
Alexander Weinrauch, BSc

Skeleton Extraction using Natural Reeb
Graphs

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Markus Steinberger

Institute of Computer Graphics and Vision

External Advisor

Dr. Rhaleb Zayer

Max Planck Institute for Informatics, Saarbrücken Germany

Graz, February 2020

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Acknowledgment

First, I want to thank my supervisor Markus Steinberger and advisor Rhaleb
Zayer for all the productive discussions, especially on Thursdays.
I also wish to express my deepest gratitude to my family, in particular to
my parents Manuela and Alfons, for all the support in the good and bad
times throughout my journey, which lead to this thesis.
Finally, I have to thank the person who kept me motivated to complete this
journey and did never fail to be a helpful rubber duck when needed. Thank
you, Barbara.

v

Kurzfassung

Eine vereinfachte Beschreibung eines 3D-Objekts ist eine wesentliche Vo-
raussetzung für viele existierende Anwendungen in der Computer Grafik
und Vision. Reeb Graphs sind eine gut erforschte Möglichkeit, um solch
eine Beschreibung zu erhalten. Die Reeb Graphs werden durch eine Ab-
bildungsfunktion über die Oberfläche definiert. Diese Abbildungsfunktion
ist jedoch nur schwer ohne Benutzereingaben zu erzeugen. Diese Arbeit
beschreibt eine Abänderung der Reeb Graphs, Natural Reeb Graphs, um
Benutzereingaben zu vermeiden. Die explizite Abbildungsfunktion wird
durch eine implizite Funktion ersetzt, die durch einen natürlichen Diffu-
sionsprozess auf der Oberfläche gebildet wird. Die Natural Reeb Graphs
erfassen alle Äste und Löcher einer Fläche korrekt, was für die Beschreibung
der 3D-Form unerlässlich ist.

In dieser Arbeit wird zusätzlich auch ein Algorithmus zur Extraktion
eines Skeletts auf der Grundlage von Natural Reeb Graphs vorgestellt.
Skelette können in verschiedenen Bereichen der Informatik verwendet
werden, beispielsweise Computeranimationen, Datenvisualisierung, Ob-
jektabfrage und Objektkomprimierung. Die produzierten Skelette unserer
Methode sind zentriert und transformationsinvariant, entscheidende Merk-
male für weitere Anwendungen. Außerdem benötigt unsere Methode keine
Benutzereingaben und ist vollständig für die Grafikkarte (GPU) ausgelegt.
Die Laufzeitkomplexität skaliert linear mit der Anzahl der Dreiecke des
3D-Objekts, was es uns ermöglicht, große und komplexe Objekte wie mod-
erne 3D-Scans von Menschen zu handhaben. Unser Ansatz ist in Bezug auf
die Laufzeit, aber auch in Bezug auf die Qualität der produzierten Skelette
konkurrenzfähig gegenüber bestehenden Methoden.

vii

Abstract

A high-level understanding of a 3D mesh is an essential requirement for
many applications in computer graphics and vision. To obtain such a high-
level understanding, Reeb graphs are a well-researched option. Reeb graphs
rely on a mapping function defined on the surface of the object, which is
challenging to create without any user input. To overcome this requirement,
we propose a derivation of Reeb graphs, called Natural Reeb graphs. The
explicit mapping function is replaced by an implicit function formed by
a natural diffusion process on the surface. Natural Reeb graphs correctly
capture all branches and loops of a surface, which is mandatory to provide
a correct high-level explanation.

This work also presents a mesh skeleton extraction algorithm based on
Natural Reeb graphs. Skeletons can be used in various fields of computer
science, including computer animations, data visualization, object retrieval,
and mesh compression. The output skeletons of our method are centered
and transformation invariant, which are critical features for further applica-
tions. Additionally, the skeletons do not depend on any user-defined input.
Our method is designed entirely for the graphics processing unit (GPU).
The runtime complexity scales linearly with the number of triangles, which
enables us to handle large and complex meshes like modern 3D-scans of
humans. Our approach is competitive against existing methods in terms of
runtime, but also in terms of quality of the produces skeletons.

ix

Contents

Kurzfassung vi

Abstract viii

1 Introduction 1

2 Background and Related Work 5

2.1 Layered Fields . 5

2.2 Reeb Graph methods . 7

2.3 Skeleton Extraction methods 8

3 Natural Reeb graph computation using Layered Fields 11

3.1 Contour Lines for Natural Reeb graphs 11

3.2 Track connected components 12

3.3 Simulation End . 18

3.4 Method summary . 19

4 Skeleton extraction using Layered Fields 23

4.1 Skeleton points . 23

4.2 Skeleton point calculation . 23

4.3 Sample rate of skeleton points 24

4.4 Out-of-mesh bones . 26

4.5 Reverse growing . 27

4.6 Removing of support layers . 30

5 Results 33

5.1 Skeletons . 33

xi

Contents

5.2 Runtime . 38

5.2.1 Contour Extraction . 38

5.2.2 Connected Component counting/labeling 39

5.2.3 Skeleton Point Calculation 39

5.2.4 Overall . 43

5.2.5 Comparison . 43

5.3 Memory consumption . 46

6 Conclusion 47

Bibliography 49

xii

List of Figures

1.1 Three Reeb graphs defined by the y-axis (left), x-axis (middle)
and z-axis (right) as mapping function. Blue points represent
the ciritcal points and the green lines are the edges of the
Reeb graph embedded into the mesh. 3

2.1 Growth of 3 layers on a plane. The light blue dots represent
the start seeds and the blue lines the sharp boundary used
to create Natural Reeb Graphs. In the image of the right the
disability to overgrowth another layer is visualized. 6

3.1 Sharp boundaries (dark blue lines) traced over the evolution
of one cell. All brown vertices have higher energy than the
threshold c, light blue vertices have less energy than c. 14

3.2 Shows the behaviour of a sharp boundary on a sphere with a
hole in it. Note that the circle degenerates to a path while the
hole is part of the sharp boundary. 15

3.3 The evolution of a cell with layer splitting enabled. The face
colors represent the layer index. The red contour lines show
iterations where more than one contour line was present on a
single layer. 17

3.4 . 20

xiii

List of Figures

4.1 On the left, the weighted sum is used, and on the right, the
average to calculate the skeleton points with a fixed sample
rate. Note that the skeleton using the average does not follow
the bend of the shape as accurately as the skeleton using the
weighted sum. 25

4.2 The left image shows the raw skeleton. On the right, the
out-of-mesh connections are fixed, and leaf skeleton nodes of
non-leaf layers have been removed. 27

4.3 Example reverse growing process. The first image is the raw
skeleton without optimizations. Image 2-7 show the reverse
growing process and the new connection to the parent layer.
The last image shows the final skeleton after removing the
parent leaf skeleton points and all other mentioned optimiza-
tions. 29

4.4 The left image shows the result after the out-of-mesh opti-
mization. The right image shows the result of the support
layer removal. The point of interest is the purple layer con-
necting the middle finger and the ring finger. 30

5.1 Skeleton of a deer mesh. The initial seed was located on the
left front leg. 34

5.2 The skeleton generated for four different starting seeds. The
locations from left to right are: left shoulder, left foot, left
thumb, and the top of the head. 35

5.3 Skeleton generated by our method for the camel mesh. The
tail features are out-of-mesh connection. 36

5.4 Skeleton generated by our method for the dragon mesh. The
red and white rectangles highlight problematic areas. 37

5.5 Average runtime over five runs for the dragon mesh. The
variance of each iteration is shown as the area around the line. 40

5.6 The number of contour triangles in each iteration for the
simulation on the dragon mesh. 40

5.7 Average runtime over five runs for the hand Pierre mesh. The
variance of each iteration is shown as the area around the line. 41

xiv

List of Figures

5.8 The number of contour triangles in each iteration for the
simulation on the hand Pierre mesh. 41

5.9 Average runtime over five runs for the deer mesh. The vari-
ance of each iteration is shown as the area around the line.

. 42

5.10 The number of contour triangles in each iteration for the
simulation on the deer mesh. 42

5.11 The contribution of each step to the overall runtime during
the whole simulation of the dragon mesh. 45

xv

List of Tables

5.1 Runtime in seconds for different sized meshes. Only impor-
tant steps of the method, in terms of runtime, are listed.

. 44

5.2 Memory consumption on the GPU for various meshes. This
includes memory allocated by the Layered fields implemen-
tation and our method. 46

xvii

1 Introduction

The Reeb graph [REE46] represents the topological skeleton of an n-dimen-
sional object and providing essential information about the topology. Reeb
graphs are generated by evaluating a continuous scalar function f : X→ R

on the topological space X. Tracing the connected components in the level
sets of f is the fundamental idea behind building the Reeb graph. The ap-
pearance of a new component, splitting, merging, and vanishing of existing
components form the nodes of the Reeb graph. The correspondence of the
affected components to previously generated nodes form the edges. Reeb
graphs are a fundamental tool used in computer graphics, computational
geometry, geometric processing, data visualization, and image processing.
Some applications are object retrieval [AH12; Hil+01], surface understand-
ing [Hil+01] or shape segmentation [WXS06].
Due to recent developments of high-resolution 3D scanners and big data
applications, the demand for a fast algorithm to compute the Reeb graph
or more general topological structures as a whole is increasingly growing.
Concurrency and parallelism are two main options to improve efficiency,
which are strongly supported by the most recent hardware developments.
More and more cores in a single CPU which favors concurrency, but also
the GPU has matured as a general-purpose highly parallel processor.
This paper focuses on parallelism and presents a method to approximate
the Reeb graph for unstructured grids, which is designed to run efficiently
on the GPU. Our method can not produce the real Reeb graph defined by
a user-defined mapping function f , but instead is motivated by a recently
published method called Layered Fields [Fields]. The main application for
Layered Fields shown in the paper is natural tessellation. However, we show

1

1 Introduction

that it can be used to approximate the Reeb graph without changing the
method. We deduced the name ”Natural Reeb Graphs” from this aspect.
The scalar mapping function f on the topology is implicitly extracted from
Layered Fields growing on the surface of a triangulated mesh. The evolution
of the energy sampled with high frequency provides the level sets needed to
determine the critical points of the shape. Critical points signal a topological
change. They are created from the events affecting the connected compo-
nents of the level sets. In contrast to other approaches, our method cannot
handle any arbitrary user-defined scalar mapping function on the topology.
Therefore it should not be seen as a replacement for existing methods to
calculate the Reeb graph.
Applications build on top of Reeb graphs rely on a well-defined mapping
function to produce useful results. In Figure 1.1 three examples with differ-
ent mapping functions are shown. The Reeb graph shown in the left image
of Figure 1.1 provides a good description of the shape. The second example
does already add complexity, which lowers the semantic value of the Reeb
graph. However, especially the third example has many critical points that
do not help to get a global view. The Reeb graph will, therefore, have a low
semantic value for further applied algorithms. As described by Bajaj et al.
.s [BPS97], finding a proper mapping function is not trivial and is often the
main difficulty when applying Reeb graph-based methods.
Natural Reeb graphs, on the other hand, do not rely on finding a well-suited
mapping function. The natural diffusion process of Layered Fields provides
a mapping function that adjusts to the local geometry during the evolution
process. Additional to meaningful Reeb graphs, this also provides transfor-
mation invariant Reeb graphs. Invariance to mesh transformations is a key
feature required in skeleton creation and shape matching based on the Reeb
graph [BPS97].

Skeleton creation for 3D objects based on natural Reeb graphs is one appli-
cation covered in this paper. The idea of embedding the Reeb graph into
the mesh to deduce a skeleton was already applied by previous methods.
However, by exploiting additional information Layered Fields are offering,
we can remove some common artifacts skeletons based on the Reeb graph

2

Figure 1.1: Three Reeb graphs defined by the y-axis (left), x-axis (middle) and z-axis (right)
as mapping function. Blue points represent the ciritcal points and the green
lines are the edges of the Reeb graph embedded into the mesh.

show.
The most common use case for mesh skeletons is animations, where a ver-
tex position is influenced by one or more bones of the skeleton. This type
of animation is generally referred to as skinning because the vertices are
following the bones as skin would do. Existing methods are built around a
mapping function over the surface to generate such a skeleton. However,
the problem of finding an appealing visual mapping that is invariant to
the orientation of the 3D object is still and open problem [Bia+03]. This
comes from the fact that in contrast to the Reeb graph, the mesh skeleton
has no real mathematical definition. Other methods try to define it as an
optimization problem where the objective function is the distance to all
vertices of the shape. These methods tend to create centered skeletons that
may be desired based on the application. Modeling a human backbone is a
good example where centeredness is not desired because it is not located in

3

1 Introduction

the center of the chest. Our method does not involve an explicit mapping
function but still produces mainly centered skeletons. By not relying on a
mapping function we also show that our method is orientation-invariant if
the same starting points can be selected but even if this is not possible the
skeleton is mainly orientation-invariant except for the starting region.

4

2 Background and Related Work

This chapter explains the idea behind Layered fields and covers existing
work about Reeb graph computation and mesh skeleton extraction.

2.1 Layered Fields

The goal of this paper is to mimic natural tessellation on surfaces by having
cells growing on the surface. These cells mainly start growing from a single
distinct start vertex, called seed, but defining a start region is also possible.
The boundary of a cell is modeled as a smooth transition of the real-valued
energy where the value zero indicates no membership to the cell, and one
means full membership. Each cell may grow on a separate layer, hence
the name Layered Fields. As shown in Figure 2.1, cells on different layers
block each other naturally during their growth process. At intersection
areas, both cells have a smooth overlapping boundary. This formulation
avoids numerical problems and discontinuities that would occur with sharp
boundaries.
Layered Fields were designed to run fast and highly parallel on the GPU.
The energy states in the system are stored in a m× n sparse matrix where
m is the number of vertices and n the number of layers. To update the
system state, the system matrix is multiplied by the Laplacian matrix of
the mesh. The Laplacian matrix holds information about how the energy
of a specific vertex should influence the energy of adjacent vertices. This is
a very simplified explanation but covers all concepts which are needed to
understand our method which uses Layered Fields.

5

2 Background and Related Work

Figure 2.1: Growth of 3 layers on a plane. The light blue dots represent the start seeds and
the blue lines the sharp boundary used to create Natural Reeb Graphs. In the
image of the right the disability to overgrowth another layer is visualized.

6

2.2 Reeb Graph methods

The GPU-friendly design and available implementation were the motivation
behind designing an algorithm which does also run nearly entirely on the
GPU to avoid costly copy operations from the graphics card’s memory to
the system memory and synchronization points between CPU and GPU.

2.2 Reeb Graph methods

To our knowledge, there exists no method to compute or approximate the
Reeb graph for unstructured grids designed for the GPU. Only algorithms
for the contour tree, which is a connected and circle free Reeb graph, on
structured grids can be found in the literature [AN15]. The first algorithm to
correctly compute the Reeb graph dates back to 1991 [SKK91] and had a run-
time of O(n2). Later, this was optimized to have a runtime of O(n log n) by
maintaining a sorted structure for the input vertices. Pascucci et al. [Pas+07]
published in 2007 an on-line algorithm that performed very well in practice
despite its worst-case runtime of O(n2). At the time of writing, no faster
algorithm can be found in the literature. It streams the triangles of the mesh
and builds the Reeb graph on-line, by storing additional data for each node
in the Reeb graph they can merge local Reeb graphs efficiently together if a
new triangle connects them.
Tierny [BPS97] developed high-level Reeb graphs which do not require a
user-defined scalar mapping function. Instead, feature points are extracted,
which are invariant to rotation and scaling of the mesh. Each vertex is
mapped to the closest feature point based on the geodesic distance. They
introduce discrete level lines, which are traced during a geodesic propaga-
tion algorithm starting from the feature points. The idea of tracking during
propagation is very similar to our method, resulting in transform invariant
Reeb graphs.

7

2 Background and Related Work

2.3 Skeleton Extraction methods

There are many approaches to generate skeletons for 3D objects. Cornea, Sil-
ver, and Min in[CSM07] define classes of algorithms, namely Thinning and
Boundary Propagation, Distance Field methods, Geometric methods, Reeb
graph methods, and General Field functions. A discussion about the advan-
tages and disadvantages of each class can also be found inside this paper.
More recent work is based on mesh contraction [Au+08], where the mesh
is contracted to a zero-volume shape by successive application of Laplacian
smoothing. The curve-skeleton is then obtained by edge-collapsing while
preserving the connectivity of the initial mesh. Inspired by this approach,
Andrea Tagliasacchi et al. [Tag+12] have proposed mean curvature flow as
the contraction method.
Manolas at al.[MLM18] showed how to adapt existing mesh contraction
methods to make better use of multi-core computing systems. First, the
mesh is segmented into multiple parts. Each part is then given to a mesh con-
traction method distribute over all available cores. They used [Au+08] as the
contraction method because it was well-received at that time. They showed
that the skeleton of each segment only depends on the vertex data, which
allows exploiting data parallelism. In the second step, all sub-skeletons of
the segmented mesh are merged. This is done by creating a candidate point
to form an edge between two segments, based on the distance the best one
is chosen to build the final connected skeleton.
The method shown by Wang et al. [WL08] is similar to the idea of mesh
contraction. Instead of shrinking the triangle representation of the mesh, a
voxel representation is shrunk. Iterative least-squares optimization is used
to reduce the volume of the voxel representation while still preserving the
geometric features of the mesh.
From the shrunk voxel representation, the skeleton is deduced. This method
highly depends on the used voxel size, because features smaller than a voxel
can not be preserved during the shrinking process. A different approach was
developed by Sharf et al. [Sha+07] using a deformable model to reconstruct
the given mesh. The reconstruction process uses competing fronts growing

8

2.3 Skeleton Extraction methods

inside the object until the real shape is approximated. The center points of
the growing fronts are used as first candidate skeleton points. Candidates
are filtered out on-the-fly based on the geometry of the front, the branching
structure, and competition performance.

9

3 Natural Reeb graph

computation using Layered

Fields

This chapter starts with a high-level explanation of the algorithm and will
afterward give an insight into the available implementation on the GPU.

3.1 Contour Lines for Natural Reeb graphs

Contour lines or level sets of a scalar function are sets of inputs for which
the function takes a constant value c.

Lc(f) = {(x1, ..., xn)|(f (x1, ..., xn) = c)}

Existing methods analyze connected components while continuously chang-
ing the constant c. Our method instead uses Layered Fields as the function
for which the level sets have to be defined differently. Layered fields can
be seen as a natural diffusion processed on multiple layers. The diffusion
process can be modeled as a function combining n sub-functions, where n
is the number of layers. Each sub-function takes the timestep and a vertex
as parameters and returns the energy e of the given vertex at the given time
t on its layer.

f (t, v, i) = fi(t, v) = e, {e ∈ R | 0 ≤ e ≤ 1}

11

3 Natural Reeb graph computation using Layered Fields

The energy of a vertex is in the range of [0, 1]. A value of zero states that
the vertex does not belong to the cell. A value of one states complete
membership to the cell. Values in between form the smooth boundary of
a cell. Instead of changing the value of c, we are continuously changing t
with a fixed c for all vertices of the unstructured grid. Setting the constant c
between zero and one makes the contour line follow the smooth boundary.
This models the contour line as a sharp boundary on top of the smooth
boundary provided by the Layered Fields.
For the Natural Reeb graph calculation, tracking the contour lines directly
on the vertices would be sufficient. For extracting the skeleton, on the other
hand, a more accurate tracking is required to generate good-looking results.
Based on this, we always track the contour lines on the faces level. This is
achieved by looking at edges, more specifically at the two energy levels of
the vertices forming the edge. The contour lines cross all edges, which have
one endpoint larger and one endpoint less or equal to c. The exact crossing
point can be computed by linear interpolation between the two endpoints
based on their energy level and the constant value c. For manifold meshes
and by the definition of the Fields, the contour line also has to go through
all faces which use an edge that is crossed by the contour line. The point of
the contour line on a face can then also be calculated by linear interpolation
on the energy level of the vertices of the face. The exact contour line location
is only needed when computing the skeleton. For the calculation of the
Reeb graph, we only need the information if a vertex is part of the contour
or not.

3.2 Track connected components

For manifold meshes, the contour lines defined by the sharp boundaries
will always form one or more circles. In Figure 3.1 the sharp boundaries
are visualized as dark blue lines. Before a circle splits into multiple circles,
a vertex will be part of multiple circles representing a critical point. This
can be seen in the highlighted section of the second image in Figure 3.1 on

12

3.2 Track connected components

the connection between the thumb and the index finger. A circle in a graph
is defined as a path with the same start and end vertex. Manifold meshes
with borders can additionally form paths that end and start from border
vertices instead of forming circles. These paths are caused by the fact that
border vertices can be part of the contour line at some time point but may
only have one adjacent face, which is also part of the contour. Figure 3.2
shows an example of a sharp boundary moving over a hole in the 3D object.
The circles or paths form the connected components for each timestep t.
The problem of finding those circles and paths is a connected component
labeling problem. Connected component labeling will give the same label
to all faces that are part of the contour lines and are reachable by traversing
over the unstructured grid, ignoring faces which are not part of the contour.

The behavior of the connected components when changing t generates
the events signaling a critical point. A relationship between connected
components at timestep t and t + ∆ is required to track the components.
The naive way to track the connected components would be to analyze the
location of their barycenters. The closest barycenter from the old iteration
to the current iteration should be the origin of a connected component.
This only holds for small movements of the boundaries between iterations,
which requires a small time difference ∆ between iterations. The naive way
requires the calculation of the barycenters of all connected components
in each iteration and comparison between all of them. Especially when
the number of branches on the surface is high, and therefore the number
of growing boundaries is high in a given timestep, the building and the
comparing process might be very expensive. To calculate the barycenters, we
need to compute all exact points of the level set and label them according to
the connected component. Connected component labeling is an performance
expensive operation on the GPU. Our connected components also represent
the worst case for most algorithms because they form a circle without
shortcuts. After computing the barycenters, the distance between all of them
needs to be calculated and compared, resulting in O(n2) comparisons, where
n is the number of active boundaries. A more sophisticated implementation

13

3 Natural Reeb graph computation using Layered Fields

Figure 3.1: Sharp boundaries (dark blue lines) traced over the evolution of one cell. All
brown vertices have higher energy than the threshold c, light blue vertices have
less energy than c.

would involve a spatial data structure like an Octree, but building and
updating such a structure for each iteration is also not ideal in terms of

14

3.2 Track connected components

Figure 3.2: Shows the behaviour of a sharp boundary on a sphere with a hole in it. Note
that the circle degenerates to a path while the hole is part of the sharp boundary.

performance. To avoid these expensive computations during all iterations,
we use a different functionality provided by Layered Fields. The number
of layers of Layered Fields is not fixed during simulation, so it is possible
to add new layers on-line. We exploit this functionality by splitting a layer
as soon as more than one connected component is detected on a layer. In

15

3 Natural Reeb graph computation using Layered Fields

other words, we only want one layer of Layered Fields to host exactly one
connected component. If there are n > 1 components detected on a layer,
we generate n new layers with the start region set to the vertices forming
one connected component. Since one layer cannot overgrow another, the
new layers will grow in the same direction as the old layer would have been
without splitting. When comparing the first two images of Figure 3.3 with
the evolution shown in Figure 3.1, it is clearly visible that the child layers
behave the same as the parent would have without splitting.

The old layer is marked as finished after splitting because it has no free
space to grow further. Instead of splitting into n new layers, it is also possi-
ble to let one component grow on the old layer and only create n− 1 new
layers. However, this does not significantly increase performance and makes
the Reeb graph edge extraction and debugging a bit more complicated.
Layer splitting also provides direct access to the critical points at which one
connected component splits into multiple new ones.
Another advantage of layer splitting is that the correspondence of triangles
to connected components is only needed in the case of multiple connected
components on one layer. Iterations without multiple components on one
layer will occur far more often, and iterations that require splitting will be
an exception. This plays an essential role in the performance of the algo-
rithm. Based on this idea, we only need to perform connected component
counting and can do an early exit if we detect only one component per layer.
Connected component counting, in comparison to the more often needed
connected component labeling, does only calculate the number of compo-
nents, but does not tell which vertices form the components. Connected
component counting can be implemented faster than labeling as counting is
a sub-problem of labeling.
Identifying a vanished connected component can also be nicely handled
by the idea of layer splitting. If no faces are marked as part of the contour
on a layer, the affected connected component can be identified by the layer
index. To calculate the critical point for a vanishing component, the contour
triangles of the last iterations are needed because there is no information left
in the current state of Layered Fields. This list is already computed for the

16

3.2 Track connected components

Figure 3.3: The evolution of a cell with layer splitting enabled. The face colors represent
the layer index. The red contour lines show iterations where more than one
contour line was present on a single layer.

17

3 Natural Reeb graph computation using Layered Fields

connected component counting and is therefore available without a runtime
cost.
The last category of critical points comprises merging connected compo-
nents. This type cannot be directly modeled during simulation time like the
other types. Instead, we are calculating them after the whole simulation is
done. A definition of the simulation end is given in the next section. When
two layers are growing towards each other, they do not overgrowth but
instead, grow alongside each other. After the simulation, both layers have a
contour line marking the border between those two layers. The border is
the path where they have grown alongside each other. All vertices still part
of a contour line are exactly those border vertices. All layers which have
some amount of energy on those vertices should be considered merged. For
the Reeb graph, we then need to merge all nodes of the layers which share
energy on some vertices after the simulation. Due to the fact that this only
needs to be done once after the simulation has finished, the performance
of this operation is not as critical as compared to a procedure executed at
every iteration of the simulation. In Figure 4.1 the two sharp boundaries at
the bottom of the torus are an example of two layers blocking each other.

The tracking process described in this section creates all the critical points
which are needed to create the Reeb graph. The nodes are the critical points
described above, and the edges are the envolved layers during each event.

3.3 Simulation End

The end of the simulation is reached when it is not possible for any boundary
to grow. However, Layered Fields do not offer a simple way to extract that
information. Therefore, we need to define two different states of how the
system may look when the simulation has completed.
On possible state is that all our leaf layers have vanished. Only leaf layers
have the ability to grow, because, as already mentioned, parent layers
can not grow further after splitting. Another possibility is that two or

18

3.4 Method summary

more leaf layers did not vanish but are competing with each other over
vertices separating them. To detect such a state, we periodically calculate
the barycenters and the geometrical length of the contour lines and compare
them to the previous calculations. If the difference is below a threshold
for some amount of time, we consider the layer to be in its final state. The
barycenter alone is not enough because the field may grow as a circle on a
plane, left image of Fig.2.1. In such a case, the barycenter will stay the same
even if the layer is still growing and will wrongfully detect stagnation. The
geometric length of the contour line, on the other hand, grows or shrinks
for such a case and does not signal stagnation. Growing alongside a tube
with constant radius results in the reverse situation, where the length will
not change, but the barycenter does.

3.4 Method summary

Figure 3.4 shows the steps described above applied on a double torus. In
the first image, the initial connected component did create a node in the
Reeb graph. The second image features a split of layer zero into two new
ones. Hence two new nodes are created. Picture three shows one problem
not discussed above. Layer one and two grow alongside each other until
they reach the second loop. When reaching the second loop, both layers
will have two connected components, the one blocking the other layer, and
the new one advancing onto the loop. This triggers a split for both layers
into two new ones. However, layers three and six start at the connected
component representing the blocking front and will, therefore, have no
space to grow and never build a contour line. Layers, which did not form
a contour line during its lifetime, are then removed as a post-process-step.
The last image has those two layers, three and six, removed, and also two
new nodes were added to the Reeb graph. The introduced nodes are created
based on the detection of two merging regions. Layer one and two have
a merging region alongside the connection of the two loops, and layers
four and five are connected on the top of the second loop. As previously

19

3 Natural Reeb graph computation using Layered Fields

Figure 3.4:
System state at different simulation stages combined with the Reeb graph.
Layer seven and eight are caused by the detection of merging layers.

described and shown in the final Reeb graph, those newly added nodes
have incoming connections from the merging layers and do get all outgoing
connections from those layers.

20

3.4 Method summary

Initialize fields with one starting layer;
add Reeb node;
while more than one active layer do

for each active layer i do
calculate the number (n) of connected components of sharp
boundaries;

if More than one component then
calculate exact connected components;
split into n new layers;
add n new Reeb nodes for each layer;
mark new layers as active;
mark current layers is inactive;

end
if zero components or layer growth halted then

mark layer as inactive;
add Reeb node for layer;

end
end

end
check for merging connected components;

Algorithm 1: Overview of the Natural Reeb graph extraction method

21

4 Skeleton extraction using

Layered Fields

This section covers the algorithm and optimizations used to embed the
natural Reeb graph as a skeleton into the given mesh. To understand the
algorithm used in this section, it is important to understand section 3

because it is built on top of the Reeb graph calculation.

4.1 Skeleton points

A skeleton point can be compared to a joint of a human skeleton. The way
joints are connected is determined by the application. The simplest model
for the connection is a linear interpolation between two joints, which is
equivalent to most human bones, which are a nearly straight connection
between joints. Bones can also be modeled with higher-order polynomials
or splines.

4.2 Skeleton point calculation

A precondition from the previous chapter is that precisely one connected
component lives on one layer. This makes it very simple to calculate skeleton
points for a given time t as we do not need to differentiate between multiple
components. The first step is to calculate the exact points of the contour line

23

4 Skeleton extraction using Layered Fields

on the crossed edges and faces. This is done by linear interpolation on the
energy level of the endpoints of the edge or the vertices which form the
triangle. This will produce two line segments for each triangle, from the
interpolated points on the edges to the point interpolated on the face. It is
not possible that all three edges of a triangle are part of the contour line.
Note that each of these points is part of two line segments because each
edge is part of two triangles. The interpolation on the same edge of two
faces will result in the same point. To calculate the skeleton point, we sum
up all interpolated points p weighted by the length l(s1) and l(s2) of its
line segments divided by the total length dsum of all line segments.

pskeleton = ∑
p∈P

1
2 ∗ dsum

d(s1)d(s2)p

This sum where the contribution is weighted by the length is needed because
the line segments will not all have the same length. This is also the reason
why we cannot only take the average of all points. A comparison between
the average and the weighted sum can be seen in Figure 4.1.

4.3 Sample rate of skeleton points

The time difference between iterations in the simulation is quite small, which
results in small changes of the skeleton points between iterations. Many
applications, like animation, require a rather sparse skeleton. Hence we need
to define time points for which we want to calculate the skeleton point and
use it in the final skeleton. Timepoints, where critical points occur, are good
candidates since they signal a change in topology. Some methods [BPS97]
extract feature points from the raw mesh to generate hints about where
skeleton points should be extracted. Such methods could also be applied to
our method. For this paper, we want to focus on using unique properties
Layered Fields are providing over normal Reeb graph-based methods.

For tube-like structures, the growing fields tend to form the boundary
representing the normal w.r.t the extensions of the tube. The amount of time

24

4.3 Sample rate of skeleton points

the cell needs to adjust to the extent direction depends on the angle the
cell did initially grow into the tube. This means the length of the contour
line may be used to approximate the perimeter of the tube for the location
of the skeleton point. Analyzing the recent history of skeleton points and
estimated perimeters, we can detect the endpoint of such tubes. Rapid
changes in the estimated perimeter supported by the slower movement of
the skeleton point indicate the end. Such a feature detection is especially
useful for human-like objects, where multiple parts can be detected by this
method. A good example is the transition from the arm into the hand, which
will not create a critical point because there is no topological change.

Figure 4.1: On the left, the weighted sum is used, and on the right, the average to calculate
the skeleton points with a fixed sample rate. Note that the skeleton using the
average does not follow the bend of the shape as accurately as the skeleton
using the weighted sum.

25

4 Skeleton extraction using Layered Fields

4.4 Out-of-mesh bones

Another problem that occurs at critical points are bones that stick out of
the mesh. New layers are not stable during the first few iterations, because
the diffusion needs to distribute the high energy levels of the start vertices
to surrounding vertices. Caused by the distribution process, the energy
value of some starting vertices will drop below the threshold c in early
iterations. If contour tracking is performed in this unstable state, multiple
short paths may be detected, because some start vertices stayed above the
threshold c, while others did not. These short paths would result in splitting
the layer wrongfully. Therefore, contour line tracking cannot be performed
during this unstable phase of a layer. The longer this phase lasts, the more
inaccurate the tracking is around the splitting points. This may result in late
detection of a further split, or worse, the split may not be detected at all, if
a merge happens quickly afterward. Furthermore, this increases the chance
of going out-of-mesh, because the layer will already have two or more
advancing boundaries which cannot be tracked. This can be seen at the split
between the index and middle finger in Figure 4.2. To detect such bones, we
perform ray tracing against the mesh. This can be done concurrently while
the simulation continues after the creation of a bone. If an out-of-mesh bone
is found, we remove the bone and try to connect the later skeleton point
to one prior generated. It is important to only test it against earlier joints.
Otherwise, the final skeleton may not be fully connected. Skeleton points
can also be outside of the mesh if the shape of the growing boundary is
convex, because the weighted sum of the vertices of a convex shape may be
outside of the shape. Connections to those skeleton points are allowed to
cross the surface of the object and are ignored for this optimization.

26

4.5 Reverse growing

Figure 4.2: The left image shows the raw skeleton. On the right, the out-of-mesh connec-
tions are fixed, and leaf skeleton nodes of non-leaf layers have been removed.

4.5 Reverse growing

When a connected component splits into multiple new ones, a large jump is
performed from the previous skeleton point to the first skeleton point of the
new layers. This problem can be seen at the transition from the base of the
hand to the thumb in the left image of Figure 4.3. A general way to avoid
this non-optimal connection is to look at the n most recent skeleton points of
the parent layer instead of always selecting the last one. Desired properties
like distance, connection angle, and whether the connection leaves the mesh,
can be used to select the best candidate. Choosing a different skeleton point
may improve the skeleton, but it does not solve the problem of having any
useful information exposed by the scalar function of this region. Instead, we
modify the scalar function, which is implicitly defined by Layered Fields, by
growing in the reverse direction after a split has occurred. This is achieved
by removing the parent layer to allow the new layers to grow into the reverse

27

4 Skeleton extraction using Layered Fields

direction. The bones connecting the parent layer with the child layers are
removed since the objective is to improve these connections. During the
reverse growing, skeleton points are computed for the advancing contour
lines. If the most recent skeleton point is close to an already existing skeleton
point of the parent layer, the reverse growing is stopped for this layer. A
connection to this close point is formed. Reverse growing is not guaranteed
to find a suitable connection to an existing skeleton point. Therefore, the
erased connection is restored.
To improve the success rate, only one child layer is allowed to reverse grow
at a time, This is achieved by manipulating the Laplacian matrix for the
seed vertices of the child layers for all except one. This is then repeated
for all other child layers. Afterward, the parent layer may have a branch,
which results in a leaf skeleton point, which should not be present in the
final skeleton. Such a branch is removed, by continuously removing the last
point of the parent layer, until it is connected to a child layer.

Reverse growing, as described above, does not work for small parent layers.
The child layers do not have enough space to find a better connection. To
give the reverse growing layer more space, additional parent layers may
be removed. The reverse growing layer may then also create a connection
to those additional layers. This gives the children more freedom during
reverse growing but also decreases the chance of finding a good skeleton
point to form a connection. Choosing the number of parent layers involved
in reverse growing is a difficult problem to solve without user input. This is
due to the missing information about the shape of the parent layers, which
would require expensive shape analysis to obtain. However, the lifetime of
the parent layer can provide information about the space provided.

28

4.5 Reverse growing

Figure 4.3: Example reverse growing process. The first image is the raw skeleton without
optimizations. Image 2-7 show the reverse growing process and the new connec-
tion to the parent layer. The last image shows the final skeleton after removing
the parent leaf skeleton points and all other mentioned optimizations.

29

4 Skeleton extraction using Layered Fields

Figure 4.4: The left image shows the result after the out-of-mesh optimization. The right
image shows the result of the support layer removal. The point of interest is the
purple layer connecting the middle finger and the ring finger.

4.6 Removing of support layers

Multiple branches close to another may produce very small layers which do
not offer important information for the skeleton. Furthermore, the bones
produced by those small support layers are often very jaggy and have sharp
angles which are not present the shape of the object. In Figure 4.3, the pink
layer, connecting the middle and ringer finger, is classified as a support
layer. It only has one additional skeleton point. The first, connected to the
purple layer, and the last, connected to the turquoise layer, are generated
by Reeb graph events. Our method tries to optimize such layers away to
reduce the complexity of the skeleton. This is done by looking at the angles
of bones leaving this layer. For the example above, the two bones connected
to the middle and ring fingers are subject to optimization. If the overall
connection angle is reduced by reconnecting these bones to an earlier one
of the support layer, the old connection point is removed. The result of this

30

4.6 Removing of support layers

optimization can be seen in Figure 4.4. This optimization is only performed
if the new connections do not intersect with the mesh.

31

5 Results

The test system for the experiments consists of: a NVIDIA Geforce GTX 1080

TI with 11 GB of GDDR5X memory and 3584 compute cores, an Intel(R)
Core(TM) i7-6850K, and 64 GB of DDR4 system memory. The ∆ t for the
Layered fields update was set to 5.0.

5.1 Skeletons

Skeletons, shown in this section, were created without any user input or
fine-tuned parameters. The only parameter of our method is the number of
iterations tracking is not performed after a split happened, which is set to 20

across all examples. All optimizations previously mentioned, except reverse
growing, were applied during the generation of the skeletons. Reverse
growing was excluded because it requires user input to work reliably. One
start layer with one randomly chosen start seed is used in the experiments,
except for Figure 5.2, which aims to show the differences produced by
different initial seeds. Figure 5.1 shows that our method does include the
essential features of the stag mesh. All branchings and endpoints of the
antlers, nose, and ears are well preserved. The front feet are well connected
to the base of the stag. The connection of the back feet, on the other hand,
shows some differences between the left and the right foot. The sharp
boundary which is advancing towards the back feet was still a bit skewed
caused by the starting seed lying on the left side of the mesh, which caused
the difference in branching to both back feet. Detecting, not to mention

33

5 Results

Figure 5.1: Skeleton of a deer mesh. The initial seed was located on the left front leg.

34

5.1 Skeletons

fixing, such difference is a challenging problem without having a global
view of the mesh.

If the same starting seeds are selected, our method is invariant to affine
transformation. Furthermore, Figure 5.2 shows that the start seeds impact
only the starting region. Skeletons for parts of the mesh farther away from
the starting seeds look very similar. For example, the skeletons for the
head of the human are nearly identical even though the starting seeds were
located on entirely different parts. The fourth image has a different skeleton
in the head region because the start seed was located at the top of the head.
These similarities, produced by our method, can be observed on all limbs
too.

Figure 5.2: The skeleton generated for four different starting seeds. The locations from left
to right are: left shoulder, left foot, left thumb, and the top of the head.

The tail of the camel in Figure 5.3 shows an example where the skeleton

35

5 Results

Figure 5.3: Skeleton generated by our method for the camel mesh. The tail features are
out-of-mesh connection.

leaves the mesh where no applied optimization can solve this out-of-mesh
connection. The diameter analysis fails because the tail has no rapid changes.
As a post-process fix for the tail, reverse growing could be used, starting
from the last point the contour line visited on the tail. As a fix during
simulation time, the skeleton point for all sharp boundaries could be created
in every iteration and checked if the connection to the previous point leaves
the mesh. If the ray between those two points did not leave the mesh, the
point is discarded. In the event that it intersects, the skeleton point of the
last iteration is added as a new skeleton point. The disadvantage of this fix
is that the skeleton will not be centered and a performance penalty because
the skeleton point is needed in every iteration.

The dragon [Lab96] is a challenging mesh to produce a skeleton without
any user input. It has a lot of small features, for example, the spikes along
the back of the dragon, which should not be part of the skeleton. The tail is

36

5.1 Skeletons

connected to the back, which forms a loop the skeleton has to represent. Our
method produces a good looking skeleton shown in Figure 5.4. The open
mouth and also the more significant spikes on the head are accounted for by
our generated skeleton. The body shape is also well modeled. However, the
front feet are not really captured. Our method cannot handle features that
form tubes with a small elongation compared to the diameter. In general,
for such features, like the front claws, the sharp boundary of the parent
layer (yellow) does not grow around a single claw, and therefore no split
will happen. The same can be seen in the image on the right bottom, where
the upper claws were detected, but the lower claws did not. The worst part
of the dragon is clearly the area marked by the white rectangle. This part is
shown from another angle in the picture on the right bottom. The dragon is
a 3D scanned model and has a hole at the bottom. The triangulation in this

Figure 5.4: Skeleton generated by our method for the dragon mesh. The red and white
rectangles highlight problematic areas.

37

5 Results

area is very irregular, and faces with a tiny area are present. The advancing
fronts in this region show some numerical problems which create a bad
skeleton for this region.

5.2 Runtime

This section analyses the runtime for each step of our method to generate
skeletons based on Natural Reeb graphs. The performance overhead of cre-
ating skeletons additional to Natural Reeb graphs is minimal, and therefore
no separate discussion for creating only Natural Reeb graphs is provided.

5.2.1 Contour Extraction

We expected the runtime of the contour extraction to be linear to the number
of active layers during an update step due to the serial implementation,
which processes layer after layer. Figures 5.5, 5.7 and 5.9 show exactly the
expected scaling in runtime. Between iterations 2600 and 4000 in Figure 5.5
for the dragon mesh, there was only one active layer that was growing
alongside the body. In this time frame, the runtime for the contour extraction
stayed nearly constant, which supports our initial expectation. The number
of contour triangles did increase by about 600% in this time frame shown in
Figure 5.6. This increase resulted in more writes to global memory to store
the result and did increase the time needed in each iteration. However, these
writes to store the contour triangles are highly regular and are efficiently
executed by the memory controller of the GPU. The increased runtime for
those stores is overshadowed by the reads of the energy values for each
edge. Obtaining the energy values from the sparse system matrix requires
irregular memory access patterns and depends only on the number of
triangles of the mesh.

38

5.2 Runtime

5.2.2 Connected Component counting/labeling

Connected component labeling has the same linear scaling with the number
of layers as Contour Extraction. The serial implementation again causes
this scaling. Additionally, the connected component labeling scales by
O(m log m) with the number of contour triangles. Between iteration 2600

and 4000 in Figure 5.5, the increase in runtime caused by the increase of
contour triangles is visible. However, none of the tested meshes had a large
enough number of triangles forming the contour to impact the performance
of the algorithm. When looking at Figures 5.6, 5.8, and 5.10 the peak for the
contour line sizes lies at around 0.5%− 1.5% of the triangle count of the
whole meshes.

5.2.3 Skeleton Point Calculation

The reported runtime for skeleton point calculation includes the runtimes
for creating a skeleton point based on Natural Reeb graph events or the
perimeter analysis. It is important to note that in case the perimeter analysis
is disabled, there would be zero time spent for iterations where no layer
splitting happens. Perimeter analysis depends on extracting the perimeter
and skeleton point in each iteration to make a decision about changes in
the perimeter for a segment of the mesh. To calculate the skeleton point,
the perimeter is needed for the weighted sum. This is the reason why both
values are reported as one. The runtime for these steps scales only with the
number of layers for our experiments. This is due to the low utilization of the
GPU. Calculating the skeleton point only involves iterating two times over
the contour triangles and reading vertex positions and energy values, which
both involve irregular memory access patterns. Furthermore, the number of
contour triangles is too little to hide these memory access latencies.

39

5 Results

Figure 5.5: Average runtime over five runs for the dragon mesh. The variance of each
iteration is shown as the area around the line.

Figure 5.6: The number of contour triangles in each iteration for the simulation on the
dragon mesh.

40

5.2 Runtime

Figure 5.7: Average runtime over five runs for the hand Pierre mesh. The variance of each
iteration is shown as the area around the line.

Figure 5.8: The number of contour triangles in each iteration for the simulation on the
hand Pierre mesh.

41

5 Results

Figure 5.9: Average runtime over five runs for the deer mesh. The variance of each iteration
is shown as the area around the line.

Figure 5.10: The number of contour triangles in each iteration for the simulation on the
deer mesh.

42

5.2 Runtime

5.2.4 Overall

Table 5.1 shows the total runtime and detailed information about each step
of the method for various meshes. As shown in Figure 5.11, when looking at
the runtime composition, the steps which need to be executed in each simu-
lation iteration take the most time: contour creation, connected component
counting/labeling, and skeleton point creation. This confirms our initial
expectations. An important observation is that the Natural Reeb graph
extraction and skeleton creation only takes about one-quarter of the runtime
the update step of Layered fields needs. This lowers the possible gains in
runtime when further optimizing the implementation of our method.

5.2.5 Comparison

We achieve a performance that is comparable with the mesh contraction
method shown by Bajaj et al. [BPS97]. The most complex mesh covered in
their work has 70k triangles with a runtime of 2.25 seconds for the paral-
lel implementation and 5.27 for the single-threaded implementation. Our
method needs for a similar-sized mesh (100k) around 3 seconds. The initial
contraction based mehtod [Au+08], which is used by Bajaj et al. [BPS97],
reported 240 seconds for a dragon mesh on a very outdated CPU. However,
even with the runtime halved to account for a faster, more recent CPU, it
is still by far slower than our method, which needs 21 seconds for 900k
triangles.

43

5 Results

M
esh(Triangles)

Total
Fields

update
C

ontour
extraction

C
C

L
Skeleton

point
H

and
Pierre

(
1.

5M
)

2
3.

1
8
3

1
7.

3
3
2

3
2.

8
7

1.
2
3
2

0.
9
2
4

M
ale

(
1.

4M
)

4
0.

6
0
4

2
8.

6
5
7

7.
2
2
2

2.
4
3
4

1.
6
1
6

D
ragon

(
9
0
0K

)
2
1.

9
7
3

1
5.

3
1
9

3.
0
7
5

1.
4
4
5

1.
1
8
4

H
and

arc
[han

1
9]

(
8
0
0K

)
1
5.

1
4
7

1
1.

0
0
9

2.
0
8
6

1.
1
7
0

0.
6
1
5

D
eer

(
1
0
0K

)
3.

0
7
9

1.
2
4
0

0.
5
4
6

0.
7
8
9

0.
3
0
1

H
um

an
(
5
0k)

1.
3
7
3

0.
3
8
4

0.
2
6
2

0.
4
6
7

0.
1
4
1

Table
5.

1:
R

untim
e

in
second

s
for

d
ifferent

sized
m

eshes.O
nly

im
portant

steps
of

the
m

ethod
,in

term
s

of
runtim

e,are
listed.

44

5.2 Runtime

Figure 5.11: The contribution of each step to the overall runtime during the whole simula-
tion of the dragon mesh.

45

5 Results

5.3 Memory consumption

The reported numbers in Table 5.2, do contain the complete memory usage
on the GPU, including Layered fields and our method. The system memory
usage stays below the usage on the GPU and is therefore not reported.
As expected, the memory consumption grows linearly with the number
of triangles. Our method only creates the edge list for contour extraction,
which scales linearly with the number of triangles. The capacity needed for
other helper structures depends on the contour line size, which stays well
below the number of faces of the whole mesh.

Mesh Memory consumption
Total Per triangle

Hand Pierre (1.5M) 424MB 0.26kB
Male (1.4M) 416MB 0.29kB

Dragon (900K) 294MB 0.32kB
Hand arc (800K) 262MB 0.32kB

Deer (100K) 86MB 0.86kB
Human (50k) 72MB 1.44kB

Table 5.2: Memory consumption on the GPU for various meshes. This includes memory
allocated by the Layered fields implementation and our method.

46

6 Conclusion

To conclude, in this thesis, we developed Natural Reeb graphs, which avoid
difficulties existing Reeb graph methods are facing. By replacing the explicit
mapping function of traditional Reeb graphs, Natural Reeb graphs can be
used in an automatic application setting because no user input is required.
Natural Reeb graphs include all important aspects like branchings or holes
of a surface to get a high-level explanation of the 3D shape.

As an application, a skeleton extraction method is presented, which is
competitive compared to existing methods. Skeletons produced by our
method are transformation invariant as well as centered, which are two
main features required by further applications of mesh skeletons. The
GPU friendly design of both, the Natural Reeb graph algorithm, and the
skeleton extraction method, results in fast execution on the GPU. Even
topological complex models like the Chinese dragon with around 900k
triangles can be handled in about 20 seconds on a single consumer GPU.
Furthermore, reverse growing is an optimization enabled by the implicit
mapping function of the Natural Reeb graphs. It improves the skeleton in
branching areas, which are difficult to handle for existing Reeb graph-based
methods. Reverse growing redefines the mapping function for those areas
on-line, which provides additional information to improve the skeleton.

47

Bibliography

[AH12] Waleed Abbas and A. Hamza. “Reeb graph path dissimilarity
for 3D object matching and retrieval.” In: The Visual Computer
28 (Mar. 2012), pp. 305–318. doi: 10.1007/s00371-011-0640-5
(cit. on p. 1).

[AN15] A. Acharya and V. Natarajan. “A parallel and memory efficient
algorithm for constructing the contour tree.” In: 2015 IEEE Pacific
Visualization Symposium (PacificVis). Apr. 2015, pp. 271–278. doi:
10.1109/PACIFICVIS.2015.7156387 (cit. on p. 7).

[Au+08] Oscar Kin-Chung Au et al. “Skeleton Extraction by Mesh Con-
traction.” In: ACM Trans. Graph. 27.3 (Aug. 2008), 44:1–44:10.
issn: 0730-0301. doi: 10.1145/1360612.1360643. url: http:
//doi.acm.org/10.1145/1360612.1360643 (cit. on pp. 8, 43).

[Bia+03] Silvia Biasotti et al. “An overview on properties and efficacy
of topological skeletons in Shape Modelling.” In: June 2003,
pp. 245–254. isbn: 0-7695-1909-1. doi: 10 . 1109 / SMI . 2003 .

1199624 (cit. on p. 3).

[BPS97] C. L. Bajaj, V. Pascucci, and D. R. Schikore. “The contour spec-
trum.” In: Proceedings. Visualization ’97 (Cat. No. 97CB36155). Oct.
1997, pp. 167–173. doi: 10.1109/VISUAL.1997.663875 (cit. on
pp. 2, 7, 24, 43).

49

https://doi.org/10.1007/s00371-011-0640-5
https://doi.org/10.1109/PACIFICVIS.2015.7156387
https://doi.org/10.1145/1360612.1360643
http://doi.acm.org/10.1145/1360612.1360643
http://doi.acm.org/10.1145/1360612.1360643
https://doi.org/10.1109/SMI.2003.1199624
https://doi.org/10.1109/SMI.2003.1199624
https://doi.org/10.1109/VISUAL.1997.663875

Bibliography

[CSM07] Nicu D. Cornea, Deborah Silver, and Patrick Min. “Curve-Skele-
ton Properties, Applications, and Algorithms.” In: IEEE Trans-
actions on Visualization and Computer Graphics 13.3 (May 2007),
pp. 530–548. issn: 1077-2626. doi: 10.1109/TVCG.2007.1002.
url: https://doi.org/10.1109/TVCG.2007.1002 (cit. on p. 8).

[han19] hand. ”3D Hand scan” by artec3d.com is licensed under CC BY 3.0.
2019. url: https://www.artec3d.com/3d-models/hand (visited
on 12/31/2019) (cit. on p. 44).

[Hil+01] Masaki Hilaga et al. “Topology matching for fully automatic
similarity estimation of 3D shapes.” In: Jan. 2001, pp. 203–212.
doi: 10.1145/383259.383282 (cit. on p. 1).

[Lab96] Stanford University Computer Graphics Laboratory. 3D-scan of
a chinese dragon. 1996. url: http://graphics.stanford.edu/
data/3Dscanrep/ (visited on 12/31/2019) (cit. on p. 36).

[MLM18] I. Manolas, A. S. Lalos, and K. Moustakas. “Parallel 3D Skeleton
Extraction Using Mesh Segmentation.” In: 2018 International
Conference on Cyberworlds (CW). Oct. 2018, pp. 172–175. doi:
10.1109/CW.2018.00041 (cit. on p. 8).

[Pas+07] Valerio Pascucci et al. “Robust On-line Computation of Reeb
Graphs: Simplicity and Speed.” In: ACM SIGGRAPH 2007 Papers.
SIGGRAPH ’07. San Diego, California: ACM, 2007. doi: 10.
1145/1275808.1276449. url: http://doi.acm.org/10.1145/
1275808.1276449 (cit. on p. 7).

[REE46] G. REEB. “Sur les points singuliers d’une forme de Pfaff com-
pletement integrable ou d’une fonction numerique [On the Sin-
gular Points of a Completely Integrable Pfaff Form or of a
Numerical Function].” In: Comptes Rendus Acad. Sciences Paris
222 (1946), pp. 847–849. url: https://ci.nii.ac.jp/naid/
10024635920/en/ (cit. on p. 1).

50

https://doi.org/10.1109/TVCG.2007.1002
https://doi.org/10.1109/TVCG.2007.1002
https://www.artec3d.com/3d-models/hand
https://doi.org/10.1145/383259.383282
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://doi.org/10.1109/CW.2018.00041
https://doi.org/10.1145/1275808.1276449
https://doi.org/10.1145/1275808.1276449
http://doi.acm.org/10.1145/1275808.1276449
http://doi.acm.org/10.1145/1275808.1276449
https://ci.nii.ac.jp/naid/10024635920/en/
https://ci.nii.ac.jp/naid/10024635920/en/

Bibliography

[Sha+07] Andrei Sharf et al. “On-the-fly Curve-skeleton Computation for
3D Shapes.” In: Comput. Graph. Forum 26 (Sept. 2007), pp. 323–
328. doi: 10.1111/j.1467-8659.2007.01054.x (cit. on p. 8).

[SKK91] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien. “Surface cod-
ing based on Morse theory.” In: IEEE Computer Graphics and
Applications 11.5 (Sept. 1991), pp. 66–78. issn: 1558-1756. doi:
10.1109/38.90568 (cit. on p. 7).

[Tag+12] Andrea Tagliasacchi et al. “Mean Curvature Skeletons.” In: Com-
puter Graphics Forum 31.5 (2012), pp. 1735–1744. doi: 10.1111/
j.1467-8659.2012.03178.x. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03178.x.
url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1467-8659.2012.03178.x (cit. on p. 8).

[WL08] Y. Wang and T. Lee. “Curve-Skeleton Extraction Using Iterative
Least Squares Optimization.” In: IEEE Transactions on Visualiza-
tion and Computer Graphics 14.4 (July 2008), pp. 926–936. issn:
2160-9306. doi: 10.1109/TVCG.2008.38 (cit. on p. 8).

[WXS06] Naoufel Werghi, Yijun Xiao, and Jan Siebert. “A functional-based
segmentation of human body scans in arbitrary postures.” In:
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transac-
tions on 36 (Mar. 2006), pp. 153–165. doi: 10.1109/TSMCB.2005.
854503 (cit. on p. 1).

51

https://doi.org/10.1111/j.1467-8659.2007.01054.x
https://doi.org/10.1109/38.90568
https://doi.org/10.1111/j.1467-8659.2012.03178.x
https://doi.org/10.1111/j.1467-8659.2012.03178.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03178.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03178.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.03178.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.03178.x
https://doi.org/10.1109/TVCG.2008.38
https://doi.org/10.1109/TSMCB.2005.854503
https://doi.org/10.1109/TSMCB.2005.854503

	Kurzfassung
	Abstract
	Introduction
	Background and Related Work
	Layered Fields
	Reeb Graph methods
	Skeleton Extraction methods

	Natural Reeb graph computation using Layered Fields
	Contour Lines for Natural Reeb graphs
	Track connected components
	Simulation End
	Method summary

	Skeleton extraction using Layered Fields
	Skeleton points
	Skeleton point calculation
	Sample rate of skeleton points
	Out-of-mesh bones
	Reverse growing
	Removing of support layers

	Results
	Skeletons
	Runtime
	Contour Extraction
	Connected Component counting/labeling
	Skeleton Point Calculation
	Overall
	Comparison

	Memory consumption

	Conclusion
	Bibliography

