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Abstract (English)

A fast and fully automatic design of 3D printed patient-specific cranial im-
plants is highly desired in cranioplasty, a process to restore a defect on the
skull. We formulate skull defect restoration as a 3D volumetric shape com-
pletion task, where a partial skull volume is completed automatically. The
difference between the completed skull and the partial skull is the restored
defect, in other words, the implant that can be used in cranioplasty. To this
end, a deep neural network based on the encoder-decoder architecture is
adopted. To facilitate supervised training, a database containing 167 healthy
skulls segmented from head CT in clinical routine has been established.
Synthetic defects are injected into the healthy skull to create training and
evaluation data pairs. To work on high-resolution and spatially sparse skull
data, we proposed a tailored patch-based training scheme that overcomes
the disadvantages of conventional patch-based training method and shows
significant improvement. In particular, the patch-based training method is
applied to images of high resolution and proves to be effective in tasks such
as segmentation. However, we demonstrate that conventional patch-based
training method is suboptimal for tasks such as shape reconstruction, where
the overall shape distribution of the target has to be learnt, since if cannot
be captured efficiently by a sub-volume cropped from the target. Addition-
ally, the standard dense implementation of a convolutional neural network
(CNN) tends to performs poorly on sparse data such as the skull, which
has a low voxel occupancy rate. Our tailored training scheme encourages a
standard CNN to learn interpretable features from the high-resolution and
sparse data. We have evaluated our method on both skulls with synthetic
defects and skulls with real defects manually injected by neurosurgeons in
craniotomy, and the results show potential for clinical applicability.
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Abstract (German)

Bei der Kranioplastik (Prozess zur Wiederherstellung nach einem Schädelde-
fekt) ist eine schnelle und vollautomatische Konstruktion von 3D-gedruckten
patientenspezifischen Schädelimplantaten sehr wünschenswert. Wir for-
mulieren die Wiederherstellung nach Schädeldefekten als eine volumetrische
Vervollständigung der Schädelform, bei der ein Teil des Schädelvolumens
(der Schädeldefekt) automatisch vervollständigt wird. Der Unterschied bzw.
die Differenz zwischen dem fertigen (wiederhergestellten) Schädel und
dem Schädel mit Defekt ist also der wiederhergestellte Defekt, d.h., das
Implantat, das für die Kranioplastik verwendet werden kann. Zu diesem
Zweck wird ein tiefes neuronales Netz verwendet, das auf der Encoder-
Decoder-Architektur basiert. Zur Erleichterung des sogenannten beauf-
sichtigten Trainings wurde eine Datenbank mit 167 gesunden Schädeln
aufgebaut, die in der klinischen Routine akquiriert wurden und bei de-
nen der Schädelknochen segmentiert wurde. Um Trainings- und Bewer-
tungsdatenpaare für das neuronale Netz zu erstellen, wurden synthetische
Defekte in die gesunden Schädel injiziert. Um mit den hochauflösenden
und räumlich spärlichen Schädeldaten arbeiten zu können, haben wir ein
maßgeschneidertes patch-basiertes Trainingsschema vorgeschlagen, das die
Nachteile herkömmlicher patch-basierter Trainingsmethoden überwindet
und signifikante Verbesserungen aufweist. Insbesondere wird eine patch-
basierte Trainingsmethode angewendet, wenn das gesamte Bild eine hohe
Auflösung aufweist. Dies ist bei Aufgaben wie der Segmentierung effek-
tiv. Wir zeigen jedoch, dass herkömmliche, auf Patches basierende Train-
ingsmethoden für Aufgaben wie die Formrekonstruktion nicht optimal sind,
weil die Gesamtformverteilung des Ziels (die von einem Teilvolumen nicht
effizient erfasst werden kann) gelernt werden muss. Zusätzlich neigt die
standardmäßig dichte Implementierung eines Convolutional Neural Net-
work (CNN) dazu, bei spärlichen Daten schlecht zu arbeiten. Leider sind
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die Schädeldaten bei einer geringen Voxelbelegungsrate räumlich spärlich.
Unser maßgeschneidertes Trainingsschema erlaubt es einem Standard-CNN,
aus den hochauflösenden und spärlichen Daten Features zu lernen. Wir
haben unsere Methode sowohl an Schädeln mit synthetischen Defekten als
auch an Schädeln mit echten Defekten, die von Neurochirurgen bei der
Kraniotomie manuell injiziert wurden, evaluiert. Die Ergebnisse zeigen,
dass eine klinische Anwendung potenziell möglich ist.
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1 Introduction

1.1 Medical Background

Cranioplasty is the surgical process where the skull defect, caused in a brain
tumor surgery or by trauma, is repaired using a cranial implant, which must
fit precisely against the borders of the skull defect to replace the removed
cranial bone. The designing of the cranial implant is a challenging task and
involves several steps: (1) obtaining the 3D imaging data of the skull with
the defect from computed tomography (CT) or magnetic resonance imaging
(MRI) scans, (2) converting the 3D imaging data into 3D mesh models, and
(3) creating the 3D model of the implant for additive manufacturing aka
3D printing. The last step usually requires expensive commercial software,
which clinical institutions often have limited access to. Researchers have
been working on CAD software as alternative to the commercial software
for the designing of cranial implant, but these approaches still involve hu-
man interaction. All these software tools are time-consuming and require
expertise of the specific medical domain. Therefore, a fast and fully auto-
matic design of cranial implants is highly desired in cranioplasty, which
also enables intra-operative 3D-printing of the implants for the patient for
an instant defect reconstruction in one intervention/setting. This course of
action stands in strong contrast to the current clinical routine, where the
implant is manufactured offline, most often by an external manufacturer.
This means that the patient has to undergo surgery after some days or
even weeks, when the implant has been manufactured, including repeated
anesthesia. Furthermore, during the time the implant is manufactured, the
patient retains the cranial defect and lacks sufficient protection of the brain
in the defected area.
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1 Introduction

1.2 Scientific Contributions

The contribution of this thesis lies in five aspects. First, we demonstrated
the feasibility of using a 3D encoder-decoder network for volumetric shape
completion and successfully applied the network to fully automatic skull
defect restoration and cranial implant generation. Second, we constructed
a large database of healthy (complete) skulls and showed how to inject
synthetic defects into the healthy skulls in order to facilitate the training
of the deep learning networks. The database can be used for various other
purposes (e.g., creating 3D skull atlas and skull anatomy analysis) and
is scheduled to be open-sourced shortly. Third, we proposed a tailored
patch-based strategy for training deep learning networks when the data
are spatially sparse and high resolution (e.g., 512× 512× Z), which shows
a significant improvement compared with using a conventional training
scheme. Fourth, we established an interpretable deep learning model based
on the encoder-decoder architecture for skull shape completion, which can
serve as the baseline for future work that makes use of our datasets. Fi f th,
our approach has been evaluated on skulls with real defect from craniotomy
and the results show promise for clinical applicability.

1.3 Thesis Outline

My thesis is organized as follows: Chapter 2 reviews the existent semi-
automatic approaches for cranial implant design and introduces the concept
and commonly used methods for 3D shape completion in computer graphics,
where the data to be processed are usually triangular meshes or 3D point
clouds. We further extend the concept of 3D shape completion to high-
resolution volumetric data, i.e., the skull. Chapter 3 introduces the skull
database we constructed and the methods we used for pre-processing and
synthetic defect injection. Chapter 4 gives the details of the methodology
including the network architecture and the training algorithms. Chapter 5
presents the experiments that extensively evaluated the proposed methods
and the discussion of the results. Chapter 6 is the discussion of how the
proposed training strategy overcomes the disadvantage of conventional
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1.3 Thesis Outline

random cropping and benefits deep learning when the training data are
sparse and of high resolution. Finally, Chapter 7 concludes the study and
outlines areas for future research.
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2 Related Work

There exist several semi-automatic CAD approaches for skull defect restora-
tion and cranial implant reconstruction, which exploit the symmetricity of
the human skulls and fills the missing data by mirroring (Gall, Xing Li,
et al., 2016; X. Chen et al., 2017; Marzola et al., 2019; Egger et al., 2017).
These approaches are not optimal, considering that human skulls are not
strictly symmetric. Moreover, these approaches are still time-consuming,
limiting the application for intra-operative implant reconstruction and an
instant manufacturing of the implant with a bio-compatible 3D printer.
In (Morais, Egger, and Alves, 2019) and (Morais, 2018), a deep learning
approach based on volumetric auto-encoder for fully automatic skull de-
fect restoration was proposed. This approach is limited to a low-resolution
volumetric grid (303, 603 and 1203) generated from MRI data. Skull defect
restoration can be formulated as a 3D volumetric shape completion task,
aiming at predicting the missing structure of the defected skull volume.
In computer graphics, 3D shape completion has been intensively studied.
Related approaches include classical mesh processing methods that directly
operate on shapes represented as 3D triangular meshes (Kazhdan, Bolitho,
and Hoppe, 2006; Kazhdan and Hoppe, 2013; Zhao, Gao, and Lin, 2007; Ngo
and W.-S. Lee, 2011; Sakr et al., 2018). Some approaches complete the shape
by exploiting the symmetricity of 3D shapes represented as point cloud
(Schiebener et al., 2016; Sung et al., 2015; Mitra, Guibas, and Pauly, 2006).
The exploitation of symmetricity for shape completion is similar to some
of the interactive approaches for skull defect restoration, which utilize the
symmetricity of the human skull (Angelo et al., 2019; Marzola et al., 2019;
Gall, Xing Li, et al., 2016; Egger et al., 2017; X. Chen et al., 2017). Data-driven
approaches, especially deep learning approaches, also play an important
role for 3D shape completion, facilitated by publicly available 3D datasets.
These approaches usually operate on a volumetric representation of a 3D
point cloud from 3D scanning or RGBD images, such as (truncated) signed
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2 Related Work

distance field (TSDF), using traditional 3D convolutional neural networks,
which are mostly based on an encoder-decoder architecture (Dai, Qi, and
Nießner, 2016; Stutz and Geiger, 2018; Han et al., 2017; D. Li et al., 2017;
Litany et al., 2017). The volumetric representation of a point cloud is usually
binary, with 1 representing that the corresponding voxel grid is occupied
by a point, and 0 representing that the voxel gird is not occupied. However,
these approaches specifically target the shape completion of 3D point clouds
or mesh data structures. Even if some deep learning approaches utilize
the volumetric representation of point clouds, they are limited to process
low-resolution volume such as 1283 or 2563. For the restoration of a cranial
defect, or, in other words, for skull shape completion, the original data
structure is volumetric and requires high-resolution input and output of
the dimension 5122 × Z (in our case, Z ranges from 255 to 480). Recent
advances in deep learning have enabled convolutional operations to be
applied directly to point cloud data structures. Point cloud based deep
learning approaches for 3D shape classification and segmentation often use
the encoder-decoder architecture (Qi, Su, et al., 2016; Qi, Yi, et al., 2017;
J. Li, B. M. Chen, and G. H. Lee, 2018; Y. Yang et al., 2017; Y. Li et al., 2018;
Liu, Yan, and Bohg, 2019). However, most of the proposed approaches are
targeted at small point clouds (Wu et al., 2014). The lossless conversion
of a single skull volume to its corresponding 3D surface model yields a
large mesh with, e.g., 1.4 million points and 2.8 million triangular faces,
which these existing approaches are unable to handle. In this work, we
propose a data-driven approach for volumetric shape completion, dealing
directly with high-resolution volumetric data. The results show that the
proposed approach can effectively restore the fine details of the missing
cranial structures, while maintaining the original structure of the defected
skull.
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3 Materials

3.1 Datasets

We constructed a database containing 167 healthy (complete) skull datasets.
The skulls are segmented manually from CT scans of the head during the
clinical routine by neurosurgeons and have a high resolution of 512× 512×
Z (Z ranges from 255 to 480). Each dataset has the complete anatomical
structure of a skull without a defect. To create training pairs out of the
complete skull data, we empirically injected defects into the complete skulls
to simulate the defect of a craniotomy. Afterwards, the data driven approach
will learn to refill the defect based on these data pairs. This course of action
has two main advantages: (1) By injecting the holes into healthy skulls,
we know the ground truth for a reconstruction. (2) We can inject several
different holes for each healthy skull; Hence, we have more data for training
and evaluation than the actual number of skulls, which is a kind of data
augmentation.

3.2 Preprocessing and Data Pair Creation

Figure 3.1 shows the skull segmentation from CT images. After segmen-
tation, the CT table and the noise inside the skull are removed using 3D
connected component analysis. Depending on the age, neurosurgeons use
a customized segmentation threshold (100− 200) for each skull to make
sure the complete skull anatomy (including the maxillary sinus, which is
very thin) can be preserved after thresholding. Besides the skull, the process
can also preserve structures with similar density to the skull bones, such as
calcium, which is the cause of noise inside the skull.
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3 Materials

Figure 3.1: Skull segmentation from CT images and denoising using 3D connected compo-
nent analysis.

In order to create realistic defects in the healthy skull, we refer to the real
morphology of skull defects that are manually injected by neurosurgeons
during craniotomy. Figure 3.2 (a) shows a defected skull acquired in cran-
iotomy from our previously published dataset (Gall, Tax, et al., 2019). In
craniotomy, the surgeons open the skull manually using craniotome by
drilling roundish holes in the corners. The drill comes in different diameters,
and 13mm/9mm (outer/inner diameter) is commonly used. Figure 3.2 (b)
shows the synthetic defects we injected into the healthy skull after noise
reduction. For each single skull, we considered several defects with different
position and size to enlarge the datasets for training and evaluation. The
defects used in the datasets are simplified, but represent the general mor-
phology of real defects (the real defect has a rougher border). As is shown
in Figure 3.2 (b), we injected nine random defects into each skull, resulting
in a total of 167× 9 = 1503 data pairs (nine defected skulls correspond to
one healthy skull). The data pairs are further split into a training set of 765

(85× 9) pairs and a testing set of 738 (82× 9) pairs. Besides the 167 healthy
skulls, we also collected two additional CT scans from craniotomy for the
evaluation of the approach.

8



3.2 Preprocessing and Data Pair Creation

Figure 3.2: Illustration of the skull defect in craniotomy (a) and the simplified defect (b)
used in our datasets. We considered nine random defects for each healthy skull.
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4 Methodology

4.1 Probabilistic Model for Volumetric Shape
Completion

Restoring defects in the skull can be formulated as a 3D volumetric shape
completion task, where the skull is represented as a 3D volume with a
missing part (see Figure 3.2 (b)). Let Sd ∈ [0, 1] be the skull with a defect,
and, Sc ∈ [0, 1] be the corresponding complete skull of the same dimension
R512×512×Z, where 1 represents voxels belonging to the skull and 0 represents
unoccupied voxels (the background and the empty space inside the skull)
in the skull volume. The skull defect restoration is to reconstruct Sc from

Sd : Sd
φ(θ)→ Sc, φ(θ) is the reconstruction matrix with parameters θ, such

that their difference L(Sc, φ(θ)Sd) =
{

Sc − φ(θ)Sd
}

can be minimized. To
make the optimization more stable and compensate over-fitting, L2 kernel
(weights) regularizers are introduced:

min
θ

L(Sc, φ(θ)Sd) + λ ‖θ‖2
2 , λ = 0.0005 (4.1)

The restored defect or, in other words, the cranial implant Imp can be
expressed as the subtraction of Sd from the reconstructed skull φ(θ)Sc:

Imp = φ(θ)Sd − Sd (4.2)

Similarly, the ground truth implant can be obtained by subtracting Sd
from Sc: Img = Sc − Sd. We demonstrated that minimizing the difference
between Img and Imp is equivalent to minimizing the difference between Sc
and φ(θ)Sd, as in Equation (4.1): Img − Imp = (Sc − Sd)− (φ(θ)Sd − Sd) =
Sc − φ(θ)Sd. We consider a parameterized probabilistic model P(Sc|Sd, θ)

11



4 Methodology

with parameters θ that maps a partial skull Sd to a complete skull Sc, which
are both represented as a 3D volume. The model serves as the reconstruction
matrix φ(θ) and aims at solving Equation (4.1).

The output of the model is given as p = P(Sc|Sd, θ), where p ∼ (0, 1) is
the probability of the voxel being occupied in Sc given the input Sd. From
a probabilistic perspective, solving Equation (4.1) is equivalent to directly
maximizing the conditional probability p and the solution θ∗ can be obtained
by:

θ∗ = argmax
θ

P(Sc|Sd, θ) (4.3)

Considering that Sd , Sc and p are of the same volumetric dimension, it
is natural to think of using a 3D encoder-decoder network for modeling
p = P(Sc|Sd, θ), where the number of operations for down-sampling and
up-sampling is equal, and the output is the probability of the voxel being
occupied. We use the Dice Similarity Coefficient (DSC) as the loss function,
as shown in Equation (4.4). The negative value of the DSC between φ(θ)Sd
and Sc is used to guide the updating of the model parameter θ during
optimization (considering (Sd, Sc) as a training pair):

L(Sc, p(θ, Sd)) =
−2p(Sc, θ)Sc

p(Sc, θ)p(Sc, θ) + ScSc
+ λ ‖θ‖2

2 , λ = 0.0005 (4.4)

4.2 Dimensionality Problem in Deep Learning for
Medical Image Processing

Medical images are usually of high dimensionality (e.g., 512× 512× Z for
our skull data) and cannot be fed into deep learning networks directly due to
the limitation of GPU memory. We rejected down-sampling the images to a
lower resolution as it causes loss of information and deforms the anatomical
structure. Instead, we consider a patch-based solution for the dimensionality
problem: we crop a smaller sub-volume from the high-resolution image as
the input to the deep learning network (X. Yang et al., 2017; Wang, Noble,
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4.3 Network Architecture

and Dawant, 2019; Heinrich, Oktay, and Bouteldja, 2019; Dou et al., 2017;
Xiaomeng Li et al., 2018; Kamnitsas et al., 2017).

4.3 Network Architecture

Considering the common positions of defects in craniotomy, we use only
the upper part of the skull for network training and testing. The upper part
of the skull is cropped from each skull, resulting in a fixed skull dimension
of 512× 512× 128 for each dataset. We constructed two baseline encoder-
decoder networks, which are illustrated in Figure 4.1 and Figure 4.2. For the
network in Figure 4.1, the encoder is comprised of four convolutional layers
with a stride of two for down-sampling and an additional convolutional
layer with a stride of one for feature embedding. The decoder is comprised
of four deconvolutional layers for up-sampling, and the output layer is
a convolutional layer with a stride of one each. The latent feature space
and the output layer are represented by convolutional layers with a stride
of one. The total number of trainable parameters of the model is 82.076

million. In Figure 4.2, max-pooling is used in the down-sampling path, and
skip connections are added between corresponding down-sampling and
up-sampling layers. The number of trainable parameters of this network is
41.024 million.

4.4 Training Strategy

We propose two patch-based strategies for training the auto-encoder in
Figure 4.1 and Figure 4.2: overlapping cropping and non-overlapping crop-
ping for the comparison with the conventional random cropping. For each
training strategy, we consider a fixed patch dimension of 1283 as the input
of the network. For convenience of notation, we define the following:

The training set

Tr
{{

Sd1, Sg1

}
,
{

Sd2, Sg2

}
...
{

Sdi, Sgi

}
...
{

SdNtr , SgNtr

}}
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Figure 4.1: The architecture of the patch-based auto-encoder network for the skull defect
restoration and cranial implant generation.

contains training pairs from
{

Sd1, Sg1

}
to
{

SdNtr , SgNtr

}
. Sdi is the ith de-

fected skull, and Sgi is the corresponding ground truth (the complete skull).
Ntr is the number of training pairs in the training set (Ntr = 85). Define
pdij ∈ 1283, pgij ∈ 1283(i = 1, 2...Ntr; j = 1, 2...Np), where Np is the num-
ber of patches, as the jth patch extracted from sdi and sgi. EPOCH is the
number of training epochs, and we make sure that all the models can fully
converge given the training epochs. The training strategies are summarized
in Algorithm 1 and Algorithm 2 and illustrated in Figure 4.3.

Non-overlapping Cropping As the name suggests, we extract Np = 4× 4 =

16 patches of dimension 1283 from the skull (512× 512× 128), such that
the patches do not overlap each other (see Figure 4.3 (b)). For Np = 16
successive training epochs, the extracted patches are sequentially fed into
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Figure 4.2: Added skip connections to the encoder-decoder network.

Algorithm 1 (Non)overlapping Cropping

1: model initialization θ0

2: for epoch← 1 to EPOCH do
3: i = random(1, Ntr)
4: for j← 1 to Np do
5: θepoch,j+1 = model update(θepoch,j, pdij, pgij)
6: end for
7: end for
8: θ∗ = θEPOCH
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Algorithm 2 Random Cropping

1: model initialization θ0

2: for epoch← 1 to EPOCH do
3: i = random(1, Ntr)
4: x = random(1, 512− 128)
5: y = random(1, 512− 128)
6: pdi = sdi[x : x + 128, y : y + 128, :]
7: pgi = sgi[x : x + 128, y : y + 128, :]
8: θepoch+1 = model update(θepoch, pdi, pgi)
9: end for

10: θ∗ = θEPOCH

the network to update the network parameters, one patch for each epoch.
After the Np = 16 successive training epochs, another skull data is selected,
and the same procedure is applied.

Overlapping Cropping The overlapping cropping training strategy is simi-
lar to the non-overlapping cropping. The difference is that for overlapping
cropping, we extracted Np = 7× 7 = 49 patches from each skull, and the
patches are overlapped in the middle (see Figure 4.3 (a)). The network
parameters are updated for Np = 7× 7 = 49 successive training epochs by
these patches, before another skull data is selected.

Random Cropping For the conventional random cropping, each training
epoch utilizes a 1283 patch randomly cropped from the skull and then
switches to another skull data set.

For ease of reference, the networks in Figure 4.1 and Figure 4.2 are referred
to as Model1 and Model2 respectively. We denote the model trained using
non-overlapping cropping (−n), overlapping cropping (−o) and random
cropping (−r) strategy as Model− n, Model− o and Model− r. For example,
Model1 − n denotes the Model1 trained using the non-overlapping strategy.
We will demonstrate that, the models trained using the proposed train-
ing strategies (Algorithm 1) perform significantly better than the random
cropping, which is widely used in other studies.
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Figure 4.3: Illustration of overlapping (a), non-overlapping (b) and random cropping train-
ing strategy (c).
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5 Experiment and Results

5.1 Experiments

5.1.1 Implementation

We implemented Model1 and Model2 using Tensorflow, on a machine with
an Intel(R) Core(TM) i5-6600K CPU and a Nvidia GeForce GTX 1070Ti
GPU (8GB GDDR5). The loss function is defined in Equation (4.4), and
the optimizer is Adam. The training (85× 9 = 765) and testing (82× 9 =
738) sets are described in Chapter 3 (B). For the experiments, we train
Model1 from scratch (weights initialized from normal distribution), using
non-overlapping cropping, overlapping cropping and random cropping,
respectively, and obtain the trained models Model1 − n, Model1 − o and
Model1 − r. Model2 is also trained from scratch (initial weights drawn from
normal distribution) using non-overlapping cropping, and the trained model
is Model2 − n. Each training takes approximately one week.

5.1.2 Evaluation Metrics

We evaluated the trained models in terms of Dice Similarity Coefficient
(DSC): DSC = 2|G ∩ P|/(|G|+ |P|) (P: the prediction, G: the ground truth)
and Jaccard Similarity Coefficient (JSC, also known as Intersection Over
Union (IOU)): |P ∩ G| /(|P|+ |G| − |P ∩ G|). These metrics are commonly
used to measure the similarity between two binary volumetric masks. For
voxel-level evaluation, the performance of the models to distinguish between
unoccupied voxels (the background and the empty space inside the skull)
and occupied voxels (voxels belonging to the skull) is measured using
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precision (also known as PPV, positive predictive value): PPV = TP/(TP +
FP) and recall (also known as sensitivity, true positive rate): Recall =
TP/(TP + FN). From this perspective, the models are considered as binary
classifiers. The AUC (area under the ROC curve) is also adopted for a more
comprehensive evaluation of the classification ability of the models. We
calculate these metrics for both the skull (the reconstructed skull and the
skull ground truth) and the implant (the implant obtained by subtracting the
defected skull from the reconstructed skull, and the ground truth implant).
For convenience, DSC and JSC are referred to as reconstruction accuracy,
and Precision and Recall are referred to as classification accuracy. For a
more advanced evaluation, we created the surface model (triangular mesh)
for some selected test cases and calculated the Hausdorff Distance (HD)
w.r.t. the mesh created from the ground truth Gm and the mesh created from
the prediction Pm:

HD(Gm, Pm) = max
{

d(Gm, Pm), d(Pm, Gm)
}

, (5.1)

where d(Gm, Pm) = max
{

min
∥∥pG − pP

∥∥
2

}
; pG ∈ Gm are the vertices be-

longing to Gm, and pP ∈ Pm are the vertices belonging to Pm. For a qualitative
evaluation and comparison, we also show the reconstructed skull and the
implant in both 2D and 3D. The HD between the reconstructed triangular
mesh and the ground truth is color-coded and visualized as a red-green-blue
colormap (red indicates small errors, and blue indicates large errors).

5.2 Results

We first performed skull reconstruction on the 82× 9 = 738 test cases using
the trained models Model1− n, Model1− o, Model1− r and Model2− n. For
each test case, we obtained the implant by subtracting the defected skull
from the reconstructed skull according to Equation (4.2). The implant and
the reconstructed skull are compared against the ground truth to calculate
the evaluation metrics, and the results are shown in Table 5.1.

We observe from Table 5.1 that Model1 − n and Model1 − o outperform
Model1− r regarding all the metrics for both the skull and implant, showing
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the superiority of the proposed training strategy (−n and −o) compared
to the conventional random cropping (−r). Model2 − n has the best perfor-
mance among the trained models, and all the metrics regarding the skull
exceed 0.90 (DSC: 0.9508, Precision: 0.9622, Recall: 0.9403, JSC: 0.9075), which
is a significant improvement compared to Model1 for both reconstruction
accuracy and classification accuracy. The performance of Model2 shows
the advantage of using skip connections in the encoder-decoder network.
Note that Model2 is only half the size of Model1 in terms of the number
of trainable parameters. Compared with the skull, the metrics for the im-
plant are much lower. Some of the poor results may come from the failure
of the models when the defect is very large and the defect is generated
against the lower border of the cropped skull (512× 512× 128), where the
context information is missing. For the majority of the training and testing
cases, the defects are generated within the skull where the defect context
is available (see Figure 3.2 (b)). The poor results regarding the metrics can
be primarily attributed to the mismatch between the reconstructed skull
and the ground truth skull, which is represented as noise in the implant
obtained by subtraction based on Equation (4.2). We will further explain the
issue in later sections. As we stated in Chapter 3 (B), we considered nine
different defects for each of the 82 unique skulls in the test set. For all the
metrics, we take the mean of the nine scenarios as the final score for each
unique skull. The scores of the 82 cases are given as boxplots in Figure 5.1
(the skull) and Figure 5.2 (the implant). We can see that Model2 − n has the
best performance, while Model1 − r has the worst performance. Besides, it
can be seen that the performance of Model2 − n is more stable among the
test cases compared to other models, as the scores for Model2 − n are more
concentrated in the boxplot.

Figure 5.3 shows a skull/implant scatter plot, and we can see that the skull
and the implant are positively related in terms of reconstruction accuracy
(DSC and JSC) and classification accuracy (Precision and Recall), which is in
accordance with the demonstration in Chapter 4 (A): Minimizing the skull
error is equivalent to minimizing the implant error.

The ROC curve in Figure 5.4 shows the discriminative ability of the four
trained models when considered as binary classifiers. This curve is created
based on the probabilistic output of the models and the ground truth skulls
for the nine cases in Figure 5.5 at various threshold settings. The probabilistic
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Figure 5.1: Boxplot of the metrics for the skulls by non-overlapping cropping (Model1 − n),
random cropping (Model1 − r), overlapping cropping (Model1 − o) and skip
connection (Model2 − n).

output of the models gives the probability of an voxel belonging to the
unoccupied space (the background and the empty space inside the skull)
and the occupied space (the skull). We can see from the AUC (the area under
the ROC curve) value that all the four models are strong classifiers w.r.t.
the nine cases in Figure 5.5, whereas Model1 − o and Model2 − n performs
better than Model1 − n and Model1 − r.

5.2.1 Statistical Significance Analysis

Via t-tests, we further analysed whether the improvement of using skip
connections (Model2 − n) and the proposed training strategy (−n, −o) is
statistically significant regarding all the metrics for both the skull and the

implant. We calculated t = (X̄1 − X̄2)/sp

√
2
n , where sp =

√
s2

X1
+s2

X2
2 and X̄1,

X̄2,s2
X1

,s2
X2

are the mean and the estimated variance w.r.t. a metric from two
trained models. n is the number of test cases. Table 5.2 shows the results. In
this table, Model is abbreviated as M.

We adopt the commonly used PT = 0.5 as the threshold to categorize the
difference as significant or insignificant. Table 5.2 shows that Model2 − n
performs significantly better than Model1 − o, Model1 − n and Model1 − r
for both the skull and the implant regarding most of the metrics. The
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Figure 5.2: Boxplot of the metrics for the implants by non-overlapping cropping (Model1 −
n), random cropping (Model1 − r), overlapping cropping (Model1 − o) and skip
connection (Model2 − n).

proposed training strategy (Model1− n and Model1− o) also sees significant
improvements compared to a conventional training strategy (Model1 − r).
We see no significant difference between Model1 − n and Model1 − o in
terms of the metrics except the recall (Model1 − o performs slightly better
than Model1 − n regarding the metrics according to Table 5.1). Nonetheless,
their difference can be better observed through visual inspection of the
reconstruction in Figure 5.5.

5.2.2 3D Visualization

For a visual inspection, we show the hole-filling results for nine different
skulls with defects of different shapes, positions and sizes in Figure 5.5. The
reconstruction results in the third to fifth row are produced by Model1 − o,
Model1 − n and Model1 − r, respectively. The 3D view of the reconstruction
results shows that the defects can be restored by the three approaches, but
Model1 − n and Model1 − o generally perform better than Model1 − r w.r.t.
the reconstruction quality. The top right of each image shows the 2D sagittal
view of the defected skull (red) overlapped with the reconstructed skull
(white). On the one hand, from the 2D views, we can see how the borders
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Figure 5.3: Scatter plot of skull/implant regarding the metric by the four trained models.

match between the defected area and the restored defect (i.e., the implant).
On the other hand, the hole-filling model is expected to restore the defect,
while maintaining as much as possible the original structure of the defected
skull. This can also be seen from the 2D views outside the defected area
on the skull (only the upper part of the skull (512× 512× 128) needs to
be inspected). We can see that the reconstructed skull (white) in the 2D
view apart from the defected area indicates a good overlap (match) with the
defected skull (red).

For cranial implant design in cranioplasty, the borders between the defect
and the implant are most critical concerning the protection the implant
can provide to the brain inside. The first to third row in Figure 5.6 shows
the Hausdorff Distance (HD), represented by a red-green-blue colormap,
between the triangular mesh of the ground truth and the reconstructed skull
produced by Model1 − o, Model1 − n and Model1 − r. The HD is calculated
w.r.t. the meshes created from the ground truth and from the reconstruction
according to Equation (5.1). Column one to nine correspond to the nine
cases in Figure 5.5. In the red-green-blue colormap, red indicates a small
error while blue indicates a large error. For each case (column), the colormap
is adjusted to the same color range, so that we can see the level of mismatch
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Figure 5.4: Receiver operating characteristic (ROC) curve of the four models created based
on the nine cases in Figure 5.5.

of a certain area on the skull simply by looking at the color. On the left
side of each colormap, the histogram of the HD values is shown, and
the concentration of the HD values near zero indicates an overall small
error. It can be seen that Model1 − r has the worst performance, which
is in accordance with the observation from Figure 5.5. We can also see
from the colormap that there are different level of mismatch between the
ground truth and the prediction throughout the skull. Generally, the largest
mismatch between the ground truth and the reconstructed skull comes from
the restored region (the implant). The fourth row in Figure 5.6 shows the
HD colormap between the mesh created from the ground truth implant and
the mesh created from the implant obtained by subtracting the defected
skull from the reconstructed skull (by Model1 − n). The border and the fine
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details (the roundish corner) of the implant in the colormap are mostly red,
indicating a small distance (error) and that the implant can fit precisely
against the border of the defected region. The last row shows the implant
(without post-processing). We can see that the mismatch between the ground
truth and the reconstruction throughout the skull can lead to a noisy implant,
and the largest distance (error) comes from the noise which can not be
removed automatically using connected component analysis. The noise is
also the primary cause of the poor results for the implant in Table 5.1.

Figure 5.7 shows the skull reconstruction (first row), HD color map of the
skull (second row) and the implant (third row) by Model2 − n for the same
nine cases in Figure 5.5 and Figure 5.6. We can observe that the behav-
ior of Model2 − n is distinct from Model1 − o, Model1 − n and Model1 − r:
Model2 − n achieves a much greater performance of reconstructing the
original structure of the defected skull, so that the mismatch between the
reconstructed skull and the ground truth is close to zero. This can be con-
firmed from the HD colormap in Figure 5.7. Therefore, we can obtain a
clean implant via subtraction (the third row) compared with the noisy im-
plant produced by the other three models. Nonetheless, the performance of
Model2 − n in restoring the defected area is not as optimal as in reconstruct-
ing the original skull structure, as can be seen from Figure 5.7. However,
the fine detail of the implant (e.g., the small roundish corner) can still be
reconstructed.

In Table 5.3, we summarize the statistics, i.e., the max, mean and root
mean square (RMS), of the HD values of skull reconstruction by Model1− o,
Model1 − n, Model1 − r and Model2 − n for the nine cases in Figure 5.6 and
Figure 5.7.

5.2.3 Post-processing for 3D printing

After reconstruction of the skull by the models, the restored defect (i.e.,
implant) can be obtained by subtracting the defected skull from the re-
constructed skull according to equation (4.2). As we discussed previously,
the noisy implant needs to be converted into STL format which can easily
be done using ITK-SNAP or 3D Slicer, and the noise needs to be removed
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manually using MeshLab. Alternatively, the noise can be removed first (e.g.,
using 3D Slicer) before converting it into STL format. The manipulation
is easy and usually takes one to two minutes, after which the cleaned STL
file is ready for 3D printing. Figure 5.8 shows a comparison between the
implant and the HD colormap before and after noise removal, which can
lead to an increase of the evaluation metrics (e.g., the DSC) and a decrease
of the mean HD error.

Figure 5.9 shows an example of implant cleaning, STL conversion and a 3D
printed implant.

5.2.4 Learnt Hidden Representations and Robustness
Analysis

To have a better interpretation of how the model performs the hole fill-
ing (defect restoration) task and understand the mechanism behind the
difference among different training strategies in their performance, we visu-
alized the activation maps of the first and second convolutional layers of
the trained model Model1 − o (Figure 5.10 (b)), Model1 − n (Figure 5.10 (c))
and Model1− r (Figure 5.10 (d)). Higher order activation maps are generally
abstract and incomprehensible to humans, so only the first two layers are
considered. The input is a 1283 patch cropped from the defected skull shown
in Figure 5.10 (a). We considered two types of defects: the left defect with
small roundish corner and the right defect of the same skull without the
roundish corner. Note that the type of defect on the right is not involved
in training the models. For both types of defect, we have experimented
with the middle four patches (marked as (1),(2),(3) and (4)), which contains
the defected area to create the activation maps. Here we only use the first
patch (marked (1)) for illustration, as we observed similar activation patterns
for the rest of the patches. For ease of reference, we denote the selected
patch on the left and right image of Figure 5.10 (a) as pd1 and pd2. We
define the activation maps of the first and second convolutional layer as
O1

64 (dimension: 643) and O2
128 (dimension: 323). 64, 128 is the number of

activation maps. Figure 5.10 (b) (c) and (d) show some of the feature maps
in O1

64 and O2
128, produced by Model1 − o, Model1 − n and Model1 − r. The

first four images in each figure show the activation maps given as input pd1,
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and the last four images show the activation map given as input pd2. We
can see from Figure 5.10 (b) (c) (d) that the first activation map highlights
the edges of pd1. The second activation map (to the right) shows that the
unoccupied voxels in pd1, which are in the background and the defected
region, are detected and segmented (the high activations in yellow). The
third map shows the discrimination of the background and the target, where
the unoccupied voxels should be filled, by highlighting the edges (in yellow)
of only the defected region. From the visualization, we can see that some
of the convolutional filters in the first two layers function as robust edge
detectors. The last four activation maps in Figure 5.10 (b) (c) (d) are from
pd2 and follow a similar pattern as the first four activation maps from pd1.

Based on these observation, we may assume how the trained models per-
form the hole filling task: 1) detect edges – 2) detect unfilled regions (the
background and the defected region) – 3) distinguish between the unfilled
regions and identify the target (the target to be filled is only the defected
region) – 4) fill the target. The last step, fill the target, requires that the
thickness of the restored defect be consistent with the defected area at the
border, and this sophisticated process must be performed by higher-order
convolutional operations. Note that, in the first three steps, the fine detail of
the defect (the small roundish drilling holes in the corner) is captured. The
purpose of the experiment is threefold. First, understand the hole-filling
mechanism of the deep learning models. Second, compare the three ap-
proaches from the perspective of the learned features and understand the
difference of their hole-filling performance. As can be seen from Figure 5.10

(b) (c) and (d), all three models capture useful features of the input patch,
such as the edges and the the region of unoccupied voxels. However, their
ability to distinguish between the background and the defected area differs.
From the second and fourth row of Figure 5.10 (b) (c) and (d), we can see
that the edges of the defected area captured by Model1 − r are the weakest
compared with Model1 − o and Model1 − n, which subsequently leads to
the worst hole-filling performance among the models. Third, evaluate the
robustness and generalization performance of the models w.r.t. defects of
unknown shapes such as pd2. We show in the third and fourth row of Fig-
ure 5.10 (b) (c) and (d) the activation maps given as input pd2. We see that
the edges and the unoccupied regions are still captured despite the change
to the input. We expect a robust model to be able to restore any defect,
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regardless of the defect shape, position and size. From the perspective of
feature embedding, defects of different shapes should be encoded into the
feature space such that their representations are highly correlated, if a model
is robust. To illustrate the concept, we calculate the Pearson correlation co-
efficient between the encoded representations of pd1 and pd2, produced by
the feature layer of Model1 − n (the sixth layer in Figure 4.1). The encoded
representation is denoted as X = O6

256 ← pd1, and Y = O6
256 ← pd2. 256

is the number of feature maps of dimension 83. The correlation coefficient
between X and Y can be calculated according to equation (5.2):

ρ(Xi, Yj) =
cov(Xi, Yj)

σXi σYj

, i, j = 1, 2, ..., 256 (5.2)

cov denotes the covariance, and σ denotes the standard deviation.

The mean correlation coefficient of the 256 feature maps is 0.9796, indicating
that the encoded representations of two different defects (pd1 and pd2) are
highly correlated, and, thus, the model is robust and can generalize across
different defect shapes.

For a better illustration of the high correlation, we calculate the encoded
representation of pd1 and pd2 for Model1 − o, Model1 − n and Model1 − r.
For Model2 − n, we choose the output of the fifth layer (see Figure 4.2) as
the encoded representation, which has 512 feature maps of dimension 83.
For visualization, the representations are further embedded into a two-
dimensional space using uniform manifold approximation and projection
(umap) (McInnes and Healy, 2018). The embedded scatter points are shown
in Figure 5.11, and the blue and red points come form pd1 and pd2, respec-
tively. It is easy to see that the embedded feature maps from pd1 and pd2
follow a very similar distribution in the two-dimensional space.

Figure 5.12 shows the probability map produced by the last layer of Model1−
n (Figure 5.12 (a),(b)) and Model2 − n (Figure 5.12 (c),(d)) given as input the
defected skull in Figure 5.10 (a). The probability maps are of dimension
512× 512× 128 (same as the defect skull) and shows the confidence of the
model in assigning a voxel as being occupied in the skull and the implant.
The last image of each image shows a sagittal slice of the probability map of
the skull. We can see that Model1 − n predicts all occupied voxels with very
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high confidence (over 0.96), except the skull surface (green). Model1 − n
predicts the implant for the defected region with high confidence, which
indicates a high tolerance of the model to the input disturbance (e.g., the
change of defect shape, noise, etc). In contrast, the prediction confidence for
Model2 − n is much lower (0.67), indicating that Model2 − n might be more
sensitive to the input disturbance.

5.2.5 Clinical Applicability

To evaluate the applicability of the methods in a real clinical scenario, we
collected the CT scans of the head from craniotomy. The skull was manually
opened by neurosurgeons during craniotomy, leaving a defect in the skull.
For protective purpose, the defect was temporarily filled by a mesh-like
thin layer made of titanium. Figure 5.13 (a) shows such a CT scan where
the thin titanium layer is visible. The skull was then segmented from the
CT scan and Figure 5.13 (b) shows the segmented skull in 3D, axial, sagittal
and coronal view. It is obvious that the defect from craniotomy is much
more complex than the synthetic defects used in training the models, and
the existence of the temporary protective layer on the defected area can
also potentially affect the model performance. However, the models are
still able to perform defect restoration in such case despite the complexity.
Figure 5.13 (c-e) shows the results produced by Model1 − o, Model1 − n and
Model1 − r. We can see from the 3D view that all the models successfully
complete the skull volume.

We also report a case of failure in Figure 5.14, where the defect from cran-
iotomy is too large and complex for the model to restore. From Figure 5.14

(b), we can see that the large defect is partially covered by a protective layer
and occupies almost one-third of the entire skull. For this case, the defect is
only partially filled by the models as is shown in Figure 5.14 (c-e). Note that
both of the two cases from craniotomy are distinct from the data in model
training.

A ground-truth implant or pre-operative CT scan of the head for the two
cases were not available. For a quantitative comparison, the defected skull
and the reconstructed skulls are converted into 3D triangular meshes, and
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we calculate the HD values between the two meshes as in Figure 5.6. Fig-
ure 5.15 (b) and (d) show the HD colormap between the defected skull
mesh and the reconstructed skull mesh from Model2 − o (left), Model2 − n
(middle) and Model2 − r (right).

5.2.6 Reproducibility

The datasets and the code involved in this study are scheduled to be made
public shortly. We provide an interactive environment for the skull defect
restoration functionality in Studierfenster (http://studierfenster.tugraz.
at/), where users can interact with the algorithm using the sample data we
provide. A Youtube video is available at https://www.youtube.com/watch?
v=pt-jw8nXzgs for a quick preview of the concept of automatic skull defect
restoration and cranial implant generation.
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5 Experiment and Results

Figure 5.8: Manual cleaning of the implant. (a) The ground truth. (b) The prediction. (c)
Manual removal of the noise in (b). The DSC improved from 0.8816 to 0.8941

after cleaning. (d) and (e) the Hausdorff Distance colormap before and after
cleaning.

Figure 5.9: An example of a 3D printed implant (the last two images). The 3D printing
material is the commonly used polylactic acid, which is biodegradable. From
left to right: the ground truth implant, the implant obtained by subtracting the
defected skull from the reconstructed skull, converting the implant data into
the STL format and mesh cleaning, the 3D printed implant.
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5.2 Results

Figure 5.10: The activation maps of the first two convolutional layers produced by Model1−
o (b), Model1 − n (c) and Model1 − r (d), given as input pd1 and pd2.
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5 Experiment and Results

Figure 5.11: Mapping the encoded representation of pd1 and pd2 into two-dimensional
space using Uniform Manifold Approximation and Projection (UMAP) in
Euclidean distance.

Figure 5.12: The probability map of the skull and the implant produced by the last convo-
lutional layer, when given the skull in Figure 5.10 (a) as input. The last image
in each figure shows a sagittal slice of the probability map, which visualizes
the probability distribution inside the volume. (a), (b) are from Model1− n and
(c), (d) are from Model2 − n.
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5.2 Results

Figure 5.13: Reconstruction results from craniotomy data. (a) CT scan of a patient head
from craniotomy. (b) Skull segmentation from the CT scan, viewed in 3D, axial,
sagittal and coronal plane. Reconstruction results by Model1− o (c), Model1− n
(d) and Model1 − r (e).
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5 Experiment and Results

Figure 5.14: A case of failure from craniotomy with a very large defect. (a) the CT scan, (b)
the skull segmentation from the CT scan and (c-e) the reconstruction results
by Model1 − o, Model1 − n and Model1 − r.
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6 Discussion

Patch-based training is a widely accepted strategy in deep learning when
the data dimensionality is high. In a conventional patch-based scheme, the
deep learning model trains on a sub-volume randomly cropped from the
overall data set for each training epoch, which makes it difficult for the
model to capture the overall characteristics of the complete volume. This
disadvantage is tolerable when the overall structure of the target is not
important. For instance, in tasks such as segmentation, the model only
needs to learn to differentiate between voxels in the target and voxels in
the background. However, the disadvantage becomes dominant in tasks
where the primary goal is to reconstruct the overall shape of the target,
especially when the data is of sparse nature, like the skull. The skull data are
spatially sparse and can be seen as a two-dimensional manifold embedded
in three-dimensional volumetric space (512× 512× Z). The overall voxel
occupancy rate of a skull in the volumetric space is usually no more than 10

percent. The spatial sparsity of the data can make it even harder for a deep
learning model to learn useful features efficiently. The proposed training
strategy overcomes the disadvantage of conventional patch-based training
by extracting consecutive non-overlapping patches from the complete skull
volume, which are then successively utilized for gradient computation
in the optimization process. The whole skull volume can be involved in
the optimization process before another skull volume is selected, so that
the holistic shape distribution of the skull can be captured by the deep
learning model. In the study, our computational resource restricts the patch
dimension to 1283. To deal with the sparsity issue, we proposed that using
overlapping patches (Model1 − o and Figure 4.3 (a)) can reduce the relative
sparsity of each single patch1 without decreasing the actual patch size

1For non-overlapping cropping, the patch size is (512× 512× 128)/(4× 4) = 1283. For
overlapping cropping, the relative patch size is (512× 512× 128)/(7× 7). The smaller the
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6 Discussion

and thus make it easier for the network to learn. The downside of using
overlapping patch is that the computation will be increased (the larger the
overlap, the less sparse the patch and the more computation needed).

patch, the less sparse relatively.
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7 Conclusion and Future Work

We investigated the usability of deep learning for 3D volumetric shape com-
pletion, and the effectiveness is demonstrated in the field of automatic skull
defect restoration and cranial implant design, which is highly desired in
cranioplasty. We showed how a large skull database can be constructed and
then utilized for training deep learning models. To work on high-resolution
skull data, we proposed a tailored patch based strategy for training deep
learning networks which shows a significant improvement compared to
using a conventional training method (Model1 − o and Model1 − n perform
better than Model1 − r). The proposed training strategy is general and can
be used in other applications involving training on high-resolution volume
data, especially, when the data is of sparse nature, like the skull (Model1− o
performs slightly better than Model1 − n). We also showed that using skip
connections can lead to a remarkable increase in the performance of the
deep learning model for the application (Model2 − n performs the best
among the models). The deep learning models we built are interpretable by
humans and shows robustness and good generalization performance w.r.t
the shape of defect. We also tested the models using real defected skulls
from craniotomy, and the results show promise for clinical applicability.
Considering that a larger patch carries more overall shape information
compared to a smaller patch, it is safe to assume that the larger the patch,
the better the reconstruction performance of deep learning models, even if
larger patches can bring about greater sparsity. Given the sparsity of the
skull data, it can be expected that most of the computational and memory
resources are wasted on the unoccupied area of the skull volume. The future
work will be exploiting the sparsity of the skull data to save computation
and reduce the memory requirements, so that using larger patches without
increasing the GPU memory in training is possible1.

1The optimal situation is that the network can consume the entire skull volume
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