
Lukas Giner, BSc

A Robust High-Speed Cache Covert Channel in the Cloud

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Asst. Prof. Daniel Gruss

Institute for Applied Information Processing and Communications

 Diplom-Ingenieur

Supervisor

Advisor

Dr. Clémentine Maurice

Graz, January 2020

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Abstract

In nearly all modern CPU architectures, caches are used to bridge the speed
gap between the processor and the much slower main memory. Over the last
years, these caches have been shown time and again to be prime candidates
for side-channel attacks. One type of cache attack is the construction of a
covert channel to exfiltrate data from systems that allow no overt communi-
cation. A specific scenario is the extraction of data from one virtual machine
to another, attacker-controlled VM in a cloud computing environment. Prior
work has demonstrated that this is indeed possible in principle, but, so far, a
high-speed channel free of transmission errors and with minimal restrictions
for the host system has not been published.

In this thesis, we present our work towards achieving this. First, we define
a threat model that is broad enough to encompass a large variety of system
configurations by stripping away as many requirements as possible. Next,
we systematically identify the challenges implied by this threat model. The
main challenges are finding addresses that are congruent in the cache, estab-
lishing a connection from one virtual machine to another, and keeping the
channel synchronized. To identify congruent addresses, we expand upon pre-
vious work and improve their methods. With the Jamming Agreement, we
present a novel approach to establishing contact and transmitting the initial
channel parameters. For synchronization, we develop a two-way communica-
tion system with a back-channel, which can keep the channel synchronized,
even in the presence of deschedulings or a non-monotonic system clock. Fi-
nally, we conduct an extensive analysis of the properties of this channel and
conclude that it does indeed fulfill the premise of a robust, high-speed cache
covert channel in the cloud.

I

Kurzfassung

In fast allen modernen CPU-Architekturen werden Caches verwendet, um
die Geschwindigkeitslücke zwischen dem Prozessor und dem viel langsameren
Hauptspeicher zu überbrücken. In den letzten Jahren hat sich immer wieder
gezeigt, dass diese Caches sehr gute Kandidaten für Seitenkanalangriffe sind.
Eine Art von Cache-Angriff ist der Aufbau eines verdeckten Kanals, um
Daten aus Systemen herausschleusen, die keine offene Kommunikation zu-
lassen. Ein konkretes Szenario ist die Extraktion von Daten von einer
virtuellen Maschine in der Cloud zu einer anderen, welche unter der Kon-
trolle des Angreifers steht. Frühere Arbeiten haben gezeigt, dass dies zwar
prinzipiell möglich ist, bisher wurde aber noch kein Kanal mit hoher Über-
tragungsgeschwindigkeit veröffentlicht, der frei von Übertragungsfehlern ist
und zudem minimalen Einschränkungen für das Host-System hat.

In dieser Arbeit stellen wir unsere Anstrengungen in diese Richtung vor.
Zunächst definieren wir ein Bedrohungsmodell, das umfassend genug ist, um
eine große Vielfalt von Systemkonfigurationen abzudecken, indem wir so viele
Anforderungen wie möglich entfernen. Als nächstes identifizieren wir system-
atisch die Herausforderungen, die dieses Bedrohungsmodell mit sich bringt.
Die Hauptherausforderungen bestehen darin, kongruente Adressen im Cache
zu finden, eine Verbindung von einer virtuellen Maschine zu einer anderen
aufzubauen und den Kanal synchron zu halten. Um kongruente Adressen zu
finden, erweitern wir die bisherigen Arbeiten und verbessern deren Metho-
den. Mit dem Jamming Agreement stellen wir einen neuartigen Ansatz zur
Kontaktaufnahme und Übertragung der anfänglichen Kanalparameter vor.
Für die Synchronisation entwickeln wir ein Zweiwege-Kommunikationssystem
mit einem Rückkanal, welches den Kanal auch in Anwesenheit von Prozess-
Descheduling oder einer nicht monotonen Systemuhr synchron halten kann.
Zu guter Letzt führen wir eine umfassende Analyse der Eigenschaften dieses
Kanals durch, und kommen zu dem Schluss, dass er tatsächlich unsere Ziele
eines robusten, verdeckten Hochgeschwindigkeits-Cache-Kanals in der Cloud
erfüllt.

II

Acknowledgements

Firstly, I want to thank my advisors Daniel and Clémentine, for asking me
to be a part of this project in the first place, and then guiding me through
the process. I want to thank Clémentine in particular for taking the time to
read many rough drafts, even long after leaving the university, and Daniel
for pushing me to complete the rest of my master’s.

To my parents, I want to express my sincere gratitude for tolerating my
dawdling for all these years and supporting me even when progress was
sparse - I know you’re quite relieved to see the end of this road.

Lastly, I want to thank Michael Schwarz and Manuel Weber for their part
in this work, and all the help and advice they provided.

III

Contents

Abstract I

1 Introduction 3
1.1 Motivation . 4
1.2 Threat Model . 4
1.3 Challenges . 5
1.4 Outline . 5

2 Background 6
2.1 Caches . 6

2.1.1 Cache Attacks . 9
2.1.2 Cache Covert Channels 11

2.2 Error Detection Codes . 13
2.2.1 Berger Code . 14

2.3 Forward Error Correction . 14
2.3.1 Reed-Solomon Codes 15

3 Analyzing Challenges 16
3.1 Challenge C1: Virtualized Timers 16
3.2 Challenge C2: Scheduling Difficulties 17
3.3 Challenge C3: Address Mapping in Virtualization 17
3.4 Challenge C4: First Contact - Establishing the Channel . . . 18

4 Implementation 20
4.1 Native Prime+Probe . 20

4.1.1 A Statistical Analysis of Errors in Prime+Probe . . . 23
4.2 Replacing the rdtsc Instruction in Synchronization 26

4.2.1 Reading with a Sliding Window 28
4.2.2 Detecting Errors . 29
4.2.3 Sequence Numbers . 30
4.2.4 Read Delay . 34

4.3 Finding Cache-Set-Congruent Addresses 35
4.4 Jamming Agreement . 40

1

4.5 Error Correction . 42

5 Performance Evaluation 43
5.1 Transfer Speed . 43

5.1.1 Dynamic Delay . 46
5.2 Transmission Error Analysis 46

5.2.1 Transmission Failures 48
5.2.2 Word Error Ratio . 49
5.2.3 Synchronization . 49
5.2.4 The RS-Code and Bit Errors 54

5.3 Cache Set Finding . 57
5.4 Jamming Agreement . 58

6 Conclusion 62

2

Chapter 1

Introduction

CPU caches are an integral part of modern computing and constitute an
important area of security research. As they are present on nearly all of
today’s electronic devices, attacks and exploits based on their architecture
can affect many different types of devices, independent of their operating
systems.

Cloud computing presents a large group of such affected devices, as it is pos-
sible for multiple tenants to be co-located on the same physical CPU [1, 2, 3,
4, 5, 6, 7]. As an ever-increasing number of services handling highly sensitive
data populate the cloud, cache attacks are an increasingly interesting attack
vector because they break isolation between tenants.

Attacks using CPU caches are based on measuring the cache access timings,
which puts them in the category of timing side-channel attacks. They have
been a field of research for many years but became more active with the
widespread availability of fast multi-core machines in the last few years.
Fundamentally, they allow the attacker to either spy on unknowing third-
party applications by monitoring their cache accesses [8] or to communicate
covertly with a collaborating application. Both scenarios are "stealthy" with
regards to commonly monitored ways of transferring data (e.g., RAM or
hard drives), which is why an attack that establishes communication over
the cache is referred to as a "cache covert channel." These channels will be
the focus of this thesis.

Cache attacks can be based on different techniques, such as Flush+Reload,
Flush+Flush or Prime+Probe, each requiring different conditions and pro-
viding different advantages. Flush+Flush has been shown [9] to be both
stealthy and extremely fast, but requires shared memory. As Prime+Probe
operates not on single cache lines, but on entire cache sets, it does not need
shared memory, at the cost of speed and accuracy.

3

When bringing cache covert channels to a cloud environment to establish
communication between different tenants, several challenges arise. For one,
shared memory is not always available between virtual machines, which ne-
cessitates the use of the Prime+Probe technique.

In this thesis, we explore the practical applicability of such a channel and
show our steps towards a fast and reliable implementation that works in the
virtualized environment of the Amazon Elastic Compute Cloud (EC2). We
show the challenges in constructing such a channel from the ground up and
present practical solutions for them towards a fully usable channel.

The content of this thesis represents a large contribution to a conference
paper presented at NDSS 2017 [10].

1.1 Motivation

Cache covert channels across virtual machines or even in the cloud are not
new and have in fact been demonstrated multiple times [1, 11, 12, 13, 14].
However, in our opinion all of these lack practicality in one or more of the
following ways:

• speed: transferring data on the order of bytes per second

• requirements: VCPUs sharing the same physical core at some points;
a consistent rdtsc instruction between the colluding virtual machines;
page deduplication

• unresolved synchronization problems: using the edit-distance as a mea-
sure of error ratio without addressing the correction of these errors

• a significant impairment in the presence of strong sources of noise on the
cache

Our intent is to develop a cache covert channel that could rightly be called
both "High-Speed" and "Robust". In doing so, we detail what challenges
need to be overcome for robustness (i.e., error correction) in particular to
become possible.

1.2 Threat Model

While we test our channel on the Amazon EC2 service, it is not bound
by specific features of the EC2. Consequently, the method presented in
this thesis should be applicable to any system configuration that fulfills the
following few requirements.

4

R1 Shared LLC

The CPU needs to have a shared and inclusive last-level cache.

R2 Availability of 2MB huge pages

2MB huge pages need to be enabled on the hypervisor and virtual ma-
chines.

R3 Exclusive access to two CPU threads per transceiver

For correct operation, sender and receiver need 2 concurrent threads each.
These may be located on the same CPU core via hyper-threading.

Our approach does explicitly not rely on page deduplication, root access, a
monotonic rdtsc, rdtsc synchronization between virtual machines or iden-
tical clock speeds for all CPU cores.

1.3 Challenges

Based on the threat model we created for a widely applicable cache covert
channel, several challenges present themselves.

First and foremost, how can we achieve synchronization between sender and
receiver without expecting a reliable, cycle-accurate clock (rdtsc) for ex-
tended periods of time? From this follows the need to tolerate the deschedul-
ing of receiver and sender threads (or the entire VM), even if it cannot be
detected with the clock. Another obstacle is that virtual to physical address
mapping is not available in virtualized environments, but knowing it to some
extent is a requirement for Prime+Probe. Finally, there is no preexisting
channel to negotiate parameters before communication.

1.4 Outline

Chapter 2 provides background information on CPU caches and different
attack types. Chapter 3 discusses the previously mentioned challenges in
greater detail. In Chapter 4, we look at specifics for various parts of our
implementation and how they serve to overcome the presented challenges.
Lastly, we evaluate the performance characteristics of our channel in Chap-
ter 5 and conclude the thesis in Chapter 6.

5

Chapter 2

Background

In this chapter, we first give a general overview of how caches operate. We
will usually default to the behavior in modern Intel processors when specifics
are mentioned, as that is the hardware most Amazon EC2 instances offer [15]
and the implementation of this thesis was done on. This is followed by a
brief overview of errors in digital communication channels as they pertain to
this work.

2.1 Caches

In modern CPU architectures, all accesses to the main memory (RAM) go
through the cache, a small set of buffers used to store frequently used data.
This process speeds up the CPU’s operation by significantly reducing the la-
tency for accesses to cached data. From the perspective of running software,
this happens transparently.

A cache consists of cache lines which are copies of sequential pieces in the
main memory, typically 32, 64 or 128 bytes long. When requested data is
found in a cache line, this is called a cache hit, when it is not, a cache miss
has occurred. The cache as a whole is usually a combination of several levels
of caches, the first, L1 being the smallest. The reason for this is a trade-off
between speed, hit rate and die-space. For the most frequently accessed data,
the lowest latency possible is desirable. Because access time and physical size
go up with increased storage size, for maximum performance, the L1 cache
is kept small. A smaller size implies a lower hit rate, which is why slower,
but generally larger caches are added to increase the overall hit rate. At
the time of writing, many end-user CPUs use 3 levels of caches, while a few
(such as the Intel i7-5775C) use very large L4 caches for specialized purposes.
The highest level of cache is called the last-level cache (LLC). In multi-core

6

processors, higher level caches, such as the LLC, are often shared between
cores, while lower level caches are private to each core.

For its i7 series, Intel estimates [16] these latencies:

• L1 cache hit, 4 cycles

• L2 cache hit, 10 cycles

• L3 cache hit ≈ 40 cycles

• L3 cache hit, shared line in other core ≈ 65 cycles

• L3 cache hit, modified in other core ≈ 75 cycles

• DRAM, > 60ns

The exact difference depends on the clock speed of the CPU, but it is clear
that even an L3 hit is significantly faster than a cache miss. As the L1 cache
is considerably faster than the L3, it follows that deciding which data is
cached in the L1 and which is relegated to the slower L2 or even L3 cache is
critically important for performance.

The algorithm controlling this behavior is the cache replacement policy. This
can be a strategy as simple as first in first out (FIFO) or something more
complex, like least recently used (LRU). When data is stored in a cache line,
an identifying tag is saved alongside it. The replaced line is evicted from this
cache level. Recent Intel CPUs have used a pseudo-LRU policy up to and
including the Sandy Bridge architecture, but moved to an undocumented
variation of LRU with Ivy Bridge, resembling [17] DIP [18] and DRRIP [19].

The cache replacement policy operates on multiple sets of cache lines. How
large they are is determined by the addressing scheme of the cache. In a
fully associative cache, all cache lines belong to the same cache set and data
can be cached in any line. This means the cache replacement policy operates
on the entire cache at once. The upside of this is that the cache size can
be optimally used, according to the employed policy. The downside is that
for each access, the entire cache has to be searched to determine if a tag is
present. Additionally, any change might require updating the metadata of
the replacement policy for each cache line. The opposite of this is a direct
mapped cache, in which each cache line is its own set, which means that
each memory address can only be cached in one specific cache line. While
finding data in the cache requires the least amount of hardware complexity
with this approach, non-uniformly distributed memory access can cause high
cache miss rates in some lines and almost no use in others. The so-called set
associative cache presents a compromise of these two extremes. The cache
is partitioned into sets of n cache lines each, called n-way set associative.
Each memory address now maps to a specific set in the cache, but the re-
placement policy can decide which of the n ways to replace. This combines

7

the high-efficiency use of a fully associative cache with the lower hardware
requirements of a direct mapped cache. Figure 2.4 shows the process of
evicting a cache line from a set in a set associative cache for an LRU policy
and the policy used in Ivy Bridge and onwards.

How addresses are tagged and mapped to cache sets depends on the cache’s
indexing method. Caches can be indexed or tagged from either virtual or
physical addresses, which allows 4 different combinations. For the Intel i7
series, the L1 is virtually indexed and physically tagged, L2 and L3 are
physically indexed and tagged [20]. Using a part of the virtual address
for indexing or tagging is fast, because the incoming virtual address does
not have to be translated, but can also cause shared memory to be cached
more than once, as the data can have multiple different cache indices and
tags. For small caches such as the L1, this problem is mitigated because
they need fewer bits for indexing. Since the main memory is segmented
into pages of at least 4kB, the lower 12 bits of virtual addresses are the
same as in the physical addresses. Using the physical address for indexing
and tagging is slower because the address has to first be translated by the
translation lookaside buffer (TLB). If the address in question is not cached
in the TLB, it has to be loaded from memory, which further slows down this
operation. The advantage of using the physical address is that there can be
no ambiguity.

In addition to the cache replacement policy, the relationship between dif-
ferent caches also defines what data is stored in which cache. Two cache
levels can be in one of three relations: inclusive, exclusive and non-inclusive.
An inclusive cache has to contain all the data stored in specific (usually all)
lower-level caches. This property also applies the other way, which means
that an eviction in an inclusive cache necessarily triggers the eviction of that
cache line in all caches it includes. LLCs in Intel CPUs are generally in-
clusive. If two caches are exclusive to each other, they are not allowed to
store the same data. AMD used to favor this strategy for its LLCs, but
seems to have adopted an inclusive LLC for its latest architecture [21]. Non-
inclusive caches can include data from lower-level caches, but do not have
to. Representative of this are L2 caches in Intel’s i7 series [22].

Starting with the Nehalem architecture, Intel processors divide the LLC not
only into sets but also slices. The number of slices equals the number of cores.
While all cores have access to the entire LLC, each has a slice associated with
it that is closer on the connecting ring bus. Addresses are evenly divided
among slices by a hash function of the address. Since Sandy Bridge, this
function is undocumented [22], but methods for reverse-engineering it have
been published for processors with 2n cores [23, 24] as well as non-power-of-
two cores [25, 26, 7]. In the first case, the hash function consists of an XOR

8

sum for all n bits required, as shown in Figure 2.2. Figure 2.1 illustrates the
whole process.

Figure 2.1: Addressing an Intel last-level cache with the slice function H [24].

Figure 2.2: The slice function for 2, 4 and 8 slices [24].

2.1.1 Cache Attacks

From the properties described in the previous section, two "standard" tech-
niques for side-channel attacks using the cache have emerged. Both are based
on the fact that a cache miss takes a measurably longer time than a cache hit
(see Figure 2.3). These small timing differences can be measured with the
rdtsc (Read Time-Stamp Counter) instruction, which can be called from
user mode.

To show the potential danger of these attacks, they have been used (or
proposed) for cryptographic key-extraction [27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 9, 7], key-logging [9], bypassing kernel ASLR [23], cross-VM application
fingerprinting [37] and more.

9

50 100 150 200 250 300 350 400
100

102

104

106

Access time [CPU cycles]

N
um

be
r
of

ac
ce
ss
es

cache hits
cache misses

Figure 2.3: Latency for accessing cached and uncached memory locations.

Prime+Probe Named by Osvik et al. in 2006 [31], this method was first
described by Percival in 2005 [30]. Prime+Probe (P+P) takes its name from
the 2 steps performed by the attacker to extract information from a target
process:

1. A cache set is first primed by evicting all of its contents by filling it with
data from the attacking program. To reliably and efficiently evict a set
requires some knowledge of the cache replacement policy. At the very
least, this requires one access each to n addresses within the cache set,
given an n-way set associative cache. More complex eviction strategies
have been found that are effective on non-LRU policies [38] (Figure 2.4).

2. The same set is later probed, which means accessing the cache lines in-
serted in the priming phase and measuring the total time it takes to read
them.

If the target program has used this particular set in the meantime, a number
of the attacker’s lines will have been evicted and the measured time will be
larger than a previously calibrated threshold. One drawback of this method
is that an attacker cannot know which memory access caused the evictions, or
even which program. Another is the need for physical addresses to construct
eviction sets for caches that are not virtually indexed. An advantage, on
the other hand, is that this approach requires no shared memory with the
victim.

Flush+Reload In 2014, Yarom et al. presented Flush+Reload (F+R), an
approach to cache side-channels that greatly improves on the precision of
Prime+Probe. Gullasch et al. already employed this technique in 2011 [39],
but did not emphasize it. Flush+Reload is based on the clflush instruc-
tion, which evicts a given address from all cache levels. Again, as the name

10

a0
a1
a2
a3
a4
a5
a6
a7
a8
a9

time

ad
dr
es
s

LRU Ivy Bridge

Figure 2.4: Access patterns for eviction of a line from a cache set for an
LRU policy vs. the Ivy Bridge policy. Addresses a0 to a1 belong to the same
cache set.

suggests, 2 steps are taken by an attacking program. An address in a mem-
ory region that is shared with the victim process is first flushed and then
reloaded by accessing it. Timing this single access allows the attacker to
determine with high confidence whether the victim process has used this
specific address in the meantime or not. The granularity of this attack is
thus the length of a cache line, usually 64 bytes.

Evict+Reload, Flush+Flush These are variations on Flush+Reload.
The principle of removing an address from the cache, then checking for its
reinsertion later stays the same. For CPUs or environments without access
to the clflush instruction, Evict+Reload (E+R) [8, 40] is a possibility. Here
clflush is replaced with an eviction of the entire set, similar to the prime
step in Prime+Probe. Flush+Flush (F+F) [9] uses the fact that the clflush
instruction, conversely to a simple access, takes distinguishably longer for
its operation when the data to be flushed is in fact cached.

As mentioned in Section 2.1, the inclusion property of a cache level also
applies in case of evictions. This means that in current Intel CPUs, eviction
of an address from the cache on one core also causes this line to be evicted
in the private caches of all other cores, as the inclusive LLC ties all caches
together. Consequently, all described attacks can function across cores.

2.1.2 Cache Covert Channels

When we change the previous scenario from an attacker-victim relation to
attacker-collaborator, we can create what is referred to as a cache covert
channel. The monitored process works with the spy process by transmitting
information to it through intentional cache manipulation. Such channels

11

authors method speed BER cache CC CVM
Percival, 2005 P+P 2.24MB/s 25% L1 7 7

Percival, 2005 P+P 500kB/s 25% L2 7 7

Ristenpart et al., 2009 P+P 0.025B/s n/a L2 7 3

Xu et al., 2011 P+P 0.4B/s 9% L2 7 3

Maurice et al., 2015 P+P 94B/s 5.7% LLC 3 3

Liu et al., 2015 P+P 75kB/s 1%1 LLC 3 3

Martineau, 2015 F+R 576kB/s n/a LLC 3 3

Gruss et al., 2016 F+R 298kB/s 0.00% LLC 3 7

Gruss et al., 2016 F+F 496kB/s 0.84% LLC 3 7

Table 2.1: A comparison of cache covert channels in transmission method,
speed, bit error ratio (BER), cache level, cross-core (CC) and cross-VM
(CVM) capabilities. 1edit-distance

could be used to overcome isolation measures, be they between processes
isolated by the operating system or in different virtual machines in the cloud.
Since cache accesses are usually unmonitored, these channels are covert with
regards to traditional information flow control mechanisms.

Since Flush+Reload based techniques require some form of shared memory,
Prime+Probe is the approach to use in a cloud environment such as the
Amazon EC2. After finding a solution to the mapping uncertainty in vir-
tualization (see Chapter 3, C3&C4), priming and probing is used slightly
differently from the attack scenario. To transmit a bit to the receiver, the
sending process either evicts prearranged set(s) or does nothing to trans-
mitting either 0 or 1. The receiving process will now access its probe data
and measure the time this takes, thereby automatically caching them for the
next read. The prime and probe steps are effectively split up between the
2 processes. How many lines are used for probing is a trade-off: using only
one line is prone to eviction through noise while using too many can increase
total probing time, hide misses or even cause self-eviction.

When the communicating parties are in the same operating system or mem-
ory deduplication is enabled, Flush+Reload provides significantly higher
speeds. Since the used memory region is now shared and targeted directly,
the challenges with address mapping do not arise. The concept is the same
as for a Prime+Probe based channel, except Flush+Reload targets specific
addresses instead of entire cache sets. An address is either flushed or ac-
cessed to transmit 1 bit; then the receiver only needs to time its access to
this address and infer the bit’s value. Evict+Flush as well as Flush+Flush
work in a similar way.

Table 2.1 lists previously published cache channels.

12

0

1

0

1

S

1-p0
p0
p1

1-p1

R

(a) binary asymmetric
channel

0

1

0

1

S

1-p

p
p

1-p

R

(b) binary symmetric
channel

0

1

0

1

S

1-p

p
R

(c) Z-channel

Figure 2.5: Transition probabilities for different types of errors in binary
channels.

2.2 Error Detection Codes

Error detection codes (EDC) refer to encoding schemes a sender can apply,
which will enable the receiver to recognize whether the encoded data has
been corrupted. As the name implies, a pure EDC will only be able to
detect errors, not correct them. Error-correcting codes (see Section 2.3) are
a superset of EDCs since they can both identify and (possibly) correct errors.

There are many different approaches to EDC; one criterion for which to use is
the type of error one expects on a particular channel. We can distinguish sev-
eral types by their bit-flip probabilities, i.e., how likely a bit is to transition
from one state to the other during transmission. The most generic descrip-
tion is that of a binary asymmetric channel, in which bits flip from 0 to 1
with a probability p0 and from 1 to 0 with a probability of p1. The probabil-
ities for correct transmission are then (1−p0) and (1−p1) respectively. Two
special cases for a binary asymmetric channel are binary symmetric channels
and Z-channels. Binary symmetric channels have a crossover probability of
p = p0 = p1 for a bit to flip in either direction, thus the probability for a
correct transmission is (1−p). For Z-channels either p0 = 0 or p1 = 0, which
means that bit errors can only occur in one direction. Figure 2.5 visualizes
these 3 types.

The errors Z-channels create can be called unidirectional, as they can only
flip in one direction. It is not important which direction this is and might
even change from word to word.

Among the multitude of existing EDCs, we want to examine the Berger code
more closely in the next section because of its significance in this thesis.

13

check bitsdata bits

4=100b

1 0 0 1 1 0 0 1 0 0

transmission

2≠6

1 1 0 1 1 0 1 1 1 0

zeros

zeros

(a) 0-to-1 bit-flips

check bitsdata bits

3=011b

0 1 1 0 1 0 1 0 1 1

transmission

6≠2

0 0 0 0 0 0 1 0 1 0

zeros

zeros

(b) 1-to-0 bit-flips

Figure 2.6: Generation of the Berger code and subsequent error detection
for both cases of unidirectional errors.

2.2.1 Berger Code

Named after its inventor J.M. Berger [41], the Berger code can be used to
detect any number of unidirectional bit-flip errors in an encoded word.

For n bits of data, the Berger code requires k = dlog2(n + 1)e check bits.
The check bits are simply the binary number of zeros in the data word,
which is then encoded by simply pre- or appending the check bits. When all
unidirectional errors need to be detected, and all 2n symbols can occur in
the word, the Berger code is optimal. As an EDC, it provides no possibility
for correction.

We can easily reason why all unidirectional errors can be detected: assuming
only 0-to-1 bit-flips occur within an encoded word, every flip in the data bits
decreases the number of zeros by one. Every flip in the check bits increases
the number of expected zeros in the data bits. We can see that no matter
where a bit-flip happens, it can only increase the difference between the
number of zeros stated by the check bits and the actual number of zeros in
the data bits. The 1-to-0 case can be derived in the same way. Figure 2.6
illustrates both scenarios.

2.3 Forward Error Correction

Error Correction Codes (ECC) provide redundancy to noisy data transmis-
sions, such that a certain amount of errors may be detected and corrected by

14

the receiver without retransmission, i.e., error correction with only forward
transmission.

They can be split into two general groups, block codes and convolutional
codes. Block codes operate on blocks of data with a predetermined size,
while convolutional codes work with data streams of arbitrary length.

2.3.1 Reed-Solomon Codes

Reed-Solomon codes (RS codes) were proposed in 1958 by Reed et al. [42] and
have since become a widespread and well established forward error correction
scheme. They are optimal block codes, in the sense that they are maximum
distance separable, which means that for fixed parameters n and k, they
provide the maximum error correction [43].

RS-Codes operate on fixed-size blocks (codewords), comprised of n symbols:
k data symbols and n− k parity symbols, noted as RS(n, k). The length of
codewords is determined by the symbol size s, n = 2s−1, e.g. RS(4096,4055)
for 12-bit symbols with ≈ 1% parity. Codewords can be smaller than this if
the encoder pads unused symbols with zeros before encoding and does not
transmit them. The decoder can then add the same amount of zeros before
decoding. For errors in unknown positions (r), up to r ≤ n−k

2 symbols can
be detected and recovered. When the position of errors is known, so-called
erasures (s), RS codes can recover up to s ≤ n − k symbols. In total,
2s+ r ≤ 2(n− k) symbols can be correctly recovered.

15

Chapter 3

Analyzing Challenges

This chapter serves as a broad overview of our contributions to the field
in the form of challenges we faced when implementing our cross-VM cache
covert channel. This list is not exhaustive, but the challenges discussed are
those that, to the best of our knowledge, had so far not been overcome for
our specific requirements.

3.1 Challenge C1: Virtualized Timers

One of our early design decisions was not to make any assumptions about the
rdtsc instruction besides its short-term accuracy. This means that we do not
need it to be continuous or even monotonically increasing at all times, but we
do expect close-to-native performance and accuracy over the short periods of
time it takes to measure cache latency. Importantly, we also expect no fixed
relation from one VMs time stamp counter to another’s. The reason for this
decision is that different hypervisors may virtualize rdtsc differently and
each have various options to choose from. Building a channel based on any
one particular configuration would restrict its generality, which is something
we wanted to avoid.

This creates a problem: how do we synchronize sender and receiver when
their perceived time might move backward and forward in relation to each
other? What if time "jumps" for one party, but not the other? Clock drift
on its own is something that many everyday communication channels deal
with. One of the solutions, for example, is the use of a self-clocking signal.
However, the discontinuities in the clock we can have might be many times
larger than the period of such a self-clocking signal, which would defeat
its purpose. We could find no analog to this particular circumstance. A
consistent source of such discontinuity is discussed in C2.

16

We will find a solution to this challenge in Section 4.2.

3.2 Challenge C2: Scheduling Difficulties

Besides small inaccuracies in a virtualized rdtsc instruction, the biggest
problem stems from the fact that two counters in different VMs cannot be
expected to be synchronized. If one VM is descheduled for whatever reason,
we cannot assume the counter will be the same relative to the other VM
after it is resumed, as it would be if the instruction were run natively. Of
course, this is reasonable in the context of virtual machines, as they aim to
present an environment that looks "native" to programs within it.

When creating a cache covert channel in a native environment, the simplest
way to synchronize a sender/receiver pair is to partition time into small
segments (on the order of several thousand cycles) that correspond to a
specific position in the transmitted data. This introduces a more manageable
problem: scheduling on the OS level. When sender and/or receiver are
descheduled, they still know exactly what data to read/write when they
resume their operation. The data sent or read in between is lost or wrong. In
this scheme, when sender or receiver are descheduled, it results in substitution
errors. They can be both detected via rdtsc and possibly corrected with
ECC (Section 2.3). When we transfer this scheme to communication between
VMs, their scheduling can cause insertion or deletion errors, in addition to
substitution errors caused by process scheduling. Figure 3.1 depicts the
differences of these error types.

The difficulty with insertion and deletion errors is that synchronization is
implicitly lost. Because we cannot rely on rdtsc to find out if, when or how
often this happened, the data cannot trivially be restored. The challenge
is thus to find a transmission scheme that can tolerate the descheduling of
VMs and processes and produce correctable results. Conceivably, the 2 main
strategies here are avoiding insertion and deletion errors entirely or encoding
the data heavily enough such that it can be restored.

Again, this challenge will be solved in Section 4.2.

3.3 Challenge C3: Address Mapping in Virtualiza-
tion

As mentioned in Section 2.1, the last-level cache uses physical addresses for
indexing its cache sets and determining the cache slice. Since user space
programs operate entirely on virtual addresses, the first step for a native

17

10 32 54Sender
t

10 02 00Receiver
t

876

76 8

(a) Substitution errors caused
by sender-process descheduling.
Missed time is tracked.

10 32 54Sender
t

10 02 00Receiver
t

876

76 8

(b) Substitution errors caused by
receiver-process descheduling.
Missed time is tracked.

10 2Sender
t

10 02 00Receiver
t

543

543

(c) Insertion errors caused by
sender-VM descheduling. Missed
time is not tracked.

10 2Sender
t

10 2Receiver
t

876

876

543

(d) Deletion errors caused by
receiver-VM descheduling. Missed
time is not tracked.

Figure 3.1: Transmission of the byte sequence 012345678 for 3 different
error types (substitution, insertion, deletion). Grey background signifies a
descheduled thread. Note the difference between substitution and inser-
tion/deletion errors in received length.

Prime+Probe channel is to find out how its virtual addresses map to physical
addresses. From there, sets of addresses that are located in the same cache
set can be created. On Linux systems, a process with root privileges can
read this information from the virtual file /proc/[pid]/pagemap. In a virtual
machine, this is not possible, even if the process could somehow obtain root
privileges. That is because the hypervisor adds another layer of indirection;
VMs are applications that operate in a virtual memory space themselves.
What an operating system in a VM perceives as machine addresses are in
fact virtual addresses already, consequently the pagemap file cannot provide
the correct information here.

This challenge is, therefore, the question of how to determine virtual ad-
dresses’ cache set indices and slices without access to the physical addresses.

We present our solution in Section 4.3.

3.4 Challenge C4: First Contact - Establishing the
Channel

Once we have overcome all other obstacles, what remains is the very be-
ginning of communication in our channel. To start transmitting data, the
sender needs to know when the client is ready, and vice versa. Additionally,

18

both need to know what cache sets to use for communication and in which
order they are to be used.

Exchanging this information is, by definition, already communication, and
herein lies the challenge: How can sender and receiver exchange information
before these basic parameters of cache channels are established?

This question will be answered in Section 4.4.

19

Chapter 4

Implementation

4.1 Native Prime+Probe

The starting point for this work is a native Prime+Probe channel as de-
scribed in Sections 2.1.2, C2 and C3. For now, we will still use rdtsc, root
access and shared memory, because this channel will serve as a testbed to
study the characteristics of Prime+Probe channels and as a benchmark for
the following sections.

We begin by translating the virtual addresses in a block of memory with the
pagemap file to get the physical addresses and create cache sets from the
reverse-engineered hash function [24]. For this we use shared memory, which
enables one party, in this case the sender, to determine the necessary amount
of addresses in the same cache sets and let the receiver know by writing the
determined probe addresses to the shared memory. Since we use fixed-size
blocks of cycles (transmission windows) for each word that is transferred in
parallel (as mentioned in C2), all that is required to synchronize this channel
is a common starting-cycle count, which is also determined by the sender and
given to the receiver via the shared memory.

After this initial setup, the data transfer is straightforward. Starting with
the arranged initial cycle count, the sender continuously evicts all cache sets
corresponding to 1-bits in the currently transmitted word. Meanwhile, the
client repeatedly reads all sets with its probe addresses and counts hits and
misses on all sets. At the end of every transmission window, the receiver
decides for each set if it was a 0 or 1 by comparing the number of hits
and misses. Now sender and receiver start the same procedure for the next
word until a predefined file length has been received. For this to work, the
sender and receiver would ideally read and write in a perfectly interleaving
pattern, so that every read of the receiver is preceded by a corresponding

20

write. Since perfect interleaving is unrealistic, it is enough to ensure that
the sender writes more often than the receiver reads. Listings 4.1 and 4.2
show shortened versions of the sender and receiver.

1 inline void evictSet(volatile uint64_t** addrs)
2 {
3 for (int i = 0; i < 15; ++i)
4 {
5 *addrs[i];
6 *addrs[i + 1];
7 *addrs[i];
8 *addrs[i + 1];
9 }
10 }
11
12 void writeWord(size_t end, uint32_t data)
13 {
14 while(rdtsc() <= end)
15 {
16 for (int i = 0; i < WORD_SIZE; i++)
17 {
18 if (data & (1 << i))
19 {
20 evictSet(eviction_addresses);
21 }
22 }
23 }
24 }

Listing 4.1: Sender

1 inline void accessSet(volatile uint64_t** addrs)
2 {
3 for (int i = 0; i < 3; ++i)
4 {
5 *addrs[i];
6 *addrs[i+1];
7 *addrs[i+2];
8 *addrs[i];
9 *addrs[i+1];
10 *addrs[i+2];
11 }
12 }
13
14 uint32_t readWord(size_t end)
15 {
16 int hit[WORD_SIZE];
17 int miss[WORD_SIZE];
18
19 size_t time, time_tmp, delta[WORD_SIZE];

21

20 int reads = 0;
21
22 while(rdtsc() < end)
23 {
24 time = rdtsc();
25 for (int i = 0; i < WORD_SIZE; ++i)
26 {
27 accessSet(probe_addresses);
28 time_tmp = rdtsc();
29 delta[i] = time_tmp - time;
30 time = time_tmp;
31 }
32 for (int i = 0; i < WORD_SIZE; ++i)
33 {
34 if (delta[i] < MIN_CACHE_MISS_CYCLES)
35 hit[i]++;
36 else
37 miss[i]++;
38 }
39 }
40
41 uint32_t output = 0;
42
43 for (int i = 0; i < WORD_SIZE; ++i)
44 {
45 output |= ((hit[i] < miss[i]) << i);
46 }
47
48 while (rdtsc() < end);
49
50 return output;
51 }

Listing 4.2: Receiver

For the number of addresses to evict a cache set, we choose the number of
ways in the LLC (here 16). We evict the set using the alternating eviction
pattern proposed by Gruss et al. [38] (see Figure 2.4). For probing we use
5 addresses in total, with the access pattern that can be seen in Listing 4.2.
The intent is to get a reliable measurement to detect eviction and, at the
same time, ensure the probe lines are cached again for the next read. This
pattern and the number of lines used proved to be suitable and to provide
good resistance to unintentional eviction by noise. Since we expect a lot
of slowdowns in future steps, we optimize this channel for speed while also
maintaining reasonable bit error ratios (BER).

22

4.1.1 A Statistical Analysis of Errors in Prime+Probe

With this native Prime+Probe channel as a baseline, we can analyze the
types of errors it produces in normal operation and how they vary with
factors such as stress on memory by other programs. The conclusions we
draw from this will allow us to make sensible decisions regarding the design
of our channel with respect to the challenges we have to overcome.

We choose the data word size to be 8 bits; not only because it is convenient,
but also since we can see no significant speedup for larger word sizes. An
additional 4 code bits, which we will use at a later point (Section 4.2.2),
bring the total word length to 12 bits. The raw capacity of this channel is
determined only by the chosen amount of cycles used for each word. For this
experimental setup, we set the transmission window size to 50000 cycles. On
a processor with an rdtsc rate of 3.5GHz, this leads to a raw data channel
capacity of 547kB/s (820kB/s including the code bits). In this transmis-
sion scheme, this parameter essentially controls the trade-off between noise
resistance and speed.

The data used is gathered in 3 series of 100 runs each, where one run is
a transmission of 1MB of JPEG data. The first series is generated on a
system with minimal program activity besides the transfer, hence we will
refer to it as "quiet." To have a repeatable level of noise in the cache, we
generate series 2 and 3 with the addition of the benchmarking tool stress [44]
with the options "-m 1" and "-m 2" respectively (noted series m1/m2 in the
remainder). Stress starts the given number of threads and performs repeated
memory accesses, each thread using one CPU core at full capacity.

When talking about a substitution error in the following, this does not tech-
nically refer to exactly one accidental cache eviction (or non-eviction), it
refers to the result after the reading process in the client, as described in the
previous section. The statistics collected refer only to the 8 bits of data in
each word, unless stated otherwise.

Figure 4.1 shows the average bit error ratio for each run in all 3 series. The
effect of the stress tool can clearly be seen here — where on a quiet system
the channel encounters error ratios as low as 0.01%, even series m1 already
suffers BERs up to 15%. Looking at the large differences between runs of
the same series, one might suspect large variance inside the runs is hidden
in the average BER values. However, as Figures 4.2a and 4.2b demonstrate,
this is not the case. Both runs are very stable over the course of their
entire transmission, yet completely different, even though they were recorded
within 45 seconds of each other. The graphs also show the BER of the best
and worst cache sets for each run, which show a vast difference from each
other in Figure 4.2a. It is this difference that explains why one run can have

23

a low error ratio while the next does not, even though seemingly nothing in
the environment has changed: since the cache sets are chosen from memory
assigned by the operating system at the start of a transmission, the sets
used are essentially random. In a high-noise environment, the probability
of having many low-noise sets is reduced and thus the expected error ratio
rises.

run
10 20 30 40 50 60 70 80 90 100

B
E

R
 [%

]

0

5

10

15

20

25

30

35

40

quiet
m1
m2

Figure 4.1: Average bit error ratio of each run for all 3 series.

To be able to characterize this channel in terms of the types discussed in
Section 2.2, we look at how and when substitutions occur. In particular,
how often do non-unidirectional substitutions occur in words, i.e., out of
all defective data words in a transmission, how many have both 1-to-0 and
0-to-1 substitutions? Figure 4.3 answers this question for our data set. It
shows that, on average, 99.6% of all words contain only unidirectional errors,
and even in the worst cases this rarely drops below 98% (with 1 outlier in
series m1 and another in m2, at 93.75% and 91.6% respectively). We can
observe only a weak correlation between BER and non-unidirectional errors:
the high-noise series shows a higher average than the low-noise series (0.4%
vs. 0.35%), but no direct correlation within a series.

Within this non-unidirectional subset of errors, we can also look at the ratio
of 0-to-1 versus 1-to-0 substitutions, see Figure 4.4. Between 50-65% of these
words contain the same number of 0-to-1 substitution as 1-to-0 substitution.

24

transmission time [s]
2 4 6 8 10 12 14

B
E

R
 [%

]

0

5

10

15

m1, run 31 mean
m1, run 31 best set
m1, run 31 worst set

(a) run 31, series m1

transmission time [s]
2 4 6 8 10 12 14

B
E

R
 [%

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m1, run 34 mean
m1, run 34 best set
m1, run 34 worst set

(b) run 34, series m1

Figure 4.2: Average bit error ratios of two different runs with stress -m 1
as well as their respective best and worst cache sets over the course of the
transmission.

25

run
10 20 30 40 50 60 70 80 90 100

no
n-

un
id

ire
ct

io
na

l w
or

d-
er

ro
rs

 [%
]

0

0.5

1

1.5

2

2.5

3

quiet
m1
m2

Figure 4.3: Percentage of non-unidirectional bit errors in words out of all
words with errors, for each run and all 3 series.

The remaining possibilities show a bias towards 0-to-1 substitutions, on the
whole, the distribution is fairly independent of the noise level.

In conclusion, this channel behaves like a Z-channel in most circumstances,
and like a biased binary asymmetric channel otherwise. This characteristic
will be useful in Section 4.2, as we choose an error detection code.

4.2 Replacing the rdtsc Instruction in Synchroniza-
tion

To address challenges C1 and C2 simultaneously, we devise a message re-
quest scheme to replace synchronization via absolute rdtsc counts. While
relatively simple in abstract terms, this solution comes with its own set of
problems that need to be solved.

As illustrated in Figure 4.5, this method introduces a second, backward
communication channel from the receiver to the sender. Its sole purpose is
to let the sender know when one word has been correctly received and the
sender may transmit the next. This is achieved by transmitting a sequence
number with a word of data; when it is read correctly, the back-channel
changes its message to the next sequence number, thereby acknowledging

26

(0->1 substitutions) - (1->0 substitutions)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

no
rm

ed
 o

cc
ur

re
nc

e
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

quiet
m1
m2

Figure 4.4: Distribution of substitution errors in non-unidirectional words,
for all 3 series.

the correct reception. Unlike in Figure 4.5, however, this process is not
sequential, but parallel. Neither sender nor receiver waits for a reaction
before transmitting; both do so continuously. This solves challenge C2 since a
descheduling of one or both virtual machines (or threads) has no influence on
their internal sequence counters and thus the synchronization of the channel.
For the same reason, it also solves challenge C1, as any discontinuities in the
virtualized rdtsc instructions will have no consequences besides possible bit
errors, should an irregularity occur during the reading of a word.

On the receiver side, the sequence number that is read allows to decide if
the currently transmitted word is indeed that which was requested. Because
the back-channel has the same problems with descheduling and noise as the
data channel, it is possible that the sender will not receive the request to
transmit the next word for some time. During this time, it is up to the
receiver to detect this and reject the data. Being part of the transmitted
word, the sequence number itself is also subject to substitution errors, and
so an old sequence number can change to be the expected number instead.
To prevent the receiver from accepting such a word as correct, we extend the
word with an error detection code, which covers the sequence number and
the data. Only when the sequence number and the error detection code are
in order is a word accepted and the request number increased. For the same
reason, the sequence number request on the back-channel is also encoded.

27

Sender Receiver
SEQ = 1

Initiate
transmission

[DATA] SEQ = 1

SEQ = 2

[DATA] SEQ = 2

[DATA] SEQ = 2

SEQ = 3

SEQ = 3

[DATA] SEQ = 3...

Sender
descheduled

Transmission
error

Figure 4.5: Retransmission due to scheduling interrupts or substitution er-
rors in transfer [10].

4.2.1 Reading with a Sliding Window

While the sender works in the same way as it did in the rdtsc-synchronized
implementation (that is, write without stopping until signaled to move to
the next word), the receiver now does not have a predefined window of time
in which to read. So as to not endlessly accumulate the number of 0 and 1
reads for a bit, we implement a sliding window. The window size determines
how many reads are considered for the value of a bit. As long as the current
word has not been accepted (either because of the sequence number or an
EDC error), reads are added to and removed from this circular buffer. The
advantage of a limited buffer is that it allows reads of old data or burst errors
to be discarded after a while. With a small window size, this can happen
faster, lowering the average amount of reads required for a word in a quiet
cache. The buffer also fills more quickly, which allows some words to be read
correctly within the first 3 reads when there is virtually no noise. However,
because noise related errors in bits are not linked, they do not necessarily
occur at the same time in each bit. In a very noisy environment, a small
window means that a part of the bit-reads might always be correct, but how
many such reads are in the window at the same time can change with each
read. A larger window size increases the chances of correctly reconstructing
each bit in the buffer at the same time, allowing it to overcome small clusters
of errors, even if they occurred at different times. Figure 4.6 depicts such
a high-noise scenario where a window size of 3 is too small to reconstruct
the correct 3-bit word at any point in the sequence of reads, but a larger
size succeeds right away. While the repeating error pattern is unlikely to

28

occur exactly this way in a real transmission, it demonstrates the advantage
of larger windows as transmission quality declines.

7 3 3 3 7 7 3 3 3 7Bit 1

3 3 3 7 7 3 3 3 7 7Bit 2

3 7 7 3 3 3 7 7 3 3Bit 3

Figure 4.6: Example of a 40% bit-error read-sequence in a 3 bit word, repre-
sented as correct (3) and incorrect (7) reads. A window of an odd size >3
can reconstruct the correct word at any point in this sequence of 10 reads,
while a window of size 3 cannot.

To perform as well as possible in a changing environment, we allow this
window size to adapt dynamically with the number of EDC errors per word.
Starting with a minimum size of 1, after a certain amount of EDC errors, this
is increased by 2, up to a limit. This allows our channel to take advantage of
a low noise environment when possible, yet still be reliable in the presence
of heavy noise.

4.2.2 Detecting Errors

To know when a word was correctly transmitted, some kind of error detection
code is necessary. There are several factors we consider in our decision:

• encoding and decoding speed: as a cache channel’s performance largely
depends on how many CPU cycles it can use to send or receive data, a
fast algorithm is required

• length: achieving a high bandwidth is a goal of this channel, so the code
to data ratio should be as small as possible. Moreover, the total word
length needs to be small as well, see Section 4.5

• detection capability: because of the design of our channel, the code needs
to be able to detect all errors in a word

Because descheduling of the sender in combination with accidental eviction
through noise can often cause any number of bits in a word to be wrong,
codes that only detect up to a certain number of substitution errors cannot
be used.

While it would be convenient to have some error correction capability as
well, forward error correction codes necessarily add more redundancy, and
are often not suited for correcting on the level of single words and detecting
all errors at the same time. The self-correcting design of this system is
another reason why we use a pure EDC on the word-level.

29

Because overall this channel behaves almost entirely like a Z-channel, the
Berger code, as introduced in Section 2.2.1, fits our needs very well. With
a code length of k = dlog2(n + 1)e for n bits of payload it is quite small
but still detects all errors. Because encoding and decoding consist only of
counting the number of zeros in the payload, it is also very fast.

As per the statistical analysis in Section 4.1.1, we know that, in an average of
99.6% of all words that contain errors, the substitution errors are completely
unidirectional, and so the Berger Code will detect all of them. Assuming this
average were to drop to <91% in very noisy environments, the question arises
if the Berger code would now fail to detect 9% of errors. Considering that
the bits of the code itself are also affected by the same errors, the issue is not
trivial. A substitution in any but the lowest bit of the Berger code requires
several opposing substitutions in the payload to go undetected. Because the
distribution of 0-to-1 vs. 1-to-0 substitutions shows a large probability of
an equal amount of substitutions (see Figure 4.4), those two facts together
suggest that actually, even among non-unidirectional errors, we can expect
many to be detected. Pictured in Figure 4.7, our previous experiment, now
with added EDC, shows that the detection rate is indeed more than 98.6%
at all times.

With the Berger code selected, we add an additional measure to mitigate
noise caused by sender descheduling. Since there are only 2 ways to create 1-
to-0 substitutions, namely failure to evict and sender descheduling, we make
the assumption that a word consisting entirely of zeros was most likely caused
by a sender descheduling. We can make this assumption because firstly, the
Berger code does not allow all zero words and secondly, the probability of
so many eviction failures in one word is very low. So when a zero word is
read, it is dropped from the current window of considered reads. This allows
the receiver to move past burst errors caused by descheduling more quickly
when no additional 0-to-1 substitutions occur.

4.2.3 Sequence Numbers

Once a data word has passed the EDC check, its sequence number needs to
be validated as well. As we have shown previously, in a small percentage of
words noise will produce a valid code for a wrong data word. At this point,
the next step is to determine a suitable bit-length for the sequence number,
balancing bandwidth and noise resistance.

We consider this example for the minimum sequence number length of 1
bit, as illustrated in Figure 4.8. A 1 bit sequence number will, statistically,
at some point be inverted while still producing a valid EDC. When this
happens soon after a word was accepted, this erroneous sequence number

30

run
0 10 20 30 40 50 60 70 80 90 100

re
m

ai
ni

ng
 u

nd
et

ec
te

d
w

or
d

er
ro

r
ra

te
 [%

]

0

0.5

1

1.5

m2

Figure 4.7: Percentage of non-unidirectional bit errors in words out of all
words with errors, for each run and all 3 series.

will now match the very sequence number the receiver expected next, as
there are only 2. This means the receiver will now change its back-channel
message again, asking for the next sequence number, which also equals the
previous one. Since the receiver has accepted the current word so quickly (as
it was produced by an error), it is not unlikely that the sender has not yet
successfully read the request at all. From the perspective of the sender, no
word was transmitted at all by this point. The receiver, on the other hand,
believes to have received 2 correct words and expects a third. At this point
the sequence number has failed to do what it was designed for: sender and
receiver are desynchronized.

Unfortunately, accepting a previous transmission as the current one because
of substitution errors is a problem that persists even for longer sequence
numbers. The consequences of this skipping, however, change. In sequence
numbers of 2 bits or longer, a number’s predecessor never equals its successor,
so the result is a deadlock where the sender is delivering a word that is too
old, and the receiver requests a word that is too far ahead. This deadlock
can only be broken by more substitution errors, either allowing one party to
catch up or the other to skip further ahead, increasing the problem.

31

Sender ReceiverReq Sender
REQ #0

SEQ #0
SEQ #0, DATA #0

REQ #1 3accepted as
SEQ #0, DATA #0

request receiver
descheduled

REQ #1

SEQ #0, DATA #0
7dismissed
wrong SEQ, expected 1REQ #1

SEQ #0, DATA #0
REQ #0 3wrongly accepted as

SEQ #1, DATA #1REQ #0
SEQ #0

SEQ #0, DATA #0
3wrongly accepted as
SEQ #0, DATA #2
→ desychronization

...
...

Figure 4.8: Desynchronization as a result of a failure to read in the sender’s
request receiver and substitution errors in the sequence number in the data
packet side.

In the interest of achieving predictable outcomes, relying on substitution
errors to rectify a situation caused by substitution is clearly not the answer.
To solve this, we implement a mechanism by which the party expecting the
lower sequence number can catch up and resolve the deadlock. However,
simply accepting the expected sequence number +1 as valid extends the
previous 1 bit scenario because it removes the requirement of a descheduling
or failure to read in the other party. Any sequence number can now change to
+1 and be accepted, which introduces more of these errors. While this simple
implementation succeeds in reducing the number of desynchronizations, it
also increases the bit error ratio, because every skip creates 2 words of broken
data. We mitigate this with a strategy we call n-strike-skip. As the name
suggests, a word is not immediately skipped as soon as an EDC-validated
sequence number is read that is ahead by 1. Instead, this is recorded, and
the read buffer is emptied. Only when the same sequence number is read n
times is it accepted. This measure virtually eliminates noise-induced skips
meant to catch up, because it requires the read buffer to randomly produce
the same wrong sequence number n times, before the correct one.

We will determine a suitable value for n and show that the n-strike-skip
policy does indeed prevent unnecessary skips in Chapter 5, but in the search
for an appropriate sequence number length in this section, it creates a new
constraint. When we revisit the same scenario as above for 1 bit but now use

32

2-strike-skip and a 2 bit sequence number, we find a similar, albeit less likely
outcome. Again, the receiver correctly reads a word and proceeds to request
the next one, but again, the thread receiving the requests is descheduled
at that moment. Because the receiver will not accept the current sequence
number of the sender, it is essentially waiting for substitution errors. A
single substitution toward the expected number is not a problem, as the
sender can catch up once it is scheduled again. In the rare case that a second
substitution error to the next expected sequence happens, the receiver then
expects a sequence number of +3 relative to the one that the sender is
still sending. Within limited space of 2 bits, unfortunately, +3 is the same
as -1. The receiver will consider itself behind the sender and skip ahead,
desynchronizing itself by 4 words.

For 3 bits, this scenario becomes even more unlikely, as it would take 5
consecutive EDC-valid sequence errors to circle back to the beginning and
cause desynchronization. Of course, 2 consecutive errors are still possible,
but result in a deadlock. This problem affects sequence numbers of any
length, so we devise a solution similar to skipping, backtracking. By allowing
either party to move its sequence counter backward from 2 up to seq_length

2
positions, deadlocks can be resolved. Because backtracking is only intended
for a deadlock scenario, its conditions are much more stringent than skipping.
In a deadlock, the expected value is not sent at all, thus it is harder to
differentiate noise from the correct sequence number. For this reason, we
implement a high, empirically chosen minimum number of reads for the
same sequence number before a backtracking action is triggered. Because
there are seq_length

2 − 1 possible backtracking positions, the number of reads
for all of them is tracked. Once a position has been read more than the
required minimum, we additionally check the read ratio of the highest to the
other positions. This is intended to prevent a scenario where there is no real
backtracking situation and several sequence numbers appear randomly.

Even under a lot of stress, the channel proves stable with theses measures
in place, so we settle on a 3 bit sequence number. For 12 bits of data and
3 bits EDC, the required length of the Berger code is 4 bits. The resulting
structure of an encoded word can be seen in Figure 4.9a.

Lastly, the request on the back-channel needs to be encoded as well, because
the same types of errors apply to it. If we disregard packets that were
already received, the data channel and the back-channel essentially operate
sequentially. For this reason, high speeds on back-channel also increase the
overall transmission speed. At the same time, this may not come at the cost
of its primary function: synchronization. We could again use the Berger code
for this, but a 3 bit word only encodes to a total of 5 bits. Because testing
proves this to be too error-prone, we use the Hadamard code [45] instead.
With this code, 3 bit sequence numbers are encoded to 7 bits (Figure 4.9b),

33

Data SQN EDC

12 bits 3 bits 4 bits

(a) Structure of an encoded word on the data channel.

Encoded SQN

7 bits

(b) An encoded request on the back-channel.

Figure 4.9: Structures of data and request packets [10].

relative
sequence action taken

-3 backtrack
-2 backtrack
-1 reject, the other party will skip
0 accept
1 skip over 0 & accept
2 reject, the other party will backtrack
3 reject, the other party will backtrack

Table 4.1: Action taken by the receiver according to the received relative
sequence number (= expected sequence number - received sequence number).

providing a Hamming distance of 4 between all of them. While the Hadamard
code provides the ability to correct 1-bit errors, more testing shows that the
error ratio is still too high and so we will not employ this feature. Further,
because ’0’ is encoded to ’0’, we use only sequence numbers 1 to 6, as the
descheduling of the sender often leads to zero words.

Table 4.1 lists the actions taken in response to the received relative sequence
numbers.

4.2.4 Read Delay

In Prime+Probe, priming typically takes longer than probing due to the
number of addresses that need to be accessed. This can lead the receiving
party to probe a set with a higher frequency than that of the sender priming
it, causing erroneous reads. Our solution is to introduce an artificial delay on
the receiving side, implemented as a simple loop. The right delay will keep
the receiver from probing too quickly and decrease its error ratio. However,
the time needed to prime (and probe) depends on the number of addresses
that need to be accessed, how many of those need to be loaded from memory

34

and the time it takes to do so. This changes with the data, the current stress
on memory and the hardware. Though we can determine a constant delay
that is high enough to accommodate most situations, this is far from optimal.
A channel transmitting data on a system without any significant stress on
the cache might achieve optimal speed with no delay at all, while a channel
on the same system under heavy load will need a significant delay to continue
operating without errors.

To approach optimal transmission speed, we implement a simple control loop
to determine a dynamically changing delay. Because there is no direct mea-
sure to determine how high this delay should be, we look to the number
of wrong reads per word and try to keep this measure at a set, empirically
determined value by increasing or decreasing the delay with each update.
As any calculations done within the read loop potentially slow the transmis-
sion, we only update every few hundred words and keep track of the current
average of wrong reads over a larger sliding window.

4.3 Finding Cache-Set-Congruent Addresses

Now that the channel is ready to stay synchronized without rdtsc, it still
needs a way to find addresses that belong to the same cache sets. This
section solves challenge C3.

Looking at previous works, we can see that Liu et al. have already achieved
this in 2015 [13], but they do not use the hash function that determines the
slices. Because of this, they need to construct eviction sets for each set index
individually, assuming the set index and slice hash function use overlapping
bits of the physical address. They do this by starting with all addresses of
the same index in a large block of memory (2 times the size of the LLC)
and reducing it first to a set containing n addresses (for n-way caches) per
slice and then separating this large set into a distinct eviction set for each
slice. As this process takes about 0.2s per set index, for our requirement of
26 sets this would amount to 5.2 seconds. Since we can rely on the reverse-
engineering work done by Maurice et al. [24] and use the now known hash
function, we attempt to streamline this process for our channel.

Just like Liu et al., we require the hypervisor and operating systems to
support 2MB huge pages. A continuous 2MB block of memory reveals the
lower 21 bits of the memory’s physical addresses, as these blocks are always
aligned to 2MB boundaries. This allows us to immediately determine an
address’s set index from bits 6-16. The only thing left to ascertain is the
slice of each address. Given the full physical address, we can determine
what we will refer to as the physical slice index SIp. However, since the
slice function uses bits beyond the 21 that are known to us, we can only

35

unknown
21

4b
17

11b set index
6

6b line offset

input for physical slice index SIp

fixed variable fixed

inp. for
slice offset

SIo

inp. for virtual slice index
SIv

Figure 4.10: Inputs to the slice indexing hash function for 2MB pages.

calculate what we will call the virtual slice index SIv for each address in a
huge page. In a CPU with m slices, the slice function will be o = ld(m) bits
wide. Because the slice function consists merely of an XOR sum for each
of its output bits, we can reduce all unknown address bits to an index of
o unknown bits. As this unknown index is unchanging for the entire huge
page, we can consider it a constant XOR offset SIo which translates the
relative virtual slice index of addresses in a page to their absolute physical
slice indices: SIp = SIv⊕SIo. The only problem with this equation is that
we cannot find SIo without already knowing SIp. Luckily, we do not need
to. After all, the only requirement is to know which addresses belong to the
same cache set, not on which slice the set is located.

With this in mind, instead of trying to determine the absolute offset SIo for
each 2MB page, we look only for a relative offset SIo0,j towards a reference
page, such that for page j we can convert its virtual slice indices into indices
of the reference page: SIv0 = SIvj⊕SIo0,j . Which page is chosen to be the
reference page is of no consequence, as SIo isn’t known for any page. How
many 2MB pages we will need to align in this way depends on the number
of addresses that share the same cache set index and slice index in each
page as well as the number of addresses we need to evict a set. Figure 4.10
shows how bits are distributed with regards to the hash function. We can
see that for each set index, there are only 4 bits in a 2MB page which we
can vary. Assuming at least one of bits 17-20 is included in each part of
the hash function (which is the case for Haswell), each page contains 24−o

addresses in the same cache set. So, to construct an eviction set for an n-way
cache, we need p = n

24−o 2MB pages. According to this, for example, on our
test system with a 16-way set associative cache using 4 slices, this method
requires 4 2MB pages.

In practice, the relative offset can be found by testing for set eviction. This
means an extra page is needed, as we need n addresses for eviction and at
least 2 to probe. Listing 4.3 shows the entire process in pseudo code.

36

1 function setAddresses(page) begin
2 set_addresses ← {};
3 address ← start_address(page);
4 while (address < end_address(page)) do
5 set_addresses ← ∪ address;
6 address ← address + 4096;
7 end
8 return set_adresses;
9 end
10
11 function createInitialMapping(pages) begin
12 foreach page in pages do
13 foreach address in setAddresses(page) do
14 mapped_sets[page][slice(address)][set(address)] ← ∪ address;
15 end
16 end
17
18 return mapped_sets;
19 end
20
21 reference_page ← 0;
22 test_slice ← 0;
23 test_set ← 0;
24
25 mapped_sets ← createInitialMapping(pages);
26
27 // produces n*m addresses
28 test_eviction_set ← mapped_sets[pages\{reference_page}][∗][test_set];
29
30 probe_set ← {2 of mapped_sets[reference_page][test_slice][test_set]};
31 eviction_set ← {};
32
33 slice_offset[number_of_pages] ← {0..};
34
35 foreach page do
36 foreach slice do
37 test_eviction_set ← test_eviction_set\{addresses of page & slice};
38 count ← 0;
39 miss ← 0;
40 hit ← 0;
41 while count < number_of_tests do
42 if evicted(probe_set, test_eviction_set ∪ eviction_set)
43 miss ← miss + 1;
44 else
45 hit ← hit + 1;
46 end
47 if miss < hit then do
48 slice_offset[page] ← slice;
49 break;

37

50 end
51 end
52
53 correct_addresses ← mapped_sets[page][slice][test_set];
54 eviction_set ← eviction_set∪correct_addresses;
55 end
56
57 reorder mapped_sets according to slice_offset;
58
59 return mapped_sets;

Listing 4.3: Cache Set Finding Algorithm

First, the set addresses in the p pages are sorted into an array by their
set- and virtual slice indices. The total number of cache set indices is here
reduced by 6 bits, from 2048 to 32. This is done to avoid more than one
set per 4kB page, as repeated accesses to addresses in the same 4kB page
can cause the hardware prefetcher to load more addresses, thereby possibly
interfering with the data transmission. The resulting array contains 32∗p∗m
sets of 16/m addresses each.

Now cache set 0 of virtual slice 0 in page 0 is defined as the reference set,
offsets of all other pages will be calculated in relation to it. Two of the
addresses in this set form the probe set. Page, slice and set index 0 are
chosen arbitrarily, but without loss of generality. Next, the test eviction set
is formed from all addresses with cache set index 0 in the remaining pages.
This set includes at least m ∗n addresses, which enables it to evict cache set
0 on any slice, as it contains at least n addresses for each. The eviction set
is initially empty; it will be used to store addresses that have been found to
be on the same slice as those in the probe set.

The process for determining the slice offset for each page is quite simple.
For every page, each slice is tested for equality to the reference slice. To
this end, first, the slice’s addresses are removed from the test eviction set.
The remaining test eviction set is temporarily combined with the eviction set
and together used to try to evict the probe set in the standard Prime+Probe
fashion. As always, there is a chance of interference from noise in this op-
eration, which is why it is repeated a large number of times. What makes
this somewhat more challenging than the regular Prime+Probe scenario is
that we try to decide not between non-eviction or complete eviction, but
non-eviction and almost-eviction, as priming always uses at least n− 16/m
addresses. Additionally, the probing set will consist of a maximum of 16/m
addresses. Both of these issues increase the chances for accidental eviction,
depending on the number of slices m. So for m = 16, a wrong slice would try
to evict 1 probe address with n − 1 prime addresses, which still has a high
chance to succeed. While we have no hardware to test this on, we assume

38

slice 0, set 0

Page 0 slice 2, set 0

slice 3, set 0

slice 0, set 0

slice 1, set 0
Page 1, SIo0,1 = 1

/

4/

4/

4

slices 0-3, set 0

slices 0-3, set 0

slices 0-3, set 0

Page 2

Page 3

Page 4

/

12+36

/

16+44

evicts set 0 on slice 0

/

12+44

too few addresses on
slice 0, set 0 to evict

correct offset has been found

addresses/pages
to be tested

reference page

combining addresses
to form an
eviction set current

test
page

untested
pages

Figure 4.11: Testing a 2MB page of a quad core CPU such as the i7-4770 to
find its relative offset. Depicted is the creation of 2 test eviction sets for the
testing of slices 1 and 0 in page 1 and their subsequent eviction test against
the reference set on page 0. The number of addresses on slice 0 is noted in
green, other slices in red.

that for these reasons this method would not work reliably on a 16-core CPU
and would have to be refined.

If, after all tests were run, the slice is determined not to be a match to the
reference slice, the algorithm moves on to the next. When a match is found,
the addresses of that slice are added to the eviction set, the slice number is
stored as the offset for this page and the process starts again for the next
page. After all pages have been processed, each has been assigned its relative
offset SIo0,j . With this, the initial sorting of the addresses can be adjusted
to remove the pages and account for their offsets, such that what remains is
an array of 32∗m cache sets of at least n addresses each. In our transmission
scheme, each available cache set equals 1 bit of bandwidth. This means that
we will have the required 26 cache sets (see Figure 4.9) even on dual-core
CPUs, for which only 64 cache sets are produced. Figure 4.11 illustrates
the testing of 2 slice offsets for a quad-core CPU. Some parameters of this
algorithm for the hardware used in this thesis can be found in Table 4.2.

39

CPU cache size assoc slices addr. per set&page pages req.
i7-4770k 12MB 16 4 4 4+1
i7-7770k 12MB 16 8 2 8+1
e5-2670 20MB 20 8 2 10+1

Table 4.2: A comparison of hardware and algorithm parameters for CPUs
used in the evaluation of this channel.

4.4 Jamming Agreement

The last piece required to establish a channel across virtual machines is
the ability to communicate some parameters from one machine to the other
before starting regular transmission. This section will thus deal with over-
coming challenge C4. Specifically, the initiating party needs to convey to
the other which cache sets to use. As the relation of the slice mapping ob-
tained in Section 4.3 is not fixed with respect to the hardware mapping,
using predetermined sets is not an option.

Given the noisy nature of the cache, we were inspired by Boano et al. [46]
to devise a protocol to transmit the used cache sets from a server to its
client based on the jamming of cache sets. Where jamming in a wireless
communications context refers to transmitting a carrier signal for a certain
time, for our application it means evicting a set over and over. Unlike the
regular cache channel transmission, where many sets are evicted in parallel,
here we limit ourselves to one at a time. This allows us to communicate not
only which sets to use, but also in which order.

For both server and client, this protocol is very simple. Both use the same
2 basic operations, jamming and detection. As Figure 4.12 illustrates, the
server merely alternates between jamming and detection. The client mean-
while cycles through all possible sets in the detection phase, checking each
for jamming from the server. When jamming is detected, the client saves
the current set’s index and proceeds to respond by jamming the same set.
If the server detects this response, it moves on to the next set, otherwise it
keeps jamming and detecting on the current set. To prevent the client and
server detection phases from interfering with each other, the addresses for
detection on the server and jamming on the client are offset by 64 bytes,
which creates a parallel channel for acknowledgments.

Detection is done by counting the number of evictions in a sliding window
that is smaller than the jamming period and the detection period. This
allows even a partial overlap between the two to still be identified. If more
than a certain threshold of the probes in the sliding window were evicted, it is
considered a positive detection and the algorithm moves on. This threshold
needs to be chosen such that it is extremely unlikely to be reached by random,

40

0

0

0

0

6

6

6

6

6

1 0

0

3 2 5

server
jam

detect

client
jam

detect

t

Figure 4.12: The first few jam/detect cycles of the jamming agreement. Sets
are numbered in relation to the server’s virtual slice index, hence the client
begins reading at set 1 and continues with 0,3,2,5,4,7 etc. The green marker
indicates a successful detection.

possibly heavy, noise, but will reliably be exceeded when the set is being
jammed. Sometimes detection will still fail; since client and server both
endlessly perform the same actions until all sets have been transmitted, this
only means the process will take longer. Special care need only be taken for
the very last set, as the client will end the jamming agreement on its side
once the expected number of sets has been received. To make sure the server
knows the set has been received, the last response-jamming by the client is
significantly longer.

The speed and reliability of the process are highly dependent on the choice
of timing for the basic operations, jamming/detection for server and client
each (tsj , tsd, tcj , tcd). Several restrictions apply to these parameters:

• The jamming times tsj and tcj need to be at least long enough to reach
the eviction threshold.

• The jamming time tcj should be at least tsj plus the time it takes to
reach to reach the eviction threshold, so that the client ideally only has
to confirm each set once.

• The detection time tcd should be at least tsd plus the time it takes to
reach to reach the eviction threshold, to minimize the chance that the
client misses a set transmission.

We will explore the practical realization of these rules in Section 5.4.

This section has also been expanded upon and presented at Blackhat Asia
2017 by Schwarz et al. [47].

41

RS Data Blocks

Header Block

Data Parity

3686 RS-words 409
RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Encoded
Transmission

RS-Code
Block

Encoded Data
Word

Figure 4.13: The structure of a transmission for 5% error correction capa-
bility [10].

4.5 Error Correction

To fulfill the premise of this thesis and show that a fast and robust cache
covert channel is indeed practical, we add error correction to the channel.

In the previous sections, we have shown how to overcome all the challenges
presented in Chapter 3. With the implementation of Section 4.4, our channel
can now be established and communicate across virtual machines, producing
a steady stream of data with substitution errors. We will use RS Codes for
this task (Section 2.3.1) because of their good tolerance of burst errors and
their easily available implementation.

In our implementation, the server starts by sending a header-block to the
client, which includes the uncoded and encoded length of the data that will
follow as well as a "magic number" that serves as a simple verification. The
server encodes all the data, including the header, into blocks before the
transmission. The client decodes the first block (the header) on the fly, but
delays decoding of the data until all the blocks have been received, to avoid
introducing additional points of desynchronization.

42

Chapter 5

Performance Evaluation

Now that we have implemented a functional, cross-core, cross-VM cache
covert channel, we want to evaluate how well the channel as a whole, as well
as its components separately, perform in different scenarios. For this we will
use the testing setup for artificial cache noise as described in Section 4.1.1
and extend it up to stress "-m 4". Together with the channel, this option
simulates 8 threads of a CPU at full capacity. These tests represent extreme
conditions for our channel and serve to test its limits. We run these tests on
the hardware shown in Table 4.2, where the E5-2670 CPU is the one used in
our Amazon EC2 instances. EC2 tests are performed on a dedicated host,
both to reliably achieve co-location of our instances as well as to prevent
contamination of our results by third party use of shared resources.

5.1 Transfer Speed

To begin this evaluation, we look at the transfer speed. We examine our chan-
nel under 5 artificial noise levels in a native environment on our hardware
and in the cloud. We contrast this with a Flush+Reload channel using the
same back-channel design, which will allow an estimate of the performance
impacts of the back-channel and using Prime+Probe over Flush+Reload.
As in Section 4.1.1, one series consists of 100 runs, each transmitting 512kB
of (the same) randomly generated data without error correction. For this
section, we do not consider channel failures before the start of data trans-
mission.

A note on hyper-threading and CPU clock speed : All CPUs we test are hyper-
threaded, and we expect most that are used by cloud computing providers are
as well, so we need to test with this in mind. As 2 hyper-threads running on
the same physical core will contend for some of its resources but not others,

43

the total performance is neither simply double that of 1 exclusive thread,
nor is it the same. Instead, the performance gain will vary depending on the
specific load. In the case of our channel, we find that when the 2 threads of
the receiver or the sender respectively share a physical core, we see a drop
in performance, but not usually to the point of failure. When some of the
channel’s threads share a physical core with a stress thread, however, we
see a sharp increase in channel failures and error ratios. Based on what
we have observed in our testing on the EC2, we make the assumption that
cloud providers always assign whole physical cores to instances, when those
instance feature more than one virtual core. Therefore, we do not consider
the scenario where other applications share the same physical core as our
channel. Instead, we separate our tests into two categories, hyper-threaded
(sender/receiver share 1 physical core each) and non-hyper-threaded (each
channel thread has a dedicated physical core). Stress is always executed on
different physical cores.

Another factor to consider is Intel Turbo Boost. While the CPU is not used
at full capacity, transmissions will usually benefit from a higher sustained
clock speed. We can observe in our tests that without stress, the CPU often
reaches its maximum turbo potential, while 1 or more threads of stress
reduce this to a mostly stable, lower clock speed. The frequency noted in
Table 5.1 is thus a lower bound and subject to fluctuations, though on our
cloud instances, the frequency seems to be unchanging.

The resulting means for all series are shown in Table 5.1 and some are vi-
sualized as boxplots in Figure 5.1. A detailed view of the data that makes
up the boxplot is given in Figure 5.2. From these tests we can gain several
insights:

• Our Prime+Probe channel performs very well on the Amazon cloud, even
under high stress. Both tests show a lower performance impact of noise
when compared to the other CPUs. This might be attributable in part to
more consistent clock speed, and in part to the larger cache associativity
of the e5-2670.

• The speed on the EC2 hardware is reduced by approximately 30%-35%
when using hyper-threading and the error ratio is increased.

• With our back-channel design, the error ratio does not increase markedly
as the cache noise increases; instead, we see a drop in transfer speed.

• On our test system, Flush+Reload achieves significantly higher transfer
speeds compared to Prime+Probe, especially under heavier noise. This
is due to its much faster basic operations, which are not appreciably
slowed down by higher cache noise. The error ratio, however, is much
higher than Prime+Probe. We attribute this to the fact that our basic
Flush+Reload implementation relies on a single address for each trans-

44

hw/test stress speed [kB/s] bER [%] BER [%] WER [%] fail [%]
i7-7700k, native F+R, w/ back-channel, hyper-threaded, 4.4GHz

0 237.2± 1.7 1.773 6.640 7.170 0
1 224.6± 1.7 1.871 6.957 7.366 1
2 212.5± 2.6 1.946 7.212 7.554 2
3 203.1± 1.9 1.947 7.303 7.587 4
4 193.9± 3.4 1.918 7.307 7.552 6

i7-7700k, native P+P, w/ back-channel, hyper-threaded, 4.4GHz
0 177.4± 5.2 0.302 1.730 1.790 3
1 89.5± 6.9 0.425 2.457 2.559 1
2 61.9± 8.5 0.461 2.659 2.772 0
3 55.3± 8.9 0.445 2.558 2.664 0
4 51.2± 6.7 0.441 2.528 2.633 5

i7-7700k, native P+P, w/ back-channel, not hyper-threaded, 4.4GHz
0 200.5± 4.5 0.155 0.823 0.800 4

i7-4770k, native P+P, w/ back-channel, hyper-threaded, 3.7GHz
0 107.8± 29.2 0.274 1.430 1.423 7
1 52.0± 16.9 0.057 0.307 0.312 1
2 57.1± 17.0 0.042 0.228 0.233 0
3 48.2± 7.1 0.016 0.087 0.087 1
4 42.8± 7.0 0.022 0.118 0.119 2

e5-2670, cross-vm P+P, w/ back-channel, not hyper-threaded, 2.6GHz
0 89.2± 0.8 0.045 0.216 0.212 0
1 83.0± 1.3 0.044 0.223 0.220 0
2 76.4± 1.7 0.046 0.239 0.238 0
3 69.2± 2.2 0.050 0.266 0.266 0
4 60.1± 5.4 0.065 0.345 0.347 0

e5-2670, cross-vm P+P, w/ back-channel, hyper-threaded, 2.6GHz
0 59.1± 1.8 0.088 0.397 0.397 6
1 51.8± 1.9 0.134 0.595 0.586 12
2 46.5± 1.0 0.167 0.742 0.729 25
3 45.0± 1.1 0.170 0.763 0.750 26
4 43.0± 3.9 0.162 0.729 0.718 12

Table 5.1: Average Speed and bit/byte/word error ratios for different chan-
nels and configurations. The failure rate represents transmissions that
stopped before completion.

mission, which is much more likely to be randomly evicted by noise than
all probe addresses of Prime+Probe. We conclude that overall, the back-
channel design impacts the transfer speed more than using Prime+Probe
over Flush+Reload, as the differences are much smaller than they are in
a purely time-synced implementation (e.g., Section 4.1.1).

45

stress level
quiet m1 m2 m3 m4

tr
an

sf
er

 s
pe

ed
 [k

B
/s

]

40

60

80

100

120

140

160

180 i7-7700k
i7-4770k
e5-2670, nh
e5-2670

Figure 5.1: Boxplot of transfer speeds for 4 Prime+Probe scenarios as per
Table 5.1. The boxes indicate 25th-75th percentile, inside of them the median
is marked in black. The extending whiskers encompass data within ±2.7σ.

5.1.1 Dynamic Delay

We can again look to Figure 5.3 to see how the delay described in Sec-
tion 4.2.4 influences transfer speeds. The delay starts at the default value
of 1000 and immediately begins to adjust with the current read errors per
second. The delay stays mostly stable until something changes; in this case,
it might be a temporary change in CPU speed on some of the cores, a change
in the stress program or some other process entirely.

5.2 Transmission Error Analysis

So far, we have seen the mean error ratio for bits, bytes, and words, as well
as the failure rate. In this section, we examine these values more closely and
try to understand the consequences with regards to a robust and reliable
channel.

46

run
0 20 40 60 80 100

tr
an

sf
er

 s
pe

ed
 [k

B
/s

]

20

40

60

80

100

120

140

160

180

i7-7700k quiet
i7-7700k m1
i7-7700k m2
i7-7700k m3
i7-7700k m4

(a) native, hyper-threaded,
i7-7700k

run
0 20 40 60 80 100

tr
an

sf
er

 s
pe

ed
 [k

B
/s

]

20

40

60

80

100

120

140

160

180

i7-4770k quiet
i7-4770k m1
i7-4770k m2
i7-4770k m3
i7-4770k m4

(b) native, hyper-threaded,
i7-4770k

run
0 20 40 60 80 100

tr
an

sf
er

 s
pe

ed
 [k

B
/s

]

10

20

30

40

50

60

70

80

90

100

e5-2670 quiet, nh
e5-2670 m1, nh
e5-2670 m2, nh
e5-2670 m3, nh
e5-2670 m4, nh

(c) cross-vm EC2, not
hyper-threaded, e5-2670

run
0 20 40 60 80 100

tr
an

sf
er

 s
pe

ed
 [k

B
/s

]

10

20

30

40

50

60

70

80

90

100

e5-2670 quiet
e5-2670 m1
e5-2670 m2
e5-2670 m3
e5-2670 m4

(d) cross-vm EC2, hyper-
threaded, e5-2670

Figure 5.2: Transfer speeds of the covert channel with back-channel for dif-
ferent hardware and scenarios. Missing datapoints show failed runs.

47

data transferred [%]
0 20 40 60 80 100

tr
an

sf
er

 s
pe

ed
 [k

B
/s

]

0

10

20

30

40

50

60

70

80

90

100

de
la

y
fa

ct
or

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 5.3: A run from the m2 series on the i7-7700k, showing the interaction
of transfer speed and delay factor over time.

5.2.1 Transmission Failures

In our dataset, we classify a transmission as a failure (see Table 5.1) when
detailed analysis shows a large number of errors in close proximity. Where
in the transmission this happens is, in this case, irrelevant, because, for the
purposes of analyzing errors, these runs are tainted. Transmissions with any
kind of error during the setup of the channel were not recorded at all, as
these are detected almost immediately and discussed in Sections 5.3 and 5.4.
With the notable exception of hyper-threaded operation on the EC2, we see
a fairly low failure rate that does not always appear to be correlated with
noise.

Either receiver or sender should, in theory, be able to detect an aborted or
desynchronized transmission. We can distinguish between 3 categories of er-
rors: failure directly at the start of, during, or at the end of the transmission.
Failures at the beginning can occur when the jamming agreement produced
an error that neither party detected, and consequently, no data can be cor-
rectly transmitted. Failures at some point during the transmission occur
when either sender or receiver cannot decode a word for a large number of
reads. These are rare because the synchronization scheme should allow a

48

hw/test quiet m1 m2 m3 m4
fn fp fn fp fn fp fn fp fn fp

i7-7700k 0 1/4 0 3/4 0 2/2 0 6/6 1 5/9
i7-4700k 0 0/7 0 0/1 0 0/0 0 0/1 0 0/2
e5-2670, nh 0 0 0 0/0 0 0/0 0 0/0 0 0/1
e5-2670 0 0/6 1 1/12 7 0/18 6 0/20 7 0/5

Table 5.2: Number of false negatives (fn) and false positives/detected (fp)
for reported transmission failures.

continuation of the transfer with any offset, even if the correct synchroniza-
tion is lost after the action. Finally, most failures are detected at the end of
a transmission. When synchronization is lost, neither side can recognize this
until the very end, when one of the two will stop receiving data or acknowl-
edgments prematurely. This last case can sometimes produce false positives
when the receiver has read the data in its entirety, but the sender, for some
reason, detects a failure just before the end of a transmission. There can
also be false negatives when synchronization is lost at some point during the
transmission, but through some error at the end, both parties still accept the
transfer as complete. Table 5.2 shows false negatives as well as false positives
vs. the number of failures as reported by the sender or receiver. As both
errors in failure reporting are similar in nature, we can conclude that there
is a weakness in our implementation regarding the end of transmissions.

5.2.2 Word Error Ratio

As with the transfer speed, the mean error ratios in Table 5.1 are a good
overview, but of course, they cannot represent the nature of the distribution.
The boxplot in Figure 5.4 and the detailed views in Figure 5.5 show that,
for some of the series, the distribution is almost bimodal. Nonetheless, for
most series, the word error ratios are quite stable from run to run. For the
most part, we still see a trend towards higher error ratios with higher noise,
but it is not as clear as for the transfer speed. This can be explained by the
self-slowing nature of our channel. The Berger code in conjunction with the
delay parameter works to keep errors low, at the cost of speed.

5.2.3 Synchronization

The high failure- but low error ratio in some of the hyper-threaded EC2 series
suggests that hyper-threading can manifest issues similar to descheduling and
that synchronization for this is not perfectly solved, so we will evaluate our
related measures here.

49

stress level
quiet m1 m2 m3 m4

w
or

d
er

ro
r

ra
tio

 [%
]

0

0.5

1

1.5

2

2.5

3

i7-7700k
i7-4770k
e5-2670, nh
e5-2670

Figure 5.4: Boxplot for word error ratios of 4 Prime+Probe scenarios as
per Table 5.1. The boxes indicate 25th-75th percentile, inside of them the
median is marked in black. The extending whiskers encompass data within
±2.7σ.

Besides adjusting our existing measures, it would be possible to implement
periodic synchronization checks on top of our channel to recover in the event
of an error. One option for this would be to use the RS-code’s ability to
detect unrepairable blocks and add a retransmission protocol, which would
also serve to resynchronize sender and receiver. This, however, is out of
scope for this thesis.

n-Strike-Skip

All the series in Table 5.1 were recorded for 3-strike-skip. To see if n-strike-
skip is even necessary, we recorded the number of skips and the number of
skips that were prevented. As Table 5.3 shows, in most series the receiver
only performs a few skips per transmission and prevents 100 or 1000 times
more with the 3-strike-skip, while the sender shows low figures for both. This
pattern is inverted on the sender side for the problematic hyper-threaded EC
series. There are a few possibilities for this: If these skips do what they are

50

run
0 20 40 60 80 100

w
or

d
er

ro
r

ra
tio

 [%
]

0

0.5

1

1.5

2

2.5

3

3.5

4
i7-7700k quiet
i7-7700k m1
i7-7700k m2
i7-7700k m3
i7-7700k m4

(a) native, hyper-threaded,
i7-7700k

run
0 20 40 60 80 100

w
or

d
er

ro
r

ra
tio

 [%
]

0

0.5

1

1.5

2

2.5

3

3.5

4
i7-4770k quiet
i7-4770k m1
i7-4770k m2
i7-4770k m3
i7-4770k m4

(b) native, hyper-threaded,
i7-4770k

run
0 20 40 60 80 100

w
or

d
er

ro
r

ra
tio

 [%
]

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
e5-2670 quiet, nh
e5-2670 m1, nh
e5-2670 m2, nh
e5-2670 m3, nh
e5-2670 m4, nh

(c) cross-vm EC2, not
hyper-threaded, e5-2670

run
0 20 40 60 80 100

w
or

d
er

ro
r

ra
tio

 [%
]

0

0.2

0.4

0.6

0.8

1

e5-2670 quiet
e5-2670 m1
e5-2670 m2
e5-2670 m3
e5-2670 m4

(d) cross-vm EC2, hyper-
threaded, e5-2670

Figure 5.5: Word error ratios of the covert channel with back-channel for
different hardware and scenarios. Missing datapoints show failed runs.

51

hw/test receiver sender
skips skips prev. skips skips prev.

i7-7700k 1.26 1829.52 2.80 7.84
i7-4700k 2.27 211.10 1.21 12.94
e5-2670, nh 0.12 109.97 3.06 0.90
e5-2670 2.62 653.12 196.67 9.44

Table 5.3: Mean number of words per transmission that were skipped and
skips that were prevented by n-strike-skip.

#strikes: 1 [%] 2 [%] 3 [%] 4 [%]
sender 98.8713 0.5141 0.3129 0.3017
receiver 99.8527 0.1467 0.0003 0.0003

Table 5.4: Distribution of number of strikes to prevent skips in all hyper-
threaded EC2 series.

supposed to, the fault lies with the receiver for incorrectly accepting a packet
a second time as the following packet. The skips on the sender might also
be reactions to skips on the receiver, produced in error, similar to the first
case. If this were true, we would see skips occurring in pairs on the sender
and receiver side, but we only see a total of 5 such pairs for all 5 series on
the EC2. Finally, the sender could make the skips in error. Because of the
asymmetry of sender and receiver, an accidental skip for the sender would
mean a deadlock that can only be resolved by a backtrack (or more errors).
Since we see very few backtracks, the vast majority of these skips must be
legitimate.

We now run a new series for n = 5 on the EC2 to measure how many strikes
it takes before an attempt to skip is stopped. In total, 98.87% of prevented
skips occurred after only 1 strike on the sender and 99.85% on the receiver
(see Table 5.4). Given these numbers, we feel confident that n-strike-skip
does what it is intended to do and n = 3 is indeed an appropriate choice for
the receiver. For the sender, the fact that 0.3% of skip preventions occurred
at 4 strikes indicates that there might have been a few unnecessary skips
that were not prevented. Since this would lead to a temporary deadlock, as
discussed above, for the server n = 6 might be appropriate in this hardware
scenario.

Backtracking

Table 5.5 contains the average number of backtracks per series. Overall, we
can see that the number of backtracks is very low, even compared to skips.
This is somewhat expected because backtracks are corrective measures that

52

hw/test: i7-7700k i7-4700k e5-2670, nh e5-2670
sender 0.216 0.054 0.002 0.162
receiver 0.018 0.008 0.000 0.378

Table 5.5: Mean number of backtracks per transmission.

are only employed after several errors have occurred in a row. We can confirm
that backtracking is a useful tool in general by determining the number of
backtracks that are directly involved in a desynchronization. We do this by
looking at the word error ratio in the data before and after the backtrack.
Over all series in the 4 major hardware setups we have recorded, out of 84
backtracks on the sender side, 11 were not involved in desynchronization, 58
occurred exactly at the point of desynchronization and 15 are inconclusive,
because they happened after desynchronization. On the receiver side, out
of 195 backtracks, 98 were unrelated to desynchronizations, 75 were related
and 22 inconclusive. From this, we can say that at least 109 deadlocks
were successfully resolved by backtracking, but at first glance we might also
think that up to 133 backtracks caused desynchronization. However, we also
recorded the result of the "voting" system described in Section 4.2.3. We
chose a high barrier of 200 votes as a minimum for backtracking, and we
see that in every case the result was close to 200:0, which means that it
is extremely unlikely any of the backtracks were directly caused by chance,
and thus were the cause of desynchronization as opposed to being only a
symptom.

As with the skips, the hyper-threaded EC2 series stands out for having by
far the most backtracks on the receiver and the second most on the sender.
Of the backtracks mentioned above, which coincide with desynchronizations,
all but 4 occurred during these 5 series. Given the successful backtracks, we
believe the feature to be working in principle, albeit in need of some tuning
for certain environments. For example, the minimum of 200 reads could be
too high, keeping the channel in a deadlock for longer than necessary and
increasing the chances of a different desynchronizing error appearing in the
meantime.

Regarding hyper-threading, however, we want to mention that in a scenario
where an attacker is trying to exfiltrate data from a virtual machine, the
receiver VM is completely controlled by the attacker. This means that on
instances with more than 2 virtual cores, the receiver threads need not be
confined to only one physical core and would perform much closer to the
non-hyper-threaded setup.

53

hw/test 6 bit 7 bit 8 bit 9 bit 10 bit 11 bit 12 bit
i7-7700k 40.0 31.0 22.5 18.5 16.5 13.5 8.5
i7-4700k 49.5 29.5 24.0 17.5 15.0 14.0 9.5
e5-2670, nh 30.5 20.0 17.0 14.0 9.0 6.0 3.0
e5-2670 30.5 20.0 12.5 8.5 7.0 5.5 3.0

Table 5.6: Minimum RS-Code parity percentage for completely error-free
transmission for different symbol sizes.

5.2.4 The RS-Code and Bit Errors

We initially chose a symbol size of 12 bits for the RS-Code because this
matches the size of our decoded data words. Because an error in a word
breaks the symbol it is contained in, symbols that are larger than data
words unduly increase the symbol error ratio in a block. However, a data
word of 12 bits can have any number of bit substitutions, including only 1.
To examine the actual distribution of the number of bit errors in erroneous
words, we analyze data words from all Prime+Probe series, excluding only
those transmissions where desynchronization caused high error ratios. The
results (see Figure 5.6) show that 89% of words contain only 1 or 2 wrong
bits. Given these results, it is worth examining if symbol sizes of less than 12
bits could lead to a lower symbol error ratio. An obvious candidate would
be 6 bits, as the worst case is the same symbol error ratio as before, but
the best case promises a halving of the error ratio. At lower symbol sizes,
the RS-Code produces much smaller blocks, and so the risk of burst errors
compromising entire blocks is increased. We can first calculate the overall
symbol error ratios for symbol sizes from 6 to 12 bits to see if any might be
preferable to 12 bits. As a dataset we use all 5 hyper-threaded series on the
EC2 and filter out any transmissions that failed. Figure 5.7 confirms that
a 6 bit symbol size provides the lowest symbol error ratio over the entire
dataset. But since we are interested in how many errors we can correct,
we also need to look at the number of blocks the RS-Code cannot correct
for a given symbol size and parity percentage. Illustrated in Figure 5.8,
this analysis reveals that the effect of multiple errors in a row is indeed too
much for symbol sizes other than 12 bits. Naturally, the ultimate goal for
our channel is a completely error-free transmission. Table 5.6 shows the
minimum amount of error correction necessary to achieve 0 errors on the
given channel/hardware setup, had the data been transmitted with a certain
symbol size. The results are clear: any symbol size other than 12 results in
a large performance penalty.

54

bit errors per word
0 2 4 6 8 10 12

no
rm

ed
 o

cc
ur

re
nc

e
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.6: Distribution of number of bit errors in erroneous words over all
Prime+Probe test series.

55

RS symbol size [bit]
6 7 8 9 10 11 12

sy
m

bo
l e

rr
or

 r
at

io
 [%

]

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Figure 5.7: Symbol error ratio
for different symbol sizes over all
hyper-threaded series on the e5-
2670 CPU (after removing failed
transmissions).

RS parity [%]
2 3 4 5 6 7 8 9 10

un
co

rr
ec

ta
bl

e
R

S
 b

lo
ck

s
[%

]

0

0.5

1

2

3

4
5

10

25

50

 6 bit
 7 bit
 8 bit
 9 bit
10 bit
11 bit
12 bit

Figure 5.8: Rate of uncorrectable
blocks for different symbol sizes
and parity percentages over all
hyper-threaded series on the e5-
2670 CPU (after removing failed
transmissions).

56

time [ms]
20 40 60 80 100 120

oc
cu

rr
en

ce
 r

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

quiet
m1
m2
m3
m4

Figure 5.9: Distribution of run times for the cache-set-finding algorithm
with different levels of stress for 1000 runs each. Different color tones show
overlapping ranges.

stress level quiet m1 m2 m3 m4
mean [ms] 37.0 60.3 66.8 78.3 88.2

std. dev. [ms] 6.3 3.8 3.3 4.8 12.1

Table 5.7: Run times for the cache-set-finding algorithm with different levels
of stress.

5.3 Cache Set Finding

To measure the speed of the cache-set-finding algorithm for finding 26 sets,
as described in Section 4.3, we time 1000 runs for 5 different stress levels,
from none to 4 threads, on our i7-4700k CPU. We can see in Figure 5.9
that the distribution of run times correlates with the increase in noise on
the cache produced by the stress tool. This increase is caused by a higher
rate of eviction of the probing addresses and thus larger read times. From
the average run times in Table 5.7 we can conclude that incorporating the
reverse-engineered hash function indeed produces a much faster method for
finding addresses in the same cache set than previous works [13], which makes
it practical for our channel. Testing the created sets for correctness, we see

57

no errors during these test series. It should, however, be mentioned that
errors can still happen, and when they do the channel will experience failure
or a wrong result during the Jamming Agreement.

5.4 Jamming Agreement

We empirically find parameters that satisfy the rules mentioned in Section 4.4
to evaluate the Jamming Agreement. The challenge, in practice, is that
the parameters tsj , tsd, tcj , tcd are not actually implemented as times, but
rather number of reads and evictions nsj , nsd, ncj , ncd. Consequently, the
timings vary heavily with all activity in the relevant cache sets, including
noise and jamming/detection from the other party. Jamming is also affected
much more by high noise on the cache than detection, since there are more
addresses involved in eviction. As a result, the ideal parameters change not
only with the hardware, but also the current level of noise. The goal of this
section is to find parameters that perform well under most circumstances.

To measure how well the selected parameters are performing, we can look
at the loop count and repeat count (which in turn determine the run time)
as well as failure rate. The loop count measures how many times the client
started from set 0 again, after testing all available sets. The repeat count
shows how often a set was received by the client, but the server did not
detect its acknowledgment. The loop count indicates how well the detection
count ncd was chosen in relation to nsd and nsj , a high loop count indicates
that ncd (or possibly also nsj) is too low. The repeat count gives feedback
on the the relation between ncj and nsj and nsd.

During first testing, it becomes immediately obvious that the total run time
is dominated by ncd and the number of loops. Additionally, we can see that
the number of loops heavily depends on the virtual slice offset between server
and client in a given transmission. Figure 5.12a shows the clear difference for
a given test series of 100 runs. This is a result of the client’s loop structure
described in Section 4.4 and the way we order the sets first by slice, then
index — when the server transmits the same set index on several slices, a
virtual offset other than 0 can force loops, because the sets are in a different
order on the client. We introduce a simple optimization by resetting the
set counter on the client to the most recently read set on slice 0 after a
positive detection. E.g., on a CPU with 4 slices, detecting jamming on set
number 6 would reset the counter to set 4. This has the additional benefit
that failure to detect the acknowledgment on the server-side does also not
force another loop, as each successfully detected set is read again within the
next m detection phases. Figure 5.12b shows the clear improvements of this
optimization.

58

series nsj nsd ncj ncd
1, 1o 300 500 1500 1200
2, 2o 300 500 3000 1200

Table 5.8: Parameters for all 4 test series.

In total, we measure 2000 set transmissions, composed of 4 different test
series, each of which is run 100 times at 5 stress levels (quiet to m4). In
each of these tests, we transfer 26 sets, the amount we need for the channel.
For this we use 2 sets of parameters nsj , nsd, ncj , ncd and run each series with
and without the previously described optimization (series 1/2 vs. 1o/2o). As
we can see in Table 5.8, we only varied ncj between series 1/1o and 2/2o, as
we found the other parameters to be in a good balance to each other. ncj is
to some extent independently variable, as a value that is too low does not
influence the rate of detection directly and only causes a higher number of
repeats.

Comparing the mean1 run time and loop count plots in Figure 5.13 illus-
trates how tightly the two variables are linked. We can also observe how
drastically the run times drop from series 1/2 to their optimized counter-
parts. The difference in the parameter ncj between series 1/1o and 2/2o is
less pronounced in the run time, but can be seen quite well in Figure 5.11.
The higher parameter ncj leads to fewer repeated readings of the same set in
the client, which in turn leads to a smaller chance of missing the transmis-
sion and causing loops, which significantly affects the run time. Regarding
the count of repeated sets, it is also noteworthy that the stress level m3
appears to cause significantly more problems than any other, including m4,
for all 4 test series. Finally, the amount of failures, seen in Figure 5.10, shows
us that the parameters were well chosen, as only 9 transmission failures in
2000 runs.

The result for series 2o is an average runtime of 45.2ms±37.4ms over all noise
levels, and 18.2ms±6.9ms for the minimum-noise scenario. The entire series
combined is shown in Figure 5.14.

1means were calculated taking into account the slice offset, as the distribution was not
always uniform in our tests, but can, in general, be expected to be unbiased.

59

stress level
quiet m1 m2 m3 m4

fa
ilu

re
s

0

0.5

1

1.5

2

2.5

3

1
1o
2
2o

Series

Figure 5.10: Number of failures per
series and stress level.

stress level
quiet m1 m2 m3 m4

re
pe

at
ed

 s
et

s

0

5

10

15

20

25

1
1o
2
2o

Series

Figure 5.11: Mean number of re-
peated sets per series and stress
level.

run
0 5 10 15 20 25 30

lo
op

 c
ou

nt

0

5

10

15

20

25

0
1
2
3

Slice Offset

(a) without optimization
run

0 5 10 15 20 25 30 35

lo
op

 c
ou

nt

0

5

10

15

20

25

0
1
2
3

Slice Offset

(b) with optimization

Figure 5.12: Mean number of loops by virtual slice offset before (a) and after
(b) optimization. Series 1/1o, stress m2.

60

stress level
quiet m1 m2 m3 m4

ru
nt

im
e

[m
s]

0

50

100

150

200

250

300

350

1
1o
2
2o

Series

stress level
quiet m1 m2 m3 m4

lo
op

 c
ou

nt

0

5

10

15

20

25

30

1
1o
2
2o

Series

Figure 5.13: Mean runtime and mean loop count for each series and stress
level.

run
0 50 100 150 200 250 300 350 400 450 500

ru
nt

im
e

[m
s]

0

50

100

150

200

250

300

Figure 5.14: Combined run times for series 2o.

61

Chapter 6

Conclusion

When we started this thesis, there was already some literature declaring
cache covert channels practical (as well as impractical). Upon review, we con-
cluded that previous works were either not general enough, not fast enough
or, in fact, not practical enough because they stopped short of achieving
error-free transmissions. Thus, we set for ourselves the goals of achieving a
robust, high-speed channel that works on a wide variety of CPUs with very
few practical constraints.

In this thesis, we identified 4 principal challenges toward our goal and solved
them by building and improving upon previous works as well as employing
concepts novel to cache covert channels. With our jamming agreement, we
created a way to share the most fundamental parameters of the channel ad
hoc, while serving as a mechanism of initial synchronization at the same
time. Our back-channel scheme allows us to be completely ignorant of large-
scale errors and discontinuities in the rdtsc instruction, as long as small
stretches of fewer than 300 instructions are mostly accurate. At the same
time, the design around the Berger code lets our channel automatically scale
its transfer speed to the level of cache noise and keep errors to a minimum.
With this, we have created a building block that can easily be used as the
basis for higher-level protocols such as TCP [10], which expect error-free
transmission on the physical layer.

We have engineered a channel that can transmit between 41kB/s and 86kB/s
with a byte error-rate of zero (including only 3% error correction) on the
oldest generation of CPUs in the Amazon Elastic Compute Cloud at a clock
speed of 2.6GHz and up to 183kB/s on newer hardware. Beyond the typical
example of stealing credit card information, this is enough bandwidth to
theoretically transfer gigabytes of data per day.

62

While there are many possible improvements to our channel, we believe to
have shown conclusively that cache covert channels in the cloud can be fast
as well as reliable, and are practical now.

63

Bibliography

[1] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds”. In: CCS. 2009 (cit. on pp. 3, 4, 12).

[2] Zhang, Y., Juels, A., Oprea, A., and Reiter, M. K. “Homealone: Co-
residency detection in the cloud via side-channel analysis”. In: S&P.
2011 (cit. on p. 3).

[3] Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., and Butler,
K. “Detecting co-residency with active traffic analysis techniques”. In:
CCSW. 2012 (cit. on p. 3).

[4] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. “Cross-tenant
side-channel attacks in PaaS clouds”. In: CCS. 2014 (cit. on p. 3).

[5] Varadarajan, V., Zhang, Y., Ristenpart, T., and Swift, M. “A Place-
ment Vulnerability Study in Multi-Tenant Public Clouds”. In: USENIX
Security Symposium. 2015 (cit. on p. 3).

[6] Xu, Z., Wang, H., and Wu, Z. “A Measurement Study on Co-residence
Threat inside the Cloud”. In: USENIX Security Symposium. 2015 (cit.
on p. 3).

[7] Inci, M. S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., and Sunar,
B. “Cache attacks enable bulk key recovery on the cloud”. In: CHES.
2016 (cit. on pp. 3, 8, 9).

[8] Gruss, D., Spreitzer, R., and Mangard, S. “Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Se-
curity Symposium. 2015 (cit. on pp. 3, 11).

[9] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. “Flush+Flush:
A Fast and Stealthy Cache Attack”. In: DIMVA. 2016 (cit. on pp. 3,
9, 11, 12).

[10] Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Boano,
C. A., Römer, K., and Mangard, S. “Hello from the Other Side: SSH
over Robust Cache Covert Channels in the Cloud”. In: NDSS. 2017
(cit. on pp. 4, 28, 34, 42, 62).

64

[11] Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., and Schlicht-
ing, R. “An exploration of L2 cache covert channels in virtualized en-
vironments”. In: CCSW. 2011 (cit. on pp. 4, 12).

[12] Maurice, C., Neumann, C., Heen, O., and Francillon, A. “C5: Cross-
Cores Cache Covert Channel”. In: DIMVA. 2015 (cit. on pp. 4, 12).

[13] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. “Last-Level Cache
Side-Channel Attacks are Practical”. In: S&P. 2015 (cit. on pp. 4, 12,
35, 57).

[14] Martineau, E. The art of cache timing covert channel on x86 multi
core. https://www.youtube.com/watch?v=7X772EBdvnM. 2015 (cit.
on pp. 4, 12).

[15] Amazon EC2 Instance Types. https://aws.amazon.com/de/ec2/
instance-types. Retrieved on April 05, 2017. 2017 (cit. on p. 6).

[16] Levinthal, D. Performance Analysis Guide for Intel R© CoreTM i7 Pro-
cessor and Intel R© XeonTM 5500 processors. https://software.in
tel.com/sites/products/collateral/hpc/vtune/performance_
analysis_guide.pdf. Retrieved on March 21, 2017. 2009 (cit. on
p. 7).

[17] Intel Ivy Bridge Cache Replacement Policy. http://blog.stuffedco
w.net/2013/01/ivb-cache-replacement/. Retrieved on January 29,
2020. 2013 (cit. on p. 7).

[18] Qureshi, M. K., Jaleel, A., Patt, Y. N., Steely, S. C., and Emer, J.
“Adaptive insertion policies for high performance caching”. In: ACM
SIGARCH Computer Architecture News 35.2 (2007), pp. 381–391 (cit.
on p. 7).

[19] Jaleel, A., Theobald, K. B., Steely Jr, S. C., and Emer, J. “High
performance cache replacement using re-reference interval prediction
(RRIP)”. In: ACM SIGARCH Computer Architecture News 38.3 (2010),
pp. 60–71 (cit. on p. 7).

[20] Hennessy, J. and Patterson, D. Computer Architecture, 5th Edition.
Morgan Kaufmann, 2011. isbn: 9780123838728 (cit. on p. 8).

[21] Shilov, A. More AMD ‘Zen’ CPU details emerge. http://www.kitg
uru.net/components/cpu/anton-shilov/more-amd-zen-cpu-de
tails-emerge-quad-core-units-inclusive-cache-high-speed-
interconnects/. Retrieved on March 22, 2017. 2015 (cit. on p. 8).

[22] Intel. Intel R© 64 and IA-32 Architectures Optimization Reference Man-
ual. 2016 (cit. on p. 8).

[23] Hund, R., Willems, C., and Holz, T. “Practical Timing Side Channel
Attacks against Kernel Space ASLR”. In: S&P. 2013 (cit. on pp. 8, 9).

65

https://www.youtube.com/watch?v=7X772EBdvnM
https://aws.amazon.com/de/ec2/instance-types
https://aws.amazon.com/de/ec2/instance-types
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://www.kitguru.net/components/cpu/anton-shilov/more-amd-zen-cpu-details-emerge-quad-core-units-inclusive-cache-high-speed-interconnects/
http://www.kitguru.net/components/cpu/anton-shilov/more-amd-zen-cpu-details-emerge-quad-core-units-inclusive-cache-high-speed-interconnects/
http://www.kitguru.net/components/cpu/anton-shilov/more-amd-zen-cpu-details-emerge-quad-core-units-inclusive-cache-high-speed-interconnects/
http://www.kitguru.net/components/cpu/anton-shilov/more-amd-zen-cpu-details-emerge-quad-core-units-inclusive-cache-high-speed-interconnects/

[24] Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., and Francillon,
A. “Reverse Engineering Intel Complex Addressing Using Performance
Counters”. In: RAID. 2015 (cit. on pp. 8, 9, 20, 35).

[25] Inci, M. S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., and Sunar, B.
“Seriously, get off my cloud! Cross-VM RSA Key Recovery in a Public
Cloud”. In: Cryptology ePrint Archive 2018.898 (2015) (cit. on p. 8).

[26] Yarom, Y., Ge, Q., Liu, F., Lee, R. B., and Heiser, G. “Mapping the
Intel Last-Level Cache”. In: Cryptology ePrint Archive 2015.905 (2015)
(cit. on p. 8).

[27] Hu, W.-M. “Lattice scheduling and covert channels”. In: S&P. 1992
(cit. on p. 9).

[28] Page, D. “Theoretical use of cache memory as a cryptanalytic side-
channel”. In: Cryptology ePrint Archive 2002.169 (2002) (cit. on p. 9).

[29] Bernstein, D. J. “Cache-timing attacks on AES”. In: (2005) (cit. on
p. 9).

[30] Percival, C. “Cache missing for fun and profit”. In: BSDCan. 2005 (cit.
on pp. 9, 10, 12).

[31] Osvik, D. A., Shamir, A., and Tromer, E. “Cache attacks and counter-
measures: the case of AES”. In: CT-RSA. 2006 (cit. on pp. 9, 10).

[32] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. “Cross-VM side
channels and their use to extract private keys”. In: CCS. 2012 (cit. on
p. 9).

[33] Irazoqui, G., Inci, M. S., Eisenbarth, T., and Sunar, B. “Wait a minute!
A fast, Cross-VM attack on AES”. In: RAID. 2014 (cit. on p. 9).

[34] Benger, N., Van de Pol, J., Smart, N. P., and Yarom, Y. ““Ooh Aah...
Just a Little Bit”: A small amount of side channel can go a long way”.
In: CHES. 2014 (cit. on p. 9).

[35] Yarom, Y. and Falkner, K. “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Sympo-
sium. 2014 (cit. on pp. 9, 10).

[36] Irazoqui, G., Eisenbarth, T., and Sunar, B. “S $ A: A shared cache
attack that works across cores and defies VM sandboxing–and its ap-
plication to AES”. In: S&P. 2015 (cit. on p. 9).

[37] Gulmezoglu, B., Eisenbarth, T., and Sunar, B. “Cache-based applica-
tion detection in the cloud using machine learning”. In: AsiaCCS. 2017
(cit. on p. 9).

[38] Gruss, D., Maurice, C., and Mangard, S. “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript”. In: DIMVA. 2016 (cit.
on pp. 10, 22).

66

[39] Gullasch, D., Bangerter, E., and Krenn, S. “Cache games–bringing
access-based cache attacks on AES to practice”. In: S&P. 2011 (cit.
on p. 10).

[40] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., and Mangard, S. “AR-
Mageddon: Last-Level Cache Attacks on Mobile Devices”. In: USENIX
Security Symposium. 2016 (cit. on p. 11).

[41] Berger, J. M. “A note on error detection codes for asymmetric chan-
nels”. In: Information and Control 4.1 (1961), pp. 68–73 (cit. on p. 14).

[42] Reed, I. and Solomon, G. “Polynomial codes over certain finite fields”.
In: MIT Lincoln Laboratory Group Report 47 (1958), pp. 22–31 (cit. on
p. 15).

[43] Roman, S. Coding and information theory. Vol. 134. Springer Science
& Business Media, 1992 (cit. on p. 15).

[44] stress, a workload generator for POSIX systems. https://people.
seas.harvard.edu/~apw/stress/. Retrieved on April 30, 2017. 2017
(cit. on p. 23).

[45] Hadamard, J. “Resolution d’une question relative aux determinants”.
In: Bull. des sciences math. 2 (1893), pp. 240–246 (cit. on p. 33).

[46] Boano, C. A., Zuniga, M. A., Römer, K., and Voigt, T. “Jag: Reliable
and predictable wireless agreement under external radio interference”.
In: RTSS. 2012 (cit. on p. 40).

[47] Schwarz, M. and Weber, M. “CJAG: Cache-based Jamming Agree-
ment”. In: Blackhat Asia. 2017 (cit. on p. 41).

67

https://people.seas.harvard.edu/~apw/stress/
https://people.seas.harvard.edu/~apw/stress/

	Abstract
	Introduction
	Motivation
	Threat Model
	Challenges
	Outline

	Background
	Caches
	Cache Attacks
	Cache Covert Channels

	Error Detection Codes
	Berger Code

	Forward Error Correction
	Reed-Solomon Codes

	Analyzing Challenges
	Challenge C1: Virtualized Timers
	Challenge C2: Scheduling Difficulties
	Challenge C3: Address Mapping in Virtualization
	Challenge C4: First Contact - Establishing the Channel

	Implementation
	Native Prime+Probe
	A Statistical Analysis of Errors in Prime+Probe

	Replacing the rdtsc Instruction in Synchronization
	Reading with a Sliding Window
	Detecting Errors
	Sequence Numbers
	Read Delay

	Finding Cache-Set-Congruent Addresses
	Jamming Agreement
	Error Correction

	Performance Evaluation
	Transfer Speed
	Dynamic Delay

	Transmission Error Analysis
	Transmission Failures
	Word Error Ratio
	Synchronization
	The RS-Code and Bit Errors

	Cache Set Finding
	Jamming Agreement

	Conclusion

