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Abstract
Atherosclerosis is one of the most common cardiovascular diseases and causes the devel-

opment of an atherosclerotic plaque. A rupture of an atherosclerotic plaque inhibits throm-
bus formation, which can be released into the blood stream and lead to further diseases,
such as a heart attack, a pulmonary embolism or a stroke. Therefore, the understanding
of atherosclerosis is vital in order to be able to assess the vulnerability of plaques, i.e. the
likelihood of the plaque to rupture. Physicians typically use geometrical parameters which
they can obtain from imaging procedures to define the vulnerability of plaques. However,
studies have shown that these geometrical parameters are not sufficient for the definition of
a vulnerable plaque. Hence, the understanding of the stress state and the rupture behavior
of atherosclerotic plaques has to be improved in order to find more sophisticated criteria
for the definition of critical plaque morphologies.

The present thesis investigates the influence of two distinct parameters, the lipid pool
amount and the fibrous cap thickness, on the development of a crack on nine different
plaque geometries. Such a crack might result in rupture and release of thrombogenic ma-
terial. Therefore, a parametrized geometry generation algorithm, where one can adjust the
aforementioned parameters, was developed. Additionally, the influence of an exponential
model on the numerical stability compared to a polynomial model achieved by a Taylor
series expansion is analyzed.

The simulations indicate that the vulnerability of plaques is increased with the increasing
lipid pool amount. Surprisingly, the fibrous cap thickness seems to have a decreasing
influence with increasing lipid pool amount. The simulations have shown that the position
and amount of calcification present within the plaque might have an influence on the crack
position. The analysis of a benchmark problem with the different material models has
shown that the polynomial model increases the stability of the simulations.

This thesis shows the influence of the lipid pool amount and the fibrous cap thickness.
However, future work focusing on the amount and the position of the calcification is needed
in order to achieve an even better understanding of atherosclerotic plaques.
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Zusammenfassung
Atherosklerose ist eine der häufigsten kardiovaskulären Krankheiten und kann zu der

Entwicklung eines atherosklerotischen Plaques führen. Reißt dieser Plaque kann sich ein
Thrombus bilden, welcher in den Blutstrom gelangen kann und dadurch weitere Krank-
heiten, wie einen Herzinfarkt, eine Lungenembolie oder einen Schlaganfall verursachen
kann. Daher ist ein grundlegendes Verständnis über die biologischen Vorgänge und Mecha-
nismen die zu einer Atherosklerose führen ein wichtiger Aspekt der Forschung, um die Vul-
nerabilität eines Plaques, d.h. die Wahrscheinlichkeit eines Plaques zu reißen, zu beurteilen.
Bis jetzt verwenden die meisten Ärzte geometrische Parameter, welche aus bildgebenden
Verfahren gewonnen werden, um diese Vulnerabilität einzuschätzen. Daher müssen Ken-
ntnisse zu den Spannungszuständen und zu dem Rissverhaltens des betroffenen Gewebes
vertieft werden, um wissenschaftlichere Kriterien für die Bestimmung von gefährlichen
Plaques zu entwickeln.

In dieser Arbeit wird der Einfluss von zwei Parametern, die Menge an vorhandenem
Lipid und die Dicke der fibrösen Kappe, auf die Entstehung eines Risses und dadurch
der Freisetzung von thrombogenen Material an neun unterschiedlichen Geometrien unter-
sucht. Dazu wurde eine parametrisierte Geometrie erstellt, wodurch man in der Lage ist,
die genannten Parameter einfach anzupassen. Zusätzlich wird der Einfluss des gewählten
Materialmodells auf die numerische Stabilität der Simulationen gezeigt. Deswegen wird
ein exponentielles Modell mit einem Modell, welches die Taylor Reihendarstellung der
Exponentialfunktion anwendet, verglichen.

Die Simulationen der atherosklerotischen Plaques belegen, dass die Vulnerabilität des
Plaques mit zunehmender Lipidmenge steigt. Überraschenderweise scheint die Dicke der
fibrösen Kappe einen mit der Lipidmenge abnehmenden Einfluss auf das Rissverhalten
des Plaques zu haben. Zusätzlich haben die Simulationen offenbart, dass die Position und
die Menge der Verkalkungen einen Einfluss auf die Position des Risses haben könnten.
Die Analyse einer Benchmarkaufgabenstellung beweist, dass das Polynom-Modell die Sta-
bilität der Simulationen erhöht.

Diese Arbeit zeigt den Einfluss der Lipidmenge und der Dicke der fibrösen Kappe.
Zukünftige Forschung sollte auf die Menge und die Position der Verkalkungen fokus-
siert sein, um ein noch besseres Verständnis des atherosklerotischen Plaques zu erreichen.
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1 Introduction
This chapter describes the medical background of arteries and atherosclerosis. Firstly,

the macroscopic structure of the healthy artery of young humans is described. In order to
be able to explain the microstructure of the different layers of the artery, an image of each
layer is shown, which was produced by using second-harmonic generation microscopy.
Afterwards, atherosclerosis is described in more detail, investigating how it evolves and
showing the histology of a sample atherosclerotic plaque, which was used for the geometry
generation.

1.1 The Healthy Human Artery
The macroscopic structure of the healthy artery consists of three different layers, which

are called intima, media and adventitia and are separated by elastic laminae, see Fig. 1.1.
Each layer is made up of individual constituents, which define the global mechanical be-
havior.

In a healthy young artery, the innermost layer, the intima, consists of a single layer of
endothelial cells sitting on the basal membrane. The thickness of this layer depends on
the topography of the artery, age and possible diseases. In the healthy artery, the intima
is mainly responsible for the sensing function of the artery and does not contribute to the
mechanical behavior of the artery. With age, the intima thickens and also starts to evolve a
fibrous structure, which does not necessarily lead to a pathology. In pathological cases, the
intima additionally stiffens and the contribution to the mechanical behavior of the artery
increases, as described by Humphrey [18]. One pathological event which could lead to this
change in the mechanical behavior of the intima is called atherosclerosis, which will be
described in the next chapter in more detail. Figure 1.2 shows the collagen structure for
the individual layers of a healthy artery in the circumferential–axial plane (top panel) and
the circumferential-radial plane (bottom panel). The images were obtained using second-
harmonic generation imaging technique, where the collagen is shown in bright green [23].
Structural analysis has shown, that the intima is an almost isotropic material, which means,
that no preferred orientation of the fibers can be seen, see Fig. 1.2.

The media is the middle layer of the artery and possesses a highly complex three-
dimensional structure of smooth muscle cells, collagen and elastic fibers. In order to
withstand the physiological load acting on an artery, the collagen fibers are arranged in
a helical structure with two preferred orientations around the circumferential direction, see
the middle of the top panel in Fig. 1.2. However, they are not perfectly aligned within the
layers and they disperse in-plane as well as out-of-plane. Structural analysis has shown

1



2 1 Introduction

Figure 1.1 Structure and constituents of the three layers, namely intima, media and ad-
ventitia, of an artery. In a healthy, young individual the innermost layer, the intima only
consists of a single layer of endothelial cells, which sit on the internal elastic lamina.
The middle layer, the media, consists of several alternating layers of a complex three-
dimensional fiber-reinforced structure and smooth muscle cells. The outermost layer,
the adventitia, consists of a similar three-dimensional fiber-reinforced structure, where
the fibers are thicker and have a different orientation compared to the media [12].

the theoretical orientation. The media is the main load bearing layer of the arteries within
the physiological range of the blood pressure. Additionally, the media is able to alter the
lumen of the blood vessel by contraction or relaxation of the smooth muscle cells. This
change of the lumen leads to an increase or decrease of the blood flow and, therefore, of
the blood pressure, respectively [12, 23].

The adventitia serves as a protection of the vessel against over-stretching of the artery.
It consists of fibroblasts, fibrocytes, ground substance and thick bundles of collagen which
form a fibrous tissue. The main components of the ground substance are elastic fibers,
mainly elastin, and proteogylcans. Since the adventitia is the outermost layer of the artery,
the outside is the connection of the artery to the surrounding tissue and is layered with
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Figure 1.2 Collagen fibers within the three different layers of a healthy artery; images
produced by second-harmonic generation imaging. The green parts represent the col-
lagen fibers of the different layers: (I) displays the intima, (M) denotes the media, and
(A) the adventitia. The scale bar within the image represents 100µm [23].

loose connective tissue. The presence and the thickness of the adventitia depends on the
topography within the body and the function of the vessel. For small stretches of the artery,
the thick bundles are still wavy and, therefore, do not bear any load in compression. For
higher stretches, more and more fibers are recruited, which leads to a rapid stiffening of the
adventitia. The rightmost image in Fig. 1.2 clearly shows the thick bundles of the collagen
fibers, which are typical for the adventitia [12, 23].

1.2 Atherosclerosis
Atherosclerosis is one of the most common vascular diseases and, according to Pahwa

and Jialal [24], responsible for almost 50 % of all deaths in the Western World. It is a
multi-focal, smoldering immunoinflammatory disease. Atherosclerosis leads to the infil-
tration of leucocytes and smooth muscle cells into the intima. The leucocytes clear the
atherogenic lipoproteins from the intima, which leads to the development of a lipid-rich
core separated from the lumen by a fibrous cap. The cap mainly consists of collagen fibers
and can give information about the vulnerability of the disease. The combination of the
encapsulated lipid-rich core and the fibrous cap is called an atherosclerotic plaque, which
can indolently grow over years without complications and then suddenly become problem-
atic. The complications can include the rupture of the plaque, which leads to the release of
highly thrombogenic material into the blood stream from the lipid-rich core. About 76%
of all fatal coronary thrombi, which is a clotting of blood cells leading to a blockage of the
blood flow, are caused by such ruptured plaques [4, 15].

A possible treatment for the obstruction of the lumen was first described by Dotter and
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Judkins [3], where a catheter guide wire is placed through the atherosclerotic part of the
artery until it reaches the healthy lumen on the opposite side. After the guide wire is
applied, another catheter with increasing diameter is slipped over the guide wire until it
traverses the plaque region. In the procedure described by Dotter and Judkins [3] the
dilatation is achieved by applying catheters with increasing diameter. In modern treatment
procedures, the catheter consists of a folded balloon, which is slipped over the guide wire
and placed within the plaque. Then the balloon is pressurized and, therefore, the occlusion
is widened by inflating the balloon membrane. In order to reduce the risk of a collapsing
lumen, additionally, a stent, which is a supporting device for the artery produced, e.g., from
metal alloys, either coated with or without drugs, can be applied in the same procedure.
Figure 1.3 shows the different steps of the development of an atherosclerotic plaque. The
key players of atherosclerosis are endothelial cells, leukocytes and intimal smooth muscle
cells [15].

The development of an atherosclerotic plaque is driven by many different stimuli. Main
risk factors include hypertension, smoking, and diabetes. An elevated plasma cholesterol
level is probably the only factor which is sufficient to develop atherosclerosis even if other
risk factors do not occur. Additionally, since the endothelium is very sensitive to shear
stress, changes of the local hemodynamic conditions, which occur near branching points,
may lead to changes within the arterial wall [4, 15].

In the early stages of the disease, the endothelium is still intact, but starts to get leaky.
Through this leaky defective endothelium, plasma molecules and lipoprotein particles are
able to get into the subendothelial space. These lipoproteins are modified within the suben-
dothelial space and cause local inflammation. As a result of the inflammation leukocytes,
mainly monocytes, are recruited as the earliest cellular response. These monocytes clear
the atherogenic lipoproteins from the subendothelial space, which accumulates intracellu-
lar lipid in the form of foam cells, which can be seen in Fig. 1.3(b). At first, these foam
cells fulfill a protective function. This changes as soon as the cells die and can lead to
disease. The dead foam cells leave the lipids as a soft, destabilizing core [4, 15, 19].

The histology of a plaque within the external iliac artery can be seen in Fig. 1.4, where
M-nos is the healthy media, I-nos is the healthy intima, A is the adventitia, M-f is the
fibrotic media, which is the diseased media, I-c are the calcified regions within the plaque,
I-fc is the fibrous cap and I-lp is the lipid pool within the plaque [15].

The progression of the disease leads to an immunoinflammatory response of the leuko-
cytes, which is joined by the fibroproliferative response mediated by intimal smooth muscle
cells. The smooth muscles cells in healthy arteries are in contractile phenotype, while due
to local damage are changing into synthetic phenotype, i.e. they synthesize extracellular
matrix proteins, mainly collagen, and are, therefore, responsible for healing and remod-
eling of the arterial wall. If the atherogenic stimuli persist, the reparative response may
lead to a loss of lumen because the wall becomes voluminous. The lost lumen leads to
a reduction of blood flow which increases the risk of ischemia. During the whole pro-
cess smooth muscle cells are responsible for the stability of the plaque. They produce a
collagen-rich matrix, which protects the plaque from rupture and, therefore, from throm-
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Figure 1.3 Different stages of the development of atherosclerotic plaques: (a) healthy
state of an artery; (b) first step of the development, where the endothelial cell layer
becomes leaky and monocytes and lipoproteins can penetrate the layer. Additionally,
the first response of the immune system is shown, where the macrophages digest the
intruding lipoproteins, die and build up foam cells; (c) accumulation of foam cells and
migration of smooth muscle cells into the newly formed plaque. Additionally, the build-
ing of the fibrous cap can be seen, as a response to the inflammation. The produced
extracellular matrix protein collagen can be seen, which reinforces the fibrous cap. The
beginning of calcifications are also shown in form of cholesterol crystals; (d) ruptured
state of atherosclerotic plaque, where the blood comes into contact with the thrombo-
genic material and a thrombus is developed. Images taken from Libby et al. [19].

bosis. The collagen-rich matrix is called the fibrous cap, which separates the lipid rich core
from the blood flow [4].

As the disease progresses, calcifications become a common component of atheroscle-
rotic plaques. The amount of these calcifications can be seen as a parameter for the vul-
nerability of plaque. Lipids and connective tissue within the plaque can be calcified and
most of the calcification within an artery are caused by atherosclerosis. Clinical observa-
tions have shown, that the lesions causing acute coronary syndromes are less calcified than
stable plaques and additionally, the patterns of the calcified regions differ [4].

In advanced atherosclerotic arteries angiogenesis occurs at the base of the plaque, which
leads to the development of microvessels. These new vessels are fragile, leaky and express
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Lumen
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Figure 1.4 Histology of the atherosclerotic external illiac artery: (a) image of a sample,
(b) histological drawing of the different components of the plaque and (c) high reso-
lution magnetic resonance image of the same artery. In all images (I-nos) the healthy
intima, (M-nos) the healthy media, (A) the adventitia, (I-fc) the fibrous cap, (M-f) the
fibrotic media, (I-lp) the lipid pool, (I-c) the calcified regions, and (I-fm) the fibrotic
intima [15].

cellular adhesion molecules. Adhesion molecules adhere large amounts of plasma proteins,
erythrocytes and inflammatory cells. Therefore, angiogenesis supports inflammation and
may lead to a rapid progression of the plaque [4].

Due to the development of the plaque the artery remodels in order to react to the different
mechanical loads in the atherosclerotic artery. There are two different types of remodel-
ing: (i) attenuated or expansive remodeling which tends to preserve a normal lumen; (ii)
accentuated or constrictive remodeling which reduces the normal lumen. The attenuated
atherosclerotic plaques are assumed to be rupture prone, relatively large and responsible
for most acute coronary syndromes. Plaques which undergo accentuated remodeling are
usually smaller and lead to a stable angina. Because the remodeling is accentuated or
constrictive, these plaques reduce the blood flow more than their expansive counterparts.
The reason why some arteries react expansive and the others react constrictive is unclear.
However, smoking and diabetes mellitus are linked to constrictive remodeling [4].

The event of plaque rupture describes the state of a deep injury with a rupture of the
fibrous cap, see Figs. 1.3(c) for the stable plaque and 1.3(d) for the ruptured state. This
rupture allows the contact of the blood stream with the thrombogenic material within the
plaque, see Fig. 1.3(d). Therefore, a blood clot is developed which can be washed away by
the blood stream. This process is the most common cause of coronary artery thrombosis.
However, not every rupture is fatal within the development of an atherosclerotic plaque.
The rupture of the plaque surface allows blood to enter and can lead to a sudden and rapid
growth of the lesion, which is often asymptomatic and, therefore, clinically silent [4, 19].



2 Theoretical Background

This chapter introduces the multi-field framework for fracture which was used for the
simulation of the fracture of atherosclerotic plaques. Firstly, the kinematics of the mechan-
ical problem is explained and the necessary basics of the continuum mechanics framework
are presented. Furthermore, the principle of the geometrical approach for fracture is ex-
plained. Finally, the governing equations of the multi-field problem, which are used for
the implementation in a finite element analysis program, is derived and explained. For
further details the interested reader is referred to Miehe et al. [20], Gültekin et al. [7] and
Holzapfel [11].

2.1 Multi-Field Framework for Fracture
A continuum body can be described at time t0 ∈ T ⊂ R as B ⊂ R3 and at time

t ∈ T ⊂ R as S ⊂ R3 in an Euclidean coordinate system. Hence, the coupled problem
of fracture can be defined by the use of two primary field variables. These primary field
variables are the bijective deformation map ϕ(X, t) and the internal variable of the crack
phase-field d, defined as

ϕt(X) :

{
B × T → S,
(X, t) 7→ x = ϕ(X, t),

d :

{
B × T → [0, 1],

(X, t) 7→ d(X, t),
(2.1)

where ϕt(X) maps a point X ∈ B in the reference configuration at t0 to a point x ∈ S
in the spatial configuration at time t. The mapping can be seen in Fig. 2.1. On the other
hand, d is a thermodynamic variable to quantify fracture and it is within the closed interval
[0, 1], where a value d = 0 describes a fully intact material and a value d = 1 represents a
completely ruptured material [9].

2.1.1 Kinematics of the Mechanical Problem and the Hyperelastic
Material Model

The first part of the multi-field framework is the mechanical problem, which is described
by the primary field variable ϕt(X). The bijective deformation map depends on the used
coordinate system. Hence, one should use the invariants of the map, which are by definition
coordinate system independent. The map ϕt(X) is a vector from one point in the body B
in reference configuration to a point in the spatial configuration S. It is better suited to use

7



8 2 Theoretical Background

Figure 2.1 Non linear deformation of the reference configuration B ∈ R3 to the spatial
configuration S ∈ R3 of an anisotropic solid. Additionally, the non linear deformation
mapϕ : B×T → S transforms a material point X ∈ B to a spatial point x = ϕ(X, t) ∈
S at time t. In order to include the anisotropic properties of the solid material, the
microstructure of the material is modeled with the help of two fiber families, which
are denoted as M and M′ in the reference configuration and m and m′ in the spatial
configuration. The vectors T̃,N,n and t̃ are the traction force and the normal vector
on the surface of the body in the reference and the spatial configuration, respectively.
Adapted from Gültekin et al. [10].

the deformation field rather than the vector. Therefore, the so called deformation gradient
F is defined as

F = ∇ϕt(X) or Fij =
∂(ϕt)i(X)

∂Xj

, (2.2)

where∇ defines the gradient with respect to the reference configuration and the right-hand
side shows the index notation of the deformation gradient.

The deformation gradient F describes the deformation of an object from its reference
configuration to the spatial configuration. Additionally, the volume change of the body in
the material configuration B to the spatial configuration S can be easily calculated with the
help of the deformation gradient. This measure of volume change is called the Jacobian
determinant J of the deformation gradient and is defined as

J =
dv

dV
= det F, (2.3)

where dv and dV are the spatial volume and the reference volume, respectively. Since
the volume has to be positive at any time, J > 0 has to hold at all times. For a value of
J = 1, the deformation is called isochoric, volume preserving or incompressible. Since
most biological tissues have a high water content, it is assumed that these materials can
only undergo isochoric deformations and behave incompressible [1].
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For the calculation of stresses, the deformation gradient F is an inconvenient measure,
because it still contains rigid body rotations and it is a non-symmetric tensor. Hence, the
measure of a stretch tensor is introduced, which only consists of the stretches within the
material. One possible stretch tensor is called the left Cauchy-Green tensor

b = FG−1FT, (2.4)

where G is the covariant reference metric tensor and is defined as G = δIJE
I ⊗ EJ for a

Cartesian coordinate system. Here, δIJ is called the Kronecker delta function

δIJ =

{
0, I 6= J,

1, I = J.
(2.5)

Hence, the covariant reference metric tensor G is equal to the second-order identity tensor I
for a Cartesian coordinate system. This stretch tensor b is symmetric and positive definite,
which means that all eigenvalues for all spatial points x are positive. Additionally, the
aforementioned rigid body rotations, which do not induce stresses into the material, are no
longer included in this stretch measure [11].

With the help of this stretch tensor, the material behavior of an isotropic material, i.e.
a material which deforms the same independent of the loading direction, can be defined.
In order to obtain the independence of the operating coordinate system, one can use the
invariants of the left Cauchy-Green tensor to define the material response. These invariants
are defined as

I1 = tr b, I2 =
1

2

[
I2

1 − tr
(
b2
)]

and I3 = det b. (2.6)

With the definition of these invariants an isotropic neo-Hookean material is proposed as

Ψiso =
µ

2
(I1 − 3) , (2.7)

where Ψiso denotes the isotropic strain-energy function of the material and is used in the
continuum mechanics framework and µ is the shear modulus, which is a stress-like material
parameter.

Since mechanical experiments and structural investigations have shown that the material
is not an isotropic continuum, the material model has to be extended in order to include
the fiber families, which were mentioned in Section 1.1. Hence, a structure tensor is in-
troduced, which models the fiber reinforcement of the material, see Fig. 2.1, by using the
two fiber families, which are denoted as M and M′ in the reference configuration and m
and m′ in the spatial configuration.The structure tensor is introduced for both fiber fami-
lies and is denoted as A and A′ for the first and for the second fiber family in the spatial
configuration, respectively. The structure tensors are defined as

A = m⊗m, and A′ = m′ ⊗m′. (2.8)
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With the same approach as for the isotropic part of the material, two additional invariants
are introduced, i.e.

I4 = m · gm = λ2
f , I6 = m′ · gm′ = λ2

f′ , (2.9)

where g is the covariant spatial metric tensor, which is defined as g = δij for a Cartesian
coordinate system, where δij is the Kronecker delta function as defined in Eqn. (2.5), m
and m′ are the mean fiber directions of the first and second fiber family in the spatial
configuration, respectively. These two invariants can be seen as the squared fiber stretch
as λ2

f and λ2
f ′ of the first and second fiber family. In general it is assumed that the fibers

are symmetric with respect to the circumferential axis and, therefore, it can be stated, that
I4 = I6 = λ2

f [11].
With these invariants, the anisotropic part of the tissue can be described with the strain-

energy function

Ψani =
k1

2k2

[
ek2(I4−1)2

− 1
]
, (2.10)

where k1 is a stress-like material parameter and k2 is a dimensionless parameter affecting
the fiber stiffness [12].

2.1.2 Geometrical Approach for Anisotropic Rupture

A rupture can be seen as a strong discontinuity within a continuum body B. Since
discontinuities are difficult to handle in numerical simulations, the geometrical approach
for these continuities tries to smear out the discontinuity in order to achieve a continuous
crack surface.

For a basic understanding of the geometrical approach, the crack-phase field approach
will be explained with the help of a one-dimensional bar with the cross-section Γ, which
can be extended to a three-dimensional domain. Figure 2.2 shows the bar with a sharp
crack topology and the diffusive crack topology of the geometrical approach. For the sharp
crack topology the crack occurs as a discontinuity at x = 0, where a sudden jump of d = 1
occurs. Hence, the material is only destroyed at exactly x = 0 and stays intact at every other
point of the domain. This leads to the aforementioned discontinuity within the continuum,
which can lead to numerical problems and it is difficult to model that. Therefore, the crack-
phase field approach is utilized and the field variable d is defined as a continuous function
of x which leads to a regularized or diffusive crack topology. Miehe et al. [20] proposes
the following function

d(x) = e−|x|/l, (2.11)

where l is called the length-scale parameter and defines the amount of smoothing of the
sharp crack topology, which leads to the properties

d(0) = 1 and d(±∞) = 0. (2.12)
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Hence, the given function for d is the solution for the homogeneous differential equation

d(x)− l2d′′(x) = 0 in B, (2.13)

with the boundary conditions shown in Eqn. (2.12). Equation (2.13) can be seen as the
Euler equation of the variational principle

d = Arg

{
inf
d∈Wd

I(d)

}
, (2.14)

Figure 2.2 Difference between sharp crack modeling (dashed) and diffusive crack mod-
eling (solid) with the help of a length-scale parameter l. The field variable d displays
the status of the material, where a value d = 0 depicts a completely intact material and a
value d = 1 depicts a completely damaged material. For this one-dimensional problem,
a function of d(x) = e−|x|/l of the crack along the x-axis of an infinite bar is proposed,
see Miehe et al. [20].

whereWd := {d|d(0) = 1, d(±∞) = 0} is the space of all admissible solutions and the
functional I(d) is defined as

I(d) =
1

2

∫
B

(
d2 + l2d′

2
)

dV. (2.15)

By integrating a Galerkin-type weak form of the differential Eqn. (2.13), evaluating I(d)
for the given solution shown in Eqn. (2.11) and with dV = Γdx we find that

I
(
d = e−|x|/l

)
= lΓ, (2.16)
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Figure 2.3 Depiction of the sharp crack surface Γ and the diffusive crack surface Γl in
the reference configuration B ∈ R3 and the spatial configuration S ∈ R3, respectively.
The diffusive crack surface uses the principle of the crack-phase field approach in order
to achieve a continuous crack surface. This is described in more detail in Section 2.1.2.
Adapted from Gültekin et al. [10].

which correlates the functional I(d) to the crack surface Γ. Accordingly, we can formulate
the regularized crack-surface topology for the one-dimensional problem as

Γl(d) :=
1

l
I(d) =

1

2l

∫
B

(
d2 + l2d′

2
)

dV. (2.17)

The evaluation of the functional Γl(d) can be considered as the crack surface Γ for arbitrary
length scales l, and hence be used for constitutive modeling of diffusive crack propagation
[20].

This formulation within the one-dimensional framework can be extended to a domain
of arbitrary dimensions, as proposed by Miehe et al. [20]. A body B ⊂ Rδ, see Fig. 2.3,
is defined in the reference configuration, where δ ∈ [1, 2, 3] denotes the dimension of the
body. With the use of the auxiliary field variable d defined in Eqn. (2.1) the regularized
crack functional can be defined similar to the functional for the one-dimensional problem
in Eqn. (2.17) as

Γl(d) =

∫
B
γ (d,∇d) dV, (2.18)

where Γl(d) ∈ Rδ−1 is the regularized crack surface, and γ(d,∇d) is called the crack
surface density function per unit volume of the solid and is defined as

γ (d,∇d) =
1

2l
d2 +

l

2
|∇d|2. (2.19)
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With the definition of this functional and with the assumption of a sharp crack surface
topology Γ within the body, as can be seen in Fig. 2.3, one can define the regularized
crack phase-field d(x, t) on the body B with a similar approach as for the one-dimensional
problem. Hence, the minimization principle

d(x, t) = Arg
{

inf
d∈WΓ(t)

Γl(d)

}
, (2.20)

with the Dirichlet-type constraints

WΓ(t) = {d|d(x, t) = 1 at x ∈ Γ(t)} , (2.21)

leads to the result for the auxiliary field variable d.
Gültekin et al. [8] extended the crack energy density function proposed by Miehe et

al. [20] by the second-order tensor L, which depends on the microstructure of the material,
and it is defined as

L = l2 (I + ωMM⊗M + ωM′M′ ⊗M′) , (2.22)

where ωM and ωM′ are scalar values which weight the crack propagation in favor of the
anisotropy of the fiber orientation within the material. With this extension, the geometric
approach can be used for anisotropic rupture, where a rupture along the fiber direction is
more likely than a rupture through fibers. In order to ensure the ellipticity condition and,
therefore, convexity of the model, ωM and ωM′ have to be in the open interval (−1,∞). The
second-order tensor L leads to the definition of the anisotropic regularized crack-surface
topology

Γl(d) =

∫
B
γ (d,∇d;L) dV, (2.23)

where
γ (d,∇d;L) =

1

2l

(
d2 +∇d ·L∇d

)
. (2.24)

For further information regarding crack-phase field modeling the interested reader is
referred to Miehe et al. [20] and Gültekin et al. [7, 8, 10].

2.2 Governing Equations of the Multi-Field Problem
After the definition of the regularized crack surface, the coupled balance equations for

the evolution of the crack phase-field and the balance of linear momentum are utilized for
the global power balance. This global power balance is minimized in order to retrieve the
crack growth for a certain stress state [7, 9].

2.2.1 Energy Storage Functional in an Anisotropic Solid
The energy storage functional for the hyperelasticity of an anisotropic solid is defined as

E(ϕ, d) :=

∫
B

Ψ (F,A,A′; d) dV, (2.25)
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where Ψ(F,A,A′; d) is the strain-energy function of a degrading continuum, i.e.

Ψ (F,A,A′; d) := g(d)Ψ0 (F,A,A′) , (2.26)

where Ψ0 is the effective strain-energy function of the hypothetical intact solid and g(d) is
a degradation function. The degradation of the material, as introduced by Miehe et al. [20],
is defined by a monotonically decreasing quadratic degradation function as

g(d) := (1− d)2, (2.27)

which decreases with the evolving crack phase-field parameter d. This degradation func-
tion g(d) has to fulfill the growth conditions, i.e.

g′(d) ≤ 0 with g(0) = 1, g(1) = 0, g′(1) = 0, (2.28)

where the first condition ensures degradation, the second and third conditions set the limits
for the intact and the ruptured state, and the final condition ensures the saturation when
d→ 1.

2.2.2 Rate of Energy Storage Functional and External Power
Functional

The rate of the energy storage functional is achieved by calculating the time derivative
of Eqn. (2.25), which leads to

E
(
ϕ̇, ḋ;ϕ, d

)
:=

∫
B

(
P : Ḟ− fḋ

)
dV, (2.29)

where P is the first Piola-Kirchhoff stress tensor, defined as

P = ∂FΨ (F,A,A′; d) =
Ψ (F,A,A′; d)

∂F
, (2.30)

and f is the energetic force which is work conjugate to the crack phase-field d, given as

f = −∂dΨ (F,A,A′; d) = −∂Ψ (F,A,A′; d)

∂d
. (2.31)

The external functional P(ϕ̇) depends on the density of the material ρ0, the described
spatial body force γ̄ and the spatial surface traction T̄, i.e.

P(ϕ̇) =

∫
B
ρ0γ̄ · ϕ̇dV +

∫
∂Bt

T̄ · ϕ̇dA, (2.32)

where the boundary ∂Bt can be seen in Fig. 2.1.
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2.2.3 Crack Energy Functional and Crack Dissipation Functional
By using the volume-specific crack surface γ (d,∇d) one can define the crack energy

functional Dc to be

Dc(d) =

∫
B
gcγ(d,∇d)dV, (2.33)

where gc is a measure of the energy needed to convert an intact matter into a cracked matter
and is called critical fracture energy. Hence, the crack dissipation functional D is defined
as the evolution of Eqn. (2.33)

D
(
ḋ
)

=

∫
B
gc [δdγ (d,∇d)] ḋ dV, (2.34)

with the variational derivative δdγ of the volume-specific crack surface γ defined as

δdγ =
∂γ

∂d
=

1

l
[d−∇ · (L∇d)] . (2.35)

In order to fulfill the second law of thermodynamics, the dissipation functional defined in
Eqn. (2.34), has to be non-negative for all admissible deformation processes.

2.2.4 Variational Formulation Based on Power Balance
The power balance for the multi-field problem can be achieved by using the functionals

in Eqns. (2.29), (2.32) and (2.34), and it yields

Π
(
ϕ̇, ḋ

)
:= E(ϕ̇, ḋ) +D

(
ḋ
)
− P(ϕ̇) = 0, (2.36)

which leads to a rate-type mixed variational principle via a minimization principle for the
quasi-static process, i.e. {

ϕ̇, ḋ
}

= Arg
{

inf
ϕ̇∈Wϕ

inf
ḋ∈Wd

Π
(
ϕ̇, ḋ

)}
, (2.37)

with the domains for the state variables given as

Wϕ := {ϕ̇|ϕ̇ = 0 on ∂Bϕ} and Wd :=
{
ḋ|ḋ = 0 on ∂Bd

}
. (2.38)

The Euler-Lagrange equations can be derived by the variation of the functional which
describes the multi-field problem for the brittle fracture of an anisotropic hyperelastic solid,
defined as

Div P + ρ0γ̄ = 0 and (f − gcδdγ) ḋ = 0, (2.39)
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where the first equation can be seen as the balance of static equilibrium in the reference
configuration and the second equation is the balance law for the evolution of the crack
phase-field, i.e.

ḋ ≥ 0 and f − gcδdγ ≤ 0, (2.40)

which need to be satisfied. Note that the first condition enforces the irreversibility of the
evolution of the crack phase-field parameter, and the second defines the spatial status of
the crack, which yields equality for an evolving crack and is negative for a stable crack.

In order to work in the spatial configuration, the balance of static equilibrium can be
pushed forward, using the Piola identity, which is leading to

Jdiv
(
J−1τ

)
+ ρ0γ̄ = 0, (2.41)

where τ is the Kirchhoff stress tensor.

2.3 Energy-Based Anisotropic Failure Criterion
Most of the tissues in the cardiovascular system show an anisotropic material behavior,

as described in Section 1.1. Hence, the corresponding failure mechanism is assumed to be
anisotropic too. Therefore, the evolution of the crack-phase field and the equation of the
energetic force f can be additively decomposed into an isotropic fiso and an anisotropic
part fani, i.e.

f = fiso + fani, (2.42)

where

fiso = 2 (1− d) Ψiso
0 and fani = 2 (1− d) Ψani

0 , (2.43)

using Eqns. (2.7), (2.10) and (2.27).
In Eqn. (2.43), Ψiso

0 and Ψani
0 are the intact free-energy functions for the matrix material

and for the fiber structure within the material, respectively. Those two parts correspond to
the additive decomposition of the strain-energy function of fiber-reinforced materials, as
proposed by Holzapfel et al. [12].

After defining the energetic force for the material, the distinct failure assumption can be
introduced by modifying Eqn. (2.43), using Eqns. (2.39)2 and (2.40)1 and the definition of
the distinct critical fracture energy over the length scale, which leads to

(1− d)
Ψiso

0

giso
c /l

=
1

2
(d− l2∆d) and (1− d)

Ψani
0

gani
c /l

=
1

2
(d− l2∆d), (2.44)

where l is the length-scale parameter, giso
c and gani

c are the critical fracture energies, as
proposed by Griffith [5] for the isotropic ground matrix and the anisotropic fibrous micro-
structure of the material, respectively.
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For convenience, the dimensionless crack driving functions for the isotropic part H̄iso,
the anisotropic part H̄ani, and the whole material H̄ are introduced as

H̄iso =
Ψiso

0

giso
c /l

, H̄ani =
Ψani

0

giso
c /l

and H̄ = H̄iso + H̄ani. (2.45)

Hence, the failure process of the whole material, can be achieved by superposing the
failure processes of the isotropic and anisotropic part, as given in Eqn. (2.44) and the
definition of the dimensionless crack driving functions, as shown in Eqn. (2.45). The
definitions lead to

d− l2∆d = (1− d)H̄, (2.46)

where the left-hand side can be seen as the geometric resistance to crack growth and the
right-hand side is the local source term for crack propagation.

Due to the fact that the crack cannot heal, the process of any damage has to be irre-
versible. Thus, the dimensionless source term in Eqn. (2.46) has to be modified to

H(t) = max
s∈[0,t]

[
〈H̄(s)− 1〉

]
, (2.47)

where 〈(•)〉 = [(•) + |(•)|] /2 are the Macaulay brackets, which filter out the positive
values for H̄(s) and only allow a crack growth if the failure surface is reached. Hence, the
phase-field only evolves, if the dimensionless crack source term isH(t) ≥ 0.

On the numerical side, the mechanical and phase-field problems in Eqn. (2.39) are first
multiplied by the corresponding test functions, which together with Gauss integral and
Cauchy theorems lead to the weak form of the coupled problem. The nonlinearity inherent
in the material and geometry of the problem is treated via linearization. This continous
equations are then discretized with standard linear shape functions satisfying C0 conti-
nuity. The obtained spatially discretized set of equations are then subjected to temporal
discretization in terms of the one-pass operator split algorithm, thereby, enabling the se-
quential update of the deformation map and phase-field one after another. The interested
reader is referred to Gültekin et al. [6, 7].





3 Finite Element Simulations and
Parameter Estimation

This chapter focuses on the application of the introduced methodology onto problems
of the biomechanics field. Therefore, a sensitivity analysis is performed to show the effect
of the anisotropy parameter ωM onto the crack propagation with a bench mark problem.
Two different free-energy functions are compared with respect to the stability of the anal-
ysis. Afterwards, the elastic material parameters for the atherosclerotic plaque are esti-
mated with the help of a fitting algorithm applied onto the experimental data taken from
Holzapfel et al. [14]. These material parameters are then utilized to analyze the rupture
behavior of an atherosclerotic plaque. The geometry for this atherosclerotic plaque is pro-
duced by using a parametrized geometry generation, where the effect of two parameters,
the fibrous cap thickness and the lipid pool amount, onto the vulnerability of the plaque
are investigated. Thereby, the position of rupture and the maximum pressure are the main
indicators for plaque vulnerability.

3.1 Sensitivity Analysis of the Anisotropy Parameter ωM

As mentioned in the previous chapters, cardiovascular tissue has an anisotropic material
and anisotropic crack behavior. A sensitivity analysis of the anisotropy parameter ωM

was performed in order to study the effect of increasing values of ωM on the direction
of crack-propagation. Therefore, a bench-mark problem was created, see Fig. 3.1. The
given geometry included one family of fibers, which has been aligned at an angle α =
45◦. The single edge notch within the geometry had to be introduced to produce a stress
concentration at the tip of the notch, which led to a crack initiation at this point. The
material parameters were set to µ = 1.0 kPa, k1 = 1.0 kPa and k2 = 1.0. In order to
enforce the incompressibility condition, an augmented Lagrangian approach was used and
the bulk modulus has been set to κ = 3.0 kPa. The regularized critical energy release rates
for fracture were defined to be giso

c /l = 10−2 kPa and gani
c /l = 10−2 kPa for the isotropic

and theanisotropic part, respectively. In order to satisfy h ≤ 2l, introduced by Miehe et
al. [20], the length-scale parameter was set to l = 0.01 mm. The geometry in Fig. 3.1 has
been meshed using 38800 quadrilateral elements with 39295 nodes. A linearly increasing
displacement was applied to the top edge of the geometry, while the bottom edge has been
fixed in the y-direction. The x-displacement was not constraint for the top or the bottom
edge. Simulations were performed for different values of the anisotropy parameter ωM.

19
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Figure 3.1 Geometry for the performed parameter sensitivity analysis in the reference
configuration. The vector M shows the fiber direction of the material, where α defines
the angle between the mean-fiber direction and the x-axis. The notch was introduced to
produce a stress concentration at the tip. Bottom edge was constraint in the y-direction
and on the top edge a linearly increasing displacement in the y-direction was applied.
Adapted from Gültekin et al. [10].

Additionally, two different free-energy functions were investigated, where the first one
has the form according to Holzapfel et al. [12]

Ψ(I1, I4) =
µ

2
(I1 − 3) +

k1

2k2

[
exp

(
k2(I4 − 1)2

)
− 1
]
, (3.1)

and the second contains the Taylor series expansion of the exponential function, i.e.

ex =
n∑
i=0

xi

i!
= 1 + x+

x2

2
+
x3

6
+ . . . , (3.2)

leading to

Ψ(I1, I4) =
µ

2
(I1 − 3) +

k1

2k2

{
n∑
i=0

[k2(I4 − 1)2]
i

i!
− 1

}
, (3.3)

where n ∈ N+ denotes the order of the approximation, and it was set to n = 5 for the
simulations.
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Figure 3.2 Approximation of the exponential function with the help of an Taylor series
expansion using different orders n = {1, . . . , 5}.

Figure 3.2 shows the Taylor series expansion converging to the exponential function
for an increasing n. This relation was used for the anisotropic part of the free-energy
function, see Eqn. (3.3). Hence, a relaxation of the anisotropic part was achieved, which
was assumed to increase the stability of the numerical simulations.

In order to investigate the influence of the penalty parameter ωM onto the direction of
the crack-propagation, several simulations with different values for ωM were performed,
similar to Gültekin et al. [10], but with the two different free-energy functions. Figure 3.3
shows the corresponding force-displacement curves for the simulations. Thereby, the force
denotes the sum of all nodal forces along the top edge of the geometry, see Fig. 3.1. It
becomes apparent that an increased value of ωM leads to a higher maximum load, which
is a result of the increased geometric resistance of the material and the difference in the
crack-path angle. The kinks in Fig. 3.3 are a result of a change in the time steps within the
simulations. The analysis starts with time steps of 10−3 until d ≈ 0.7 is achieved, where
the time steps are reduced to 10−6 to the point where the simulation crashes or a complete
rupture occurred.

Figures 3.4 and 3.5 show that a notable increase in the stability of the simulations, i.e. a
further crack-propagation can be seen for all values of ωM using the Taylor series expan-
sion free-energy function. Hence, a complete rupture was achieved for all values of ωM.
On the other hand the exponential form already led to numerical problems with a value
of ωM = 10. The crack propagation towards the bottom left corner is a result of the
geometrical approach and displays how the crack-phase field approach smears out the dis-
continuous sharp crack surface topology onto a regularized crack surface. The simulations
using the Taylor series expansion still show some remaining forces in Fig. 3.3, which are a
result of the artificial rest potential. This rest potential is a numerical necessity to increase
the stability even further and can be interpreted as an unphysical remaining strength for a
completely ruptured material.
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Figure 3.3 Force-displacement curves for the exponential model (ExM), see Eqn. (3.1),
and the Taylor series expansion model (TaM), see Eqn. (3.3). The force is the sum of
all nodal forces on the top edge of the geometry shown in Fig. 3.1. The displacement is
the applied quantity uy, also shown in Fig. 3.1.

3.2 Parameter Estimation
Fitting of parameters is a crucial point for accurate simulations. Therefore, the exper-

imental data documented in Holzapfel et al. [14] were used to fit the model parameters
of the model proposed by Holzapfel et al. [12], i.e. φ = {µ, k1, k2, α}. In the study of
Holzapfel et al. [14], uniaxial tests were performed, where stripes of tissues of individual
arterial layers within atherosclerotic plaques were attached to an uniaxial testing device
and stretched until rupture occurred. In order to capture the anisotropic behavior of the
material, uniaxial tests in the circumferential (θθ) and axial (zz) directions were employed.
During the tests, the global stretch in the direction of loading, the force acting on the clamps
of the device and the transversal stretch, i.e. the stretch in the orthogonal direction to load-
ing, were recorded. With the use of the Piola-identity the Cauchy stress versus stretch
curves for both loading cases were generated and were then used for the parameter esti-
mation. The estimation was achieved by applying the least-squares method for nonlinear
objective functions, which is

φ = {µ, k1, k2, α} = argmin
φ

χ2(φ) where χ2(φ) =
∑
ij∈ξ

∑Nexp
ij

n=1

(
σnij − σ̄nij

)2

max
(
σ̄nij
) . (3.4)

The objective function χ2(φ) compares the Cauchy-stress σnij predicted by the model with
the experimental stresses σ̄nij , where N exp

ij is the number of data points for the two experi-
mental modes ξ = {θθ, zz}. It has to be mentioned, that the normalization factor max

(
σ̄nij
)

is necessary to capture the highly anisotropic material behavior. The material parameters
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Figure 3.4 Resulting distribution of the phase-field parameter d, where a value of d = 1
means a fully ruptured material and d = 0 depicts an intact material: (a), (c), and (e)
result from using the exponential free-energy function, see Eqn. (3.1); (b), (d), and (f)
result from using the Taylor series expansion of the free-energy function, see Eqn. (3.3).
Angle θ indicates the orientation of the crack-propagation measured with respect to the
horizontal axis. Simulations were performed for different values of ωM: (a) and (b)
using ωM = 0; (c) and (d) using ωM = 1; (e) and (f) using ωM = 10.
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Figure 3.5 Resulting distribution of the phase-field parameter d, where a value of d = 1
means a fully ruptured material and d = 0 depicts an intact material: (a), (c), and (e)
result from using the exponential free-energy function, see Eqn. (3.1); (b), (d), and (f)
result from using the Taylor series expansion of the free-energy function, see Eqn. (3.3).
Angle θ indicates the orientation of the crack-propagation measured with respect to the
horizontal axis. Simulations were performed for different values of ωM: (a) and (b)
using ωM = 100; (c) and (d) using ωM = 500; (e) and (f) using ωM = 1000.
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were obtained using the lsqnonlin function in MATLAB® Release (2019a) [21]. In
order to evaluate the quality of the estimation, the correlation coefficients R2

θθ and R2
zz for

the circumferential and the axial extension test were calculated, i.e.

R2
ij =

∑Nexp
ij

n=1

[(
σnij − σmean

ij

) (
σ̄nij − σ̄mean

ij

)]√∑Nexp
ij

n=1

(
σnij − σmean

ij

)2
√∑Nexp

ij

n=1

(
σ̄nij − σ̄mean

ij

)2
for ij ∈ {θθ, zz} , (3.5)

where σmean
ij denotes the mean value of the stresses predicted by the model, σ̄mean

ij denotes
the mean value of the experimental stresses, σnij are the stresses predicted by the model, and
σ̄nij are the experimental data points. The correlation coefficients are within the interval
[0, 1], where a value of R2

ij = 1 shows a perfect correlation of the model data and the
experimental data and, therefore, a perfect estimation of the model parameters. The results
for the parameters of the specific layers can be seen in Table 3.1, where RMSE is the
root-mean-square error, i.e.

RMSE =

√
χ2 (φ)∑

ij∈ξN
exp
ij − q∑

ij∈ξ σ̄
mean
ij

. (3.6)

Herein, q denotes the number of parameters in φ, compare Holzapfel et al. [16] and
Schulze-Bauer et al. [26]. The parameters for the lipid pool was taken from Holzapfel et al. [13]
and the calcification was modeled as a rigid body.

Table 3.1 Elastic material parameters for the different arterial layers, where µ is the shear
modulus, k1 is a stress-like parameter, k2 is a measure for the fiber stiffness and α
is the angle between the circumferential direction and the first or second fiber family,
assuming a symmetric fiber orientation. R2

θθ and R2
zz are the correlation coefficients and

RSME is the root-mean-square error.
Elastic material parameter Correlation and error

µ [kPa] k1 [kPa] k2 [–] α [◦] R2
θθ [–] R2

zz [–] RSME [–]
Adventitia 52.34 1151.95 4509.40 42.06 0.986 0.993 0.169
Media 11.74 15.70 4.41 30.02 0.994 0.987 0.134
Fibrous cap 5.65 441.07 243.73 59.71 0.997 0.993 0.093
Fibrotic media 49.05 452.98 55.05 0.00 0.996 0.980 0.121
Calcification 500.00 0.00 1.00 0.00 [-] [-] [-]
Lipid pool 0.10 0.00 1.00 0.00 [-] [-] [-]

Figures 3.6-3.9 show the experimental data points and the stress-stretch curves predicted
by the model for the media, the adventitia, the fibrous cap and the fibrotic media for an
intact material in the circumferential (θθ), and the axial direction (zz), respectively.
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Figure 3.6 Stress-stretch behavior of the fitted model and the experimental data for the
media. The solid curve displays the response predicted by the model in the circumfer-
ential direction (θθ) compared to the experimental data points (×). Dashed curve shows
the response predicted by the model in axial direction (zz) compared to the experimental
data (∗). Experimental data was taken from Holzapfel et al. [14].

Figure 3.7 Stress-stretch behavior of the fitted model and the experimental data for the
adventitia. The solid curve displays the response predicted by the model in the circum-
ferential direction (θθ) compared to the experimental data points (×). Dashed curve
shows the response predicted by the model in axial direction (zz) compared to the ex-
perimental data (∗). Experimental data was taken from Holzapfel et al. [14].
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Figure 3.8 Stress-stretch behavior of the fitted model and the experimental data for the
fibrous cap. The solid curve displays the response predicted by the model in the circum-
ferential direction (θθ) compared to the experimental data points (×). Dashed curve
shows the response predicted by the model in axial direction (zz) compared to the ex-
perimental data (∗). Experimental data was taken from Holzapfel et al. [14].

Figure 3.9 Stress-stretch behavior of the fitted model and the experimental data for the
fibrotic media. The solid curve displays the response predicted by the model in the
circumferential direction (θθ) compared to the experimental data points (×). Dashed
curve shows the response predicted by the model in axial direction (zz) compared to the
experimental data (∗). Experimental data was taken from Holzapfel et al. [14].
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3.3 Atherosclerotic Plaque
This section shows the procedure of the analysis of the atherosclerotic plaque. Firstly,

the produced geometries are shown and the parameters for the generation script are briefly
described. Secondly, the meshing and the calculation of the fiber direction for each element
is explained and one example is given. Additionally, a mesh study is shown and a sufficient
mesh is defined, where one has to balance the computational effort and the accuracy of the
result. Finally, the results of the different cases are presented and discussed.

3.3.1 Material Allocation and Geometry Generation

The material parameters for the different layers of the atherosclerotic plaque are defined
using the parameter estimation shown in Section 3.2, where the different layers can be seen
in more detail in Fig. 3.10. Additionally, the critical fracture energy release rates and the
anisotropy parameters are estimated by using the experimental curves and changing the
release rates, until a similar behavior is achieved. The values are summarized in Table 3.2.
The material parameters for the intima are taken to be the same as the material parame-
ters of the healthy media. According to the sensitivity analysis shown in Section 3.1 the
anisotropic material model leads already to an alignment of the crack with the fiber ori-
entation. Therefore, only the anisotropy parameter of the fibrous cap ωM = 1 is used to
achieve an oriented crack propagation.

Figure 3.10 Front view of the generated geometry. The geometry was inspired by the
patient-specific geometry, see Fig. 1.4. (I-nos) is the healthy intima, (M-nos) is the
healthy media, (A) is the adventitia, (I-fc) is the fibrous cap, (M-f) is the fibrotic media,
(I-lp) is the lipid pool, and (I-c) is the calcified region.

The geometry is generated using a script in MATLAB® Release (2019a) [21], which
produces an input file for CUBIT© 12.1 (Sandia Cooperation) [2]. The script uses a
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Table 3.2 Critical fracture energy over the length-scale parameter for the isotropic and
anisotropic parts of the different layers and the anisotropy parameter ωM and ωM′ .

Critical fracture energy release rate Anisotropy parameter
giso
c /l [kPa] gani

c /l [kPa] ωM [−] ωM′ [−]
Adventitia 28.00 9.80 0 0
Media 49.00 8.60 0 0
Fibrous cap 0.38 0.80 1 0
Fibrotic media 37.00 24.00 0 0

parametrized geometry generation inspired by the histological drawing, see Fig. 1.4. The
parameters used are, (i) inner radius Ri of the healthy intima, (ii) length L of the arterial
segment, (iii) axial rotation θ of the lumen, (iv) position of the calcified region, (v) amount
of calcification, (vi) fibrous cap thickness factor, and (vii) amount of lipid pool shift.
Figure 3.11 shows the front view, isometric view and back view of the geometry using an
amount of lipid pool defined by the shift parameter and a fibrous cap thickness defined
by the factor parameter. Additionally, the rotation of the lumen by 90◦ along the ax-
ial direction of the plaque is shown. The length of the arterial segment was chosen to be
18.6 mm according to Holzapfel et al. [17]. In order to investigate the influence of the lipid
pool amount and the fibrous cap thickness, nine different geometries were generated, see
Fig. 3.12.

Figure 3.11 Generated geometry: (a) front view; (b) isometric view; (c) back view. The
lipid pool amount changes in axial direction and the lumen rotates clockwise. The
geometry used a factor = 0.8 for the fibrous cap thickness and shift = 1 for the
lipid pool amount.
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Figure 3.12 Nine different geometries for the study of atherosclerotic plaques in front
view: (a)-(c) minimal lipid pool amount; (d)-(f) medium lipid pool amount; (g)-(i) large
lipid pool amount; (a),(d), and (g) with a thick fibrous cap; (b),(e) and (h) with a medium
fibrous cap; (c), (f), and (i) with a thin fibrous cap.

3.3.2 Mesh Generation and Fiber Direction

In order to minimize the influence of the mesh, a mesh sensitivity study was performed,
see Fig. 3.13.

Therefore, the mesh was refined for one geometry and the analysis was performed. The
meshing was perfromed using CUBIT© 12.1 (Sandia Cooperation) [2]. The meshes in-
creased in mesh density starting with a coarse mesh of 39949 elements with 7662 nodes
and ending with a fine mesh with 214753 elements with 39166 nodes. An increasing mesh
density decreases the pressure necessary to achieve a complete rupture of the fibrous cap.
Hence, the meshes for the geometry study are chosen to be approximately 200000 elements.
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Figure 3.13 Results of the mesh sensitivity study of the crack-phase field modeling. The
parameter d displays the damage within the material, where a value d = 0 displays
an intact material and d = 1 displays a completely damaged material. It can be seen
that the location of the rupture does not depend on the mesh, but the maximum pres-
sure decreased with decreasing mesh size: (a) 39949 elements with 7662 nodes with a
maximum pressure of p = 287.5 mmHg; (b) 90654 elements with 16951 nodes with a
maximum pressure of p = 272.5 mmHg; (c) 140973 elements with 25977 nodes with a
maximum pressure of p = 265.0 mmHg; (d) 214753 elements with 39166 nodes with a
maximum pressure of p = 245.0 mmHg.

The geometry in Fig. 3.14 is using 195180 elements with 36681 nodes. The different ge-
ometry parameters and the resulting elements, nodes, as well as the length-scale parameter
are shown in Table 3.3. The resulting meshes can be seen in Fig. 3.15 and Fig. 3.16.

In order to be able to model the anisotropic material behavior of the arterial tissue, a
local coordinate system for every node of the mesh had to be defined. Therefore, a Poisson
interpolation algorithm was used to define the circumferential direction, see Fig. 3.17. The
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Figure 3.14 Resulting mesh of the geometry in Fig. 3.11. The mesh consists of 195180
elements with 36681 nodes: (a) front view; (b) isometric view; (c) back view.

Table 3.3 Different geometry parameter, resulting mesh density with the number of ele-
ments and nodes, and length-scale parameter l.

Geometry parameter Mesh density Length-scale parameter
factor shift #elements #nodes l [mm]

0.7 0 195508 36539 0.70
0.8 0 207177 38752 0.52
0.9 0 210173 39322 0.90
0.7 1 177441 32730 0.90
0.8 1 195180 36681 0.70
0.9 1 210696 39057 0.90
0.7 2 191399 35068 1.00
0.8 2 209701 28404 0.62
0.9 2 203862 37374 0.76

lipid pool and the calcification do not have fibers within their region, which leads to the
gray areas in the respective figure.

3.3.3 Boundary and Loading Conditions

The boundaries of the arterial segments are defined as a constraint at the beginning
z = 0 and the end z = L of the atherosclerotic plaque in the axial direction for all nodes.
Additionally, the surrounding tissue is simulated with linear springs attached along the
outer surface of the plaque. The springs have a stiffness in the x- and y-directions of
kx = 1 kN/m and ky = 1 kN/m, respectively. The pressure within the lumen is linearly
increased. Figure 3.18 shows the springs simulating the connective tissue and the pressure
in front view.
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Figure 3.15 Resulting mesh of the geometries shown in Fig. 3.12 in front view: (a)
195508 elements, 36539 nodes; (b) 207177 elements, 38752 nodes; (c) 210173 elements,
39322 nodes; (d) 177441 elements, 32730 nodes; (e) 195180 elements, 36681 nodes; (f)
210696 elements, 39057 nodes; (g) 191399 elements, 35068 nodes; (h) 209701 elements,
38404 nodes; (i) 203862 elements, 37374 nodes.

3.3.4 Numerical Results

The meshes introduced in Figs. 3.15 and 3.16 with the boundary and loading conditions
described in Section 3.3.3 were analyzed by using FEAP® Release (2008) [27]. The time
steps were set to 10−2 s until numerical stability issues occurred or until a complete rupture,
i.e. d = 1, was reached. If numerical stability issues occurred, the time steps were reduced
to 10−7. The goal of the simulations was to investigate how the two geometry parameters,
which are the fibrous cap thickness and the lipid pool amount, influence the vulnerability of
the plaque, i.e. the amount of pressure it can withstand until rupture occurs. The necessary
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Figure 3.16 Resulting mesh of the geometries shown in Fig. 3.12 in isometric view: (a)
195508 elements, 36539 nodes; (b) 207177 elements, 38752 nodes; (c) 210173 elements,
39322 nodes; (d) 177441 elements, 32730 nodes; (e) 195180 elements, 36681 nodes; (f)
210696 elements, 39057 nodes; (g) 191399 elements, 35068 nodes; (h) 209701 elements,
38404 nodes; (i) 203862 elements, 37374 nodes.

pressure values for the corresponding geometries can be seen in Figure 3.19, where (a)
shows a table and (b) is a scatter plot of the data points.

Figure 3.20 shows the corresponding rupture behavior of the different geometries. It can
be seen that for a given shift parameter, the rupture occurs at the same position, which is
highly aligned with the position of the calcification on the outer radial side of the lipid pool,
see Fig. 3.12. Furthermore, Fig. 3.19 shows that the fibrous cap thickness has a decreasing
influence on the rupture behavior of the geometry with an increasing lipid pool amount.

Additionally, a correlation between the fibrous cap thickness and the plaque vulnerability
is not possible. Therefore, the decisive parameter for the vulnerability of the plaque in this
study was the lipid pool amount (shift).
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Figure 3.17 Circumferential direction of the node-specific coordinate system for the mesh
shown in Fig. 3.14.

Figure 3.18 Boundary and loading conditions of the boundary-value problem. Springs
act as the surrounding connective tissue. The pressure is applied on the inner surface of
the lumen.

Figure 3.19 shows that the necessary pressure values are much higher than the physio-
logical blood pressure, where a blood pressure of more than 180 mmHg is already a critical
hypertensive crisis, according to Rodriguez et al. [25]. The extreme pressure values for the
different geometries cannot be reached in daily life. In sports the highest recorded blood
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Geometry parameter Pressure
factor shift p [mmHg]

0.7 0 585.0
0.8 0 550.0
0.9 0 647.5
0.7 1 450.0
0.8 1 440.0
0.9 1 520.0
0.7 2 362.5
0.8 2 355.0
0.9 2 367.5

(a) Different geometry parameters and corre-
sponding pressure values.

(b) Pressure versus shift parameter for differ-
ent factor parameters.

Figure 3.19 Pressure versus the geometry parameters in a table (a) and a scatter plot (b).

pressure was 370 mmHg, see Narloch and Brandstater [22]. Hence, the pressure values for
the geometries with a shift = 0 and shift = 1 cannot be reached in the physiological
blood pressure range and even the geometries with a shift = 2 are only reached during
heavy weight lifting.
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Figure 3.20 Results of the crack phase-field analysis for the geometries shown in
Figs. 3.15 and 3.16. The different geometries needed different pressure values to achieve
a value of d = 1: (a) p = 585.0 mmHg; (b) p = 550.0 mmHg; (c) p = 647.5 mmHg;
(d) p = 450.0 mmHg; (e) p = 440.0 mmHg; (f) p = 520.0 mmHg;
(g) p = 362.5 mmHg; (h) p = 355.0 mmHg; (i) p = 367.5 mmHg.





4 Conclusion

This master’s thesis investigates the influence of different atherosclerotic plaque geome-
tries onto the vulnerability of the plaque, in order to be able to identify rupture prone
atherosclerotic plaques by geometrical parameters. Therefore, a basic understanding of the
arterial structure in the healthy and the atherosclerotic artery is introduced. Additionally,
the development of atherosclerotic plaques is described and the process of plaque rup-
ture is shown. In order to perform numerical analyses with the help of the finite element
method, the mechanical framework and the crack phase-field approach are introduced. The
aforementioned framework is used to investigate atherosclerotic plaques with respect to the
vulnerability with different values of the lipid pool amount and the fibrous cap severity.

The main focus is the vulnerability analysis, which is performed by changing the ge-
ometrical parameters. In Fig. 3.19 it can be seen that the lipid pool amount has a much
higher influence on the rupture behavior of the atherosclerotic plaque than the fibrous cap
thickness. The location of rupture does not change with changing fibrous cap thickness
and it always occurs at the side of the calcification and the distal end of the atherosclerotic
plaque. A reason for this location might be the narrowing of the lumen with increasing
axial distance. Additionally, the calcification, being a stiff material in a butter-like lipid
pool, changes the stress distribution within the fibrous cap.

The necessary pressure to achieve a full rupture, which is a damage value d = 1, de-
pends highly on the geometry parameters. A decreasing lipid pool amount needs a much
higher pressure to achieve this rupture, as shown in Fig. 3.19. This increased pressure
denotes a more stable plaque. Additionally, the pressure also depends on the fibrous cap
thickness. The medium fibrous cap thickness leads to the most vulnerable plaque, and the
thinnest fibrous cap thickness leads to the most stable plaque. The influence of the fibrous
cap decreases with increasing lipid pool amount. One reason for the thinnest fibrous cap
thickness to be able to withstand the highest pressure, is the resulting stress distribution
within the cap and the distance between the fibrous cap and the calcification.

One limitation is the estimated material parameters. These parameters are a result of
experimental investigation of a stable plaque, which could overestimate the material re-
sponse. In addition, the performed experiments, uniaxial extension tests in two directions,
do not represent the physiological loading of atherosclerotic tissues. Hence, biaxial exten-
sion experiments or inflation tests would be necessary to simulate the in vivo conditions
of atherosclerotic plaques. Since, here, the angle of the main fiber direction is a fitting
parameter, additional structural analyses are required.

Furthermore, in order to be able to easily change the fibrous cap thickness and the lipid
pool amount, the geometry was artificially constructed. Therefore, patient-specific geome-
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tries, which are obtained by, e.g., using high-resolution imaging techniques from CT or
MRI, and segmentation algorithms should be used to achieve realistic simulations. To the
author’s knowledge it is not possible to identify the critical energy release rates and the
structural parameters of patients with conventional imaging techniques. The material pa-
rameters can be identified with the help of magnetic resonance elastography. Therefore,
a database of possible material parameters and a clustering into certain groups would be
necessary to use these simulations for a better medical prediction of patients.
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