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Abstract

Mathematical morphology is the study of shape and aims to remove/enhance
structures in images using erosions/dilations and structuring elements. A learn-
ing based approach using the counter-harmonic mean shows that learning
morphological operators is possible, though the resulting approximations are
rather smooth which is caused by the positive valued constraint on structuring
elements. Our novel robust counter-harmonic mean filter is more stable during
learning and improves the approximation quality by avoiding clipping negative
structuring element values. We show that our novel morphological layers are
able to learn good approximations of morphological operators within purely
morphological neural networks enabling further research on learning based
mathematical morphology.
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Kurzfassung

Mathematische Morphologie beschäftigt sich mit der Lehre von Form und
Gestalt. Mit einem Strukturlement können Strukturen in einem digitalen
Bild mit dem morphologischen Operator ”Erosion” entfernt und mit dem
morphologischen Operator ”Dilatation” hervorgehoben werden. Ein Gradien-
tenverfahren welches den ”Counter-Harmonic Mean” nutzt, ermöglicht das
Lernen von morphologischen Operatoren und Strukturelementen. Das Opti-
mierungsverfahren ist instabil aufgrund von ausschließlich positiv beschränkten
Werten der Strukturelemente. Die resultierenden angenäherten Bilder sind
jedoch unscharf. Wir entwickeln eine robuste Variante des ”Counter-Harmonic
Mean” und ermöglichen ein stabileres Lernen und bessere Annäherungen an
die morphologischen Operatoren. Weiters zeigen wir, dass unsere entwickel-
ten morphologischen neuronalen Schichten in der Lage sind morphologische
Operatoren in rein morphologischen neuronalen Netzwerken zu lernen. Un-
sere Arbeit ermöglicht ein genaueres Lernen von morphologischen Operatoren
und ermöglicht mehrere morphologische Operatoren in einem morphologischen
neuronalen Netzwerk zu erlernen.
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1 Introduction

Recent research in the image processing domain highlights the importance of
learning based approaches like Convolutional Neural Networks (CNNs) [10].
CNNs are trained using the backpropagation algorithm and are exceptional in
object detection [5], image classification [6] and other applications - an overview
is given in [4]. Mathematical morphology is another image processing research
field and builds on top of two basic morphological operators, erosion and dila-
tion [16]. Erosion and dilation apply min/max operators in the neighbourhood
defined by a structuring element where the structuring element represents a
kernel which is used to enhance or remove structure from an image. Combining
multiple erosions/dilations forms more complex morphological pipelines and
morphological operators. Finding appropriate structuring elements, morpho-
logical pipelines and other morphological operators is problem specific and
requires a domain expert [15] to engineer them; therefore, we intend to learn
well fitting configurations with the backpropagation algorithm. Due to the
min/max operators used in erosion/dilation, gradient computation and error
backpropagation is a challenging problem.

Erosion and dilation can be approximated with the counter-harmonic mean fil-
ter [18] where a single parameter controls between approximations of min/max
and convolution operators. Another component of the counter-harmonic mean is
a convolutional kernel which represents the structuring element. The innovative
work of the counter-harmonic mean learning framework [12] enables learning
of morphological operators with the backpropagation algorithm because the
counter-harmonic mean is differentiable w.r.t. the structuring element and the
morphological operator. However, the authors obtain rather smooth morpho-
logically processed images. In our work we reimplement the proposed learning
framework and study the learning behaviour using the counter-harmonic mean.
Based on our findings we develop a more robust version of the counter-harmonic
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1 Introduction

mean and achieve more stable learning and better approximation quality over
the counter-harmonic mean.

The Morph-CNN proposed in [13] combines counter-harmonic mean filters
and convolutions within a single network and the Morph-CNN is used for
image classification. The authors fall short of addressing the problem how
multiple morphologically processed images are combined within a layer using
multiple counter-harmonic mean filters and they do not report if the counter-
harmonic mean filters learn morphological operators or convolutions. In our
work we propose two novel types of morphological network layers using our
novel robust counter-harmonic mean filter. Inspired by depthwise separable
convolutions [3], both of our proposed morphological layers combine multiple
robust counter-harmonic mean filters within the morphological layers. We show
that a morphological neural network purely built on top of our morphological
layers is able to extract features for image classification. In addition, we show
that our morphological layers are able to learn approximations of morphological
operators within the network.

This thesis proposes a more robust learning framework for learning morpholog-
ical operators and provides two novel morphological layers which are able to
learn morphological operators. Our work enables further research on learning
based mathematical morphology.
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2 Fundamentals of Mathematical
Morphology

Mathematical morphology is well defined with mathematical set theory [16]
and is built on top of the two basic morphological operators, erosion and
dilation. These operators are shift-invariant and utilize a structuring element to
morphologically process an image. The structuring element represents a kernel
which is used to enhance or remove structure from the image. Combinations
of erosion and dilation are called morphological pipelines and the two most
common pipelines are opening and closing, which consist of erosion followed by
dilation, and dilation followed by erosion, respectively. Opening and closing
are the basic morphological operators for morphological image filtering [17].
The mathematical morphology tools introduced above aim to extract shape
based features from images. However, finding appropriate structuring elements,
morphological pipelines and other morphological operators are problem specific
and require a domain expert [15]; therefore, we intend to learn well fitting
configurations with the backpropagation algorithm.

In order to better understand mathematical morphology and why it is hard to
learn with the backpropagation algorithm, we provide the necessary theoretical
background. We base our notation on [17], a pioneering work in the field of
morphological image processing.

2.1 Disambiguation

We introduce the required mathematical background in order to define and
classify morphological operators and to understand their specific properties.
Knowing these properties helps us to understand the behaviour of a specific
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2 Fundamentals of Mathematical Morphology

morphological operator. Feel free to skip this section and revisit it again later
when we discuss and refer to specific properties.

The ordering and complementation properties are required for the increasing,
(anti-)extensive, (self-)dual and idempotence properties below.

Ordering: Images f and g can be ordered in the following way, where x is the
pixel position:

f 6 g ⇔ ∀x, f(x) 6 g(x). (2.1)

For example, if f is an all black image and g is an all white image the ordering
relation holds.

Complementation: The complement f c of an image f at pixel position x is
the difference between the maximum value tmax of the image domain of f and
the image f :

f c(x) = tmax − f(x). (2.2)

Complementing the image twice results in the initial image:

(f c)c = f. (2.3)

Consider an image f ∈ [0, 1], where tmax = 1. We show the image f , its
complement f c and the complement of the complemented image (f c)c = f .

f =
0.0 0.1 0.2
0.4 0.5 0.6
0.8 0.9 1.0

f c =
1.0 0.9 0.8
0.6 0.5 0.4
0.2 0.1 0.0

(f c)c =
0.0 0.1 0.2
0.4 0.5 0.6
0.8 0.9 1.0

= f

(2.4)

The complementation property is crucial to define the (self-)duality property
of morphological operators in (2.8) and (2.9).

Increasing: An operator Ψ transforms an image f by Ψ(f). A transformation
is called increasing if it does not change the ordering of images:

∀f, g : f 6 g ⇒ Ψ(f) 6 Ψ(g). (2.5)

Erosion/dilation and opening/closing are increasing as they do not change the
ordering of images.
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2.1 Disambiguation

Extensive: A transformation Ψ is called extensive if, for all images f , the
transformed image is higher than or equal to the original image:

∀f : f 6 Ψ(f). (2.6)

For example, let Ψ be a transformation which introduces just salt noise. Then
the image with salt noise is brighter than the clean image and preserves the
ordering. Dilation and closing also brighten the image and if the structuring
element contains its origin the ordering is preserved, resulting in an extensive
transformation.

Anti-Extensive: A transformation Ψ is called anit-extensive if, for all images
f , the transformed image is lower than or equal to the original image:

∀f : Ψ(f) 6 f. (2.7)

For example, let Ψ be a transformation which introduces just pepper noise.
Then the image with pepper noise is darker than the clean image and pre-
serves the ordering. Erosion and opening also darken the image and if the
structuring element contains its origin the ordering is preserved, resulting in
an anti-extensive transformation.

Duality: Two transformations Ψ and Φ are called dual if applying Ψ to an
image f is equal to applying Φ to the complement image f c and taking the
complement of the resulting image:

∀f : Ψ(f) = (Φ(f c))c . (2.8)

For example, min/max operators are dual, as we can see for Ψ = min and
Φ = max and utilize f from (2.4).

Erosion utilizes the min operator in the neighbourhood of the structuring
element and dilation the max operator respectively. The min/max operators
are dual and therefore the erosion can be expressed with dilation utilizing
complements and vice versa.
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2 Fundamentals of Mathematical Morphology

Self-Duality: A transformation Ψ is called self-dual if applying Ψ to an image
f is equal to applying Ψ to the complement image f c and taking the complement
of the resulting image:

∀f : Ψ(f) = (Ψ(f c))c . (2.9)

Note that the difference between self-duality and duality is that the same
transformation is used (Ψ = Φ) twice. For example, a median filter is self-dual,
as we can see for Ψ = median applied to f from (2.4).

Idempotence: A transformation Ψ is called idempotent if applying Ψ multiple
times equals to applying the transformation only once:

∀f : Ψ(Ψ(f)) = Ψ(f). (2.10)

Opening/closing are morphological filters which remove peaks/valleys nar-
rower than the structuring element. Applying the same morphological filter
again has no impact, as all peaks/valleys were already removed. In contrast,
erosion/dilation and convolution/correlation are not idempotent.

2.2 Structuring Element

A structuring element is a small set and is used to probe an image, similar to the
filter kernel of a convolution or correlation operation. We distinguish between
flat structuring elements Bf and non-flat (volumetric, grayscale) structuring
elements Bv, shown in Figure 2.1.

Flat structuring elements are defined by a shape, a size and an origin. The
shape of the flat structuring element may be a line, a disk, a cross, a square, or
any arbitrary structure, which serves as a neighbourhood mask for the image
to be processed. In contrast to flat structuring elements, non-flat structuring
elements also have grayvalues assigned to the mask. A morphological operator
determines the output value in the neighbourhood defined by the structuring
element and outputs it to the location of the origin.

In the remaining sections of this chapter we are going to visualize how mor-
phological operators process images. For visualization and explanatory purpose
we will use 1D-signals and for this purpose utilize the 1D structuring elements
shown in Figure 2.2.
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2.2 Structuring Element

Figure 2.1: A flat structuring element is depicted on the left. Only pixels in the neighbourhood
of the horizontal line are considered for the morphological operators. A non-flat
structuring element is depicted on the right. It contains grayvalues. The origins
are indicated with red dots, which lie in the centers. The black areas are for
visualization purpose only, they are not considered part of the structuring element.
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Figure 2.2: Three 1D structuring elements of size 21 are depicted as B0, B1 and B2. B0 is a
flat structuring element, B1 and B2 are non-flat structuring elements forming a
parabola and a slanted line.
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2 Fundamentals of Mathematical Morphology

2.3 Erosion and Dilation

Mathematical morphology stems from set theory and the two fundamental
morphological operators are called erosion and dilation. Both operators utilize
a structuring element to morphologically process an image.

The erosion ε of a set X with a flat structuring element B is defined as:

εB(X) = {x | Bx ⊆ X} . (2.11)

At any location x where structuring element B fits into set X results in the
eroded set.

The dilation δ of a set X with a flat structuring element B is defined as:

δB(X) = {x | Bx ∩X 6= 0} . (2.12)

At any location x where the structuring element B intersects with the set X
results in the dilated set.

In Figure 2.3, we show an erosion and a dilation applied to a set. We clearly
see that the erosion removes structure smaller than the disk shaped structuring
element and shrinks the border area of larger structures. In case of dilation the
border area grows and even closes narrow gaps. Erosion and dilation have no
inverse, i.e. completely removed structure smaller than the structuring element
caused by erosion can not be reconstructed, and the closed gap between the
larger and smaller area caused by dilation can not bet opened again. Defining
the right shape and size of the structuring element plays an important role in
how the set will be modified.

Binary images can be interpreted as sets; i.e. foreground pixels define a set and
the locations are discrete. The idea of binary morphology was later extended to
grayscale images, where the set operators are replaced with min/max operators.
While binary morphology only allows for flat structuring elements grayscale
morphology also allows for non-flat structuring elements. From here on we
will focus only on grayscale morphology, utilizing flat and non-flat structuring
elements.
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2.3 Erosion and Dilation

Figure 2.3: B is the structuring element where the origin is in the center. X is the set the
morphological operator is applied on. In the center we show the resulting erosion
(2.11) and on the right we show the resulting dilation (2.12) of set X. (Fig. 3.3,
p.52 and Fig 3.6, p.54 from [17])

The erosion ε of an image f at location x in the neighbourhood defined by a
flat structuring element Bf is the minimum in the neighbourhood:

[εBf
(f)](x) = min

b∈Bf

f(x + b). (2.13)

In Figure 2.4, we show an erosion with a flat structuring element. Note that
the full shape of the structuring element appears on local minima and local
peaks narrower than the structuring element are attenuated. The erosion is an
anti-extensive transformation (2.7); hence, the erosion darkens the image and
the eroded image is lower than the initial image (2.1).

The dilation δ of an image f at location x in the neighbourhood defined by a
flat structuring element Bf is the maximum in the neighbourhood:

[δBf
(f)](x) = max

b∈Bf

f(x + b). (2.14)

In Figure 2.5, we show a dilation with a flat structuring element. Note that the
full shape of the structuring element appears on local maxima and local valleys
narrower than the structuring element are filled. The dilation is an extensive
transformation (2.6); hence, the dilation brightens the image and the dilated
image is higher than the initial image (2.1).

Erosion ε and dilation δ are dual (2.8):

ε(f) = (δ(f c))c (2.15)
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2 Fundamentals of Mathematical Morphology
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Figure 2.4: The initial image is shown in the top left. The grayvalue profiles, indicated by
the horizontal lines in orange and blue, are shown at the bottom. We apply an
erosion with a flat structuring element with the shape of a horizontal line (shown
in Figure 2.1, left) of size 21 to the initial image. Only pixels in the horizontal
neighbourhood are considered. The top right image is the resulting eroded image.
The black graphs on the bottom indicate the eroded grayvalue profiles. An
erosion darkens the image and attenuates local peaks narrower/smaller than the
structuring element. Note how the full structuring element appears at single dark
spots, an example is indicated by the yellow circle.
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2.3 Erosion and Dilation
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Figure 2.5: The initial image is shown in the top left. The grayvalue profiles, indicated by
the horizontal lines in orange and blue, are shown at the bottom. We apply a
dilation with a flat structuring element with the shape of a horizontal line (shown
in Figure 2.1, left) of size 21 to the initial image. Only pixels in the horizontal
neighbourhood are considered. The top right image is the resulting dilated image.
The black graphs on the bottom indicate the dilated grayvalue profiles. A dilation
brightens the image and fills local valleys narrower/smaller than the structuring
element. Note how the full structuring element appears at single bright spots, an
example is indicated by the yellow circle.
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2 Fundamentals of Mathematical Morphology

and increasing (2.5) operators.

In contrast to flat structuring elements Bf , non-flat structuring elements Bv

contain grayvalues. Below we introduce erosion and dilation utilizing non-flat
structuring elements.

The erosion ε of an image f at location x in the neighbourhood defined by a
non-flat structuring element Bv is the minimum of the difference of the image
and the structuring element:

[εBv(f)](x) = min
b∈Bv

{f(x + b)−Bv(b)} . (2.16)

The dilation δ of an image f at location x in the neighbourhood defined by a
non-flat structuring element Bv is the maximum of the sum of the image and
the structuring element:

[δBv(f)](x) = max
b∈Bv

{f(x + b) +Bv(b)} . (2.17)

A non-flat structuring element Bv is set to the value range of the image domain.
The erosion with a non-flat structuring element may be below the lower bound
of the image domain and the dilation may exceed the upper bound. In both
cases, the image is either clipped to the domain of the original image or the
image domain is extended.

Note that a non-flat flat structuring element with all values equal to 0 is
a flat structuring element; hence, εBv(f) = εBf

(f) and δBv(f) = δBf
(f) for

Bv ∈ {0}.
In Figure 2.6, we compare erosion and dilation with flat and non-flat structur-
ing elements on a 1D signal. The shapes of the structuring elements appear
at local minima and maxima. In contrast to flat structuring elements which
introduce horizontal lines to the eroded and dilated signal, non-flat structuring
elements allow to introduce an arbitrary shape and add an offset. If the offset
is too high, potentially undesired clipping to the domain of the signal can
occur if the domain can not be expanded. We observe that erosions utilizing
non-flat structuring elements are lower than or equal to erosions utilizing flat
structuring elements of same size. Similarly dilations with non-flat structuring
elements are lower than or equal to dilations with flat structuring elements;
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2.4 Opening and Closing

hence, εBv(f) 6 εBf
(f) 6 f 6 δBf

(f) 6 δBv(f).
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Figure 2.6: We show erosions (left) and dilations (right) of a 1D-signal f with flat (B0) and
non-flat (B1, B2) structuring elements introduced in Figure 2.2, where f is a
magnified grayvalue profile from Figures 2.4 and 2.5. The shape of the structuring
element appears at local minima (erosion) and maxima (dilation). While flat
structuring elements do not add any offset and therefore only introduce horizontal
lines, non-flat structuring elements add an offset and allow to add any arbitrary
shape to peaks/valleys of the signal. The offset of structuring element B2 is too
large and introduces clipping if the signal is bounded between [0, 1], in case of
erosion from pixel 470 to 512 and in case of dilation from pixel 415 to 440.

2.4 Opening and Closing

A morphological pipeline is defined as a sequence of erosions and dilations,
where opening and closing are the core representatives.

The opening operator is defined as an erosion followed by a dilation:

γ(f) = δ(ε(f)). (2.18)

In Figure 2.7, opening using a flat structuring element is shown. The ero-
sion darkens the overall image and also removes local bright peaks which are
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2 Fundamentals of Mathematical Morphology

narrower than the utilized structuring element. Then the following dilation
compensates the darkening caused by erosion, while the removed bright peaks
stay suppressed.

The closing operator is defined as a dilation followed by an erosion:

φ(f) = ε(δ(f)). (2.19)

In Figure Figure 2.8, closing using a flat structuring element is shown. The di-
lation brightens the overall image and also fills local valleys which are narrower
than the utilized structuring element. Then the following erosion compensates
the brightening caused by dilation, while keeping the filled dark valleys.

Under the assumption that the structuring element is symmetrical the following
properties hold: Opening is anti-extensive as it removes peaks and closing is
extensive as it fills valleys. Both are dual (2.8), increasing (2.5) and idempotent
(2.10) operators. Applying an idempotent operator multiple times has the same
result as applying the operator only once. In other words, structures removed
or enhanced by the same structuring element will not be affected again:

γ(f) = γ(γ(f))
φ(f) = φ(φ(f))

. (2.20)

A morphological filter selectively suppresses image structures, such as noise or
irrelevant structures and is defined by the idempotence (2.10) and increasing
(2.5) properties. Structures that are preserved should not be modified by
further applications of the same filter [17]. While opening and closing fulfill
these properties and therefore are morphological filters, erosion and dilation
alone are not morphological filters.

In Figure 2.9, we compare opening and closing with flat and non-flat structuring
element. The shape of the structuring element appears along the filtered signal.
While flat structuring elements only allow for filtering with horizontal lines,
non-flat structuring elements allow for filtering with any arbitrary shapes.
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Figure 2.7: Opening of a grayscale image and grayvalue profiles from the image. We utilize a
flat structuring element with the shape of a horizontal line (shown in Figure 2.1,
left) of size 21. Opening γ is defined as an erosion ε followed by a dilation δ. The
dashed graphs on the bottom indicate the eroded grayvalue profiles. Note how
peaks narrower than the structuring element (< 21) are suppressed. Dilating the
eroded grayvalue profile results in the opened profile in solid black. For opening
we observe that structures smaller than the structuring element get suppressed
while compensating the darkening of the erosion: ε(f) 6 γ(f) 6 f . The top right
image is the resulting opened image. Note how, for example, white areas of the
eyes get suppressed to darker neighbouring grayvalues.

15



2 Fundamentals of Mathematical Morphology

0 200 400
x in px

0

100

200

300

400

500

y 
in

 p
x

Initial Image

0 200 400
x in px

0

100

200

300

400

500

y 
in

 p
x

Closed Image

0 200 400
x in px

0.0

0.2

0.4

0.6

0.8

1.0

gr
ay

 v
al

ue

Closed Profile

0 200 400
x in px

0.0

0.2

0.4

0.6

0.8

1.0
gr

ay
 v

al
ue

Closed Profile

y: 30
y: 265

Figure 2.8: Closing of a grayscale image and grayvalue profiles from the image. We utilize
a flat structuring element with the shape of a horizontal line (shown in Figure
2.1, left) of size 21. Closing φ is defined as a dilation δ followed by an erosion ε.
The dashed graphs on the bottom indicate the dilated grayvalue profiles. Note
how valleys narrower than the structuring element (< 21) are filled. Eroding the
dilated grayvalue profile results in the closed profile in solid black. For closing
we observe that structures smaller than the structuring element get suppressed
while compensating the brightening of the dilation: f 6 φ(f) 6 δ(f). The top
right image is the resulting closed image. Note how, for example, dark areas like
the iris get increased to brighter neighbouring grayvalues.
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2.4 Opening and Closing
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Figure 2.9: We compare openings (left) and closings (right) of a 1D-signal f with flat (B0)
and non-flat (B1) structuring elements introduced in Figure 2.2, where f is a
magnified grayvalue profile from Figures 2.7 and 2.8. The shape of the structuring
element appears at local maxima (opening) and local minima (closing). Compared
to the flat structuring element B0 the parabolic structuring element B1 results
in a smoother signal.
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2 Fundamentals of Mathematical Morphology

2.5 Top-Hats

Morphological operators can be combined with residuals to form new morpho-
logical operators such as top-hat transformations.

The white top-hat transformation is the difference of the image f and the
opening of f :

WTH(f) = f − γ(f). (2.21)

Openings suppress bright peaks smaller than the utilized shape of the structur-
ing element; hence, the white top-hat transformation results in the suppressed
peaks as shown in Figure 2.10 left.

The black top-hat transformation is the difference of the closing of f and f
itself:

BTH(f) = φ(f)− f. (2.22)

Closings fill dark valleys smaller than the utilized shape of the structuring
element; hence, the black top-hat transformation results in the filled valleys as
shown in Figure 2.10 right.
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Figure 2.10: A flat structuring of size 21 is used to open (blue) and close (green) the image
f . The top-hats obtained by the residuals are shown in gray. The white top-hat
represents the removed bright structures and the black top-hat represents the
closed valleys.
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Convolutional Neural Networks (CNNs) [10] are powerful methods used for
feature extraction in the image processing and computer vision domain. The
convolutional kernels in a CNN aim to extract meaningful features and are
learned with the backpropagation algorithm. Inspired by the huge success
of CNNs and the similarity between convolutional kernels and structuring
elements, we aim to learn morphological pipelines by replacing the convolution
operator with morphological operators. Note that a linear convolution, which
calculates a weighted sum, is not able to calculate erosion or dilation due to
the min and max operator used in the morphological operators.

3.1 Mathematical Morphology Learning
Frameworks

One approach to learn structuring elements is to replace the convolution
operator of a CNN with an erosion (2.16) or a dilation (2.17). The erosion and
dilation units have to be predefined in the network structure. Flat and non-flat
structuring elements are then learned with the backpropagation algorithm.
However, not all values of each structuring element are updated simultaneously.
Similar to max-pooling, the error is only backpropagated at the locations of
minima and maxima. For this reason, only a single value of each structuring
element is updated for a single training iteration. This method was applied
in [15] to remove rain in images. The authors designed two morphological
networks with predefined sequences of erosions and dilations and learned the
structuring elements. The only difference between these networks is that one
network uses fewer morphological operators to reduce the parameter count. They
compared the morphological networks against a CNN, where the CNN performed
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marginally better w.r.t PSNR and structural similarity. A huge advantage
of the morphological networks over the CNN is the parameter count. The
morphological networks only require 0.27% (normal network) and 0.04% (smaller
network) of the CNN parameter count; hence, learning morphological operators
might be beneficial to applications with limited available computational power.
To summarize, the drawbacks of such an approach are that the erosion and
dilation units have to be predefined in each layer and that the structuring
element updates are sparse.

Designing predefined pipelines in a network architecture may reduce the success
of extracting meaningful features; therefore, we aim to also learn sequences
of morphological operators, so that morphological pipelines can be learned
through backpropagation. The counter-harmonic mean [18] can be used as an
approximation of morphological operators with flat structuring elements. One
parameter of the counter-harmonic mean allows to control between erosion,
convolution and dilation. Another paramaeter is a convolutional kernel which
represents the structuring element. A learning framework using the counter-
harmonic mean was proposed in [12]. The authors show that learning the
morphological operators and the structuring element simultaneously is possible,
as the counter-harmonic mean is differentiable w.r.t. the structuring element and
the parameter controlling the approximation of the morphological operators. In
contrast to the min/max operators, another advantage of the counter-harmonic
mean is that the error is backpropagated through all values of a structuring
element and therefore the whole structuring element is updated simultaneously
for each training sample. The authors show that the learning framework is
able to learn erosions and dilations, openings and closings and the top-hat
transformations. In addition, they are able to remove salt and pepper noise
from images. In [13] the authors combine four counter-harmonic mean layers,
five convolutional network-in-network layers [11] and two pooling layers to
classify the MNIST [14] dataset. They compared their proposed architecture to
smaller CNN architectures and outperformed the smaller networks. However,
the MNIST dataset is a questionable benchmark for such a deep network
architecture and they did not discuss if the counter-harmonic mean layers
approximated morphological operators or convolutions.

The counter-harmonic mean learning framework seems most promising, as
it meets our requirements to learn structuring elements and morphological
operators, we choose to further investigate this learning approach. First, we
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3.2 Counter-Harmonic Mean

implement the counter-harmonic mean learning framework proposed in [12] and
investigate the results. Second, we aim to classify image data like in [13], but only
utilizing counter-harmonic mean layers to investigate if morphological operators
or convolutions are learned. In Section 3.2 we review the counter-harmonic
mean in more detail.

During writing this thesis, [15] proposed a more robust version to learn struc-
turing elements with a soft minimum operator for erosion and a soft maximum
operator for dilation. The morphological operators still have to be predefined in
the network architecture and only the structuring elements can be learned.

3.2 Counter-Harmonic Mean

Erosion and dilation without the notions of min/max was first proposed in [18],
where both morphological operators are approximated [1] with the counter-
harmonic mean (CHM) [2]. The approximation turns out to be very effective
in image smoothing, edge detection and image sharpening in presence of noise
because a parameter P allows to tune the trade-off between detection of extrema
and smoothing [18].

The counter-harmonic mean of order P ∈ R is defined by :

κPw(f)(x) =

(
fP+1 ∗w

)
(x)

(fP ∗w) (x)
, (3.1)

where f is the real-valued image in the range [0, 1], x being the pixel coordinate,
fP the pixel values raised to the power of P and w ∈ R+ is the convolutional
kernel with positive values. The resulting convolutions of the numerator and
denominator are divided pixelwise. CHM can be interpreted as the P-deformed
convolution and is denoted as κPw(f)(x) ≡ (f ∗P w) (x). Note, when addressing
individual values within the kernel w we use the vector notation using subscripts,
e.g. wi,j.

In short, parameter P controls the approximation between erosion, convolution
and dilation, where w represents the flat structuring element (Section 2.2).

For P � 0 the smallest value in the local neighbourhood of the resulting
convolution with w will dominate. Similar the largest value will dominate for
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P � 0. As only finite numbers for P are feasible, we speak of a pseudo-erosion
and pseudo-dilation, which can be interpreted as the non-flat erosion and
non-flat dilation [12]. Then the structuring element B is approximately:

B ≈ 1

P
log(w). (3.2)

The convolutional kernel w, which is usually defined as a square support
window, represents a structuring element B where non-zero values in w define
the shape of the structuring element B.

The CHM filtered image stays in the definition range while no clipping occurs. As
P shrinks/grows to ±∞, the structuring element behaves like a flat structuring
element, because limP→±∞

1
P

log(w) = 0.

The limit cases P = ±∞ are flat erosion with:

lim
P→−∞

(f ∗P w) (x) = ε(f)(x), (3.3)

and flat dilation with:

lim
P→+∞

(f ∗P w) (x) = δ(f)(x). (3.4)

The counter-harmonic mean is differentiable w.r.t. P and w, and thus the
backpropagation algorithm can be applied. In the learning framework proposed
in [13], CHM filters combined with convolutions learn morphological operators
and structuring elements simultaneously.

For P close to zero, the approximation of erosion and dilation is not sufficient
because the CHM acts like a convolution with a positive kernel and leads to a
blurry image. For salt and pepper noise removal, such smoothing behaviour
might be better suited than a regular erosion/dilation.

We compare the CHM properties, introduced in [9], and the CHM approximation
quality [1] to classical mathematical morphology (Section 2) below.

CHM pseudo-erosion (P � 0) converges to erosion faster than CHM pseudo-
dilation (P � 0) converges to dilation, i.e., assuming P > 0:∣∣κ−PB (f)− εB(f)

∣∣ ≤ ∣∣κPB(f)− δB(f)
∣∣ . (3.5)
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3.2 Counter-Harmonic Mean

Another property of CHM is the following ordering relationship, i.e., assuming
P > 0:

κ−PB (f) ≤ κPB(f). (3.6)

However, the duality property, which is a fundamental property for ero-
sion/dilation and for opening/closing, does not hold for the CHM filter, i.e.,
assuming P > 0:

κPB(f) 6=
(
κ−PB (f c)

)c
. (3.7)

In addition the (anit-)extensive, increasing and idempotence properties do also
not hold; however, this should not be a limiting factor for robust approximation
of erosion and dilation.

In Figure 3.1, we compare the CHM approximation quality for various values
of P with erosion and dilation using a flat structuring element. Note that
the flat structuring element for classical mathematical morphology is set to
zero and the flat structuring element for CHM is set to one. In the case
P = 0 we obtain a simple convolution and a low-pass filtering behaviour.
For |P | � 0, the approximation quality to erosion and dilation is increasing.
Because opening/closing are composed of erosion/dilation, we make similar
observations for approximating opening/closing in Figure 3.2.

The authors using counter-harmonic mean to approximate erosion/dilation [1,
9] claim that good approximation quality of the operators can be achieved
with P = ±20 and for their smoothing application P = ±5 is appropriate.
In the learning framework proposed in [12], Masci et al. are able to learn
erosions/dilations (no learned P values mentioned) and openings/closings
(5 ≤ |P | < 10) with the CHM learning framework. However, we rather observe
noticeable smoothing behaviour, hence we aim to learn larger |P | values.

To summarize, the counter-harmonic mean approximates flat erosion and flat
dilation well enough for |P | � 0, where the morphological operator and the
structuring element can be learned through the backpropagation algorithm. The
properties of mathematical morphology do not hold for the CHM approximation
which is not limiting in denoising applications [1, 9, 18]; however, the low-
pass smoothing behaviour for P close to zero might be problematic for long
morphological pipelines as higher frequency features get lost.
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Figure 3.1: We use a magnified version of the same 1D-signal f (blue) as in the previous
Figures 2.4, 2.5 and 2.6 with the same flat structuring element of size 21. In
black, we show the classical erosion (left) and dilation (right), while the remaining
graphs represent approximations with CHM. In case of erosion, P is negative
and in case of dilation, P is positive. For P = 0 we obtain a regular convolution
with low-pass like behaviour. For |P | � 0 approximation quality compared to
flat erosion/dilation increases and for P = ±100 the approximation quality is
close to classical erosion/dilation.
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Figure 3.2: We use a zoomed in version of the same 1D-signal f (blue) as in the previous
Figures 2.7, 2.8 and 2.9 with the same flat structuring element of size 21. In black,
we show the proper opening (left) and closing (right), while the remaining graphs
represent approximations with the counter-harmonic mean. In case of opening,
a CHM erosion followed by a CHM dilation is applied and in case of closing
vice versa. For P = 0 we obtain two regular convolutions with low-pass like
behaviour. For |P | � 0 approximation quality compared to flat opening/closing
increases and for P = ±100 the approximation quality is close to the proper
opening/closing.
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4 Method

The first part of this chapter focuses on learning morphological operators
and structuring elements utilizing the counter-harmonic mean filter and a
novel robust counter-harmonic mean filter. The second part focuses on image
classification tasks utilizing the robust counter-harmonic mean filter as a feature
extractor.

4.1 Learning Morphological Operators

The innovative work of the counter-harmonic mean learning framework [12]
allows us to learn morphological operators and structuring elements simulta-
neously. However, the authors obtain rather smooth output images; therefore,
we strongly focus on studying the learning behaviour of the counter-harmonic
mean filter for erosions/dilations, openings/closings and top-hat transforma-
tions introduced in Section 2. Due to our findings, we develop a novel, more
robust version of the counter-harmonic mean filter and compare both.

Robust Counter-Harmonic Mean

Learning of a counter-harmonic mean filter (3.1) is unstable depending on the
target structuring element, mainly due to clipping negative w values because of
the constraint w ≥ 0. The resulting output images are smoothed and contain
unwanted artefacts.

Our main idea is to get rid of clipping negative values during learning due to
the w ≥ 0 constraint of the counter-harmonic mean filter (CHM). We develop
the robust counter-harmonic mean (RCHM) filter by restricting w to values
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between zero and one using the logistic sigmoid function σ and thus allow
learning of arbitrary weight values:

w = σ(wr) =
1

1 + e−wr
σ : R→ [0, 1], wr ∈ R, w ∈ [0, 1]. (4.1)

Inserting the modified structuring element of (4.1) into the counter-harmonic
mean of (3.1) results in our robust version of the counter-harmonic mean
filter:

κPσ(wr)(f)(x) =

(
fP+1 ∗ σ(wr)

)
(x)

(fP ∗ σ(wr)) (x)
, wr ∈ R. (4.2)

The properties of the CHM filter in Section 3.2 also apply to the RCHM filter
because the modified structuring element w = σ(wr) is positive between zero
and one. Note, σ(0) = 0.5, σ(< 5) ≈ 0 and σ(> 5) ≈ 1.

When mentioning the counter-harmonic mean filter (3.1) and the robust version
(4.2) we always denote the structuring element with w. In case we refer to robust
counter-harmonic mean filter, we refer to the modified structuring element w
in (4.1).

Loss Functions

For learning morphological operators two loss functions are used, the mean
squared error (MSE) and the structural similarity (SSIM) [19].

The mean squared error is defined as:

MSE =
1

MN

M∑
i

N∑
j

(fin(i, j)− fout(i, j))2, (4.3)

and takes the mean value of all pixelwise squared differences of the input image
fin and the output image fout. Larger errors are penalized more than lower
errors.

The structural similarity considers the luminance, contrast and structure of
two image patches x, y and is defined as:

SSIM(x,y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) , (4.4)
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where µx denotes the mean value, σx the standard deviation of patch x and σxy
denotes the covariance of both patches x and y. C1 and C2 are constants for
numerical stability. The SSIM is ≤ 1 and only if x = y results in SSIM = 1.

Learning Erosion and Dilation

A single (robust) counter-harmonic mean filter is able to approximate an erosion
and a dilation. Given an input image and a morphologically processed target
image we learn an approximated morphological operator and the structuring
element. An example for the input image and the dilated target image using a
cross-shaped structuring element is shown in Figure 4.1.

Figure 4.1: Illustration of an input image and a dilated target image. The cross-shaped
structuring element and the dilation is learned using the (R)CHM.

Training is performed with the backpropagation algorithm using the Adam [7]
optimizer with a learning rate of α = 0.005 and the exponential decay rates
of β1 = 0.9, β2 = 0.999. In each iteration, parameters P and w are updated
simultaneously. Given dilated target images we initialize P = 1 and for eroded
target images P = −1. We compare the experiments with two loss functions,
namely the mean squared error (MSE) and the structural similarity (SSIM)[19]
introduced above. All input images are of size 256×256, all structuring elements
are of size 11×11 and the resulting approximated morphological output images
are of size 246× 246 because no padding is used. We do not use any activation
function or bias term.

All structuring element values are initialized to w = 0.5 in experiments
using the counter-harmonic mean filter (3.1) and as the structuring element
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w is constrained to w ≥ 0, all wi,j < 0 are clipped to wi,j = 0 after each
optimization step if required. Using the robust counter-harmonic mean filter
(4.2) all structuring element values in w are also initialized to w = 0.5 by
setting the parameters wr to wr = 0 which results in w = σ(0) = 0.5. The
robust filter does not require any clipping during learning.

Note, that we outperform the proposed method in [12] using stochastic gradient
descent (SGD) with alternate updates of w and P in initial experiments using
Adam and simultaneous updates of w and P and, therefore, we omit SGD and
alternate updates.

Learning Opening and Closing

Two (R)CHM filters in sequence are able to approximate openings and closings.
Given an input image and a morphologically processed target image we learn
both morphological operators and both structuring elements. An example for
an opening using a disc-shaped structuring element is shown in Figure 4.2
where the input image is eroded and the eroded image is dilated.

Figure 4.2: Illustration of a morphological opening. The input image is eroded with a disc-
shaped structuring element and the eroded image is dilated with the same
disc-shaped structuring element.

Learning openings/closings is performed as learning erosions/dilations discussed
previously with the following changes: We use two Adam optimizers for learning
RCHM filters, one optimizer updates P with a learning rate of α = 0.05 and
the second optimizer updates w with a learning rate of α = 0.005. The target
images are of size 236×236 because no padding is used in the additional second
layer.
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4.1 Learning Morphological Operators

Learning Top-Hats

Learning openings and closings using two (R)CHM filters enables learning of
top-hat transformations. A white top-hat transformation is shown in Figure
4.3 using the opening from Figure 4.2.

Figure 4.3: The white top-hat transformation is the difference of the input image with the
opened input image.

The white top-hat (2.21) and the black top-hat (2.22) transformations differ in
the ordering of the input image term and the opening/closing terms. The abso-
lute difference layer, introduced in [12], generalizes the ordering for white and
black top-hats and, therefore, allows us to learn both top-hat transformations
with the same architecture consisting of two (R)CHM filters followed by the
absolute difference with the input image.

WTH(f) = f − γ(f) = |f − γ(f)| = |γ(f)− f |,
BTH(f) = φ(f)− f = |f − φ(f)| = |φ(f)− f |

Given an input image and a top-hat transformed target image we learn both,
morphological operators and the structuring elements.

Learning top-hat transformations is performed as learning openings/closings
described previously and including the absolute difference layer. In case of CHM
the learning rate is lowered to α = 0.0005 and in case of RCHM the learning
rates are lowered to α = 0.005 for updating P and α = 0.001 for updating w.
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Structuring Elements and Dataset Generation

To validate the approximation quality of the learned morphological opera-
tors we need to generate our own meaningful dataset with erosion/dilation,
opening/closing and the top-hat transformations utilizing structuring elements
containing various structures. The target images are generated with classical
mathematical morphology (Section 2) and additionally our approach also in-
cludes target images generated with the counter-harmonic mean filter (Section
3.2) with varying approximation quality. First, we discuss the used structuring
elements and finally we discuss the target image generation.

In the (robust) counter-harmonic mean filter the flat structuring element w is
predefined to a squared grid window with a fixed size of 11×11 pixels. We define
a new important property for measuring the structure size of a structuring
element in such a squared window, namely the fullness property, which takes
the ratio of occupied pixels to total pixels. In contrast to a full structuring
element, which occupies all pixels in the window (a square of size 11× 11), a
non-full structuring element does not occupy all pixels in the squared window
(a disk, a cross, a diagonal, a square smaller than 11× 11, etc.). We utilize four
different structuring elements with varying fullness throughout our experiments
which are shown in Figure 4.4 and Table 4.1.

Diagonal Cross Disk Square

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Figure 4.4: The diagonal-, cross-, disk- and square-shaped structuring elements. Pixels with
value zero indicate that the pixels are not part of the structuring element and
pixels with value greater than zero, in our case one, indicate that the pixels are
part of the structuring element.

The authors of the counter-harmonic mean learning framework [12] did not
mention any learned P values for erosion and dilation, but looking at their
resulting images we observe smoothing behaviour which indicates rather low
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Structuring Element Window Size Occupied Pixels Fullness
11× 11 121 100%
11× 11 81 67%
11× 11 21 17%
11× 11 11 9%

Table 4.1: Only the square is a full structuring element; the disk, cross and diagonal are not
full structuring elements as not all pixels in the squared window are occupied.
Fewer occupied pixels result in lower fullness.

learned |P | values (see Section 3.2 on smoothing behaviour using the counter-
harmonic mean). They reported learned P values for opening and closing in
the range of 5 ≤ |P | ≤ 10 and as opening and closing are compositions of
erosion and dilation, we infer that also rather low |P | values were learned for
erosion/dilation. Learning large |P | values, which result in a more accurate
approximation of erosion/dilation and therefore less smoothing, apparently is a
hard problem. For this reason, our method includes target images generated
with counter-harmonic mean filters with various P values in addition to the
classical morphological target images and we expect to learn the counter-
harmonic mean target images much easier, especially target images generated
with lower |P | values. Our counter-harmonic mean target images are generated
with P = ±5,±10,±20,±30 using the structuring elements shown in Figure 4.4
and Table 4.1. Learning the counter-harmonic mean target images for P = ±5
and P = ±10 is our minimum requirement to reproduce the results in [12].
With P = ±20 and P = ±30 the counter-harmonic mean target images are
much more similar to the classical morphological operators; hence, learning
such |P | values is desirable and our favourable goal. A comparison between
classical morphological dilation and counter-harmonic mean approximations
using P = 20 and P = 5 is shown in Figure 4.5 where we observe that the
classical dilation target image contains more structure and detail than the
target images generated with counter-harmonic mean using rather small P
values.

All experiments in Section 5.1 use the same input image of size 256× 256 with
11× 11 structuring elements shown in Table 4.1. We show relevant examples
explaining success and failure cases in the experiments section.
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(a) δ(f) (b) κ20(f) (c) κ5(f)

Figure 4.5: Target image comparison between classical dilation (a) and counter-harmonic
mean with P = 20 (b) and P = 5 (c) where noticeable differences are shown in
the red and blue ellipses. For P = 20 the cross-shaped structuring element does
not appear as crisp as in the classical dilation, especially apparent in the red area,
and for P = 5 we additionally notice smoothing behaviour of the overall image.

4.2 Vision Task

This section covers learning morphological neural networks using robust counter-
harmonic mean filters within the networks. We study if morphological neural
networks are able to extract meaningful features for image classification and
whether morphological operators or convolutions are learned. In the previous
section each layer consists of a single (R)CHM filter which is not sufficient
for image classification. For this reason, we develop and compare two types of
pseudo-morphological layers consisting of multiple RCHM filters.

Datasets

We use the MNIST [14] dataset consisting of handwritten digits ranging from
digit zero to digit nine and the Fashion-MNIST [20] dataset consisting of ten
different clothing items. Both datasets consist of grayscale images of size 28×28
and are split into 60000 training images and 10000 testing images. Fashion-
MNIST is a more difficult alternative for benchmarking machine learning
algorithms than the widely used regular MNIST.
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Morphological Layers

The underlying convolution operation in a CNN is well suited for pattern
matching where a single convolutional kernel sums up the spatial and depth-
wise convolutions to a single channel in the subsequent layer. However, ero-
sions/dilations are not comparable to such pattern matching mechanisms. Thus,
the convolutions in a CNN can not simply be swapped with RCHM filters. For
this reason, we introduce two types of pseudo morphological layers which are
inspired by depthwise separable convolutions [3].

Our MorphGroup (Figure 4.6) and MorphAll (Figure 4.7) layers pseudo-
morphologically process each input channel independently using the RCHM
followed by 1× 1 convolutions which combine the morphologically processed
images. The MorphGroup and MorphAll layers differ in the depthwise 1× 1
convolutions, the former performs a grouped depthwise convolution and the
latter performs a depthwise convolution over all morphologically processed
images.

Figure 4.6: MorphGroup layer using two input channels and three output channels. Each
input channel is morphologically processed independently three times using
RCHM. Three 1× 1 convolutions combine the morphologically processed images
in groups of two, resulting in three output channels. The 1 × 1 convolutions
require cin · cout parameters. A bias term is added for each output channel. Note
the similarity to a convolutional layer, where instead of the 1× 1 convolutions,
summations are performed.

Network Architecture and Training

As the datasets have the same input size and the same amount of classes we
use one general network architecture shown in Figure 4.8. In each layer, L1 to
L4, the filter size is fixed to 7× 7 and the number of output channels is set to
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Figure 4.7: MorphAll layer using two input channels and three output channels. Each input
channel is morphologically processed independently three times using RCHM.
Three 1 × 1 convolutions combine all six morphologically processed images to
three output channels. The 1× 1 convolutions require cin · c2out parameters, which
is by a factor cout more than MorphGroup. A bias term is added for each output
channel.

8. A single activation in the last RCHM layer L4 is of size 4× 4 because no
padding is used. The flattened layer L4 output is the feature vector of length
128 which is then fully connected to 10 output neurons. Remember, (R)CHM
is defined for images between zero and one. We clamp the input images to
[10−5, 1− 10−5], otherwise divisions by zero may occur. For the same reason,
we utilize sigmoid activation functions after each layer.

Figure 4.8: Proposed morphological network architecture for classifying the MNIST and
Fashion-MNIST datasets.

We compare the performance of both morphological layer approaches for:

1. Pure MorphGroup layers in L1, L2, L3, L4
2. Pure MorphAll layers in L1, L2, L3, L4

As the sigmoid functions in the RCHM and the activation functions may output
very small values, which in combination with |P | � 0 may cause numerical
problems, we use double precision and clip all P at P = ±50 and the wr

parameters to wr = ±100 where required.
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The wr parameters of the structuring elements, P and the depthwise 1 × 1
convolutions of the MorphGroup are initialized uniformly between [−1, 1]. The
depthwise 1× 1 convolutions in the MorphAll layer are initialized uniformly
between [−6, 6], which accelerates learning in early epochs.

All parameters are updated using the Adam optimizer with a learning rate
of α = 0.001 and the exponential decay rates of β1 = 0.9, β2 = 0.999 based
on the negative log likelihood loss. The depthwise 1× 1 convolutions and the
fully connected layer weights are L2-regularized with a weight of 10−5, no
regularization is performed on P , wr of the RCHM filters and bias terms.
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5 Experiments

The first section shows the experimental results of learning predetermined
morphological operators and structuring elements utilizing the counter-harmonic
mean. Based on the drawbacks of the counter-harmonic mean we show the need
for the robust counter-harmonic mean. In the second section a morphological
corner detector is presented. The third section focuses on image classification
tasks where we use predefined datasets and use the (robust) counter-harmonic
mean as a feature extractor. No predetermined morphological operators are
given and the network has to learn appropriate morphological operators from
scratch.

5.1 Learning Morphological Operators

Our goal is to learn the morphological operators and structuring elements
given an input image and the predetermined morphologically processed target
image. Before applying the counter-harmonic mean filter to a larger network
architecture we strongly focus on analysing the learning behaviour of the
counter-harmonic mean. Due to our findings we develop a novel more robust
version of the counter-harmonic mean and compare it to the counter-harmonic
mean.

The numbers of training iterations are set according to the convergence of the
loss. We require far fewer iterations using the robust counter-harmonic mean
over using the counter-harmonic mean. Thus, we do not train for equal numbers
of iterations for erosions/dilations, openings/closings and using float/double
precision. Only the top-hat transformations are trained with equal numbers of
iterations.
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5 Experiments

5.1.1 Learning Erosion and Dilation

Erosion and dilation are the basic and most fundamental morphological op-
erators, so analysing and understanding the learning mechanism of erosion
and dilation is important for more complex problems like opening/closing
and top-hat transformations. First, we show that the counter-harmonic mean
enables learning morphological operators with only a single filter. However, we
find that the mathematical and numerical constraints of the counter-harmonic
mean cause unstable learning for larger |P | values and non-full structuring
elements. Finally, we introduce our novel robust counter-harmonic mean filter
and compare it to the counter-harmonic mean filter.

Learning with Counter-Harmonic Mean
The experimental results for learning counter-harmonic mean filters are shown
in Table 5.1 with generated target images using P = ±5,±10,±20,±30 and
the classical morphological operators erosion ε/dilation δ and all full/non-full
structuring elements from Figure 4.4. Only the best results over all iterations
are shown and are based on the lowest MSE and highest SSIM with the
corresponding learned PMSE and PSSIM values. We observe that learning target
images generated with P = ±5,±10 is an easily achievable task resulting in
low MSE and high SSIM and also reaching the desired target P . For P = ±20
we observe that learning is harder, in terms of loss and target P value for
non-full structuring elements. The learned P values using the SSIM loss are
closer to the target P . Learning erosion/dilation using the full square-shaped
structuring element is an easily achievable task. In general, learning dilations
performs better than learning erosions. For target P = ±30 and erosion ε
(P → −∞)/dilation δ (P →∞) the learned P values for non-full structuring
elements do not improve over target P = ±20 and also the loss is getting
worse because the target images for P = ±5,±10,±20 are smoother than for
P = ±30 and ε/δ. To summarize, learning desired large |P | values is harder
for structuring elements with lower fullness and additionally learning dilations
is easier than learning erosions.

The corresponding learned structuring elements from the experiments in Table
5.1 are shown in Figure 5.1 for learning dilations based on the SSIM loss.
Good results are achieved by targeting P = 5, 10, 20. Structuring elements with
lower fullness and large P tend to learn very large wi,j � 0 values, especially
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5.1 Learning Morphological Operators

Erosion Dilation
SE Fullness Target MSE PMSE SSIM PSSIM Target MSE PMSE SSIM PSSIM

9%

κ−5

2.09 · 10−15 −5.0 1.0000 −5.0

κ5

3.12 · 10−15 5.0 1.0000 5.0

17% 3.09 · 10−15 −5.0 1.0000 −5.0 4.53 · 10−15 5.0 1.0000 5.0

67% 9.30 · 10−15 −5.0 1.0000 −5.0 1.40 · 10−14 5.0 1.0000 5.0

100% 1.34 · 10−14 −5.0 1.0000 −5.0 2.20 · 10−14 5.0 1.0000 5.0

9%

κ−10

2.04 · 10−15 −10.0 1.0000 −10.0

κ10

3.59 · 10−15 10.0 1.0000 10.0

17% 3.06 · 10−15 −10.0 1.0000 −10.0 5.16 · 10−15 10.0 1.0000 10.0

67% 9.01 · 10−15 −10.0 1.0000 −10.0 1.62 · 10−14 10.0 1.0000 10.0

100% 1.29 · 10−14 −10.0 1.0000 −10.0 2.66 · 10−14 10.0 1.0000 10.0

9%

κ−20

4.70 · 10−5 −12.7 0.9985 −14.3

κ20

2.07 · 10−5 14.7 0.9999 18.5

17% 5.40 · 10−5 −13.3 0.9978 −14.9 9.41 · 10−6 16.7 0.9999 19.7

67% 3.93 · 10−5 −14.5 0.9988 −16.1 3.41 · 10−6 18.4 1.0000 19.9

100% 1.31 · 10−14 −20.0 1.0000 −20.0 2.49 · 10−14 20.0 1.0000 20.0

9%

κ−30

1.40 · 10−4 −12.3 0.9945 −14.1

κ30

8.53 · 10−5 14.5 0.9984 19.4

17% 1.76 · 10−4 −13.2 0.9906 −14.7 7.39 · 10−5 16.7 0.9980 20.7

67% 1.63 · 10−4 −15.1 0.9933 −17.2 6.06 · 10−5 19.9 0.9997 26.3

100% 2.62 · 10−6 −27.0 0.9997 −26.7 2.34 · 10−14 30.0 1.0000 30.0

9%
ε

P → −∞

3.95 · 10−4 −11.6 0.9885 −12.9
δ

P →∞

3.35 · 10−4 14.0 0.9923 18.9

17% 5.19 · 10−4 −13.1 0.9830 −14.4 4.11 · 10−4 16.2 0.9883 20.3

67% 6.12 · 10−4 −17.6 0.9829 −16.7 5.82 · 10−4 24.6 0.9886 22.4

100% 2.80 · 10−4 −26.9 0.9911 −24.2 2.42 · 10−4 38.3 0.9938 37.4

Table 5.1: Experimental results for learning erosions and dilations using the counter-harmonic
mean filter with float precision. Only the best results out of 800000 training
iterations are shown including the corresponding learned P values.
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compared to the full square-shaped structuring element. In addition, black
pixels are either very close to zero wk,l ' 0 or exactly wm,n = 0 because
of clipping during optimization and caused by the w ≥ 0 constraint of the
counter-harmonic mean filter. For target P = 30 and the classical dilation,
learning larger values on the outside and edges of the structuring elements
are preferred and the values in the center are lower. The learned w give the
impression that they are non flat structuring elements. However, remember
that CHM only approximates flat erosion/dilation and the learned structuring
elements are approximately flat structuring elements when applied to (3.2)
discussed in Section 3.2.

We found two main problems using the counter-harmonic mean filter, one for
learning full structuring elements and another learning non-full structuring
elements. In Figure 5.2, we show the learning behaviour of parameters P
and w for the first 30000 iterations targeting full structuring elements. In
case of targeting P = ±5,±10,±20 and P = 30 with float precision, the
min(w)/max(w) values converge to similar values of ∼ 0.5 forming a full
structuring element. In case of learning a classical dilation, a float underflow
occurs for a learned P = 37.4 and can be improved by using double precision
with an underflow occurring for P = 271.1. Targeting the classical erosion
and P = −30 using float precision are numerically unstable and can be
solved by using double precision. Using double enables to learn the desired
P = −30 and in case of the classical erosion the best performance is reached
for P = −199.5. In general, learning full structuring elements is only limited by
float and double precision and unstable learning can be solved by clipping
P to appropriate values depending on the precision. In Figure 5.3, we show
the learning behaviour for targeting non-full cross-shaped structuring elements
and we observe no improvement using double precision over float precision,
because the P values do not get large enough to notice numerical problems.
Targeting |P | >= 20 is much harder for non-full structuring elements than for
the full square-shaped structuring element. As already shown in Figure 5.1, large
max(w) values are learned with larger |P | � 0 for non-full structuring elements.
During optimization, negative w values are clipped to zero due to the w ≥ 0
constraint. The combination of wi,j = 0, values close to zero wk,l ' 0, large
values wm,n � 0 and a large |P | � 0 value within the same structuring element
may introduce unwanted artefacts in the output images making learning of non-
full structuring elements hard. We show such failure cases later. In Table 5.2 the
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5.1 Learning Morphological Operators
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Figure 5.1: Learned structuring elements for dilations using SSIM from experiments in Table
5.1. The target P values are column wise in ascending order P = 5, 10, 20, 30 and
in the last column the classical dilation δ (P → 0). Zero is visualized in black
and max(w) in white.
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best results of learning cross-shaped and square-shaped structuring elements
using double precision are shown. As already mentioned, we observe that the
full square-shaped structuring element benefits from using double precision
as opposed to the cross-shaped structuring element having no improvement as
shown in Table 5.1.

Erosion Dilation
SE Fullness Target SSIM PSSIM Target SSIM PSSIM

17%
κ−30 0.9890 −14.0

κ30
0.9976 20.0

100% 0.9999 −30.0 0.9999 30.0

17% ε
P → −∞

0.9817 −13.7 δ
P →∞

0.9876 19.4

100% 0.9998 −199.5 0.9998 271.1

Table 5.2: Experimental results for learning erosions and dilations using the counter-harmonic
mean filter with double precision. Only the best results out of 300000 training
iterations are shown including the corresponding learned P values.

We compare learned structuring elements which produce successful and failure
cases in the output images. First, we show the full square-shaped structuring
elements at two different iterations in Figure 5.4 (a) and their resulting output
images in Figure 5.5. At iteration 10500 the learned square-shaped structuring
element and the corresponding P = −24.5 results in a structural similarity above
0.999 and outputs a visually pleasing image shown in Figure 5.5 (b). However,
the structural similarity drops to 0.93 at iteration 24000 for a corresponding P =
−31.4 as the structuring element is not a full square-shaped one anymore which
is caused by numerical problems using float precision. The resulting output
image is shown in Figure 5.5 (c) where we can see that the corrupted structuring
element appears. As already mentioned, learning full structuring elements
benefits from using double precision and results in exceptional approximations
of classical erosion/dilation shown in Figure 5.7. Second, we show the non-full
cross-shaped structuring elements in Figure 5.4 (b) at two iterations, both are
very similar and both learned P values are P = −12.7. The structural similarity
oscillates around 0.981 ±0.05 between iterations 63000 and 64500, but the
output images have noticeable differences as we show in Figure 5.6 (b) and (c).
In general, we found that the combination of wi,j = 0, wk,l ' 0 and wm,n � 0
within the same structuring element and a large exponent |P | � 0 causes those
artefacts due to the w ≥ 0 constraint. For smaller |P | < 10 the combination of
wi,j = 0, wk,l ' 0 and wm,n ≈ 1.5 does not cause any problems. During training
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Figure 5.2: Each color represents the parameters P and w of a single counter-harmonic mean
filter during learning of the full square-shaped structuring element using the SSIM
loss. The left column shows the learning behaviour of erosions and the right
column of dilations. In the top plots we show the maxima and minima of the
structuring elements w and in the bottom the corresponding P values for the
first 30000 iterations. Bold lines visualize values using float precision and the
continuing dash-dotted lines visualize values using double precision.
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Figure 5.3: Each color represents the parameters P and w of a single counter-harmonic mean
filter during learning of the non-full cross-shaped structuring element using the
SSIM loss. The left column shows the learning behaviour of erosions and the
right column of dilations. In the top plots we show the maxima and minima of
the structuring elements w and in the bottom the corresponding P values for
the first 30000 iterations. Bold lines visualize values using float precision and
the continuing dash-dotted lines visualize values using double precision.
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5.1 Learning Morphological Operators

we observe that for |P | > 10 the P values start to oscillate from the time the
first structuring element value is clipped to zero and therefore struggles to
learn desired larger |P | values. Note that all other non-full structuring elements,
especially with lower fullness, have the same issues as the non-full cross-shaped
structuring elements. As non-full structuring elements do not reach large |P |
values, double precision does not solve the problem of undesired artefacts in
the output images; hence, the output images look the same as using float.

Iter. 10500 Iter. 24000

0.00

0.25

0.49

0.74

0.98

0.00

0.91

1.82

2.74

3.65

(a)

Iter. 63000 Iter. 64500

0.000

69.487

138.973

208.460

277.947

0.00

71.32

142.64

213.96

285.27

(b)

Figure 5.4: The learned structuring elements from Figures 5.2, 5.3 using float precision
targeting P = −30 are shown for different iterations. In (a) the full square-shaped
structuring elements and in (b) the non-full cross-shaped structuring elements.
The structuring elements are scaled between 0 and max(w) for visualization
purpose.

To conclude, learning approximations of erosions/dilations is possible using the
counter-harmonic mean filter. However, learning of non-full structuring elements
is a hard problem caused by the w ≥ 0 constraint making learning unstable
and additionally undesired artefacts may appear in the output images. Using
double precision only improves the performance of learning full structuring
elements.

Learning with Robust Counter-Harmonic Mean
Learning counter-harmonic mean filters (CHM), introduced in (3.1), for |P | � 0
does not work properly for non-full structuring elements because of clipping
due to the w ≥ 0 constraint we discussed previously. Our main idea is to
avoid clipping using the robust counter-harmonic mean (RCHM) introduced
in (4.2) and learn positive and negative values wr and scaling them with the
logistic sigmoid function between zero and one resulting in a positive structuring
element w = σ(wr).

49



5 Experiments

(a) Target image κ−30 (b) Iter. 10500, P = −24.5 (c) Iter. 24000, P = −31.4

Figure 5.5: The counter-harmonic mean target image generated with a square-shaped struc-
turing element with P = −30 is shown in (a). The output image for epoch 10500
with learned P = −24.5 is shown in (b) and the output image for epoch 24000
with learned P = −31.4 is shown in (c). In (c), the learned structuring element
is not a full square-shaped one as shown in Figure 5.4 (a) and causes undesired
output as we can see at the top of the hat and the nose indicated with red circles.

(a) Target image κ−30 (b) Iter. 63000, P = −12.7 (c) Iter. 64500, P = −12.7

Figure 5.6: The counter-harmonic mean target image generated with a cross-shaped structur-
ing element with P = −30 is shown in (a). The output image in iteration 63000
with learned P = −12.7 is shown in (b) and the output image in iteration 64500
with a similar learned P = −12.7 is shown in (c). Unwanted artefacts appear
in the output image in (c) caused by the learned structuring element and the
unwanted artefacts are indicated with red circles.
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5.1 Learning Morphological Operators

(a) (b) (c) (d)

Figure 5.7: The classical erosion and dilation target images are shown in (a) and (c), and
the learned counter-harmonic mean filters output the eroded image in (b) with
P = −199.5 and the dilated image in (d) with P = 271.1.

The experimental results using the RCHM filter are shown in Table 5.3 and
we observe that learning of non-full structuring elements clearly improved
over using the CHM filter shown in Table 5.1. Note that target images are
still generated with CHM. The RCHM filter enables us to learn much larger
target P values. In addition, the RCHM required far fewer training iterations.
However, learning non-full structuring elements now also causes numerical
problems like learning full square-shaped structuring elements using the CHM
with float precision. Again, only the best results in Table 5.3 are shown and
do not show how stable learning using RCHM filters is. For this reason, we show
the learning behaviour of parameters P and w (= σ(wr)) using float precision
and double precision using full square-shaped structuring elements in Figure
5.8 and using non-full cross-shaped structuring elements in Figure 5.9. For the
full square-shaped structuring elements using the RCHM we observe similar
learning behaviour as using the CHM shown in Figure 5.2 and both struggle
with numerical problems using float precision. Using double precision for
the robust version also fixes numerical issues for P = −30 and the underflows
occur much later for P = −200.3 and P = 271.0 shown in Table 5.4. In case of
learning the non-full cross-shaped structuring elements the performance is also
limited by float and double precision. Using double precision enables also to
learn for P = −30 and the underflows occur for P = −200.6 and P = 255.1
shown in Table 5.4. Note that training time using double precision is much
longer than using float precision on GPUs only supporting float.

The success and failure cases for learning full square-shaped structuring elements
using counter-harmonic mean, see Figure 5.5, also apply to the robust counter-
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Erosion Dilation
SE Fullness Target MSE PMSE SSIM PSSIM Target MSE PMSE SSIM PSSIM

9%

κ−5

1.46 · 10−9 −5.0 1.0000 −5.0

κ5

1.43 · 10−9 5.0 1.0000 5.0

17% 1.26 · 10−9 −5.0 1.0000 −5.0 1.27 · 10−9 5.0 1.0000 5.0

67% 5.17 · 10−10 −5.0 1.0000 −5.0 5.09 · 10−10 5.0 1.0000 5.0

100% 1.39 · 10−14 −5.0 1.0000 −5.0 2.33 · 10−14 5.0 1.0000 5.0

9%

κ−10

1.55 · 10−9 −10.0 1.0000 −10.0

κ10

1.51 · 10−9 10.0 1.0000 10.0

17% 1.35 · 10−9 −10.0 1.0000 −10.0 1.33 · 10−9 10.0 1.0000 10.0

67% 5.51 · 10−10 −10.0 1.0000 −10.0 5.36 · 10−10 10.0 1.0000 10.0

100% 1.37 · 10−14 −10.0 1.0000 −10.0 2.80 · 10−14 10.0 1.0000 10.0

9%

κ−20

1.98 · 10−9 −20.0 1.0000 −20.0

κ20

1.87 · 10−9 20.0 1.0000 20.0

17% 1.58 · 10−9 −20.0 1.0000 −20.0 1.53 · 10−9 20.0 1.0000 20.0

67% 6.14 · 10−10 −20.0 1.0000 −20.0 5.79 · 10−10 20.0 1.0000 20.0

100% 1.30 · 10−14 −20.0 1.0000 −20.0 2.58 · 10−14 20.0 1.0000 20.0

9%

κ−30

1.10 · 10−7 −29.0 0.9998 −26.9

κ30

2.66 · 10−9 29.9 1.0000 29.9

17% 1.23 · 10−8 −29.8 0.9996 −26.1 2.07 · 10−9 30.0 1.0000 30.0

67% 1.55 · 10−9 −30.0 1.0000 −30.0 9.39 · 10−10 30.0 1.0000 30.0

100% 3.93 · 10−14 −30.0 1.0000 −30.0 2.40 · 10−14 30.0 1.0000 29.9

9%
ε

P → −∞

3.82 · 10−5 −39.6 0.9957 −25.5
δ

P →∞

7.62 · 10−5 32.9 0.9960 30.5

17% 6.35 · 10−5 −38.9 0.9928 −25.7 1.16 · 10−4 34.2 0.9942 34.5

67% 1.31 · 10−4 −38.0 0.9914 −25.0 2.58 · 10−4 32.6 0.9940 36.3

100% 1.40 · 10−4 −37.8 0.9913 −24.6 3.07 · 10−4 33.2 0.9938 37.3

Table 5.3: Experimental results for learning erosions and dilations using the robust counter-
harmonic mean filter with float precision. Only the best results out of 50000
training iterations are shown including the corresponding learned P values.

Erosion Dilation
SE Fullness Target SSIM PSSIM Target SSIM PSSIM

17%
κ−30 0.9999 −30.0

κ30
0.9999 30.0

100% 0.9999 −30.0 0.9999 30.0

17% ε
P → −∞

0.9998 −200.6 δ
P →∞

0.9998 255.1

100% 0.9998 −200.3 0.9998 271.0

Table 5.4: Experimental results for learning erosions and dilations using the robust counter-
harmonic mean filter with double precision. Only the best results out of 100000
training iterations are shown including the corresponding learned P values.
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Figure 5.8: Each color represents the parameters P and w of a single robust counter-harmonic
mean filter during learning of the full square-shaped structuring element using
the SSIM loss. The left column shows the learning behaviour of erosions and the
right column of dilations. In the top plots we show the maxima and minima of
wr, in the middle plots we show the resulting sigmoid scaled structuring elements
w and in the bottom the corresponding P values for the first 30000 iterations.
Bold lines visualize values using float precision and the continuing dash-dotted
lines visualize values using double precision.
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Figure 5.9: Each color represents the parameters P and w of a single robust counter-harmonic
mean filter during learning of the non-full cross-shaped structuring element using
the SSIM loss. The left column shows the learning behaviour of erosions and the
right column of dilations. In the top plots we show the maxima and minima of
wr, in the middle plots we show the resulting sigmoid scaled structuring elements
w and in the bottom the corresponding P values for the first 30000 iterations.
Bold lines visualize values using float precision and the continuing dash-dotted
lines visualize values using double precision.
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harmonic mean using full and non-full structuring elements. Stable learning
is possible by constraining |P | ' 22 to P ∼= ±22 using float precision and
by constraining |P | ' 180 to P ∼= ±180 using double precision at the cost of
approximation quality.

Using double precision targeting P = −30 results in a perfect non-full structur-
ing element as shown in Figure 5.10 (a) and using float precision constraining
P < −22 to P = −22 to learn a classical erosion results in the learned structur-
ing element shown in Figure 5.10 (b) which gives a very good approximation of
an erosion as shown in Figure 5.11 (c). If no constraining of P is performed,
undesired artefacts in the output images appear. An example is with a learned
P = −46 is shown in Figure 5.11 (b). The classical erosion shown in Figure
5.11 (a) is approximated very well by the constraints P ∼= ±22 using float

precision and P ∼= ±180 using double precision.
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Figure 5.10: Learned cross-shaped structuring elements with targeting P = −30 using double

precision is shown in (a) and targeting P = −∞ using float precision and
constraining P < −22 to P = −22 is shown in (b). For visualization purpose the
wr plots are scaled between min(wr) and max(wr) and the resulting structuring
elements w = σ(wr) plots are scaled between zero and one. By applying (3.2)
on w, an approximation of a flat structuring element is obtained.

The novel RCHM filter performs significantly better for learning non-full
structuring elements compared to the CHM filter. Numerical problems have
to be considered w.r.t. the desired approximation quality and in case of using
float precision we recommend to constrain |P | ' 22 to P ∼= ±22 and using
double precision we recommend to constrain |P | ' 180 to P ∼= ±180. Using
the constraint on P does not introduce any unwanted artefacts in the output
images, unlike with the counter-harmonic mean which introduces unwanted
artefacts in the output images and does not even reach such large |P | values.
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(a) Target ε (b) P = −46 (c) P = −22 (d) P = −180

Figure 5.11: The target image generated with classical erosion is shown in (a). In (b) and (c)
float precision is used during learning. The learned P = −46 causes unwanted
output in (b). In (c), |P | > 22 are constrained to P = ±22 to prevent unwanted
output caused by |P | � 0 values shown in (b). Using double precision allows
for larger P ∼= ±180.

5.1.2 Learning Opening and Closing

Two (R)CHM filters in sequence are required to learn openings/closings which
is a much harder problem than learning erosions/dilations only requiring a
single filter.

We compare the results of learning openings/closings using the RCHM and
CHM in Table 5.5. RCHM outperforms CHM again, especially for learning non-
full structuring elements. However, learning openings/closings is very unstable
in terms of underflows of floating points. To prevent numerical problems during
learning, we recommend to clip P to P = ±22 using float precision at the cost
of approximation quality. See the experimental results of the approximation
quality using clipping in Appendix Tables A.3 and A.6.

Learning RCHM filters using double precision enables larger |P | values and
clearly improves the approximation quality as we show in Table 5.6. Due to
limited computing power and graphics card performance, we only trained for
100000 iterations and we expect to obtain even better results if larger |P | are
learned after longer training, similar to the case of learning erosions/dilations
in the previous section achieving P ≈ −200 and P ≈ 250.

In Figures 5.12 and 5.13 we show the output images of the best cases using float

precision and the output images are very similar to the target images. While
closings perform very well for the square-shaped and cross-shaped structuring
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5.1 Learning Morphological Operators

CHM RCHM
SE Fullness Target SSIM P0,SSIM P1,SSIM SSIM P0,SSIM P1,SSIM

9%

γ(f)

0.9743 −11.3 14.0 0.9893 −28.7 28.9

17% 0.9660 −12.7 13.9 0.9859 −26.0 29.1

67% 0.9752 −19.3 17.0 0.9834 −25.2 28.0

100% 0.9867 −24.3 26.6 0.9820 −19.9 20.8

9%

φ(f)

0.9726 11.9 −15.5 0.9880 24.6 −27.8

17% 0.9676 14.5 −18.3 0.9862 32.4 −31.9

67% 0.9734 18.9 −20.0 0.9739 24.5 −30.3

100% 0.9882 28.9 −33.4 0.9916 38.8 −43.4

Table 5.5: Comparison of experimental results using CHM and RCHM filters for learning
classical opening γ and closing φ with float precision. Only the best results out
of 400000 (CHM)/50000 (RCHM) training iterations are shown including the
corresponding learned P0 values in the first layer and P1 in the second layer. See
full comparison in Appendix in Tables A.1, A.2, A.4 and A.5.

SE Fullness Target SSIM P0,SSIM P1,SSIM

17% γ(f) 0.9969 −134.0 166.9

17% φ(f) 0.9953 141.5 −196.1

Table 5.6: Experimental results for learning classical opening/closing using the non-full cross-
shaped structuring elements with double precision using RCHM. The best cases
of 100000 iterations are shown.
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elements, we observe smoothing behaviour and undesired artefacts in the
openings. We found no improvement in using double precision or constraining
P = ±22 or even lower to P = ±15 to get rid of the artefacts. For learning
openings, we did not find any solutions to fix smoothing behaviour for square-
shaped structuring elements and appearing artefacts for non-full structuring
elements.

(a) Target opening γ (b) P0 = −19.9
P1 = 20.8

(c) Target closing φ (d) P0 = 38.8
P1 = −43.4

Figure 5.12: Comparison of target images (a) and (c) using square-shaped structuring el-
ements with resulting output images in (b) and (d) using a learned robust
counter-harmonic mean filter with float precision. Noticeable smoothing be-
haviour is indicated with red ellipses and occurs for learning the opening.

(a) Target opening γ (b) P0 = −26.0
P1 = 29.1

(c) Target closing φ (d) P0 = 32.4
P1 = −31.9

Figure 5.13: Comparison of target images (a) and (c) using cross-shaped structuring elements
with resulting output images in (b) and (d) using a learned robust counter-
harmonic mean filter with float precision. Noticeable artefacts for learning the
openings are shown in the red circle.

A symmetrical opening/closing uses the same structuring element in both
layers, while an asymmetrical opening/closing uses two different structuring
elements. Until now we only show symmetrical openings/closings. For this
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5.1 Learning Morphological Operators

reason, inspired by Laganière’s morphological corner detector [8], we generate
a target image by dilating with a cross-shaped structuring element followed by
eroding with a diamond-shaped structuring element. In Figure 5.14, we show
that the learning framework is capable to learn such asymmetrical closing.

(a) Target φ(f) (b) Output
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(c) P0 = 200
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(d) P1 = −200

Figure 5.14: Asymmetrical closing using a dilation with a cross-shaped structuring element
followed by an erosion with a diamond-shaped structuring element. The closed
target image is in (a), the output after learning in (b), the learned cross-shaped
structuring element from the first layer in (c) and the learned diamond-shaped
structuring element from the second layer in (d). RCHM, double precision and
a constraint on |P | � 200 is used.

To conclude, learning two (R)CHM filters for openings/closings is a more
complex task than learning only a single filter. Learning with our RCHM
approach clearly outperforms the work in [12] in learning openings/closings
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as they only obtain low P values which results in very smooth images, e.g.,
with P0 = −7.64, P1 = 7.07 for an opening and P0 = 6.8, P1 = −8.85 for a
closing. Using our approach for openings, the output images still show some
smoothing effects for the full structuring elements and few artefacts appear for
non-full structuring elements. Nevertheless, the approximation quality to the
true opening is sufficient. Furthermore, the output images for learning closings
excel in terms of approximation quality.

5.1.3 Learning Top-Hats

Like in the previous section, two (R)CHM filters are required to learn open-
ings/closings for the top-hat transformations. The absolute difference between
input image and the learned openings/closings result in white/black top-hats.

Experimental results for learning white and black top-hats using CHM and
RCHM are shown in Table 5.7. RCHM outperforms CHM for all experiments
except for the black top-hat square case. However, again learning is very
unstable without constraining P ; hence, we provide experimental results with
clipping |P | > 25 to P = ±25 in Appendix Tables A.9 and A.12. A comparison
between the resulting output images of the constrained RCHM using square-
shaped and cross-shaped structuring elements is shown in Figure 5.15 for white
top-hats and Figure 5.16 for black top-hats. In both cases we observe a good
approximation quality.

(a) Target WTH
Square

(b) P0 = −25.0
P1 = 16.3

(c) Target WTH
Cross

(d) P0 = −25.0
P1 = 22.9

Figure 5.15: The target images generated with the white top-hat transformation using square-
shaped structuring elements is shown in (a) and using a cross-shaped structuring
elements in (c). In (b) and (d) the resulting output images using a constraint
on P during learning is shown.
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5.1 Learning Morphological Operators

CHM RCHM
SE Fullness Target SSIM P0,SSIM P1,SSIM SSIM P0,SSIM P1,SSIM

9%

WTH(f)

0.8707 −12.0 8.1 0.8892 −34.2 28.8

17% 0.8326 −24.1 24.2 0.9231 −28.8 29.0

67% 0.8888 −25.5 22.8 0.9376 −39.1 29.2

100% 0.9484 −28.5 20.1 0.9615 −45.0 27.3

9%

BTH(f)

0.8011 27.3 −25.7 0.8965 34.5 −31.4

17% 0.8218 25.5 −28.0 0.9006 29.1 −30.9

67% 0.9025 30.4 −31.2 0.9409 34.3 −31.3

100% 0.9603 38.2 −31.8 0.9546 38.7 −30.1

Table 5.7: Comparison of experimental results using CHM and RCHM filters for learning
classical white and black top-hat transformations with float precision. Only the
best results out of 200000 training iterations are shown including the corresponding
learned P0 values in the first layer and P1 in the second layer. See more detailed
comparisons in Appendix Tables A.7, A.8, A.10 and A.11.

(a) Target BTH
Square

(b) P0 = 25.0
P1 = −20.7

(c) Target BTH
Cross

(d) P0 = 25.0
P1 = −25.0

Figure 5.16: The target images generated with the white top-hat transformation using square-
shaped structuring elements is shown in (a) and using a cross-shaped structuring
elements in (c). In (b) and (d) the resulting output images using a constraint
on P during learning is shown.
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To conclude learning of morphological operators, we found that learning larger
|P | is possible by using the robust counter-harmonic mean filter, which also
improves the approximation quality over the counter-harmonic mean. However,
constraining P according to floating point precision in expense of approximation
quality is required for stable learning.

5.2 Morphological Corner Detection

A morphological corner detector was proposed in [8] which uses two asymmetri-
cal closings with cross-, diamond-, star- and square-shaped structuring elements.
The corners c are detected as the absolute difference of both asymmetrical
closings and calculated as follows:

c(f) = |φ(f)+,� − φ(f)×,�| (5.1)

The subscripts indicate the structuring elements within the asymmetric clos-
ings.

In Figure 5.14, we already showed that learning asymmetrical closings is possible,
actually we learned the φ(f)+,� pipeline with 11× 11 structuring elements.

For corner detection we created two synthetic input images shown in Figure 5.17
(a) and Figure 5.18 (a) and generated target images in (b) according to (5.1)
with 7×7 structuring elements. For learning, the structuring elements are of size
11× 11 in the network architecture. The outputs after learning are shown in (c)
and the two learned pipelines in (d) and (e). We observe that pseudo-closings
are learned with rather low |P | values and the learned structuring elements
are neither cross-, diamond-, star- or square-shaped. In addition, we observe
that learning to find corners with bright foreground and darker background
to be harder than learning to find corners with dark foreground and brighter
background, i.e. Figure 5.18 (c).

The most interesting findings of this experiment are:

(a) |P | values are large enough to approximate morphological operators rather
than convolutions.
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5.2 Morphological Corner Detection

(b) While the target image is generated according to [8] and (5.1), the
network learns completely different asymmetrical closings with different
structuring elements.

(c) The network architecture has actually learned a new morphological corner
detector.

(a) Input (b) Target (c) Output
P = 1.2 P = 1.6

(d) Pipeline 1

P = 1.2 P = 1.9

(e) Pipeline 2

Figure 5.17: Given the input image (a) and the generated corner detection target image
(b), the end-to-end learned network detects corners shown in (c). The learned
pipeline 1 is shown in (d) and the parallel pipeline 2 in (e).
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(a) Input (b) Target (c) Output
P = 4.8 P = 8.3

(d) Pipeline 1

P = 6.1 P = 5.1

(e) Pipeline 2

Figure 5.18: Given a more complex synthetic input image (a) and the generated corner
detection target image (b), the end-to-end learned network detects corners
shown in (c). The learned pipeline 1 is shown in (d) and the parallel pipeline 2
in (e).
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5.3 Image Classification

5.3 Image Classification

In the previous sections our goal was to learn approximations of predetermined
morphological operators. However, for image classification, we allow the network
to learn any morphological operator. We study if a morphological neural network
is able to extract meaningful features for image classification.

Our proposed morphological networks (Figure 4.8) using either MorphGroup
layers or MorphAll layers are able to extract features for classifying the MNIST
and Fashion-MNIST datasets and the test accuracies are shown in Table 5.8. The
MorphAll layer outperforms the MorphGroup layer by using more parameters
for the depthwise 1×1 convolutions, where using the MorphAll layers results in
12922 parameters and using the MorphGroup layers in 11522 parameters. Note
that for each experiment the input images of size 28× 28 are morphologically
processed by four consecutive layers and reduced to a fixed vector of size 128,
thus, the experiments are comparable based on the extracted features.

For comparison of morphological networks with CNNs, we also used convolu-
tional layers [10] and depthwise separable convolution layers [3] in the same
network architecture as illustrated in Figure 4.8. While the convolutions perform
better in terms of test accuracy, we observe that the morphological networks
are not far off. Note that we perform no hyperparameter optimization or
architecture tuning.

Layers MNIST Fashion-MNIST

MorphGroup 98.41% 87.21%
MorphAll 99.10% 88.40%

Depthwise Separable Convolution 98.80% 89.40%
Convolution 99.23% 88.53%

Table 5.8: Test accuracies for classifying MNIST and Fashion-MNIST. We compare the
performance of the morphological layers MorphGroup and MorphAll where Mor-
phAll outperforms MorphGroup for both datasets. In addition, we show the test
accuracies of convolutional layers using the same network architecture as for the
morphological layers.

The learned P value distributions for both types of morphological layers are
shown in Figure 5.19. From Section 3.2, Figure 3.1 we know that for P = 0
the (R)CHM is a convolution with a positve kernel, P values close to zero
produce smooth morphologically processed images and |P | � 0 approximates
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erosions/dilations well. In L1 most of the values are between [−0.5, 0.5] for
MorphAll and MorphGroup layers. Thus, both types approximately learn
convolutions and appear not to be well suited for the first layer of the network.
For MorphAll most of the values are between [−5, 5] in the remaining three layers
and produce smooth morphologically processed images. The MorphGroup layer
type is able to learn much larger |P | values, in most cases between [−20, 20]
for Fashion-MNIST. From previous Section 5.1 we know that the RCHM
for |P | > 20 approximates morphological operators very well. Nevertheless,
the MorphAll layers achieve better test accuracies while the MorphGroup
layer outperforms the MorphAll in terms of approximating morphological
operators.
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Figure 5.19: Distribution of learned P values for each layer of the models with the best test
accuracies in Table 5.8. The distributions of P using the MorphGroup layers
are depicted in orange and using MorphAll layers in blue. MorphGroup layers
learn larger |P | values than MorphAll layers, especially in layers L2, L3 and L4
for Fashion-MNIST.

The learned structuring elements of layer L4 for all experiments are shown
in Figure 5.20. For MorphAll the structuring elements have a high variety of
different structures; thus, in combination with their lower |P | values they act
as smooth pseudo-morphological operator. For MorphGroup the structuring
elements build groups of similar structures; thus, in combination for |P | values
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around P = ±20 they act as excellent approximations of morphological oper-
ators. Note that the structuring elements in the second and third column in
Figure 5.20 (b) are not learned well because the backpropagated error is very
low. For the remaining three layers the properties of the structuring elements
are similar to L4 and as shown in Appendix Figures A.1, A.2 and A.3.

It is worth mentioning that our morphological layers are similar to pooling
layers and that they are able to learn the neighbourhood of the pooling region
(learned with the structuring element) and the pooling operations min/avg./max
(learned with P ). With morphological layers, no pooling operation has to be
predefined and the error is backpropagated through the whole neighbourhood
as opposed to a widely used max pooling operation.

To conclude, using MorphAll layers outperforms MorphGroup layers in terms
of test accuracy for image classification. On the other hand, MorphGroup
layers outperform MorphAll layers in terms of approximating morphological
operators. We show that both approaches are able to extract features for image
classification.

Complexity Analysis

The number of parameters using the CNN architectures and morphological
networks are comparable and are in the range of 11122 (convolution), 11522
(MorphGroup) and 12922 (MorphAll and depthwise separable convolution). The
convolutional approaches are more stable while learning than the morphological
ones, especially when using float. Morphological approaches using the (R)CHM
require double precision to be more stable; therefore, this approach requires
more memory, computing power and more expensive hardware. Calculating
convolutions is very efficient on current GPUs while the (R)CHM approach
requires exponent calculations which are less efficient. The RCHM also requires
rescaling of images between (0, 1) which we solve by using a sigmoid activation
function.
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(a) MorphAll L4; MNIST (b) MorphGroup L4; MNIST

(c) MorphAll L4; Fashion-MNIST (d) MorphGroup L4; Fashion-MNIST

Figure 5.20: Learned structuring elements w = σ(wr) in layer L4 for all four experiments.
All learned structuring elements are non-full structuring elements. MorphAll
structuring elements have a large variety of structures and MorphGroup struc-
turing elements have smaller variations of structures in groups of 8 due to the
input/output channel size.
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6 Discussion

We showed that erosions/dilations, openings/closings and top-hat transforma-
tions can be approximated with a gradient based learning framework using the
counter-harmonic mean. However, we found that the CHM encounters numerical
problems and unstable learning behaviour due to clipping of w because of the
constraint w ≥ 0. No clipping of w is required for full square-shaped structuring
elements; therefore, |P | � 0 are learned and underflows occur. Underflows can
be prevented by clipping P ∼= ±22 when using float precision and by clipping
P ∼= ±180 when using double precision. During learning non-full structuring
elements, w may be clipped to zero, and in combination of |P | > 10, wi,j = 0,
wk,l ' 0 and wm,n � 0 within the same structuring element, artefacts in the
output appear causing unstable learning. Using double precision does not
provide any advantage in learning non-full structuring elements. Our novel
robust counter-harmonic mean filter avoids clipping of the structuring element
by introducing a sigmoid scaled structuring element. The RCHM is able to
learn non-full structuring elements with exceptional approximation quality and
is only limited by the floating point precision. Like for CHM, we recommend
clipping P according to the utilized precision.

As we generated own target images, we directly specified which morphological
operators and structuring elements should be learned. For image classification,
generalized morphological operators and structuring elements representing the
data should be learned. While CNNs are exceptional for pattern matching over
multiple channels, morphologically processed images have to be combined in a
different manner than in CNNs. We proposed two pseudo-morphological layers,
namely MorphAll and MorphGroup, which are inspired by depthwise separable
convolutions, morphologically processing each input channel independently
using RCHM filters followed by depthwise combinations using 1×1 convolutions.
MorphAll combines over all possible morphological outputs and preferably learns
pseudo-morphological operators with −5 < P < 5. The MorphGroup layer
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only combines groups of morphologically processed images and is able to learn
much better approximations of morphological operators with −30 < P < 30.
The test accuracies are better for using MorphAll layers over MorphGroup
layers. We found that learning morphological networks in general is sensitive
to initialization and additionally we recommend using double precision.

Overall, with the counter-harmonic mean learning framework we decided on an
approach which is able to learn morphological operators with the backpropaga-
tion algorithm and updates all structuring element values at once. However,
the (R)CHM approach is limited to only approximating flat erosions/dilations
which might be a limiting aspect and should be tackled in future work.
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7 Conclusion

Mathematical morphology aims to extract shape based features from images
and requires a domain expert to find appropriate morphological operators for
specific image processing problems. A learning based approach aims to find
the best fitting morphological operators without the need of a domain expert.
We showed that learning simple morphological operators using the counter-
harmonic mean is possible, but is numerically unstable and inaccurate. Our
novel robust counter-harmonic mean filter outperforms the counter-harmonic
mean in terms of approximation quality, more stable learning and the ability
to learn non-full structuring elements more accurately. We were able to learn
morphological operators within a more complex morphological neural network,
either learning pseudo-morphological operators or very good approximations.
Our work provides a more accurate learning framework for morphological
operators and two new approaches for learning morphological neural networks
for further research on learning based mathematical morphology.

Morphological neural networks are by far not as mature as CNNs and only at
the beginning, still we show that they are able to extract features for image
classification. Our new building blocks may enable new approaches, i.e. replacing
pooling layers where min/avg./max operators are learnable and not predefined,
or even purely based on mathematical morphological theory, which may learn
even more powerful morphological algorithms than engineered ones.
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Opening and Closing

More detailed comparison of all opening/closing experiments using MSE and
SSIM including target images generated with all P values. The RCHM (Tables
A.2, A.5) clearly outperforms the CHM (Tables A.1, A.4) in learning open-
ings/closings for MSE and SSIM. The performance loss to the cost of stable
learning using the RCHM can be compared in Tables A.3, A.6.

SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

κ5(κ−5(f))

6.11 · 10−5 −5.2 3.8 0.9977 −4.9 4.3

17% 3.61 · 10−5 −4.9 4.9 0.9939 −4.8 4.9

67% 6.70 · 10−7 −5.0 5.0 0.9999 −5.0 5.0

100% 9.29 · 10−6 −5.1 4.3 0.9997 −5.0 4.8

9%

κ10(κ−10(f))

1.69 · 10−4 −9.3 5.5 0.9960 −9.8 8.1

17% 4.63 · 10−5 −9.8 9.8 1.0000 −10.0 10.0

67% 4.04 · 10−5 −10.1 9.4 0.9993 −10.2 10.4

100% 8.00 · 10−6 −10.1 9.3 0.9995 −9.8 9.4

9%

κ20(κ−20(f))

1.40 · 10−4 −11.2 8.0 0.9890 −11.3 14.3

17% 1.42 · 10−4 −12.3 12.1 0.9926 −12.9 14.0

67% 1.48 · 10−4 −15.9 14.0 0.9921 −16.9 15.7

100% 2.40 · 10−14 −20.0 20.0 1.0000 −20.0 20.0

9%

κ30(κ−30(f))

1.67 · 10−4 −11.6 11.3 0.9715 −13.0 14.4

17% 1.90 · 10−4 −12.9 12.3 0.9799 −14.0 14.9

67% 1.73 · 10−4 −16.9 14.4 0.9839 −20.5 17.3

100% 7.23 · 10−7 −27.8 28.9 0.9998 −26.6 29.0

9%

γ(f)

1.63 · 10−4 −11.4 7.0 0.9743 −11.3 14.0

17% 2.23 · 10−4 −11.7 9.5 0.9660 −12.7 13.9

67% 2.41 · 10−4 −16.9 11.8 0.9752 −19.3 17.0

100% 8.77 · 10−5 −28.4 20.6 0.9867 −24.3 26.6

Table A.1: Experimental results for learning openings using CHM filters with float preci-
sion. Only the best results out of 400000 training iterations are shown including
the corresponding learned P0 values in the first layer and P1 in the second layer.
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SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

κ5(κ−5(f))

2.40 · 10−5 −5.1 4.7 1.0000 −5.0 5.0

17% 1.17 · 10−5 −5.0 5.2 1.0000 −5.0 5.0

67% 5.73 · 10−6 −5.1 5.4 0.9997 −5.1 5.3

100% 2.65 · 10−14 −5.0 5.0 1.0000 −5.0 5.0

9%

κ10(κ−10(f))

5.71 · 10−5 −10.4 9.4 1.0000 −10.0 10.0

17% 1.38 · 10−5 −9.9 10.2 1.0000 −10.0 10.0

67% 5.84 · 10−5 −10.3 13.6 0.9974 −10.3 10.9

100% 2.07 · 10−14 −10.0 10.0 1.0000 −10.0 10.0

9%

κ20(κ−20(f))

8.74 · 10−5 −20.5 15.4 0.9987 −20.1 19.9

17% 8.90 · 10−5 −21.2 21.2 0.9976 −20.7 20.0

67% 8.28 · 10−5 −22.6 25.0 0.9971 −21.2 20.1

100% 2.55 · 10−14 −20.0 20.0 1.0000 −20.0 20.0

9%

κ30(κ−30(f))

1.00 · 10−4 −22.5 17.2 0.9983 −28.3 26.6

17% 1.17 · 10−4 −23.7 22.5 0.9960 −27.0 29.5

67% 7.97 · 10−5 −24.8 30.6 0.9952 −32.6 29.2

100% 1.09 · 10−5 −30.6 27.8 0.9998 −26.6 29.9

9%

γ(f)

1.11 · 10−4 −27.1 16.2 0.9893 −28.7 28.9

17% 1.82 · 10−4 −22.4 18.7 0.9859 −26.0 29.1

67% 1.00 · 10−4 −33.6 29.5 0.9834 −25.2 28.0

100% 5.75 · 10−5 −42.0 27.4 0.9820 −19.9 20.8

Table A.2: Experimental results for learning openings using RCHM filters with float

precision. Only the best results out of 50000 training iterations are shown including
the corresponding learned P0 values in the first layer and P1 in the second layer.

SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

κ30(κ−30(f))

9.96 · 10−5 −22.0 18.1 0.9973 −22.0 22.0

17% 1.15 · 10−4 −22.0 22.0 0.9937 −22.0 22.0

67% 8.78 · 10−5 −22.0 22.0 0.9943 −22.0 22.0

100% 2.53 · 10−5 −22.0 22.0 0.9972 −22.0 22.0

9%

γ(f)

1.23 · 10−4 −22.0 14.1 0.9882 −22.0 22.0

17% 1.17 · 10−4 −22.0 21.3 0.9820 −22.0 22.0

67% 1.51 · 10−4 −22.0 20.2 0.9821 −22.0 22.0

100% 1.30 · 10−4 −22.0 15.4 0.9840 −22.0 22.0

Table A.3: Experimental results from learning openings shown in Table A.2 using RCHM
filters and constraining |P | > 22 to P = ±22.

78



SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

κ−5(κ5(f))

3.71 · 10−5 5.1 −4.0 0.9958 5.0 −4.1

17% 4.49 · 10−15 5.0 −5.0 1.0000 5.0 −5.0

67% 7.01 · 10−7 5.0 −5.0 0.9999 5.0 −5.0

100% 1.78 · 10−6 5.0 −4.8 1.0000 5.0 −5.0

9%

κ−10(κ10(f))

2.26 · 10−4 10.2 −5.9 0.9905 9.9 −7.2

17% 4.93 · 10−6 10.0 −10.2 0.9650 9.2 −8.4

67% 2.51 · 10−5 10.3 −8.9 1.0000 10.0 −10.0

100% 1.09 · 10−4 10.5 −6.9 0.9988 9.9 −9.3

9%

κ−20(κ20(f))

3.47 · 10−4 8.4 −6.5 0.9848 12.1 −11.4

17% 8.28 · 10−5 13.6 −14.9 0.9884 14.8 −16.9

67% 9.57 · 10−5 18.1 −17.1 0.9979 19.1 −19.2

100% 2.42 · 10−14 20.0 −20.0 1.0000 20.0 −20.0

9%

κ−30(κ30(f))

2.82 · 10−4 9.3 −10.4 0.9803 12.7 −15.4

17% 1.26 · 10−4 13.3 −15.6 0.9806 14.9 −18.2

67% 1.72 · 10−4 20.3 −19.9 0.9913 20.8 −24.8

100% 2.71 · 10−14 30.0 −30.0 1.0000 30.0 −30.0

9%

φ(f)

1.99 · 10−4 11.4 −7.7 0.9726 11.9 −15.5

17% 1.90 · 10−4 12.6 −14.3 0.9676 14.5 −18.3

67% 2.42 · 10−4 18.0 −14.0 0.9734 18.9 −20.0

100% 8.18 · 10−5 32.2 −31.6 0.9882 28.9 −33.4

Table A.4: Experimental results for learning closings using CHM filters with float preci-
sion. Only the best results out of 400000 training iterations are shown including
the corresponding learned P0 values in the first layer and P1 in the second layer.

79



SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

κ−5(κ5(f))

2.77 · 10−9 5.0 −5.0 1.0000 5.0 −5.0

17% 2.46 · 10−9 5.0 −5.0 1.0000 5.0 −5.0

67% 2.87 · 10−6 5.0 −5.3 1.0000 5.0 −5.0

100% 2.04 · 10−14 5.0 −5.0 1.0000 5.0 −5.0

9%

κ−10(κ10(f))

8.32 · 10−6 10.1 −10.3 0.9992 10.1 −10.2

17% 5.06 · 10−6 10.0 −10.1 1.0000 10.0 −10.0

67% 1.46 · 10−5 10.2 −10.7 1.0000 10.0 −10.0

100% 2.01 · 10−14 10.0 −10.0 1.0000 10.0 −10.0

9%

κ−20(κ20(f))

8.80 · 10−6 20.3 −20.8 0.9971 21.1 −20.5

17% 1.45 · 10−5 21.0 −20.8 0.9989 20.3 −20.1

67% 4.44 · 10−5 21.2 −22.6 0.9995 20.2 −20.1

100% 2.41 · 10−14 20.0 −20.0 1.0000 20.0 −20.0

9%

κ−30(κ30(f))

1.15 · 10−5 29.3 −28.3 0.9917 28.4 −28.2

17% 2.45 · 10−5 31.5 −30.2 0.9982 30.4 −29.7

67% 1.45 · 10−4 25.5 −29.5 0.9988 30.4 −30.2

100% 7.82 · 10−9 29.8 −29.9 1.0000 30.0 −30.0

9%

φ(f)

4.85 · 10−5 30.4 −27.0 0.9880 24.6 −27.8

17% 7.10 · 10−5 26.0 −26.6 0.9862 32.4 −31.9

67% 1.99 · 10−4 25.4 −26.6 0.9739 24.5 −30.3

100% 8.53 · 10−5 31.7 −29.1 0.9916 38.8 −43.4

Table A.5: Experimental results for learning closings using RCHM filters with float

precision. Only the best results out of 50000 training iterations are shown including
the corresponding learned P0 values in the first layer and P1 in the second layer.

SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

κ−30(κ30(f))

1.87 · 10−5 22.0 −22.0 0.9904 22.0 −22.0

17% 2.76 · 10−5 22.0 −22.0 0.9969 22.0 −22.0

67% 7.96 · 10−5 22.0 −22.0 0.9976 22.0 −22.0

100% 1.94 · 10−5 22.0 −22.0 0.9977 22.0 −22.0

9%

φ(f)

7.02 · 10−5 22.0 −22.0 0.9861 22.0 −22.0

17% 8.35 · 10−5 22.0 −22.0 0.9818 22.0 −22.0

67% 1.21 · 10−4 22.0 −22.0 0.9812 22.0 −22.0

100% 1.52 · 10−4 22.0 −22.0 0.9815 22.0 −22.0

Table A.6: Experimental results from learning closings shown in Table A.5 using RCHM
filters and constraining |P | > 22 to P = ±22.
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Top-Hats

More detailed comparison of all top-hat experiments using MSE and SSIM
including target images generated with P = ±30 and a constraint for more
stable learning. The RCHM (Tables A.8, A.11) clearly outperforms the CHM
(Tables A.7, A.10) in learning top-hats for MSE and SSIM. The performance
loss to the cost of stable learning using the RCHM can be compared in Tables
A.9, A.12.

SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

WTH(f)P,±30

2.59 · 10−4 −10.4 9.9 0.7632 −8.6 7.3

17% 2.90 · 10−4 −11.6 10.9 0.7422 −25.2 31.0

67% 2.96 · 10−4 −17.2 14.0 0.7805 −25.5 29.1

100% 9.69 · 10−5 −27.4 29.3 0.8694 −27.8 29.3

9%

WTH(f)

1.82 · 10−4 −9.9 6.0 0.8707 −12.0 8.1

17% 2.14 · 10−4 −11.7 9.8 0.8326 −24.1 24.2

67% 2.21 · 10−4 −16.0 11.2 0.8888 −25.5 22.8

100% 8.12 · 10−5 −28.6 20.9 0.9484 −28.5 20.1

Table A.7: Experimental results for the white top-hat transformation using the CHM with
float precision. Best results from 200000 iterations are shown.

SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

WTH(f)P,±30

2.33 · 10−4 −27.9 25.3 0.8344 −31.0 28.6

17% 2.92 · 10−4 −29.0 30.3 0.8228 −29.7 27.2

67% 1.83 · 10−4 −25.4 27.0 0.8451 −36.1 28.9

100% 1.10 · 10−4 −35.5 29.7 0.8776 −36.2 28.8

9%

WTH(f)

2.08 · 10−4 −26.1 20.1 0.8892 −34.2 28.8

17% 2.31 · 10−4 −26.5 25.1 0.9231 −28.8 29.0

67% 1.22 · 10−4 −26.7 23.5 0.9376 −39.1 29.2

100% 7.81 · 10−5 −41.8 24.9 0.9615 −45.0 27.3

Table A.8: Experimental results for the white top-hat transformation using the RCHM with
float precision. Best results from 200000 iterations are shown.
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SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

WTH(f)

1.70 · 10−4 −25.0 19.2 0.8740 −25.0 25.0

17% 1.10 · 10−4 −25.0 23.2 0.8957 −25.0 22.9

67% 1.53 · 10−4 −25.0 24.0 0.9167 −25.0 19.6

100% 1.30 · 10−4 −25.0 14.7 0.9366 −25.0 16.3

Table A.9: Experimental results for the white top-hat transformation using the RCHM
mean with float precision and constraining |P | > 25 to P = ±25. Best results
from 200000 iterations are shown.

SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

BTH(f)P,±30

4.29 · 10−4 9.0 −7.4 0.8152 20.2 −17.9

17% 3.19 · 10−4 12.9 −14.9 0.8047 24.4 −31.3

67% 2.52 · 10−4 18.3 −17.8 0.8613 25.2 −26.8

100% 6.03 · 10−5 30.7 −30.7 0.9248 33.0 −31.6

9%

BTH(f)

1.99 · 10−4 11.2 −7.9 0.8011 27.3 −25.7

17% 5.77 · 10−4 11.4 −7.4 0.8218 25.5 −28.0

67% 2.66 · 10−4 17.9 −14.1 0.9025 30.4 −31.2

100% 7.64 · 10−5 32.0 −31.8 0.9603 38.2 −31.8

Table A.10: Experimental results for the black top-hat transformation using the CHM with
float precision. Best results from 200000 iterations are shown.

SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

BTH(f)P,±30

2.80 · 10−4 34.2 −28.9 0.8570 34.5 −28.8

17% 7.64 · 10−5 35.6 −30.0 0.9049 35.8 −30.3

67% 1.31 · 10−4 37.2 −30.4 0.9057 37.1 −30.4

100% 5.48 · 10−5 38.0 −34.0 0.9225 36.7 −32.0

9%

BTH(f)

2.70 · 10−4 25.9 −29.7 0.8965 34.5 −31.4

17% 1.64 · 10−4 27.1 −29.9 0.9006 29.1 −30.9

67% 1.40 · 10−4 30.4 −30.4 0.9409 34.3 −31.3

100% 8.61 · 10−5 36.8 −31.8 0.9546 38.7 −30.1

Table A.11: Experimental results for the black top-hat transformation using the RCHM
with float precision. Best results from 200000 iterations are shown.
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SE Fullness Target MSE P0,MSE P1,MSE SSIM P0,SSIM P1,SSIM

9%

BTH(f)

2.65 · 10−4 25.0 −25.0 0.9199 25.0 −25.0

17% 1.10 · 10−4 25.0 −25.0 0.9327 25.0 −25.0

67% 1.52 · 10−4 25.0 −25.0 0.9280 25.0 −25.0

100% 1.14 · 10−4 25.0 −25.0 0.9347 25.0 −20.7

Table A.12: Experimental results for the black top-hat transformation using the RCHM
with float precision and constraining |P | > 25 to P = ±25. Best results from
200000 iterations are shown.
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Structuring Elements

Learned structuring elements w = σ(wr) in layer L1, L2, L3 for all four ex-
periments are shown in Figures A.1, A.2 and A.3. All learned structuring
elements are non-full structuring elements. MorphAll structuring elements have
a large variety of structures and MorphGroup structuring elements have smaller
variations of structures.

(a) MorphAll L1; MNIST (b) MorphGroup L1; MNIST

(c) MorphAll L1; Fashion-MNIST (d) MorphGroup L1; Fashion-MNIST

Figure A.1: Learned structuring elements w = σ(wr) in layer L1 for all four experiments.
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(a) MorphAll L2; MNIST (b) MorphGroup L2; MNIST

(c) MorphAll L2; Fashion-MNIST (d) MorphGroup L2; Fashion-MNIST

Figure A.2: Learned structuring elements w = σ(wr) in layer L2 for all four experiments.
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(a) MorphAll L3; MNIST (b) MorphGroup L3; MNIST

(c) MorphAll L3; Fashion-MNIST (d) MorphGroup L3; Fashion-MNIST

Figure A.3: Learned structuring elements w = σ(wr) in layer L3 for all four experiments.
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