section will give the mathematical derivation and intuition of structure tensor models

for the angular estimation of double orientation patterns. Again our derivations are based

on [3] and will be extended in multiple ways.
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4.2.1 Second Order Double Orientation Structure Tensor (SODOST)

First we are going to focus on the case of additively overlaid signals as in fig. 4.2. This

specific case can be tackled through a second order double orientation structure tensor

model (SODOST). Assume x ∈ IR2 again denotes the bivariate image coordinates. Given

a double-orientation image patch f : IR2 → IR within a region Ω and the assumption from

eq. (4.1), then it follows that a pattern can be separated into two single orientation patches

f1(x) and f2(x) with orientations u(θ) and v(γ). For these single orientation patches thus

the following conditions must hold true

∂f1(x)

∂u(θ)
= u(θ)T · ∇f1(x) = 0 ∀x ∈ Ω

∂f2(x)

∂v(γ)
= v(γ)T · ∇f2(x) = 0 ∀x ∈ Ω

(4.3)

From these conditions follows the transparency constraint [42]. The proof is given in

section A.1.

∂2f(x)

∂u(θ)∂v(γ)
= 0 ∀x ∈ Ω (4.4)

Recall from eq. (3.2) the identities for the operators

(
∂

∂u(θ)

)
= cos(θ)

(
∂

∂y

)
+ sin(θ)

(
∂

∂s

)
(

∂

∂v(γ)

)
= cos(γ)

(
∂

∂y

)
+ sin(γ)

(
∂

∂s

) (4.5)

With these identities we can denote

(
∂

∂u(θ)

)(
∂

∂v(γ)

)
f(x) =

=

[
cos(θ)

(
∂

∂y

)
+ sin(θ)

(
∂

∂s

)][
cos(γ)

(
∂

∂y

)
+ sin(γ)

(
∂

∂s

)]
f(x)

=

{
cos(θ) cos(γ)

(
∂2

∂y2

)
+ [sin(θ) cos(γ) + sin(γ) cos(θ)]

(
∂2

∂y∂s

)
+ sin(θ) sin(γ)

(
∂2

∂s2

)}
f(x)

= m2(θ, γ)T · δf(x) = 0

where m2(θ, γ)T =
[
cos(θ) cos(γ), sin(θ) cos(γ) + sin(γ) cos(θ), sin(θ) sin(γ)

]T
denotes

the mixed-orientation-parameter (MOP) vector [3] and δf(x) =
[
∂2

∂y2
, ∂2

∂y∂s ,
∂2

∂s2

]T
. In
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analogy to eq. (3.6) the constraint is equivalent to the energy term

E2(m2(θ, γ)) =

∫
Ω

(
m2(θ, γ)T · δf(x)

)2
dΩ =

= m2(θ, γ)T

∫
Ω

(δf(x))(δf(x))TdΩ

m2(θ, γ) =

= m2(θ, γ)T · T ·m2(θ, γ) = 0

(4.6)

From this equation follows the definition of the second order double orientation structure

tensor (SODOST)

T =

∫
Ω

Gσo ∗

 d̂2
yy d̂yyd̂ys d̂yyd̂ss

d̂yyd̂ys d̂2
ys d̂yyd̂ys

d̂yyd̂ss d̂yyd̂ys d̂2
ss

 dΩ =

∫
Ω

D11 D12 D13

D12 D22 D23

D13 D23 D33

 dΩ. (4.7)

The structure tensor is a symmetric construct comprised of second order gradients filtered

on an inner scale σi, hence the ’second order’ prefix. Regarding the notation, d̂yy =

σi ∗ ∂2f(x)
∂y2

denotes the filtered second order gradient in y. The same applies for d̂ss in

s-direction. Equivalently d̂sy = d̂ys = σi ∗ ∂2f(x)
∂y∂s denotes the filtered y-gradient of the

gradient in s direction of f(x) and vice versa. Gσo defines the weighting function of T on

an outer scale.

There is also a double orientation structure tensor based on first order derivatives which

will be discussed in section 4.2.2.

4.2.2 First Order Double Orientation Structure Tensor (FODOST)

For the double orientation analysis of pattern patches we previously assumed that both

sub-images f1(x) and f2(x) are additively overlaid, i.e. see eq. (4.1). The second case

focuses on the composition of f1(x) and f2(x) on disjunct subregions Ω1 and Ω2. Note

that Ω = Ω1 ∪ Ω2. If we assume that the orientations of the two disjunct regions are

given by r(θ) and t(γ), then we can denote

∂f1(x)

∂r(θ)

∂f2(x)

∂t(γ)
= 0 (4.8)
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Following a similar derivation as in section 4.2.1, this then leads to the energy term

E3(m2(θ, γ)) =

∫
Ω

(
m2(θ, γ)T · δ0f(x)

)2
dΩ =

= m2(θ, γ)T

∫
Ω

(δ0f(x))(δ0f(x))TdΩ

m2(θ, γ) =

= m2(θ, γ)T · Tf ·m2(θ, γ) = 0

(4.9)

where δ0f(x) =
[(

∂
∂y

)2
, ∂

∂y ,
∂
∂s ,

(
∂
∂s

)2]T

and m2(θ, γ) denotes the previously intro-

duced MOP vector. Since δ0f(x) is comprised of first order derivatives only, the definition

of the first order double orientation structure tensor (FODOST) is given by

Tf =

∫
Ω

Gσo ∗

 d̂4
y d̂3

yd̂s d̂2
yd̂

2
s

d̂3
yd̂s d̂2

yd̂
2
s d̂yd̂

3
s

d̂2
yd̂

2
s d̂yd̂

3
s d̂4

s

 dΩ (4.10)

Similar to its second order counterpart in eq. (4.7), this structure tensor model can be used

to estimate two orientations, however, with the difference that f1(x) and f2(x) are define

on disjunct subregions, which for example is the case for occlusions. To avoid confusion

with the previous model, we denote the orientations of this model r(θ) and t(γ). As

the FODOST model is less relevant for our applications, we will continue to reference the

SODOST model as our default double orientation model. Note however that both variants

are interchangeable since both are symmetric 3×3 constructs. In the upcoming section we

will discuss how to compute both orientation of f(x) from the double orientation structure

tensor models.

4.2.3 MOP- and Orientation-Computation

Recall that we want to find two orientations with angles θ and γ such that the eq. (4.6) and

eq. (4.9) are fulfilled. This can only be the case if we assume perfectly noise free, double-

oriented image patches in a region Ω. However, in reference to the single orientation

analysis in section 3.2 we already stated that this is practically never the case for real

world data. Thus we again define a constrained optimization problem as in eq. (3.6).

argmin
m2(θ,γ)

m2(θ, γ)TT m2(θ, γ) s.t. m2(θ, γ)T ·m2(θ, γ) = 1 (4.11)
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Further we can derive the solution to this optimization problem similar to section 3.2.1

and obtain the right hand side eigenvector notation

T m2(θ, γ) = λm2(θ, γ) m2(θ, γ)T ·m2(θ, γ) = 1 (4.12)

Let λ1 > λ2 > λ3 denote the eigenvalues of the structure tensor T and let v1, v2 and v3

be the corresponding eigenvectors, then it can easily be seen that eq. (4.11), due to the

constraint on the MOP vector, is minimal if m2(θ, γ) = v3. Thus we can find the MOP

vector m2(θ, γ) by performing an eigenvalue analysis on the double orientation structure

tensor.

Since the double orientation models are based on 3×3 matrices, the closed form solution for

the eigenvector v3 is impractical. However due to the fact that the tensors are symmetric,

it is possible to simplify and parallelize the computation for whole light fields. Based on

the principle in [43], Wanner et al. [52] present an algorithm in their auxiliary document

(additional material).

Once the MOP vector has been computed, it is possible to compute the orientations

u(θ) = [cos(θ) sin(θ)]T and v(γ) = [cos(γ) sin(γ)]T. To do this, Wanner et al. propose

to construct another 2 × 2 construct which again can be solved through an eigenvalue

analysis. However, this step can equivalently be achieved by solving a simple root finding

problem [3]. Therefore we set a polynomial

z2 −m(2)
2 z +m

(1)
2 m

(3)
2 = 0. (4.13)

where m
(i)
2 denotes the i-th element of the MOP vector. With the roots of the polynomial

it is possible to compute θ and γ through

tan(θ) =
z1

m
(1)
2

, tan(γ) =
z2

m
(1)
2

(4.14)

The proof for this is provided in section A.2. Note that the orientations are given by

u(θ) =

[
m

(1)
2

z1

]
, v(γ) =

[
m

(1)
2

z2

]
(4.15)

To map the angles to agree with our angular notation from section 3.1, we first correct

both orientations by flipping them if the sign of the second component is non-positive

u(θ̂) = u(θ) sign(z1), v(γ̂) = v(γ) sign(z2) (4.16)
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In the same manner as for the single orientation case we then can compute the angles

directly through

θ̂ = tan−1

(
u(θ̂)(2)

u(θ̂)(1)

)
− π

2
, γ̂ = tan−1

(
v(γ̂)(2)

v(γ̂)(1)

)
− π

2
(4.17)

This shows that we can compute two orientations by performing an eigenvalue analysis

followed by a root finding problem. Both of these steps are implemented in a parallel

GPU implementation, which is a must for a reasonable runtime even at moderate light

field sizes.

4.2.4 Double Orientation Confidence

In section 3.2.4 we discussed confidence measure for single orientation estimates. Since we

want to bring double orientation estimates in relation to single orientation estimates, our

goal is to find a confidence measure based on metrics from the double orientation struc-

ture tensors that allows comparability with the aforementioned coherence of the structure

tensor S, i.e. eq. (3.20). Aach et al. [3] propose to use a confidence measure that is an

extension of their single orientation confidence (coherence)

0 < C3 =
(λ1λ2λ3)2

(λ1λ2 + λ2λ3 + λ1λ3)2
≤ 1

27
(4.18)

However, in practice this confidence measure doesn’t scale well over the full range 0 <

C3 ≤ 1
27 . Even if scaled to the interval [0, 1], this is not an expressive confidence measure

and hardly comparable to C2.

Instead we decided to present our own confidence estimate based on the following thoughts.

Opposed to the single orientation case it is hard to interpret the eigenvectors and eigenval-

ues from the double orientation models in the sense of geometric intuition of the pattern.

From our empiric observations we found that the relations between eigenvalues corre-

spond to certain properties of the image patch in Ω. Assume the eigenvalues of the double

orientation structure tensors to be given by λ1, λ2, λ3 subject to λ1 > λ2 > λ3.

Pattern class Double Orientation Eigenvalues

Homogeneous λ1 ≈ 0, λ2 ≈ 0, λ3 ≈ 0
Single-Orientation λ1 � λ2 ≈ λ3, λ2 ≈ 0, λ3 ≈ 0
Double-Orientation λ1 ≈ λ2 � λ3, λ3 ≈ 0
N-Orientation/Noise λ1 � 0, λ2 � 0, λ3 � 0

Table 4.1: Observed relations of eigenvalues for different pattern classes. The pattern ’N-
Orientation/Noise’ denotes all multi-orientation pattern patches with more than two orientations.

In case of a homogeneous, structureless pattern patch we would find that the gradients are

very weak, thus resulting in eigenvalues that are close to 0. If we apply the second order

structure tensor analysis to a pattern patch with only one orientation, we can observe
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that the two smaller eigenvalues λ2 and λ3 are small relative to the largest eigenvalue λ1.

When adding one orientation, we obtain the double orientation case where the two larger

eigenvalues λ1 and λ2 are much larger than the smallest eigenvalue λ3. In section 4.2.3 we

stated that for double orientation models the residual energy for eq. (4.11) at the optimal

solution is equivalent to the smallest eigenvalue λ3. Naturally it follows that for highly

confident double orientation results we want λ3 to be low. See table 4.1 for a comparison

of different pattern classes. Because of these conditions for high confidence in the double-

orientation models and the fact that λ1 > λ2 > λ3 ≥ 0 we define a new confidence measure

C4 =

(
λ1 − λ3

λ1 + λ3

)(
1− λ1 − λ2

λ1 + λ2

)
(4.19)

The first term in C4 gives a high confidence if the difference between λ1 and λ3 is large.

We also want both larger eigenvalues λ1 and λ2 to be large and close to each other. If

this is the case, the second term of C4 shall contribute to a high confidence. Note that

C4 ∈ [0, 1]. From our evaluations we have found, that the utilization of the full range

is much improved compared to C3. We also found that this confidence measure is very

well suited for comparing it with the single orientation confidence C2. To prove this, we

computed the correlation between the inverse of the single orientation confidence (1−C2)

and our confidence measure C4 according to

r =

∑
x

∑
y(C4(x, y)− C4)((1− C2(x, y))− (1− C2))√(∑

x

∑
y C4(x, y)− C4

)2 (∑
x

∑
y(1− C2(x, y))− (1− C2)

)2

and found a correlation of 94% to 97% for the given confidence images in fig. 4.3. All

expressions of the form x denote the mean over the whole image.

Going back to the interpretation of the eigenvalues, there is still one case that hasn’t been

discussed. In case all three eigenvalues λ1, λ2 and λ3 are large we can deduce that our

double orientation hypothesis is too simple. Such cases imply an image patch with more

than two orientations. This can also be the case if high amounts of noise are present.

With the findings regarding the confidence in the double orientation models SODOST

and FODOST we conclude this section. We highlighted different confidence measures to

indicate weakly supported estimates and presented a confidence measure that delivers high

confidence for double orientation patterns. We nevertheless want to know what to expect

from our models when we apply them to unsuitable pattern patches. Thus we will give

an evaluation on unfitting model assumptions in the next section.

4.3 Estimates for Unfitting Model Assumptions

This section will highlight how estimates from structure tensor models of different order

perform if subjected to image patches f(x) with unfitting pattern classes. For this discus-

sion we exclude trivial cases such as homogeneous image patches since the orientation in
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Figure 4.3: Result of the confidence measures C2 and C4 for different data sets. The images
in the first row depict the central view of a given LF. The second row depicts the corresponding
confidences C2. Likewise the third row depicts C4. It can be observed, that the double-orientation
hypothesis is highly supported in areas where the single orientation confidence C2 is low. This
implies that areas with two EPI orientations, i.e. areas with transparencies or occlusions, lead to
a high confidence in the double orientation hypothesis C4.

such cases is determined by the noise.

4.3.1 Unfitting Double Orientation Hypothesis

As the first case assume we compute the double orientation estimates u(θ̂) and v(γ̂) in

a local neighbourhood Ω with only one pattern orientation. Therefore we reused the

framework described in section 3.2.5 and simplified it to simple 2D pattern patches. Similar

to this framework, we set up synthetic image patches and computed the double orientation

estimates for the interval [−85◦, 85◦]. Note that the estimates are sorted u(θ̂) > v(γ̂),

following our assumption of having one estimate for the front layer and one for the back

layer. In fig. 4.4 the results over the whole interval and exemplary pattern patches with

an indication of the estimates can be seen.

The figure shows that for a noise free image patch, both estimates follow the ground truth

angle well. However, once noise is introduced it can be observed that both estimates start

to alternately follow the correct value. One of both estimates follows the second strongest

orientation in the patch which is given by the noise. Note the high sensitivity to noise
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(a) Pattern without noise (b) Pattern with noise

(c) Result without noise (d) Result with noise

Figure 4.4: a) and b) show pattern patches with both orientations u(θ̂) and v(γ̂) in colour. The
sub-figures c) and d) depict the estimates compared to the ground truth angle from which the
pattern patch has been synthesized.

since only a small amount is sufficient to induce this effect.

Once a second orientation is added, we obtain composite pattern patches as depicted in

fig. 4.5. This added second orientation is synthesized for angles in the interval [−40◦, 70◦]

and is evaluated in descending order.

The results show that in the case of two strong orientations in a patch, the double ori-

entation hypothesis proves to be very reliable. As expected, due to the correct model

hypothesis, noise has much less of an impact on the analysis. Since we sweep through two

angular intervals in opposing directions, we get to a point where both orientations align,

which is at ≈ 10◦. In this case we obtain a single orientation image patch. Regarding

the estimates we can observe that one is close to the ground truth and the other one is

determined by the noise. Once this alignment occurs, noise has a much larger impact

because the noise determines the orientation of the second estimate.

To demonstrate the effects if the pattern patch has more than two orientations, we tested

three orientation patterns as depicted in fig. 4.6. Therefore we overlaid another pattern

patch with angles in the interval [−10◦, 10◦].
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(a) Pattern without noise (b) Pattern with noise

(c) Result without noise (d) Result with noise

Figure 4.5: a) and b) show pattern patches with both orientations u(θ̂) and v(γ̂) in colour. The
sub-figures c) and d) depict the estimates compared to the ground truth angles from which the
pattern patch has been synthesized.

(a) Pattern without noise (b) Result without noise

Figure 4.6: a) shows a triple-orientation pattern patch with the double orientation estimates u(θ̂)
and v(γ̂) in colour. The sub-figure b) depicts the estimates compared to the ground truth angles
from which the pattern patch has been synthesized.
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From the results on the triple orientation patch it can be seen, that since all orientations

intersect at ≈ 10◦, the pattern briefly reduces to the single orientation case. However

overall the model assumption is too simple to cope with more than two orientations.

4.3.2 Unfitting Single Orientation Hypothesis

In section 4.3.1 we discussed the outcome of the double orientation analysis on different

types of pattern patches. In this section we are going to do the same but with the

assumption of a single orientation. The results for the first case, based on the orientation

analysis from the aforementioned framework, can be seen in fig. 4.7.

(a) Pattern without noise (b) Pattern with noise

(c) Result without noise (d) Result with noise

Figure 4.7: a) and b) show single orientation pattern patches with a single orientation estimate

w(ξ̂) in colour. The sub-figures c) and d) depict the estimate compared to the ground truth angle
from which the pattern patch has been synthesized.

What can be noticed right away is that the estimate w(ξ̂) follows the ground truth value

very closely. Noise does not have as much of a significant effect on the result as compared

to the double orientation hypothesis. This also applies for higher levels of noise. However,

due to the fact that the single orientation structure tensor S in eq. (3.5) is based on first

order derivatives and not second order derivatives, this observation is expected.

Moving onward, we subject double orientation patches to a single orientation analysis.
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The results are depicted in fig. 4.8. Due to the low sensitivity to noise, this figure only

depicts the noise-free double orientation case.

(a) Pattern without noise (b) Result without noise

Figure 4.8: Sub-figure a) shows a double orientation pattern patch with a single orientation
estimate w(ξ) in colour. The sub-figure b) depicts the estimate compared to the ground truth
angle from which the pattern patch has been synthesized.

The results show that the single orientation estimate w(ξ̂) follows the most prominent

orientation of the pattern. Up to this point, the magnitudes of both single orientation

patterns f1(x) and f2(x) were set equal. Because of this balance, both orientation pat-

terns interfere in a way such that they form an averaged orientation except when both

sub-patterns align. The subplot b) in fig. 4.8 also shows discontinuities in the resulting

curve for the estimate w(ξ̂). At exactly these points the pattern is synthesized from two

orientations which are orthogonal to each other. This causes the estimate to flip by 90◦,

i.e. reorienting to the most prominent orientation.

The behaviour changes if the individual pattern magnitudes are different. The depiction

in fig. 4.9 shows that if we increase the magnitude of one sub-signal relative to the other,

then the single orientation estimate will strictly follow this prominent orientation. This

observation is important since it leads to the typical alternating behaviour between fore-

ground and background. In the next section we will briefly discuss how the findings from

this section apply to real data.

4.3.3 Impact on Real Data

Now that we have discussed the findings from within this restricted framework, we will

briefly evaluate the meaning for whole data sets. For this reason fig. 4.10 depicts the

single- and double-orientation estimates (SODOST) for a scene with a transparent object.

The order in which we will point out the effects of unfitting model assumption is the same

as presented in the first two parts of this section.

Double Orientation Model on Single Orientation Data

In the case that a double orientation model is applied to a local region where only
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(a) f̂1(x) > f̂2(x) (b) f̂2(x) > f̂1(x)

Figure 4.9: Both sub-figures show the resulting estimates against the ground truth of the double
orientation pattern. In a) the magnitude of the first single orientation signal f̂1(x) is larger than

f̂2(x). For b) this relation is reversed. Notice how the estimate follows the ground truth of the
more prominent signal.

(a) Input (b) Single ξ̂ (c) Front θ̂ (d) Back γ̂

(e) EPI + Patch

Figure 4.10: Example based on the previously introduced ’Coin & Tape’ dataset. a) shows the
central image form the input light field. The epipolar plane image depicted in e) is located at the
indicated red line. b) depicts the estimate form the single orientation model. c) and d) show the
front- and background estimate of the double orientation model (SODOST). In e) an EPI with the
indication of a double orientation image patch Ω1 and a single orientation image patch Ω2 can be
seen. The estimates computed from Ω1 are depicted in b) c) and d) by the square marker.
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one orientation is present, i.e. as in Ω2, we can observe that one angular estimate is

correct and the other one falsely estimates effects from the noise. This can be seen

in background areas around the coin for example. Notice how the estimate for the

foreground θ̂ is very noisy in these local regions.

Double Orientation Model on Double Orientation Data

In regions where the transparent surface imposes a second orientation on the EPI

data, e.g. see Ω1, the double orientation estimates θ̂ and γ̂ estimate the foreground

and background correctly. In the case of the foreground, this corresponds to a point

on the surface of the tape. For the background, this corresponds to a point on the

coin.

Single Orientation Model on Single Orientation Data

Examine the single orientation patch Ω2. In this region the single orientation esti-

mate ξ̂ correctly estimates the depth corresponding to the background. Notice also

how the background estimate from the double orientation model agrees with ξ̂.

Single Orientation Model on Double Orientation Data

If we apply the single orientation model to a region with two orientations as in Ω1,

then we can observe that the estimate ξ̂ alternately jumps between the foreground

and the background. This behaviour has already been observed in section 4.3.2

and confirms our findings from our experimental framework. Depending on the

magnitude of each respective orientation, the estimate will cling on to either the

front or the back.

4.4 Double Orientation Results

In this section we are going to discuss results from the double orientation structure tensor

models. For comparison we also included results from the single orientation model. An

extensive set of results is depicted in fig. 4.11. As mentioned in the result section 3.5 of

the single orientation case, each depicted image corresponds to the central view sref of the

result stack. For the single orientation estimates this was denoted Λξ̂(x, y, sref). Similarly,

the result stacks for the second order double orientation model are denoted Φθ̂(x, y, s)

and Φγ̂(x, y, s) for the front and back. Moreover Ψθ̂(x, y, s) and Ψγ̂(x, y, s) equally denote

result stacks for the front and back estimates but for the FODOST model.

The first depicted data set has been added for comparison with the previous results. It is

the only dataset in this result section that does not include a non-Lambertian surface, i.e.

the whole scene is opaque. Neither does this scene show reflections, nor does it contain

transparent surfaces. The double layer assumption for this dataset is violated since there

is no second layer which could impose double orientation information in the EPI domain.

This can be seen in the results from the second order model. The FODOST model is

mostly similar to the single orientation estimate. However, in occluded areas these dou-

ble orientation estimates can resolve the occlusions implicitly by delivering estimates for

pattern orientations from the occluded as well as the occluding scene points.

The most interesting results are given by the datasets including transparencies. As men-
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tioned before, the ’Maria’ dataset is the only transparency-dataset which could be found

from external sources. Notice how for all of these datasets the single orientation estimate

is an alternating composition of estimates between the foreground and the background.

The second order double orientation model seems to separate both layers well. The trans-

parent object is well estimated by Φθ̂(x, y, s) and the scene behind by Φγ̂(x, y, s). Notice

if a certain region from the transparent surface is also present in the background estimate

Φγ̂(x, y, s), then this structure occludes the background sufficiently enough such that the

background estimate can no longer be determined by the double orientation model. It

can also be seen that the estimate for the foreground delivers noisy results for single ori-

entation (i.e. opaque) surfaces. For the last example, the first order double orientation

model mostly resembles the same picture as in the completely opaque scene. However,

the estimate for the front Ψθ̂(x, y, s) tends to estimate more of the transparent surface,

whereas the background estimate Ψγ̂(x, y, s) stays closer to the background.

Concluding with the investigation of the structure tensor approach, we now have 5 × 2

model based estimates (from left-and right-illumination), which can correctly estimate

depth in subregions with an adequate hypothesis but are invalid elsewhere. According

to our double layer assumption, we want to obtain two final images which are identical

in regions with an opaque surface and distinct where the Lambertian assumption does

not hold. For the later case we want estimates for the transparent surface and estimates

for what might be underneath. To achieve this, we will present a method to combine all

structure tensor estimates in the upcoming chapter.
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Figure 4.11: Depth estimates from the present structure tensor models (SOST, SODOST, FO-
DOST) for a variety of different data sets. A description for all datasets that have been acquired
by us is given in appendix B.
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5. Double Layer Refinement

Up to this point of this thesis, we gave an introduction to the idea behind depth estima-

tion from passive multi-view imaging and thoroughly discussed the principles of structure

tensor methods in conjunction with light field data. We also gave a detailed insight of this

approach in the context of different types of surfaces. Based on the principle of different

structure tensor models, we showed how estimates for mixed scenes can be computed by

performing orientation analysis in the EPI domain. In section 4.3 we showed that various

model hypotheses only give a valid result in regions with a suitable pattern type. Recall-

ing our double layer assumption, i.e. a front- and a back-layer, which unfortunately is

not applicable everywhere, we require a reliable method to combine all depth estimates

such that we obtain two surfaces in scene space. We therefore introduce two variants of a

projection method which allows us to obtain exactly two surfaces. Both of these variants

are based on a voting scheme to refine the prior computed structure tensor estimates. The

principles and details regarding this method will be explained in the upcoming sections.

5.1 Voxel Volume Projection

In this section we are going to discuss our method for combining multiple depth estimates

from different models. Recall that we had a single- and two double-orientation models

for estimating depth from a light field description (SOST, SODOST, FODOST). In sec-

tion 4.3.3 we found, that models of different order can estimate the same surface, albeit

in an unpredictable fashion. The single orientation structure tensor for example computes

a depth estimate for the scene point that imposes the most prominent direction in an

EPI. The SOST model thus gives a single, high confident depth estimate corresponding

to either the foreground or the background. Double orientation models (SODOST, FO-

DOST) always give us two estimates, one for a possible background and one for a possible

foreground. However if the double layer assumption is inapplicable, at least one of the

estimates is incorrect. Thus it is hard to tell which model delivers a valid estimate for

each point of a scene. We introduced confidence measures for each model, however imple-

menting a point-wise model selection based on the single orientation confidence C2 and

the double orientation confidence C4 gives unsatisfying results. Our plan of solving the

problem gives rise to a selective refinement strategy which implicitly rules out incorrect or

weakly supported estimates. Only highly correlated and confident depth estimates shall

persist after this refinement process, resulting in our final double layer estimates. Recall

that a major goal of this project is to deliver depth estimates for transparent objects in

front of an opaque surface. Thus the front layer shall enable estimation of a transparent

63



surface and the back layer gives depth information about the remaining scene behind the

transparent object.

From the idea of finding highly correlated depth estimates which are supported by high

confidence, we came up with a voting scheme based on the projection of light field rays

into a voxel volume. Before we explain the projection step all by itself we need to denote

the following observations.

Note that from our acquisition setup (see fig. 2.3) we obtain P images, each from a

different angular perspective. Recall that those P images make up our light field. Fur-

thermore assume an odd number of images, i.e. an odd number of scanlines. Thus our

light field stack is comprised of P images resulting from P angular views, where we denote

the middle view with index sref = P+1
2 as our reference view. We also refer to it as the

central view because it is this view which is acquired from the most central scanline which

is aligned vertically with the axis of the camera itself. Given an arbitrary surface, assume

that a given point Γ on this surface is captured by the central view at a location y in an

image. This is depicted in fig. 5.1 by the blue image rays. Assume that the same scene

point Γ is also captured by other scanlines with different spatial shifts ∆y1 and ∆y2 as

indicated by the corresponding red and green rays.

This allows us to make out scene point correspondences across different views which is the

basis for the orientation analysis of lines in the EPI domain. This means that we have

up to P depth estimates for a single scene point Γ. Since we estimate the depth through

angular results as explained in section 3.1, we know the angle of each ray correspondence

for each estimate in our image stack. To make this principle a bit clearer, recall the single

orientation results Λξ̂(x, y, s) from section 3.5. Assume we fix an epipolar image at x∗.

Since each pixel in this epipolar plane image refers to an angle ξ̂ we can determine the

relative shift in y w.r.t. the reference view sref through

∆yi→ref =
⌊
tan

(
Λξ̂(x

∗, yi, si)
)

(si − sref)
⌉

(5.1)

Note that an error margin results due to the rounding to the nearest correspondence

in y which is determined by the spatial resolution. An illustration for some exemplary

correspondences in the EPI domain are illustrated in fig. 5.2.

With this knowledge it is thus possible to find the correspondences for all views s relative

to the reference view sref . On the scale of the whole range in x and y it is thus possible

to align all results from Λξ̂(x, y, s). This is equally applicable for the second order results

Φθ̂(x, y, s), Φγ̂(x, y, s), Ψθ̂(x, y, s) and Ψγ̂(x, y, s) from section 4.4.

Since we want to find out correlations and high confidence regions of our depth estimates,

we came up with the idea of projecting those estimates in a voting volume. To explain

this any further we need to define the voxel volume itself. Since we have just explained

that the angular result volumes from the structure tensor models can be reprojected to

their respective central view, it comes natural to define a voxel volume with the image

height M and width N as its first two dimensions. The 3rd dimension shall be given by D

discretized depth-bins, into which we will project our estimates. The voxel volume thus
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Figure 5.1: Ray correspondences between different angular views (blue, red, green). Note that
through the fixed angular perspective of the different scanlines, the step ∆y in transport direction
determines which rays hit the same scene point Γ.

is denoted V (x, y, d). See fig. 5.3 for an illustration of the projection into the voxel volume.

With the given volume, the next thing we are going to explain is how to determine the

correct voxel in the direction of the projection d. Assume a given ray will be projected into

the volume at the corresponding central view coordinates x∗ and y∗. Recall the exemplary

assumption of single orientation estimates, then the associated angle and confidence for a

single estimate shall be denoted ξ̂ and C2. Assume further that the largest angular estimate

from Λξ̂(x, y, s) is denoted ξ̂max = max
(

Λξ̂(x, y, s)
)

. Likewise the smallest estimate is

denoted ξ̂min = min
(

Λξ̂(x, y, s)
)

. The angular range in between ξ̂min and ξ̂max is mapped
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Figure 5.2: Section of an epipolar plane image Λξ̂(x
∗, y, s) with four exemplary reference view

correspondences. The numbering on the left of this figure depicts the relative delta in s to the
reference view sref . As an example, observe that the value of the indicated element Λξ̂(x

∗, y2 +

1, sref + 1) is given by ξ̂1. Thus through eq. (5.1) it is possible to compute the corresponding shift
relative to the reference view.

to the full range of bins D. It follows

di =

⌈
ξ̂ − ξ̂min + ε

⌉
ξ̂max − ξ̂min

·D (5.2)

where ε denotes a small offset value to prevent di = 0. Note that these limit values can be

chosen manually in the case of high noise levels. This way noisy outliers are clipped by the

angular range. With the corresponding depth bin di the value in the voxel V (x∗, y∗, di)

is increased by 1. In this way all estimates are accumulated in the aforementioned voting

scheme. Notice that through this projection step we became independent of all the different

model hypotheses and assumptions. However since we desire to obtain accumulations of

highly confident estimates, we apply a confidence based selection rule prior to projection,

to rule out unconfident estimates. This will be shown in the upcoming section.

5.1.1 Ray Preselection Measures

Before we introduce our methods for extracting double layer depth estimates from the

introduced voxel volume, we want to dedicate this section to selection measures which are

used prior to estimate projection.

Recall from section 2.3 where we explained that we compute our depth estimates for

two illumination directions (from the left and from the right) separately. This effectively

doubles the amount of estimates to project. However prior to projection we validate

corresponding estimates w.r.t. both illumination. An estimate pair is deemed valid if
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Figure 5.3: Coarsely sampled voxel volume V (x, y, d) with voxels depicted as dots for the pre-
viously shown ’Coin & Tape’ dataset. The voxel colours correspond to the depth in the volume
similar to a depth image. The estimate projections are depicted as arrows and point in the opposite
direction of the 3rd dimension.
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both estimates agree up to a certain threshold

εcorr > |ξ̂l − ξ̂r|. (5.3)

If the condition is not fulfilled, the estimate pair is rejected. ξ̂l and ξ̂r denote the left

and right estimate respectively. This validation between left and right is similar to the

correlation check between horizontal and vertical EPIs from a 4D light field as presented

by Wanner et al. [52]. Fig. 5.4 a) depicts an exemplary plot for the amount of valid pairs

over a given correlation threshold εcorr.
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(a) Ratio of valid pairs over εcorr in degrees (b) Decision Map

Figure 5.4: a) shows the ratio of estimate pairs that fulfil eq. (5.3) from a given threshold εcorr.
Subfigure b) depicts the exemplary decision map for the ’Fork’ dataset. Red colour indicates the
region where the SOST model is accepted. Likewise SODOST is indicated by green colour and
FODOST by the blue colour.

Additionally to this consistency check between left and right we incorporate our previously

introduced confidences. Since rays associated with different model estimates are projected

into this voting volume, it is crucial that C2 and C4 reflect comparable measures to support

the respective model hypothesis. Recall the discussion in section 3.2.4 and section 4.2.4.

Through this step, projections with low associated confidences are ruled out from the

projection process and only high confident estimates are considered. We organize the

model selection according to the decision tree in fig. 5.5. To balance the distribution from

all models, only one model per estimate in x, y and s is accepted. The single orientation

confidence C2 is compared against a threshold εsost which has to be set according to the

desired balance between single- and double-orientation. If the single-orientation confidence

is below threshold, the higher confident double-orientation model is accepted, i.e. either

the FODOST confidence C̃4 or the the SODOST confidence Ĉ4. This procedure is used

for the second projection variant presented in section 5.3. For the first projection variant

in section 5.2, the single orientation check against εsost is omitted. To get a better sens
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for this selection process, fig. 5.4 b) depicts an example of a color coded decision map.

Figure 5.5: Decision tree for model selection prior to the projection step. Note that C̃4 denotes
the FODOST confidence and Ĉ4 the SODOST confidence.

5.1.2 Voxel Volume Regularization

Before we move on with the presentation of the aforementioned strategies for the double

layer extraction, we will discuss volume based regularization methods. Since we want

to extract smooth results, we need to employ a method to regularize our voxel volume.

Inspired by semi-global cost volume regularization in the context of stereo matching as in

[22] and [13] we decided to regularize our voxel volume through a similar message parsing

approach.

Since x and y are the directions we regularize in and d resembles the direction of our cost

measure we denote z = [x y]T. First we transform our voting volume into a unary cost

volume by negating it.

Cu(z, d) = −V (z, d)

Let N =
{
zn = [xn yn]T | 1 ≤ |xn − x|; 1 ≤ |yn − y|; z 6= zn

}
denote the intermediate

neighbourhood around z. We implemented our method such that we compute the optimal

path by summing up the min-marginals in different directions given by the 8 adjacent

neighbours. This leads to a star-shaped propagation pattern as in fig. 5.6.

Along this 8 directions we define pairwise costs through two penalizations terms L1 and

L2. Assume dz denotes a depth bin at a location z. We penalize all voxel changes dn

where |dn − dz| = 1 for all z ∈ N with L1. Likewise if the voxel index changes by more

than one depth bin, i.e. |dn−dz| > 1 for all z ∈ N then we set a penalty of L2. This leads
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(a) Propagation directions (b) Penalty function

Figure 5.6: a) depicts the local neighbourhood around some z and also shows the 8 propagation
directions. b) shows the penalty function based on the parameters L1 and L2.

to the definition of the following energy term

R(d) =
∑
z

Cu(z, d) +
∑
z∈N

L11|dn−dz |=1 +
∑
z∈N

L21|dn−dz |>1 (5.4)

where 1S denotes the 1-0 indicator function

1S =

{
1 if S

0 else
(5.5)

Since finding the global solution in 2D is a NP-hard problem [49] and thus not feasible,

we instead can compute an optimal solution by computing the minimal cost path along

each of the neighbouring pixel directions, which is similar to the principle of dynamic

programming [9]. After the results from each direction are computed, the (min-marginals)

are summed up. Let Creg(x, y, d) denote our regularized cost volume. We transform this

cost volume back into a confidence volume through

V (x, y, d) = −Creg(x, y, d)−Md(Creg(x, y, d)) (5.6)

where Md(Creg(x, y, d)) ∈ IRM×N denotes the maximum along the direction of projection

d for each x and y. A voxel volume before and after this regularization step is depicted in

fig. 5.7.

5.2 Separate Voxel-Volume Approach (Variant 1)

In the introduction part of this chapter we announced that we are going to present two

variants based on the voxel volume projection method introduced in section 5.1. This
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(a) Depth prior to reg. (b) Depth post reg.

(d) Confidence prior to reg. (e) Confidence post reg.

Figure 5.7: Voxel volumes of the ’Coin & Tape’ dataset before and after regularization. The voxel
colors of the first row represent depth, the voxel colors in the second row depict the normalized
confidence. The left column depicts the volume before regularization, the right column after
regularization. The volumes has been clipped, such that only voxels with a voting value > 3 are
shown.

section will be discussing the first of said variants. Recall our goal of refining our depth

estimates such that we obtain a double layer result. One possibility of obtaining 2 lay-

ers from the presented projection approach is by maintaining separate voting volumes

for the foreground and the background respectively, see fig. 5.8. Note that with this ap-

proach we refrain from dropping the structure tensor model hypotheses in the sense that

we will combine estimates from both double orientation models according to their fore-

ground/background affiliation. A first step is to create two empty voxel volumes with D

depth bins

Vf (x, y, d) ∈ IRM×N×D

Vb(x, y, d) ∈ IRM×N×D

Next according to model selection procedure from section 5.1.1, the corresponding rays are

projected into the voxel volumes. All estimates that belong to a front layer hypothesis, i.e.

Φθ̂(x, y, s) or Ψθ̂(x, y, s), are projected into the foreground volume Vf (x, y, d). Likewise

the background estimates Φγ̂(x, y, s) and Ψγ̂(x, y, s) are projected into the background

volume Vb(x, y, d). After regularization of both of these volumes according to the semi-

global regularization method in section 5.1.2, we obtain our foreground and background
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estimates by computing the maximum along direction d for both volumes

Gf (x, y) = max
d
Vf (x, y, d)

Gb(x, y) = max
d
Vb(x, y, d)

As an optional final step, TV-L1 [35] regularization can be used to get rid of residual

outliers. The whole procedure based on this variant can be found in algorithmic form in

algorithm 5. The results are discussed in chapter 6.

Figure 5.8: Depiction of the refinement procedure for variant 1.

5.3 Combined Voxel-Volume Approach (Variant 2)

The previous section discussed our proposed double layer refinement based on separate

voxel volumes. In this section we will propose a second variant based on one combined

voxel volume. The basic principle is to project all available structure tensor estimates

into one volume V (x, y, d) ∈ IRM×N×D, see fig. 5.9. Due to this, all prior knowledge about

affiliation to foreground or background from the structure tensor models is neglected. This

in theory allows us to extract an arbitrary amount of layers from the volume, however we

will hold on to our double layer assumption. As a remark, any further layer wouldn’t have

a valid support since estimates projected into the volume originate from models which

have at most a double orientation hypothesis.

Similar to section 5.2 we first construct an empty volume and check the consistency be-

tween estimates from both illuminations. Afterwards the model selection according to

fig. 5.5 is performed, followed by the projection of all available estimates, i.e. Λξ̂(x, y, s),

Φθ̂(x, y, s), Φγ̂(x, y, s), Ψθ̂(x, y, s) and Ψγ̂(x, y, s) into V (x, y, d). Directly after the volume
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is regularized as described in section 5.1.2, we apply the non-maximum suppression and

the joint TV-L1 method which will be described in the following sections. From this we

obtain our final two layers Hf (x, y) and Hb(x, y).

Figure 5.9: Depiction of the refinement procedure for variant 2.

5.3.1 Non-Maximum Suppression

Since we want to extract a foreground and a background layer from our regularized voxel

volume V (x, y, d), the idea comes natural to extract the two most correlated surfaces. This

corresponds to extracting the two modes with the highest voting value along d for every x

and y. The voxel with the highest vote can be obtained by computing the maximum along

d. However, since the variance for the most confident mode is not point-wise, extracting

the second highest depth bin d would in most cases return a value close to the most con-

fident one. We can avoid this problem by applying a non maximum suppression (NMS)

for the whole volume first. Algorithmic details regarding this are denoted in algorithm 2.

Algorithm 2 Implementation of the non-maximum suppression.

1: procedure Non-Maximum Suppression(V (x, y, d))
2: Vd(x, y, d)← dilate(V (x, y, d), d) . Dilate along d with width=3
3: VNMS(x, y, d)← V (x, y, d) ◦ 1V (x,y,d)=Vd(x,y,d)

4: return VNMS(x, y, d)
5: end procedure

Here 1V (x,y,d)=Vd(x,y,d) denotes the element-wise 1-0 indicator function similar to eq. (5.5).

The ◦ operator denotes the Hadamard product. From these results we extract the two

depth estimates with the two highest voting values. For given coordinates x and y we thus

extract the two most confident modes where the distribution along d is bimodal. In case

of a unimodal distribution we extract only the most confident depth estimate and assign

it to both result layers. This gives us our highest voting estimate g1(x, y) and second most

voting estimate g2(x, y). Exemplary results are depicted in fig. 5.10. Notice how these
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results have no clear affiliation to the front or back. Instead both images seem to be pieced

together by segments belonging to the front and the back respectively. To obtain a front-

and back-layer from these images, we propose a joint TV-L1 method in the upcoming

section.

5.3.2 Joint TV-L1

As mentioned in the beginning of section 5.3 the proposed second variant drops all prior

knowledge on the affiliation of depth estimates to the front- or the back-layer. From the

two most confident estimates which we obtained in section 5.3.1, we seek to find a smooth

result for the final front- and back-layer depths. Therefore we formulate a joint TV-L1

problem based on the following convex energy

min
u,v
‖∇u‖2,1 + ‖∇v‖2,1 + λu ‖u− g1‖1 + λv ‖v − g2‖1 s.t. u ≥ v (5.7)

Let g1, g2 ∈ IRM×N denote the aforementioned images with the two most confident depth

estimates. Furthermore u, v ∈ IRM×N denote the primal variables of the given formulation

and ∇ : IRM×N → IRM×N×2 the finite difference operator. The variables λu, λv > 0 are

used to adjust the weighting of the terms.

(a) g1(x, y) (b) g2(x, y) (c) Hf (x, y) (d) Hg(x, y)

Figure 5.10: Input and result from the joint TV-L1 method for the ’Fork’ dataset. a) and b)
depict the labeling with the two highest confidences. c) and d) show the output for the front- and
back-layer.

Since we want a smooth result we try to find a solution with sparse edges, thus we added

a total variation term for u and v respectively. Furthermore our final result shall be close

to the estimates from the original images g1 and g2, thus we add two data fidelity terms

to our primal energy. The crucial point however is, that we want to sort our solution such

that u ≥ v, i.e. we obtain a solution for the foreground and background simultaneously.

Solving this problem directly is hard due to the discontinuity of the TV semi-norm ‖·‖2,1.

However note that our primal problem has the general form

min
x
f(Kx) + h(x) (5.8)

74



which can be reformulated in its saddle-point notation

min
x

max
y

(Kx)Ty + h(x)− f∗(y)

where f∗(y) denotes the convex conjugate of f(x). By splitting up our energy w.r.t u and

v we can denote the corresponding saddle-point formulation.

min
u

{
‖∇u‖2,1 + λu ‖u− g1‖1

}
+ min

v

{
‖∇v‖2,1 + λv ‖v − g2‖1

}
s.t. u ≥ v (5.9)

Let K = ∇ and denote that the convex conjugate of f : ‖·‖2,1 is given by the indicator

function of the 2,∞ norm-ball

f∗(y) = δ‖·‖2,∞≤1(y) =

{
0 ‖y‖2,∞ ≤ 1

+∞ else
(5.10)

The saddle-point formulation thus can be denoted by the following

min
u

max
p

{
(∇u)Tp+ λu ‖u− g1‖1 − δ‖·‖2,∞≤1(p)

}
+

min
v

max
q

{
(∇v)Tq + λv ‖v − g2‖1 − δ‖·‖2,∞≤1(q)

}
=

min
u,v

max
p,q

{
(∇u)Tp+ (∇v)Tq + λu ‖u− g1‖1 + λv ‖v − g2‖1 − δ‖·‖2,∞≤1(p)− δ‖·‖2,∞≤1(q)

}
s.t. u ≥ v

In this formulation p, q ∈ IRM×N×2 denote our dual variables. A saddle-point problem of

this form can be adequately solved by the PDHG algorithm proposed by Chambolle and

Pock [10]. The algorithm solves the problem by making alternating gradient descent steps

in the primal variables and gradient ascent steps in the dual variables. The general form

of PDHG is given in 3.

Algorithm 3 General PDHG algorithm from [10]

1: procedure Primal-Dual hybrid gradient(PDHG)
2: Choose x0 ∈ IE; y0 ∈ IE∗; τ, σ > 0
3: for k ≥ 0 do
4: xk+1 ← proxτh(xk − τKTyk)
5: x̃k+1 ← 2xk+1 − xk . Over-relaxation
6: yk+1 ← proxσf∗(y

k + σKx̃k+1)
7: end for
8: end procedure
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According to the reference, the algorithm converges if

τσL2 ≤ 1

where τ, σ denote the step sizes for descent and ascent. The parameter L bounds the

operator norm from above ‖K‖op = ‖∇‖op ≤ L and is estimated to be L =
√

8 since we

operate in 2D.

To apply the algorithm to our problem we must determine the operators proxτh(x) and

proxσf∗(y). In the dual space we need to determine the proximal map of the convex

conjugate of f(x). Fortunately this can easily be determined and is given by projection

onto the 2,∞ norm ball

proxσf∗(ŷ) = arg min
y
f∗(y) +

1

2σ
‖y − ŷ‖22

proxσf∗(ŷ)i =
ŷi

max(1, ‖ŷi‖2)

This is equally applicable for p and q. The proximal map proxτh(x) in primal space due

to the constraint unfortunately is not so straight forward. In the unconstrained case the

sought operator for h(u) is given by the well known shrinkage operator for both variables

u and v.

proxτh(x̂) = arg min
x
λx ‖x− g‖1 +

1

2τ
‖x− x̂‖22

proxτh(x)i = (gj)i + max(0, |x̂i − (gj)i| − λxτ) sign(x̂i − (gj)i)

Note that in this formulation (gj)i denotes the index of gj . However these separate prox-

imal steps are only valid if the constraint u ≥ v is fulfilled. In the event that u < v we

need to find an alternative operator. In this case the closest valid solution is subject to

u = v. The proximal map for both primal variables thus becomes

proxτh(ū, v̄) = arg min
u
λu ‖u− g1‖1 + λu ‖u− g2‖1 +

1

2τ
‖u− ū‖22 +

1

2τ
‖u− v̄‖22

This minimization is problematic due to multiple L1-norms, however it can be solved by

the median formula proposed by Li and Osher [31]. Their proposal denotes that given a

minimization problem of the form

arg min
u∈IE

E(u) =

K∑
i=1

wi|u− gi| − F (u) (5.11)
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the optimal solution can be computed through

uopt = vopt = median{p0, ..., pK , g1, ...., gK}. (5.12)

Applied to our formulation we have K = 2 and w1 = λu, w2 = λv. Furthermore note that

F (u) = 1
2τ ‖u− ū‖

2
2 + 1

2τ ‖u− v̄‖
2
2. The optimal solution thus is given by

uopt = vopt = median{p0, p1, p2, g1, g2} (5.13)

with pi = (F ′)−1(Wi). The full derivation of this optimal solution can be found in sec-

tion A.3. Our PHDG method can thus be formulated as denoted in algorithm 4.

Algorithm 4 PDHG algorithm as used in our method.

1: procedure PDHG for Double Layer Refinement Variant 2
2: Choose u0, v0 ∈ IRM×N; p0, q0 ∈ IRM×N×2; τ, σ > 0; λu, λv > 0
3: for k ≥ 0 do
4: ũk = uk − τ∇Tpk + τα
5: ṽk = vk − τ∇Tqk − τα
6: uk+1 ← proxτh(ũk)
7: vk+1 ← proxτh(ṽk)
8: if uk+1 < vk+1 then
9: W0 ← λu + λv

10: W1 ← −λu + λv
11: W2 ← −λu − λv
12: pi ← (ũk+ṽk+τWi)

2 i = 0, 1, 2
13: uk+1 ← median{p0, p1, p2, g1, g2}
14: vk+1 ← uk+1

15: end if
16: ũk+1 ← 2uk+1 − uk
17: ṽk+1 ← 2vk+1 − vk
18: pk+1 ← proxσf∗(p

k + σ∇p̃k+1)

19: qk+1 ← proxσf∗(q
k + σ∇q̃k+1)

20: end for
21: end procedure

Note that the additional terms τα in line 4 and line 5 help separate the solution u and

v since we prefer two separate layers instead of u = v. This is equivalent to adding

α
∑

p(vp−up) to the primal energy in eq. (5.7), where p denotes the index of each pixel in

the image. Without this precaution, solutions tend to average on a level in between the

foreground and the background such that both data fidelity penalties are balanced.

This concludes our presentation of the second volume projection variant. In the up-

coming section we will show and discuss the results from variant 1 & 2.
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6. Results

In the course of the previous chapter we introduced two variants of our double layer refine-

ment method. Based on different structure tensor models we showed how we combine the

depth estimates from all these models such that we obtain a double layered final result.

To support our newly introduced method, we acquired a variety of datasets and applied

both variants to this data. These results are depicted in fig. 6.2 and fig. 6.3. Since it is in

some cases difficult to comprehend a given dataset with transparent objects, appendix B

gives brief descriptions for clarification.

A closer look at these figures shows that the depth estimation for the transparent objects

is mostly consistent between both variants. It also can be observed that both variants be-

have differently when it comes to the depth estimation of opaque surfaces. As an example

consider the background region surrounding the coin in the ’Coin & Tape’ dataset. This

can be explained by the conceptional difference in the number of projection volumes. Since

the depth estimate from variant 2 is obtained from the uni-modal/bi-modal evaluation in

the combined volume, the depth estimates in these regions are consistent between Hf (x, y)

and Hb(x, y). Furthermore notice that the results for variant 1 show minor regularization

artefacts due to the absence of subsequent TV-L1 regularization.

On a general note it can be observed that the applicability of both variants heavily de-

pends on the nature of the transparent object itself. Naturally it follows that the quality

of the results thus varies between datasets. Note that this statement is purely based on

our subjective impressions. For an objective metric and comparison we would require

ground truth data in addition to the input data. This ground truth data could either

be provided by synthesizing data in the first place or by providing precise measurements

through other approaches as for example through active stereo methods. Unfortunately

due to the limited scope and time frame of this thesis we aren’t able to provide ground

truth data.

The only external transparency-dataset we were able to test was the aforementioned

’Maria’ dataset, which shows a figurine behind a glass plane. This dataset is well condi-

tioned since the transparent object is planar and oriented orthogonal to the camera axis.

Unfortunately also this dataset didn’t provide ground truth data. Transparent objects of

this kind resemble the most basic case. A similar case can also be seen in the ’Phone Case’

or ’Coin & Tape’ datasets. Others as for example the ’Fork’ or ’Eyedrops’ datasets show

more advanced shapes but are still estimated well. Notice that the results from some

datasets show regions, where the back-layer estimate aligns with the front-layer, which

implies that those regions are occluded. In other words, in regions where this is the case,

the object isn’t transparent enough for a double layer estimation.
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It is interesting to observe how well our method works for highly reflective data such as

the ’Wooden Balls’ or ’Wallplugs’ dataset. This is also the case for the planar regions of

the Coin in the ’Coin & Tape’ example. Not only is it possible to estimate the transparent

surface well but also the object within the plastic bag can be identified and separated from

the rest. For a comparison with the plain results from the structure tensor models, see

fig. 4.11.

From the aforementioned figures it can be seen, that the principle approach with structure

tensors is well suited for most of the acquired datasets, but for others the approach de-

livers unsatisfying results. Thus we will discuss the limits of the method in the upcoming

section and describe our findings w.r.t. to the acquired data.

6.1 Limitations to the Method

From the results which have been presented in the previous section, it can clearly be seen

that some datasets work better than others. The applicability of the presented method is

determined by many factors and conditions imposed by the given data. First and foremost,

the most trivial observation is that the approach based on structure tensor computation

requires transparent surfaces with at least a minimal amount of surface structure. This

may be given by surface roughness of the object itself or other causes such as markings,

scratches or dust. Without this surface conditioning, little to no structure will be im-

posed in the EPI domain thus rendering the structure tensor approach useless. Note that

because we are dealing with passive methods, the presence of this surface conditioning

is a necessary condition for this approach to work. As an example, consider the ’Ruler’

dataset from fig. 6.3. Due to the plain and smooth surface, no depth clues can be picked

up in the data. This can also be observed from the EPIs of this dataset. One possibility

to handle the depth estimation of such hard cases could be the incorporation of prior

knowledge through shape constraints. As opposed to the presented approach which is a

straight forward estimation based on the given data, an approach of this kind would allow

for a more global solution. However this would still require the presence of at least a

minimal amount of surface structure and thus remains unsuitable for completely trans-

parent objects. An approach from a completely different perspective could be developed

by using the refractive properties of the transparent object to our advantage. Observe

that the depth level of the transparent object in the aforementioned ’Ruler’ dataset is

different relative to the background. In fact a vast variety of the back-layer results from

the presented datasets show a different depth level than the background underneath. This

is due to refractive lifting effects of the transparent materials. It can be seen that different

materials with different object thicknesses impose this effect in different magnitudes on

the results. Fig. 6.1 depicts this effect in the EPI domain. Inspired by the approach in

[11], one method could utilize the refractive properties of light w.r.t different wave lengths.

Obtaining clues from the depth estimation for single channel data separately could yield

a viable solution for transparent objects with no surface structure.

Another fundamental limitation to the structure tensor based approach is the apparent

limitation to two orientations. Adding another orientation and introducing a 3rd order
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(a) L(x, y, sref) (b) Φθ̂(x, y, sref)

(c) EPI Ex∗(s, y)

Figure 6.1: Demonstration of the refractive lifting effect on the ’Shirt Clips’ dataset. a) depicts
the central view of the input LF. b) depicts the background estimate from variant 2. c) shows the
epipolar image Ex∗(s, y) at x∗. Observe how the refractive effects of the transparent material lift
the background to a closer depth estimate. Comparing Ex∗(sref , y1) = −15.34◦ with Ex∗(sref , y2) =
−6.67◦ reveals that this effect can directly be observed in the given EPI.

structure tensor model would yield a 4 × 4 structure tensor which would be constructed

from 3rd order derivatives. Since we already showed how noise sensitive the second order

structure tensor is, we would expect a triple orientation model to be impractical. Also the

computational effort would skyrocket due to the larger scale of the tensor.

6.2 Implementation

We have implemented and tested our algorithms in Matlab. Further we rely on a high

degree of parallelisation since a lot of operations are point-wise. This especially applies to

acceleration on a GPU. Depending on the size of the given light fields, our implementation

usually requires a high amount of memory. This is mostly due to the parallel eigenvalue

decomposition for the double orientation models and the voxel volume projection. As an

example, the results for both variants of the ’Maria’ [53] dataset with M = 926, N =

926, P = 9 can be computed in a few seconds. The largest acquisition that we were able

to compute without running out of memory was M = 2344, N = 2304, P = 33. For such

a LF the runtime is close to a minute.

We tested our implementation on a system based on an AMD Ryzen
TM

3700X CPU,
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Variant 1 Variant 2
Input Gf (x, y) Gb(x, y) Hf (x, y) Hb(x, y)
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Figure 6.2: Final results for the introduced variants from section 5.2 and section 5.3, each
depicting front- and back-layer. Part 2.
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Variant 1 Variant 2
Input Gf (x, y) Gb(x, y) Hf (x, y) Hb(x, y)
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Figure 6.3: Final results for the introduced variants from section 5.2 and section 5.3, each
depicting front- and back-layer. Part 2.
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supported by 64 GB of RAM. For the GPU acceleration an NVIDIA R© GeForce RTX 2080

Ti was used.
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6.2.1 Implementation of Variant 1

Algorithm 5 Double layer depth computation for a scene with transparent materials based on
the voxel-volume projection method (Variant 1)

1: procedure Double Layer depth on Transparent (Variant 1)(L(x, y, s))
2: L(x, y, s)← Load light field data
3: Perform contrast normalization . see algorithm 1
4: for each epipolar plane image Ex(s, y) do
5: d̂y, d̂s ← σi ∗ ∇Ex(s, y) . Compute gradients, see section 3.2.3

6: d̂yy, d̂sy ← σi ∗ ∇d̂y . Compute 2nd order gradients

7: d̂ys, d̂ss ← σi ∗ ∇d̂s
8: end for
9: Aggregation over T, Tf . see section 3.2.5

10: Tf ← d̂y, d̂s . Construct double orientation ST eq. (4.10)

11: T ← d̂yy, d̂sy, d̂ss . Construct double orientation ST eq. (4.7)
12: Φθ̂(x, y, s),Φγ̂(x, y, s)← T . Compute angular estimates section 4.2.3
13: Ψθ̂(x, y, s),Ψγ̂(x, y, s)← Tf
14: C4(x, y, s)← T, Tf . Compute confidence section 4.2.4
15: Validate Φθ̂,Ψθ̂,Φγ̂ ,Ψγ̂ . see section 5.1.1
16: Vf (x, y, d)← proj(Φθ̂,Ψθ̂, C4) . Proj. estimates, see section 5.1
17: Vb(x, y, d)← proj(Φγ̂ ,Ψγ̂ , C4)
18: Vf (x, y, d)← Volume Regularization . see section 5.1.2
19: Vb(x, y, d)← Volume Regularization
20: Gf (x, y)← Vf (x, y, d) . see section 5.2
21: Gb(x, y)← Vb(x, y, d)
22: return Gf (x, y), Gb(x, y)
23: end procedure
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6.2.2 Implementation of Variant 2

Algorithm 6 Double layer depth computation for a scene with transparent materials based on
the voxel-volume projection method (Variant 2)

1: procedure Double Layer depth on Transparent (Variant 2)(L(x, y, s))
2: L(x, y, s)← Load light field data
3: Perform contrast normalization . see algorithm 1
4: for each epipolar plane image Ex(s, y) do
5: d̂y, d̂s ← σi ∗ ∇Ex(s, y) . Compute gradients, see section 3.2.3

6: d̂yy, d̂sy ← σi ∗ ∇d̂y . Compute 2nd order gradients

7: d̂ys, d̂ss ← σi ∗ ∇d̂s
8: end for
9: Aggregation over S, T, Tf . see section 3.2.5

10: S ← d̂y, d̂s . Construct single orientation ST eq. (3.5)

11: Tf ← d̂y, d̂s . Construct double orientation ST eq. (4.10)

12: T ← d̂yy, d̂sy, d̂ss . Construct double orientation ST eq. (4.7)
13: Λξ̂(x, y, s)← S . Compute angular estimates section 3.2.1

14: Φθ̂(x, y, s),Φγ̂(x, y, s)← T . Compute angular estimates section 4.2.3
15: Ψθ̂(x, y, s),Ψγ̂(x, y, s)← Tf
16: C2(x, y, s)← S . Compute confidence section 3.2.4
17: C4(x, y, s)← T, Tf . Compute confidence section 4.2.4
18: Validate Λξ̂,Φθ̂,Ψθ̂,Φγ̂ ,Ψγ̂ . see section 5.1.1

19: V (x, y, d)← proj(Λξ̂, C2) . Proj. estimates, see section 5.1

20: V (x, y, d)← proj(Φθ̂,Ψθ̂, C4)
21: V (x, y, d)← proj(Φγ̂ ,Ψγ̂ , C4)
22: V (x, y, d)← Volume Regularization . see section 5.1.2
23: VNMS(x, y, d)← Non-Maximum Suppression . see section 5.3.1
24: g1(x, y)← VNMS(x, y, d) . see section 5.2
25: g2(x, y)← VNMS(x, y, d)
26: Hf (x, y), Hb(x, y)← joint TV-L1 . see section 5.3.2
27: return Hf (x, y), Hb(x, y)
28: end procedure
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7. Conclusion

In the course of this master’s thesis we discussed the theory and principles of 3D depth

computation for scenes with transparent materials. We gave an introduction to the ba-

sic problem and discussed how structure tensor methods in conjunction with light field

data can be used to tackle this problem. After highlighting relevant preliminaries, we

showed how single orientation structure tensor models can be applied to compute depth

estimates for Lambertian surfaces. We subsequently showed the importance of double

orientation models for the extension to non-Lambertian surfaces. Not only did we discuss

the mathematical principles of the presented models, but also highlighted findings and

improvements to the method. Furthermore we showed the results of the structure tensor

models and discussed the behaviour of each model in regions where the corresponding

model hypothesis is wrong. Moreover we presented our solution to combine model based

estimates and showed how to improve upon existing methods. Our procedure based on

voxel-volume projection enabled us to effectively utilize estimates from different models

such that we obtained smooth double layer results. Subsequently we presented the results

on acquired data for two distinct variants of this volume projection approach. During

the presentation of these results we showed the limitations regarding the properties of the

input data. We showed that the presented approach relies on structure in the EPI domain

which subsequently leads to problems for completely transparent objects. We finalized

this thesis by pointing out further findings and presented detailed information regarding

our implementation.
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A. Proofs and Derivations

A.1 Proof of Transparency Constraint

Let x ∈ IR2 denote bivariate image coordinates and let f(x) denote a double-orientation

image patch in a region Ω. Further let f(x) be an additive composition of two single-

orientation images according to eq. (4.1). Through the linearity and commutativity of

the operators
(

∂
∂u(θ)

)
and

(
∂

∂v(γ)

)
we can prove the transparency constraint [42] for the

overlaid patch description f(x).

∂2f(x)

∂u(θ)∂v(γ)
= 0 ∀x ∈ Ω (A.1)

Poof:

(
∂

∂u(θ)

)(
∂

∂v(γ)

)
f(x) =

(
∂

∂u(θ)

)(
∂

∂v(γ)

)
(f1(x) + f2(x))

=

(
∂

∂u(θ)

)(
∂

∂v(γ)

)
f1(x) +

(
∂

∂u(θ)

)(
∂

∂v(γ)

)
f2(x)

=

(
∂

∂v(γ)

)(
∂

∂u(θ)

)
f1(x) +

(
∂

∂u(θ)

)(
∂

∂v(γ)

)
f2(x)

=

(
∂

∂v(γ)

)((
∂

∂u(θ)

)
f1(x)

)
+

(
∂

∂u(θ)

)((
∂

∂v(γ)

)
f2(x)

)

=

(
∂

∂v(γ)

)(
∂f1(x)

∂u(θ)

)
+

(
∂

∂u(θ)

)(
∂f2(x)

∂v(γ)

)

=

(
∂

∂v(γ)

)
0 +

(
∂

∂u(θ)

)
0 = 0 �

A.2 Double-Orientation from MOP Vector Proof

Let m2(θ, γ)T =
[
cos(θ) cos(γ), sin(θ) cos(γ) + sin(γ) cos(θ), sin(θ) sin(γ)

]T
denote the

MOP vector for the double orientation structure tensor, then the angles θ and γ are
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obtained from the roots of

z2 −m(2)
2 z +m

(1)
2 m

(3)
2 = 0. (A.2)

Proof:

z1,2 =
sin(θ + γ)

2
±
√

sin(θ + γ)2

4
− cos(θ) sin(γ) sin(θ) cos(γ)

2z1,2 = sin(θ + γ)±
√

sin(θ + γ)2 − 4 cos(θ) sin(γ) sin(θ) cos(γ)︸ ︷︷ ︸
cos(θ−γ)2−cos(θ+γ)2

2z1,2 = sin(θ + γ)±
√

sin(θ + γ)2 + cos(θ + γ)2 − cos(θ − γ)2︸ ︷︷ ︸
sin(θ−γ)2

2z1,2 = sin(θ + γ)± sin(θ − γ)

z1 = sin(θ) cos(γ), z2 = cos(θ) sin(γ)

z1

m
(1)
2

=
sin(θ) cos(γ)

cos(θ) cos(γ)
= tan(θ),

z2

m
(1)
2

=
cos(θ) sin(γ)

cos(θ) cos(γ)
= tan(γ)

θ = tan−1

(
z1

m
(1)
2

)
, γ = tan−1

(
z2

m
(1)
2

)
�

A.3 Derivation of Proximal Map

In section 5.3.2 we denoted the following minimization problem for the prox operator

proxτh

arg min
u
λu ‖u− g1‖1 + λu ‖u− g2‖1 +

1

2τ
‖u− ū‖22 +

1

2τ
‖u− v̄‖22︸ ︷︷ ︸

F (u)

This problem is of the form [31]

arg min
u∈IE

E(u) =
K∑
i=1

wi|u− gi| − F (u)
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where pi = (F )−1(Wi), K = 2, w1 = λu and w2 = λv. The parameters Wi can be

computed from

Wi = −
i∑

j=1

wj +
n∑

j=i+1

wj i = 0, 1, 2

W0 = 0 + λu + λv

W1 = −λu + λv

W2 = −λu − λv

With these parameters the only step left is to compute pi = (F )−1(Wi)

F (pi) =
1

2τ
‖pi − ū‖22 +

1

2τ
‖pi − v̄‖22

F ′(pi) =
1

τ
(pi − ū) +

1

τ
(pi − v̄)

=
1

τ
(2pi − ū− v̄) = Wi

=⇒ pi =
ū+ v̄ + τWi

2
= (F ′)−1(Wi) i = 0, 1, 2

This leads to the optimal solution

uopt = vopt = median{p0, p1, p2, g1, g2}
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B. Datasets

Fork

Plastic fork taken from a MRE (Meal Ready to Eat), intended for one time use.

Coin & Tape

Transparent scotch tape spanned over a coin. An illustration of this scene has been

given in fig. 4.1.

Wallplugs

Ordinary wall plugs in a clear utility bag.

Battery

Cutout of a coin cell packaging including the coin cell itself. The battery is enclosed

in a clear plastic dome. The remainder of the cut out has been removed to avoid

brand promotion.

Eyedrops

Plastic one-way-use eyedrop dispenser from the drug store.

Injector

Classic clear plastic injector body without inner piston.

Shirt Clips

Clear clips commonly found with packaging of shirts.

Wooden Balls

Fairly similar to the ’Wallplug’ dataset. Wooden balls ≈ 8 mm in a clear utility bag.

Ruler

Clear ruler with the markings on the top, i.e. facing the camera.

SMD Parts

SMD capacitors in a clear packaging. The right capacitor has been taken out of the

packaging. The clear packaging is placed face done with the opening.

Phone Case

Section of clear phone case. The depictions shows the camera cut-out of the case.

Hook

Semi-transparent hook commonly found in packaging.
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Cover

Clear cover from an industrial railing part.
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C. Acronyms and Abbreviations

AIT Austrian Institute of Technology

EPI Epipolar Plane Image

FODOST First Order Double Orientation Structure Tensor

ICI Inline Computational Imaging

LF Light Field

MOP Mixed Orientation Parameter

NMS Non-Maximum Suppression

SGM Semi Global Matching

SODOST Second Order Double Orientation Structure Tensor

SOST Single Orientation Structure Tensor

ST Structure Tensor

s.t. subject to

TV Total Variation

w.r.t. with respect to
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