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Symbols, Abbreviations

MRI magnetic resonance imaging

fMRI functional magnetic resonance imaging,

EEG electroencephalography

MEG magnetoencephalography

NIRS near-infrared spectroscropy

fNIRS functional near-infrared spectroscropy

ERP evoked related potentials

ERD/S event-related (de)synchronizations

SNR signal-to-noise ratio

RANSAC random sample consensus

IC independent component]

IC Independent Component

BSS Blind source separation

ERSPs event related spectral perturbations

PCA principal component analysis

ROI region of interest

AG angular gyrus

STS superior temporal sulcus
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FG fusiform gyrus

IPS intraparietal sulcus

FEF frontal eye field

DLPFC dorsolateral prefrontal cortex

SMA supplementary motor area

PMC premotor cortex

BG basal ganglia

AI anterior insula

VLPFC ventrolateral prefrontal cortex

MTL medial temporal lobe

V1 visual cortex

FFA fusiform face area

FG fusiform gyrus

SPL superior parietal lobule

IPS intraparietal sulcus

ITC ITC

AG angular gyrus

PPC PPC

PFC prefrontal cortex

DPFC dorsolateral prefrontal cortex

WM working memory

LTM long-term memory

RT response time

AF anteriofrontal
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F frontal

FC frontocentral

C central

CP centroparietal

P parietal

PO parietooccipital

T temporal
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Zusammenfassung

Das Electroencephalogramm (EEG) erlaubt die Analyse kognitiver Prozesse im
Allgemeinen [1]–[3] und arithmetischer Probleme im Speziellen [4], [5]. Obwohl
vom Einfluss der Problemgröße und der selbstberichteten Lösungsstrategie auf die
Bandleistung von EEG-Oszillationen wiederholt berichtet wird, bestehen nach wie
vor Unklarheiten über die Ursache dieses Effekts [6]. Deshalb wird in dieser Arbeit
der Einfluss von Problemgrößen und selbstberichteten Lösungsstrategien einstel-
liger Rechenaufgaben auf EEG-Korrelate des Rechenprozesses untersucht.
Die statistische Dekomposition von Sensorwerten in unabhängige Prozesse erlaubt
die Identifikation von Signalquellen, welche mit herkömmlichen Methoden auf
Sensor-Ebene nicht möglich wäre. Zunächst werden die Ergebnisse der Sensor-
und Quellraumanalyse verglichen. Darüber hinaus stellen wir die Behauptung von
[6], [7], dass winzige Additionsprobleme durch unterbewusste, hochautomatisierte
Zählprozesse gelöst werden in Frage, indem wir EEG-Schwingungen winziger und
kleiner Additions- und Multiplikationsaufgaben analysieren und vergleichen. In
unserer Analyse können wir den Effekt der Problemgröße und die Unterschiede
der Strategien zwischen kleinsten, kleinen und großen Problemen erkennen. Dies
deckt sich mit den Ergebnissen vorhandener Literatur [4], [5]. Außerdem zeigen die
Ergebnisse kürzere Reaktionszeiten, höhere Theta-ERS und niedrigere Alpha-ERD
Werte für kleinste und kleine im Vergleich zu großen Problemen im Sensor und im
Quellraum. Darüber hinaus wurden stärkere Deaktivierungen im Alpha-, sowie
höhere ERS-Werte im Theta-Band für die selbst berichteten prozeduralen Strate-
gien im Sensorraum gefunden die sich in den Regionen Parieto-Occipital/Occipital
für alpha und Frontal für Theta, befinden. Der qualitative Vergleich der beiden
Analysetypen zeigt jedoch keine wesentlichen Vorzüge, die es rechtfertigen wür-
den Prozesse in den Quellraum zu transferieren. Abschließend, können wir zeigen,
dass winzige und kleine Probleme auf ähnliche Weise gelöst werden, da sie bei den
EEG-Schwingungen keine signifikanten Unterschiede aufweisen.

7



4

Abstract

Electroencephalography (EEG) is used to analyze neural processes in general [1]–
[3] and those related to arithmetics in particular [4], [5]. Over the course of the
last years researchers have found converging evidence that oscillations in the EEG
signal are influenced by the sum of the operands and the used strategies during
the process of solving arithmetic problems. However, there is still no consensus
about the influence of the problem size on the measurable effect in response times
and EEG-oscillations [6].
Therefore, in this thesis, we analyzed the influence of problem-sizes and self-
reported solution strategies of single-digit arithmetical problems on EEG-correlates
of the arithmetical solving process. First, the results of the sensor- and source-
space analysis are compared. Additionally, we challenge the current belief that
tiny and small problems are solved through a recall from long-term memory by
analyzing and comparing EEG oscillations of tiny and small addition and multi-
plication tasks. This follows the claim of [6], [7] that tiny addition problems are
solved through procedural techniques. In our analysis we can detect the problem
size effect and the differences of strategies between tiny, small vs. large problems
as described in [4], [5]. The results show shorter response times, higher theta-ERS
and lower alpha ERD for tiny and small compared to large problems in the sensor
and in the source space. Furthermore, lower alpha-ERD and higher theta-ERS
ratios are found for the self-reported procedural strategies in the sensor-space and
were located in the parieto-occipital/occipital and frontal regions. However, the
qualitative comparison between the two types of analysis don’t indicate consider-
able improvements for the source space. Finally, we can demonstrate that tiny and
small problems are solved in a similar way, as they show the same EEG-oscillations.
Still, an important difference is found in the composition of problem types. Using
a Bayesian Analysis, we can reveal that the ERD/S data is best described by the
sum of the operands together with the information whether one operator equals 1.
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5

Introduction

5.1 Arithmetic
Arithmetic is one of the oldest fundamental concepts of mathematics. It deals with
numbers and properties of elementary operations on them. The most prominent
examples are addition, multiplication, subtraction, and division. Proficiency in
arithmetics allows us to identify quantities, to compare, count, and rank them. As
such, arithmetic is not only essential to make a living in modern society, but also
one of our most primitive higher cognitive functions. This makes it a delightful
domain to study the neural processes involved in human reasoning, strategy selec-
tion, and execution.

5.1.1 Neuroscience of arithmetic calculations

In the early days of neuroscience, research was carried out almost solely by the
use of lesion studies. Medical examinations of individuals with brain injuries al-
low scientists to identify correlations between pathologies and local brain injuries.
These correlations help to assign cognitive functions to locally segregated regions
(e.g., motor cortex). Emanuel Swedenborg was the first to come up with this in-
sight in 1740. Almost a century later (1825), the first neurophysiological model
was described by the German anatomist Gall. He found systematic patterns be-
tween the cerebrum and the truncus cerebrum that inspired him to create a map
of functional brain regions. Amongst other regions, he described a center of calcu-
lation and assigned it to the inferior frontal lobe. Gall’s model and the regions he
describes are out of date, but his model is still noteworthy due to its reliance on
clinical-pathological correlations [8]. In the following years, lesion studies helped
to renew the model and identify additional regions related to mathematical ability.
One of the most prominent examples, the left angular gyrus (AG) was mentioned
together with calculations already in 1919 [9]; Years before modern imaging modal-
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5.1. Arithmetic 13

ities emerged. Today, lesion studies are still crucial to observe first insights, but due
to small sample sizes, they provide limited insight. Small sample sizes, together
with a large number of uncontrollable variables, make imaging methods preferable.
Methods like functional magnetic resonance imaging (fMRI), electroencephalogra-
phy (EEG), magnetoencephalography (MEG), near-infrared spectroscropy (NIRS)
allow investigations in real-time and non-invasively. Further, specific task charac-
teristics can be manipulated, and the change of their neurological correlates helps
to identify causal relationships. Actual examples are fMRI studies described in
[10], [11] and [12]. These compare neurological correlates of calculations to atten-
tional, linguistic (phoneme detection), mnemonic, visuospatial (grasping, pointing,
saccades) or working memory tasks.
Other parameters that are typically varied are the type of task (verification (e.g.
[13]) vs production), the type of arithmetic rules (addition, multiplication, divi-
sion, subtraction, integration [14]. Further, parameters include the split between
proposed and correct answer, the number of operands (two or more [15]), the num-
ber of digits in the operands [16], the strategy to use [17], the difficulty [16] and
the problem size. Last but not least, the age and skills of participants [18] are also
important factors.
The corresponding neurological correlations are typically measured with
electroencephalography (EEG), fMRI, or functional near-infrared spectroscropy
(fNIRS), mainly because they do not only provide objective insights but have an
excellent spatial and for temporal resolution. Additionally, measures like verbal
reports may be used to gain insights into the conscious problem-solving process.
However, the collection of self-reports may influence the speed, accuracy, and strat-
egy of the solving process itself [19], [20]. Thus, their validity is controversially
discussed.
After years of research in arithmetic processing, we have very profound models
and theories of the underlying cognitive processes. Still, some questions remain
unanswered. The selection and execution of arithmetic strategies need further in-
vestigation, and the neural bases of mental calculation are still not fully understood
[21]. Another interesting question is whether the arithmetic operation modulates
the recruitment of functional brain networks in the early encoding stage [22]. This
question arises due to conflicting results in small addition and multiplication prob-
lems. Some findings suggest that memory retrieval is used to solve small addition
and multiplication problems [23], [24]. Others find memory retrieval only for mul-
tiplications and suggest that some single-digit additions are solved by procedural
strategies [7], [25], [26].



14 5. Introduction

5.1.2 Arithmetic strategies

Solving mathematical problems is a systematic process. Although the world comes
up with infinitely many different problems, it turns out that most of them are re-
markably similar. The logic that underlies mathematics involves developing plans
to solve each of them efficiently.

It is consistently found that mathematical ability depends on the individuals
working memory, culture [27], and age ([28], [29] and [30] for a review). As these
factors are not influecable by an individual, it is more interesting that mathemat-
ical ability also depends on the ability to control and maintain information [31]
and the used strategy.

Strategies are "a procedure or a set of procedures to achieve a higher level goal
or task." [32]. In order to investigate arithmetic strategies, the authors identified
four aspects of strategies that influence the overall performance of the solving pro-
cess [33]. These are repertoire, distribution, selection, and execution.

Strategy repertoire: The repertoire includes all known and usable strate-
gies. It differs between verification tasks (plausibility checking: estimation and
rule-rule validation; rounding: up and down) and production tasks [34]. The
latter are solved through a recall from the long-term memory (retrieval) or proce-
dural strategies. Procedural strategies include counting (+1,+2,+3,. . .) and more
advanced decompositions [5], [35]. These are usually taught as mental models.
Prominent examples for additions are compensating (e.g. 53 + 29 = 53 + 30− 1),
splitting (53 + 27 = (50 + 20) + (3 + 7)), taking doubles (20 + 17 = 2 · 20− 3) and
jumping (394 + 148 = 394 + 100 + 40 + 8). Strategies applied at multiplication
problems often involve transformations that make use of the associative property
(125 · 32 = 25 · 5 · 8 · 4 = 25 · 4 · 5 · 8) like taking times 10 (32 · 5 = 32 · 10/2).
Independent of the operation, it is essential to have a rich pool of strategies. This
forms the basis for selecting the most efficient procedure.

Strategy distribution: The distribution of strategies varies across operations
and cultures. The authors of [27] found that Chinese origin students outperform
non-Chinese origin students significantly at simple arithmetic tasks. Besides less
efficient retrieval skills, a higher rate of procedural strategies was found to be the
cause of the worse performance of non-Chinese origins.
This is consistent with the general knowledge that individuals prefer easier strate-
gies when available. Thus, adults use a recall from long-term memory for sim-
ple problems, whereas children still use the more demanding counting and other-
procedures. Larger problems are usually solved by procedural strategies in general.
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Strategy selection: The proper selection of strategies is essential for high
performance. People tend to prefer easier strategies over more general ones, and
the summary in [34] suggests that problem characteristics serve as a selection crite-
rion. Findings in simple multiplication tasks support this statement. [27] and [36]
found that small multiplication problems are mostly solved by memory retrieval.
These types of problems are learned by hard with multiplication tables in primary
school. Therefore, most of them are easily accessible from long-term memory. As
the operand size increases, more and more individuals tend to select procedural
strategies [7], [35], [37], [38].
Children learn addition problems through finger-counting, number lines, or the
abacus. Therefore, they learn these facts by doing rather than by hard. Here, the
min procedure, where one starts at the larger operand and counts on min-operand
times, replaces counting. Finally, we remember results by hard and can retrieve
them directly from long-term memory [39].
Furthermore, [40] found that retrieval interference influences the selection whether
to use retrieval or procedural.

Strategy execution: Memory retrieval is fast and requires fewer cognitive
resources and less cognitive demand than procedural strategies. Furthermore, the
performance and error rate depends on the familiarity with the numerical stimuli.
Both vary with differing presentation formats (Arabic digits vs. written number
words) [41]. Errors are often results of associative and semantic neighbors in the
same (3x6=21) and related (3x6=9) operations [42].

5.1.3 Numerical cognition

Research came up with three main models that aim to explain the cognitive ar-
chitecture of numerical cognition during the last thirty years.

Abstract-code model: The abstract-code model [43]–[45] describes number
cognition as a three-step process. The so-called comprehension system translates
numbers from Arabic digits and verbal numerals into abstract code. The intra-
parietal sulcus is thought to hold the representation of the abstract code [46].
Depending on the form of representation, different paths of translation are used.
The second process is responsible for the calculation. It includes the memory of
arithmetic facts, mathematical rules, and procedures to break down more complex
tasks. After the actual calculation, the answer is translated back to number words
and Arabic digits by the response production system. [43]. Most of the arithmetic
strategy papers rely on this model.
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Triple-code model: The triple-code model [47]–[49] predicts neuroanatomi-
cal correlates better than the abstract-code model. It does not require to translate
external representations into an abstract internal form. Instead, Dehaene et al.
assume that depending on the input, one of three codes is activated. The visual
Arabic number form responds for digital inputs and is responsible for parity judg-
ments and multidigit operations. The auditory-verbal word frame gets active for
spoken and written number words. It includes arithmetic fact memory mainly as
language-based representations and is responsible for simple arithmetic additions
and multiplications. The analog magnitude representation is responsible for nu-
merical size comparisons and approximate calculations. It is noteworthy that codes
are convertible without an abstract intermediate layer. The solution of tasks is ei-
ther retrieved through the direct route or processed by an indirect semantic route.
The former converts operands (3x4) into the verbal code (three times four) and
uses that representation to retrieve the result through the left cortico-subcortical
loop. This involves the basal ganglia and thalamus [50]. The indirect route makes
use of analog magnitude representations and performs semantical operations onto
them. This involves the parietal cortex (angular gyrus, supramarginal gyrus) and
the perisylvian network. The performance depends on the input format.

Encoding-complex model: The encoding-complex model [51] builds upon
the triple-code model and describes the representation codes (visual, verbal, vi-
suospatial, motoric) as modular too. However, these two models differ when it
comes to the form of interaction between the codes. The encoding-complex model
assumes that additive interactions are not realistic and describes them as more
interactive. A single numeral activates several associations to comparisons, esti-
mations, and facts. (In other words, a rich association network of task-relevant
and irrelevant information.) Excitatory and inhibitory connections ensure that
one comes up with the right conclusion. The performance and error rate depends
on the familiarity of the numerical stimuli. Both can be very different for different
presentation formats (Arabic digit vs. written number words) [41], [52]. Errors
are linked to both associative and semantic neighbors in the same (3x6=21) and
related (3x6=9) operations [42].
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(a) Abstract-Code Model (b) Triple-Code Model
(c) Encoding-Complex
Model

Figure 5.1: Three architectures for numerical cognition [42]

5.2 Electroencephalogram (EEG)
The impossibility to gain external evidence about the correctness of current the-
ories of arithmetic solving processes, makes it necessary to combine a range of
research methodologies. Besides structural insights from autopsies and magnetic
resonance imaging (MRI) and functional insights (lesion studies, fMRI, verbal
self-reports), it is of high interest to collect information about the time course of
neurological processes. Here, measuring the response time allows us to infer how
long it takes an individual to solve a mathematical problem. More detailed time
information about the activation of specific brain regions can be acquired with the
electroencephalogram.

Its name best explains EEG (Electroencephalography). ’Electro’ stands for
electrical activity, ’encephalon’ relates to the brain, and ’graph’ refers to the time
course of the recorded data. EEG is a method that registers electrical activities
in the cortex and gives us insights about the inner dynamics. A beneficial charac-
teristic of EEG is that it is non-invasive, meaning measurements without surgical
interventions.

The measurable EEG signal originates in the neocortex and is modulated by
several anatomical tissues before it reaches the skin. The neocortex is a part of
the cerebral cortex. It is 3-14mm thick and consists of approximately 20 billion
neurons [53]. Each of the neurons processes information through temporal and
spatial integration of the incoming signal and spikes once a certain threshold is
reached. It is known that the large pyramidal cells of the fifth (out of six) layer
process incoming information and contribute most to the measurable signal. Sen-
sors on the scalp measure the superposition of large cohorts of neurons and the
signal is strongest when large cohorts of neurons are inactive. Then they are max-
imally synchronous, and the measurable signal lies at about 50 µV. Once brain
regions are recruited, they desynchronize, and the superposition of their electrical
fields decreases. The anisotropic composition of the head increases the difficulty
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of localizing activated regions, because it makes the signal propagation from the
neurons/source dipoles to the sensors non-ideal. The frequency range of the mea-
sured signal is within 0.1Hz and 200Hz.

Two main effects are found in the EEG time course: evoked related poten-
tials (ERP) and event-related (de)synchronizations (ERD/S).
ERPs occur after an external stimulus (visual, auditory, olfactory,..) reaches the
brain through afferent pathways. The analysis of such phase-locked responses
allows us to infer conclusions about the time course and duration of strategy pro-
cesses [54] and to distinguish different rule-violation problems [55].

Brain induced ERD/S are not phase-locked to stimuli, but occur due to the
coupling and decoupling of functional brain networks. This measure is a central
topic of this thesis. Therefore, oscillations are explained in the following chapter.

5.2.1 EEG oscillations

Neurons are synchronized in the idle state and desynchronize when they process
information. Pfurtscheller et al. related the coupling and decoupling of functional
brain nets to changes in EEG oscillations ([56], see also [2], [3], [57]). Thus, EEG
oscillations provide information about the interaction of task-related networks. In
order to do so, one compares the spectral band power of the task to a baseline
period, either within many frequency bins (ERD/ERS or ERSP) or averaged in
broader frequency bands (delta, theta, alpha, beta, gamma).

Theta-band

Power in the theta band (4 − 7Hz) is related to different cognitive processes like
working memory [58], [59], attention control [60]–[62], information encoding or
mental manipulations.
Theta ERS is predominant while solving smaller (sum < 10) problems and self
reported retrieval processes. The authors of [63] and [64] found theta ERS over
the left hemisphere when they compared small and large problems. [64] found
theta ERS for multiplication tasks too and [5] reported it for self-reported retrieval
strategy usage. ERS is linked to memory encoding and retrieval [65]–[67] and may
reflect fact retrieval [3], [4], [68], [69].
Phasic theta synchronization of different regions is thought to represent functional
integration during information encoding [58], [59], [61], [70], [71]. In the fronto-
parietal regions, this is mainly controlled by the demand of the working memory
system while manipulating information [72], [73].
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Alpha-band

Power in the alpha band (8 − 12Hz) is high when the default network is acti-
vated [74]. Moreover, alpha power inversely correlates with the invested cognitive
resources [56] and mental activity [56]. Alpha ERD occurs when information is
accessed and retrieved from the knowledge system [75], [76], which includes long-
term memory, procedural, and implicit-precentral knowledge. In arithmetic, alpha
power changes with the difficulty of cognitive tasks [77], [78]. Decreased alpha
band power was found bilaterally for large problems [4], [63], [69], [79]–[81] and
for self-reported procedural strategies [35].

Delta-band

ERS in the delta-band (0.5-4Hz) arises when the default network is inhibited.
Thus, it is predominant at procedural tasks in arithmetics [82].

5.2.2 Processing EEG data

Neurons that cause the EEG are anatomically placed inside an anisotropic volume
conductor that damps the measurable signal strength to values of only some µV.
Therefore, small measurement noise has already a tremendous influence on the
data. Artifacts can reach several orders of magnitude of the EEG signal itself and
share the same frequency ranges as relevant physiological signals. Therefore, sim-
ple filtering methods are often not sufficient to increase signal-to-noise ratio (SNR).
In practice, several approaches exist to clean EEG data.

Artifacts observed for EEG data have two main origns. Some are caused by
biological processes, whereas the others arise through interactions with the environ-
ment (external interference fields, movement of the subject) and the measurement
process (calibration error, crosstalk between sensors, and sporadic sensor artifacts).
The latter ones include electrode displacement, movement artifacts, and interfer-
ence from the environment and are avoidable by a carefully designed measurement
setup and clear subject instructions [83]. As EEG captures the signal from outside
the body, the measured signal will always contain a mixture of interfering sources.
Some of them are interesting, as they represent neurological networks, while others
are irritating. They have their origin in other physiological processes such as eye,
heart, and muscles, to name the most prominent ones. Biological artifacts usually
share frequency ranges with neurological sources. Therefore, biological artifacts
are not removable by simple filter methods. However, most of them have well-
described stereotypical properties in the spatial, frequency, and temporal domain.
Therefore, they are identifiable and removable by blind source separation methods.
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Biolgical artifacts:

A range of biological artifacts distorts the EEG-signal. The following paragraph
describes their origin and typical characteristics and figure 5.1 shows typical scalp
distributions as well as the time- and frequency- course of the most prominent
artifacts.

Eyeblink artifacts are caused by brief dipole changes of the eye [84] and are
of considerable magnitude. Therefore, they distort the measured EEG to a large
extent, mainly in the frequency below 4Hz. The source dipole is located in the
very front of the scalp and is oriented vertically.

Eye movement (e.g. from one side to the other) cause artifacts too. Eye
movements last approximately 2s. The magnitude of the signal increases signifi-
cantly and decreases again in a sinusoidal way later on. The dipole representing
the source is located in the very front of the scalp and is oriented horizontally from
left to right.

The heart’s pacemakers causes cardiac interference. It shows the well-known
waveform, including the P-wave caused by the pacemaker in the sinoatrial node
followed by the excitation in the right atrium and the following forwarding to the
AV node. The QRS-complex is has its origin at the excitation of the ventricles.
The heart is evoked at frequencies of about 1-2Hz. Dipole-fitting techniques often
locate the ECG dipole outside the head. The spatial pattern shows an activation
at the boundary of the head.

Myogenic interference is caused by muscle cells. The time signal shows very
dense oscillations of high amplitude that are known as bursts. The frequency spec-
trum overlaps with EEG to a high degree. It starts at approximately 20Hz and
ranges to above 100Hz. The spatial patterns are very dense and not dipolar. The
source is usually located on the outer side of the scalp.

Electrical interference is caused by cables that consistently induce voltage
from the oscillating line frequency and occasionally when participants move their
heads. The major part of the signal is found at 50Hz. The spatial pattern is
usually dipolar, its distribution is supra-gaussian.
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Table 5.1: Stereotypical properties of biological artifacts

eye blink

eye movement

cardial interference

myogenic interference

Common methods

In order to clean EEG signals, one can look at the problem from two perspectives.
At first, it is possible to characterize a clean EEG and remove all information that
is out of this range. The second way takes advantage of stereotypical properties
of the artifacts, and aims to extract, estimate, and remove this information. This
method may not identify all unwanted disturbances but is less likely to remove
interesting parts of the signal mistakenly. Therefore, this approach is preferred by
most scientists [85], [86].
Further, one can take advantage of the fact that neural responses to a stimulus
are often phase-locked. Measuring the response multiple times and calculating the
mean cancels out the non-phase-locked components. This requires the recording
of multiple trials, which is not suitable in real-time applications. However, it is
entirely sufficient for offline data processing as is done in this thesis.

In Table 5.2, some of the most popular methods are presented together with
their main assumptions.
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Table 5.2: Example methods and their assumptions

Principle some assumptions example
Data rejection artifacts have abnormal statistics (magnitude,...) AutoReject [87]

noisy channels are restorable by healthy surroundings
channels are correlated

Artifact-subtraction artifacts are predictable Regression
artifacts are not correlated to the signal

Source-rejection sources are independent MARA [86]
artifacts have stereotypical properties ICLabel [85]

requires many channels
Statistical EEG is stationary

artifacts are non-stationary and additive
works on single-channels

Sensor-rejection In EEG, it is easily possible that individual sensors get loose,
interfere with electrical noise, or capture other artifacts. In the later processing
steps, it is common to combine the signal from a set of sensors (e.g., common aver-
age reference) or trials (e.g., signal averaging) in order to subtract a baseline or get
further insight to the data. This spreads noise from single sensors over the whole
dataset. Therefore, it is reasonable to exclude bad sensors immediately after the
measurement. An easy way to perform this is by statistically comparing the values
of sensors to typical M/EEG values and rejecting the atypical ones. The difficulty
of this task lies in finding a tradeoff for the threshold values. The exclusion of noisy
sensor data often contradicts the goal to keep as much of the useful signal in the
data as possible. Popular methods use the statistical measures peak-to-peak value
[88] and covariance matrices [89]. A limit of these methods is that the thresholds
are often predefined, which is not optimal as these values depend on the recording
method (wet vs. dry), the used amplifier, and the hardware filters. More modern
approaches automate the manual process of trial and error by finding an optimal
threshold value [87].

Artifact-subtraction methods are based on the assumption that signals
that cause noise can be estimated. The estimation relies on a reference channel.
A necessary assumption is that the reference channel and the cortical signal are
not correlated.
A representant of this category is regression. It uses prior knowledge like the
waveform of the net frequency or reference channels (EOG, ECG,...) to estimate
their contribution to the signal of interest.
The clean signal is calculated by subtracting the estimated noise-signal from the
raw EEG.
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Source rejection algorithms rely on the assumption that neuronal and non-
cortical signals are not only measured as summed mixture of the sources but that
these sources are independent of each other. This makes it possible to separate the
individual components. Measures in the time, frequency, and spatial domain allow
us to compare the activation of components to stereotypical features of artifacts.
Thus, it makes it possible to identify and remove Independent Component (IC)s
representing artifacts.
The separation of ICs is based on BSS algorithms, as described in the next chapter.

5.2.3 Blind source separation

Blind source separation (BSS) bases on the assumption that the measured EEG
signal is caused by a summed mixture of cortical and other biological sources.
Further, these components are assumed to be statistically independent of each
other. BSS algorithms help to identify and separate the underlying independent
processes.

Principal component analysis (PCA)

A prominent example is principal component analysis (PCA), which bases on
variance. It projects data to a new space whose axes are spanned orthogonally by
the maximum variance. The so-called principal component analysis decomposes
the (empirical) covariance matrix into its eigenvectors and eigenvalues. As the
matrix is square, the left and right eigenvectors are equal and span the new space.
This approach works fine to compress or whiten the data. Nevertheless, it is not
sufficient to separate the sources as they are often not orthogonal and non-Gaussian
(e.g., line noise).

Independent component analysis (ICA)

A more sophisticated approach to separate sources bases on information theory
and the inverse central limit theorem. This theorem assumes that the superposi-
tion of infinitely many independent variables results in a single Gaussian distribu-
tion. ICA takes the inverse approach and separates sources by picking independent
variables that are maximal non-Gaussian. ICA minimizes the mutual information
between the sources. Unfortunately, this measure is very costly to calculate. Thus,
we use measures like the negentropy (which is still costly) or non-Gaussianity.
Various implementations of ICA exist, but in a machine learning context, it is close
to using a maximum likelihood approach. The realization of such an implementa-
tion requires to formulate an objective function whose extrema are then found by
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an optimization algorithm.

Objective function:
A reasonable objective function is a negentropy. It measures the difference between
the independent components distribution and a Gaussian distribution and hence is
always positive and 0 for a Gaussian distribution. Unfortunately, the calculation
requires finding all density distributions. Measures that are simpler to calculate are
higher moments like the kurtosis. It is negative for sub-Gaussians and positive for
super-Gaussians. Therefore, the square of the kurtosis is the correct approximation
for independence (under the constraint of zero-mean and unit covariance).

Optimization algorithm:
Various optimization algorithms exist that allow us to find the mixing coefficients
of ICA. The gradient descent algorithm works fine but is very time-consuming due
to the zig-zagging phenomenon. Extrema are found faster by the conjugate gradi-
ent algorithm as it constrains the search direction to orthogonality. As the EEG
source reconstruction is typically an underdetermined problem, Newton-methods
perform much better. As the Hessian matrix is costly to calculate, especially for
large data, it is useful to approximate the matrix. Quasi-Newton algorithms like
the LBFG-s are typically much faster.

Localizing ICs:
Often it is useful to localize the independent processes. A dipole fit can do this.
This algorithm starts by assuming approximate locations of each IC. It then solves
the forward problem (which is how the signal spreads to the surface). The com-
parison of calculated sensor values to measured ones helps to adjust the locations
of the ICs through an optimization problem.
Solving the forward model requires the knowledge of the conductive properties of
the head. An MRI scan can acquire these values or based on a standard model.
The former is exact, but it is expensive and consumes much time. An easier
approach is the standard model, as it does not require additional imaging tech-
nologies. It may be based on already existing MRI studies or assumes that the
head has isotropic properties within the most prominent layers (skin, skull, cere-
brospinal fluid, cortex).
The actual fit of locations starts with a rough grid-search. A precise cost-minimization
algorithm then finds final locations.
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5.3 Anatomy
Mathematical cognition requires the interplay of many specialized brain regions.
[90] describes one way to segregate the subfunctions (see Figure 5.2). They distin-
guish six subsystems that are responsible for processing visual number form, au-
ditory number form, numerical quantity, working memory / cognitive control, for
storing information in the episodic/semantic memory, and for salience/attention
control. Information exchange occurs through hubs, as the integration of informa-
tion is essential. This makes solving arithmetic problems possible.
The two most basic subsystems (auditory and visual number form) are responsible
for recognizing the incoming information. Visual and auditory stimuli like symbols
(3) and verbals (three) are decoded and connected with their underlying numerosi-
ties. The superior temporal sulcus (STS) decodes phonological numbers, and the
fusiform gyrus (FG) processes written numbers. The FG is also thought to build
orthographic representations of numbers and connect them to their meaning.
The intraparietal sulcus (IPS) [91] performs the integration of the auditory and
visual pathway. The IPS is, together with the FG, also the main structure for
dealing with and understanding numerical quantities.
Regions responsible for the working memory and cognitive control are the frontal
eye field (FEF), dorsolateral prefrontal cortex (DLPFC), the supplementary motor
area (SMA), the premotor cortex (PMC) and the basal ganglia (BG). They con-
tain functions to hold variables in the working memory temporarily. The DLPFC
generates strategies for solving multi-step problems.
Episodic and semantic memory systems play a crucial role in learning and solving
arithmetic problems. The hippocampus in the medial temporal lobe is the major
part when it comes to forming long-term memories. It stores arithmetic facts and
allows individuals to generalize the solution process to unknown problems.
Finally, the anterior insula (AI) and the ventrolateral prefrontal cortex (VLPFC)
connect IPS and medial temporal lobe (MTL). They integrate information coming
from both and are responsible for salience, attention, and control.
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Figure 5.2: Schematic illustration of the involved brain areas in arithmetic calcu-
lation [90]

5.3.1 Visual number form

Visual stimuli are captured by photoreceptors that pass the information on to the
retinal ganglion cells. From here, the lateral geniculate nucleus located in the
thalamus relays the signal to the visual cortex (V1) in the occipital lobe. The
V1 detects low-level features like orientation and disparity and some of its regions
process color. After the low-level features are recognized, information is passed
on to the extrastriate cortex. From here on, two pathways exist to resolve higher-
level features. The dorsal stream recognizes ’where’ something is happening, and
the ventral stream identifies ’what’ is going on. The ventral pathway decodes
midlevel features like the shape, motion, and color in the lateral occipital cortex,
the middle temporal visual area, and the CC. These midlevel features serve as
input to the fusiform face area (FFA) that is mainly involved in detecting faces,
the parahippocampal place area, which is responsible for recognizing places, and
the extrastriate body area. The temporal cortex plays a role in visual number
form.

Fusiform gyri (FG)

The fusiform gyrus (FG) plays a role in recognizing and combining visual stimuli
and helps to put them into a higher context like faces, words, or equations.
It is the most prominent structure in the ventral temporal-occipital cortex and
is integrated into the ventral visual stream. The mid-fusiform sulcus splits the
FG into two parts; a medial and a lateral portion. The lateral FG contains the
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well-known FFA that is responsible for recognizing faces. Besides face recognition
in the FFA, the FG plays crucial roles in processing color information (together
with other V4 areas). It is responsible for making sense of symbols and integrat-
ing these features into schemes that represent words and equations (left FG) and
identifies whether face-like features are faces.
Further, the fusiform gyrus is thought to play a crucial role in encoding object
properties [92], [93] and categorizing objects. It is linked to diseases like synes-
thesia, dyslexia, and prosopagnosia. During visual word recognition, the left FG
responds to orthographic structures [94] and the authors of [95] think that the
FG integrates features into elaborate schemes that represent whole words or ob-
jects. The meta-study of Arsalidou found activations of the left FG for number
and calculation tasks. The right fusiform gyrus is responsible for processing global
structures like faces [96] but is probably not involved in number processing.

5.3.2 Auditory number form

Superior temporal sulcus (STS)

The superior temporal sulcus decodes phonological features of heard numbers.

5.3.3 Numerical quantity

Superior parietal lobule (SPL)

The superior parietal lobule (SPL) supports numerical quantity processing and is
consistently activated during number processing [15], [16], [49], [97]–[99]. Blocking
its function with transcranial

Intraparietal sulcus (IPS)

The IPS plays a crucial role in quantity processing and understanding numbers.
It is a part of the parietal lobe, is included in the dorsal stream, and has five
substructures. The IPS is involved in visuomotor functions and guides grasping
and hand movements (anterior), reaching and pointing (ventral and medial), sac-
cadic eye movements, and visual attention (lateral). It is further responsible for
the perception of depth (caudal). Although the IPS is integrated into the dorsal
stream, it dynamically interacts with ITC (ITC). This interplay between the two
visual streams is thought to be necessary for deconstructing arithmetic problems.
Together, the IPS and ITC are essential for representing numerical quantities and
manipulating them by the use of arithmetic rules and procedures. [46] observed
an activation for quantities in the left (independent of the stimulus format) and
right (only for Arabic numerals) IPS.
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[15] varied the number of operands and the rate of stimulus presentations and
found the main effect of arithmetic difficulty in the IPS. This is consistent with
the finding that a wide-spread network, including bilateral parietal regions, is acti-
vated while processing large problem sizes [100]. However, the IPS is also required
for operations that are solved by the retrieval strategy [101]. Blocking the IPS
with transcranial magnetic stimulation led to an increase in response times and
error rates.

5.3.4 Episodic / Semantic memory

Angular gyrus (AG)

The AG is responsible for complex language functions, memory retrieval, mathe-
matical and spatial cognition, and the awareness of the self. The language functions
include understanding words by transferring visual information to Wernicke’s area
([102], Textbook of medical physiology p699), and integrating information of words
and locations (e.g., distinguishing left from right). Further, it can access episodic
memories and content, but most importantly, it notes contradictions between ex-
pected and retrieved information. The self-monitoring process is also crucial for
comparing intended and performed movements as it allows the experience of the
awareness of self. Notably, the right AG is associated with orienting in 3D-space
by directing the attention to salient features.
The triple-code model proposes that the AG, together with other regions of the
inferior parietal cortex (supramarginal gyrus) and the left perisylvian network is
an essential part of the indirect semantic route [103]. This allows the AG and
supramarginal gyrus to attach meaning to words and simplify equations. Further,
the AG is probably involved in controlling visuospatial attention while calculating
problems [104]. The ability to retrieve information from the knowledge system
allows the AG to perform exact calculations, which is in contrast to other regions
of the parietal lobe that come up with approximate calculations. In particular,
activations are particularly strongest in the left AG when retrieving mathematical
facts [97]. The activation is even higher for mathematically, competent individuals.

Medial temporal lobe (MTL)

The MTL contains the declarative memory system, including the episodic and
semantic memory system. The hippocampus stores arithmetic concepts and facts.
The MTL is thought to generalize solutions to unfamiliar problems.
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5.3.5 Salience / Attention control

Anterior insula (AI)

The insula is known to play roles in emotional processes [105]–[109], execution of
responses [110], and error processing [111]. Together with the ventrolateral pre-
frontal cortex, it integrates information between the IPS and MTL.
In mathematical cognition, the AI is thought to be responsible for switching be-
tween working memory and resting states during information processing [112], and
initiating motivated behaviors [113]. The anterior insula is activated bilaterally
for number and calculation tasks [104].

Ventrolateral prefrontal cortex (VPFC)

The activation of the left ventrolateral prefrontal cortex depends on the domain-
general task difficulty and is ’sensible to incorrect arithmetic expressions’ [13].
A comparison of PPC (PPC) and prefrontal cortex (PFC) did not allow to distin-
guish their roles clearly yet [114], [115].

5.3.6 Working memory / Cognitive control

Dorsolateral prefrontal cortex (DPFC)

The dorsolateral prefrontal cortex (DPFC) is associated with executive functions
like managing resources of working memory [116], [117], cognitive flexibility, plan-
ning, inhibition, and abstract reasoning. The functions are performed together
with its connected regions. Linked to the thalamus, the dorsal caudate nucleus of
the basal ganglia, the hippocampus and regions of the neocortex, the DLPFC is
the endpoint of the dorsal stream.
Cognitive functions are organized hierarchically. This is true for simple number
tsks too [116]. The inferior frontal gyrus (BA9) is activated for simple number
tasks, and whenever more than a few items or procedural steps are required, the
middle frontal gyrus (BA 46) gets involved too. The superior frontal gyrus (BA
10) is involved in solving multi-step tasks and in generating strategies.

Supplementary motor areas

Mathematical understanding evolves from counting methods like finger-counting
or using the abacus. Although we do not calculate with the use of our fingers,
motor areas are still involved in adults. Due to the training with the abacus, the
involvement of motor areas is even stronger in Chinese individuals.
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Basal ganglia

The basal ganglia is a complex of smaller structures, including the caudate, puta-
men, globus pallidus, substantia nigra, and thalamic nucleus. It plays a supportive
role in the maintenance of information in the working memory [118] and is crucial
for learning procedures and habits.

Left putamen:
The left putamen is involved in tasks like motor control (Marchland 2008, Menon
1998) and learning of stimulus-response associations [119]. It is thought to in-
tegrate information in arithmetics by pacing the coordination of top-down and
bottom-up items [100] and plays a role in number tasks.

Right caudate:
The caudate is thought to play roles in higher-order motor control (Menon, 1998)
as well as in learning and memory.

Cingulate gyrus

The cingulate gyrus is part of the limbic system and plays key roles in working
memory [104]. The anterior part is involved in controlled value judgments and
impulse control. It helps to allocate attention and select actions. Further, it is
involved in reward anticipation.

Cerebellum

The cerebellum is involved in motor control, goal directed actions and visual mo-
tor sequencing. It plays parts in working memory [120] and action sequencing
[121] too. The cerebellum shows activations in mathematics [10], [122], [123], but
its involvement is not systematically discussed [104]. Arsalidou suggests that it
is "influenced by a prescribed plan" and involved in "coordination of viusal mo-
tor sequencing particularly under conditions with time constraints, as are often
required in number and calculation tasks".

Thalamus

The thalamus acts as a hub between cortical and subcortical regions (midbrain)
[124], [125]. It is linked to the execution of responses [110] and executive control
[126]. Higher goals can influence the function of subcortical regions. In arithmetics,
it is linked to the left cortico-subcortical loop and contributes to the retrieval of
arithmetic facts.
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Prefrontal cortex

The prefrontal cortex is highly involved in executive functions like working memory.
It plays roles in developing and executing strategies, making choices, and planning.
Especially, the medial frontal gyrus is thought to generate strategies for problems
that involve more than one step.

5.4 Aim of the study
Several years of research found converging evidence that EEG oscillations are mod-
ulated by the problem-size effect and by the used strategy (retrieval vs. proce-
dural). Further, imaging studies involving fMRI identified key regions involved in
number processing and arithmetic. Most prominent is the involvement of the V1
and fusiform gyrus for identifying numbers, the key role of the IPS for process-
ing numerical quantities, and cognitive control, including working memory of the
frontal regions involving the DLPFC.
A very interesting part of this master thesis is to verify whether a special linear
decomposition technique (ICA) allows insights into the data that would not be
possible otherwise. For this, a data set recorded on European adults challenged
with single-digit addition and multiplication problems is used.
This thesis comprises three main research questions. It starts with the investi-
gation of the problem size effect onto response times and ERD/S patterns. The
problem-size effect is the consistently found effect of increasing response times,
theta ERS and decreasing alpha ERD. Second, we inspected the effect of strate-
gies (retrieval vs. procedural). Retrieved problems show higher theta ERS and
lower alpha ERD than procedurally solve ones. Third, a newer behavioral study is
challenged. The authors of [7] question the validity of the current state of research
that small addition problems are solved through a recall from long-term memory.
Instead, they suggest a new model according which small addition problems would
be solved through fast, automated procedures.

For all of these questions, hypothesis are formulated for the sensor-space and
investigations of the found independent processes. The main purpose of their
comparison is to verify whether the inspection of independent components is worth
the additional computational effort.
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5.5 Research Questions and Hypothesis

5.5.1 Problem size: Are there differences between tiny, small
and large addition problems?

The problem size effect occurs very consistently at solving arithmetic problems.
It is known that large problems are solved slower, cause a lower left-hemispheric
theta-ERS and a lower bilateral alpha-band power in the parieto-occipital regions
[5].
The first question asks whether the analysis of independent processes reveals a
clearer insight into differences between tiny, small, and large problems. Ten hy-
potheses cover the current research.
Hypothesis 1: There is a difference in response times between tiny and large
problems [127], [7].
Hypothesis 2: There is a difference in response times between small and large
problems [35].
Hypothesis 3: There is no difference in response times between tiny and small
problems. [7]

Recent research showed that theta ERS is linked to the retrieval of semantic
information from the long-term memory (LTM). It plays an important role in
memory encoding [128] and is involved in the storage and recall of verbal working
memory (WM) [80]. [66] observed mainly frontal theta (7− 8.5Hz) ERS during a
WM task that increased with the number of items remembered.
In arithmetical processing, amongst others, [5] found that small problems cause
a stronger activation in (left-hemispheric) theta activity. Thus, the following hy-
potheses are:
Hypothesis 4: Tiny problems show a higher left-hemispheric theta ERS than
small problems.
Hypothesis 5: Small problems show a higher left-hemispheric theta ERS than
large problems.
Hypothesis 6: Tiny problems show a higher left-hemispheric theta ERS than
large problems.
Hypothesis 7: Large problems show a lower alpha band power in the bilateral
parieto-occipital regions than tiny problems [5].
Hypothesis 8: Large problems show a lower alpha band power in the bilateral
parieto-occipital regions than small problems [5].
Hypothesis 9: Small problems show a lower alpha band power in the bilateral
parieto-occipital regions than tiny problems.

The AG and MTL (hippocampus) are involved in the recall of arithmetical
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facts from memory [97]. Taking the previous references into account, we expected
to find independent neurological processes that are not observable on the sensor
space. Dipoles related to these processes are located in the left-hemispheric peri-
sylvian region and parieto-occipital. Therefore, the hyposes 10 and 11 state as
follows:
Hypothesis 10: At least one IC-Cluster is found in the left-hemispheric perisyl-
vian region that shows enhanced activity in the theta-band for small problems.
Hypothesis 11: At least one IC-Cluster is found in the parieto-occipital region
that shows enhanced upper-alpha ERD for large problems.

5.5.2 Strategies: Are there differences between recalled and
procedurally solved strategies at large problems?

The aim is to show that differences are found between large addition problems,
which solution was recalled, and those that were solved using procedural strate-
gies. The hypotheses for response times and sensor space EEG oscillations follow
from the existing literature. Hypothesis relating the found independent processes
are similar to the sensor-space.

Hypothesis 12: There is a difference in response times between recalled and
procedurally solved problems.

Converging evidence shows that recalled problems cause a stronger activation
in left-hemispheric regions, including the angular gyrus [97], while larger problems
show stronger activation in the frontoparietal networks including the intraparietal
sulcus. Thus, hypotheses are given by
Hypothesis 13: Recalled problems show a higher left-hemispheric theta ERS
than procedurally solved ones [5].
Hypothesis 14: Procedurally solved problems show less low alpha band power
in the bilateral parieto-occipital regions than the ones solved through retrieval [5].
Hypothesis 15: Procedurally solved problems show a lower upper alpha band
power in the bilateral parieto-occipital regions than the ones solved through re-
trieval [5].

Hypothesis 16: At least one IC-Cluster is found in the left-hemispheric peri-
sylvian region that shows enhanced activity in the theta-band for recalled problems
than for procedurally solved problems.
Hypothesis 17: At least one IC-Cluster is found in the parieto-occipital region
that shows enhanced upper-alpha ERD for procedurally solved problems (over
recalled ones).
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Methods

6.1 Data acquisition

6.1.1 Participants

This work uses a data set consisting of 40 healthy participants aged 18 to 29 (mean
21.93, SD 2.99). Gender distributed equally (20 female, 20 male), and exclusion
criteria were calculation difficulties, education below high school, left-handedness,
and an age above 35. The Ethics Committee of the University of Graz approved
the study. They received course credits and could win one of two gift cards.

6.1.2 Materials

EEG recording

The data set consisted of single-digit production tasks (addition and multiplica-
tion). The tie problems were excluded as they are recalled very quickly from
memory. Similar to [7] all other operand combinations between 1 and 9 were
grouped into three problem sizes. In a newer study [7] Uittenhove et al. found
a monotonic increase in response time (RT) for operand sums between 3 and 7,
a rapid increase for problem sizes between 11 and 13, a constant RT above 13,
and no clear trend between 7 and 9. Following this observation, they suggest that
additions involving only operands below five are solved through fast reconstructive
processes. This claim contradicts the common belief that we retrieve the results
from LTM. Therefore, here we grouped tiny problems (operands below 5) sepa-
rately from small ones (7 ≤ sum ≤ 10). The category for large problems consisted
of sums greater than 10. This resulted in 16 tiny, 24 small, and 32 large prob-
lems per operation. As the main focus of the experimenter was to reproduce the
results of [7], tiny problems were presented nine times each and small and large
problems were shown only two times each. This resulted in 256 trials for the addi-

34
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tion problems. Multiplication tasks consisted of the same operand combinations.
Thus, tiny problems showed a product between two and 12. Small tasks led to
a product of 6 ≤ Π ≤ 24 and the product of large problems lies between 18 and 72.

Each trial started with a fixation point for two seconds. After this pause,
subjects solved the presented problems as quick as possible and spoke the answer
into the microphone. A microphone detected the voice onset and measured the
time that passed since the problem presentation. A pause separated the trials,
which lasted 1 s if the problem was answered and otherwise 5 s. The typical trial
is illustrated in Figure 6.1.

Figure 6.1: Schematic illustration of an EEG trial. [129]

Solution strategy session

Self-reported solution strategies were assessed after the EEG session as displayed
in Figure 6.2. The questionaire was separated from the EEG session, otherwise it
might have influenced the subjects performance of the solving process [19]. The
subjects were first instructed by an information sheet that explained simple arith-
metic solution strategies [27], [37]. Then, they had to solve the same problems as
in the EEG session only once another time and reported their used strategies via
a number pad. Possible strategies are 1 (retrieve), 2 (count), 3 (transform) and 4
(other strategy).

Data recording

A BioSemi ActiveTwo system (BioSemi, Amsterdam, Netherlands) allowed record-
ing the EEG with 64 active electrodes. They were placed on the positions given
by the extended 10–20 system.
The open-source toolbox Psychopy (http://www.psychopy.org/, [130]) was used to
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Figure 6.2: Schematic illustration of a trial for the solution strategy report.

implement the stimulus presentation. The recorded signals were low-pass filtered
at 128Hz.

Procedure

All 512 trials were presented in four blocks with each block comprising 128 trials of
the same operation type. The operation-homogeneity ensured that task-switching
costs are minimal. However, within each block, the different operand combinations
were presented in a pseudo-randomized order. Still, the order of problems was the
same for all participants in one group. The two groups differed such that one
started with addition problems and the other with multiplication problems.
The collection of self-reported solution strategies was done in a fifth block that
consisted of all operand combinations (72 addition and 72 multiplication tasks).
Trials were again pseudo-randomized within operations. The subjects started with
the same operation as in the EEG paradigm. The whole procedure lasted for 2.0
to 2.5 hours.

6.2 EEG analysis
The EEG analysis was performed in three major steps. First, the data was prepro-
cessed. This included the removal of improbable data to increase the signal qual-
ity. The data preparation was implemented in MATLAB (R2017b) with EEGLAB
(v15) and the plugins ADJUST (v1.1.1), Cleanline (v1.04), ICLabel (v1.1), MARA
(v1.2), PrepPipeline (v0.55.3), clean_rawdata (v1.00) and firfilt (v2.1).

Second, independent processes were identified in Python v3.7.1 with the use of
numpy (v1.15.4), scipy (v1.1.0), mne (v0.17.0), pandas (v0.23.4), and a modified
version of python-picard (v0.4). With this setup the processing is sped up com-
pared to the ICA-Infomax implementation of EEGLAB.



6.2. EEG analysis 37

The reimported ICs were localized by the dipfit plugin(v3.0), and clusters were
found in EEGLAB.

Third, statistical tests were performed on the sensor level and on the source
level. On the sensor level, the pingouin (v0.2.8) plugin for python provides an
interface for repeated measures ANOVA and post-hoc tests, but misses opportu-
nities for mixed models and a Bayesian analysis. Therefore, the data was also
analyzed in R (v3.6.1). Here, the libraries data.table (1.12.2), dplyr (0.8.3) and
tidyr (0.8.3) served for data handling. Moments (0.14), ez (4.4-0), afex (0.24-
1), emmeans (1.3.5.1), effects (4.1-0), BayesFactor (0.9.12-4.2), and bestNormalize
(1.4.0) helped to calculate statistical measures, and lattice (0.20-38) was used for
plotting the results.
The same R libraries were used to perform statistical analysis on the source-space
clusters. Additionally, we performed paired t-tests on individual time-frequency
bins in MATLAB.
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6.2.1 Preprocessing

The preprocessing pipeline was selected according the comparison found in [131].
The modified version is described here in detail.

Filtering

Electrode drifts and line noise are identifiable in the frequency domain. Thus, we
applied a high-pass filter with a stop-band at 1Hz. This fixed the electrode drifts
and adjusted the data to fulfill the preconditions of the later alllied ICA. ICA
assumes the data to be stationary. An FIR Hamming window with a settling time
of DF=3.3 filtered out the low frequencies. The passband was set to 1.75Hz and
the cutoff frequency to 1.25Hz.

Sensor rejection

We have used the EEGLab plugin Cleanline to reject sensors with improbable data.
This plugin initially applies a high-pass filter with a cutoff frequency at 0.5 Hz to
the signal. Note, that this is less stringent than the 2Hz high-pass that was applied
before. The band-pass filtered signal is then thresholded at 20 times MATLAB’s
epsilon. The algorithm removed channels with null-segments that lasted longer
than 5 seconds.
The second and third steps of cleanline are responsible for the most challeng-
ing part which is the detection of improbable data. For this, the plugin uses
the Channel- and the Line-Noise-Criterion. The channel criterion determines
whether the selected channel is correlated less than 0.85 to a random sample
consensus (RANSAC) estimate, which is determined by the other channels. The
line noise criterion determines whether the noise-to-signal ratio is higher than four
times the standard deviation of the channel population mean.
Lastly, if the standard deviation to clean segments extended the defined value, the
electrode was also considered as bad. Bad channels were removed and replaced by
an interpolation of the surrounding clean channels.

Channel rejection

Channels with magnitudes exceeding three times the standard deviation of all
other channels were considered as bad and removed. In order to be more robust
against outliers, this step was applied two times.
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Wavelet-thresholding

The signal was further influenced by muscular interference. These signal propor-
tions are of high magnitude and relatively high frequency. A reducion of these
components allowed a better identification of independent components. This was
done similar as described in the Harvard-pipeline [131]. At first independent com-
ponents were separated by an Infomax-ICA. A coiflet (level 5) served then to
identify wavelet coefficients. A global threshold then identified high magnitude
values which were aftwards damped by a factor of 0.75. The damped wavelet co-
efficients were backprojected and the sensor values were restored from the cleaned
independent components.

6.2.2 Independent Component Analysis

Blind source separation

In the following, we assume that retrieval and reconstructive processes used to solve
arithmetic tasks are represented in different regions of the brain and that they op-
erate independently as proposed by . Then, Independent Component Analysis
(ICA) allows to identify and separate these processes.
The Infomax-ICA implementation of EEGLAB takes more than a day of process-
ing time on a common desktop computer for finding the mixing matrix. Therefore,
a more performant ICA implementation was used. The picard algorithm solves
the Infomax problem by a quasi-newton approach (LBFG-s) instead of the original
stochastic descent. As this version was not available in MATLAB, the preprocessed
EEG signal was exported from EEGLAB to Python, and the trained weights were
then reimported to EEGLAB.
The weights were trained with epoched (−2 s to +5 s) data that were manually
inspected and from which noisy segments and wrongly answered segments were
removed. Epoched data were used because the amount of data is sufficient accord-
ing to the rule of thumb of Onton et al. [132]. They suggest using at least 20 · n2

samples when n is the number of sensors. This choice is confirmed by Delorme et
al.[133]. They measured the influence of training data onto the reliability of the
ICA by running the algorithm multiple times on the same data set and concluded
that besides the amount of data, additionally the quality plays a role.

Dipole Fit

In the next step we used a dipole-fit to find the location of the ICs. Therefore, we
defined a simple model with the conductance properties of the head. It consisted
of the four layers of skin, skull, cerebrospinal fluid, and the cortex itself. Then
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the dipole fitting algorithm was applied. This algorithm places the n dipoles
at a random position in the head, calculates the distribution of the magnetic
field caused by the dipoles, and compares the superposition of the fields to the
measured sensor values. The determined deviation from zero serves as the cost
for the proper position of the dipoles. An optimization algorithm minimizes the
cost by re-arranging the dipoles and terminates when the most optimal location is
found.

Removing artifactual ICs

Further, Debener et al. suggested to remove components with a higher variance
[134]. They found that sources with a low residual variance have a high reliability
for different training data selections. Therefore, we removed components with a
residual variance that exceeded 15 %.

Although noise that arises from other biological processes (ECG, EOG, EMG)
is not completely unrelated to activations in the brain, it is commonly assumed
that large proportions of noise are separable by ICA. This is often done manually
by inspecting the time, frequency and spectral domains. In this thesis, however,
noisy components are identified with an EEGLab plugin which has the benefit,
that classification results are objective and consistent.
The preprocessing pipeline used the ADJUST plugin by Mognon et al. [135]. This
uses spatial and temporal features to detect artifactual components and tendically
remains more components in the signal.

6.3 Influence of problem-size
Possible differences between the three problem size categories tiny, small, and large
regarding their response times and EEG oscillation activation patterns.

6.3.1 Behavioral analysis

The data subset involving response times was prepared in Python 3.6 and analyzed
in R (version 3.6.1, 2019-07-05). It consisted of the subject IDs (40 levels, nominal)
and problem sizes (3 levels, ordinal) of addition tasks and the dependent variable
of response times. A descriptive analysis gave the first insights into the data. The
actual statistical analysis was performed by a mixed model. The mixed model was
chosen, because simpler methods such as ordinary least squares or between-subject
ANOVA assume that the data points are i.i.d. This means that a) all observations
need to be sampled from the same underlying distribution, and b) the probability
of data points taking a specific value needs to be independent of the other samples.
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Otherwise, the probability of Type I errors would be too high.
In the present data set, sample values depend on the individual subjects perfor-
mance and the problem size. Therefore, the second condition of simple models is
violated, and mixed models are needed to keep Type I errors low. They include
a safe-guard mechanism against outliers due to their hierarchical structure and
partial pooling.

The statistical interference is obtained by the Satterthwaite approximation.
FDR-corrected post hoc tests were applied to test the stated hypothesis and find
other signficant effects.

6.3.2 Sensor space EEG analysis

Three band-pass filters were applied on the preprocessed data (theta: 4 − 7Hz;
lower alpha: 8− 10Hz; upper alpha: 10− 12Hz) and yielded the frequency bands
of interest. From each of these bands, epochs were extracted starting 2 s before
the trial onset and lasting until 125ms before the voice onset. Median values were
then calculated for the activation (starting at the onset) and the baseline period
(−1750ms to −250ms). The ERD/ERS ratio was then calculated by the use of
the formula:
ERDS = -(baseline - activity)/(baseline) ·100 % and averaged for each of the eight
regions of interest (ROI). The electrodes belonging to the regions anteriofrontal
(AF), frontal (F), frontocentral (FC), central (C), centroparietal (CP), parietal
(P), parietooccipital (PO), and temporal (T) are listed in Table 6.1.

Table 6.1: The regions of interest (ROI) and their related electrodes in the left
and right hemisphere.

region left right
anteriofrontal (AF) FP1, AF7, AF3 FP2, AF4, AF8

frontal (F) F7, F5, F3, F1 F2, F4, F6, F8
frontocentral (FC) FC5, FC3, FC1 FC2, FC4, FC6

central (C) C5, C3, C1 C2, C4, C6
centroparietal (CP) CP5, CP3, CP1 CP2, CP4, CP6

parietal (P) P7, P5, P3, P1 P2, P4, P6, P8
parietooccipital (PO) PO7, PO3, O1 PO4, PO8, O2

temporal (T) FT7, T7, TP7 FT8, T8, TP8

A linear mixed model with the factors operation (addition, multiplication),
strategy (retrieve, procedure), size (tiny, small, large), hemisphere (hemi: left,
right) and region of interst (ROI: AF, F, FC, C, CP, P, PO, T) was trained. The
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right-fit of the models was verified by checking the kurtosis of their residuals. Due
to non-normality, a square-root transformation was performed on the data. Thus,
the resulting model is described by (op ∗ size ∗ hemi ∗ roi+ (1|id)).

An analysis of the variance revealed significant effects and interactions. For
this, p-values were approximated by the Satterthwaite method on type III sum-
of-squares.
Post-hoc tests performed on the estimated marginal means allowed to find signifi-
cant contrasts for the effects of interest and an FDR-correction was used to correct
for multiple comparisons.

ERD/S values for the combination of the ROI, hemisphere and problem size
were averaged and the mean values were plotted as well as the exact values.
Additionally, a Bayesian analysis was performed to determine the influence of the
problem size factor on data predictability.

6.3.3 Source-space EEG Analysis

PCA-based K-means clustering

The main goal of the K-means clustering was to group similar event related spectral
perturbations (ERSPs) with a near-source location together. For this, features
were derived from the frequency spectrum (2 − 50Hz), from ERSPs (2 − 50Hz;
time: 0 to trial-length time-warped to the longest trial of all subjects; baseline:
−1500ms to −500ms), scalp projections, dipole locations (x,y,z) as well as dipole
moments (dx, dy, dz). The dimensions of all feature vectors were reduced to 10 and
weighted by dipole locations (w = 12), scalp projections (w = 4), spectra (w = 3)
and ERSPs (w = 10). By the use of these features, ICs were then grouped into 10
clusters plus one outlier cluster. The outlier cluster comprised all ICs that were
further than 3 times the standard deviation away from the cluster mean.

Time-frequency information

For each of the IC-clusters, we calculated two time-frequency maps, ERSPs and
ERD/ERS. For this, epochs were time-warped to the longest trial duration. Then,
the power of each time-frequency bin was calculated over the whole epoch-length
for a frequency range of 2 − 50Hz and corrected by a baseline from −1500ms to
−500ms. The power spectrum was averaged over the condition (problem size: tiny
vs. small vs. large) for each IC and finally over all ICs contained in one cluster.
The location of ICs was assigned to regions defined in the Desikan-Killany atlas.
This, together with the ERSPs patterns helped to analyze the cluster’s functional
meaning.
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Additionally, median ERD/ERS values were calculated for three frequency bands
(theta: 4-7Hz; lower alpha: 8-10Hz; upper alpha: 10-12Hz) by the formula: ERD/S
= -(baseline - activity)/(baseline) ·100 %. The activity lasts from the task onset
(0 s) to the end of the epoch and the baseline from -1750ms to -250ms.

Statistics

With a mixed model we verified the significance of the effect for the within-subject
factors problem size (tiny vs. small vs. large) as well as the clusters. The ERD/S
values were log-transformed with the effect that the residuals of the fit models
were more normally distributed. The Analysis of Variance was performed on Type
III sum-of-squares. P-values were obtained by the Satterthwaite approximation
which is equal to the Kenward-Roger approximation as it provides the best control
of Type I errors for limited sample sizes.
Post-hoc tests were performed on the estimated marginal means. The results were
FDR-corrected.
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6.4 Influence of strategies
In this chapter, we examined whether differences between self-reported retrieve
and procedure strategies exist regarding their response times and EEG oscillation
activation patterns.

6.4.1 Behavioral analysis

Similar to the analysis in section 6.3.1 differences in response times were analyzed.
The data consisted of subject IDs (40 levels, nominal) and self-reported stratregies
(2 levels, ordinal). A descriptive analysis allowed first insights into the data.
ANOVA tests were performed on a linear mixed model that was trained with log-
transformed response times. FDR-corrected post-hoc tests were calculated on the
signficiant effects in order to validate the stated hypothesis.

6.4.2 Sensor space analysis

Similar to the analysis in 6.3.2 ERD/S values were acquired for all three frequency
bands of each region of interest per hemisphere. A mixed model consisting of the
within-subject factors strategy (retrieval vs. procedural), region of interest (AT,
F, FC, C, CP, P, PO, T) and hemisphere (left vs. right) was trained by the use of
square root-transformed ERD/S values. ANOVA was used to indicate significant
effects. Actual differences were evaluated by FDR-corrected post-hoc tests.

6.4.3 Source-Space analysis

Similar to the analysis in section 6.3.3 ICs were grouped into 10 clusters. ERSPs
were calculated, the time-frequency bins were statistically tested with a paired
t-test and corrected with FDR=0.05. Furthermore, significant differences of the
frequency bands were tested similarly as in the sensor space analysis.
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6.5 Interaction of problem-size and strategies
In this section, we investigate the differences between problem sizes regarding
their response time and EEG oscillation patterns when the dependent values are
controlled for strategy. Further, for differences between strategies regarding their
response time and EEG oscillation patterns when the dependent values are con-
trolled for problem size.

Similar to the analysis in section 6.3.2 ERD/S values were acquired for all
three frequency bands of each region of interest per hemisphere. A mixed model
consisting of the four within-subject factors strategy (retrieval vs. procedural),
problem-size (tiny vs. small vs. large), region of interest (AT, F, FC, C, CP, P,
PO, T) and hemisphere (left vs. right) was trained by the use of square root-
transformed ERD/S values. An ANOVA indicated significant effects that were
then analyzed in more detail by post-hoc tests. Results were FDR-corrected.

6.6 Interaction of problem-size, strategies and n+1
The fourth research question aimed to find differences between the factors problem
size, strategy and add+1 for problem sizes smaller or equal than 10. This allowed
to investigate the solving process of tiny problems and answer the question whether
they are solved through automated processes or through memory retrieval.

Similar to the analysis in section 6.3.2 ERD/S values were acquired for all three
frequency bands. A mixed model consisting of the within-subject factors problem
size (3 to 10), strategy (retrieval vs. procedural), add+1 (True/False), region of
interest (AT, F, FC, C, CP, P, PO, T) and hemisphere (left vs. right) was trained
by the use of log-transformed ERD/S values. An ANOVA indicated significant
effects that were then analyzed in more detail by post-hoc tests. Results were
FDR-corrected.
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Results

7.1 Influence of problem-size

7.1.1 Behavioral analysis

The descriptive analysis revealed that subjects required a median response time
of 0.91 s to answer tiny problems, 0.93 s to answer small and 1.19 s to caclulate
the solution of large problems. Figure 7.1 shows that response times of large tasks
are much higher than the ones for small and tiny problems. Values between the
categories tiny and small differ only slightly. It is also worth mentioning that one
extreme outlier occurs at small and large problems.

46
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Figure 7.1: Distribution of response times for tiny (mean = 0.91, median=0.91),
small (mean = 0.95, median=0.93) and large (mean = 1.23, median=1.19) addi-
tion problems.

The model that consists of the fixed problem size effect and the random subject
effect was tested on type III sum-of-squares and revealed that the main effect of
problem size is significant (F(2,78)=131.06, p<0.001).

The importance of the problem size is supported by the Bayes factor analysis. It
showed that the model consisting of size and subjects described the data 8.17 ·1021

times better than the model consisting of only subjects.
The result of the post-hoc test performed on the estimated marginal means of

the mixed model is shown in Table 7.1. It revealed a significant time difference
between large and tiny problems as well as between large and small tasks (both
p < 0.001). The difference between small and tiny problems is p < 0.05. There-
fore, hypothesis 1-3 are accepted.
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Table 7.1: Simultaneous Tests for General Linear Hypothesis: Effects of the log-
transformed problem size evaluated on response times of addition problems. De-
grees of freedom are fixed at 78.

Contrast Estimate Std. Error t-value Pr(> |t|)
in s in s

large-small 1.25 0.076 16.39 <0.001
large-tiny 1.44 0.076 18.90 <0.001
small-tiny 0.19 0.076 2.50 <0.05

7.1.2 Sensor-space

The sensor values of addition tasks were processed and averaged per region of in-
terest (ROI) and hemisphere. Afterwards, a linear mixed model (size∗roi∗hemi+
(1|id)) was fit with the processed data. A normality check indicated highly non-
normal residuals. Thus, the model was fit with square root transformed ERD/S
values. The presented test-statistics were then calculated with the Satterthwaite
approximation for the degrees of freedom.

Theta band:
In the theta band, ANOVA-tests indicated significant differences for the main ef-
fects ROI (F(7,5529.1)=73.7, p<0.001), hemisphere (F(1, 5529.1)=7.26, p<0.01),
size (F(2,5534.6)=80.61, p<0.001) and the interactions roi:hemi (F(7,5529.1)=2.05,
p<0.05).

The post-hoc tests of square root transformed theta-bandpower values showed
significant differences (p<0.001) between large and tiny (L-T) as well as between
large and small (L-S) addition problems for all regions. Thus, hypothesis 5 and
6 are accepted. In more detail, these differences are found for the regions AF,
C, CP, F, FC, P, PO (p<0.001) and T (p<0.05) for the contrast L-T. Large and
small problems differ for the regions AF, C, F, FC, P, PO (p<0.001) and CP, T
(p<0.01).
Table 7.2 shows that a significant difference between small and tiny (S-T) prob-
lems is found for the right (p<0.01), but not for the left hemisphere. Therefore,
hypothesis 4 can be rejected.

Figure 7.2 presents the ERD/S values for all eight regions of interest and the
problem sizes large (L), small (S) and tiny (T). While large problems show the
lowest ERD/S for all regions, this value is highest for small size problems. P-values
of significant difference are shown at the left upper corner for the contrasts large-
tiny and large-small. No differences between small and tiny were significant.
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Table 7.2: Simultaneous Tests for General Linear Hypothesis: Effects of the prob-
lem size and hemisphere evaluated on ERD/S values of the theta-band for addition
problems.

Contrast Estimate Std. Error z-value Pr(> |z|)
in % in %

large - small, l -31.2 3.81 -8.183 <0.001
large - tiny, l -27.8 4.0 -6.959 <0.001
small - tiny, l 3.4 3.8 0.891 0.37
large - small, r -29.2 3.8 -7.656 <0.001
large - tiny, r -35.4 4.0 -8.861 <0.001
small - tiny, r -6.2 3.8 -1.640 0.12
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Figure 7.2: Median ERD/S values in % (Theta-band) for the interaction of problem
sizes and ROI. The significance between large-tiny (L-T) and large-small (L-S) is
shown in the subplot at the top.

Lower alpha band:
For the lower alpha band ANOVA-tests indicate significant differences for the main
effects ROI (F(7,5529)=16.52, p<0.001), hemisphere (F(1, 5529)=4.95, p<0.05)
and size (F(2,5533)=43.94, p<0.001).

Post-hoc tests performed on square root transformed lower-alpha ERD/S val-
ues reveal significant differences (p<0.001) between large and tiny and large and
small sizes. This effect occurs, when ERD/S values are evaluated on the whole
set of sensors, and when they are evaluated for both hemispheres individually too.
The contrast between small and tiny problems becomes also significant (p<0.01)
when ERD/S values are calculated for all sensor values and when they are evalu-
ated only on the right hemisphere.
The contrast between large and tiny problem sizes is significant bilaterally for the
regions C, CP, FC, T (p<0.001) and P (p<0.01) and PO (p<0.05) while large and
small problems differ for the regions C, CP, FC (p<0.01) and P, T (p<0.05). Table
7.3 lists the post-hoc tests for the parieto-occipital region.

From the ERD/S values of all eight regions of interest and problem sizes (Fig-
ure 7.3) it is noteworthy that values are lowest for large problems, while tiny ones
show the highest ERD/S ratio. The degree of significance for the contrasts large-
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tiny (L-T) and large-small (L-S) is presented in the upper right corner of Figure
7.3.

Table 7.3: Simultaneous Tests for General Linear Hypothesis: Effects of the prob-
lem size, ROI and hemisphere evaluated on ERD/S values of the lower alpha band
at parieto-occipital regions for addition problems.

Contrast ROI Estimate Std. Error z-value Pr(> |z|)
in % in %

large - small PO -9.7 7.6 -1.279 0.268
PO, l -18.6 10.7 -1.739 0.197
PO, r -0.08 10.7 -0.072 0.949

large - tiny PO -22.4 7.9 -2.819 <0.05
PO, l -29.4 11.2 -2.625 <0.05
PO, r -15.3 11.2 -1.364 0.321

small - tiny PO -12.7 7.6 -1.678 0.160
PO, l -10.8 10.7 -1.014 0.438
PO, r -14.5 10.7 -1.359 0.321
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Figure 7.3: Median ERD/S values in % (Lower alpha band) for the interaction of
problem sizes and ROI. The significance between large-tiny (L-T) and large-small
(L-S) is shown in the subplot at the upper right corner.

Upper alpha band:
ANOVA-tests indicated significant differences for the main effects ROI
(F(7,5529)=61.28, p<0.001), hemisphere (F(1, 5529)=13.18, p<0.001), size
(F(2,5534.3)=37.41, p<0.001) and the interaction roi:hemi (F(7,5529)=2.14, p<0.05).

Post-hoc tests of square root transformed upper-alpha ERD/S values revealed
a significant difference (p<0.001) between large and tiny as well as between large
and small and tiny tasks. The significance was found for all sensors and on both
hemispheres individually.
Moreover, the contrast between large and tiny problems is significant for the re-
gions C, FC, P (p<0.01) and CP, PO, T (p<0.05); the contrast between large and
small for the regions AF, C, F, FC (p<0.01) and CP, P (p<0.05). Small and tiny
problems differ only in the PO region (p<0.05). Test statistics for this region are
displayed in Table 7.4.

From ERD/S values of all eight regions of interest and problem sizes (figure
7.4), it can be seen that values are lowest for large problems, while tiny ones show
the highest ERD/S ratio. The degree of significance for the contrasts large-tiny
(L-T) and large-small (L-S) is presented in the lower left corner of Figure 7.4.
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Table 7.4: Simultaneous Tests for General Linear Hypothesis: Effects of the prob-
lem size, ROI and hemisphere evaluated on ERD/S values of the upper alpha band
at parieto-occipital regions for addition problems.

Contrast ROI Estimate Std. Error z-value Pr(> |z|)
in % in %

large - small PO -23 7.7 -0.307 0.828
PO, l -22 10.8 -0.204 0.875
PO, r -25 10.8 -0.230 0.875

large - tiny -20.7 8.0 -2.581 <0.05
PO, l -18.2 11.3 -1.605 0.218
PO, r -23.2 11.3 -2.049 0.130

small - tiny PO -18.3 7.6 -2.402 <0.05
PO, l -16.0 10.8 -1.479 0.241
PO, r -20.7 10.8 -1.919 0.147
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Figure 7.4: Median ERD/S values in % (Upper alpha band) for the interaction of
problem sizes and ROI. The significance between large-tiny (L-T) and large-small
(L-S) is shown in the subplot in the lower left corner.

A Bayesian repeated-measures ANOVA supports the found importance of the
problem size effect onto ERD/S values. The model consisting problem size, ROI
and hemisphere is 2.6 ·1025 times better than the model without problem size. The
multiplicative difference is 2.8 · 109 in the lower alpha band and 17.1 · 109 in the
upper alpha band.
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7.1.3 IC-space Analysis

The locations of the ICs were found with a dipole-fitting algorithm by the use of
a four layer model that consists of skin, skull, cerebrospinal fluid and the cortex.
Each of the 431 ICs was assigned to one of 10 clusters.
ICs in regions related to Visual Number Forming were mainly assigned to clusters
2 (16.3%), 4 (46.3%) and 11 (22.5%). Processes related to Auditory Number Form
are well represented in group 11 (83.3%) and the ones for Numerical Quantity are
found in Cluster 8 (35.2%) and in the groups 6 and 11 (both 22.2%). ICs related
to the Episodic and Semantic memory are mostly in cluster 7 (47.1%) and 11
(23.5%). Sources activated in Salience / Attention control are found in group 11
(60%). Finally, working Memory / Cognitive control is almost equally distributed
to clusters 3 (9.7%), 5 (10.2%), 6 (9.7%), 9 (21.0%), 10 (16.7%) and 11 (23.7%).
The amount of ICs found for each Desikan-Killany region is listed in Tables 9.1
and 9.2 in the attachment section.

Table 7.5 shows the composition of each cluster. Clusters 2 and 4 mainly repre-
sent the Visual Number Form. Group 8 is representative for Numerical Quantity
and group 7 for Episodic / Semantic memory. Independent components of the
clusters 3, 5, 6, 9, 10 and 11 are largely found in regions related to working mem-
ory and cognitive control.

Cluster
2 3 4 5 6 7 8 9 10 11

Visual Number Form 54.2 0.0 66.1 0.0 11.4 10.5 16.0 0.0 0.0 15.7
Auditory Number Form 0.0 0.0 0.0 3.1 2.9 0.0 0.0 0.0 0.0 8.7
Numerical Quantity 12.5 0.0 8.9 0.0 34.3 0.0 76.0 0.0 8.6 10.4
Episodic / Semantic 25.0 3.2 12.5 0.0 0.0 63.2 4.0 0.0 0.0 10.4
Salience / Attention control 0.0 3.2 0.0 6.3 0.0 0.0 0.0 0.0 2.9 5.2
Working Memory / Cognitive Control 4.2 58.1 10.7 59.4 51.4 26.3 0.0 97.5 88.6 38.3

Table 7.5: Neurocognitive functions as described by Fias et al. [136] of the
clusters found by k-means. The clusters mainly include brain regions for
the following functions: Clusters 2 and 4 for Visual Number Form. Cluster
8 for Numerical Quantity processing; Cluster 7 for Episodic / Semantic
memory and clusters 3, 5, 6, 9, 10 and 11 contain mainly brain regions for
Working Memory / Cognitive Control.

Visual number form

Cluster 2. The cluster #2 includes 24 ICs of 20 subjects. Dipoles are located
mainly in the occipital lobe like the lateral occipital region (5 ICs), the cuneus (6
ICs), the pericalcarine (1 ICs), the lingual cortex (1 ICs), the superior (2 ICs),
and the inferior (1 IC) parietal regions. Sources are also found in the parietal lobe
involving the precuneus (6 ICs), the posterior cingulate (1 IC), the superior (2
ICs) and inferior parietal regions (1 IC) and one IC is found paracentral in the
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frontal lobe. Assigning the regions to their corresponding neurocognitive systems
shows that this cluster mainly represents regions related to the visual number form
(54.2%). Other locations are linked to the episodic and semantic memory (25%),
numerical quantity (12.5%) and the working memory and cognitive control (4.2%).
The ERSP image in Figure 7.5 shows a significant ERD (FDR = 0.05) in the lower
and upper alpha band that starts immediately after the task onset and lasts for
the whole solving duration. The activation strength reaches -5.2 dB compared to
the bias period. A comparison to other clusters shows that this alpha ERD is also
significant compared to all working memory and cognitive control clusters (3, 5,
9, 10 and 11).

Cluster 4. The second cluster representing the visual number form is Cluster
#4 and includes 31 ICs of 23 subjects. Most of the ICs are found in the lingual
cortex (15 ICs), the fusiform area and lateral occipital regions (each has 9 ICs),
and the pericalcerine (4 ICs). Others are in the inferior (4 ICs), the superior
parietal regions (1), the precuneus (4 ICs), the parahippocampal (2 ICs), the
middle temporal region (1 IC) and the cingulate comprises 6 ICs (isthmus: 5,
posterior: 1). The regions are linked to the visual number form (66%), episodic
and semantic (13%) as well as the working memory (11%). 9% are found in regions
linked to numerical quantity.
The ERSP image in Figure 7.5 shows an immediate and significant ERS response
(FDR = 0.05) in the frequency range of 2−9Hz and lasts for 400ms. The response
is followed by a strong (−3.6 dB) ERD in the lower and upper alpha band and an
activation in the theta band. Both last for the whole solving process.
A comparison to other clusters reveals that the theta ERS in the early phase also
becomes significant against the working memory and cognitive control clusters
(3,6,9,10 and 11). The upper alpha ERD is significant compared to all working
memory and cognitive control clusters in the middle of the task. In Figure 7.5
you can see from left to right in each row the cluster dipole locations (saggital-,
superior view), the ERSP images that are time-locked to the task onset (equation
presentation) and time-warped to the trial length. In this plot, nonsignificant
differences (FDR=0.05) are masked with green.
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Figure 7.5: ERSP images for tiny addition tasks. From left to right. Cluster
dipole locations (saggital-, superior view); ERSP images time-locked to the task
onset (equation presentation) and time-warped to the median solving duration;
normed to 1. Nonsignificant differences (FDR=0.05) are masked with green. The
clusters contain mainly ICs of the numerical quantity processing system.

Numerical Quantity

Cluster 8. This cluster includes 25 ICs of 19 subjects and is mainly located in
the parietal lobe. These are the interior (9 ICs) and superior parietal (2 ICs),
supramarginal (8 ICs) regions and the precuneus (1 IC). 3 ICs are located lateral
occipital and one is found in the lingual gyrus. They are mainly linked to numerical
quantity (76%) and visual number form (16%).
The ERSP image in Figure 7.6 shows a significant (FDR = 0.05) immediate
ERSP response in the 3-7Hz range that is followed by a significant ERD in the
lower and upper alpha band. A comparison to other clusters reveals a difference
to the working memory and cognitive control clusters 5 and 9. The difference gets
significant in the alpha band from 1/4 to 1/2 of the task duration.
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Figure 7.6: ERSP images for tiny addition tasks. From left to right. Cluster
dipole locations (saggital-, superior view); ERSP images time-locked to the task
onset (equation presentation) and time-warped to the median solving duration;
normed to 1. Nonsignificant differences (FDR=0.05) are masked with green. The
clusters contain mainly ICs of the numerical quantity processing system.

Episodic / Semantic Memory

Cluster 7. The cluster includes 38 ICs of 31 subjects and is mainly found in the
precuneus (24 ICs). Others are in the cuneus (3 ICs), the pericalcerine (1 IC) and
the cingulate (isthmus: 8 ICs, posterior: 2 ICs). These are linked to episodic and
semantic memory (63%), working memory and cognitive control (26%) and the
visual number forming (11%).
The ERSP in Figure 7.7 shows an immediate significant ERS response to the task
onset in the 6− 8Hz frequency range. The ERS is followed by a significant ERD
in the lower and upper alpha band that lasts for the whole task. A comparison to
other clusters reveals a significant difference (FDR=0.05) to the working memory
and cognitive control clusters 5 and 9 in the middle of the task at the theta, lower
alpha and beta band.
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Figure 7.7: ERSP images for tiny addition tasks. From left to righ in each row:
Cluster dipole locations (saggital-, superior view); ERSP images time-locked to
the task onset (equation presentation) and time-warped to the median solving
duration; normed to 1. Nonsignificant differences (FDR=0.05) are masked with
green. The clusters contain mainly ICs of the episodic and semantic memory
systems.

Working Memory / Cognitive Control

Cluster 3. This cluster consists of 31 ICs of 23 subjects and is mainly located
precentral (11 ICs), the cinulate (posterior: 4 ICs, caudal anterior: 1 IC), superior
frontal (1 IC), paracentral (7 ICs), the insula (1 IC) and precuneus (1 IC). The
functions of these regions are linked to the episodic and semantic memory as well
as to cognitive control and salience.
The ERSP image in Figure 7.8 of this cluster shows an immediate significant
(FDR=0.05) ERS response in the 2− 8Hz range that lasts until 1 s after the tasks
onset. It is followed by a significant (FDR=0.05) deactivation in the lower and
upper alpha and beta band that peaks at −1.9 dB.
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Figure 7.8: ERSP images for tiny addition tasks. From left to right in each row:
Cluster dipole locations (saggital-, superior view); ERSP images time-locked to
the task onset (equation presentation) and time-warped to the median solving
duration; normed to 1. Nonsignificant differences (FDR=0.05) are masked with
green. The clusters contain mainly ICs of working memory and cognitive control
systems.

Cluster 5. The cluster includes 32 ICs of 21 subjects and consists of dipoles
located in the cingulate (caudal anterior: 7 ICs, rostral anterior: 2 ICs), rostral
middle frontal (4 ICs), superior frontal (3 ICs), lateral orbitofrontal (1 IC), caudal
middle frontal (1 IC), superior temporal (1 IC) and the insula (2 ICs).
The regions are linked to the cognitive systems of working memory and cognitive
control (59.4 %), salience and attention control (6.3 %) and auditory number form
(3.1 %). The ERSP image in Figure 7.8 shows a strong significant activation of up
to 1.3 dB over the whole solving process. A comparison to other clusters shows the
lack of activation in the alpha band that becomes significant for the visual number
form clusters (2 and 4), the episodic and semantic memory (7) and numerical
quantity cluster (8). Further, the activation in the 2-3Hz frequency range becomes
significant for clusters 2 and 4 and large problems.

Cluster 6. The cluster includes 35 ICs and 30 subjects. It contains regions in
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the postcentral (10 ICs) and precentral (8 ICs), superior parietal (4 ICs), inferior
parietal (3 ICs) areas as well as the supramarginal gyrus (5 ICs), the lingual cortex
(1 IC), the lateral occipital region (2 ICs) and the fusiform gyrus (1 IC). These
regions are related to working memory and cognitive control (51%) visual number
form (11%), numerical quantity (34%) and auditory number form (3%). The
ERSP image in Figure 7.8 shows a significant (FDR = 0.05) ERS activation in
the frequency range of 2-4Hz peaking at 1/4 of the task and an alpha ERD starting
after 1/4 of the task. A comparison to cluster 4 reveals the lack of activation in
the 6-8Hz range immediately after the task onset.

Cluster 9. This cluster includes 40 ICs and 26 subjects and contains dipoles
that are mainly located in the superior frontal lobe (27 ICs), the cingulate (caudal
anterior: 4 ICs, posterior: 2 ICs, ) as well as caudal (2 ICs) and rostral (2 ICs)
middle frontal. Others are precentral (1 IC) and postcentral (1 IC).
These regions are linked to working memory and cognitive control (98%). The
ERSP image in Figure 7.8 shows a significant ERS in the 2− 8Hz range over the
whole solving process as well as an activation in the 12− 16Hz range.

Cluster 10. This cluster includes 35 ICs and 25 subjects and the dipoles are
mainly located precentral (16 ICs) and postcentral (12 ICs). Others are in the
posterior part of the cingulate (2 ICs), the caudal middle frontal region (1 IC),
the pars opercularis (1 IC), the supramarginal gyrus (1 IC) and superior parietal
(2 ICs).
The regions are mainly linked to working memory and cognitive control (87 %),
numerical quantity (9 %) and salience and attention control (3 %). The ERSP
image in Figure 7.8 shows a significant (FDR = 0.05) ERS in the middle of the
task in the 2 − 4Hz band as well as an ERD in the lower and upper alpha band
starting after the first quartile of the task.

Cluster 11. This cluster includes 115 ICs and 35 subjects. It contains all
ICs that do not fit exactly into one of the existing clusters. The largest amount
of dipoles is located in regions related to working memory and cognitive control
(39 %). The others are distributed to visual number forming (16 %) and auditory
number forming (9 %), numerical quantity (10 %), episodic and semantic memory
(10 %) and salience and attention control (5 %). The ERSP image in Figure 7.8
shows significant ERS in the theta band for the whole duration of the task as well
as significant ERD in the lower and upper alpha band starting after 1/8 of the
task.
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ANOVA

The ANOVA shown in Table 7.6 reveals that ERD/S patterns differ significantly
(p<0.001) between clusters for all frequency bands, that the effect of cluster:size is
not significant. Exact median ERD/S values for all clusters and frequency bands
are listed in Table 7.7.

Theta Lower alpha Upper alpha
Effect NumDF DenDF F-value Pr(> F ) DenDF F-value Pr(> F ) DenDF F-value Pr(> F )
cluster 9 715.32 3.2943 *** 710.52 3.3232 *** 711.32 4.0809 ***
size 2 696.19 0.7333 0.48 695.65 1.9323 0.15 695.81 1.7526 0.17

cluster:size 18 696.19 0.7605 0.74 695.65 0.7654 0.74 695.81 0.5118 0.95

Table 7.6: Linear Mixed Model Anova Table (Type 3 tests, Satterthwaite-method),
fitted by median bandpower values of the preprocessed data. The significance is
coded for the fdr-adjusted p-values by ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1. The
model was fit with log-transformed ERD/S values applied on data preprocessed
with the adjust preprocessing pipeline.

Theta Lower alpha Upper alpha
Cluster tiny small large tiny small large tiny small large

2 -3.10 0.80 1.36 12.91 20.78 13.46 4.45 -3.16 4.24
3 12.19 9.23 1.01 16.87 15.65 13.80 5.41 3.30 0.77
4 3.52 5.19 3.65 13.35 4.88 3.56 3.73 0.44 -4.69
5 11.56 -1.89 -3.02 17.03 19.25 17.17 8.44 -8.55 0.60
6 -1.36 -2.80 -4.90 20.83 22.18 11.68 -0.05 0.27 -2.81
7 -4.39 -2.63 -11.70 27.37 17.62 13.12 -0.01 -4.44 -8.15
8 -7.71 -4.92 -3.69 8.22 0.60 4.76 -6.45 -6.02 -5.66
9 -6.57 -9.75 -6.68 12.98 13.79 13.79 -0.23 -8.49 -1.00
10 1.43 -3.38 -3.78 15.53 7.22 17.34 13.26 2.66 9.32
11 1.24 -4.89 -8.48 20.83 22.20 10.00 2.85 -0.96 2.45

Table 7.7: Median ERD/S values in %
for tiny, small and large problem sizes.

A look onto the theta-band shows that the clusters 3, 5 and 10 are of special
interest. This is because the former two show a strong ERS, while cluster 10 is
located near the left perisylvian region.
Post-hoc tests of the log-transformed theta-ERD/S values reveal that the large
difference between tiny and small (2.96 and 13.45) as well as between large and
tiny (11.18 and 14.58) problems in the theta-band of the clusters 3 and 5 is not
significant.
The only significant difference (p<0.05) between large and small and small and
tiny problems is found for cluster 8. Nevertheless, the effect of the size is marginal.
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Figure 7.9: Median ERD/S values given in % in the theta-band for the interaction
of problem sizes and cluster.

Continuing with the alpha-band, we see in Figure 7.5 that cluster 2 is lo-
cated occipital, whereas clusters 4, 7, 8 (and partly cluster 6) are located parieto-
occipital. The ERD/S values for each cluster are presented in Figures 7.10 and
7.11. Signficant differences between sizes are found in the clusters 3,4 and 5, but
none of these clusters become significant in the post-hoc tests; neither in the lower,
nor in the upper-alpha band. Also, differences (p<0.05) in the log-transformed up-
per alpha band.
Instead, significant differences (p<0.05) were found for cluster 10 between large
and small as well as between small and tiny problems in the log-transformed lower-
alpha band. The effect is large between tiny-small (8.31) and small-large (10.12),
but marginal between tiny-large (1.81) problems.
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Figure 7.10: Median ERD/S values given in %(Lower alpha band) for the interac-
tion of problem sizes and cluster.

Figure 7.11: Median ERD/S values in % (Upper alpha band) for the interaction
of problem sizes and cluster.

Time-Frequency Analysis

Time-frequency plots comparing problem sizes are shown in Figure 7.12. They
show significant differences (FDR = 0.05) for both visual number form clusters
(2 and 4), the episodic memory cluster (7) and one working memory / cognitive
control cluster (6).
Starting with cluster 4, it can be seen that this cluster is located mainly in the
lingual cortex, fusiform cortex as well as at lateral occiptial regions and shows sig-
nificant differences (FDR = 0.05) in the theta and alpha band between large and
tiny problems. Large problems elucidate a stronger alpha ERD and less theta ERS
than tiny tasks in the second half of the solving process. Interestingly, a stronger
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and longer lower alpha ERS is also found between small and tiny problems. Small
problems tend to have a longer lower alpha ERS immediatly following the task
onset. This becomes significant after one fourth of the trial. The second cluster
links to visual number forming and is mainly located in the cuneus and at lateral
occipital regions. It shows a higher alpha ERD for large problems than for tiny
problems and becomes significant in the second half of the solving process. Clus-
ter 7 which is located mainly in the precuneus is linked to episodic and semantic
memory. It shows a stronger alpha ERD for large problems. Additionally, the
deactivation in the smae time range becomes significant in the beta band too. The
working memory cluster (6) located at right pre- and postcentral regions shows
stronger lower alpha ERD for large operands compared to tiny ones.
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Figure 7.12: ERSP images for addition tasks. From left to right in each row:
Cluster dipole locations (saggital-, superior view); difference ERSP images time-
locked to the task onset (equation presentation) and time-warped to the trial
length for: small-tiny trials; large-small trials; and large-tiny trials. Nonsignificant
differences are masked in green. All four clusters show a significant decrease in
alpha-band power for larger problem sizes. In cluster 4, the alpha-band power
difference even becomes significant between tiny and small problems.
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7.1.4 Are there differences between tiny, small and large
addition problems?

The presented results allowed to check the hypothesis stated in 5.5. The results
are as follows:
Hypothesis 1: There is a difference in response times between tiny and large
problems.
Correct, large problems are solved 1.42 s + − 76ms slower than tiny problems.
Post-hoc tests showed a significant contrast (p<0.001) with a t-value of 16.39.
Hypothesis 2: There is a difference in response times between small and large
problems.
Correct, the two categories differed by 1.25 s. Post-hoc tests found a significant
difference (p<0.001) with a t-value of 18.88.
Hypothesis 3: There is a difference in response times between tiny and small
problems.
Correct, the two categories differ by 190ms. The contrast is signficiant (p<0.05)
and result in a t-value of 2.5.
Hypothesis 4: Tiny problems show a higher left-hemispheric theta ERS than
small problems.
Incorrect, the theta ERS of small problems is 3.4 % higher, but not signficant.
Hypothesis 5: Small problems show a higher left-hemispheric theta ERS than
large problems.
Correct, small problems have a 31.2 % higher theta ERS value than large prob-
lems. The post-hoc test between large and small problems results in a z-value of
−8.18 and proofs signficant difference p<0.001.
Hypothesis 6: Tiny problems show a higher left-hemispheric theta ERS than
large problems.
Correct, the theta ERS of tiny problems is 27.8 % higher than the one measured
on large problems. The post-hoc test between large-tiny problems resulted in a
z-value of −6.96 and proofed signficant difference (p<0.001).
Hypothesis 7: Large problems show a lower alpha bandpower in the bilateral
parieto-occipital regions than tiny problems. Correct for the lower alpha-band.
z-value=3.912. p<0.001 and the left-hemispheric PO, z-value: -3.39, p<0.01.
Hypothesis 8: Large problems show a lower alpha bandpower in the bilateral
parieto-occipital regions than small problems.
Incorrect, the bandpower in the bilateral PO region of large problems is 9.7 %
lower, but the difference is insignificant.
Hypothesis 9: Small problems show a lower alpha bandpower in the bilateral
parieto-occipital regions than tiny problems.
Incorrect, the lower alpha bandpower of small problems is 12.7 % lower than for
tiny problems. Still, the difference is insignificant.
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Hypothesis 10: At least one IC-Cluster is found in the left-hemispheric perisyl-
vian region that shows enhanced activity in the theta-band for small problems.
Incorrect: Clusters 8 and 10 are spatially close to the left-hemispheric perisylvian
region. Still, they do not show significant differences between tiny, small and large
problem sizes. Theta-ERS as well as the theta-ERS difference between problem
sizes is strongest in the frontal clusters 5 and 9. Unfortunately, the differences are
non-significant (p<0.05)
Hypothesis 11: At least one IC-Cluster is found in the parieto-occipital region
that shows enhanced upper-alpha ERD for large problems.
Correct: Cluster 2 is located occipital and the clusters 4, 6, 7 and 8 are found
in parieto-occipital regions. Differences of ERD/S values in the alpha band do
not become significant (p<0.05) when they are averaged over the whole solving
duration. But, clusters 2, 4, 6 and 7 show significant differences (FDR = 0.05)
between problem-sizes, when post-hoc tests are performed on the time-frequency
bin level. This mainly occurs in the second half of the solving process.

7.2 Influence of strategies

7.2.1 Behavioral analysis

Subjects required a median response time of 1.15s to answer large addition prob-
lems through retrieval strategies and were slightly slower (1.34s) to solve them
procedurally. The distribution of response times is shown in Figure 7.13. One
extreme outlier is apparent at both classes.

The model that consists of the fixed effect of strategies and the random factor
subject variance was tested on type III sum-of-squares and revealed that the main
effect of strategies is significant (F(1, 483.35)=26.32, p<0.001). This is supported
by the post-hoc test as shown in Table 7.8. Therefore, hypothesis 12 is accepted.
This is coherent with the result of the Bayes factor analysis which says that the
data are described 27 · 103 times better, when the effect of strategies is added to
subjects.

Table 7.8: Simultaneous Tests for General Linear Hypothesis: Effects of strategies
evaluated on ERD/S values of response times.

Contrast Estimate Std. Error t-value Pr(> |t|)
in ms in ms

procedural-retrieval 150 29 5.124 <0.001
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Figure 7.13: Distribution of response times for retrieval (µ = 1.21, median=1.15)
and procedural strategies (µ = 1.42, median=1.34) of large addition problems.

7.2.2 Sensor-space

The sensor values were averaged over regions of interest and hemisphere. Af-
terwards, a linear mixed model (strategy ∗ roi ∗ hemi + (1|id)) was fit with the
processed and square root transformed data. The presented test-statistics were
calculated with the Satterthwaite approximation for the degrees of freedom.

Theta band:
ANOVA-tests indicated significant differences for ROI (F(7,10953)=103.64, p<0.001),
hemisphere (F(1,10953)=21.28, p<0.001), strategy (F(1,10973)=66.66, p<0.001)
and the interactions roi:hemi (F(7,10953)=4.15, p<0.001) and roi:strategy (F(7,10953)=2.27,
p<0.05).

Post-hoc tests of square root transformed theta-bandpower values showed sig-
nificant differences (p<0.001) between retrieved and procedurally solved strategies
as well as in both hemispheres as shown in Table 7.9. Regarding regions of interest,
procedure differed from retrieve in AF, CP, P, PO (p<0.001), F (p<0.01) and C
(p<0.05). The ERD/S values are plotted in Figure 7.14.
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Table 7.9: Simultaneous Tests for General Linear Hypothesis: Effects of strategy
and hemisphere evaluated on ERD/S values of the theta band for large addition
problems.

Contrast Estimate Std. Error z-value Pr(> |z|)
in % in %

procedure - retrieve -14.0 1.72 -8.165 <0.001
procedure - retrieve, l -12.8 2.38 -5.390 <0.001
procedure - retrieve, r -15.2 2.38 -6.364 <0.001

Figure 7.14: Median ERD/S values in % (Theta-band) for the interaction of strate-
gies and ROI of large problems.
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Lower alpha band:
ANOVA-tests indicated significant differences for the main effects ROI
(F(7,10953)=42.53, p<0.001), hemisphere (F(1,10953)=19.70, p<0.001) and strat-
egy (F(1,10970)=7.12, p<0.01).

Results of post-hoc tests showed significant differences between procedure and
retrieve (p<0.01) on the whole scalp and on the right hemisphere (p<0.05). Sig-
nificant differences for individual regions (e.g. bilateral parieto-occipital) were not
found as shown in Figure 7.14 and Table 7.10. Thus, hypothesis 3 could be rejected.

Table 7.10: Simultaneous Tests for General Linear Hypothesis: Effects of the
strategy, ROI and hemisphere evaluated on ERD/S values of the lower alpha band
at parieto-occipital regions for large addition problems.

Contrast ROI Estimate Std. Error z-value Pr(> |z|)
in % in %

procedure - retrieve PO -11.5 4.7 -2.463 0.110
procedure - retrieve PO, l -13.0 6.5 -1.975 0.615
procedure - retrieve PO, r -9.99 6.59 -1.517 0.615

Figure 7.15: Median ERD/S values in % (Lower alpha band) for the interaction
of strategies and ROI of large problems.
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Upper alpha band:
ANOVA tests indicated significant differences for the main effects ROI
(F(7,10953)=133.05, p<0.001), hemisphere (F(1,10953)=21.26, p<0.001) and strat-
egy (F(1,10971)=18.54, p<0.001).

Post-hoc tests performed on the square-root transformed upper-alpha ERD/S
values showed differences between the two strategies (p<0.001), as well as on both
hemispheres (p<0.01) and for the regions AF and PO (p<0.05). Table 7.11 shows
the test results of the parieto-occipital region and Figure 7.16 the comparison of
both strategies over all bilateral regions.

Table 7.11: Simultaneous Tests for General Linear Hypothesis: Effects of the
strategy, ROI and hemisphere evaluated on ERD/S values of the upper alpha
band at parieto-occipital regions for large addition problems.

Contrast ROI Estimate Std. Error z-value Pr(> |z|)
in % in %

procedure - retrieve PO -12.00 4.6 -2.589 <0.05
procedure - retrieve PO, l -15.6 6.5 -2.388 0.14
procedure - retrieve PO, r -8.3 6.5 -1.282 0.370

Figure 7.16: Median ERD/S values in % (Lower alpha band) for the interaction
of strategies and ROI of large problems.
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7.2.3 IC-space Analysis

The results of the k-means clustering are shown in Figure 7.17. This plot shows
the location of the ICs on the left side (saggital and superior view) and the event-
related spectral perturbations of the retrieved tasks on the right. The temporal
axis is time-warped to the length of the solving process. Hence, all trials last from
0 to the right side of the plotted image. A look onto the theta-band reveals that
information in this band is contained in clusters 3, 6 and 7. It is interesting that
all of the contained ICs are located in the occipital and parieto-occipital regions.
Further, they share a theta-ERS activation at the very beginning of the task which
is most prominent in cluster 3 and 6 (1.7dB). This activation disappears after 3/8
of the solving process at clusters 6 and 7 and remains over the whole solving process
at cluster 3.
Additionally, it is noteworthy that cluster 4 contains information in the delta band.
Delta ERS is apparent at the first and the last 1/3 of the solving process.
Finally, alpha ERD is found for all clusters over the whole solving process.
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Figure 7.17: ERSP images for retrieval tasks. From left to right in each row:
Cluster dipole locations (saggital-, superior view); ERSP images time-locked to
the task onset (equation presentation) and time-warped to the median solving
duration; normed to 1. Nonsignificant differences (FDR=0.05) are masked with
green. The clusters contain mainly ICs of the visual number form processing
system.
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7.2.4 Are there differences between recalled and procedu-
rally solved strategies at large problems?

The results displayed in this chapter allowed to validate the hypothesis stated in
5.5 and are as follows:
Hypothesis 12: There is a difference in response times between recalled and
procedurally solved problems.
Correct, procedurally solved trials are solved 150ms +- 29ms slower than retrieved
problems. The post-hoc test results in a t-value of 5.12 and is p<0.001 significant.
Hypothesis 13: Recalled problems show a higher left-hemispheric theta ERS
than small problems.
Correct, the theta ERS is on the left hemisphere 12.8 % higher for retrieved prob-
lems than for procedurally solved ones. The post-hoc test is significant p<0.001
and resulted in a z-value of -5.39 for procedure-retrieve.
Hypothesis 14: Procedurally solved problems show a lower alpha bandpower in
the bilateral parieto-occipital regions than tiny problems.
Incorrect, t-value:-0.02 and p = 0.99 for the lower alpha band and t-value:0.07 and
p = 0.95 for the upper alpha band.
Hypothesis 15: At least one IC-Cluster is found in the left-hemispheric perisyl-
vian region that shows enhanced activity in the theta-band for recalled problems
than for procedurally solved ones.
Incorrect, Cluster 3 shows the strongest theta ERS and cluster 4 is located near
the left perisylvian region, but none of them shows significant differences between
tasks that were solved with retrieved and procedurally solved strategies.
Hypothesis 16: At least one IC-Cluster is found in the parieto-occipital region
that shows enhanced upper-alpha ERD for procedurally solved problems (over re-
called ones).
Incorrect, cluster 7 is located in the parieto-occipital region and shows alpha ERD.
Still, there is no significant difference between retrieved and procedurally solved
tasks.
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7.3 Interaction of problem-size and strategies
The sensor values were processed and averaged per ROI and hemisphere. After-
wards, a linear mixed model (op∗strategy∗size∗roi∗hemi+(1|id)) was fit with the
processed data. A normality check indicated highly non-normal residuals. Thus,
the model was fit with square root transformed ERD/S values. The presented
test-statistics were then calculated with the Satterthwaite approximation for the
degrees of freedom.

Theta band:
ANOVA-tests indicated significant differences for the main effects strategy
(F(1,37255)=4.77, p<0.05), size (F(2,37244)=229.82, p<0.001), ROI
(F(7,37241)=111.26, p<0.001), hemisphere (F(1,37241)=90.70, p<0.001)
and the interactions op:strategy (F(1,37246)=5.79, p<0.05), strategy:size
(F(2,37244)=8.56, p<0.001) and op:strategy:size (F(2,37243)=7.08, p<0.001) in
the theta band.

Figure 7.18 presents the difference of ERD/S values for addition problems of
different sizes for all regions of interest. Large problems show the lowest ERD/S
values, while tiny and small ones elicidate larger values. It appears that small prob-
lems have a higher ERS, but this difference is not significant. Retrieved problems
have a slightly higher ERS value for all problem sizes. This difference becomes
significant at small problems (p<0.001) for the regions F, FC, PO (p<0.05) and
large problems (p<0.05).

Figure 7.18: Median ERD/S values in % (Theta-band) for the interaction of prob-
lem sizes, strategy and ROI.
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Post-hoc tests showed significant differences (p<0.05) between retrieved and
procedurally solved problems. More detailed insights revealed differing ERD/S
values between both strategies also for large (p<0.05) and small (p<0.001) prob-
lems. Further, for multiplication tasks (p<0.05) and in more detail for small
multiplication problems (p<0.001).

Size differed between large and small as well as between large and tiny prob-
lems (p<0.001) whereas apart from one excpetion, no difference was found for the
contrast small-tiny. Table 7.12 shows that this is true for all regions of interest
on both hemispheres, except from the contrast large-tiny in the left temporal re-
gion. Controlling for strategy, the ERD/S values differed between large and small
(p<0.001) and large and tiny problems (p<0.001) for retrieved and procedurally
solved tasks; tiny problems differed from small ones (p<0.01).

left hemisphere right hemisphere
Contrast ROI Estimate Std. Error z-value Pr(> |z|) Estimate Std. Error z-value Pr(> |z|)

in % in %
large - small AF -23.5 4.3 -5.423 *** -20.8 4.3 -4.804 ***
large - tiny AF -27.5 6.2 -4.440 *** -31.2 6.2 -5.033 ***
small - tiny AF -4.0 6.6 -0.597 0.634 -10.3 6.6 -1.557 0.167
large - small C -24.1 4.3 -5.550 *** -21.6 4.3 -4.976 ***
large - tiny C -24.4 6.2 -3.935 *** -25.6 6.2 -4.144 ***
small - tiny C -0.3 6.6 -0.042 0.966 -4.1 6.6 -0.613 0.634
large - small CP -18.0 4.3 -4.146 *** -21.7 4.3 -4.991 ***
large - tiny CP 21.9 6.2 -3.538 *** -27.9 6.2 -4.510 ***
small - tiny CP -3.9 6.6 -0.591 0.634 -6.3 6.6 -0.946 0.424
large - small F -18.9 4.3 -4.355 *** -16.1 4.3 -3.715 ***
large - tiny F -21.6 6.2 -3.493 *** -27.3 6.2 -4.418 ***
small - tiny F -2.7 6.6 -0.412 0.742 -11.2 6.6 -1.696 0.131
large - small FC -20.2 4.3 -4.646 *** -19.4 4.3 -4.481 ***
large - tiny FC -23.7 6.2 -3.828 *** -27.5 6.2 -4.448 ***
small - tiny FC -3.5 6.6 -0.534 0.662 -8.1 6.6 -1.222 0.296
large - small P -22.5 4.3 -5.175 *** -18.3 4.3 -4.213 ***
large - tiny P -12.2 6.2 -1.969 0.073 -19.4 6.2 -3.132 **
small - tiny P 10.3 6.6 1.549 0.167 -1.1 6.6 -0.168 0.885
large - small PO -30.4 4.3 -7.015 *** -22.3 4.3 -5.146 ***
large - tiny PO -23.9 6.2 -3.854 *** -30.1 6.2 -4.866 ***
small - tiny PO 6.6 6.6 0.993 0.405 -7.8 6.6 -1.177 0.310
large - small T -14.6 4.3 -3.361 ** -15.4 4.3 -3.553 ***
large - tiny T -13.0 6.2 -2.107 0.054 -17.4 6.2 -2.816 **
small - tiny T 1.5 6.6 0.233 0.852 -2.0 6.6 -0.305 0.811

Table 7.12: Median ERD/S differences of the theta band between problem
sizes for all ROIs on both hemishpheres.



78 7. Results

Lower alpha band:
ANOVA-tests indicated significant differences for the main effects operation
(F(1,37244)=23.48, p<0.001), size (F(2,37243)=236.96, p<0.001), hemisphere
(F(1,37241)=50.06, p<0.001), ROI (F(7,37241)=11.04, p<0.001) and the interac-
tions op:strategy (F(1,37245)=44.02, p<0.001), strategy:size (F(2,37243)=15.68,
p<0.001) and hemi:roi (F(7,37241)=4.19, p<0.001) in the lower alpha band.

Figure 7.19 presents the difference of lower alpha ERD/S values for addition
problems of different sizes for all regions of interest.

Figure 7.19: Median ERD/S values in % (Lower alpha band) for the interaction
of problem sizes and ROI.

Post-hoc tests revealed significant differences between retrieved and procedu-
rally solved addition and multiplication problems (both p<0.001). Differences
between strategies were also found for large (p<0.001) and small (p<0.01) tasks.

Size differed between large and small (p<0.001) and large and tiny problems
(p<0.001). The contrast large-small and large-tiny was also found for procedure
only and retrieve only tasks. Table 7.13 shows that this is also true for all regions
of interest on both hemispheres, except from the right hemispheric AF (p<0.05)
and F (p<0.05) regions.
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left hemisphere right hemisphere
Contrast ROI Estimate Std. Error z-value Pr(> |z|) Estimate Std. Error z-value Pr(> |z|)

in % in %
large - small AF -0.198 0.041 -4.844 *** -0.111 0.041 -2.717 *
large - tiny AF -0.224 0.058 -3.838 *** -0.151 0.058 -2.585 *
small - tiny AF -0.026 0.063 -0.414 0.84 -0.040 0.063 -0.635 0.74
large - small C -0.216 0.041 -5.283 *** -0.208 0.041 -5.087 ***
large - tiny C -0.216 0.058 -3.696 *** -0.189 0.058 -3.230 **
small - tiny C 0.000 0.063 0.006 0.99 0.020 0.063 0.313 0.86
large - small CP -0.218 0.041 -5.320 *** -0.252 0.041 -6.159 ***
large - tiny CP -0.227 0.058 -3.881 *** -0.214 0.058 -3.672 ***
small - tiny CP -0.009 0.063 -0.143 0.91 0.038 0.063 0.602 0.75
large - small F -0.211 0.041 -5.154 *** -0.117 0.041 -2.853 **
large - tiny F -0.231 0.058 -3.949 *** -0.134 0.058 -2.302 *
small - tiny F -0.020 0.063 -0.314 0.86 -0.018 0.063 -0.283 0.87
large - small FC -0.204 0.041 -4.988 *** -0.151 0.041 -3.680 ***
large - tiny FC -0.215 0.058 -3.687 *** -0.166 0.058 -2.840 **
small - tiny FC -0.011 0.063 -0.178 0.90 -0.015 0.063 -0.244 0.88
large - small P -0.194 0.041 -4.738 *** -0.261 0.041 -6.377 ***
large - tiny P -0.227 0.058 -3.880 *** -0.200 0.058 -3.416 **
small - tiny P -0.033 0.063 -0.523 0.78 0.062 0.063 0.984 0.47
large - small PO -0.245 0.041 -5.982 *** -0.240 0.041 -5.873 ***
large - tiny PO -0.276 0.058 -4.730 *** -0.276 0.058 -4.726 ***
small - tiny PO -0.031 0.063 -0.502 0.78 -0.036 0.063 -0.570 0.76
large - small T -0.223 0.041 -5.443 *** -0.189 0.041 -4.611 ***
large - tiny T -0.243 0.058 -4.165 *** -0.175 0.058 -2.999 **
small - tiny T -0.020 0.063 -0.327 0.86 0.014 0.063 0.217 0.88

Table 7.13: Median ERD/S differences of the lower alpha band between
problem sizes for all ROIs on both hemishpheres.
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Upper alpha band:
ANOVA-tests indicated significant differences for the main effects operation
(F(1,37244)=23.15, p<0.001), size (F(2,37243)=250.58, p<0.001), hemisphere
(F(1,37241)=24.68, p<0.001), ROI (F(7,37241)=6.30, p<0.001) and the interac-
tions op:strategy (F(1,37245)=24.66, p<0.001) and strategy:size (F(2,37244)=5.94,
p<0.01).

Figure 7.20 presents the difference of upper alpha ERD/S values for addition
problems of different sizes for all ROIs.

Figure 7.20: Median ERD/S values in % (Upper alpha band) for the interaction of
problem sizes and ROIs. The significance between large-tiny (L-T) and large-small
(L-S) is shown in the subplot in the lower left corner.

Post-hoc tests revealed significant differences between retrieved and procedu-
rally solved addition and multiplication problems (both p<0.001). Differences
between strategies were also found for large problems (p<0.001).

Regarding problem size, differences between large and small (p<0.001), large
and tiny tasks (p<0.001) and small and tiny (p<0.05) were found. The contrast
large-small and large-tiny is also significantly different for procedure and retrieve
only problems (p<0.001). Table 7.14 shows that these contrasts are also signifi-
cantly different for all individual regions of both hemispheres.
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left hemisphere right hemisphere
Contrast ROI Estimate Std. Error z-value Pr(> |z|) Estimate Std. Error z-value Pr(> |z|)

in % in %
large – small AF -0.232 0.041 -5.582 *** -0.147 0.041 -3.533 ***
large – tiny AF -0.223 0.059 -3.760 *** -0.210 0.059 -3.543 ***
small – tiny AF 0.009 0.063 0.143 0.942 -0.063 0.063 -0.996 0.425
large – small C -0.259 0.041 -6.243 *** -0.189 0.041 -4.564 ***
large – tiny C -0.261 0.059 -4.408 *** -0.214 0.059 -3.615 ***
small – tiny C -0.002 0.063 -0.031 0.976 -0.025 0.063 -0.389 0.797
large – small CP -0.267 0.041 -6.429 *** -0.228 0.041 -5.490 ***
large – tiny CP -0.274 0.059 -4.637 *** -0.231 0.059 -3.910 ***
small – tiny CP -0.008 0.063 -0.122 0.942 -0.004 0.063 -0.058 0.974
large – small F -0.209 0.041 -5.029 *** -0.157 0.041 -3.774 ***
large – tiny F -0.221 0.059 -3.734 *** -0.232 0.059 -3.915 ***
small – tiny F -0.012 0.063 -0.195 0.942 -0.075 0.063 -1.187 0.323
large – small FC -0.223 0.041 -5.368 *** -0.160 0.041 -3.853 ***
large – tiny FC -0.231 0.059 -3.899 *** -0.220 0.059 -3.711 ***
small – tiny FC -0.008 0.063 -0.128 0.942 -0.060 0.063 -0.944 0.448
large – small P -0.176 0.041 -4.243 *** -0.237 0.041 -5.701 ***
large – tiny P -0.204 0.059 -3.453 *** -0.263 0.059 -4.440 ***
small – tiny P -0.028 0.063 -0.447 0.786 -0.026 0.063 -0.415 0.794
large – small PO -0.155 0.041 -3.743 *** -0.214 0.041 -5.150 ***
large – tiny PO -0.258 0.059 -4.353 *** -0.328 0.059 -5.536 ***
small – tiny PO -0.102 0.063 -1.616 0.150 -0.114 0.063 -1.800 0.105
large – small T -0.223 0.041 -5.370 *** -0.159 0.041 -3.841 ***
large – tiny T -0.263 0.059 -4.443 *** -0.193 0.059 -3.255 **
small – tiny T -0.040 0.063 -0.635 0.664 -0.033 0.063 -0.526 0.737

Table 7.14: Median ERD/S differences of the upper alpha band between
problem sizes for all ROIs on both hemishpheres.

The Bayesian ANOVA revealed that the model for hemisphere and size de-
scribes the data 9.0 · 1043 times better than hemisphere alone. The inclusion of
size to the ROI model improves it by a factor of 5.95 · 1044. Further, the inclusion
of size to a model including ROI and hemisphere improves the performance by a
factor of 7.14 · 1044.
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7.4 Interaction of problem-size, strategies and n+1
The sensor values were processed and averaged per ROI and hemisphere. After-
wards, a linear mixed model (op∗strategy∗sum∗add1s∗hemi∗roi∗(1|id)) was fit
with the processed data. A normality check indicated highly non-Normal residuals.
Thus, the model was fit with square root transformed ERD/S values. The pre-
sented test-statistics were then calculated with the Satterthwaite approximation
for degrees of freedom.

Theta band:

ANOVA-tests indicated significant differences for the main effects
strategy (F(1,37182)=5.91, p<0.5), sum (F(1,37179)=7.22, p<0.01), 1-task
(F(1,37179)=39.41, p<0.001), hemi (F(1,37177)=31.22, p<0.001), ROI
(F(7,37177)=17.88, p<0.001) and the interactions op:strategy (F(1,37180)=4.40,
p<0.05), strategy:add1s (F(1,37180)=6.84, p<0.01), sum:add1s (F(1,37178)=15.41,
p<0.001), strategy:roi (F(7,37177)=2.32, p<0.05), op:strategy:add1s
(F(1,37180)=6.74, p<0.01), op:add1s:roi (F(7,37177)=2.70, p<0.05).

Figure 7.21 shows the problem size effect in the theta band. Tasks with a sum
of 3 show the lowest theta ERS, while tasks with 10 have the highest value.

Figure 7.21: Problem size effect in the theta band for operand sums 3-10 displayed
for all 8 bilateral ROIs.

The difference of strategies and the factor +1 is shown for different problem
sums in Figure 7.22. It is low at tiny problems and increases for larger problems.

Post-hoc tests showed significant differences between self-reported strategies
of sensors of the whole scalp (p<0.05) and for those in the parieto-occipital re-
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gion (p<0.05). Additionally, for self-reported strategies at multiplication problems
(p<0.05) and 1-tasks (p<0.05).
1-tasks are significantly different from tasks that do not include an operator 1
(p<0.001). In more detail, this effect was found for addition problems for the re-
gions AF, F (p<0.001), C, FC, PO (p<0.01) and CP, P (p<0.05). Multiplication
problems showed this effect only in the parietal region (p<0.05).

Figure 7.22: Differences between strategies (top) and n+1/n+m (bottom) in the
theta band.

Lower alpha band:
ANOVA-tests indicate significant differences for the main effects
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operation (F(1,37179)=11.24, p<0.001), sum (F(1,37178)=16.04, p<0.001),
1-task
(F(1,37179)=21.36, p<0.001), hemisphere (F(1,37177)=5.67, p<0.05),
ROI (F(1,37177)=4.20, p<0.001) and the interactions
op:strategy (F(1,37179)=10.33, p<0.01), strategy:sum (F(1,37178)=5.9, p<0.01),
operation:1-task (F(1,37179)=12.79, p<0.001), sum:1-task (F(1,37178)=18.97, p<0.001),
strategy:roi (F(7,37177)=2.34, p<0.05), op:strategy:sum (F(1,37178)=4.64, p<0.05),
op:strategy:1-task (F(1,37179)=12.54, p<0.001),
strategy:1-task:hemi (F(1,37177)=4.30, p<0.05), strategy:1-task:roi (F(7,37177)=2.56,
p<0.05).

Figure 7.23 shows the problem size effect in the theta band. Tasks with a sum
of 3 show the lowest alpha ERD, while tasks with 10 have the highest value.

Figure 7.23: Problem size effect in the lower alpha band for operand sums 3-10
displayed for all 8 bilateral ROIs.

The difference of strategies and the factor +1 is shown for different problem
sums in Figure 7.24. The difference is low at tiny problems, and increases for
larger problems.

Post-hoc tests showed significant differences between self-reported strategies
at addition tasks (p<0.001) and in more detail at n + 1 tasks (p<0.001), n · m
(p<0.01) and n · 1 (n<0.05) tasks. ERD/S values of the procedure strategy were
significantly higher than those from retrieved answers. This effect was found in
the left hemisphere (p<0.001) and in the AF region for tasks that did not include
an operator of 1.
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Figure 7.24: Differences between strategies (top) and n+1/n+m (bottom) in the
lower alpha band.
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Upper alpha band:
ANOVA-tests indicated significant differences for the main effects operation
(F(1,37179)=7.73, p<0.01), sum (F(1,37179)=20.72, p<0.001), 1-tasks
(F(1,37179)=20.72, p<0.001), ROI (F(7,37177)=2.05, p<0.05) and the interactions
operation:strategy (F(1,37179)=4.74, p<0.05), strategy:sum (F(1,37178)=5.89, p<0.05),
sum:1-tasks (F(1,37178)=12.01, p<0.001), strategy:roi (F(7,37177)=2.05, p<0.05),
1-tasks:roi (F(7,37177)=2.04, p<0.05), hemisphere:roi (F(7,37177)=3.79, p<0.001),
op:strategy:sum (F(1,37178)=6.89, p<0.01) and op:1-task:hemisphere (F(1,37177)=4.42,
p<0.05).

The difference of strategies and the factor +1 is shown for different problem
sums in Figure 7.25. The difference is low at tiny problems, and increases for
larger problems.

Figure 7.25: Problem size effect in the upper alpha band for operand sums 3-10
displayed for all 8 bilateral ROIs.

The difference of strategies and the factor +1 is shown for different problem
sums in Figure 7.26. The difference is low at tiny problems, and increases for
larger problems.

Post-hoc tests showed significant differences between the strategies retrieve and
procedure in the bilateral parieto-occipital region (p<0.05). Tasks involving 1 were
significantly different from others in general (p<0.001) and for the regions C, CP
(p<0.01) and FC (p<0.05). These two types of problems differed in the left and in
the right hemisphere (both p<0.001) for addition tasks, but not for multiplications.
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Figure 7.26: Differences between strategies (top) and n+1/n+m (bottom) in the
upper alpha band.
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Discussion

8.1 Analysis of the problem-size effect
The most consistently found effect that is observable in this work is the problem
size effect. It states that reaction times and the use of procedural solution strategies
increase with increasing problem size [35], [36], [137]. In this study, we analyzed
patterns between tiny, small, and large problems. Problems with both operands
below 5 are considered as tiny. Problems with an operand-sum above ten are
considered as large, and small problems lay in between.
Considering reaction times, we expected that large problems are solved slower than
small problems, and those small problems are calculated slower than tiny ones.
The comparison of the problem size categories revealed a significant difference
between large and tiny problems and between large and small tasks. Additionally,
the contrast in response times between tiny and small sizes is significant too.

Regarding EEG-oscillations, we expected effects in the theta- and alpha band.
In the alpha band, band power does correlate inversely with the invested cognitive
demand [56], and deactivations occur whenever information from the knowledge
system is accessed [75], [76]. The knowledge system comprises the procedural mem-
ory system. As important anatomical structures for solving arithmetical problems
include the visual areas e.g., V1, the angular gyrus, and the fusiform gyrus, we
assumed that changes are observable mainly in the occipital and parieto-occipital
regions of the brain. Changes in the theta-band are mainly observed together with
cognitive processes like the working memory [58], [59], attention control [60]–[62]
or during information encoding. Additionally, arithmetical facts are recalled by
the use of the lexical system involving the left cortico-subcortico-loop. Thus, dif-
ferences in the theta band are mainly expected in the left central and frontocentral
regions.
Taken together, we expected that small problems elucidate higher theta ERS and
lower alpha ERD than large problems.
In the analysis, we found differences between problem sizes in the theta, lower

88
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alpha, and upper alpha band. A closer look revealed that these differences also
exist on more detailed scales like the individual hemispheres and regions of inter-
est. Exceptions from this simplified observation were found in the theta band for
the contrast of tiny and small problems. Here, the significant difference appeared
only in the right hemisphere. Other oddities were found in the alpha band for
the difference of small and tiny problems in the anterio-frontal and frontal regions,
as well as parietal and parieto-occipital in the lower alpha band, and temporal
in the upper alpha band. Also, for the contrast of small and tiny problems in
the central, frontal, fronto-central, and temporal regions as well as anterio-frontal,
centro-parietal, and parietal in the upper alpha band.
Hence, we could replicate results of [4], [5] who found a higher left-hemispheric
theta ERS for small (operand sum < 10) compared to large (operand sum ≥ 10)
problems and a stronger lower-alpha ERD for large problems. Contradicting our
expectations, the difference in left-hemispheric theta ERS was not significant be-
tween tiny and small problems. Theta ERS is linked to memory encoding and
retrieval [65]–[67] and may reflect mathematical fact retrieval [3], [4], [68], [69].
Consequently, the missing significant difference between tiny and small problems
suggests that both classes of problems are solved through the same underlying
process.

Through the independent component analysis, we expected to find at least one
cluster that contains mainly alpha ERD and is located in the bilateral parieto-
occipital region and one cluster that contains mainly theta ERS and is located in
the left-hemispheric perisylvian region.
The analysis of ERD/S values evaluated on independent components allowed to
identify four clusters located in the parieto-occipital, parietal, and centro-parietal
regions that showed significant differences between large and tiny problem sizes
in the second half of the solving process. Two of them showed the differences
also between small and tiny problems and one for the contrast of large and small
problems too. Further, we found three clusters that are located in the frontal and
fronto-central region and showed large activations in the theta-band. Significant
differences were found between large and tiny and large and small problems. The
evaluation of individual time-frequency bins even allowed us to identify differences
between tiny and small problems.

8.2 Strategy differences
The current belief that tiny problems are solved through a recall from long-term
memory was challenged in a newer behavioral study [7]. The authors claim that
problems with operands below four would be solved through fast automated, and
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unconscious processes.
We followed this hypothesis and contrasted the behavioral and neurological pat-
terns with these tiny and small problems. Furthermore, we compared these findings
to differences between self-reported retrieval and procedural and counting strate-
gies.

8.2.1 Differences between reconstructive and reproductive
strategies

We analyzed patterns between self-reported reconstructive and reproductive strate-
gies. Reproductive processes refer to a recall from long-term memory, while recon-
structive strategies describe problem transformations that are applied before the
answer is recalled. Reconstructive strategies consist of problem transformations,
counting, and other procedural strategies. They comprise additional steps required
before the actual solution is retrieved. Hence, we assumed that the application of
these strategies leads to longer calculation times. Indeed, we could experimentally
prove the assumption and found that response times are, on average 150ms longer
for procedurally solved problems compared to retrieved tasks. This finding is in
line with the current literature and was amongst others, also observed by Grab-
ner et al. [5]. For reasons described in 8.1, we expected effects in the theta- and
alpha band. This is, procedurally solved problems show a lower bilateral alpha
ERD while retrieved tasks elucidate a higher theta ERS. Mainly, in the central
and fronto-central regions of the left hemisphere.
Indeed, we could find significant differences in the theta-band in the left hemi-
sphere. Retrieved strategies elucidated a theta ERS that is 12.8 % higher than
at procedural problems. Furthermore, a look into the alpha band showed a by
12.0 % significantly lower alpha ERD value for procedurally solved problems than
for retrieved ones. To conclude, we could replicate the results of [5] in the theta
and upper-alpha band.

8.3 Comparison of sensor and source space
Two main effects were analyzed in the sensor and the source space and allowed to
make a qualitative comparison.
Regarding problem size, we found differences in the sensor and the source space
that are very similar. In the sensor space, we found that tiny and small problems
compared to large problems become significantly different, but that the differences
are not significant between tiny and small problems. This is true for the theta and
alpha band and is consistent with findings of [4], [5].
The analysis of activations on the independent components showed differences be-
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tween problem sizes for particular clusters. These are clusters 6 and 11 for the
theta-band and clusters 3, 4, and 5 for the alpha band. The differences become
significant between tiny and large problems, but not between tiny and small ones.
Therefore, advances of the IC-space analysis compared to the sensor-space analysis
are limited. We calculated the test-statistics for 5 and 10 clusters. Five clusters
have the advantage that all subjects are included in most clusters, which is not
given for 10 clusters. The bespoken cluster number 5, for example, comprises only
32 ICs of 21 subjects. This makes it difficult to make conclusions of the whole
population, but allowed to find more precise and segregated locations of the clus-
ters as well as more detailed ERSP patterns. This is the reason why the 10-cluster
setup is presented in this thesis.
The analysis of strategies showed similar results. We did find differences between
strategies in the theta-band. Unfortunately, these differences did not become sig-
nificant in the source space.
Taken together, the advances of the IC-space analysis are limited and in our opin-
ion not worth the additional required computation time.

8.4 Conclusion
In conclusion, we could replicate the problem size effect; Tiny and small problems
differed from large ones in the theta-, the lower- and the upper-alpha band such
that smaller problems elucidated higher theta ERS values, but less deactivation
in the alpha band. This effect was found by the analysis of sensor values and also
by the analysis of the independent components ERSPs. We could also identify
differences between strategies in behavioral data and EEG-oscillations. Significant
differences were mainly found in the theta-band and for the whole scalp when
sensor values were evaluated, but not for the IC-space analysis. A comparison
between those methods showed that both find similar effects. But, dealing with
ICs requires additional steps like performing the ICA, fitting dipoles, and cluster-
ing. Each of these steps comes with additional parameters that have to be found
and additional computation time. Together with the imprecise found locations of
IC-clusters, we conclude that the analysis on the sensor space is fully sufficient in
most cases.
Besides the comparison of the two analysis methods, we could compare tiny ad-
dition problems to small addition and tiny multiplication problems and found no
significant differences in their EEG oscillations. Thus, we found no support for
Uittenhove’s model of fast unconscious and automated procedures for tiny prob-
lems.
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Attachments

Table 6.6 shows the names, the ids, the hemisphere and lobe of all Desikan-Killany
regions for which ICs were found. Moreover, it lists how many ICs included in these
regions were assigned to each cluster. ICs in regions related to Visual Number
Forming were mainly assigned to clusters 2 (16.3%), 4 (46.3%) and 11 (22.5%).
Processes related to Auditory Number Form are well represented in group 11
(83.3%) and the ones for Numerical Quantity are found in Cluster 8 (35.2%) and
in the groups 6 and 11 (both 22.2%). ICs related to the Episodic and Semantic
memory are mostly in cluster 7 (47.1%) and 11 (23.5%). Sources activated in
Salience / Attention control are found in group 11 (60%). Finally, working Memory
/ Cognitive control is almost equally distributed to clusters 3 (9.7%), 5 (10.2%),
6 (9.7%), 9 (21.0%), 10 (16.7%) and 11 (23.7%).
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Cluster
# Hemi Lobe 2 3 4 5 6 7 8 9 10 11

Visual Number Form
Pericalcarine 22 L Occipital 1 0 2 0 0 0 0 0 0 1
Pericalcarine 122 R Occipital 0 0 2 0 0 1 0 0 0 1
Cuneus 6 L Occipital 2 0 0 0 0 1 0 0 0 0
Cuneus 106 R Occipital 4 0 0 0 0 2 0 0 0 1
Lingual 14 L Occipital 1 0 6 0 0 0 1 0 0 2
Lingual 114 R Occipital 0 0 9 0 1 0 0 0 0 2
Lateral Occipital 12 L Occipital 5 0 2 0 0 0 3 0 0 1
Lateral Occipital 112 R Occipital 0 0 7 0 2 0 0 0 0 2
Fusiform 8 L Temporal 0 0 3 0 0 0 0 0 0 4
Fusiform 108 R Temporal 0 0 6 0 1 0 0 0 0 4
Clusters contain % of Visual Number Form 16.3 0.0 46.3 0.0 5.0 5.0 5.0 0.0 0.0 22.5
Auditory Number Form
Superior Temporal 31 L Temporal 0 0 0 1 0 0 0 0 0 4
Superior Temporal 131 R Temporal 0 0 0 0 0 0 0 0 0 1
Banks of Superior Temporal Sulcus 2 L . 0 0 0 0 0 0 0 0 0 1
Banks of Superior Temporal Sulcus 102 R . 0 0 0 0 1 0 0 0 0 4
Clusters contain % of Auditory Number Form 0.0 0.0 0.0 8.3 8.3 0.0 0.0 0.0 0.0 83.3
Numerical Quantity
Superior parietal 30 L Parietal 1 0 0 0 0 0 2 0 2 1
Superior parietal 130 R Parietal 1 0 1 0 4 0 0 0 0 3
Inferior parietal 9 L Parietal 1 0 0 0 0 0 9 0 0 1
Inferior parietal 109 R Parietal 0 0 4 0 3 0 0 0 0 4
Supramarginal 32 L Parietal 0 0 0 0 0 0 8 0 1 1
Supramarginal 132 R Parietal 0 0 0 0 5 0 0 0 0 2
Clusters contain % of Numerical Quantity 5.6 0.0 9.3 0.0 22.2 0.0 35.2 0.0 5.6 22.2
Episodic / Semantic
Inferior temporal 10 L Temporal 0 0 0 0 0 0 0 0 0 1
Inferior temporal 110 R Temporal 0 0 0 0 0 0 0 0 0 4
Middle Temporal 16 R Temporal 0 0 1 0 0 0 0 0 0 1
Parahippocampal 17 L Temporal 0 0 2 0 0 0 0 0 0 0
Precuneus 26 L Parietal 1 1 0 0 0 10 1 0 0 5
Precuneus R Parietal 5 0 4 0 0 14 0 0 0 1
Clusters contain % of Episodic / Semantic 11.8 2.0 13.7 0.0 0.0 47.1 2.0 0.0 0.0 23.5

Table 9.1: Amount of independent components found for each Desikan-
Killany region; regions are grouped by neurocognitive processes as de-
scribed in [136].
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Cluster
# Hemi Lobe 2 3 4 5 6 7 8 9 10 11

Salience / Attention control
Insula L 0 0 0 0 0 0 0 0 0 3
Insula R 0 1 0 2 0 0 0 0 0 0
Pars triangularis 21 L Frontal 0 0 0 0 0 0 0 0 0 2
Pars Opercularis 19 L Frontal 0 0 0 0 0 0 0 0 1 1
Clusters contain % of Salience / Attention control 0.0 10.0 0.0 20.0 0.0 0.0 0.0 0.0 10.0 60.0
Working Memory / Cognitive Control
Postcentral 23 L Parietal 0 0 0 0 0 0 0 0 12 4
Postcentral R Parietal 0 0 0 0 10 0 0 1 0 2
Precentral 25 L Frontal 0 2 0 0 0 0 0 0 16 4
Precentral R Frontal 0 9 0 1 8 0 0 1 0 8
Isthmus of Cingulate 11 L Parietal 0 0 5 0 0 4 0 0 0 1
Isthmus of Cingulate 111 R Parietal 0 0 0 0 0 4 0 0 0 1
Posterior Cingulate 24 L Parietal 0 3 1 0 0 1 0 1 2 1
Posterior Cingulate 124 R Parietal 1 1 0 0 0 1 0 1 0 2
Caudal Anterior Cingulate 3 L Frontal 0 0 0 4 0 0 0 3 0 1
Caudal Anterior Cingulate 103 R Frontal 0 1 0 3 0 0 0 1 0 1
Rostral Anterior Cingulate 27 L Frontal 0 0 0 2 0 0 0 0 0 0
Rostral Middle Frontal 28 L Frontal 0 0 0 1 0 0 0 2 0 2
Rostral Middle Frontal R Frontal 0 0 0 3 0 0 0 0 0 0
Superior frontal 29 L Frontal 0 1 0 2 0 0 0 15 0 5
Superior frontal R Frontal 0 1 0 1 0 0 0 12 0 4
Lateral Orbitofrontal 113 R Frontal 0 0 0 0 0 0 0 0 0 2
Lateral Orbitofrontal 15 L Frontal 0 0 0 1 0 0 0 0 0 1
Caudal Middle Frontal 4 L Frontal 0 0 0 0 0 0 0 0 1 1
Caudal Middle Frontal R Frontal 0 0 0 1 0 0 0 2 0 4
Clusters contain % of Working menory / cognitive control 0.5 9.7 3.2 10.2 9.7 5.4 0.0 21.0 16.7 23.7

Table 9.2: Amount of independent components found for each Desikan-
Killany region; regions are grouped by neurocognitive processes as de-
scribed in [136].



Bibliography

[1] G. Pfurtscheller and F. Lopes da Silva, “Event-related desynchronization
(ERD) and event-related synchronization”, in Electroencephalography: Basic
Principles, Clinical Applications and Related Field, E. In, E. Niedermeyer,
and F. Lopes da Silva, Eds., 5th ed, Philadelphia, PA: Lippincott, Williams
& Wilkins, 2005, pp. 1003–1016.

[2] C. Neuper and G. Pfurtscheller, “Event-related dynamics of cortical rhythms:
Frequencyspecific features and functional correlates”, International Journal
of Psychophysiology, vol. 43, no. 1, pp. 41–58, 2001. [Online]. Available:
https://doi.org/10.1016/S0167-8760.

[3] W. Klimesch, B. Schack, and P. Sauseng, “The Functional Significance of
Theta and Upper Alpha Oscillations”, Experimental Psychology, vol. 52,
no. 2, pp. 99–108, 2005. [Online]. Available: https://doi.org/10.1027/
1618-3169.52.2.99.

[4] B. De Smedt, R. Grabner, and B. Studer, “Oscillatory EEG correlates of
arithmetic strategy use in addition and subtraction”, Experimental Brain
Research, vol. 195, no. 4, pp. 635–642, 2009.

[5] R. Grabner and B. De Smedt, “Oscillatory EEG correlates of arithmetic
strategies: A training study”, Frontiers in Psychology, vol. 3, pp. 1–11, 2012.

[6] P. Barrouillet and C. Thevenot, “On the problem-size effect in small ad-
ditions: Can we really discard any counting-based account?”, Cognition,
vol. 128, no. 1, pp. 35–44, 2013.

95

https://doi.org/10.1016/S0167-8760
https://doi.org/10.1027/1618-3169.52.2.99
https://doi.org/10.1027/1618-3169.52.2.99


96 Bibliography

[7] K. Uittenhove, C. Thevenot, and P. Barrouillet, “Fast automated counting
procedures in addition problem solving: When are they used and why are
they mistaken for retrieval?”, Cognition, vol. 146, pp. 289–303, 2016. [On-
line]. Available: https://doi.org/10.1016/j.cognition.2015.10.008.

[8] H. Kahn and H. Whitaker, “Acalculia: An historical review of localization”,
Brain and Cognition, vol. 17, pp. 102–115, 1991. [Online]. Available: https:
//doi.org/10.1016/0278-2626(91)90071-F.

[9] D. S. Henschen, “Über Sprach-, Musik- und Rechenmechanismen und ihre
Lokalisationen im Großhirn.”, 1919.

[10] L. Zago, L. Petit, M. Turbelin, F. Andersson, M. Vigneau, and N. Tzourio-
Mazoyer, “How verbal and spatial manipulation networks contribute to
calculation: An fMRI study”, Neuropsychologia, vol. 46, no. 9, pp. 2403–
2414, 2008. doi: https://doi.org/10.1016/j.neuropsychologia.
2008 . 03 . 001. [Online]. Available: https : / / doi . org / 10 . 1016 / j .
neuropsychologia.2008.03.001.

[11] O. Gruber, P. Indefrey, H. Steinmetz, and A. Kleinschmidt, “Dissociating
neural correlates of cognitive components in mental calculation”, Cerebral
Cortex, vol. 11, no. 4, pp. 350–359, 2001. doi: https://doi.org/10.
1093/cercor/11.4.350. [Online]. Available: https://doi.org/10.1093/
cercor/11.4.350.

[12] O. Simon, J. Mangin, L. Cohen, D. Le Bihan, and S. Dehaene, “Topo-
graphical layout of hand, eye, calculation, and language-related areas in
the human parietal lobe”, Neuron, vol. 33, no. 3, pp. 475–487, 2002. doi:
https://doi.org/10.1016/S0896-6273(02)00575-5. [Online]. Available:
https://doi.org/10.1016/S0896-6273(02)00575-5.

[13] V. Menon, K. Mackenzie, S. Rivera, and A. Reiss, “Prefrontal cortex in-
volvement in processing incorrect arithmetic equations: Evidence from event-
related fMRI”, Human Brain Mapping, vol. 16, no. 2, pp. 119–130, 2002.
doi: https://doi.org/10.1002/hbm.10035+. [Online]. Available: https:
//doi.org/10.1002/hbm.10035.

[14] F. Krueger, M. V. Spampinato, M. Pardini, S. Pajevic, J. N. Wood, G. H.
Weiss, S. Landgraf, and J. Grafman, “Integral calculus problem solving: An
fMRI investigation”, Neuroreport, vol. 19, no. 11, p. 1095, 2008.

[15] V. Menon, S. Rivera, C. White, G. Glover, and A. Reiss, “Dissociating pre-
frontal and parietal cortex activation during arithmetic processing”, Neu-
roImage, vol. 12, no. 4, pp. 357–365, 2000. doi: https://doi.org/10.
1006/nimg.2000.0613. [Online]. Available: https://doi.org/10.1006/
nimg.2000.0613.

https://doi.org/10.1016/j.cognition.2015.10.008
https://doi.org/10.1016/0278-2626(91)90071-F
https://doi.org/10.1016/0278-2626(91)90071-F
https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2008.03.001
https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2008.03.001
https://doi.org/10.1016/j.neuropsychologia.2008.03.001
https://doi.org/10.1016/j.neuropsychologia.2008.03.001
https://doi.org/https://doi.org/10.1093/cercor/11.4.350
https://doi.org/https://doi.org/10.1093/cercor/11.4.350
https://doi.org/10.1093/cercor/11.4.350
https://doi.org/10.1093/cercor/11.4.350
https://doi.org/https://doi.org/10.1016/S0896-6273(02)00575-5
https://doi.org/10.1016/S0896-6273(02)00575-5
https://doi.org/https://doi.org/10.1002/hbm.10035+
https://doi.org/10.1002/hbm.10035
https://doi.org/10.1002/hbm.10035
https://doi.org/https://doi.org/10.1006/nimg.2000.0613
https://doi.org/https://doi.org/10.1006/nimg.2000.0613
https://doi.org/10.1006/nimg.2000.0613
https://doi.org/10.1006/nimg.2000.0613


Bibliography 97

[16] L. Zago, M. Pesenti, E. Mellet, F. Crivello, B. Mazoyer, and N. Tzourio-
Mazoyer, “Neural correlates of simple and complex mental calculation”,
Neuroimage, vol. 13, pp. 314–327, 2001. doi: https : / / doi . org / 10 .
1006/nimg.2000.0697. [Online]. Available: https://doi.org/10.1006/
nimg.2000.0697.

[17] M. Rosenberg-Lee, M. Lovett, and J. Anderson, “Neural correlates of arith-
metic calculation strategies”, Cognitive Affective Behavioural Neuroscience,
vol. 9, no. 3, pp. 270–285, 2009. doi: https://doi.org/10.3758/CABN.9.
3.270. [Online]. Available: https://doi.org/10.3758/CABN.9.3.270.

[18] V. Menon, “Arithmetic in the child and adult brain”, Handbook of Mathe-
matical Cognition, 2015.

[19] E. Kirk and M. Ashcraft, “Telling Stories: The Perils and Promise of Us-
ing Verbal Reports to Study Math Strategies”, Journal of Experimental
Psychology: Learning, Memory and Cognition, vol. 27, no. 1, pp. 157–175,
2001. doi: http://dx.doi.org/10.1037/0278-7393.27.1.157. [Online].
Available: http://dx.doi.org/10.1037/0278-7393.27.1.157.

[20] B. Smith-Chant and J. LeFevre, “Doing as they are told and telling it like
it is: Self-reports in mental arithmetic”, M&C, vol. 31, pp. 516–528, 2003.

[21] T. Hinault, P. Lemaire, and N. Phillips, “Aging and sequential modulations
of poorer strategy effects: An EEG study in arithmetic problem solving”,
Brain Res, vol. 1630, pp. 144–158, 2016. doi: https://doi.org/10.1016/
j.brainres.2015.10.057. [Online]. Available: https://doi.org/10.
1016/j.brainres.2015.10.057.

[22] L. Wang, J. Q. Gan, L. Zhang, and H. Wang, “Differential recruitment of
brain networks in single-digit addition and multiplication: Evidence from
EEG oscillations in theta and lower alpha bands”, en, International Jour-
nal of Psychophysiology, vol. 128, pp. 81–92, Jun. 2018, issn: 01678760.
doi: 10.1016/j.ijpsycho.2018.04.005. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0167876017304804 (vis-
ited on 07/01/2019).

[23] Y. Chen and J. Campbell, “Operator and operand preview effects in simple
addition and multiplication: A comparison of Canadian and Chinese adults”,
Journal of Cognitive Psychology, vol. 27, no. 3, pp. 326–334, 2015. [Online].
Available: https://doi.org/10.1080/20445911.2014.999685.

[24] ——, “Operator priming and generalization of practice in adults’ simple
arithmetic”, Journal of Experimental Psychology: Learning, Memory, and
Cognition, vol. 42, pp. 627–635, 2016. doi: doi:10.1037/xlm0000196.

https://doi.org/https://doi.org/10.1006/nimg.2000.0697
https://doi.org/https://doi.org/10.1006/nimg.2000.0697
https://doi.org/10.1006/nimg.2000.0697
https://doi.org/10.1006/nimg.2000.0697
https://doi.org/https://doi.org/10.3758/CABN.9.3.270
https://doi.org/https://doi.org/10.3758/CABN.9.3.270
https://doi.org/10.3758/CABN.9.3.270
https://doi.org/http://dx.doi.org/10.1037/0278-7393.27.1.157
http://dx.doi.org/10.1037/0278-7393.27.1.157
https://doi.org/https://doi.org/10.1016/j.brainres.2015.10.057
https://doi.org/https://doi.org/10.1016/j.brainres.2015.10.057
https://doi.org/10.1016/j.brainres.2015.10.057
https://doi.org/10.1016/j.brainres.2015.10.057
https://doi.org/10.1016/j.ijpsycho.2018.04.005
https://linkinghub.elsevier.com/retrieve/pii/S0167876017304804
https://linkinghub.elsevier.com/retrieve/pii/S0167876017304804
https://doi.org/10.1080/20445911.2014.999685
https://doi.org/doi: 10.1037/xlm0000196


98 Bibliography

[25] A. Metcalfe and J. Campbell, “Adults’ strategies for simple addition and
multiplication: Verbal self-reports and the operand recognition paradigm”,
J. Exp. Psychol. Learn. Mem. Cogn, vol. 37, pp. 661–672, 2011. doi: http:
//dx.doi.org/10.1037/a0022218. [Online]. Available: http://dx.doi.
org/10.1037/a0022218.

[26] M. Fayol and C. Thevenot, “The use of procedural knowledge in simple
addition and subtraction problems”, Cognition, vol. 123, pp. 392–403, 2012.
doi: https://doi.org/10.1016/j.cognition.2012.02.008. [Online].
Available: https://doi.org/10.1016/j.cognition.2012.02.008.

[27] J. Campbell and Q. Xue, “Cognitive Arithmetic Across Cultures”, Journal
of Experimental Psychology: General, vol. 130, no. 2, pp. 299–315, 2001.
[Online]. Available: https://doi.org/10.1037/00963445.130.2.299.

[28] S. Duverne and P. Lemaire, “Arithmetic split effects reflect strategy se-
lection: An adult age comparative study in addition comparison and ver-
ification tasks”, Can. J. Exp. Psychol. (Revue Canadienne de Psychologie
Expérimentale), vol. 59, no. 4, pp. 262–278, 2005. [Online]. Available: http:
//dx.doi.org/10.1037/h0087479..

[29] K. Uittenhove and P. Lemaire, Numerical Cognition during Cognitive Aging.
In: Cohen, 2014.

[30] P. Lemaire, Cognitive Aging: The Role of Strategies. New York, NY: Psy-
chology Press, 2015. [Online]. Available: https://sci-hub.tw/https:
//doi.org/10.4324/9781315650999.

[31] I. Imbo and A. Vandierendonck, “The development of strategy use in el-
ementary school children: Working memory and individual differences”, J.
Exp. Child Psychol, vol. 96, no. 4, pp. 284–309, 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.jecp.2006.09.001..

[32] P. Lemaire and L. Reder, “What effects strategy selection in arithmetic?
The example of parity and five effects on product verification”, Mem. Cogn,
vol. 27, no. 2, pp. 364–382, 1999. [Online]. Available: http://dx.doi.org/
10.3758/BF03211420..

[33] P. Lemaire and R. Siegler, “Four aspects of strategic change: Contributions
to children’s learning of multiplication”, J. Exp. Psychol. Gen, vol. 124,
no. 1, pp. 83–97, 1995. [Online]. Available: http://dx.doi.org/10.1037/
0096-3445.124.1.83..

[34] T. Hinault and P. Lemaire, What does EEG tell us about arithmetic strate-
gies? A review. 2016.

https://doi.org/http://dx.doi.org/10.1037/a0022218
https://doi.org/http://dx.doi.org/10.1037/a0022218
http://dx.doi.org/10.1037/a0022218
http://dx.doi.org/10.1037/a0022218
https://doi.org/https://doi.org/10.1016/j.cognition.2012.02.008
https://doi.org/10.1016/j.cognition.2012.02.008
https://doi.org/10.1037/00963445.130.2.299
http://dx.doi.org/10.1037/h0087479.
http://dx.doi.org/10.1037/h0087479.
https://sci-hub.tw/https://doi.org/10.4324/9781315650999
https://sci-hub.tw/https://doi.org/10.4324/9781315650999
http://dx.doi.org/10.1016/j.jecp.2006.09.001.
http://dx.doi.org/10.3758/BF03211420.
http://dx.doi.org/10.3758/BF03211420.
http://dx.doi.org/10.1037/0096-3445.124.1.83.
http://dx.doi.org/10.1037/0096-3445.124.1.83.


Bibliography 99

[35] R. Grabner and B. De Smedt, “Neurophysiological evidence for the valid-
ity of verbal strategy reports in mental arithmetic”, Biological Psychology,
vol. 87, no. 1, pp. 128–136, 2011.

[36] J.-A. LeFevre, J. Bisanz, K. Daley, L. Buffone, S. Greenham, and G. Sadesky,
“Multiple Routes to Solution of Single-Digit Multiplication Problems”, Jour-
nal of Experimental Psychology: General, vol. 125, no. 3, pp. 284–306, 1996.
[Online]. Available: https://doi.org/10.1037/00963445.125.3.284.

[37] J.-A. LeFevre, G. Sadesky, and J. Bisanz, “Selection of Procedures in Men-
tal Addition: Reassessing the Problem Size Effect in Adults”, Journal of
Experimental Psychology: Learning, Memory and Cognition, vol. 22, no. 1,
pp. 216–230, 1996. [Online]. Available: https : / / doi . org / 10 . 1037 /
02787393.22.1.216.

[38] C. Thevenot, P. Barrouillet, and M. Fayol, “Algorithmic solution of arith-
metic problems and operands-answer associations in long-term memory”,
Quarterly Journal of Experimental Psychology, vol. 54, no. 2, pp. 599–611,
2001. [Online]. Available: https://doi.org/10.1080/713755966.

[39] P. Barrouillet and M. Fayol, “From algorithmic computing to direct re-
trieval: Evidence from number and alphabetic arithmetic in children and
adults. Memory and”, Cognition, vol. 26, no. 2, pp. 355–368, 1998. [Online].
Available: https://doi.org/10.3758/BF03201146.

[40] J. Campbell and J. Timm, “Adults’ strategy choices for simple addition:
Effects of retrieval interference”, Psychonomic Bulletin and Review, vol. 7,
no. 4, pp. 692–699, 2000. [Online]. Available: https://doi.org/10.3758/
BF03213008.

[41] J. Campbell, “Architectures for numerical cognition”, Cognition, vol. 53,
pp. 1–44, 1994.

[42] J. Campbell, “Handbook of Mathematical Cognition”, Cogn, vol. 30, no. 6,
J. Campbell, Ed., pp. 988–994, 2005. [Online]. Available: http://dx.doi.
org/10.3758/BF03195782..

[43] M. McCloskey, “Cognitive mechanisms in numerical processing: Evidence
from acquired dyscalculia”, Cognition, vol. 44, pp. 107–157, 1992. [Online].
Available: http://dx.doi.org/10.1016/00100277.

[44] M. McCloskey and P. Macaruso, Architecture of cognitive numerical pro-
cessing mechanisms: contrasting perspectives on theory development and
evaluation. 1994.

[45] ——, “Representing and using numerical information”, Am, 1995.

https://doi.org/10.1037/00963445.125.3.284
https://doi.org/10.1037/02787393.22.1.216
https://doi.org/10.1037/02787393.22.1.216
https://doi.org/10.1080/713755966
https://doi.org/10.3758/BF03201146
https://doi.org/10.3758/BF03213008
https://doi.org/10.3758/BF03213008
http://dx.doi.org/10.3758/BF03195782.
http://dx.doi.org/10.3758/BF03195782.
http://dx.doi.org/10.1016/00100277


100 Bibliography

[46] D. Ansari, “Does the Parietal Cortex Distinguish between “10,” “Ten,”
and Ten Dots?”, en, Neuron, vol. 53, no. 2, pp. 165–167, Jan. 2007, issn:
08966273. doi: 10.1016/j.neuron.2007.01.001. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0896627307000049
(visited on 08/08/2019).

[47] S. Dehaene, “Varieties of numerical abilities”, Cognition, vol. 44, pp. 1–42,
1992.

[48] S. Dehaene and L. Cohen, “Towards an anatomical and functional model
on number processing”, Math. Cogn, vol. 1, pp. 83–120, 1995.

[49] S. Dehaene, M. Piazza, P. Pinel, and L. Cohen, “Three parietal circuits for
number processing”, Cognition, vol. 20, pp. 487–506, 2003.

[50] S. Dehaene and L. Cohen, “Cerebral pathways for calculation: Double dis-
sociation between rote verbal and quantitative knowledge of arithmetic”,
Cortex, vol. 33, no. 2, pp. 219–250, 1997.

[51] J. Campbell and L. Epp, “An encoding-complex approach to numerical cog-
nition in Chinese-English bilinguals”, Can. J. Exp. Psychol, vol. 58, pp. 229–
244, 2004.

[52] J. Campbell and J. Clark, “Numerical Cognition: An Encoding-Complex
Perspective”, The Nature and Origins of Mathematical Skills. Elsevier Sci-
ence, J. Campbell, Ed., pp. 457–491, 1992.

[53] B. Pakkenberg and H. Gundersen, “BNeocortical neuron number in humans:
Effect of sex and”, Comparat. Neurol, vol. 384, no. 2, pp. 312–320, 1997.

[54] T. Hinault, S. Dufau, and P. Lemaire, Sequential modulations of poorer-
strategy effects during strategy execution: an event-related potential study
in arithmetic. Brain Cogn. 2014.

[55] ——, “Strategy combination in human cognition: A behavioral and ERP
study in arithmetic”, Psychon. Bull. Rev, 2014. [Online]. Available: http:
//dx.doi.org/10.3758/.

[56] G. Pfurtscheller and F. Lopes, “Event-related EEG/MEG synchronization
and desynchronization: Basic principles”, Clinical Neurophysiology, vol. 110,
pp. 1842–1857, 1999. [Online]. Available: https://doi.org/10.1016/
S1388-2457.

[57] M. Bastiaansen, P. Hagoort, N. Christa, and K. Wolfgang, “Oscillatory
neuronal dynamics during language comprehension”, Progress in Brain Re-
search, vol. 159, pp. 179–196, 2006.

https://doi.org/10.1016/j.neuron.2007.01.001
https://linkinghub.elsevier.com/retrieve/pii/S0896627307000049
http://dx.doi.org/10.3758/
http://dx.doi.org/10.3758/
https://doi.org/10.1016/S1388-2457
https://doi.org/10.1016/S1388-2457


Bibliography 101

[58] P. Sauseng, W. Klimesch, M. Doppelmayr, S. Hanslmayr, M. Schabus, and
W. Gruber, “Theta coupling in the human electroencephalogram during a
working memory task”, Neurosci. Lett, vol. 354, pp. 123–126, 2004.

[59] P. Sauseng, B. Griesmayr, R. Freunberger, and W. Klimesch, “Control
mechanisms in working memory: A possible function of EEG theta oscilla-
tions”, Neurosci. Biobehav. Rev, vol. 34, pp. 1015–1022, 2010.

[60] M. Deiber, P. Missonnier, O. Bertrand, G. Gold, L. Fazio-Costa, V. Ibanez,
and P. Giannakopoulos, “Distinction between perceptual and attentional
processing in working memory tasks: A study of phase-locked and induced
oscillatory brain dynamics”, J. Cogn. Neurosci, vol. 19, pp. 158–172, 2007.

[61] P. Sauseng, J. Hoppe, W. Klimesch, C. Gerloff, and F. Hummel, “Dissocia-
tion of sustained attention from central executive functions: Local activity
and interregional connectivity in the theta range”, European Journal of
Neuroscience, vol. 25, pp. 587–593, 2007.

[62] M. Clayton, N. Yeung, and R. Cohen Kadosh, “The roles of cortical os-
cillations in sustained attention”, Trends Cogn. Sci, vol. 19, pp. 188–195,
2015.

[63] T. Harmony, T. Fernández, J. Silva, J. Bosch, P. Valdés, A. Fernández-
Bouzas, L. Galán, E. Aubert, and D. Rodrıéguez, “Do specific EEG frequen-
cies indicate different processes during mental calculation?”, Neuroscience
letters, vol. 266, no. 1, pp. 25–28, 1999.

[64] S. Micheloyannis, V. Sakkalis, M. Vourkas, C. Stam, and P. Simos, “Neural
networks involved in mathematical thinking: Evidence from linear and non-
linear analysis of electroencephalographic activity”, Neuroscience Letters,
vol. 373, no. 3, pp. 212–217, 2005. [Online]. Available: https://doi.org/
10.1016/j.neulet.2004.10.005.

[65] A. Burgess and J. Gruzelier, “Short duration power changes in the EEG
during recognition memory for words and faces”, Psychophysiology, vol. 37,
no. 5, pp. 596–606, 2000. [Online]. Available: https://doi.org/10.1017/
S0048577200981356.

[66] O. Jensen and C. Tesche, “Frontal theta activity in humans increases with
memory load in a working memory task”, European Journal of Neuroscience,
vol. 15, no. 8, pp. 1395–1399, 2002. [Online]. Available: https://doi.org/
10.1046/j.1460-9568.2002.01975.x.

[67] W. Klimesch, M. Doppelmayr, T. Pachinger, and B. Ripper, “Brain oscil-
lations and human memory: EEG correlates in the upper alpha and theta
band”, Neuroscience Letters, vol. 238, no. 1–2, pp. 9–12, 1997. [Online].
Available: https://doi.org/10.1016/S0304-3940.

https://doi.org/10.1016/j.neulet.2004.10.005
https://doi.org/10.1016/j.neulet.2004.10.005
https://doi.org/10.1017/S0048577200981356
https://doi.org/10.1017/S0048577200981356
https://doi.org/10.1046/j.1460-9568.2002.01975.x
https://doi.org/10.1046/j.1460-9568.2002.01975.x
https://doi.org/10.1016/S0304-3940


102 Bibliography

[68] J. Earle, P. Garciadergay, A. Manniello, and C. Dowd, “Mathematical cog-
nitive style and arithmetic sign comprehension: A study of EEG alpha and
theta activity”, International Journal of Psychophysiology, vol. 21, pp. 1–
13, 1996.

[69] M. Klados, K. Kanatsouli, I. Antoniou, F. Babiloni, V. Tsirka, P. Bamidis,
and S. Micheloyannis, “A graph theoretical approach to study the Organi-
zation of the Cortical Networks during different mathematical tasks”, PLoS
One, vol. 8, no. 8, p. 71 800, 2013. [Online]. Available: http://dx.doi.
org/10.1371/journal.pone.0071800..

[70] V. Gorisek, A. Belic, C. Manouilidou, B. Koritnik, G. Repovs, J. Bon, J.
Zibert, and J. Zidar, “The electrophysiological correlates of the working
memory subcomponents: Evidence from high-density EEG and coherence
analysis”, Neurol. Sci, vol. 36, pp. 2199–2207, 2015.

[71] W. Klimesch, “Memory processes, brain oscillations and EEG synchroniza-
tion”, Int. J. Psychophysiol, vol. 24, pp. 61–100, 1996.

[72] B. Griesmayr, B. Berger, R. Stelzig-Schoeler, W. Aichhorn, J. Bergmann,
and P. Sauseng, “EEG theta phase coupling during executive control of
visual working memory investigated in individuals with schizophrenia and
in healthy controls”, Cogn. Affect. Behav. Neurosci, vol. 14, pp. 1340–1355,
2014.

[73] H. Mizuhara, L. Wang, K. Kobayashi, and Y. Yamaguchi, “Long-range EEG
phase synchronization during an arithmetic task indexes a coherent cortical
network simultaneously measured by fMRI”, NeuroImage, vol. 27, pp. 553–
563, 2005.

[74] A. Bowman, J. Griffis, K. Visscher, A. Dobbins, T. Gawne, M. DiFrancesco,
and J. Szaflarski, “Alpha rhythm and the default mode network: An EEG-
fMRI study (P6.021)”, Neurology, vol. 84, no. 14, pp. 6–21, 2015.

[75] W. Klimesch, R. Fellinger, and R. Freunberger, “Alpha oscillations and
early stages of visual encoding”, Front. Psychol, vol. 2, p. 118, 2011.

[76] W. Klimesch, “Alpha-band oscillations, attention, and controlled access to
stored information”, Trends Cogn. Sci, vol. 16, pp. 606–617, 2012.

[77] Y. Ku, B. Hong, X. Gao, and S. Gao, “Spectra-temporal patterns underly-
ing mental addition: An ERP and ERD/ERS study”, Neuroscience Letters,
vol. 472, no. 1, pp. 5–10, 2010. [Online]. Available: https://doi.org/10.
1016/j.neulet.2010.01.040.

[78] A. Neubauer, A. Fink, R. Grabner, N. Christa, and K. Wolfgang, “Sensi-
tivity of alpha band ERD to individual differences in cognition”, Progress
in Brain Research, vol. 159, pp. 167–178, 2006.

http://dx.doi.org/10.1371/journal.pone.0071800.
http://dx.doi.org/10.1371/journal.pone.0071800.
https://doi.org/10.1016/j.neulet.2010.01.040
https://doi.org/10.1016/j.neulet.2010.01.040


Bibliography 103

[79] T. Fernández, T. Harmony, M. Rodríguez, J. Bernal, J. Silva, A. Reyes,
and E. Marosi, “EEG activation patterns during the performance of tasks
involving different components of mental calculation”, Electroencephalogr.
Clin. Neurophysiol, vol. 94, no. 3, pp. 175–182. 1995. [Online]. Available:
http://dx.doi.org/10.1016/0013-4694.

[80] T. Harmony, T. Fernández, J. Silva, J. Bernal, L. Díaz-Comas, A. Reyes, E.
Marosi, M. Rodríguez, and M. Rodríguez, “EEG delta activity: An indicator
of attention to internal processing during performance of mental tasks”, Int.
J. Psychophysiol, vol. 24, no. 1–2, pp. 161–171, 1996. [Online]. Available:
http://dx.doi.org/10.1016/S0167-8760.

[81] P. Zarjam, J. Epps, F. Chen, and N. Lovell, “Estimating cognitive workload
using wavelet entropy-based features during an arithmetic task”, Computers
in Biology and Medicine, vol. 43, no. 12, pp. 2186–2195, 2013. [Online].
Available: http://dx.doi.org/10.1016/j.compbiomed.2013.08.021..

[82] S. Dimitriadis, N. Laskaris, V. Tsirka, M. Vourkas, and S. Micheloyannis,
“What does delta band tell us about cognitive processes: A mental calcu-
lation study”, in, 2010.

[83] M. K. Islam, A. Rastegarnia, and Z. Yang, “Methods for artifact detec-
tion and removal from scalp EEG: A review”, en, Neurophysiologie Clin-
ique/Clinical Neurophysiology, vol. 46, no. 4-5, pp. 287–305, 2016, issn:
09877053. doi: 10.1016/j.neucli.2016.07.002. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S098770531630199X
(visited on 07/18/2018).

[84] P Berg and M Scherg, “Dipole modelling of eye activity and its applica-
tion to the removal of eye artefacts from the EEG and MEG”, en, Clinical
Physics and Physiological Measurement, vol. 12, no. A, pp. 49–54, 1991,
issn: 0143-0815. doi: 10.1088/0143-0815/12/A/010. [Online]. Available:
http://stacks.iop.org/0143-0815/12/i=A/a=010?key=crossref.
f1e2b521dfc8adb24defe8ff16f07305 (visited on 07/18/2018).

[85] L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, “Iclabel: An auto-
mated electroencephalographic independent component classifier, dataset,
and website”, NeuroImage, vol. 198, pp. 181–197, 2019.

[86] I. Winkler, S. Haufe, and M. Tangermann, “Automatic classification of ar-
tifactual ica-components for artifact removal in eeg signals”, Behavioral and
Brain Functions, vol. 7, no. 1, p. 30, 2011.

[87] M. Jas, D. A. Engemann, Y. Bekhti, F. Raimondo, and A. Gramfort, “Au-
toreject: Automated artifact rejection for MEG and EEG data”, NeuroIm-
age, vol. 159, pp. 417–429, 2017.

http://dx.doi.org/10.1016/0013-4694
http://dx.doi.org/10.1016/S0167-8760
http://dx.doi.org/10.1016/j.compbiomed.2013.08.021.
https://doi.org/10.1016/j.neucli.2016.07.002
http://linkinghub.elsevier.com/retrieve/pii/S098770531630199X
https://doi.org/10.1088/0143-0815/12/A/010
http://stacks.iop.org/0143-0815/12/i=A/a=010?key=crossref.f1e2b521dfc8adb24defe8ff16f07305
http://stacks.iop.org/0143-0815/12/i=A/a=010?key=crossref.f1e2b521dfc8adb24defe8ff16f07305


104 Bibliography

[88] H. Nolan, R. Whelan, and R. B. Reilly, “FASTER: Fully automated sta-
tistical thresholding for EEG artifact rejection”, Journal of neuroscience
methods, vol. 192, no. 1, pp. 152–162, 2010.

[89] Q. Barthélemy, L. Mayaud, D. Ojeda, and M. Congedo, “The Riemannian
potato field: A tool for online signal quality index of EEG”, IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 2,
pp. 244–255, 2019.

[90] T. Iuculano, A. Padmanabhan, and V. Menon, “Chapter 15 - Systems Neu-
roscience of Mathematical Cognition and Learning: Basic Organization and
Neural Sources of Heterogeneity in Typical and Atypical Development”, in
Heterogeneity of Function in Numerical Cognition, A. Henik and W. Fias,
Eds., Academic Press, 2018, pp. 287 –336, isbn: 978-0-12-811529-9. doi: 10.
1016/B978-0-12-811529-9.00015-7. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/B9780128115299000157.

[91] S. E. Vogel, C. Goffin, J. Bohnenberger, K. Koschutnig, G. Reishofer, R. H.
Grabner, and D. Ansari, “The left intraparietal sulcus adapts to symbolic
number in both the visual and auditory modalities: Evidence from fMRI”,
NeuroImage, vol. 153, pp. 16–27, 2017.

[92] T. Allison, G. McCarthy, A. Nobre, A. Puce, and A. Belger, “Human ex-
trastriate visual cortex and the perception of faces, words, numbers, and
colors”, Cerebral cortex, vol. 4, no. 5, pp. 544–554, 1994.

[93] A. Martin, “The representation of object concepts in the brain”, Annu. Rev.
Psychol., vol. 58, pp. 25–45, 2007.

[94] J. Binder, D. Medler, C. Westbury, E. Liebenthal, and L. Buchanan, “Tun-
ing of the human left fusiform gyrus to sublexical orthographic structure”,
NeuroImage, vol. 33, no. 2, pp. 739–748, 2006.

[95] R. Starrfelt and C. Gerlach, “The visual what for area: Words and pictures
in the left fusiform gyrus”, Neuroimage, vol. 35, no. 1, pp. 334–342, 2007.

[96] G. McCarthy, A. Puce, J. C. Gore, and T. Allison, “Face-specific processing
in the human fusiform gyrus”, Journal of cognitive neuroscience, vol. 9,
no. 5, pp. 605–610, 1997.

[97] R. Grabner, D. Ansari, K. Koschutnig, G. Reishofer, F. Ebner, and C. Neu-
per, “To retrieve or to calculate? Left angular gyrus mediates the retrieval of
arithmetic facts during problem solving”, Neuropsychologia, vol. 47, pp. 604–
608, 2009.

https://doi.org/10.1016/B978-0-12-811529-9.00015-7
https://doi.org/10.1016/B978-0-12-811529-9.00015-7
http://www.sciencedirect.com/science/article/pii/B9780128115299000157
http://www.sciencedirect.com/science/article/pii/B9780128115299000157


Bibliography 105

[98] A. Ischebeck, L. Zamarian, C. Siedentopf, F. Koppelstatter, T. Benke, S.
Felber, and M. Delazer, “How specifically do we learn? Imaging the learning
of multiplication and subtraction”, NeuroImage, vol. 30, no. 4, pp. 1365–
1375, 2006.

[99] T. Rickard, S. Romero, G. Basso, C. Wharton, S. Flitman, and J. Grafman,
“The calculating brain: An fMRI study”, Neuropsychologia, vol. 38, no. 3,
pp. 325–335, 2000.

[100] D. Ansari, “Effects of development and enculturation on number repre-
sentation in the brain”, Nature Reviews Neuroscience, vol. 9, pp. 278–291,
2008.

[101] M. Andres, B. Pelgrims, N. Michaux, E. Olivier, and M. Pesenti, “Role of
distinct parietal areas in arithmetic: An fMRI-guided TMS study”, Neu-
roImage, vol. 54, no. 4, pp. 3048–3056, 2011.

[102] J. E. G. Hall, Hall Textbook of Medical Physiology: Enhanced E-book. Else-
vier Health Sciences, 2010.

[103] S. Dehaene and L. Cohen, “Dissociable mechanisms of subitizing and count-
ing: Neuropsychological evidence from simultanagnosic patients.”, Journal
of Experimental Psychology: Human Perception and Performance, vol. 20,
no. 5, p. 958, 1994.

[104] M. Arsalidou and M. Taylor, “Is 2 + 2 = 4? Meta-analyses of brain areas
needed for numbers and calculations”, NeuroImage, vol. 54, pp. 2382–2393,
2011.

[105] J. C. Britton, K. L. Phan, S. F. Taylor, R. C. Welsh, K. C. Berridge, and
I. Liberzon, “Neural correlates of social and nonsocial emotions: An fMRI
study”, Neuroimage, vol. 31, no. 1, pp. 397–409, 2006.

[106] A. J. Calder, J. Keane, F. Manes, N. Antoun, and A. W. Young, “Impaired
recognition and experience of disgust following brain injury”, Nature neu-
roscience, vol. 3, no. 11, p. 1077, 2000.

[107] M. L. Gorno-Tempini, S. Pradelli, M. Serafini, G. Pagnoni, P. Baraldi, C.
Porro, R. Nicoletti, C. Umita, and P. Nichelli, “Explicit and incidental facial
expression processing: An fMRI study”, Neuroimage, vol. 14, no. 2, pp. 465–
473, 2001.

[108] A. Heinzel, F. Bermpohl, R. Niese, A. Pfennig, A. Pascual-Leone, G. Schlaug,
and G. Northoff, “How do we modulate our emotions? Parametric fMRI
reveals cortical midline structures as regions specifically involved in the
processing of emotional valences”, Cognitive Brain Research, vol. 25, no. 1,
pp. 348–358, 2005.



106 Bibliography

[109] M. P. Paulus and M. B. Stein, “An insular view of anxiety”, Biological
psychiatry, vol. 60, no. 4, pp. 383–387, 2006.

[110] S. A. Huettel, G. Güzeldere, and G. McCarthy, “Dissociating the neural
mechanisms of visual attention in change detection using functional MRI”,
Journal of Cognitive Neuroscience, vol. 13, no. 7, pp. 1006–1018, 2001.

[111] R. Hester, C. Fassbender, and H. Garavan, “Individual differences in error
processing: A review and reanalysis of three event-related fMRI studies
using the GO/NOGO task”, Cerebral Cortex, vol. 14, no. 9, pp. 986–994,
2004.

[112] L. Q. Uddin, A. Clare Kelly, B. B. Biswal, F Xavier Castellanos, and M. P.
Milham, “Functional connectivity of default mode network components:
Correlation, anticorrelation, and causality”, Human brain mapping, vol. 30,
no. 2, pp. 625–637, 2009.

[113] L. Q. Uddin and V. Menon, “The anterior insula in autism: Under-connected
and under-examined”, Neuroscience & Biobehavioral Reviews, vol. 33, no. 8,
pp. 1198–1203, 2009.

[114] S. Cho, A. Metcalfe, C. Young, S. Ryali, D. Geary, and V. Menon, “Hippocampal-
prefrontal engagement and dynamic causal interactions in the maturation of
children’s fact retrieval”, Journal of Cognitive Neuroscience, vol. 24, no. 9,
pp. 1849–1866, 2012.

[115] K. Supekar and V. Menon, “Developmental maturation of dynamic causal
control signals in higher-order cognition: A neurocognitive network model”,
PLoS Computational Biology, vol. 8, no. 2, p. 1 002 374, 2012.

[116] K. Christoff and J. D. Gabrieli, “The frontopolar cortex and human cogni-
tion: Evidence for a rostrocaudal hierarchical organization within the hu-
man prefrontal cortex”, Psychobiology, vol. 28, no. 2, pp. 168–186, 2000.

[117] J.-H. Song and Y. Jiang, “Visual working memory for simple and complex
features: An fMRI study”, Neuroimage, vol. 30, no. 3, pp. 963–972, 2006.

[118] C. Chang, S. Crottaz-Herbette, and V. Menon, “Temporal dynamics of
basal ganglia response and connectivity during verbal working memory”,
NeuroImage, vol. 34, no. 3, pp. 1253–1269, 2007.

[119] M. Packard and B. Knowlton, “Learning and memory functions of the basal
ganglia”, Annual Review of Neuroscience, vol. 25, pp. 563–593, 2002.

[120] C. J. Stoodley and J. D. Schmahmann, “Functional topography in the hu-
man cerebellum: A meta-analysis of neuroimaging studies”, Neuroimage,
vol. 44, no. 2, pp. 489–501, 2009.



Bibliography 107

[121] C. V. Buhusi and W. H. Meck, “What makes us tick? Functional and neural
mechanisms of interval timing”, Nature reviews neuroscience, vol. 6, no. 10,
p. 755, 2005.

[122] S. Dehaene, E. Spelke, P. Pinel, R. Stanescu, and S. Tsivkin, “Sources of
mathematical thinking: Behavioral and brain-imaging evidence”, Science,
vol. 284, no. 5416, pp. 970–974, 1999.

[123] R. Grabner, C. Brunner, R. Leeb, C. Neuper, and G. Pfurtscheller, Event-
related. 2007.

[124] D. Pinault, “The thalamic reticular nucleus: Structure, function and con-
cept”, Brain research reviews, vol. 46, no. 1, pp. 1–31, 2004.

[125] S. E. Nadeau, “The thalamus and working memory”, Journal of the Inter-
national Neuropsychological Society, vol. 14, no. 5, pp. 900–901, 2008.

[126] F. Marzinzik, M. Wahl, G.-H. Schneider, A. Kupsch, G. Curio, and F.
Klostermann, “The human thalamus is crucially involved in executive con-
trol operations”, Journal of Cognitive Neuroscience, vol. 20, no. 10, pp. 1903–
1914, 2008.

[127] E. Curtis, M. Huebner, and J.-A. LeFevre, “The Relationship between Prob-
lem Size and Fixation Patterns During Addition, Subtraction, Multiplica-
tion, and Division”, Journal of Numerical Cognition, vol. 2, no. 2, pp. 91–
115, 2016. [Online]. Available: https://doi.org/10.5964/jnc.v2i2.17.

[128] J. D. Gabrieli, “Cognitive neuroscience of human memory”, Annual review
of psychology, vol. 49, no. 1, pp. 87–115, 1998.

[129] V. Lorenz, “Differences in eeg oscillations and response behavior between
solving addition and multiplication problems”, KFU Graz, pp. 1–94, 2019.

[130] J. W. Peirce, “Generating stimuli for neuroscience using PsychoPy”, Fron-
tiers in neuroinformatics, vol. 2, p. 10, 2009.

[131] L. Gabard-Durnam, A. Leal, C. Wilkinson, and A. Levin, “‘The harvard
automated processing pipeline for electroencephalography (HAPPE): Stan-
dardized processing software for developmental and high-artifact data,’”
Frontiers Neurosci, vol. 12, p. 97, 2018.

[132] J. Onton, M. Westerfield, J. Townsend, and S. Makeig, “Imaging human
EEG dynamics using independent component analysis”, Neuroscience &
biobehavioral reviews, vol. 30, no. 6, pp. 808–822, 2006.

[133] A. Delorme, T. Sejnowski, and S. Makeig, “Enhanced detection of artifacts
in EEG data using higher-order statistics and independent component anal-
ysis”, Neuroimage, vol. 34, no. 4, pp. 1443–1449, 2007.

https://doi.org/10.5964/jnc.v2i2.17


108 Bibliography

[134] .

[135] A. Mognon, J. Jovicich, L. Bruzzone, and M. Buiatti, “ADJUST: An auto-
matic EEG artifact detector based on the joint use of spatial and temporal
features”, Psychophysiology, vol. 48, pp. 229–240, 2011.

[136] W. Fias, V. Menon, and D. Szucs, “Multiple components of developmental
dyscalculia”, Trends in Neuroscience and Education, vol. 2, no. 2, pp. 43–
47, 2013.

[137] N. Zbrodoff, “Than 2 + 3? Strength and interference as explanations of
the problem-size effect. Memory &”, Cognition, vol. 23, no. 6, pp. 689–700,
1995.


	Acknowledgment
	Symbols, Abbreviations
	Zusammenfassung
	Abstract
	Introduction
	Arithmetic
	Neuroscience of arithmetic calculations
	Arithmetic strategies
	Numerical cognition

	Electroencephalogram (EEG)
	EEG oscillations
	Processing EEG data
	Blind source separation

	Anatomy
	Visual number form
	Auditory number form
	Numerical quantity
	Episodic / Semantic memory
	Salience / Attention control
	Working memory / Cognitive control

	Aim of the study
	Research Questions and Hypothesis
	Problem size: Are there differences between tiny, small and large addition problems?
	Strategies: Are there differences between recalled and procedurally solved strategies at large problems? 


	Methods
	Data acquisition
	Participants
	Materials

	EEG analysis
	Preprocessing
	Independent Component Analysis

	Influence of problem-size
	Behavioral analysis
	Sensor space EEG analysis
	Source-space EEG Analysis

	Influence of strategies
	Behavioral analysis
	Sensor space analysis
	Source-Space analysis

	Interaction of problem-size and strategies
	Interaction of problem-size, strategies and n+1

	Results
	Influence of problem-size
	Behavioral analysis
	Sensor-space
	IC-space Analysis
	Are there differences between tiny, small and large addition problems?

	Influence of strategies
	Behavioral analysis
	Sensor-space
	IC-space Analysis
	Are there differences between recalled and procedurally solved strategies at large problems?

	Interaction of problem-size and strategies
	Interaction of problem-size, strategies and n+1

	Discussion
	Analysis of the problem-size effect
	Strategy differences
	Differences between reconstructive and reproductive strategies

	Comparison of sensor and source space
	Conclusion

	Attachments

