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Abstract

As the complexity of a software projects rises it can become di�cult to add new
features. Additionally to the maintainability, other quality attributes such as reliab-
ility and usability may su�er from the increased complexity. To prevent complexity
from becoming an overwhelming issue we use principles of good programming
and reside to well known software architectures. We often do so, by choosing to
use speci�c frameworks. However, we can only subjectively judge whether or not
the usage of a speci�c framework resulted in less perceived complexity and an
improvement in other quality attributes.

In our work, we investigated the applicability of existing software measurements
for measuring desired quality attributes and their applicability for framework com-
parison. We chose a set of quantitative software measurements which are aimed at
speci�c quality attributes, namely maintainability and �exibility. Additionally, we
used well established software measurements such as McCabes Cyclomatic Com-
plexity [44] and Halsteads Metrics [32] to measure the complexity of a software.

By developing the same application using two di�erent web frameworks, namely
ReactJS and Laravel, over a set of prede�ned ‘sprints’, each containing a speci�c
set of features, we were able to investigate the evolution of di�erent software
measurements. Our results show that some of the measurements are more applic-
able to the frameworks chosen than others. Especially measurements aimed at
quantitative attributes of the code such as the coupling measures by Martin [43]
and the Cyclomatic Complexity by McCabe [44] proved particularly useful as there
is a clear connection between the results of the measurements and attributes of
the code. However, there is still the need for additional work which focuses on
de�ning the exact scale each of the measurements operates on, as well as need
for the development of tools which can be used to seamlessly integrate software
measurements into existing software projects.
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1. Introduction

Modern software is built to last. Expectations on longevity lead to the need to
develop maintainable systems. Extensive research by Rajiv D. Banker, Srikant M. et.
al. [4] has shown that the complexity of a system has signi�cant impact on its main-
tainability and therefore on the overall costs of the development process. We use
modern software architectures to reduce the complexity of our systems. Al Sharif
et. al. [2] have shown a relation between software architecture and complexity
which justi�es the e�orts put into the architecture. Based on the principles of good
programming and design patterns several frameworks have evolved. Their goal is
to provide developers with an established and well designed software architecture
and therefore increase productivity and maintainability. However, since there are a
lot of di�erent frameworks out there, each of them based on di�erent principles, it
is di�cult to decide which framework �ts best. Additionally, the question if these
frameworks actually succeed in reducing complexity or increasing maintainability
remains unanswered.

The solution is clear: we need a way to measure the attributes of the software
we want to improve and then, through comparisons, conclude whether or not the
measured attributes decreased or increased. This notion of software measurements
is nothing new and dates back to two of the most well known software meas-
urement works of Boehm et al. [11] and McCall et al. [45] which both came up
with a list of software characteristics which break down to a comprehensive index
of empirical measurements. The interest in such kind of measures is more than
understandable. They allow us to estimate future e�ort and base our decisions on
empirical data. This can help in the planning of business decisions and prevent
fatal outcomes. Further, we can use them to measure the reliability of software; or
even software modules. A practical application of software measures by Clark et
al. [17] demonstrates that measuring software complexity can help with detecting
potentially defect and risky modules in critical software like autonomously driving
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1. Introduction

cars. Additionally, using software quality measurement we can asses the impact of
a software project on a company’s success. Another, more or less criticized use of
software measures is proposed and investigated by Coleman et al. [18] who used
their Maintainability Index to compare two di�erent software projects and support
‘make or buy’ decisions. More traditional applications suggest the usage of software
complexity measurements to verify code coverage of existing testing suites [64].

When looking at framework comparisons, most of the time a comparison based
on qualitative attributes can be found. Qualitative attributes are often measured
subjectively, by evaluating a given piece of software and deriving values for meas-
urements based on personal opinion. According to Fenton and Bieman [26, p. 66]
this kind of subjective measurements can still be useful, since they provide us
with information about the overall picture. When asking a team of developers to
rate di�erent modules of a software project based on their subjectively perceived
di�culty of working with a given module, we can use the information gathered to
identify modules which are most likely to be di�cult to maintain. However, when
using subjective measures for decision making, we must not forget about their �aws.

Subjective measures are aimed at qualitative attributes. The interpretation of those
qualitative attributes and therefore the values of their measurement are solely based
on the persons which conduct the measurement. Therefore, di�erent groups of
people will most likely lead to di�erent results in measurements. This makes it
hard to �nd a common consensus, since we would need to reproduce the exact
same conditions multiple times to validate a given measurement model. Traditional
measurements, such as the measurement of length, do not face this kind of problem.

Given a measuring tape, a person can easily measure the length of a wooden board.
If we ask another person to measure the same wooden board, the results of both
measurements will be the same. Unlike the subjective measures which are based
on qualitative attributes, which are interpreted and rated based on personal opin-
ion and experience, the measuring tape measures a quantitative attribute of the
wooden board, which is independent to the person measuring it: the length. The
values received through measurement of quantitative attributes do not change if
conducted by di�erent persons.
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In this thesis out of work the evolution of traditional and quantitative software
measurements during the development of a small scale software project built in two
di�erent web frameworks (namely ReactJS and Laravel) is observed. We investigate
whether or not software measurements such as the Cyclomatic Complexity by
McCabe [44], the Maintainability Index by Coleman et al. [18] and the coupling
measures by Martin [43] evolve in a similar fashion for both frameworks. The goal
of this thesis is to use a set of quantitative software measurements to compare
two di�erent web frameworks with each other. We investigate the applicability
of quantitative software measurements for the chosen frameworks in general, but
also their applicability for framework comparison. The resulting values and the
meaningfulness of conclusions drawn from them will be described.

The rest of this thesis is structured as follows. Chapter 2 will present an overview of
modern and traditional software measures. It will further cover de�nitions needed to
understand measurement and software measurement in general. The mathematical
foundations of measurement theory are presented and used to provide insight in the
ideas behind the meaningfulness of measurements. This includes the discussion of
several fundamental works on software measurement such as the work by Zuse et
al. [66] and Fenton and Bieman [26] as well as an investigation on their di�erences.
Chapter 3 contains information about related work where software measures were
used for framework comparison. The fourth chapter covers information about the
software used during the experiment such as the frameworks involved and software
used to conduct the software measures. Chapter 5 describes the software developed
and the development process as well as the di�erent architectures expected impact
on the software measurements. Chapter 6 covers the software measures used
during this experiment in more detail. Chapter 7 presents the results of the software
measures. Additionally, every result is investigated in more detail and interpreted.
Possible conclusions and the applicability of the selected software measures for
framework comparison is discussed. The thesis ends with a conclusion in chapter 8
and a guideline for future work.
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2. Background

This section will discuss existing software measurement techniques. Software meas-
urements have many applications. They provide us with important and empirical
data which can be used to make informed decisions. Further they allow us to meas-
ure the quality of our software and therefore compare it to other software [21].
Other applications include the creation and validation of test suites based on code
coverage [64, 48, 23]. One of the applications that has gotten a boost in attention in
latest years and will be discussed later in this chapter is software defect prediction
[17, 35, 52].

2.1. So�ware Measurement

This section will discuss the de�nition of software measurements by Zuse et al.
[66, p. 25]. In general measurements map somehow observable attributes to the
numerical domain. When we �nally end up with some values for our measures we
can then use statistics and mathematical operations to derive further knowledge or
re�ne our data. We can then interpret the collected numbers in some meaningful
way.

However, as Zuse et al. [66] point out that numbers alone are of little help. Without
a reliable way to interpret and use the information gained from those numbers
they have little value. We also somehow need to verify the connection between the
attributes we wanted to capture and the numbers we measured. This together with
the fact that complexity has always been a loosely de�ned term are the two biggest
problems of measuring the complexity in software projects.
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2. Background

The next section will cover di�erent applications of software measurements, while
common problems with measurements and the de�nition of complexity will be
discussed later in this chapter.

2.1.1. Applications of So�ware Measurement

In this section the work by Zuse et al. [66, p. 28] focused on de�ning software
measures is summarized and supplemented with �ndings and recent works dis-
cussed later in this thesis. Zuse et al. describe 6 suitable applications of software
measurements:

1. Cost estimation
2. Productivity Measures
3. Reliability models
4. Computational / Algorithmic complexity
5. Complexity measures
6. Quality models

Cost estimation

One of the more practical ways of using software measurements is to use them
to predict the amount of work that is needed to create the software (the costs of
developing the software). An example of such measurements would be function
points. They have found wide application in the �eld of software measurements.
Function points as the name suggests assign numerical values to functions. These
values are calculated to represent the “e�ort” needed or put into speci�c functions.
By calculating the function points for each function the software will need, one can
estimate the e�ort needed and propose a contract based on empirical measurements
instead of rough guesses. As most other software measurements, function points
have been both criticized [37, 41] and praised alike [36].

Among other problems, the subjective nature of function point estimation is men-
tioned the most. Inexperience in applying the function point method can lead
to vastly di�erent estimations as Low, Richards et al. [41] show. However, Low,
Richards et al. further show that even when dealing with experts the comparison of
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2.1. So�ware Measurement

their estimates can lead to 30% variation. Contrary to these �ndings an extensive
study by [36] consisting of multiple function point counts of 111 di�erent systems
has shown that between pairs of estimators the variations between their estimates
lies in the range of ±10%.

Boehm et al. [12] present solutions for cost estimation of software products which
they base on knowledge used in the �eld of economics. They describe the un-
certainty of software projects as decreasing function over the software life cycle,
whereas the uncertainty is the highest at the start of the project and steadily de-
creases as the software is built and requirements are re�ned. They argue that it is
important to calculate the overall bene�t of decisions during the earlier phases and
that for software engineering in particular prototyping or in other words ‘buying of
information’ [12] has shown to be successful at reducing uncertainty. For practical
applications they proposed the COCOMO cost estimation model [12, 9] which was
later revisited and expanded to COCOMO II. [9, 10]

Productivity Measures

In the literature revised the applications of cost estimation and productivity have
been used synonymously. For this reason the work of Boehm [12] discussed in the
last section can be seen as part of productivity measures. However, a direct example
would be the work by Gordon, Halstead et al. [29] where the software measures
de�ned by Halsteads Software Science [32] were used to calculate the e�ort needed
to comprehend or build the software that is being measured. Additionally to the
e�ort required to write the software, we can consider the e�ort required to keep the
software up to date. A well known and again often praised and criticized method
to measure the maintainability of a software system is the so called Maintainability
Index proposed by Coleman et al. [18].

The goal of the Maintainability Index is to capture software maintainability by
combining di�erent, well established software measurements into a single number.
Coleman et al. argue this works because each of the three measures used captures
di�erent factors which are deterrent to software maintainability. In their work
they suggest the use of widely accepted measures. In particular Coleman et al. use
Halsteads [32] measure for e�ort, McCabes extended Cyclomatic Complexity [44]
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2. Background

and Lines of Code. It has been found that the Maintainability Index captures many
intuitive code quality attributes. An example would be that the Maintainability
Index is likely to decrease if a module is rewritten or restructured [18]. A lower
Maintainability Index is justi�ed since all the developers who have worked with the
previous version of this module now have to learn and understand the new structure.

The big bene�t of the Maintainability Index is the ability to calculate it for multiple
modules of the same software project. This allows to compare di�erent modules of
the system and can help to identify error prone or hard to maintain modules. Also,
if the Maintainability Index is calculated for every major change in the system for
each sub module, it is possible to identify modules which have a low tendency to
change. These modules are likely to form a set of reusable components or may even
be used as reusable libraries.

In their initial work Coleman et al. [18] support their software measure by looking
at di�erent use cases in practice. In particular their system was used to aid Hewlett-
Packard.

The Maintainability Index of an overall system was calculated to gain an overview.
As this provided little information overall, in the next step they calculated the
Maintainability Index for individual sub modules. They found that the modules the
developers described as ‘cumbersome to work with’ also had a low Maintainability
Index. The Maintainability Index was further used to compare an in-house solution
with a third party solution. Since the in-house solution had a lower Maintainability
Index, HP decided to go with the third party solution. Coleman et al. argue that
their Maintainability Index can be helpful when it comes to make-or-buy decisions.
However, major concerns with their software measure have arisen over the years.

When using the Maintainability Index in a project, developers have no insight
on how to directly a�ect it [65]. It is calculated by some magic formula without
obvious ways on how to a�ect the measure. Kuipers et al. [40] acknowledged this
problem and propose a modi�ed model for the Maintainability Index which is aimed
at providing a clear insight on how the measure is calculated and how it can be
a�ected by changes in the code. A more recent attempt at providing a measurement
system aimed at code-smells [28] can be found in [65]. Wu et al. [65] focused on
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2.1. So�ware Measurement

providing developers with a software measurement system which provided a clear
mapping between the measurements taken and observable problems in the code
and architecture.

Reliability Models

Zuse et al. [66, p. 28] describe Reliability models as

[...] statistical models for predicting mean time to failure or expected
failure interval. [66, p. 28]

These models are not exclusive to software development.

Computational and Algorithmic Complexity

The computational or algorithmic complexity of a program or piece of software tries
to capture the e�ciency with which a certain problem has been solved [66, p. 28].
When measuring complexity, researchers often aim at minimizing the complexity of
the software measured. However, as shown by McCall et al. [45] there is an inverse
relationship between e�ciency and maintainability which means increasing one
will have negative e�ects on the other. It is not surprising that combining both
needs - high e�ciency with low complexity - is a di�cult task. Some work in
this direction was done by Oliveira et al. [51] who tried to apply various kinds of
software measurements to embedded systems.

Their experiment was aimed at �nding a compromise between modern software
designs and the requirements of embedded systems. The experiment con�rmed
the already mentioned inverse relationship between e�ciency and complexity.
Speci�cally Oliveira et al. [51] have shown that for their tested system McCabes
Cyclomatic Complexity [44] was inversely proportional to the measured physical
performance. Oliveira et al. conclude that using software measures in the context
of embedded systems can help �nd the correct trade-o� between performance and
other important goals which correlate with the investigated quality measures such
as time-to-market.
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2. Background

Complexity Measures

Measurements of this category focus on speci�c attributes of the software. The
most prominent examples for such attributes would be the control structure of
the program as well as simple measures like lines of code. These measures have
gained signi�cant attention, with the most well known and used examples being
the complexity measure of McCabe [44] and Halsteads theory of Software Science
[32]. Both works have been validated by countless empirical studies over the years
and will be discussed in detail later in this chapter.

�ality Measures

Models to measure the quality of software often consist of a wide spectrum of
measurements. Early examples for e�orts put into measuring software quality are
the heavily cited works of McCall [45] and Boehm [11]. Their works are the most
well known works on software quality measures and both provide a comprehensive
list of measurements. A more recent and also well known approach is presented
in the Information System Success Model by Delone and McLean [22, 21]. Their
attempts at measuring software quality focuses on more than just code quality
attributes. Instead, they additionally measure the entire ecosystem of the software.
Unlike most other measures discussed in this chapter, which mostly rely on the
code or control structures of the program, these newer quality models include
measures aimed at the e�ort needed to keep the software running as it should and
at the people actually using the software.

The next section will cover Software Quality in more detail, while the later sections
focus on complexity and how to measure it in the context of software projects.

2.2. So�ware �ality

A well known measurement for software quality has been developed by McCall,
Richards et al. [45]. In their work they acknowledge that quality itself consists of
multiple aspects which they call ‘quality factors’. They de�ne speci�c criteria for
each of those quality factors while the decision if those criteria are met are based on
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2.2. So�ware �ality

precisely described measurements. Each criteria has its own set of measurements
for which McCall, Richards et al. describe how to measure them.

The hierarchical structure of software quality has been adopted by di�erent studies.
After McCall, Richards et al. the ‘Information System Success Model’ by DeLone
and McLean [21] gained huge attention in the �eld of software quality. With their
extensive research they identi�ed the reoccurring hierarchical nature of quality.
They found that back in 1948 Shannon and Weaver [54] had already indirectly
identi�ed the hierarchy of software system quality. DeLone and McLean extend the
existing model consisting of a technical level, semantic level and level of e�ective-
ness to their own model consisting of six dimensions: System Quality, Information
Quality, Use, User Satisfaction, Individual Impact and Organizational Impact. They
successfully created a more accessible way to measure software quality, which
was widely accepted and further researched. Ten years later DeLone and McLean
published the next iteration of their Information System Success Model [22].

After having reviewed several papers critiquing, applying, and validating their
proposed model they present a new model that also incorporates Service Qual-
ity and replaces Individual and Organizational Impact as Net Bene�ts. The new
model is aimed at providing a more precise and applicable Information System
Success Model for e-commerce systems. DeLone and McLeans Information System
Success Model (D&M IS-Model) still sees use today. Guceglioglu, A. Selcuk et al.
[30, 31] adopted the D&M IS-Model to business processes. Taking the dimensions
of the D&M IS-Model Guceglioglu, A. Selcuk et al. use measurements applicable
for business processes to evaluate their quality and bene�ts, as well as providing a
framework to compare business processes. Among many other similarities between
business processes and software solutions they draw attention to the complexity
measurement. They use cyclomatic complexity [44] to measure the complexity of
a business process where as the amount of decisions in the process de�nes the
complexity of the process.

In conclusion software quality measurements focus on the whole ecosystem sur-
rounding and a�ected by the system. These measurements inspect the system
itself (Information Quality, System Quality), the people making sure the system
is available and working as it should (Service Quality), the users which use the
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2. Background

software (User Satisfaction, Use, Intention to Use) and the company that bene�ts
from the software in some way (Net Bene�ts). Complexity measurements on the
other hand are quantitative measures solely based on the software itself.

2.3. Complexity

Before we go into how to measure complexity, we have to agree on a de�nition of
what it is. Complexity has always been a loosely de�ned term to allow di�erent
interpretations based on the current �eld. Edmonds et al. [25] present an extensive
de�nition of complexity aimed at a broad �eld of vastly di�erent disciplines. The
overall de�nition is given by

Complexity is that property of a model which makes it di�cult to
formulate its overall behavior in a given language, even when given
reasonably complete information about its atomic components and
their inter-relations. [25]

Following this de�nition Edmonds et al. illustrate that when looking for complex-
ity we are always looking at a model - or in other words a system - consisting
of di�erent components and their inter-relationships. Edmonds et al. then de�ne
complexity as the lack of knowledge about the overall system, even though we
have su�cient information about its single components.

Zuse et al. [66, p. 34] dedicate a whole chapter of their book to verbal de�nitions of
the term complexity. Among many others they cite a de�nition by Sullivan et al.
[60] which provides us with a de�nition for the psychological part of complexity:

In general usage, complexity denotes the degree of mental e�ort re-
quired for comprehension. [60]

After looking at many di�erent de�nitions of complexity one can easily depict a
common relation: Complexity increases the more components with relationships to
other components are added to a system. This means that an increasing amount of
components and/or relationships will lead to greater complexity. Whether we are
dealing with a system consisting of a big number of trivial components with little
relationships between each other or with a system consisting of a small number
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of highly interrelated components; both cases lead to a perceivable increase in
complexity. With these observations in mind we can now work on a de�nition for
software complexity.

2.3.1. So�ware Complexity

A de�nition for software complexity aims to further specify complexity in the
�eld of software development. In their work Curtis et al. [20] give a de�nition for
software complexity based on their earlier research:

Complexity is a characteristic of the software interface which in�uences
the resources another system will expend or commit while interacting
with the software. [19]

This general de�nition incorporates the information of the previous section. The
preceding de�nition described complexity as the di�culty to understand the over-
all behavior of a system, which is equivalent to Curtis idea behind expending
resources while interacting with the system. This de�nition also puts emphasis
on relationships between the software and other systems (which also includes
other components). Curtis explains that complexity has no meaning in an isolated
system as it only matters during the interaction between the software and another
system ‘[...] such as machines, people and other software packages’ [20]. However,
this is again a broad and abstract de�nition of complexity. Curtis et al. come to
the conclusion that a software measurement has to focus on a certain software
characteristic and de�ne empirical measurements suitable to capture this software
characteristic. One of those characteristics that has gained a lot of attention is the
control structure of the software.

A well revised example for such a control structure based complexity measurement
is McCabes cyclomatic complexity [44].
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2.3.2. Cyclomatic Complexity

McCabes cyclomatic complexity is based on graph theory. It uses the cyclomatic
number de�ned by Berge [7] by looking at the control �ow graph of programs. As
de�ned by Berge [7] the cyclomatic number can be calculated as v(G) = e− n+ p
where n are the vertices, e the edges and p the connected components. Since this
mathematical approach is not always suitable McCabe has put e�ort into describing
simpler models that lead to similar if not identical results for cyclomatic complexity.
His �rst simpli�cation does only require visual inspection of the control �ow graph.
Based on Eulers formula it is possible to determine the complexity of a plane control
�ow graph by counting its regions.

The second method proposed by McCabe is even more practical. This method does
not require a control �ow graph at all and instead suggests to count the amount of
predicates or in other words statements like:

IF <predicate> THEN <action>

When considering compound statements such as

IF <predicate> AND <predicate> THEN <action>

McCabe [44] notes that

[...] it has been found to be more convenient to count conditions instead
of predicates when calculating complexity. [44]

Cyclomatic complexity has found various applications in software quality research
since then. Mohamed et. al. [49] used cyclomatic complexity to assess computer
science students programming skills.

Menzies et. al. [46] have shown that cyclomatic complexity can be used to derive
Defect Detectors; data mining tools which �nd modules that have a high chance
of being defective based on static code attributes. In their paper they also show
that cyclomatic complexity leads to a better defect detection rate than weaker
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measurements like lines of code.

Similarly Clark et al. [17] used cyclomatic complexity to assess reliability and
maintainability of critical systems. Based on their measurements they managed to
identify modules of an autonomous driving software which were most likely to
require refactoring. However, another important aspect of cyclomatic complexity
is its usage in testing software.

Based on McCabes cyclomatic complexity Watson et al. [64] proposed a method to
assess the quality of testing; the structured testing criterion. The concept of the
structured testing criterion is that we can choose a set of paths such that

[...] any additional path through the module’s control �ow graph can
be expressed as a linear combination of paths that have been tested.
[64]

Structured testing follows the idea to write test cases such that all paths of the
control �ow graph of a program are visited. To achieve this Watson et al. [64]
postulate the Base Path Method.

A base path is a path in the control �ow graph of the program which is linearly
independent from all other paths in the program. The �rst base path can be chosen
freely; however, Watson et al. recommend to choose the one that is the most relev-
ant to the software at hand. From this base path new paths are generated by simply
taking other paths on conditional branches. In the end you have a set of basis paths.
All other paths of the control �ow graph can be represented as a linear combination
of these basis paths. The important connection between this method and cyclomatic
complexity is that the minimum amount of paths needed for the base path method
to cover all paths in the control �ow graph is equal to the cyclomatic complexity
number [64]. This means that given an amount of linearly independent paths equal
to the cyclomatic complexity of the associated control �ow graph, we can create
test cases for those paths and reach high code coverage. Since all of these paths
cover independent parts of the software we can test most of the program by using
a small number of test cases.
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An example for the Base Path Method is the toolset developed by Deng and Wang
[23]. Deng and Wang constructed a graph by de�ning URLs as nodes and links
between URLs as edges. Now, using the base path method discussed in the last
paragraph they generated a set of paths along this graph while also determining
the inputs these URLs might need. As an additional step they use the information
gathered by the base path generation to then generate test cases based on the paths
chosen and inputs needed.

Mirshokraie et al. [48] combined traditional mutation testing with cyclomatic
complexity to overcome downsides of mutation testing. Similar to Clark et al. [17],
Mirshokraie et al. used cyclomatic complexity to determine which paths are more
error prone and lead to di�erent behavior in the underlying application. Mutants
for those paths cover the most error prone parts of the application and therefore
provide test cases aimed at critical sections of the software.

2.3.3. Halsteads Complexity Measure

Another traditional complexity measure is the method presented by Halstead [32].
His work was a pioneer attempt to combine interdisciplinary knowledge into a
concept of empirically measurable complexity for software. He used psychological
knowledge about the human brain and human comprehension to derive software
measurements which aim to estimate required mental e�ort, software size and
predict error proneness. Back then and up to today various empirical studies have
con�rmed the strong correlation between the measurements presented by Halstead
and mean amount of bugs in a program [27, 6, 35, 52].

Halstead has been involved in various research based on his now famous Software
Science. In [29] Gordon and Halstead present a correlation between Halsteads
measures and programming time (time required to write a program). This correl-
ation also gained attention and was later empirically tested and supported by an
experiment by Sheppard et al. [56] and still sees use today. A modern example is
presented by Chang et al. [15] which apply Halsteads measures to programs created
using the visual programming language Scratch. They measure Halsteads measures
for Scratch programs and later validate the results using process data ultimately
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con�rming the validity of Halsteads methods for the Scratch programming lan-
guage or more generally for visual programming tools.

2.4. Object Oriented Measures

Object oriented software development is a commonly agreed and widely used
paradigm in modern software development projects. As R. Martin describes [43]
this is due to our believe in the positive impact of object oriented design on our
software project. We hope for better reusability, maintainability and robustness.
However, as R. Martin points out just using object oriented design will not magically
turn every software into a high quality product. It is not object oriented design
itself which brings a lot of these bene�ts; it is best practices associated with object
oriented design that do. To shine some light on this misconception R. Martin
developed di�erent ‘Design Quality Metrics’ speci�cally for object oriented software
projects.

2.4.1. Robert Martin’s Design �ality Metric

Martin’s measure is based on an intuitive idea: Classes which are highly interde-
pendent to other classes are hard to change. For example if there is class A and 10
other classes which depend on class A, it is very likely that we have to change some
if not all 10 classes once we change class A. Additionally, if we wanted to use one
of the 10 other classes in another system we would probably have to bring along
class A (and potentially all the classes it depends on). Both of these examples make
it obvious that classes which are independent are more �exible and more reusable.

Based on this intuitive idea Martin [43] came up with three di�erent measurements
aimed at quantifying the inter-dependability of classes. However, since there are
often certain ‘clusters’ of classes which are highly inter-dependent between each
other but otherwise independent to the outside, Martin added an additional layer.
He calls these highly inter-dependent but otherwise independent clusters of classes
‘categories’ and de�nes his measures as follows:
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A�erent Coupling also written asCa is ‘the number of classes outside this category
that depend upon classes within this category’ [43]

E�erent Coupling also written as Ce is ‘the number of classes inside this category
that depend upon classes outside of this category’ [43]

Instability or simply I is de�ned as Ce

Ca+Ce
. This takes a value between 0 and 1

where 0 means the class is absolutely stable and 1 means the class is absolutely
instable

Martin distinguishes highly stable classes by the fact that classes which have a
lot of dependents are hard to modify. In other words, classes with a high A�erent
Coupling are unlikely to change since a change of those classes would likely lead
to a lot of changes in the dependent classes. On the other hand classes with a high
E�erent Coupling are labeled as highly instable. This is due to the fact that changes
in any of the dependencies might cause changes in the current class.

Unlike the measures discussed in the earlier section which aim to quantify the
psychological e�ort needed to work with a given piece of software, Martins coupling
measurements are attributed to measure the �exibility and robustness of the system
as well as its components reusability.

2.4.2. Object Oriented Measures by Chidamber and Kemerer

Chidamber and Kemerer [16] present a set of object oriented measures based on a
solid theoretical and mathematical foundation. They use the work of Bunge [13, 14]
to formally de�ne important attributes of object oriented designs.

Desirable A�ributes in Object Oriented Design

This section will cover basic de�nitions of Chidamber and Kemerer [16] which are
then used to identify and formally describe desirable attributes in object oriented
software.

18



2.4. Object Oriented Measures

Chidamber and Kemerer de�ne an object X as

X = 〈x, p(x)〉 (2.1)

where x is simply an identi�er f.e. the class name and p(x) is the set of properties
of X . The properties in this context consist of the class methods and instance
variables, notionally:

p(x) = {Mx} ∪ {Ix} (2.2)

where {Mx} are the methods of class X and {Ix} are the instance variables of
class X . Using this de�nition Chidamber and Kemerer classify important aspects
of object oriented design as follows:

Coupling measures the interdependence of classes between each other. High
coupling is considered an issue because it is hard to change classes with high
coupling since changes to these classes are likely to cause changes in other
classes as well. Chidamber and Kemerer use the ontological de�nition of
coupling given by Vessey and Wever [63]:

two objects are coupled if and only if at least one of them acts upon
the other, X is said to act upon Y if the history of Y is a�ected by
X , where history is de�ned as the chronologically ordered states
that a thing traverses in time

So given two objects X and Y they are coupled if any method M1 ∈ {My}
uses any other method M2 ∈ {Mx} or manipulates any instance variable
I ∈ {Ix} and vice versa.

Cohesion is generally considered to measure how ‘strong’, stable or independent
a class is. Chidamber and Kemerers intuitive approach captures this attribute
as the similarity between methods of the same class. Precisely they de�ne
the similarity σ between methods M1,M2 ∈ {Mx} as ‘the intersection of the
sets of instance variables that are used by the methods’ [16]:

σ(M1,M2) = {I1} ∩ {I2} (2.3)

Complexity of an Object as de�ned by Chidamber and Kemerer also follows the
notion of ontologies. Bunge [13, 14] de�nes complexity as the ‘numerosity of
its composition’ and Chidamber and Kemerer use this de�nition to characterize
the complexity of an object as the amount of properties of an object X or
precisely the cardinality of p(x). So unlike the measures of McCabe [44] or
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Halstead [32] which are based on the control �ow graph and properties of the
code respectively, Chidamber and Kemerers de�nition of complexity focuses
on the ontology of objects.

Utilizing these de�nitions Chidamber and Kemerer present a list of object oriented
measures.

Chidamber and Kemerer Metrics

This section focuses on some of the measures of the Chidamber and Kemerer Metrics
Suite (CK-Metrics) which have received considerable attention in the literature
reviewed [1, 62].

For a full and more detailed explanation the reader is advised to refer to the original
work [16].

Weighted Methods per Class (WMC) aims to capture the psychological com-
plexity of building and maintaining a speci�c class. Chidamber and Kemerer
argue that the more methods a class has the higher the complexity. This also
means that classes which have a lot of methods have a signi�cant impact on
the rest of the system since any class which inherits from such a ‘method
heavy’ class also inherits all the methods. Further, classes with a lot of meth-
ods tend to be more application speci�c which usually means they can not
be reused. The Weighted Methods per Class measure can be calculated as

WMC =
n∑
i=1

ci (2.4)

where ci are the individual complexities of methods M1 . . .Mi ∈ {Mx}. An
important interpretation given by Chidamber and Kemerer is that ‘If all
method complexities are considered to be unity, then WMC = n, the number of
methods.’. Chidamber and Kemerer explicitly do not specify how to measure
the complexity of the individual methods. In the literature reviewed the
complexity of the methods was assumed to be uniformly 1 as suggested by
the original paper. Even though one might argue that this speci�c decision is
an oversight, empirical evaluations suggest that solely counting the amount
of methods is a reasonable measure [5, 8]. Also as mentioned by Vliet [61]
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when choosing the complexity of methods to be uniformly, this measure can
already be applied before the actual implementation is �nished.

Depth of Inheritance Tree (DIT) can be seen as a measure of the overall com-
plexity of the design. The highest value this measure can take is equal to the
depth of the inheritance tree in the design. If this value is high we are dealing
with classes which inherit a big amount of properties from their ancestors.
This makes the behavior of classes unpredictable and can therefore be seen
as a design �aw. It is measured using the inheritance tree and counting the
distance of the current node (class) to the root of the tree.

Lack of Cohesion in Methods (LCOM) for a class is calculated by looking at
the similarity between the methods of a class. For a class X all similarities
σ(M1,M2) where M1,M2 ∈ {Mx} are computed. LCOM is then determined
by counting the amount of empty and non-empty similarity sets using the
formula:

LCOM = # of empty similarity sets
− # of non-empty similarity sets

(2.5)

This measure acts as an indicator for the robustness and reusability of a class.

2.5. Meaningfulness of So�ware Measurements

This section will describe the theoretical foundations of measurement theory. The
work of Zuse et al. [66] on de�ning software measurement as a theoretical and
mathematical framework is discussed.

Using the de�nitions of Zuse et al. [66, p. 39-66] a de�nition of scales and their
meaningful use is presented, followed by a discussion of the problems encountered
when working with software measurements.

When taking a measurement for something we generally map an empirically observ-
able thing to a numerical representation. We then apply mathematical operations
like statistics to the results of our measurements to derive further knowledge.
However, there are certain conditions which have to hold to make meaningful
statements with those measurements. What does ‘Program 1 is more or equally
complex than Program 2’ mean? Is such a statement even meaningful? Can we
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apply the arithmetic mean to make statements about bigger parts of the program?
What is it exactly that our measure tries to capture? Are the characteristics it
measures the ones we are interested in? To answer these questions we must �rst
agree on some formal de�nitions.

2.5.1. Relational Systems

In measurement theory as de�ned by [53] and presented by Zuse et al. [66, p. 40]
we deal with relational systems.

De�nition 2.5.1. (Relational System): A relational system A is an ordered tuple
(A,R1, . . . , Rn, o

1, . . . , om) where A is a non-empty set of objects, the Ri, i =
1, . . . , n are relations on A and the oj, j = 1, . . . ,m are closed binary operations.

For measurements Zuse et al. [66, p. 40] de�ne two important relational systems:
the empirical relational system and the formal relational system.

De�nition 2.5.2. (Empirical Relational System):

A = (A,R1, . . . , Rn, o
1, . . . , om) (2.6)

A is a non empty set of empirical objects that are to be measured.
For software measurements we deal with program texts and �owgraphs.

Ri are ki-ary empirical relations on A with i = 1, . . . , n.
For example the empirical relation ‘equal or more complex’.
The arity ki de�nes how many empirical objects are part of
the empirical relation. Morasca [50] adds that
“each empirical relation Ri has an arity ki, so
Ri ⊆ Eki , i.e. Ri is a subset of the cartesian product
of the set of entities E × E × . . .× E ki times.”

oj are binary operations on the empirical objects A
that are to be measured (for example a concatenation of control �owgraphs)
with j = 1, . . . ,m

The empirical relational system represents the objects as we perceive them. When
solely dealing with empirical relational systems we are most of the time already
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able to make some generic statements. A person can subjectively decide whether
submodule A is more complex than submodule B. However, if we wanted to meas-
ure the complexity of a module C which uses both submodule A and B we lack a
meaningful way to combine the complexity of submodule A and B.

To solve this issue we take measures/measurements and use appropriate scales.
However, to de�ne measures and scales, we �rst have to de�ne formal relational
systems. Again we use a de�nition provided by Zuse et al. [66, p. 40]:

De�nition 2.5.3. (Formal Relational Systems):

B = (B, S1, . . . , Sn, •1, . . . , •m) (2.7)

B is a non empty set of formal objects, for example numbers or vectors.
Si i = 1, . . . , n are ki-ary relations on B such as ‘greater’ or ‘equal or greater’.
•j j = 1, . . . ,m are closed binary operations on B such as

the addition or multiplication

After mapping the objects of an empirical relational system to objects of a formal
relational system we have a set of numbers or vectors. For these formal objects
we have intuitive ideas on how to work with them: addition or calculating the
arithmetic mean are easily realizable and seem feasible. However, even after this
mapping we still have no guarantee that operations such as the arithmetic mean
lead to meaningful results.

The meaningfulness of such operations and statements as discussed earlier depends
on the scale we are dealing with. Next, the de�nitions of measures and scales by
Zuse et al. [66, p. 40] are given.

De�nition 2.5.4. (Measure/Measurement): A measurement µ is a mapping µ :
A→ B which yields for every empirical object a ∈ A a formal object (measurement
value) µ(a) ∈ B.

De�nition 2.5.5. (Scale): Let A = (A,R1, . . . , Rn, o
1, . . . , om) be an empirical

relational system, B = (B, S1, . . . , Sn, •1, . . . , •m) a formal relational system and
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µ a measure. The triple (A,B, µ) is a scale if and only if for all i, j and for all
a, b, a1i , . . . , a

k
i ∈ A the following holds:

Ri(a
1
i , . . . , a

k
i ) ⇐⇒ Si(µ(a

1
i ), . . . , µ(a

k
i ))

and
µ(a oj b) = µ(a) •j µ(b)

(2.8)

where a1i , . . . , aki ∈ A are objects which are part of the relation Ri. It is important
to note that ‘if B = R is the set of real numbers, the Triple (A,B, µ) is called a real
scale’ [66].

This equation captures what more modern literature [26, p. 33] refers to as the
representation condition of a measurement. The �rst part of the de�nition of a scale
(2.8) by Zuse et al. [66, p. 40] - which is known as the representation condition -
requires that a measure µ preserves all empirical relations and has an equivalent
formal relation. According to Fenton and Bieman [26, p. 119] a measurement can
be validated by showing that it ful�lls the representation condition. That is because
if a measurement preserves all empirical relations and has equivalent numerical
(formal) relations, we can use the numerical representation to learn more about the
empirical world [26, p. 33].

We have now de�ned the mapping of an empirical relational system to a formal
relational system as a scale. The next section will provide a classi�cation of scales
and their implications on meaningfulness.

2.5.2. Scales

Scales provide a mapping between an empirical relational system and a formal
relational system. With the de�nition of admissible transformations we are able to
further classify scales. Presented below is the de�nition of admissible transforma-
tions by Zuse et al. [66, p. 43]:

De�nition 2.5.6. (Admissible Transformations): Let (A,B, µ) be a real scale. A
mapping g : µ(A)→ B is an admissible transformation if and only if (A,B, g o µ)
is also a scale.
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Zuse et al. [66, p. 43] use admissible transformations to de�ne the meaningfulness
of statements:

De�nition 2.5.7. (Meaningfulness): A statement is meaningful if and only if its
truth value is invariant against all admissible transformations.

The following section will discuss the di�erent scale types as de�ned by Stevens
et al. [58]. The meaningfulness as de�ned above is shown for di�erent statements
involving di�erent scales.

2.5.3. Types of Scales and the Meaningfulness of Statements

Stevens et al. [58] de�ne �ve types of scales, each of them being classi�ed by
their admissible transformations. Every type of scale allows di�erent mathematical
operations.

Nominal Scale

The nominal scale is the simplest scale. A measurement which results in a nominal
scale follows the simple rule to assign each object of a certain group to a certain
label, where label might be any identi�er for example a number. An example for
this would be a software project using di�erent programming languages. One could
classify each �le based on the language used, assigning each Javascript �le to group
one, each HTML �le to group two and so on. It is important to note that for a
nominal scale it is not necessary to use numerical values for the groups; we might
as well use words. In case our software project consists of more than just one
Javascript and HTML �le it is possible to make simple meaningful statements. For
example, when dealing with groups which have multiple members it is possible to
determine the groups which have the most members.

An important property of this scale is that the descriptions of the groups are freely
interchangeable and do not a�ect our results. This means that instead of calling the
group containing Javascript �les ‘group one’ we can call it ‘group Javascript’. Any
function mapping an existing group name to another unique group name preserves
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the validity of our results. More generally, any admissible transformation g which
is a one-to-one mapping leads to a new scale which preserves the truth value of
the previous scale.

Following the example where we classify �les based on their programming language
we can use the de�nition of meaningfulness of measurements by Zuse et al. [66,
p. 43] to decide whether or not a speci�c statement is meaningful for the scale
our measurement results in. In our example, after classifying each �le we can
come to the conclusion that most of the �les in our software project are Javascript
�les which we classify as ‘group one’. Our statement is: ‘group one contains the
most �les of all groups measured’. When applying an admissible transformation
for the nominal scale, which is any g which is a one-to-one mapping, we end up
with another nominal scale where the truth value of our statement ‘group one
contains the most �les of all groups measured’ is still the same. By the de�nition of
meaningful statements by Zuse et al. [66, p. 43] this statement is meaningful.

Ordinal Scale

When dealing with an ordinal scale we can relate objects between each other. This
means given a set of objects we can arrange them in some meaningful way based
on a property shared by all objects. A common example found in agile software
development is the rating of tasks. When using SCRUM, a set of tasks is presented
before each sprint. The developers are then asked to rank the tasks based on di�-
culty. This is done by comparing the tasks between each other and ordering them
by saying ‘X is more complex than Y’. This leads to a certain order in the tasks.
We can now assign a number to each task which re�ects the di�culty rating. As
typical for an ordinal scale, these numerical values can be arbitrary, as long as they
preserve the assigned logical order. Given three programs, we can rank them using
the numbers one, two and three. However, we might as well use the numbers 6, 70
and 120 as long as the mapping preserves the logical order. In general, any function
g which is a monotonically increasing function is an admissible transformation
for ordinal scales. That is, it will transform the given scale into a new scale while
preserving the order of our objects and in turn preserving the truth value of our
previous scale.
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Stevens et al. [58] note that ordinal scales are often misused because statistical
operations such as the arithmetic mean are applied to them even though they are
not meaningful in this context. That is because the length of the intervals between
di�erent objects might not be equal. When using our example from before, this
means that the di�erence between the task ranked to be the most di�cult and the
task directly below it is probably higher than the di�erence in complexity between
a task ranked in the middle part and the one directly below it. Calculating the
arithmetic mean is subject to errors if we only consider the relative ranking order
of objects. However, Stevens notes that the use of the arithmetic mean and similar
statistics on ordinal scales, even though not suitable for them, lead to ‘fruitful res-
ults’. This is similar to the results found for various software measures. As discussed
later in this section not all measures used for this thesis can be classi�ed as interval
or ratio scales, which are needed for meaningfully applying operations such as the
arithmetic mean. However, various empirical studies have proven their applicability
in practice and the usefulness of their results.

This theoretical discrepancy is one of the big issues for software measures. For most
software measures presented in this thesis it is hard to �nd any proof of to which
scale they belong to. Zuse et al. [66, p. 151-169] for example show that under speci�c
conditions McCabes Cyclomatic Complexity [44] can be considered as a ratio scale.
However, Zuse et al. [66, p. 142-145] also show that the measures of Halstead can
not be used as a ratio scale. Calculating the arithmetic mean is not meaningful
when not dealing with a ratio or interval scale. For Halstead, the only meaningful
alternative would be to calculate the median, because it can be used when dealing
with an ordinal scale [66, p. 142-145]. Any admissible transformation that preserves
the order of the objects does not a�ect the median of a measurement on a scale.
Since those are the only admissible transformations for an ordinal scale, calculating
the median of such a scale and making statements about or based on it is meaningful.

However, the Maintainability Index by Coleman et al. [18] explicitly uses the aver-
age Halstead E�ort in its formula. Nonetheless the Maintainability Index has found
wide acceptance and is probably the most used software measurement today. It
has been used to detect di�cult to maintain and error prone modules [52] and the
original authors [18] also suggest that it can be used to compare di�erent software
systems between each other.
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This leads to the conclusion that most software measures found today have to be
used with these limitations in mind. When interpreting the results of our software
measurements we have to be careful and respect the fact that statistical operations
such as the arithmetic mean may lead to wrong results.

Interval Scale

With interval scales we �nally reach the point where we work with quantitative
di�erences instead of qualitative ones. When using ordinal scales we order the
objects based on qualitative attributes. Interval scales on the other hand introduce
the notion of di�erences, intervals and distances between objects.

Interval scales allow the addition and subtraction of measures. They do not have
a zero point, that means the absence of attributes measured with a interval scale
is not represented. Their admissible transformations are those of the form g(x) =
aµ(x)+ b where a > 0 and b is any number, allowing us to change the origin of the
measure and the unit we use. Interval scales allow us to make meaningful statements
about the di�erence of our measures. For example it is meaningful to say that the
di�erence between the temperature today and yesterday is twice as much as the
di�erence between the two days before. However, statements such as ‘today (20°C)
is twice as hot as yesterday (10°C)’ are not meaningful. This is the case because for
interval scales, such as the scales used for temperature and time, multiplication and
division are not meaningful. Using the de�nition of meaningfulness from earlier
we see that if we convert our measurement of temperature from the Celsius scale to
the Fahrenheit scale the truth value of our statement changes. Using an admissible
transformation of the form g(x) = aµ(x) + b, where a = 9

5
and b = 32 for the

conversion from Celsius to Fahrenheit the statement ‘today (20°C, 68°F) is twice
as hot as yesterday (10°C, 50°F)’ changes its truth value. Therefore, following our
de�nition of meaningfulness the statement ‘today (20°C) is twice as hot as yesterday
(10°C)’ is not meaningful. The most important property of interval scales to note at
this point is that the calculation of the arithmetic mean for measurements on an
interval scale is meaningful.
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Ratio Scale

Following the de�nition by Stevens et al. [58] a ratio scale contains all properties of
the previous scales and additionally provides the ability to calculate ratios between
values and a de�nite zero value. As the most permissive scale type it allows all
statistical operations which are valid for previous scales and additional operations
like division or calculating the coe�cient of variation. A transformation of one
ratio scale to the other can be done by multiplying the value of a ratio scale by a
constant. That is, all admissible transformations are of the form g(x) = aµ(x) with
a > 0.

Ratio scales have a de�nite zero value representing the absence of the attribute
measured. All other values are starting from this zero point. The zero point is a
theoretical construct; that is, when we consider the measure of length we can think
of an object having zero length, even though such an object does not exist. For
most measurements ratio scales are the desired type of scale. Examples for ratio
scales include measures of length and mass.

2.5.4. Atomic Modifications and Partial Properties

In this section additional de�nitions by Zuse et al. [66] are presented and used to
introduce subjective measures. The procedure of Zuse et al. [66, p. 46-57] to classify
a software measure as ratio or ordinal scale requires the de�nition of so called
atomic modi�cations, empirical subrelations and partial properties.

Atomic modi�cations are modi�cations to the control �owgraph like adding or
removing a node, adding or repositioning an edge. Empirical subrelations are a
weaker de�nition of an empirical relation. They only represent a subset of what the
actual empirical relation represents. When comparing two programs between each
other the empirical relation ‘equal or more complex than’ could have the empirical
subrelation ‘the control �owgraph is equal or more complex than’. ‘It (the empirical
subrelation) contains partial information about the empirical relation.’ [66, p. 51]
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The sensitivity of a measure to an atomic modi�cation is called a partial property.
Precisely Zuse et al. [66, p. 52] de�ne partial properties as

De�nition 2.5.8. (Partial Property of a Measure) The sensitivity of a measure µ
to an atomic modi�cation is called a partial property of the measure. We say: A
measure µ has the partial property ≥ e to an atomic modi�cation X.

Therefore we are now dealing with speci�c atomic modi�cations and are looking at
the changes in our measurements caused by these modi�cations. Partial properties
de�ne a clear mapping between an atomic modi�cation and the change to the
program captured by our measurement. With these de�nitions clari�ed, we have
to reconsider that measurements are merely a mapping from something empir-
ically observable to a numerical domain. As stated by Kriz [39], the result of the
measurement alone is of little value. What matters is the empirical attribute we
tried to capture and decisions we can make based on the changes in our measure-
ments. This means a measure only becomes meaningful if we interpret the result
and can use it to get more information about the empirical entity we tried to capture .

2.5.5. Subjective Measures

By de�ning the partial properties of a measure we can subjectively decide whether
a software measure is meaningful to us or not. If we accept the idea that an increase
in nodes of the control �ow graph leads to an increase in complexity, a measure
which captures this partial property is meaningful for measuring complexity for us
subjectively. This notion of subjective measures is also described by Fenton and
Bieman [26].

Of course the goal for any measurement would be that when performed under the
same conditions multiple times, it leads to the same result. When talking about
subjective measures, we are dealing with personal opinions when choosing the
kind of software measurement we use and subjective views when interpreting
the results. This leads to the problem that it is hard to �nd a common consensus.
However, as noted by Fenton and Bieman [26, p. 68-70] this does by no means
imply that subjective measures provide no bene�ts.
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Subjective measures can still be interpreted and provide important information
about the overall picture. For example if we are satis�ed with the idea that an
increase in nodes of the control �ow graph as captured by McCabes cyclomatic
complexity number [44] leads to an increase in complexity, we can use this measure-
ment to gain additional information about our software project. When applied to all
�les we will receive cyclomatic complexity numbers for each �le. These numbers
can now be used to identify modules of high complexity. Even though this sub-
jective view of complexity might not be the objectively agreed consensus, we can
still use this measure e�ectively to our advantage. An example for the procedure
described is presented by Clark et al. [17] who used McCabes cyclomatic complexity
number to identify modules which, relatively speaking, have the highest chance
of containing defects. This speci�c use of software measures is called ‘software
defect prediction’ and one of the most active research topics [52, 35] in the �eld of
software measurement.

The notion of comparing parts of a software project between each other on a �le to
�le basis as done by software defect prediction models can be described as a ‘safe’
way of using software measurements. As long as we are only comparing parts of a
software project between each other we are dealing with an ordinal scale. If we
for example calculate the Maintainability Index [18] for every �le in our software
project, we could then order all �les based on the results of our measurement. The
�les ranked at the bottom can then be investigated in detail to detect eventual
defects. However, often we want to compare entire software projects or at least
modules consisting of multiple �les between each other. A ‘go-to approach’ for
this scenario would be to calculate the arithmetic mean of all �les to end up with a
single number representing the Maintainability Index of the entire module/project.
However, calculating the arithmetic mean for an ordinal scale is not meaningful,
as it solely focuses on the ranking of objects in relation to others. The di�erences
between objects are not clear and not guaranteed to be equal [58]. Calculating an
arithmetic mean would impose that all the di�erence between our objects on the
ordinal scale are equal. This assumption can lead to wrong results, but as Stevens et
al. [58] point out, many times it still leads to ‘fruitful results’. It is important to note
the imprecision of these kinds of assumptions. When interpreting results based
on the arithmetic mean of a software measure, for which the scale is not clearly
de�ned, one has to keep in mind these �aws and be careful with decisions made.
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Restrictions for Statistical Operations

The scale we use for any particular software measure places restrictions on the kind
of operations we can perform with the results of our measurement. Depending on
the scale and the operations performed we end up with meaningful or meaningless
results. If we do not intend to use any mathematical or statistical operations to ac-
cumulate or analyze our measurement results, we are not faced with any problems
regarding the meaningfulness of derived statements. As an example if we wanted
to compare multiple �les between each other based on McCabes [44] cyclomatic
complexity number we could do so and would receive an ordinal scale with all
�les placed at a speci�c ranking position. However, if we then wanted to compare
entire software projects consisting of multiple �les we would have to calculate the
arithmetic mean of all �les contained in the project to retrieve a single number
representing the whole project.

In this case, the result would only be meaningful if we were dealing with an interval
scale. This is the case because when dealing with an ordinal scale the relative
distances between each object are unknown and could vastly di�er between each
other, whereas when dealing with an interval scale the di�erences are clear and
can be compared. Therefore, if we were to use the arithmetic mean we would have
to ensure that the measure we use results in at least an interval scale.

Zuse et al. [66, p. 57] use the notion of Extensive Structures as de�ned by Krantz et
al. [38] to classify the type of scale speci�c software measurements result in [66,
chapter 8]. An Extensive Structure places restrictions in the form of axioms on a
relational system. A relational system which ful�lls the axioms of an Extensive
Structure provides the properties needed for a ratio scale [38].

The process of identifying the scale of a measurement is not goal of this thesis,
therefore the reader is advised to view the original work by Zuse et al. [66] which
proposes a model for theoretically classifying software measures.
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2.6. Problems of So�ware Measurements

This section covers challenges faced when working with software measurements.
Additionally to problems faced when dealing with measurements in general, soft-
ware measurements bring their own set of challenges. Generally when using any
kind of measurement we have to ensure that our measurement actually measures
the empirically observable characteristic (f.e. complexity) we are interested in. Addi-
tionally for software measurements, we have to take care when using mathematical
operations since those are restricted by the scale our measurement results in, as
discussed in the previous section. Another issue for software measurement is that
some measurements which are a combination of multiple software measurements
(further referred to as compound measurements), such as the Maintainability Index
[18], are di�cult to work with when applied to a software project. When receiving a
‘bad’ value from the Maintainability Index practitioners often note that it is unclear
on how to improve the Maintainability Index [65]. This can be broken down to
the issue of an unclear mapping of the software measurement to observable and
undesirable characteristics in the code itself.

2.6.1. Measuring what ma�ers

When working with software measurements it is possible that we measure some-
thing di�erent than what we actually intended to measure. Following the de�nitions
of section 2.5.4 we know that software measurements are aimed at speci�c attributes
of the software. McCabes cyclomatic complexity number [44] inspects the amount
of conditional statements in the code, while Halsteads [32] measures depend on the
amount of operators and variables. Antinyan et al. [3] identify this characteristic
and classify the conventional software measurements presented in this thesis as
‘measures of size’. In [3] Antinyan et al. describe complexity in psychological terms
and combine it with software development. They identi�ed two di�erent kinds of
characteristics that a�ect software complexity and classify them into two categories:
accidental characteristics and essential characteristics.

Essential characteristics are growing proportionally with the size of the project.
Antinyan et al. [3] argue that these kinds of characteristics can not be reduced as
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they are ‘essential’ to the program itself. An example for such an essential charac-
teristic would be the amount of conditional statements (not nested). If a program
needs a certain set of decision to ful�ll the requirements, it is impossible to re-
duce the amount of conditional statements to reduce the complexity of the program.

Accidental characteristics on the other hand can be avoided and refactored [3].
These characteristics include deep nesting and misleading comments.

Antinyan et al. [3] proposed a list of software characteristics such as ‘Lack of
Structure’, ‘Deep Nesting’ and more [3]. Each of these characteristics is classi�ed
as either accidental or essential complexity. They conducted a survey asking more
than 100 developers to rate the proposed characteristics based on their impact on
complexity. Their results show that the characteristics classi�ed as ‘accidental’
have a signi�cantly higher impact on perceived complexity than the ‘essential’
characteristics.

Software measures such as the measures by McCabe [44], Halstead [32] and Chidam-
ber and Kemerer [16] are measuring essential characteristics [3]. Measures aimed
at essential characteristics can be seen as measures of size [3]. Antinyan et al. [3]
conclude that conventional software measures for complexity measure the wrong
set of characteristics. They propose that measures aimed at capturing the accidental
characteristics would lead to a more meaningful measurement of software com-
plexity.

This shows that even when dealing with measures aimed at quantitative attributes,
we have to subjectively decide if the attribute our measurement captures is an
indicator for the empirically observable characteristic (f.e. complexity) we want to
investigate.

2.6.2. Knowing what we measure

The Maintainability Index by Coleman et al. [18] combines di�erent software
measurements, namely McCabes cyclomatic complexity [44] and Halsteads e�ort
measure [32], into a single number representing the ‘maintainability’ of a software
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product. It can provide some interesting insights when comparing software projects
between each other, to a degree where one could decide whether to buy system A
or B based on their maintainability. However, when used by practitioners compound
measures such as the Maintainability Index are often criticized [65].

Through the combination of multiple software measurements into a single number
the direct mapping of code characteristics (f.e. the amount of conditional statements
captured by McCabes cyclomatic complexity [44]) is lost. This leads to issues when
trying to improve the Maintainability Index of a �le, since it is unclear which
changes will positively a�ect the score. Wu et al. [65] acknowledge the importance
of a direct connection from software measures to measurable code characteristics,
which have a negative impact on software maintainability (or other important
software attributes).

In [65] Wu et al. present their software architecture measurement system called
Standard Architecture Index (SAI). They acknowledge the need for software meas-
urements to e�ectively compare software projects between each other. However,
Wu et al. were more focused on the impact of their measurements on the software
development life cycle. By listening to the practitioners in their company they
came up with a list of software measurements associated with speci�c so called
‘architecture smells’ or ‘defects’ [65]. These ‘defects’ represent recognizable design
�aws such as traditional code-smells [28, p. 63-73]. Thus, when confronted with
a ‘bad’ SAI score, the development teams can look at the measurements taken in
detail and identify speci�c �aws (f.e. duplicated code) in speci�c �les. This approach
led to a signi�cant improvement in productivity and other aspects for HUAWEI
[65] and shows a good example of the usefulness of software measurements.
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3. Related Work

In this section other work aimed at comparing di�erent web frameworks is invest-
igated and the di�erence between existing approaches and the approach presented
in this thesis are highlighted.

The applicability of software measurements for comparing di�erent software pro-
jects is still up to debate. Problems such as the subjectivity of some measures and
the missing theoretical foundation for meaningfully applying statistical operations
such as the arithmetic mean are deterrent to the research in this �eld. This has
led a lot of researchers to use subjective measures, since these can still be used to
derive meaningful results for speci�c use cases [26]. While the goal of this thesis is
to investigate the applicability of quantitative software measurements, most of the
literature reviewed focused on qualitative attributes of the investigated frameworks.

Heitkötter et al. [34] propose a set of criteria and use it to compare di�erent frame-
works for the development of mobile web apps. In particular they compared jQuery
mobile, The-M-Project, Sencha Touch and Google Web Toolkit based on qualitative
attributes. In their work two reviewers were asked to rate the di�erent frameworks
based on prede�ned criteria on an ordinal scale. Their set of criteria was aimed at
two di�erent perspectives: the user perspective and the developer perspective.

The user perspective is aimed at capturing the acceptance of the software de-
veloped. In [34] this perspective was captured by criteria such as ‘User Interface
Elements’, ‘Load Time’, ‘Native Look and Feel’ and ‘Runtime Performance’. ‘User
Interface Elements’ were assessed by rating the amount of mobile friendly compon-
ents a frameworks o�ers. Possibly quantitative measurements such as ‘Load Time’
and ‘Runtime Performance’ were also measured by subjectively rating them on an
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ordinal scale.

The developer perspective includes properties of the framework which are aimed at
or perceived by the developers. Heitkötter et al. [34] de�ne a wide range of criteria
aimed at this perspective, some examples include: ‘License and Costs’, ‘Learning
Success’, ‘Development E�ort’, ‘Extensibility’ and ‘Maintainability’. Again, subjective
measurements on an ordinal scale were used to assess the di�erent frameworks.
Heitkötter et al. [34] measure Maintainability by assessing a given frameworks
compliance to good programming practices such as modularization. For example,
they concluded that the Maintainability of applications built using jQuery mobile
may su�er from jQuery mobile’s lacking support for modularization of components.

Sommer and Krusche [57] investigate di�erent cross-platform frameworks for mo-
bile application development. They mention the steadily increasing interest in the
mobile market and the di�culties involved. Since developing the same application
two or three times for di�erent mobile platforms is unfeasible, the use of existing
frameworks, which turn a single code base into native applications for multiple
platforms is advisable. In [57] a collection of such frameworks is presented and
evaluated based on di�erent criteria: ‘Functionality’, ‘Usability Features’, ‘Developer
Support’, ‘Reliability and Performance’ and ‘Deployment, Supportability and Costs’.
Similar to Heitkötter et al. [34], Sommer and Krusche [57] employ subjective meas-
urements using an ordinal scale to measure the presented criteria. ‘Functionality’
for example is rated based on the investigated frameworks o�er of API’s expec-
ted from mobile applications, such as network access and geolocation. For their
investigation the same application was built in the selected frameworks. They then
derived the measurements for the speci�ed criteria by evaluating their development
experience and comparing the resulting applications between each other. Sommer
and Krusche [57] identi�ed noticeable di�erences between the investigated cross-
platform frameworks investigated, especially concerning performance.

Another attempt at providing a framework to compare cross-platform frameworks
for mobile applications is presented in [24]. Dhillon and Mahmoud [24] acknow-
ledge the lack of comparison frameworks for cross-platform development tools
(CPDT) and present their own approach. Their analysis was split in three phases.
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Phase one analyzes the general capabilities of the CPDT in question. A list of
expected features is produced and for each CPDT the amount of features on the
list ‘supported’, ‘not supported’ and ‘partially supported’ is gathered. The goal of
this phase is to get an overview about the general capabilities of the frameworks
in question. The report of the �rst phase can therefore be used to determine if a
framework ful�lls the most basic requirements of the project at hand. When com-
paring this approach with [57], one can see that both works measure the features
o�ered in a di�erent way.

Phase two is aimed at measuring the performance of CPDT when compared between
each other or against native software development kits. Dhillion and Mahmoud
[24] use well established performance benchmarks for mobile applications and
compare the resulting response time in milliseconds.

While phase one and two measure quantitative attributes, such as amount of fea-
tures supported and di�erent response times, phase three focuses on qualitative
attributes of the frameworks. In phase three the ‘development experience’ is evalu-
ated. This contains information about available tools, such as IDEs and a discussion
about the learning curve.

When considering phase one of Dhillon and Mahmoud’s work [24], one can see
that they end up with numbers representing the amount of features supported, not
supported and partially supported for each mobile platform. Sommer and Krusche
[57] on the other hand go a step further and subjectively assign a value on an or-
dinal scale to allow easier comparison and communication. However, this additional
step hides quantitative attributes behind a subjective mapping to an ordinal scale.
While we could easily verify the list of supported features presented by Dhillon and
Mahmoud [24], we would have to exactly know and follow the procedure used in
[57] to reach the same result as presented in their work. Even though both works,
[24] in phase one and [57] with their measurement of ‘Functionality’, measure the
same thing - the features provided by the framework in question - the veri�ability
of the measures vastly di�ers. This di�erence shows the importance of measures
aimed at quantitative attributes.
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A recent study by Majchrzak et al. [42] presents a comparison between modern
CPDT, namely React Native, the Ionic framework and Fuse. In [42] the same ap-
plication was built using all three CPDT. Majchrzak et al. [42] then discuss the
advantages and disadvantages met during the development with each framework.
Their work focuses on qualitative attributes of the presented frameworks and
provides an overview of the current state of the discussed frameworks and their
applicability for practitioners.

We can see that works focused on framework comparisons mainly target qualitative
attributes and involve subjective measurements. Therefore our work tries to apply
measurements aimed at quantitative attributes to investigate their applicability to
the domain of framework comparison and provide advice based on repeatable and
generally veri�able measurements.
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During the experiment a wide variety of di�erent software packages was used. The
use of these tools ranges from being at the core of the system (the frameworks used)
over assisting the development up to calculating the investigated measurements.
This chapter will cover the software which was used during the experiment. The
main focus of this chapter will be to describe the two frameworks - Laravel and
ReactJS. The rest of this chapter is structured as follows: The following sections
will provide a basic introduction into ReactJS and Laravel. The �nal section of this
chapter will present the tools used for measurement. This includes a presentation
of the self-made tool written to aid this experiment.

4.1. Frameworks

Software we build today is expected to be working for the next few years. For big
projects this requirement poses an easily underestimated challenge as the increas-
ing size or scope of the project at hand can make it harder to change the system to
�t new requirements. We refer to this as the maintainability of a software project.
With the wish to keep our projects maintainable modern software development
makes use of established design patterns built upon a common consensus. Web
frameworks are often built with some of these design patterns in mind and provide
developers with an easily extensible system which implicitly enforces certain design
patterns or software architectures.

The frameworks used for this experiment are ReactJS and Laravel. While Laravel
focuses on established design patterns and a conventional Model-View-Controller
software architecture, ReactJS provides a modern take on UI development which
enforces a component based software architecture. The following sections will
cover ReactJS and Laravel in more detail.
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4.1.1. ReactJS

ReactJS 1 is a modern front-end framework developed by the company Facebook.
It aims at providing a framework which makes it easy to develop maintainable
user interfaces, while the main focus remains on usability. The main idea used
to increase the maintainability of the resulting application is to use a component
based structure. This aims at enforcing two important implications: First of all, the
component like structure induces a separation of concerns which arguably may
lead to less ‘super components’ responsible for all the work done by the application.
Instead, each component is supposed to take care of the variables (the ‘state’) it
needs to display itself and provide the functionality it is supposed to provide.
Secondly, to retrieve a component based structure one has to think about the
structure of the application beforehand. This is an important step which may
arguably lead to better software architectures as it requires developers to think
about how components will interact with other components in the architecture.
Components in ReactJS come with properties, a state (often, but not always) and
life-time functions.

Properties (or props for short) are passed to components when they are rendered.
An example would be<App debug=true/>wheredebug is a property
and true the assigned value. Props are usually used to pass down the
state or functions of the current component to other components lower
in the hierarchy. It is important to note that props are read-only, which
is the reason why most of the time functions are passed via props. These
functions can be called from the child components to trigger an action in
parent components, practically allowing child components to modify the state
of parent components. This way, all the logic needed to modify the state of a
component is kept inside the component itself, as child components can only
modify their parents state by using the functions passed down and de�ned in
the parent components de�nition. As discussed earlier, this enforces a sense
of separation of concerns which can result in a �exible system and reusable
components.

State: The state of a component is supposed to encapsulate variables needed by the
component to properly function. Simple components may not need a state.
These components are called ‘functional components’ and are often written

1version 16.8.6
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as pure Javascript functions, while conventional components - which use a
state - are de�ned as Javascript classes, extending the React Component
base class.
Most components will need to use a state. For example a form would keep
track of the users input by writing whatever is typed into an input �eld into
an associated variable kept in the state.
The state of a component has to be speci�cally de�ned in its constructor.
At the same time the structure of the state should also be de�ned at this
initialization step. This once more enforces the notion of planning how
the component will look like and what functions it will ful�ll. Once the
state is setup a component will usually contain functions reacting to certain
events f.e. ahandleChange function which gets called once the user types
something into an input �eld.
Both, changes to a components state as well as changes to their props will
cause the component to be re-rendered - or in other words update. These
updates and other events can be intercepted using ‘lifecycle methods’.

Lifecycle Methods provide a way to execute speci�c code at certain points of time
based on the current component. The lifecycle methods provided by ReactJS
have changed over time and will probably change in the future. Examples for
available lifecycle methods in the ReactJS version used for this experiment are
componentDidMount which is called once the component got rendered
the �rst time, componentDidUpdate which is called once the state or
the props of the component changed and componentWillUnmount
which is called once the component is no longer a child component of any
rendered component.

Since ReactJS is speci�cally designed to build user interfaces it can not be considered
an one-for-all solution as for example Laravel. This means, that unlike Laravel,
ReactJS does only provide features for the front end part of an application but does
not provide any functionalities expected from a back end as for example session
storage or routing HTTP requests. In other words, when building a conventional
web application with users logging in and working with resources, ReactJS will
most likely not be enough.

ReactJS does not aim to be an all-in-one solution. It is a Javascript library aimed at
creating user interfaces and nothing more. It is meant to be included into projects
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and used along with other technologies. In our case we used a fairly common
approach which is called a ‘MERN’ stack. This abbreviation stands for MongoDB,
ExpressJS, ReactJS and NodeJS, which is a convenient shorthand capturing all
technologies involved for the ReactJS side of this experiment.

NodeJS

NodeJS 2 is a Javascript runtime allowing the development of di�erent types of
applications using Javascript as a programming language. It automatically comes
with a package manager called npm 3 which allows anyone to install publicly
available packages in mere seconds. The vast amount of available packages can
lead to signi�cantly lower development times as parts of your business logic might
be handled by an external library.

MongoDB

One of the more popular choices for non-relational or so called ‘NoSQL’ databases
is MongoDB. MongoDB uses a ‘Document-Store’ which is one of multiple versions
of data stores available for NoSQL implementations [33]. As a document store,
data stored in the database is stored in a semi-structured fashion. We can create
databases as usual and databases can contain collections, which can be understood
as tables in a conventional MySQL database. In these collections we can now store
documents. Again, compared to a MySQL database these documents are the entries
of a table. The major di�erence between the two however is that the documents
stored in a collection do not have to follow a strict format or more precisely a strict
schema, while entries in a MySQL table have to �t the schema de�ned by the table.

When it comes to web development often a MySQL database is used for simplicity.
Laravel for example is generally built to use a MySQL database. However, a fairly
modern development especially fueled by cloud computing and cloud services
has lead to a shift away from conventional SQL databases to databases which are
generally described as NoSQL databases as for example MongoDB.

2version 10.15.3
3version 6.4.1
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MongoDB is often used in cooperation with ReactJS or other Javascript frame-
works since its structure for documents uses the javascript object notation (JSON).
However, the selection of the database used should be considered a little more
thoroughly and should not be based solely on the fact that the entries use the some
object notation as the programming language used, since this can easily be achieved
by converting the data formats.

With MySQL still being one of the leading database in use today a lot of research is
put into this technology. MySQL will work �ne for most applications. However,
applications with a lot of transactions which can not be bundled together or a huge
amount of di�erent table entries pose a performance problem. Since MySQL works
on relational databases it is impossible to horizontally scale the database, since this
would break certain relations. The only possibility remaining for scaling is to use
better hardware (scale vertically).

Scaling vertically is generally something you would like to avoid as it is expensive
and has an upper bound; which means using the best hardware available and then
having to wait until better hardware is available. This is already one of the big
disadvantages of MySQL and one of the reasons why technologies like NoSQL
appear to be a viable option.
NoSQL does not rely on relational concepts and therefore you can easily split your
dataset which allows you to scale horizontally which is cheaper and virtually un-
limited. This promise of being cheap makes it an attractive choice for new software
projects.

In our experiment MongoDB 4 in combination withmongoose 5 was used.mongoose
provides developers with an easy way to de�ne schemas for models even though
in the background we are using a non-relational database like MongoDB.

4version 4.0.2
5version 5.6.9
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ExpressJS

Since ReactJS is only aimed at building user interfaces (or in other words the front
end part of the application) we need an additional framework which aims at provid-
ing us with the tools we need to develop the back end part of the application. A
well known framework for developing web-based applications with NodeJS is the
ExpressJS 6 framework.

It provides developers with simplistic interfaces to handle HTTP routing and en-
courages the use of the so called ‘Interceptor’ design pattern. Instead of using the
term ‘interceptor’ directly, ExpressJS uses the term ‘middleware’.

Middleware can be used to modify the request or do some speci�c work before
the request gets passed on to the next handler - which might also be another mid-
dleware. Built upon this principle there is a vast selection of di�erent middleware
available for ExpressJS - each of them aimed at a di�erent aspect of back end devel-
opment.
To aid the development of our application we used several of these middlewares. For
example, to enable authentication for our application a library called Passport 7

was used. To use it together with ExpressJS speci�c middleware has to be registered.
Additionally, to use conventional session management on the back end side a mid-
dleware speci�cally for this use case express-session 8 was also used.

ExpressJS provides the ability to de�ne routers aimed at de�ning routes which
get recognized by the application and then passed to their respective handler.
These handlers are often grouped together on a per resource or model basis and
organized in so called controllers. This quickly leads as to a conventional Model-
View-Controller architecture, even though ‘View’ is not a �tting term for React
applications which use Redux. Usually when talking about a view it is not sup-
posed to contain application logic. However, for ReactJS - especially with a setup
using Redux - a signi�cant amount of application logic is found in the front end
of the application while the back end mostly focuses on persisting the data on

6version 4.17.1
7version 0.4.0
8version 1.16.2
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the server. This approach gives developers the ability to develop web applications,
which can be used even though there is no connection to the web. The code used
for the front end can be cached on the client while any actions which would result
in changes on the back end can be stored and sent once the back end is available.

Redux

Even though not part of the MERN stack Redux 9 is commonly used when de-
veloping ReactJS applications. Usually components have a state and associated
functions which modify said state. Since our application will consist of a multitude
of components, it is likely that after the application reaches a certain size some
components will depend on the state of another component. ReactJS is generally
designed in such a way that the state is only passed down to childs, and not the
other way around. For many use cases this can lead to problems once multiple
components depend on the same set of variables as for example a list of resources.
With ReactJS in general, such a list would have to be placed high in the hierarchy
and passed down through multiple components until it reaches the component
which needs them. This leads to arguably unnecessary code and props being passed
to components which do not rely on these props speci�cally but only get them to
pass them down to child components.

To prevent such important state variables from polluting the hierarchy a ‘cent-
ral’ state, available to all components, can be used. Redux exposes a so called
‘Redux store’ to the application which is responsible to handle the applications
state. This application state is generally available to every component, however
since not every component will need everything that is contained in the applica-
tion state each component has the ability to retrieve a subset of the application state.

To read data from the application state stored in the Redux store a component
has to de�ne a function which maps the data from the application state to the
components properties. This function is usually called mapStateToProps and
takes the application state stored in the Redux store as an input and returns a
Javascript object where the key de�nes the name of the property under which the

9version 4.0.4
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component can access the value. The value is simply the value of the application
state the component needs to access as for example state.user. To access the
value the component needs to access the property with the name de�ned in the
mapStateToProps function. If the value in the application state changes the
component gets re-rendered as expected.

While reading data from the Redux store is fairly simple, changing the application
state follows a more sophisticated approach. Redux uses so called ‘Actions’ and
‘Reducers’ to manipulate the application state. Changes to the application state
should solely be handled by reducers which modify the state in a way depending
on the speci�c actions which occur.

Reducers are functions which take the current state and the current action as
input and usually contain a switch statement or multiple if statements. If
the type of the current action is recognized, the reducer executes certain
functionality and usually updates the state in a speci�c way and returns the
new state containing the changes induced by the action. If the action type is
not recognized, usually the current state is returned unaltered.
It is important to note that an application will most of the time consist of
multiple reducers and not only one. In this case, each reducer is responsible for
a speci�c part of the application state. An example would be to use a reducer
responsible for changes to the user model stored in the application state,
while another reducer might be responsible for a speci�c type of resource
which is also stored in the application state. Each reducer only receives its
speci�c current state as input and also solely returns its resulting state. A so
called ‘root reducer’ is then used to combine the results of all reducers into a
single application state.

Actions are commonly de�ned as Javascript objects containing a type and a pay-
load. The type is used in the reducer to trigger speci�c behavior or change
the state in a speci�c way. The payload is used to provide any additional
information the reducer might need to ful�ll the expected behavior or change
in the state. To trigger any behavior associated with an action, it has to be
‘dispatched’. This can be understood as a way of broadcasting an event. By
dispatching an action, every reducer will check if it has to react to the speci�c
type of action which was dispatched.
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There is a variety of ways of how to handle Redux actions in any applica-
tion. For this experiment our Redux actions were merely Javascript objects
containing a type and a payload which is used to transfer data from user
interactions to the reducer.
The reducer in this case is the only instance which executes certain behavior
and changes the application state. An example would be if we have an action
which tells our application to update the pro�le picture of the user. Our
reducer would react to an action we have dispatched and turn the image into
a base64 URL before updating the application state by writing the new base64
into the profile_picture �eld of the user model.

Another approach for Redux actions which is commonly found is that they are
not simple Javascript objects but instead functions. Taking the example from
before, this would mean that the action itself is a function and would turn the
image into a base64 URL. However, since the only instance which is supposed
to change the state is a reducer, this style of actions will usually dispatch
other actions (this time not functions but once again Javascript objects) which
are then handled by the reducer to update the state. This has the advantage
that the reducers contain less functionality and are solely focused on updat-
ing the application state, which most of the time can be done using simple
operations. On the other hand, this adds the need for additional actions: One
to signal that an event happened in the UI, which in turn executes a speci�c
function. However, to update the application state this function now has to
dispatch another action of a di�erent type which is recognized by the reducer.

There are additional constraints to be aware of when dealing with actions.
One of the most important ones is the fact that actions are not supposed
to be asynchronous, but synchronous. The same holds for any functions in
reducers. This has a signi�cant impact on the design of our application as it
does not allow us to handle any asynchronous actions (as for example any
interaction with the back end) in Redux actions or the reducers.
To solve this problem there are libraries which change the way actions are
handled by Redux and e�ectively allow them to contain asynchronous code.
The solution used for this experiment however uses a di�erent approach,
where an additional type of element is added to the Redux ecosystem - so
called ‘Sagas’.

Sagas provide a convenient solution for executing asynchronous code when using
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Redux. They are provided by a library called redux-saga 10 and seam-
lessly integrate into an existing Redux application. Similar to the middleware
of ExpressJS, Sagas also follow the notion of the Interceptor pattern to add
additional functionality to the Redux ecosystem. Sagas need to be registered
using so called ‘watchers’. A watcher connects a speci�c action type with
a speci�c Saga, which contains the functionality associated with the action
type. Once registered, Sagas will react to actions dispatched in the application
just like reducers. However, unlike reducers which sole purpose is to update
the application state, Sagas are meant to execute some functionality based
on the payload of dispatched actions. Most importantly they are built in an
asynchronous fashion, allowing the developer to use asynchronous code in
the Redux ecosystem. This allows us to react to any action dispatched in
our application and execute asynchronous code like for example saving or
updating resources using the back end application and waiting until said
asynchronous interactions are �nished. Usually Sagas execute some asyn-
chronous code and after that is �nished dispatch an action to change the
application state based on the results of the request.
This is similar to the approach described above, for which actions contain
functionality and use other actions which are recognized by the reducer to
update the state. However, the important di�erence in this case is that, while
with Sagas our actions are solely Javascript objects containing a type and a
payload, without Sagas our actions would be of a mixed form: some actions
are functions possibly containing application logic, while others are merely
Javascript objects.

4.1.2. Laravel

Laravel 11 is a PHP framework aimed at providing developers with commonly used
features out of the box and additional tools aimed at helping developers to write
code which is easy to understand. Furthermore, a command line interface which
can be used to generate basic sca�olding or even run a web server for quick devel-
opment setup is included. Recent iterations also automatically come with additional
tools which follow modern web development trends such as using webpack 12 to

10version 1.0.5
11version 5.8.22
12https://webpack.js.org/

50

https://webpack.js.org/


4.1. Frameworks

bundle Javascript code.

One of the biggest advantages of using Laravel is the amount of features included
in the framework out of the box. Laravel assumes that most applications will need
basic login functionality. Even though they do not enforce this, one can use a single
command using Laravels command line tool artisan - which is automatically
included - to generate all the functionality associated with authentication. This
includes

• Register
• Login
• Request password reset token
• Reset password using reset token

By con�guring a mailing service in the con�guration �les of the framework we
can end up with a fully functional authentication system without writing a single
line of code. Other security related features are also handled by the framework out
of the box and do not require the developers to take any additional action.

An example for this would be that every request sent to the back end must include a
‘cross site request forgery’ (csrf) - token. This token can be generated automatically
in the view and added to the form with a single line of code. The library used to send
asynchronous requests to the back end (axios 13) is automatically con�gured to
use any csrf - tokens found on the current page for every request which is sent.

Laravel also o�ers an extensive set of optional packages which can be used to
quickly add other commonly used features to the application. An o�cial package
called Laravel Passport can be used to quickly add open-authentication functional-
ity to the web application, which seamlessly integrates into the existing login and
register procedure. Another example would be Laravel Cashier which can be used
to quickly setup billing options for users.

Laravel uses multiple design patterns in di�erent places to encourage good design
principles. An example for this would be the use of the Facade pattern for most of

13version 0.19
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Laravels helper functions. Facades are used to provide a simple interface for more
complex underlying functionality. They usually implement multiple static func-
tions which can be used to conveniently access important functionalities anywhere
in the application by simply importing the facade which implements the desired
functionality. Probably the most commonly encountered example for such a facade
in Laravel would be the authentication facade which can be used to retrieve the
currently authenticated user anywhere in the code. There is a multitude of facades
providing di�erent functionality ranging from providing routing information to
storing �les which are publicly accessible.

Even though the command line interface comes with a web server which can be
used to quickly setup the project and start developing, it is not meant to be used
in a production environment. This means to run a Laravel application on a server
we have to use a web server which is capable of parsing PHP. Most commonly the
Apache HTTP Server or nginx are used. For this experiment we used the Apache
HTTP Server which was bundled with Ubuntu 14.

The general architecture of a Laravel application follows the Model-View-Controller
architecture. While the controllers are built using conventional PHP classes, Laravel
comes with its own set of features when it comes to models and views. It is not
necessary to use the features Laravel o�ers for models and views, however since
we wanted to focus on using each frameworks best practices and core features in
our experiment, we decided to stick with the features Laravel o�ered and covers in
its documentation.

Views in Laravel - Blade Templating Engine

To conveniently display information generated by the controller, Laravel uses its
own templating engine called ‘Blade’. By using Blade it is possible to write basic
HTML �les which contain fragments of PHP code. To keep the HTML �les clean,
Blade comes with its own syntax. Even though it is similar to basic PHP it does
help to keep the code clean since its so called ‘Blade directives’ are much more

14version 18.04.2 LTS
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concise than their PHP counterparts.
Blade directives are translated into speci�c PHP code by the templating engine
before the HTML code is sent to the user. These directives provide basic function-
alities needed for views; mainly focusing on displaying data and structuring the
code. Common examples for displaying data include

• if statements

<html >

@if ( $user−>l o g g e d I n )
<h1>Welcome { { $user−>name } } . < / h1>

@else
<h1>You have t o be l og g ed i n t o a c c e s s t h i s page . < / h1>

@endif

</ html >

• for statements

<html >

<ul >

@foreach ( $ a r t w o r k s as $ar twork )
< l i > { { $artwork−> t i t l e } } < / l i >

@endforeach

</ ul >

</ html >

The double curly braces{{ $variable }} are used to access the encapsulated
value.
E�ectively this is a shorthand for writing <?php echo $variable; ?>.
Blade comes with a multitude of di�erent directives and not all of them will be
discussed in this section. A comprehensive list can be found in the documentation
for the Laravel framework.

53



4. So�ware and Tools

Additionally to Blade directives for conditional statements and loops, Blade direct-
ives which allow us to split code into multiple �les are also commonly used.

Blade allows to de�ne a ‘parent’ view which can be extended by other views at a
later point in time. This is done by de�ning so called sections using the section
blade directive in the de�nition of the parent view. Other views which should
inherit the structure of our parent view can then use the extend blade directive.
By doing so the only thing left to do in the child view is to de�ne the content
which should be inserted into the sections of the parent view. Additionally, the
include directive can be used to directly render another view at a speci�c point
in the current view. This allows developers to use a component based approach
when developing user interfaces which also means the components can be built in
a reusable fashion.

Models in Laravel - Eloquent ORM

As most web based applications will use a database, Laravel comes with a library
for an object-relational-mapping (ORM) to easily handle access to the database,
called Eloquent. While it is possible to use di�erent database types and possibly
even NoSQL databases like MongoDB, Laravel assumes that a MySQL database is
used. Eloquent supports MySQL databases out-of-the-box, so we decided to use a
MySQL database for the Laravel side of our experiment.

For Eloquent to work it is not su�cient to only setup model �les and de�ne all
�elds and relations there. It is necessary to write so called ‘migration �les’ which
contain all changes which should be applied to the database. This means if we want
to add a new model to our application we would have to �rst write a migration to
create the table. Additionally, the migration �le also has to include all the �elds
which should be stored in the created table. Laravel provides a convenient interface
to write these migrations, however it is still necessary to precisely de�ne every
data type for every �eld of our model.

After writing and executing the migration �le, it is necessary to write a conven-
tional PHP class to de�ne the Eloquent model. Most of the time this �le will include
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a list of all the �elds de�ned in our migration �le (which de�ne the structure of the
table stored in the database). If our model comes with any relations, these relations
also have to be de�ned in the model �les with their corresponding foreign keys.
These model �les can now be included at any point in our application and will give
us access to the underlying model �elds.

When de�ning a route to access a resource f.e. /artworks/1 where 1 is the ID
of the artwork we would like to view, Eloquent provides us with convenient ways to
access the underlying model. Each route is handled by a speci�c controller function.
Controller functions include a de�nition of the arguments they take. Usually they
will take the request as an argument, however it is possible to additionally specify
an argument with a speci�c model type. If this is done, Eloquent will automatically
search for the model with the ID given by the route and make it accessible in the
body of the controller function. If the model with the given ID is not found, then
Laravel will automatically return a response with error code 404.

4.2. Measurement

This section will cover information about the tools used to conduct the various
software measurements investigated during this experiment. Both sides of the ex-
periment use their own set of tools, however it was necessary to develop additional
tools mainly to assist in combining the results from various sources and to ensure
the calculation of the measurements is done in a similar fashion. However, since
we did not �nd any tools to calculate software measures for the Blade �les of the
Laravel side we wrote a tool to conduct those measurements. This tool will be
described at the end of this section. The following sections will brie�y cover the
tools used to conduct the basic software measurements on each side. While this
section aims to give a brief overview over the tools used, chapter 6 focuses on
detailed information about how to speci�cally calculate each measurement and
how they were calculated over the course of this experiment for both sides.
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4.2.1. Tools used for ReactJS

There are di�erent solutions for calculating software metrics for Javascript projects.
However, since ReactJS uses JSX - an unique syntax, basically a combination of
Javascript and XML - most tools will not work for ReactJS projects out of the
box. The solution we used for our experiment is called plato 15 which is able to
generate a HTML report for an entire software project. To further process the data
generated using plato we used gulp 16. With gulp we extracted the results
of the measurements by plato and combined them with the results of the other
tools used for measurement.

While plato was used to calculate the Halstead metrics [32] and McCabes
Cyclomatic Complexity [44] a di�erent tool called dependency-analyze
17 was used to calculate A�erent-Coupling, E�erent-Coupling and Instability [43].
dependency-analyze can be used to retrieve the list of dependencies a given
Javascript �le has. We calculated this list for every �le in our project and used this
information to calculate the values for A�erent-Coupling, E�erent-Coupling and
Instability. The exact procedure we used to calculate these measurements can be
found in section 6.1.

4.2.2. Tools used for Laravel

For Laravel we used phpmetrics 18 to calculate the Halstead Metrics, McCabes
Cyclomatic Complexity, A�erent-Coupling, E�erent-Coupling, Instability and the
Maintainbility Index [18]. However, phpmetrics can only be used to calculate
these measurements for PHP classes. Since the project did not solely consist of PHP
classes, but also included Javascript and Blade �les (special syntax used for views)
this single tool did not su�ce to conduct the measurements on its own.

To calculate the measurements for the Javascript �les in the project we used the
same tools and methods as we did on the ReactJS side of the project and combined

15version 1.7.0
16version 4.0.2
17version 1.2.1
18version 2.4
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the results of those measurement tools with the ones of the tools of the Laravel
side. However, to conduct the measurement on the Blade �les of the project, we
had to develop a parser for Blade syntax and use it to calculate the values for the
measurements.

Parsing Blade Syntax

To parse the views of the Laravel side and retrieve an abstract syntax tree which
we can then traverse to conduct the software measurements, we used ANTLR 19.
Since ANTLR is a popular tool we were able to �nd the lexer and parser de�nitions
20 needed to parse basic PHP syntax. We adopted these lexer and parser de�nitions
to support basic Blade syntax by adding lexer and parser de�nitions for Blade dir-
ectives. While the tool is able to parse most of the Blade directives available, there
still might be deviations which can not be parsed. However, for our experiment we
agreed on using only a subset of the available Blade directives. We would like to
add that even though this sounds severe, this did not have a signi�cant impact on
the development of the application since there are only a few simple and commonly
used Blade directives while there is a multitude of speci�c complex ones, which
can be helpful but are mostly syntactical sugar and not required.

Only a small set of Blade directives was relevant for our measurements. To calculate
the cyclomatic complexity number we needed to detect any if Blade directives. To
calculate the A�erent-Coupling, E�erent-Coupling and Instability of Blade �les we
used the include and extends Blade directives and treated each of them as an
outgoing dependency or import in other words. For the remaining measurements
no additional Blade directives had to be considered.

Our tool only provides functions to detect the three Blade directives mentioned
above. Additional constraints apply: The lexer and parser de�nitions used were
not able to parse new php7 syntax like the new null coalescing operator ??.
Furthermore, we did not include de�nitions necessary to parse Blade comments.
We developed our application with these constraints in mind, meaning that we did

19version 4.7.2, https://www.antlr.org/
20https://github.com/antlr/grammars-v4/commit/

4fd80d744908569957eb54d87a51ae3368faa7b1
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not use the ?? operator and also did not use any Blade comments in our views.
Additional constraints not mentioned here may apply, however they were not
discovered over the course of this experiment.
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To evaluate the chosen software measurements and their applicability to the chosen
web frameworks, we developed the same application twice in both frameworks. This
chapter will cover information about the application developed and the development
process. We will look into a brief description of the application developed and the
expected features. This is followed by a description of the di�erent sprints we used
to split the development process. Finally, we will look at the di�erent architectures
implied by the two frameworks used and discuss their attributes and expected
in�uence on the software measurements.

5.1. Overview and Expected Features

As it was necessary to have the same application with an equivalent feature set
developed in two di�erent frameworks we decided to develop our own example
application. We decided to build an application for an actual real-life use case.

5.1.1. Overview

For this experiment a web-application which enables users to organize artworks
and artists was developed. The application should allow users to upload artworks
and add important information such as the title, the artist and more. This includes
expected features such as the ability to edit and delete artworks. Additionally, users
should also be allowed to add artists along with information about them to the
system. This also includes the ability to edit and delete artists. As an additional
feature users should be allowed to create an invoice based on a price for a speci�c
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artwork. Fields to specify tax and discounts should be available and the generated
invoice should be download- and viewable as a PDF document.

5.1.2. Expected Features

Following is an exhaustive list of features with a short description:

Authentication: Users should be able to register accounts and login afterwards.
Additionally, this includes the ability to request a ‘forgot password’ token
which can be used to reset the password.

Artworks: Users should be able to upload artworks and add additional information
such as artwork title, artist and year of creation. They should also be able to
change this information at a later point in time and delete any artworks if
necessary. Also, a list of the currently added artworks should be shown with
an overview containing the most important information about artworks.

Artists: Users should be able to implicitly add artists by entering their name
when uploading an artwork but should also be able to add artists manually.
Additionally, they should be able to edit existing artists to add additional
information like date of birth. There should also be a list showing all artists
currently known to the system.

Invoice: Users should be able to generate an invoice for a speci�c artwork. Users
are able to select a price for an artwork and add additional tax and discount
information to the form which is added to the invoice. The invoice should be
download- and viewable as a PDF document.

Dashboard: After logging in, the user should see an overview of all the artworks
currently known to the system. It should focus on displaying the artworks
and not contain much information about the artwork itself. Speci�cally, in the
dashboard view only a picture, the title and year of creation of the artwork
are shown.

This list of features led to the de�nition of sprints described in the next section.
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5.2. Sprints

To be able to investigate the evolution of software measurements over the develop-
ment of an application that advances in a similar fashion we decided to split the
development into a �xed set of sprints. Each sprint aimed at adding a speci�c set
of features to each application. Measurements were conducted at the end of each
sprint for each of the two frameworks. The following list shows the short-hand
we chose for each sprint and a short description. As one can see we designed the
sprints to contain speci�c features from the list shown in the previous section:

initial: Both examined frameworks required some speci�c steps to get the frame-
work up and running. The end of this sprint marks the ‘bare-bones’ setup of
each framework, showing a traditional ‘Hello world’ page.

framework-setup: This sprint aimed at adding a speci�c design template to the
framework. At the end of this sprint the frameworks contained sca�olded
components for login and registering without any functionality.

login: Here, all the functionalities needed for users to register and login were
added to each framework. Additionally, the users are able to request a reset
password token which can be used to reset their password.

artwork: At the end of this sprint users were able to add new artworks to the
system, as well as edit and delete them. This includes asynchronous uploading
and extensive form validation.

artists: After the previous sprint artists could already be implicitly added by
naming them upon creating an artwork. After this sprint however users
were able to explicitly add artists and also edit their information as well as
delete them.

invoice: The sole purpose of this sprint was to add the ability to create an invoice
for an artwork. The generated invoice should also be download- and viewable
as a PDF document.

final-changes: The �nal sprint was used to clean up and refactor existing code
and added a dashboard showing all artworks.
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5.3. Architectures and Expected Impact on
Measurements

This section will discuss the architectures of the resulting web applications. A
short description of the architectural components is given and their interactions
are described. Firstly, we will look at the architecture of the ReactJS application
before we will cover the architecture of the Laravel application. The last section
will discuss the connection between certain attributes of the architecture and the
speci�c frameworks used, and will discuss the expected impact of those attributes
on speci�c software measurements.

5.3.1. ReactJS

ReactJS suggests a component based approach to create maintainable user inter-
faces. This leads to a separation of concerns as UI components are built in a way
that they can independently ful�ll their speci�c function. In our architecture we
payed additional attention to the separation of concerns, leading to multiple archi-
tectural components, each of them designed to ful�ll a speci�c task. In the following
paragraphs UI component refers to a component built and used by ReactJS where as
an architectural component refers to a component in the software architecture.

Figure 5.1 shows the architecture for the web application built using ReactJS and
demonstrates common interactions between the architectural components. Views
consist of a multitude of UI components organized in a hierarchy similar to any
HTML or XML document. In our application a ‘layout’ component is usually the
highest in the hierarchy. There are only two layouts available: one for users who are
not currently logged in, which is used to display any authentication functionality
and the second one which is a dashboard layout and used for any other functionality.
Each layout contains a so called ‘React Browser Router’. When using the browser
router it is possible to de�ne ‘React Routes’ which can be used to decide which UI
component should be rendered at the moment based on the URL the user is viewing.
This means we can link an URL f.e. localhost/login to an UI component
like a login form. As shown in Figure 5.1 this leads to a hierarchical structure in the
view as the login form UI component will contain multiple di�erent UI components
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Figure 5.1.: Architecture of the web application built using ReactJS. For views, every module shown
represents a ReactJS UI component. The connections between the UI components rep-
resent the hierarchical structure of the views. The layout components are the highest in
the hierarchy and are responsible to render the correct component based on the URL
the user is currently viewing. As an example the ‘Login-Form’ - component is rendered
which itself imports and renders other components. For the rest of the �gure every
module represents architectural components while the arrows indicate interactions
between these architectural components. A stack of modules indicates that there are
multiple instances of the speci�c architectural component. For example there are mul-
tiple controllers - one for each resource - and multiple routers. Speci�c user interactions
f.e. submitting a form should most likely cause changes which do not only a�ect the UI
components currently rendered, but instead a�ect the entire application. (f.e. creating
a resource) These changes a�ect the application state which is stored by Redux. To
change this application state the views can dispatch Redux actions. Redux actions are
then handled by Sagas and Reducers. Sagas contain processing logic and usually use
the information gathered during an user interaction to send asynchronous requests
to the back end. Sagas send their requests to speci�c URLs provided by the routers
de�ned in the back end. Routers are used to expose speci�c URLs and pass the request
to controller functions which handle the speci�c request. Controllers use mongoose
models to interact with the database. After processing a request, controllers return a
JSON response. This response is once again handled by Sagas. The information contained
in the response is checked for errors and in both cases causes speci�c Redux actions
aimed at modifying the application state to be dispatched. These actions are recognized
by the Reducers and lead to a change in the application state which automatically leads
to an update in components which are a�ected by the change. 63
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to f.e. show input �elds and so on.

After the user �lled out a form we usually want to use the information in the form
to update or create a resource. In our application the form itself should only contain
code relevant for keeping track of the input �elds and reacting to user input such as
hitting the cancel or submit button. It should not be responsible to send the request
to the back end nor should it be responsible to keep track of the progress of the
request. Instead, it should format the data received from the user and pass it to a
Redux Saga and then be noti�ed if the state of the request changes. To pass the
information gathered from the user to the corresponding Redux Saga responsible
to handle this speci�c request, the form component dispatches a Redux action with
a speci�c action type. The corresponding Redux Saga was registered in a way that
it reacts to any actions dispatched which have this speci�c action type.
The Redux Saga is now responsible to transform the formatted information into
a HTTP request and send it to the correct endpoint de�ned by the back end. The
available endpoints are de�ned using so called ‘routers’ provided by ExpressJS.

It is common practice to have one router per controller and since we use one con-
troller per resource, we end up with one router per resource. Each of these routers
de�nes a set of routes, each of them associated with a speci�c HTTP method. If a
request is received which �ts a route de�ned by any router, it is usually passed to a
set of middlewares which are used to verify the validity of the request received and
�nally passed to a handler which is a function provided by a controller.
Controllers are responsible to process the request and manipulate existing models
or add new ones. The models we use are provided by mongoose and allow ac-
cess to the information stored in our MongoDB database in a structured fashion.
Speci�cally, this means in our code we are solely editing Javascript objects and
after we are done working with them, we call speci�c functions f.e. .save() to
update their information stored in the database with the new values.
After the controller is �nished processing the request it returns a JSON response
containing request speci�c information. Generally, information about the success
of the request and possibly error messages are contained in the responses. The
responses are once again handled by the Redux Sagas. Depending on the success of
the request actions to update the application store are dispatched. These actions
forward the information contained in the response received from the back end and
are handled by their corresponding Reducers which in turn update the application
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state. Once again we generally use one Reducer for each resource, however there
are additional Reducers which keep track of other important information.
For example, we use an ‘API - Reducer’ to keep track of the state of any requests
sent to the API. Components can use the information produced by this Reducer to
change based on the current progress and state of any requests.

Our Sagas were also organized on a per-resource-basis originally. However, since
our views were held responsible to transform the information entered by the user
into the correct format for processing by Sagas, we ended up with similar code for
each resource. So instead of having a Saga for each resource we ended up combining
the Sagas into a single Saga which is responsible for handling API requests and
responses, independent of the type of the resource. This lead to organizing Sagas
in a way where each Saga is responsible for a speci�c category of interactions with
the back end; for example one Saga for any CRUD interaction (create, read, update,
delete of a resource) and another one which keeps track of any interactions related
to authentication.

5.3.2. Laravel

Laravel provides an all-in-one solution for web applications. For ReactJS we had a
clear separation between front end and back end. Laravel does not have such a clear
separation, as the same framework is used for both all back end tasks and generating
the views sent to the user. Additionally, the views and the controllers are closely
connected as any functions available to the controller are also available to the views.

In a routing �le provided by Laravel one can add the routes which should be recog-
nized by the web application and associate them with the appropriate controller
functions. For resources which should follow the commonly used CRUD (Create,
Read, Update, Delete) scheme, Laravel provides a helper function which generates
all routes for a resource based on established conventions. Laravel additionally
provides command line instructions which can be used to quickly generate scaf-
folding for resource controllers.
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Figure 5.2.: Architecture of the web application built using Laravel. When looking at the views every
module shown is an UI component while the connections indicate their hierarchical
structure. For the rest of the �gure, modules indicate architectural components and
arrows indicate interactions between those architectural components. For simplicity,
not all interactions are shown. In general, the user accesses certain URLs which are
provided by and de�ned in a router �le. In the router �le one can de�ne speci�c URLs
accessed via certain HTTP actions and associate this combination with speci�c controller
functions which provide the handling for requests. There are multiple controllers - one
per resource and additional ones for speci�c groups of actions such as f.e. authentication
(register and login) or password recovery. To modify data stored in the MySQL database
controllers use Eloquent models. Eloquent is the object-relational-mapping library used
by Laravel. It provides simple interfaces for accessing and modifying data stored in
a MySQL database. The MySQL database is never modi�ed using conventional SQL
statements but instead is solely accessed using models, which in turn automatically
generate and execute the queries necessary to ful�ll the modi�cations done during the
execution of a controller function.
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As Figure 5.2 shows, the web application built with Laravel follows a conventional
Model-View-Controller architecture. Unlike the ReactJS application, which exclus-
ively communicates with the back end in an asynchronous way beyond the initial
loading of the page, the majority of the requests for the Laravel application are
handled synchronously. This is the case because we intended to use the entire
feature set provided by Laravel, which includes using the Blade template engine
for the views. Since the Blade template engine is practically identical to any PHP
�le, it has to be completely parsed by the server before we can send a response (the
resulting HTML �le) to the user. This synchronous fashion of handling requests
comes with a mix of features and drawbacks.

Since the views are generated on the server and only sent to the user once they
are �nished, the entire information available to the server can be used to parse
the views. This is especially useful since we can use information stored in the
session for multiple purposes. Laravel provides simple interfaces to store and dis-
play information stored in the session such as error messages. The framework
comes with its own tool for form validation. Once setup, it automatically checks
any requests sent via forms and checks the �elds of the request. If any �elds do
not match our validation rules, Laravel automatically generates a response and
sets error messages speci�cally for the �elds which caused the validation to fail.
All of this works out-of-the-box if a synchronous approach is used. However, if
we decide to use an asynchronous approach for our requests, we are forced to use
Javascript. Logic to parse the information returned by the Laravel framework and
to display the error messages in the view becomes necessary. Since we cannot use
the features of the template engine such as conditionally displaying content using
the if Blade directive, we have to de�ne selectors for every HTML element we
would like to show / hide. This produces a relatively high amount of lines of code
when compared to the synchronous approach.

The views - called Blade templates - were structured in a similar fashion to the
ReactJS application. We ended up using two layouts which could be extended by
views and �lled with the content of the current UI component. Additionally, a
component based approach was used to create a set of reusable components which
could easily be imported in other views such as header and footer components. This
quickly lead to a similar hierarchical structure for views for the Laravel application
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when compared to the ReactJS application.

Eloquent models are used by Laravel to provide a simple and high-performance
interface for accessing information in the database. Similar to mongoose models,
they can be edited and are only saved back to the database if the save() method
is explicitly called.

5.3.3. A�ributes and Expected Impact on Measurements

The web application developed using ReactJS shows a high degree of separation of
concerns. This should lead to a relatively high number of �les where each of them
should have a relatively high Maintainability Index, as their complexity is low and
the amount of lines of code should also be limited due to the fact that each class
only focuses on a speci�c task.

Additionally, the component based nature of ReactJS automatically leads to a lot of
interdependent components, where as each of them can be seen as a class importing
other classes. Again, this should lead to relatively high values for the Maintain-
ability Index as the complexity of the software and the amount of lines of code is
spread around the entire project and not concentrated in a single �le.

Furthermore, the high interdependency between the components should be cap-
tured by the coupling measures we use for this experiment. Compared to the Laravel
application, the ReactJS application should show higher values for A�erent- and
E�erent-Coupling as import statements are used more frequently.

Typically, in a bigger ReactJS application one would achieve high values for A�erent-
Coupling as the goal of a component based structure is to built reusable components
which are rendered multiple times throughout the application. However, for our
web application speci�cally there were not a lot of components aside from forms
which were used multiple times. This should lead to an imbalance between A�erent-
and E�erent-Coupling as the amount of outgoing dependencies is generally high
as expected from ReactJS components. This imbalance should be re�ected by the
Instability measurement, which should show values close to one for the ReactJS
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application. In other words, the Instability measurement should re�ect the high
probability for changes required once any of the dependencies imported change.
This includes changes in external libraries as well as changes to any other UI com-
ponents rendered.

Another important di�erence can be found in the amount of lines of code (LOC).
During the login iteration basic authentication functionality as described in sec-
tion 5.2 was implemented. However, the set of features required for authentication
was automatically included by the Laravel installation. The sca�olding we used
additionally came with a �nished set of views. For ReactJS on the other hand it was
necessary to develop the entire authentication functionality by hand. This leads
to a lot of code being added for the ReactJS side while on the Laravel side only
the views were added to the measured code base. For this very reason, our ReactJS
application should overall have higher values for LOC or similar measures such as
the amount of logical lines of code used during this experiment.

There are other additional factors which should contribute to a signi�cant di�erence
in the amount of LOC since Laravel focuses on providing convenient ways to lessen
the amount of code required to do common actions. An example can be observed
when comparing the architectures presented in the previous section. As Figure 5.1
and Figure 5.2 show, while ReactJS makes use of multiple routers on a per-resource
basis, Laravel only uses a single router. Generally, having a single �le containing all
routes would be great as long it does not grow too big. Since we had to de�ne every
route explicitly for the ReactJS application (the URL of the route and the HTTP
method used) every resource led to multiple lines of code necessary to associate
the routes with their corresponding controller function. This quickly lead to a lot
of code being necessary, so it made sense to split the code across multiple routers.
However, Laravel provides a single command which automatically registers all
routes expected from a CRUD (Create, Read, Update, Delete) resource controller.
This leads to a single line of code to register routes for every resource as opposed
to 4 - 6 lines of code for every resource. Additionally, since ReactJS uses multiple
routers instead of a single one, additional code for importing dependencies in each
router and code to register each router adds to the total amount of LOC.
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Software measurements can be used to assess the complexity, maintainability, level
of class interdependency and other properties of a given program. For this purpose,
one can choose from a wide variety of available software measurements. For this ex-
periment we selected a set of well-known software measurements which are aimed
at desired properties of software such as maintainability and �exibility. Additionally,
the set of software measures was limited by the amount of software available to
actually conduct the measurements. Thus, we ended up with the following set of
software measurements:

1. A�erent-Coupling, E�erent-Coupling and Instability [43]
2. Logical Lines of Code (LLOC)
3. Cyclomatic Complexity [44]
4. Halsteads Metrics [32]

a) Vocabulary
b) Length
c) Volume
d) Di�culty
e) E�ort
f) Time
g) Bugs

5. Maintainability Index [18]

The following sections will cover the individual measurements in detail, providing
general information, a detailed description of how they are calculated, possible
interpretations and �nally a thorough description how they were calculated during
our experiment.
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6.1. A�erent-Coupling, E�erent-Coupling and
Instability

This set of metrics proposed by Martin [43] consists of three di�erent measurements,
which are considered to be ‘object-oriented’ measurements. Each of them captures
a di�erent aspect of class-interdependency. Martin uses these measurements to
categorize classes. Based on the values for the measurements he distinguishes
between classes which are hard to modify and therefore unlikely to change and
classes which are likely to change. A possible interpretation of these property would
be to call it �exibility, as classes which are hard to modify are less �exible.

6.1.1. A�erent-Coupling

This measurement can provide us with interesting insights on the di�erent classes in
our software project. A�erent-Coupling measures the amount of incoming depend-
encies to a class, in other words, the value for the A�erent-Coupling measurement
for a given class is equal to the amount of classes which depend on the given class.

A�erent-Coupling can be interpreted as an indicator for high or low �exibility.
Martin [43] acknowledges that classes with high values for A�erent-Coupling are
classes which have a lot of dependents. This means changing a class with high
A�erent-Coupling has a high probability to require additional changes in one of the
dependents. Since this can cause severe problems or at least a signi�cant amount of
additional work, these classes often tend to be stable; as it is unlikely that they will
be changed. In other words, classes with high values for A�erent-Coupling tend
to be more rigid (less �exible) than other classes. An interesting interpretation of
the overall (arithmetic mean) value for A�erent-Coupling of the project discussed
in chapter 7 is that it might give us information on the overall �exibility of the
project.

Calculation on React side was achieved using a library called
dependency-analyze. dependency-analyze was used to get a
map containing the �le name of every �le in the project as key supplemented
with a collection of this �le’s dependencies on other �les in an array as
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Figure 6.1.: Example for the output produced by dependency-analyze. The hash-map has
the �le-paths as key and the value is an array containing all outgoing dependencies of
the �le.

value. Figure 6.1 shows the hash-map for two �les containing a list of their
individual dependencies.
This map is produced by parsing the input �les and storing the �lename from
every import and require statement. Given this map we now need to
go over every key and for each key look at every imported �le and check if it
is part of the project �les (local �les), since we are only interested in measur-
ing the �les created by ourselves and not any external libraries. To achieve
this, we check the �le path of the current dependency which is provided
by dependency-analyze and check if it is a local �le. Generally, most
local imports will start with some kind of way to traverse the directory tree
of the project f.e. import “../models/User” while imports for ex-
ternal libraries (installed using npm) never start with any dot (.) notation.

We leveraged this distinction and agreed on always using a dot notation at
the start of local �les when importing them to make this step of measurement
easier. This means that any import of a local �le starts with either one or two
dots f.e.import “./Alert.js” orimport “../models/User”.

To calculate the value for the A�erent-Coupling we �rst create a hash-map
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(called coupling hash-map in the following paragraphs) containing the path
to every local �le in our project with an integer value of zero for all three
measurements (A�erent-, E�erent-Coupling and Instability).
Next we iterate over the map produced by dependency-analyze (de-
pendency map) and for every �le stored as key we then iterate over every
dependency listed in the �le’s dependency list. For every dependency en-
countered, if it is a local �le, we increase the value for A�erent-Coupling
stored in the coupling hash-map by one. After looking at every dependency
of every �le in the project source �les, the A�erent-Coupling values in our
coupling hash-map will be equal to the amount of �les importing a local �le
registered in the coupling hash-map.

Calculation on Laravel side: For Laravel we used a tool called phpmetrics.
Alongside most other measurements described in this thesis, phpmetrics
provided us with the measurements for A�erent-Coupling for every PHP
class in the project source �les. However, our Laravel project and most others
do not consist solely of PHP classes. Particularly the views play an important
role in every standard Laravel application. These views however are not PHP
classes. They are not even PHP, but use their own syntax called Blade
syntax, which is a mix of HTML and special commands which get replaced
with PHP code by the templating engine.

Additionally, since the Laravel side also contains Javascript �les, the same
tool used for the React side was used to calculate the coupling measures for
any Javascript �les.

Calculation for Blade files: To calculate the coupling measures for Blade �les
our tool looks for any include and extend Blade directives in the views.
Every include and extend was treated as an outgoing dependency.
Again, we ended up with a hash-map mapping the �le-paths of every Blade
�le in our project to a list of their outgoing dependencies. Using the same
approach as described for ReactJS, we now traverse each list and check how
many times a given view gets imported by any other view in the project. The
number of times a view gets imported by any other views in the project is
equal to the value for A�erent-Coupling.
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6.1.2. E�erent-Coupling

Just like A�erent-Coupling, E�erent-Coupling looks at another aspect of class-
interdependency. E�erent-Coupling measures the amount of outgoing depend-
encies, in other words the value for E�erent-Coupling is equal to the amount of
classes on which the given class depends. According to Martin [43], classes with
high values for E�erent-Coupling have a high probability of requiring change in
the future, since any change in one of their various dependencies might require the
class to adapt. Following this and the previous interpretation of A�erent-Coupling,
classes with high values for both A�erent- and E�erent-Coupling could pose a
signi�cant challenge for the future development of a software at hand, since they
are both likely to change due to a high E�erent-Coupling but also hard to change
due to the high A�erent-Coupling. Possible interpretations for overall (arithmetic
mean) high or low values of E�erent-Coupling are presented in chapter 7.

Calculation on React side was achieved using the same library used for A�erent-
Coupling. However, the calculation of A�erent-Coupling required additional
steps, while the calculation of E�erent-Coupling was practically done after
running dependency-analyze. The tool returns a hash-map with the
�le-paths of every �le in the project as keys supplemented with a list of
dependencies for each �le as values. The value for E�erent-Coupling for each
�le is equal to the amount of �les it depends on, which means to calculate the
E�erent-Coupling from the hash-map produced bydependency-analyze
we just had to iterate over every key in the hash-map and for every �le in
this hash-map calculate the length of the list which contains the dependen-
cies for the current �le. Unlike A�erent-Coupling which only regards local
�les (since external libraries are unlikely to depend on project source �les
anyway) the value for E�erent-Coupling includes dependencies to external
libraries. In the example shown in Figure 6.1 both �les listed would have an
E�erent-Coupling of two, since both import two �les.

Calculation on Laravel side was done using the same tools described for A�erent-
Coupling.

Calculation for Blade files: As described above our tool returns the same type
of hash-map as dependency-analyze does for the ReactJS side. To
calculate the E�erent-Coupling of our Blade �les we also iterate over every
�le-path in the hash-map and take the length of the list of dependencies
of each �le as the value for the measurement. For E�erent-Coupling we
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additionally counted any usage of assets (Javascript �les, CSS �les, images...)
as an outgoing dependency. This was achieved by looking at every function
call encountered while parsing the Blade �les. If the asset function was
used, we treated it as an outgoing dependency to an asset �le. The asset
function takes a �le-path which points to a �le in Laravels resources
directory and transforms it into a �le-path for the exact same �le but after
it was moved to a publicly accessible location f.e. the public directory of
any Laravel application.

6.1.3. Instability

We can combine both A�erent-Coupling and E�erent-Coupling to calculate an ad-
ditional measurement called Instability. This measurement assigns a value between
zero and one to each class. It is calculated using the following formula [43]:

Ce
Ca + Ce

(6.1)

where Ce is the value for E�erent-Coupling and Ca is the value for A�erent-
Coupling. Using this measurement we can categorize our project �les into three
categories depending on the value for Instability:

1. Highly stable (rigid): with a value close to zero these classes have more or
even solely incoming dependencies (dependents) and only little or no outgo-
ing dependencies. These classes are usually hard to modify since any changes
to these �les have a high probability to cause changes in other �les.

2. Highly unstable (�exible): a value close to one on the other hand indicates
that a class has more outgoing dependencies than incoming dependencies.
These classes are expected to have a high probability to change since any
changes in one of their dependencies might require changes in the class itself.
However, since there is a relatively low amount of incoming dependencies
such changes do not have a high probability of causing additional work out-
side of modifying the class at hand.
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3. In-Betweens: Unlike the previous categories this one is not speci�cally men-
tioned by Martin [43] himself but instead is an interpretation of his work.

It is quiet likely that classes do not �t into any of the above categories
but simply result in values equal or close to 0.5. This value indicates classes
which come with a mix of the properties discussed for the above categories:
They have an equal amount of outgoing and incoming dependencies. If the
amount of dependencies is low there is no need to worry. However, classes
with a high amount of outgoing dependencies and an equally high amount
of incoming dependencies are both likely to change and di�cult to change
at the same time. For such classes the Instability measure could be used as
an indicator for bad design since most likely one would be able to split the
logic of �les in this category up into multiple smaller �les, which would lead
to di�erent values for the Instability measure and therefore a more stable or
unstable class.

Calculation for both sides: Since Instability is just a combination of the A�erent-
Coupling and E�erent-Coupling measurements which were described before
the only additional step necessary on both sides was to use formula 6.1.

6.2. Logical Lines of Code

Lines of code (LOC) are a probably the most common measure used for measuring
the size of software [26, p. 338]. However, most of the time we do not simply take the
amount of lines our source �les contain since this comes with several drawbacks.
When using software measurements most of time our goal is to compare a piece
of software in some way to another. If we would simply look at the amount of
lines of code to judge whether or not a piece of software is more complicated than
another one we could remove any line breaks from our source �les and end up
with a single line of code. For most cases however removing every line break in a
source �le will lead to hardly comprehensible source code and by no means less
complicated software. This was an extreme example, however it clearly shows that
even di�erent coding styles (line breaks before curly brackets of if statements or
not) could a�ect the raw measurement of LOC.
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For this very reason deviations of the traditional LOC measurement are used to get
more comparable results.
The measurement we used for this experiment was logical lines of code (LLOC).
This measurement counts every statement as its own line and removes any empty
lines. Comments are also not counted towards the total amount of LLOC. However,
depending on the concrete implementation it is still possible that the coding style
a�ects this measurement. Since this was the case for the way we used to calculate
the LLOC we agreed on using the same coding style on both sides of the experiment
to guarantee that the coding style does not considerably a�ect the measurement.

Calculation for both sides: Measuring LLOC was provided by the tools used for
both sides of the experiment. However, upon closer inspection it became
obvious that the way LLOC was calculated was vastly di�erent for both sides.

Since we wanted both sides to calculate the measurement the same way for
more convenient inspection we added the ability to calculate the LLOC to
our own measurement tool on both sides. Since the calculation of LLOC for
all PHP �les was done by phpmetrics we decided to adapt our tool to use
a similar formula. The formula used by phpmetrics is presented below:
/ / c oun t a l l l i n e s
$ l o c = s i z eo f ( p r e g _ s p l i t ( ’ / \ r \ n | \ r | \ n / ’ , $code ) ) − 1 ;

/ / c o d e f o r hand l i n g comments om i t t e d f o r c l a r i t y

/ / c oun t and remove empty l i n e s
$code = trim ( preg_replace ( ’ ! ( ^ \ s ∗ [ \ r \ n ] ) ! sm ’ , ’ ’ , $code ) ) ;
$ l l o c = s i z eo f ( p r e g _ s p l i t ( ’ / \ r \ n | \ r | \ n / ’ , $code ) ) ;
We adopted this simple approach for our own tool, reusing the regular ex-
pressions:
t h i s . l o c = i n p u t . s p l i t ( / \ r \ n | \ r | \ n / ) . l e n g t h ;
t h i s . c l o c = 0 ; / / no comments i n measured f i l e s

i n p u t = i n p u t . r e p l a c e ( / ( ^ \ s ∗ [ \ r \ n ] ) / gm , ’ ’ ) . t r i m ( ) ;
t h i s . l l o c = i n p u t . s p l i t ( / \ r \ n | \ r | \ n / )

. map ( ( l i n e ) => l i n e . t r i m ( ) )

. f i l t e r ( ( e ) => e !== ’ { ’ && e !== ’ } ’ )
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. l e n g t h ;

To simplify the calculation of the LLOC measurement in our experiment we
did not use any comments in the �les evaluated by our own tool. This means
for the React side no comments were used and for the Laravel side the Blade
�les did not contain any comments.

6.3. Cyclomatic Complexity

McCabes cyclomatic complexity number [44] is one of the most used software
measurements to this date. It describes complexity of software as the amount of
conditional statements in a program. This idea of complexity may not be unique to
software as Guceglioglu, A. Selcuk et al. [30, 31] show. In their work they use the
cyclomatic complexity number to describe the complexity of business processes
based on the amount of decisions they contain.

The cyclomatic complexity (CC) of a program is equal to the amount of unique
paths in the control �ow graph of a program. McCabe describes two possible ways
to calculate it. The �rst approach would be to directly look at the control �ow graph
and count the amount of unique paths. However, this would require us to generate
a control �ow graph for each program we want to measure, which is impractical.
The second approach acknowledges this problem and therefore provides a much
simpler way of calculating the CC. McCabe showed that the CC of a program is
equal to the amount of conditional statements plus one. This means we can calculate
the CC of a program by simply counting the amount of conditional statements in it.

Cyclomatic Complexity is most of the time used as part of a warning mechanism.
Speci�cally, if the CC of a program reaches a certain threshold it may be necessary
to pay closer attention to the program at hand or even refactor parts of it. Following
this idea the cyclomatic complexity number found many uses in software fault
prediction models [52, 17].

Calculation for both sides: As CC seems to be one of the most used software
measurement in practice, the tools we used to calculate most of our measure-
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ments already supported the calculation of the CC. No further adaption was
necessary.

Calculation for Blade files: To calculate the cyclomatic complexity number for
Blade �les we counted the amount of if Blade directives in the views.

6.4. Halstead Metrics

Halsteads Software Science [32] presents a collection of measurements designed
to capture the complexity of software. These software measurements each target
di�erent properties of a given program and are the result of an attempt to combine
psychological �ndings with software measurement. The Halstead measures used in
this experiment are:

1. Vocabulary
2. Length
3. Volume
4. Di�culty
5. E�ort
6. Time
7. Bugs

The main code attributes measured - which are used to derive most of the other
measurements - are the operators and operands of a program.

6.4.1. Operators and Operands

The de�nition of what counts as an operator and what counts as an operand for
any given programming language may vary. One of the problems of Halsteads
measurements is that a clear consensus for every programming language has yet
to be found and de�ned. This is an important note to keep in mind when trying to
compare two projects with di�erent programming languages between each other.
Di�ering de�nitions for what exactly counts as an operator and what exactly counts
as an operand can lead to vastly di�erent results in the measurement.
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In general operators are keywords (or symbols) provided by the programming
language. This most commonly includes all deviations of parenthesis f.e. (), {},
any functions provided by the core of the programming language f.e. printf for
C and other symbols such as mathematical symbols +, - and special symbols
such as colons and dots.
Operands generally are the symbols de�ned by the programmer, meaning variables
and any constants. Each variable name is considered an operand and constants
may either be numbers or strings, whereas for strings the whole string is counted
as a single operand (instead of each character).

To calculate any of the Halstead measures we �rst have to count the amount of
operators and operands, as well as the amount of unique operators and unique
operands; unique meaning if the program contains 15 + signs it is only counted as
one towards the amount of unique operators.

Calculation on both sides: was done using the respective tools plato for Re-
actJS and phpmetrics for Laravel.

Calculation for Blade files: A problem with the measurements suggested by
Halstead is the missing de�nition of what counts as an operator and what
counts as an operand. Without a common consensus it is di�cult to compare
the values between two tools calculating the same Halstead measurement,
since they might use di�erent de�nitions for operators and operands.

For the Blade �les in our experiment the following de�nitions of operators
and operands were used:
Operators: The de�nition of operators follows the de�nition given by the

documentation of PHP 1. Additionally, the member access operator ‘->’
is also considered an operator as it is the most used operator in the
evaluated views.

Operands: For operands we consider every scalar expression (f.e. numbers
and strings), every name of any variable and the name of every accessed
member variable.

1version 7.4, https://www.php.net/manual/de/language.operators.
precedence.php viewed on November 17th, 2019
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After we determined the amount of operators and operands we can use the formu-
las provided by Halstead [32] to calculate further measurements. The following
formulas are the ones investigated by Shen et al. [55]

6.4.2. Vocabulary and Length

Using the amount of operators, operands, unique operators and unique operands
we can calculate Halsteads measures for vocabulary and length, which are used to
calculate additional measurements.
The vocabulary η of a program as de�ned by Halstead is equal to the amount of
unique operators plus the amount of unique operands, commonly written as

η = η1 + η2 (6.2)

where η1 is the amount of unique operators and η2 is the amount of unique operands.

Similarly, the length N of a program as de�ned by Halstead is equal to the amount
of operators plus the amount of operands, commonly written as

N = N1 +N2 (6.3)

where N1 is the amount of operators and N2 is the amount of operands.

6.4.3. Volume and Di�iculty

Using the measurements we got up to this point we can now calculate Halsteads
Volume and Di�culty.
Volume can be interpreted in di�erent ways. Shen et al. [55] describe it as the
amount of bits needed to store the program on the disk. In general terms it is a
measurement for program size. The volume V of a program can be calculated using
the length and the vocabulary measurement from earlier:

V = N × log2 η (6.4)

82



6.4. Halstead Metrics

The di�cultyD of a program as de�ned by Halstead aims at capturing the di�culty
experienced when writing or trying to understand the measured program. The
formula

D =
η1
2
× N2

η2
(6.5)

tries to approximate this attribute based on the following assumptions pointed
out by Shen et al.[55]. The di�culty of a program can increase in many di�erent
ways. The �rst part of the equation η1

2
aims at capturing a change in the amount of

operators. When the amount of unique operators changes (f.e. a new operator is
added) this term captures this change and the di�culty increases accordingly. The
second part of the equation N2

η2
captures changes in the operands. The assumption

behind this part of the equation is that if an operator is used more frequently, the
di�culty of the program increases.

We can combine these two measures into another one of Halsteads measurements:
the e�ort.

6.4.4. E�ort, Time and Bugs

Halsteads measurement for e�ort is described as the mental e�ort required to
understand or produce a program. This de�nition is similar to the de�nition of
di�culty in the previous paragraph. The reason for this is that Halesteads measure
for e�ort is calculated using the di�culty measure in relation to the volume - the
size of the program. Therefore, Halsteads measure for e�ort E can be calculated
as

E = D × V (6.6)

Using the measure for e�ort we can calculate the last two Halstead measures used
in this experiment: Time and Bugs.

Time

Halsteads measurement for time tries to convert the calculated e�ort into a con-
ceivable unit of time. As Shen et al. [55] point out, Halstead describes the e�ort
measure as ‘number of elementary mental discriminations’ [55]. Halstead [32] used
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a de�nition provided by John Stroud [59] to map his measure to a time unit. Stroud
[59] claimed that the human mind is only capable of making a limited amount of
elementary decisions per second. Based on this assumption Halstead de�ned his
measurement for time T as

T =
E

18
seconds (6.7)

where 18 is a constant chosen by Halstead which lead to the best results, which
represents the limited amount of elementary decisions per second as suggested by
Stroud [59].

Bugs

Another attempt from Halstead to map his measurement for e�ort to a conceivable
unit is to project the di�culties encountered while writing a program to a probability
of the program containing an error. Halstead assumes that the probability of the
program containing an error correlates with the ability of the developer. Therefore
his formula to calculate the amount of bugs B in a program contains a constant
called ‘developer ability’. This constant can be adjusted to accommodate di�erences
in development experience. While more experienced developers are attributed
a higher value for the developer ability, less experienced developers should be
attributed with a lower value for the developer ability. The formula presented by
Halstead is

B =
E

2
3

3000
(6.8)

where 3000 is the generally suggested value for the ‘developer ability’. The tools
utilized for this experiment use another version of this formula:

B =
V

3000
(6.9)

The resulting value is an estimation for the total amount of bugs which are expected
to be part of the measured software.

6.5. Maintainability Index

Similar to McCabes cyclomatic complexity number [44] and Halsteads complexity
measures [32] described in the previous section, the so called Maintainability Index

84



6.5. Maintainability Index

by Coleman et al. [18] is one of the more well known software measurements.
As a combination of three di�erent software measurements - Halsteads Volume,
McCabes cyclomatic complexity number and lines of code - it assigns a single
number representing the maintainability to either single �les, entire parts of a
software (f.e. individual components of a large system) or even the entire project.
Coleman et al. [18] argue that each of the three software measurements used cap-
tures di�erent attributes of the underlying software which have a negative impact
on the maintainability of the software at hand.

The Maintainability Index (MI) can be calculated for either a group of �les or single
�les. The formula is almost identical for both cases. When calculating the MI for
multiple �les at once we use the arithmetic mean of the underlying measurements.
When calculating the MI for a single �le on the other hand, we directly use the
value of the underlying measurements.

Below we can see the formula for the Maintainability Index as shown in the original
work by Coleman et al. [18]:

Maintainability = 171

− 5.2× ln(aveV ol)
− 0.23× aveCC
− 16.2× ln(aveLOC)

+
(
50× sin

(√
2.46× perCM

)) (6.10)

Where aveV ol is the average Halstead Volume, aveCC is the average cyclomatic
complexity, aveLOC is the average lines of code and perCM is the ‘percent of
comments’.

The last part of the original formula +
(
50× sin

(√
2.46× perCM

))
aims at mit-

igating the impact comments have on the MI. Since the original formula uses lines
of code and not logical lines of code any comment has the same impact on the
measurement as any other line of code. Coleman et al. realized this and adopted
their formula to make comments less impactful. As the percentage of comments
increases, this part of the formula will return greater values which get added to the
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MI calculated up to this point. The encapsulating term limits the resulting value to
be between 50 and 0.

However, most tools found during the preparation for our experiment did not use
the exact same formula as suggested by Coleman et al. We found that there is
a multitude of slight deviations from the original concept being used by many
di�erent systems.

Calculation for the React side: As mentioned earlier the MI is one of the most
used software measurements. As to expect the tools we used for our experi-
ment already included the calculation for the MI. However, since we used
our own tool to calculate the value for logical lines of code (LLOC) we had to
recalculate the MI with our own LLOC values. The following code fragment
is taken from our measurement tool used for the React side:

m e t r i c s . mi = 171
− ( 5 . 2 ∗ Math . l o g ( m e t r i c s . volume ) )
− ( 0 . 2 3 ∗ m e t r i c s . cc )
− ( 1 6 . 2 ∗ Math . l o g ( m e t r i c s . l l o c ) ) ;

It is important to note, that this formula does not contain the last part of the
original formula aimed at mitigating the impact of comments on the MI. The
reason for this is that we are using the average logical lines of code (LLOC)
instead of the average of plain lines of code. The LLOC measurement does
not contain any comments as they are removed together with empty lines
before counting the amount of lines in the source code. This is a common
deviation of the original formula found in practice.

An additional common adjustment is to scale the MI in such a way that its
values range between 0 and 100. The following code fragment demonstrates
how we applied the scaling in our implementation:

m e t r i c s . mi = Math . round (
(

Math . min (
m e t r i c s . mi , 171

) ∗ 100 / 171 / / s c a l i n g between 0 and 100
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) ∗ 100 / / round t o two d e c i m a l s
) / 1 0 0 ; / / r e s t o r e two d e c i m a l s a f t e r round

Calculation for the Laravel side: For the normal PHP �les such as controllers
and services phpmetrics was used to calculate the MI. As we can see
from the code presented below it uses the original formula given by Coleman
et al.:

$MIwoC = max (
( 1 7 1
− ( 5 . 2 ∗ \ l o g ( $volume ) )
− ( 0 . 2 3 ∗ $ccn )
− ( 1 6 . 2 ∗ \ l o g ( $ l l o c ) )
) ∗ 100 / 171
, 0 ) ;

i f ( i s _ i n f i n i t e ( $MIwoC ) ) {
$MIwoC = 1 7 1 ;

}

/ / comment weight
i f ( $ l o c > 0 ) {

$CM = $ c l o c / $ l o c ;
$commentWeight = 50 ∗ s i n ( s q r t ( 2 . 4 ∗ $CM ) ) ;

}

/ / m a i n t a i n a b i l i t y index
$mi = $MIwoC + $commentWeight ;

Since we did not use the comment weight on the React side, we decided to also
not use it on the Laravel side. Additionally to the normal MI phpmetrics
provided us with values for the MI without comment weight. The only
thing left to do for standard PHP �les was to scale the value received from
phpmetrics between 0 and 100 as we did for the React side. This is done
by our own tool before combining the results of phpmetrics with the
results for the Blade �les calculated by our own tool:

mi : Math . round (
(

Math . min (
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c u r r e n t C l a s s . mIwoC , 171
) ∗ 100 / 171

) ∗ 100
) / 1 0 0 ,
cc : c u r r e n t C l a s s . ccn ,
ac : c u r r e n t C l a s s . a f f e r e n t C o u p l i n g ,
/ / o t h e r measures a r e j u s t r ead from the p h p m e t r i c s r e p o r t
/ / . . . o m i t t e d f o r c l a r i t y

Calculation for Blade files: For Blade �les we used our own tool to calculate
the MI in the same way we did it on the React side:
t h i s . mi = 171
− ( 5 . 2 ∗ Math . l o g ( t h i s . volume ) )
− ( 0 . 2 3 ∗ t h i s . cc )
− ( 1 6 . 2 ∗ Math . l o g ( t h i s . l l o c ) ) ;
The code used to project the result onto a scale between 0 and 100 is identical
to the ones shown before.
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The presented software measurements were evaluated by developing the same
application twice in di�erent frameworks and inspecting the evolution of the meas-
urements over a set of ‘sprints’. In this chapter the results for every software
measurement are presented, discussed and interpreted. Speci�cally, we will invest-
igate the connection between the software measurements used and actual attributes
of the measured code. For every measurement we will take a look at the attributes
discussed in subsection 5.3.3 and investigate whether the di�erent architectures
had the expected impact on the measurements or not. An overview of the resulting
values for the arithmetic mean for each of the measurements after the completion
of the final sprint can be seen in Table 7.5.

7.1. A�erent- and E�erent-Coupling

The following sections present the results for the coupling measures by Martin
[43]. For a detailed explanation of the measurements and how to calculate them
see section 6.1.

7.1.1. A�erent-Coupling

Figure 7.1 shows the evolution of the A�erent-Coupling measurement for both
frameworks. It shows that in general the A�erent-Coupling is higher for the ReactJS
side, while it is also increasing steadily and faster with any additions to the project.
The Laravel side shows a remarkable increase for the value of the A�erent-Coupling
measure between the initial and the framework sprint, while afterwards
the value does not change signi�cantly. This makes sense because during the
framework sprint a lot of layout components were added to the project. These
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Figure 7.1.: Plot for the evolution of the arithmetic mean for the A�erent-Coupling measure over the
course of the development. The X-axis shows the di�erent sprints / points in time where
measurements were conducted. The Y-axis shows the resulting value for the arithmetic
mean of all the A�erent-Coupling values of every measured �le. The signi�cant increase
for the Laravel side between the initial and framework-setup sprint and
for the ReactJS side between the framework-setup and login sprint is due to
the addition of authentication logic to the existing code base. During these sprints
multiple new �les were added to the measurements. Along those �les layout �les which
get imported by a signi�cant amount of other �les were added for both frameworks.
We can see that for the Laravel side the value of the arithmetic mean remains almost
unchanged over the course of the experiment, while the ReactJS side shows a vastly
di�erent evolution and steady increase.
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layout components are imported by other views and �lled with the content of these
views. This leads to high values for the A�erent-Coupling measure as suddenly
there are a lot of views importing a single layout �le.

However, after initially adding a layout for the project it is unlikely that more
layouts are added. In our case, supporting additional layouts was not part of the
project. The resulting values do not change signi�cantly afterwards because other
components added to the project such as controllers usually do not show high
values for A�erent-Coupling as they are imported automatically by Laravel and
not speci�cally listed in every �le which uses them. In a similar way models are
usually only imported by a single controller and therefore most of the time end up
with an A�erent-Coupling value of one. After the framework sprint the value
for the Laravel side stabilizes and does not change signi�cantly. This is likely due
to the fact that since the amount of �les measured already grew relatively large as
shown in Figure 7.5 the impact of outliers on the arithmetic mean is decreased.

A similar signi�cant increase can be observed for the ReactJS side between the
framework and login sprints. Actually, the cause for this signi�cant increase
is the same for both frameworks.
During the login sprint authentication functionalities such as registering and
logging in were added to the project. However, for the Laravel side these features
were already automatically included by the framework. This means, that all the code
necessary for authentication (including views) was already added to the project
with the framework sprint of the Laravel side. For the ReactJS side however,
we had to implement all the authentication logic ourselves which lead to a lot of
code being necessary for both the front end and back end part during the login
sprint. Furthermore, as Figure 7.5 shows only 10 �les were measured at the end of
the framework sprint for the ReactJS side while at the end of the login sprint
we ended up with 41 �les. As the amount of �les measured increases the impact
of outliers on the arithmetic mean decreases which is why most measurements
grow relatively steady after the login sprint. However, the addition of multiple
�les during the login sprint introduced a wider spread of values for the A�erent-
Coupling measures as shown in Figure 7.2. This lead to the signi�cant increase
observed in Figure 7.1.
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The value for the arithmetic mean of the A�erent-Coupling measurement for the
Laravel side actually decreased during thelogin sprint because theframework
sprint added a number of unnecessary views which were removed during the
login sprint.

ReactJS generally uses an interconnected architecture of components. As discussed
in subsection 5.3.3, this architectural attribute should be re�ected by higher val-
ues for both coupling measures. For our project, the results for A�erent-Coupling
re�ect this property even though the project itself does not necessarily contain a
signi�cant amount of remarkably often reused components. Figure 7.3 shows the
distribution for the A�erent-Coupling measure for each framework after comple-
tion of the final sprint.
It shows that for the Laravel side most of the �les have an A�erent-Coupling of
zero. These �les are mainly views - which are never imported somewhere else
unless they are components - and controllers - which are never imported directly
as they are managed by the Laravel framework. Additional helper classes which
are directly managed by Laravel also fall into this category. It is important to note
that Laravels way of automatically connecting framework-related architectural
components hides a signi�cant amount of interdependencies between classes from
the A�erent- and E�erent-Coupling measurement. This disconnect between ob-
served behavior (for example connections between routers and controllers, since
every route is connected to a controller function which handles the request) and
measured values (A�erent-Coupling value of 0 for almost all controllers) is an
important observation for the Laravel side of our experiment. When interpreting
the results of these measurements we have to keep in mind that the measurements
do not capture the observed attributes correctly.

For both sides of our project only a little amount of �les is imported a signi�cant
amount of times. Speci�cally, there is a small set of �les which have more than 5
dependents.
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Figure 7.2.: Barcharts visualizing the distribution of values for the A�erent-Coupling measure after
the framework-setup and the login sprint. The X-axis shows the values for the
A�erent-Coupling measure. The Y-axis shows the amount of �les with the speci�c value
for the A�erent-Coupling measure shown on the X-axis. The numbers above the bars
indicate the exact amount of �les in this speci�c group. The number of �les increased
signi�cantly between these two sprints. The wider spread of the values lead to a sudden
increase in the value of the arithmetic mean for the A�erent-Coupling measure.
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Figure 7.3.: Barchart visualizing the distribution of values for the A�erent-Coupling measure after
the final sprint. The X-axis shows the values for the A�erent-Coupling measures.
Values from 2 to 4, 5 to 9 and 10 to 20 were grouped together for the sole reason of
clarity. Each interval is inclusive. The Y-axis shows the amount of �les with the speci�c
value for the A�erent-Coupling measure shown on the X-axis. The numbers above the
bars indicate the exact amount of �les in this speci�c group. These results show that
a signi�cant amount of �les on the Laravel side have an A�erent-Coupling measure
of zero, which means they are never imported anywhere in the code. This is due to
Laravels feature to automatically provide access to framework related classes without
needing to explicitly import them.
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7.1.2. Interpretation

High values for A�erent-Coupling (relative to E�erent-Coupling) suggest that a
class is more di�cult to change than one with lower values [43]. This follows the
assumption, that classes which get imported by a signi�cant amount of other classes
might lead to necessary changes in those other classes. As Figure 7.3 shows that only
a little amount of classes show a signi�cantly high value for A�erent-Coupling in
our project. After inspecting the �les with the highest value for A�erent-Coupling
we assessed that in our speci�c case these �les would not be di�cult to change as
their high value for A�erent-Coupling would suggest.

For the ReactJS side the �les with the highest value for A�erent-Coupling were
mainly �les containing constants and helper functions, while the �le with the
highest A�erent-Coupling was the so called ‘Root Reducer’ of our Redux Store.
As the high value for A�erent-Coupling correctly suggests, changes in �les which
contain constants can lead to a signi�cant amount of changes in di�erent �les
which depend on these constants. If we would change the name of one of our
constants we would have to update every reference to this constant in every �le.
However, such a change is not a di�cult change but solely a change of a variable
name.
For �les exporting helper functions A�erent-Coupling also correctly captures the
high probability for the necessity of changes if changes are made to one of the
exported helper functions. However, as most of the time helper functions are added
instead of changed these �les do not pose a signi�cant challenge in our project.

The ‘Root Reducer’ combines all other reducers into a single application state. As
this is the only place where the �nal layout of the application state is known and
stored, this �le usually contains so called ‘selectors’ which can be used to retrieve
speci�c parts of the application state. As this is one of the most essential functions
associated with Redux (accessing the global application state) it is not surprising
that this �le is imported the most.

For the Laravel side, the �les with the highest value for A�erent-Coupling are the
layout �les which de�ne the overall look of the application. They are used by other
views which solely contain the content which should be inserted into the existing
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layout. Editing these �les usually changes the entire look of the website. However,
since in Laravel our views simply de�ne the content which should be put into
speci�c sections de�ned in the layouts, changes to those layouts most of the time
will not a�ect any of the views using it code wise.

We can conclude that for our experiment the A�erent-Coupling measure did not spe-
ci�cally highlight classes which are hard to change. However, in our project it was
helpful as an indicator to �nd classes which play an important role in the software
architecture. Additionally, the measurement re�ected the higher interdependency
of classes in the ReactJS application.

7.2. E�erent-Coupling

The evolution of the E�erent-Coupling measure vastly di�ers for both frame-
works as shown in Figure 7.4. While the value for the arithmetic mean of the
E�erent-Coupling measure does not signi�cantly change for the Laravel side bey-
ond the framework sprint, the ReactJS side shows a sudden increase between
the initial and framework sprint followed by a rather steady increase for
the following sprints.

The sudden increase between the initial and framework sprint for the
ReactJS side is due to the low amount of �les measured during both sprints. As
Figure 7.5 shows only four �les were part of the measurement for the initial
sprint and only ten for the framework sprint. With such a low amount of �les
outliers have a signi�cant impact on the value of the arithmetic mean. Since the
framework sprint introduced a set of UI components required for basic authen-
tication the number of imports increased.

After the login sprint the value for E�erent-Coupling stabilizes and increases in
a steady fashion.
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Figure 7.4.: Plot for the evolution of the arithmetic mean for the E�erent-Coupling measure over the
course of the development. The X-axis shows the di�erent sprints / points in time where
measurements were conducted. The Y-axis shows the resulting value for the arithmetic
mean of all the E�erent-Coupling values of every measured �le. The signi�cant increase
observed between the initial and framework-setup sprint for the ReactJS
side is due to the addition of several views, which themselves depend on a signi�cant
amount of components and therefore result in high values for the E�erent-Coupling
measure. The ReactJS side shows a signi�cantly higher value in general, however after
the value for the arithmetic mean stabilizes after the framework-setup sprint, the
evolution for both frameworks is similar, while ReactJS shows a steeper increase over
time.
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Figure 7.5.: Barchart showing the amount of �les included in the measurements for each framework
after each sprint. The numbers above the bars indicate the exact amount of �les for
each framework. Laravel comes with a set of standard �les out of the box. Therefore it
starts with a relatively remarkable amount of �les, however the amount of additional
�les needed for certain features as for example login functionality is relatively low. The
ReactJS side shows a fairly steady increase which is due to the fact that almost any
functionality comes with the necessity for a speci�c set of UI components and back end
functionality.
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7.2.1. Interpretation

The E�erent-Coupling measure can be used to detect classes which are prone to
changes due to their high amount of outgoing dependencies [43]. As Figure 7.4
shows, the E�erent-Coupling for the ReactJS application is generally higher than
for the Laravel application. For our application the E�erent-Coupling measure cor-
rectly captures the relatively high probability of required changes for the ReactJS
side.

Our application uses a multitude of di�erent third-party libraries. ReactJS by itself
also depends on a vast amount of third-party libraries. Updates to any of those
libraries might require changes in our own application to preserve compatibility
and functionality.

However, it is important to note that Laravel automatically connects framework-
related architectural components, which means there is no need to speci�cally
import them. While this is helpful when developing an application, it negatively
a�ects the capabilities of our measurements. Without import statements (or any
programming language speci�c equivalent) it is not easily possible to measure
the interdependencies inside a project. Speci�cally, as Laravel hides a signi�cant
amount of import statements, the E�erent-Coupling measure should in general
be lower than the actual amount of outgoing dependencies in the project. For the
rest of this interpretation the reader is advised to keep in mind that the measure-
ments do not capture the observed attributes correctly.

For both sides of our application the �les with the highest E�erent-Coupling were
the ones at the core of the system. For the ReactJS side the �le responsible for
setting up the web server and authentication shows the highest E�erent-Coupling
as it acts as central point for con�guration. Other �les with high E�erent-Coupling
serve a similar purpose of combining multiple di�erent components into a single
�le.
For the Laravel side the main layout used by most of the views has the highest
value for E�erent-Coupling as it imports di�erent style sheets and Javascript �les.
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These results re�ect the expectations stated in subsection 5.3.3. As ReactJS uses a
component based structure with relatively high granularity, components should be
importing a signi�cant amount of other components. Additionally, if the application
is built with the reusability of components in mind, certain components should be
imported multiple times as they are used more often. Both of these attributes should
be captured by the E�erent-Coupling and A�erent-Coupling measures respectively.

For the ReactJS side of our experiment the E�erent-Coupling measure increases
steadily as every new component introduced to the application is usually imported
somewhere else. It correctly re�ects the relatively high probability for required
changes once any of the outgoing dependencies of the ReactJS application change.

7.3. Instability

Instability is a combination of A�erent- and E�erent-Coupling. By looking at the
relative amount of outgoing dependencies and incoming dependencies we can
categorize �les as stable and instable. As described in subsection 6.1.3 this property
can also be seen as the �exibility of certain classes.

Figure 7.6 shows the evolution of the arithmetic mean of the Instability measure
for both frameworks. By looking at the arithmetic mean for the whole project we
can get an overview if our project mainly consists of �exible classes, rigid classes
(which are hard to change) or a mix of both.

For the Laravel side we can see that the framework starts out (between theinitial
and framework-setup sprint) with a value close to one which means the ma-
jority of classes measured can be categorized as close to maximally instable / �exible.
This is an interesting result considering that when �rst installing a framework
you would of course expect it to be �exible enough to adapt to the requirements
of the application you want to develop. For our experiment the Instability meas-
urement for the Laravel side re�ects this idea. The value of the arithmetic mean
for the Instability measurement drops signi�cantly between the initial and
framework-setup sprint because during the framework-setup sprint
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Figure 7.6.: Evolution of the value of the arithmetic mean for the Instability measure for both frame-
works over the course of development. The X-axis indicates the di�erent sprints, while
the Y-axis shows the value of the arithmetic mean after completion of the sprint shown
on the X-axis. Values close to one indicate that the project �les are in general maximally
instable (likely to change, �exible), due to a high amount of outgoing dependencies
relative to incoming dependencies. Values close to zero would indicate that the project
�les are in general maximally stable (unlikely to change, hard to change). As a project
should have a mix of �les which are maximally stable and maximally instable, the
arithmetic mean of the Instability measure should be close to 0.5 for most software
projects. The sudden shifts observed for the ReactJS side of the experiment are caused
by the changes of the A�erent-Coupling measure, which themselves are caused by the
addition of a signi�cant amount of �les between the initial and login sprint as
shown in Figure 7.5.
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views for basic login functionality were added as part of the design template used
throughout the project. These views were organized as components. Particularly
simple components, such as headers and footers, do not import other views. This
leads to a E�erent-Coupling value of zero, which in turn leads to a value of zero for
the Instability measure, as a class which does not depend on any other class can
be considered maximally stable. However, in the case of simple UI components it
would be wrong to assume they are hard to change or ‘rigid’. Changing the header
of a page is as simple as manipulating a single line of HTML code. Of course this
will lead to a di�erent look of the overall application if the header is reused on
every page, however no adaption in other �les will be necessary.

The ReactJS side shows signi�cant changes between theinitial,framework-setup
and login sprint. Once more the reason for the sudden shift of values during the
initial and framework-setup sprint is most likely due to the relatively
low amount of �les measured during the initial and framework-setup
sprint as shown in Figure 7.5. We can see that the measure stabilizes after the
login sprint from where on a signi�cant amount of �les is measured which
lessens the impact of outliers on the value of the arithmetic mean. Nonetheless we
can see that the ReactJS side shows values closer to 0.5 for the Instability measure.

7.3.1. Interpretation

Generally we can see that for the Laravel side the Instability measure steadily
decreases over time. Our assumption is that over time the arithmetic mean for
the Instability measure should reach a value of 0.5. This is due to the fact that as
the application grows a generally equal mix of highly stable and highly unstable
classes is added: New UI components are added which do not depend on any other
components and are therefore considered maximally stable. On the other side, as
the application grows the amount of interdependencies between the classes rises,
slowly shifting the value of the Instability measure towards one.

Our results indicate that the Laravel application starts out as a fairly �exible system
which slowly gets less �exible over the course of development. For our experi-
ment speci�cally the framework-setup and artwork sprint resulted in a
signi�cant decrease for the value of the arithmetic mean of the Instability measure.
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This is the case because both of these sprints introduced a multitude of views and
UI components. These UI components are usually classes which do not explicitly
import any other classes and are solely imported by views. Therefore these UI
components end up with a value of zero for the Instability measure.
While the value of the measurement changes due to the reasons described in the
previous paragraph we would like to draw attention to an important connection
between the measurement and the attributes of the application at this point.

As the development of an application progresses it deviates from the initial frame-
work setup. Requirements are implemented and the application turns into a tool for
a speci�c purpose. In our case the application started as an application with basic
authentication functionality and slowly turned into an application for managing
artworks and artists. For the Laravel side of our application the evolution of the
arithmetic mean of the Instability measure re�ects this change from an abstract
system to a more concrete solution.

The ReactJS side of our experiment shows a similar evolution, however it already
starts out with values closer to 0.5. Since ReactJS components are built in an hier-
archical structure similar to HTML there is a signi�cant interdependence between
every component. This leads to generally high values for E�erent-Coupling as every
component depends on a multitude of other components. Additionally, components
built in a reusable fashion result in high values for A�erent-Coupling. While the
increase in E�erent-Coupling happens rather naturally as the application grows the
only way to increase the value for A�erent-Coupling is to pay additional attention
to the reusability of components. In general this probably leads to an imbalance
between A�erent- and E�erent-Coupling for a ReactJS application and therefore
to values slightly above 0.5 for the arithmetic mean of the Instability measure.
Therefore, lower values for the arithmetic mean of the Instability measure might be
a valid indicator for the amount of reusable components in a ReactJS application.

Instead of looking at the arithmetic mean we can also directly look at the resulting
values for the Instability measure to identify highly stable and highly unstable
classes. Figure 7.7 shows the distribution of values for the Instability measure after
the final sprint for both frameworks. It highlights the vast amount of �les with
an Instability value of one for the Laravel side. These �les are mostly views and
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Figure 7.7.: Bar Chart showing the amount of �les with speci�c values for the Instability measure.
The values presented are the values measured after the final sprint. The vast amount
of �les with an Instability value of one for the Laravel side is due to di�erent reasons.
First and foremost Laravel includes a signi�cant amount of ‘helper classes’. These helper
classes are used to de�ne certain behavior or act as a point of con�guration as for
example a class used to con�gure maintenance mode. They are handled automatically
by Laravel and therefore it is not needed to import them anywhere else in the code.
Secondly, views combine the layout, their content and other components into the �nal
HTML representation. This means, almost any view is solely importing other classes
while they are never imported by any other class. This leads to a value close or equal to
one for the Instability measure.
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�les managed by the Laravel framework such as controllers and helper classes.

Laravel views end up with an Instability value close to one since they usually com-
bine an existing layout and components into a single HTML representation which
is sent to the user. Views are managed by Laravel, this means a controller which
wants to send a view as a result does not have to import the class which de�nes
the view. Therefore, views for the Laravel side import a multitude of di�erent
components and probably a layout, while they are never imported by any other
class which leads to an Instability value of one.

The term ‘helper classes’ tries to capture a set of classes related to the Laravel
framework such as Requests, which can be used to setup form validation, and
policies, which can be used to prevent unauthorized access to certain resources.
They will not be covered in detail, however the important thing to note is that since
they are managed by Laravel directly it is unnecessary to import them anywhere.
This leads to an Instability value of one for a substantial amount of �les for the
Laravel framework.

The Instability measure shows that Laravels nature of managing a multitude of
things internally e�ectively hides a signi�cant amount of interdependencies in the
system. While a policy �le might not be directly imported by any other class it
a�ects multiple controllers at once. This means, changing such a policy �le can
potentially change the behavior of controllers. However, since the policy �les are
never imported by any controller, this dependency is hidden from the measure-
ments. Additionally, the �les categorized as highly unstable usually contain one to
three imports. With such a low amount of incoming dependencies the probability
for change is relatively low. This means, for the Laravel side of our experiment the
Instability measure can not be reliably used to identify �les which are prone to
changes.

For ReactJS Figure 7.7 shows that the values for the Instability measure are fairly
spread out, while the majority of �les show values above 0.5, indicating more
unstable classes overall. The ReactJS side shows signi�cantly less �les with an
Instability value of one since unlike for the Laravel side no dependencies are hidden
by the framework. This means most �les in the project source are imported at least
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once by another �le.

The �les with the values closest to one for the ReactJS side are views which import
and combine a multitude of components. Here, the Instability measure reliably
captures the high probability for change due to changes in imported classes. A
ReactJS component usually de�nes properties which are used to trigger certain
behavior. When certain behavior is added to a ReactJS component the properties
of this component usually change. A change in properties will almost certainly
require changes in the parent component.

Values close to zero for the Instability measure also correctly indicate highly stable
classes for the ReactJS side. Here, �les containing constants and helper functions
which solely export variables and functions are indicated by an Instability value of
zero. Files with values close to zero share similar properties, namely that they are
mostly de�ning constants or utility functions.

Overall for our experiment the Instability measure seems to ful�ll the expectations
for the ReactJS side, but can not be reliably used for the Laravel side as a signi�cant
amount of dependencies are hidden from the measurement. However, the arith-
metic mean of the Instability measure might be capable of indicating an imbalance
between highly stable and highly unstable classes. This knowledge could be helpful
when trying to classify architectures as �exible or rigid.

7.4. Halstead Metrics

Halsteads ‘Software Science’ [32] presents a set of measurements for di�erent
properties of the measured program. These measurements have been investigated
and criticized over the years. Shen et al. [55] point out a signi�cant amount of
�aws for both the practical and theoretical background of the Halstead measures.
Nonetheless, these measurements were included during our experiment to give
additional information about their applicability and usefulness.
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Halsteads measures all show a similar evolution over the course of the sprints.
For this reason we did not include �gures for every Halstead measure in the main
document. Additional �gures can be found in the appendix.

Figure 7.8 shows the steady increase of the arithmetic mean of Halsteads Vocabulary
measure over the course of the development. While this value generally increases
we can see a drop of the value after the final sprint which makes sense consid-
ering that it was used to refactor and therefore most likely shorten the code.

Similarly, Halsteads Length measure steadily increases over the course of the
development as shown in Figure 7.9. The evolution of the arithmetic mean of
Halsteads Length measure is almost identical to the evolution of the rest (Volume,
Di�culty, E�ort, Time, Bugs) of Halsteads measures.

7.4.1. Interpretation

For our experiment, all of Halsteads measures show a similar evolution over the
course of the sprints. This overlaps with our assumption, that Halsteads meas-
ures generally grow with the size of the code for the following reason: Since the
‘advanced measures’ (E�ort, Volume, Time, Bugs) are based on the more general
measures (Vocabulary, Length), an increase in the more general measures will lead
to an increase for the advanced measures. Furthermore, since the general measures
grow with the size of the code, or generally speaking grow with the amount of
lines of code one can expect Halsteads measures to grow in a similar fashion as the
software project continues to grow. The following sections will go into detail for
speci�c measurements.

Vocabulary and Length

These measures serve as an indicator for the size of a program. This is done by
counting the amount of operators and operands. One of the problems with Hal-
steads measure is that there can be various di�erences when it comes to di�erent
programming languages [55]. Some programming languages may require more
operators or more operands than others. Additionally, there is no clear de�nition
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Figure 7.8.: Evolution of the arithmetic mean of Halsteads Vocabulary measure. The X-axis shows the
di�erent sprints which mark speci�c points in time over the course of the development.
The Y-axis shows the value of the arithmetic mean after the completion of the sprint
shown on the X-axis. The steady increase of this measure is likely the cause for the
similarly steady increase of the other Halstead measures. For both sides of the experiment
we can see a drop for the value of the arithmetic mean after the final sprint, which
was used to refactor the existing code.
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Figure 7.9.: Evolution of the arithmetic mean of Halsteads Length measure. The X-axis shows the
di�erent sprints which mark speci�c points in time over the course of the development.
The Y-axis shows the value of the arithmetic mean after the completion of the sprint
shown on the X-axis. The evolution of this measure is almost identical to the evolution
of the more advanced Halstead measures (Volume, E�ort, Time, Bugs).
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of what counts as an operator and what counts as an operand for any given pro-
gramming language. Without a clear consensus it is not meaningful to compare the
results of Halsteads measurements taken for two di�erent programming languages.

These discrepancies are likely the cause for the signi�cantly di�erent evolution
of Halsteads measures as shown in Figure 7.9. While they should not be used for
comparing the frameworks, the measures still capture important attributes when it
comes to the evolution of the project. As we can see the Halstead measures correctly
capture the constant increase of size of the software projects over the course of the
development. Furthermore, the decrease of size during the final sprint was also
captured for both frameworks.

Volume

Halsteads measure for Volume should allow us to measure the ‘size’ of �les. Accord-
ing to Shen et al. [55] it can be understood as bits needed to save a �le on a disc.

When looking at the actual �le size of our measured �les and comparing it with
the values calculated using Halsteads Volume measure we can see that for our
experiment ‘bits’ are far o� from the actual �le size, while if we would interpret it
as ‘bytes’ it would be ‘somewhat close’ at best. Additionally, if Halsteads Volume
measure would reliably capture the size of a �le it should result in the same order
as if we ordered �les by their actual �le size. For the Laravel side of our experiment,
after ordering the �les measured by their �le size in bytes (Table 7.1), the resulting
order is di�erent to the one we get when we order the same �les by the resulting
value for Halsteads Volume (Table 7.2).

However, for the ReactJS side of our experiment the ordering of elements by size
on disk and Halsteads Volume is roughly the same. From the 15 largest �les when
judging by actual �le size on disk on one side and judging by the resulting value
for Halsteads Volume on the other side, 9 out of those 15 �le are contained in both
sets. The ordering of these 9 �les is still slightly di�erent as shown in Table 7.3 and
Table 7.4.
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Filepath Bytes on Disk
views/artworks/form.blade.php 12771
views/pro�le/edit.blade.php 10629
views/artworks/invoiceForm.blade.php 9573
js/artworkInvoice.js 8932
views/artists/index.blade.php 8289
views/artists/form.blade.php 7800
views/artworks/index.blade.php 7692
views/auth/register.blade.php 6467
Controllers/ArtworksController.php 6092
views/layouts/headers/cards.blade.php 5088
views/users/index.blade.php 4999
views/layouts/navbars/sidebar.blade.php 4835
js/artworkForm.js 4786
views/users/edit.blade.php 4747
views/auth/login.blade.php 4744

Table 7.1.: Actual �le size on disk for the Laravel side of the experiment. Only the 15 largest �les
are shown. This table shows that we obtain a di�erent ordering when compared to the
�les ordered by Halsteads Volume measure and that the actual �le size is vastly di�erent
from the amount of bits calculated using Halsteads Volume measure.

For our experiment Halsteads measure for Volume did not lead to meaningful
results. Nonetheless it can still serve as a tool to detect �les which contain a vast
amount of logic. However, plainly using the actual �le size (in bytes) might lead to
the same (if not better) results with less e�ort.

Di�iculty and E�ort

The measured Di�culty as de�ned by Halstead changes based on the relation
between the amount of operators and unique operators, and operands and unique
operands. It should capture how di�cult a piece of software is to understand / write.
Figure 7.10 shows the evolution of the arithmetic mean of Halsteads Di�culty
measure which, similarly to most other Halstead measures, grows steadily. We did
not investigate the Di�culty measure particularly in detail as it is mainly used in
combination with Halsteads Volume measure to calculate Halsteads E�ort measure.
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Filepath Halstead Volume
js/artworkInvoice.js 10147.939
js/artworkForm.js 4826.562
js/artistForm.js 3782.737
Controllers/ArtworksController 1387.61
js/�leUploadPreview.js 992.674
views/artworks/form.blade.php 878.766
views/pro�le/edit.blade.php 617.343
Controllers/ArtistsController 529.4
views/artists/index.blade.php 498.246
views/artists/form.blade.php 470.648
js/artworkIndex.js 406.997
views/artworks/invoiceForm.blade.php 395
js/artistIndex.js 375
views/artworks/index.blade.php 357.576
views/users/edit.blade.php 353.042

Table 7.2.: Values for Halsteads Volume measure for the Laravel side of the experiment. Only the
15 �les with the largest value for Halstead Volume are shown. This table shows that we
obtain a di�erent ordering when compared to the �les ordered by size on disk (in byte)
and that the actual �le size is vastly di�erent from the amount of bits calculated using
Halsteads Volume measure.

Halsteads E�ort measurement tries to assign a numerical value to the mental e�ort
required to develop or understand a piece of software. It is calculated as a relation
between Halsteads Di�culty and Volume, therefore the more di�cult a program is
to understand / write and the bigger it is, the higher the mental e�ort required to
understand / write it.

Judging by subjective observations, Halsteads measure for E�ort worked surpris-
ingly well for both sides of our experiment. The �les with the highest value for
E�ort are the ones which subjectively took a signi�cant amount of mental e�ort
to develop and seem like the ones which would take the most amount of mental
e�ort to understand.
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Figure 7.10.: Evolution of Halsteads Di�culty measure across all measured �les for each sprint.
The X-axis shows the di�erent sprints which mark speci�c points in time over the
course of the development. The Y-axis shows the value of the arithmetic mean after
the completion of the sprint shown on the X-axis. The evolution of this measurement
is similar to the evolution of the other Halstead measures.
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Filepath Bytes on Disk
views/artworks/ArtworkForm.js 24734
views/artists/ArtistForm.js 20547
views/artworks/pdf/ArtworkInvoiceForm.js 17096
backend/controller/ArtworkController.js 12065
navs/Sidebar.js 9798
views/Register.js 9621
views/artworks/read/ViewArtwork.js 6912
backend/controller/ArtistController.js 6755
views/Login.js 6490
views/artists/read/ViewArtist.js 5773
views/ResetPassword.js 5358
src/serviceWorker.js 4951
views/artworks/ArtworkRow.js 4581
views/artists/Artists.js 4286
navs/AdminNavbar.js 4232

Table 7.3.: The 15 largest �les ordered by their actual �le size on disk of the ReactJS side of the
experiment. This table shows that even though the exact ordering is di�erent, 9 of the
15 �les shown are also included in the 15 �les with the largest value for Halsteads
Volume. We can also see that the actual �le size is vastly di�erent from the amount of
bits calculated using Halsteads Volume measure.

The �le with the highest value for E�ort for the Laravel side speci�cally is the one
used for validating and processing of the invoice generation form. It contains a
large amount of logic required to retrieve the involved HTML elements, code for
validation and code for creating and sending requests to the back end, as well as
handling responses. Generally, �les related to User Experience (for the Laravel side
of our project these �les were Javascript �les) are the ones with the highest value
for Halsteads E�ort measurement and also the ones which subjectively required the
most amount of mental e�ort to develop for the Laravel side. Based on these sub-
jective observations we would argue that Halsteads E�ort measurement correctly
re�ects the mental e�ort required for the Laravel side of our project. However,
over the course of the experiment we did not �nd a reliable way to objectively
pinpoint the mental e�ort required to compare it to the results of Halsteads E�ort
measurement.
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Filepath Halstead Volume
views/artworks/ArtworkForm.js 13014.691
backend/controller/ArtworkController.js 12775.532
views/artists/ArtistForm.js 12089.87
views/artworks/pdf/ArtworkInvoiceForm.js 8163.526
backend/controller/ArtistController.js 6578.529
views/Register.js 4367.661
navs/Sidebar.js 4063.607
src/services/pdfService.js 3458.358
views/Login.js 3113.799
views/artworks/read/ViewArtwork.js 3032.552
backend/server.js 2944.16
backend/routes/authenticationRoutes.js 2869.399
views/ResetPassword.js 2852.92
backend/middleware/routeProtection.js 2763.653
views/artworks/ArtworkRow.js 2715.677

Table 7.4.: Values for Halsteads Volume measure for the ReactJS side of the experiment. Only the 15
�les with the largest value for Halstead Volume are shown. Even though their ordering
is di�erent 9 of the 15 �les shown are also part of the 15 largest �les judging by the �les
size on the disk. It also demonstrates that the actual �le size is vastly di�erent from the
amount of bits calculated using Halsteads Volume measure.

Additionally, for our experiment the results for Halsteads E�ort measurement
shown in Figure 7.11 suggest, that it correctly captures an important attribute of
ReactJS. As the separation of concerns is one of the main focuses of the framework
itself we expected to see a distribution of the mental e�ort required along multiple
�les. The results in Figure 7.11 show that for both frameworks we are dealing with
some �les which involve a signi�cantly greater amount of mental e�ort required.
However, for the ReactJS side we can see that apart from the �ve biggest �les, the
mental e�ort starts to evenly split across the remaining �les. On the other hand, the
Laravel side shows some �les with an exceptionally high value for Halsteads E�ort,
while the rest of the �les show low values. This result suggests that the di�culty
of the entire software project is more spread out across the di�erent architectural
components for the ReactJS side, while for the Laravel side of our experiment some
components involve signi�cantly more e�ort than others.
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Figure 7.11.: Distribution of Values for Halsteads E�ort measure after the final sprint for both
frameworks. The chart shows the 15 �les with the largest value for Halsteads E�ort
measure for both frameworks. The Y-axis shows the values, while the X-axis is a simple
numeration from 1 (for largest) to 15 (to smaller). For both frameworks we can see
that there is a small set of �les which have a signi�cantly larger value for the e�ort
measurement as the rest of the �les. Additionally the chart shows that the values for
ReactJS are generally larger and more distributed across the �les.
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Bugs

Halstead originally assumed that the probability for an error can be seen as a rela-
tion between the complexity of the software and the experience of the developer,
which he calls ‘developer ability’. Therefore his initial formula uses Halsteads E�ort
measure in relation to a constant which represents the ‘developer ability’. The
tools used for this experiment use a deviation of the original formula which uses
Halsteads Volume instead. Therefore, the amount of bugs in the software in the
sense of Halsteads Bugs measurement can be seen as a relation between the size of
the program and the ‘developer ability’.

Since Halsteads Bugs measurement is directly relative to Halsteads Volume meas-
urement the evolution over the sprints of the experiment is the exact same for both.
Additionally, the 15 largest �les - judging by Halsteads Volume measurement - are
the ones with the highest amount of expected bugs. The distribution shown in
Figure 7.12 suggests that for the Laravel side there are a few �les which are expected
to contain the most amount of bugs, while the rest of the �les are expected to have
almost none. For the ReactJS side of our experiment we see a similar trend, however
the lower values are more spread out and generally higher. This is probably due
to the fact that ReactJS applications usually spread the application logic across
multiple smaller �les (components).

For our experiment Halsteads Bugs measurement did not prove particularly mean-
ingful. It proved useful for identifying �les which are more likely to contain bugs,
however as the measurement itself is just a deviation of Halsteads Volume we can
just use Halsteads Volume instead of doing any further calculations. In the literat-
ure reviewed it was mentioned that Halsteads Bugs measure is useful for dynamic
testing, as it can be seen as a lower bound for the amount of bugs which should be
found by the testing suite. However, we did not �nd any additional information on
this topic.

Time

Halsteads measure for Time tries to map his measure for E�ort to conceivable units
of time. Speci�cally, the formula presented in subsection 6.4.4 returns an estimate
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Figure 7.12.: Barchart showing the distribution of values for the 15 largest �les judging by Halsteads
Bugs measure for both frameworks after the final sprint. The Y-axis shows the
resulting value for Halsteads Bugs measure, which translates to the expected amount
of errors in the speci�c �les. The X-axis shows a numeration for each of the 15 largest
�les ordered by the resulting value for Halsteads Volume measure. Since the formula
we used to calculate Halsteads Bugs measure is directly relative to Halsteads Volume
measure, the �les with the largest Halstead Volume are the ones which are expected to
contain the most amount of errors.
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for the amount of seconds required to develop the measured program.

Figure 7.13 shows the evolution of the sum for Halsteads Time measure for all
measured �les. The results show a signi�cant di�erence between the ReactJS and
the Laravel application. However, this results seems unjusti�ed.
While we did indeed perceive a signi�cant di�erence of time investment needed
between the two applications, the suggest ratio is too far o� from reality. The
graph indicates a value close to 250.000 seconds for the ReactJS side which roughly
translates into 70 hours of work. For the Laravel side the graph shows a value close
to 45.000 seconds, which is roughly 12 hours. These results suggest the ReactJS
application almost took 6 times longer to develop than the Laravel application,
while in reality roughly (lower bound for both) 150 hours were spent on the ReactJS
application and 100 on the Laravel application.

This huge disconnect from the actual development time is probably due to various
reasons. As discussed in [55] too many discrepancies are involved in the measure-
ments used to calculate Halsteads Time measure, while the theoretical basis the
Time measurement itself builds upon is also questionable.

For our experiment the results for Halsteads Time measure did not prove to be
particularly meaningful. It might still be useful to identify �les which consumed
most of the development time, however we can also identify those by using any
of the more basic Halstead measures which capture the size of �les and are less
criticized such as Volume or Length.

7.5. Logical Lines of Code

The logical lines of code (LLOC) are the most basic measurement for size used
during this experiment. Figure 7.14 shows the almost identical evolution of the
arithmetic mean for the LLOC for both sides of the experiment over the course
of the development. During the �rst three sprints of the experiment (initial,
framework-setup, login) we can see drastic shifts for the values of the
arithmetic mean. This is caused by the design template which was added dur-
ing these sprints. The example �les contained by the design template lead to a
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Figure 7.13.: Evolution of the sum of Halsteads Time measure across all measured �les for each
sprint. The values on the Y-axis are shown in seconds. The huge di�erence between
the time needed measured by Halsteads Time measure for both sides of our experiment
seems unjusti�ed. While there was a signi�cant di�erence of time investment between
the two frameworks, the di�erence captured by Halsteads Time measure seems too
big. Additionally, the resulting values of the measurement are too far o�: The graph
indicates a value close to 250.000 seconds for the ReactJS side which roughly translates
into 70 hours of work. For the Laravel side the graph shows a value close to 45.000
seconds, which is roughly 12 hours. These results suggest the ReactJS application
almost took 6 times longer to develop than the Laravel application, while in reality
roughly (lower bound for both) 150 hours were spent on the ReactJS application and
100 on the Laravel application.
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signi�cant increase in the amount of LLOC when they were added during the
framework-setup sprint for the Laravel side of the experiment and during
the login sprint of the ReactJS side. The impact of these �les is shown more
clearly by Figure 7.15. Figure 7.15 also shows the decrease of LLOC for the Laravel
side after the initial sca�olding was adjusted to �t the requirements during the
login sprint.

7.5.1. Interpretation

The LLOC measurement was mainly used to calculate the Maintainability Index.
Nonetheless our results suggest that it can be useful for detecting �les which con-
tain too much logic compared to other �les in the architecture. Additionally, the
connection between quantitative attributes of the code (the amount of lines of code)
and the resulting value of the LLOC measurement is clear. This means, if we would
use the LLOC measurement as a measurement of complexity, we could decrease
the complexity of a program by reducing the amount of lines of code.

The results of our experiment suggest, that the software built with ReactJS requires
more LLOC for building the same feature built in Laravel. Additionally, our results
(see Figure 7.15) correctly capture the signi�cant overall di�erence between the
amount of LLOC between each framework. This di�erence is mainly due to the
absence of authentication logic for the Laravel side of the experiment, since authen-
tication is solely handled by Laravel directly and therefore lead to little amounts
of LLOC. For the ReactJS side on the other hand it was necessary to develop the
entire authentication logic from the ground up.

Our results correctly capture Laravels strength of providing a signi�cant amount
of basic functionalities (as for example authentication logic) out of the box. Further-
more, they also suggest that the LLOC measurement captures Laravels notion of
‘doing more with less’. Particularly, Laravel tries to provide simple interfaces and a
multitude of helper functions aimed at reducing the amount of code necessary to
develop certain features. Figure 7.15 indicates that the Laravel side has a slightly
less steep increase for the amount of LLOC starting from the login sprint until
the end of the final sprint. This suggests, that less code is required to develop
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Figure 7.14.: Evolution of the arithmetic mean of the amount of logical lines of code across all
measured �les for each sprint. The graph shows the almost identical evolution for both
sides of the experiment. There are signi�cant jumps for the value of the arithmetic
mean during the �rst three sprints. During these sprints a design template was added
to the existing framework skeletons. At the end of the login sprint both sides of the
experiment included the same sca�olding needed for future developments. Speci�cally,
between the initial and framework-setup sprint example �les were added
to the project, which were removed during the login sprint. The increase of the
arithmetic mean for the logical lines of code is caused by the initial addition of these
example �les, and the decrease is caused by their deletion/adjustment during the
login sprint.
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Figure 7.15.: Evolution of the total amount of logical lines of code (LLOC) over the course of the
development. The LLOC were calculated for each �le and summed up for each sprint.
We can see the steady increase for both sides of the experiment and the almost identical
evolution after the login sprint. The Laravel side of the experiment shows a signi�c-
ant increase at the end of the framework-setup sprint, since during this sprint
the sca�olding of the design template was added to the code base. For the ReactJS side
the same design template was added at a later point in time. We can see this increase
for the ReactJS side after the login sprint. While the evolution is almost identical,
the ReactJS side shows a slightly steeper increase past the login sprint.
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equivalent functionalities on the Laravel side of our experiment, relative to the
ReactJS side.

7.6. Cyclomatic Complexity

Figure 7.16 shows the evolution of the arithmetic mean of McCabes Cyclomatic
Complexity measure. We can see that the value of the cyclomatic complexity (CC)
for the ReactJS side of the experiment signi�cantly drops between the initial
and framework-setup sprint. One could interpret this result in such a way
that the ReactJS application instantiated by create-react-app introduces a
lot of overhead or unnecessary complexity to the project, which is removed after
moving on with the initial setup of the project. However, for our experiment this is
not the case.

The reason for this initial drop of CC is that during the framework-setup
sprint additional views and other �les were added to the project; each of which
have a low value for the CC measure. Since the graph shows the evolution of the
arithmetic mean, the addition of new �les with low values for the CC measure
lead to a signi�cant decrease of the value for the arithmetic mean. Particularly,
as Figure 7.17 shows the initial setup only contained 4 �les, where 3 (views) had
a CC of 1, and one �le which had a CC of 18. After the framework-setup
sprint however, the project already contained 10 �les which were included in the
measurements.

The remaining evolution of the measure follows the expected results. As additional
features are added to the software, existing �les grow and additional application
logic leads to more conditional statements, which in turn lead to a steady increase
of the value for the arithmetic mean for the CC measure.

7.6.1. Interpretation

We can see that on average, the Laravel project shows a signi�cantly lower value
for the CC measure. This makes sense, because of the di�erence between the two
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Figure 7.16.: Evolution of the arithmetic mean for McCabes Cyclomatic Complexity measure.
The Y-axis shows the values for the Cyclomatic Complexity measure and the X-
axis indicates the di�erent sprints. The huge drop between the initial and
framework-setup sprint for the ReactJS side of the experiment is due to the
low amount of �les at the beginning of the projects as shown in Figure 7.5. A single
�le with a large value for the Cyclomatic Complexity measure lead to a high value for
the arithmetic mean of the measure. After additional �les were added the impact of
outliers was reduced which resulted in a drop for the value of the measurement.
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Figure 7.17.: Barcharts visualizing the distribution of values for McCabes Cyclomatic Complexity
measure after the initial and the framework-setup sprint. The X-axis shows
the values for the Cyclomatic Complexity measure. The Y-axis shows the amount of
�les with the speci�c value for the A�erent-Coupling measure shown on the X-axis.
The numbers above the bars indicate the exact amount of �les in this speci�c group.
The number of �les measured more than doubled between these two sprints. The wider
spread of the values lead to a sudden decrease in the value of the arithmetic mean for
the Cyclomatic Complexity measure, as the impact of outliers was lowered.
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frameworks. The ReactJS side contains a variety of stand-alone components, each
containing their own logic for managing themselves. This means, that on average
the amount of conditional statements per �le should be higher. The Laravel side
on the other hand should have a small number of �les, which have a high value
for the CC measure. Speci�cally, the controllers and the views contain most of the
applications logic. Apart from the controllers and the views however, the rest of the
�les contain little application logic and therefore only a small amount of conditional
statements, which on average leads to a smaller value for the CC measure.

In Figure 7.18 we can see the distribution of values for the CC measure. It shows
that for the Laravel side of our experiment most �les show values of one or two
for the CC measure. The ones with values above 10 are views with signi�cant
amount of logic for displaying information correctly and controllers which contain
a signi�cant amount of application logic for storing and updating resources. The
ReactJS side does not only show higher values for the CC measure on average, it
also has the �les with the highest value for the CC measure.

The largest value for the CC measure on the ReactJS side of our experiment is 62.
The �le associated with this value is responsible for displaying a form to create
and edit an artwork. The reason for such an alarming value for the CC measure is
that this �le contains both the logic for creating and updating an artwork, while
also facilitating form validation and request generation. This case in particular
shows that the CC measure can be useful to detect �les which most likely can
be redesigned or split up into smaller components to signi�cantly reduce their
complexity.

During our research we did not �nd a clear consensus on which values for the
CC measure are alarming values (high complexity) and which ones indicate a low
amount of complexity. In general we suggest to use the CC measure in relation to
other �les in the same project. As an example, in our experiment most �les have a
CC below 10 which leads to the assumption we should probably try to refactor �les
in a way such that they have a CC below 10 or at least as close to 10 as possible. Any
�le above such a threshold can be considered to have a high degree of complexity
and should be looked into in more detail.
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Figure 7.18.: Barchart visualizing the distribution of values for McCabes Cyclomatic Complexity
measure after the final sprint. The X-axis shows the values for the Cyclomatic
Complexity measure. The Y-axis shows the amount of �les with the speci�c value for
the Cyclomatic Complexity measure shown on the X-axis. The numbers above the
bars indicate the exact amount of �les with this speci�c value. We can see that for the
Laravel side of our experiment most �les have a cyclomatic complexity (CC) of one or
two. This is the case because the Laravel side of our experiment contains a signi�cant
amount of helper �les, which are used to extend the framework. An example for this
would be using ‘Requests’ to de�ne rules for automatic request validation. These �les
usually contain a single function without any additional logic, which results in a CC
of one. Only a few �les show a CC above 10, while for the ReactJS side the values
are fairly spread out between 2 and 10. For the ReactJS side there is also a signi�cant
amount of �les with values above 10.
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7.7. Maintainability Index

The Maintainbility Index by Coleman et al. [18] is a combination of di�erent
software measurements, namely Halsteads Volume [32], McCabes Cyclomatic Com-
plexity [44] and logical lines of code. According to Coleman et al., each of these
software measurements is assumed to capture di�erent attributes of software which
have a negative impact on its maintainability.

Figure 7.19 shows the evolution of the arithmetic mean for the Maintainability
Index over the course of the experiment. Our results show that the Laravel side
of our experiment has a higher value for the Maintainability Index right from the
initial setup. The evolution is similar for both frameworks; as the project grows
the value for the arithmetic mean of the Maintainability Index steadily decreases.
Interestingly, we observed an increase of the value for the arithmetic mean of the
Maintainability Index for the ReactJS side between the framework-setup and
login sprint. This increase is due to the signi�cant increase in the amount of �les
measured as shown in Figure 7.5. The addition of multiple �les with higher values
for the Maintainability Index lead to a positive shift in the value of the arithmetic
mean. For the Laravel side the only positive change for the Maintainability Index
observed during our experiment was after the final sprint, while any other
sprint lead to a decrease of the value.

7.7.1. Interpretation

With the high degree of separation of concerns for the ReactJS application we
expected to see relatively high values for the arithmetic mean of the Maintainability
Index. As logic and therefore complexity as well as amount of lines of code (LOC)
is split across multiple �les, we should end up with numerous �les with a relatively
low amount of LOC, low complexity and therefore higher Maintainability Index.

However, due to the properties of the Maintainability Index and of the attributes of
the Laravel framework our results show that the Laravel side of our experiment has
higher values for the Maintainability Index. The Maintainability Index combines
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Figure 7.19.: Evolution of the arithmetic mean for the Maintainability Index [18]. Larger values
indicate better maintainability. The Y-axis shows the values for the arithmetic mean
of the Maintainability Index and the X-axis indicates the di�erent sprints. The drop
between the initial and framework-setup sprint for both sides of the ex-
periment is due to the low amount of �les at the beginning of the projects as shown
in Figure 7.5. After the initial setup only a few �les containing almost no logic and
therefore with a Maintainability Index of 100 are contained in the project. After the
framework-setup sprint basic sca�olding to display information was added to
the project, which lead to the addition of multiple �les with a Maintainability Index
below 100, which lead to a decrease of the value of the arithmetic mean.
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three measurements, of which two are considered a measurement of size: Halsteads
Volume and logical lines of code (LLOC). The formula used for our experiment is

Maintainability = (

171

− 5.2× ln(HalsteadV olume)

− 0.23× CyclomaticComplexity
− 16.2× ln(LLOC)

) ∗ 100/171

(7.1)

, which is a slight deviation from Coleman et al. [18] original formula. The devi-
ations and reasonings behind them are discussed thoroughly in section 6.5. In the
formula used, the two main factors negatively in�uencing the Maintainability Index
are foremost the amount of logical lines of code (LLOC) and Halsteads Volume.
While the complexity by the means of McCabes Cyclomatic Complexity has an
impact on the measurement, the size of the �le - especially in terms of LLOC - has
a signi�cantly higher impact on the measurement.

Halsteads Volume was attributed to capture not only the size of the �le, but also
to capture the complexity contained in the �le. However, as shown by Shen et al.
[55] and discussed by Fenton et al. [26, p. 344-348] the theoretical background
of Halsteads measurements is questionable and Fenton et al. suggest to classify
Halsteads Volume solely as a measurement of size.

Assuming Halsteads Volume is a measurement of size, the main factor responsible
for a decrease of the Maintainability Index for our experiment is the size of the
measured �le. This means, that the smaller a �le is in terms of LLOC and Halstead
Volume, the higher the Maintainability Index of that �le is.

One of Laravels focuses is to ‘do more with less’, speci�cally this means that the
framework provides a multitude of simple interfaces and basic functionalities out of
the box which aim at reducing the amount of code necessary to reach a certain goal.
For our experiment Figure 7.15 shows a slight di�erence in the amount of LLOC
required for the same set of features. Since for our experiment the Maintainability
Index is mainly in�uenced by the size of the �les, the Laravel side generally has a
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higher Maintainability Index than the ReactJS side, since the �les of the Laravel
side are smaller (in the sense of Halstead Volume and LLOC).
An additional aspect, which leads to a higher value for the arithmetic mean of the
Maintainability Index for the Laravel side, is a speci�c set of simple yet powerful
�les, which we will call ‘helper �les’. The Laravel framework contains a multitude
of functionalities which are related to back end development out-of-the-box. For
example, the ability to set the application into a maintenance mode is included in
every project and it can be triggered by setting a speci�c �ag in the underlying
database. Such features are included in the project as simple �les which contain
little logic, as they are supposed to be used as con�guration �les. Additionally, �les
de�ning the layout of a request and validation rules also contain little logic even
though they play an important role in the application. These helper �les speci�cally
have a signi�cantly high value for the Maintainability Index, most of the time
ranging between 80 and 100. Therefore, these �les cause a signi�cant positive shift
of the value of the arithmetic mean of the Maintainability Index. We think that
this is an important observation and connection between the measurement and
quantitative code attributes, since splitting functionalities up into small pieces and
have single �les which are responsible for one speci�c part of the application is
considered to have a positive impact on perceived maintainability.

Figure 7.20 shows the distribution for the Maintainability Index for both sides of
our experiment after the final sprint. The sections ‘critical’ ([0, 10], red), ‘ok’
((10, 20], yellow), and ‘good’ ((20, 100], green) visualize the classi�cation used by
Visual Studio [47]. These thresholds still have to be tested until a clear consensus
can be found. However, for our experiment they served as a good indicator. As
Figure 7.20 shows the ReactJS side of our experiment contains two �les which
have a particularly low Maintainability Index, which lies in the ‘critical’ interval.
Speci�cally, these �les are the forms used to create and edit the resources associated
with the system, which means they contain logic for validating user input, general
user feedback and creating requests which are then sent to the back end. Most of
these functionalities could be split up into multiple smaller �les, which would lead
to a higher Maintainability Index. In this case, the Maintainability Index correctly
indicated bad design choices and a low perceived maintainability.
The rest of the distribution does not show anything of particular interest, however
we can see that for the Laravel side the �les tend to generally have higher values
for the Maintainability Index.
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Figure 7.20.: Barchart visualizing the distribution of values for the Maintainability Index after the
final sprint. The X-axis shows intervals for of the Maintainability Index. Each
interval is inclusive f.e. (5, 10] , (10, 20] , . . . , (90, 100]. The Y-axis shows the amount
of �les with a Maintainability Index in the interval speci�ed on the X-axis. The numbers
above the bars indicate the exact amount of �les in this speci�c interval. The sections
‘critical’ ([0, 10], red), ‘ok’ ((10, 20], yellow), and ‘good’ ((20, 100], green) visualize the
classi�cation used by Visual Studio [47]. Speci�cally for our experiment we can see that
the ReactJS side has two �les with an alarmingly low value for the Maintainability Index,
which can probably be refactored and simpli�ed. The worst �le for the Laravel side on
the other hand has a Maintainability Index between 10 and 20 which is considered to
be an alarming value. However, values between 10 and 20 are often �les which have a
signi�cant amount of responsibility and probably can not be split up into smaller �les,
as there are logical reasons behind having everything in one place. For our experiment
in particular the �le with the lowest value for the Maintainability Index is in fact a
controller which contains all the logic associated with working with a speci�c type of
resource. While it would be possible to split up the logic of the controller into multiple
smaller classes, it is often desired to have all logic associated with a single resource in
a single �le.
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7.8. Meaningfulness of Derived Statements

When drawing conclusions based on data collected using any form of measurement
we have to be mindful of the scale the measurement operates on. Depending on
the scale, certain statistical operations might not be meaningful and can lead to
wrong results. Speci�cally, most of the time the measurements we use will result
at least in an ordinal scale. This type of scale assigns a speci�c ordering to the
objects measured and disregards the speci�c intervals between each measured
object. However, applying the arithmetic mean to the result of a measurement
which operates on an ordinal scale is not meaningful, since the intervals between
each measured object may vary drastically. To use statistical operations such as
the arithmetic mean and retrieve meaningful results, the scale our measurement
operates on has to be at least an interval scale.

For the measurements used during this experiment only McCabes Cyclomatic
Complexity [44] was shown to use a ratio scale [66, p. 151 - 167]. This means
when interpreting the results of this experiment we have to be mindful of the
meaningfulness of derived statements. Since most of our measurements use an
ordinal scale, the alternative to the arithmetic mean would be to look at the median,
which is meaningful for ordinal scales. During our experiment we calculated both,
the median and the arithmetic mean. The evolution of the median for all measure-
ments di�ers from the results received from the arithmetic mean. For some of the
measurements used the median does not change at all, which made it less useful
for our experiment. For this reason we decided to go into detail with the values
received from the arithmetic mean, since it is known that even though theoretically
it might not be meaningful to use the arithmetic mean on an ordinal scale, it can
still lead to ‘fruitful results’ [58].

7.9. Applicability of the selected So�ware
Measurements for Framework Comparison

The results discussed in the previous section show that not all software measure-
ments chosen for this experiment are suitable for comparing the selected frame-
works reliably, and that not all of our expectations stated in subsection 5.3.3 were
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Measurement Laravel React
Maintainability Index [18] 50.464 43.777
Cyclomatic Complexity [44] 2.933 6.107
A�erent-Coupling [43] 0.989 2.238
E�erent-Coupling [43] 2.089 4.5
Instability [43] 0.712 0.66
Halstead E�ort [32] 9068.081 53282.042
Halstead Volume [32] 336.507 1733.059
Halstead Length [32] 56.5 259.06
Halstead Time [32] 503.77 2960.113
Halstead Bugs [32] 0.112 0.578
Halstead Di�culty [32] 2.937 17.466
Halstead Vocabulary [32] 17.011 67.833
Logical Lines of Code 41.333 69.655

Table 7.5.: Overview of the results received for the di�erent measurements used. The columns show
the di�erent measurements while the respective row for each framework contains the
values of the arithmetic mean for each of the measurements. The values shown are the
result of the measurements after the final sprint.

met.

For example, the coupling measures used during this experiment [43] seemed to
correctly capture the desired attributes of coupling between classes and �les in
general for the ReactJS side. However, Laravel automatically imports a vast amount
of classes into every �le associated with the framework, e�ectively hiding a sig-
ni�cant amount of interrelationships between the measured classes. Therefore,
the coupling measures used during this experiment can not be reliably used when
trying to compare the Laravel framework to another framework. Nonetheless we
would like to point out, that our results for the ReactJS side indicate that the coup-
ling measures in particular change with any changes in the quantitative attributes
(increase in outgoing and incoming dependencies) and therefore can reliably be
used to measure the coupling of a software project.

This highlights the problem that the applicability of software measures for frame-
work comparison mostly depends on which frameworks are compared and which
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programming languages they use. The programing language used has a signi�cant
impact on Halsteads measures, as the de�nitions for operators and operands di�er
for each language and the frequency of their usage may also vary drastically.

We believe that the software measures used can be useful for detecting �les with
high complexity. However, the selected set of software measures does not seem
to be particularly reliable for comparing the selected frameworks with each other.
This is mainly due to the various di�erences in the frameworks and programming
languages used, which directly impact the measurements as for example Laravels
automatic imports.

We also believe that if we were to inspect the evolution of our software project over a
longer period of time, we would, over time, see higher values for the Maintainability
Index of the ReactJS side relative to the value of the Laravel side. This is due to
the fact, that the value for the arithmetic mean of the Maintainability Index of the
Laravel side steadily decreased over the course of development (apart from the
slight increase observed after the refactoring done during the final sprint) while
it increased for the ReactJS side after the addition of multiple new �les during the
login sprint. We think that the high degree of separation of concerns will over
time lead to better results for the Maintainability Index of the ReactJS side when
compared to the Laravel side.

Furthermore, we realized that while some measures are relatively easy to in�uence
as there is a clear connection between code attributes and the resulting value of
the measurement, there are others for which it is hard to �nd a clear solution of
how to improve the code in such a way that it is re�ected in the measurements.
For example, if we wanted to reduce the coupling measured using the coupling
measures used during this experiment [43] we could reduce the amount of im-
port statements and this change would immediately result in lower values for the
A�erent- and E�erent-Coupling measures. In a similar way we can reduce the
complexity measured by McCabes Cyclomatic Complexity [44] by reducing the
amount of conditional statements in a �le.
However, particularly the Maintainability Index proved rather di�cult to in�uence.
Reducing the complexity (in the sense of McCabes Cyclomatic Complexity [44])
leads do slightly higher values for the Maintainability Index. For our experiment,
the main factor in�uencing the Maintainability Index was the size of the �le in the
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sense of logical lines of code (LLOC) and Halstead Volume.

As software projects grow, it is likely that certain �les will reach a signi�cant
amount of LLOC, even though most of the logic is already split up into other
architectural components. In such a case, it seems impossible to improve the Main-
tainability Index of a �le at which point the applicability of the Maintainability
Index becomes questionable. Additionaly, Halsteads Volume, the third measure-
ment included in the calculation of the Maintainability Index, also depends on
the amount of operators, operands, unique operators and unique operands. Just
like LLOC these amounts depend on the size of the �le and most of the time it
can prove di�cult to lower the amount of operators needed to achieve a certain goal.

McCabes Cyclomatic Complexity [44], Martins coupling measures [43] and logical
lines of code are perceivably linked to quantitative code attributes and therefore
easy to in�uence. On the other hand, especially Halsteads measurements [32] and
the Maintainability Index [18] proved to be relatively di�cult to in�uence and
did not provide much information on how to speci�cally improve the code once
reducing the size of the �le was not possible. Antinyan et al. [3] highlight this
�aw of existing software measurements and draw attention to the need for new
software measures targeted at speci�c code attributes which are known to cause
high complexity.
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During this experiment we investigated a set of software measurements aimed at
quantitative software attributes and their applicability for framework comparison.
Speci�cally, we build the same application in two di�erent web frameworks namely
ReactJS and Laravel and de�ned clear intervals which we call ‘sprints’. During each
of these ‘sprints’ a speci�c set of features was added to both sides of the experiment.
After each sprint, the following software measurements were used:

1. A�erent-Coupling, E�erent-Coupling and Instability [43]
2. Logical Lines of Code (LLOC)
3. Cyclomatic Complexity [44]
4. Halsteads Metrics [32]

a) Vocabulary
b) Length
c) Volume
d) Di�culty
e) E�ort
f) Time
g) Bugs

5. Maintainability Index [18]

The main take aways of this thesis are as follows:

• The applicability of software measures depends on the framework and pro-
gramming language involved. This includes both, their applicability for frame-
works in general and the applicability for framework comparison. As an
example our results suggest, that the Coupling measures by Martin [43] are
not suitable for measuring the coupling of a Laravel application. On the other
hand, the results for the ReactJS side suggest that the Coupling measures
capture attributes of the software architecture.
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• Some measures proved particularly useful as they can be used to detect certain
attributes which are directly linked to perceivable quantitative attributes of
the software. Speci�cally McCabes Cyclomatic Complexity [44] was helpful
at detecting �les with signi�cant amounts of conditional statements, which
for our experiment were also perceivably more complex to adjust than other
�les. For the ReactJS side of our experiment Martins Coupling measures [43]
were used for two di�erent purposes.
First of all we were able to identify �les which have a relatively high probab-
ility to change since they depend on a multitude of other components, which
results in high values for the E�erent-Coupling measure.
Secondly we were able to identify core entities of our architecture as they
were highlighted by a relatively high amount of incoming dependencies, and
therefore high values for the A�erent-Coupling measure.

• On the other hand, the remaining software measures used did not prove par-
ticularly useful. While Halsteads Measures and the Maintainability Index can
be used to detect �les with a signi�cant amount of responsibility / application
logic, their usefulness beyond that is questionable. If a �le gets a low value
for the Maintainability Index it is often unclear which changes would help
improve the �le in the sense of the Maintainability Index, as the connection
between the result of the measurement and quantitative attributes of the
measured software is unclear. The Halstead Measures and the Maintainab-
ility Index both seemed to be mainly in�uenced by the size of the software
measured.

• Optimally, the set of software measurements used for this experiment is
applied to two projects using the same programming language. The results of
Halsteads measures in particular highly depend on the programming language
used, which makes them less suitable for comparing two projects which are
written in di�erent programming languages, like the ones investigated during
this experiment.

8.1. Future Work

The �eld of software measurements leaves much to be desired. Existing software
measurements have to be validated, the scale they operate on has to be clearly
de�ned and new measurements with a clear connection to quantitative software
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attributes have to be found. Additionally, software to quickly integrate software
measurements into existing projects has to be developed.

Future work should focus on the development of new software measures aimed at
harmful and quantitative software attributes as suggested by Antinyan et al. [3].
Further, a clear consensus for the applicability of existing software measures has to
be found. Halsteads measures in particular depend on the de�nition of operators
and operands for each programming language. Without a clear consensus, di�erent
software measurement tools could lead to di�erent results.
Additionally, software which allows the calculation of software measurements at
least for a speci�c programming language could be an important step towards
investigating and potentially validating the applicability of existing software meas-
urements.
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Appendix A.

Plots for Halsteads Measures

Since the evolution is almost identical for most of the Halstead measures, not all of
them were included in chapter 7. Following are the missing plots for the evolution
of Halteads measures.
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Appendix A. Plots for Halsteads Measures

Figure A.1.: Evolution of the arithmetic mean of Halsteads E�ort and Volume measure. The X-axis
shows the di�erent sprints which mark speci�c points in time over the course of the
development. The Y-axis shows the value of the arithmetic mean after the completion
of the sprint shown on the X-axis.
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Figure A.2.: Evolution of the arithmetic mean of Halsteads Time and Bugs measure. The X-axis
shows the di�erent sprints which mark speci�c points in time over the course of the
development. The Y-axis shows the value of the arithmetic mean after the completion
of the sprint shown on the X-axis.
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Appendix B.

Evolution of Measures based on
the Median

For any measurement it is necessary to know which scale the measurement is
operating on. Without knowledge of the scale we do not know which mathem-
atical operations are meaningful on the results of the measurement. For most of
the software measurements used during this experiment it is not known if it is
justi�ed to assume that they operate on an interval or ratio scale. Therefore, for
most measurements used we have to assume that they operate on an ordinal scale,
which means that statistical operations such as the calculation of the arithmetic
mean are not meaningful. An alternative to the arithmetic mean which works on
ordinal scales is the median.

Ordinal scales establish a certain order between the elements measured. There is no
additional information about the intervals between each of the elements, we just
know the order. Any mapping from an ordinal scale to another ordinal scale which
preserves the order of the elements is a valid measurement. Since the median does
solely depend on the order of the elements measured, it can be reliably used with
ordinal scales.

However, as the results shown below demonstrate the median for the Laravel side
often shows almost no change at all for our experiment. Since a main goal of this
thesis was to investigate the evolution of measurements, we decided to focus on the
evolution of the arithmetic mean instead of the evolution of the median. We would
like to point out that even though most evolutions are not particularly useful, the
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Appendix B. Evolution of Measures based on the Median

evolution of the median of the Maintainability Index follows the expectations stated
in subsection 5.3.3. Contrary to the results received by investigating the arithmetic
mean of the Maintainability Index, the median shows the expected positive impact
of ReactJS’s general high degree of separation of concerns on the Maintainability
Index.

Measurement Laravel React
Maintainability Index [18] 42.1 42.945
Cyclomatic Complexity [44] 1 3
A�erent-Coupling [43] 0 1
E�erent-Coupling [43] 2 4
Instability [43] 1 0.75
Halstead E�ort [32] 38.055 12532.13
Halstead Volume [32] 40.02 856.073
Halstead Length [32] 12.5 149
Halstead Time [32] 2 696.229
Halstead Bugs [32] 0.01 0.285
Halstead Di�culty [32] 1 13.712
Halstead Vocabulary [32] 8 55
Logical Lines of Code 16 43

Table B.1.: Overview of the results received for the di�erent measurements used. The columns show
the di�erent measurements while the respective row for each framework contains the
values of the median for each of the measurements. The values shown are the result of
the measurements after the final sprint.
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Figure B.1.: Evolution of the median of the A�erent- and E�erent-Coupling measure. The X-axis
shows the di�erent sprints which mark speci�c points in time over the course of the
development. The Y-axis shows the value of the median after the completion of the
sprint shown on the X-axis.
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Figure B.2.: Evolution of the median of the Instability measure. The X-axis shows the di�erent
sprints which mark speci�c points in time over the course of the development. The
Y-axis shows the value of the median after the completion of the sprint shown on the
X-axis.
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Figure B.3.: Evolution of the median of Halsteads Vocabulary and Length measure. The X-axis
shows the di�erent sprints which mark speci�c points in time over the course of the
development. The Y-axis shows the value of the median after the completion of the
sprint shown on the X-axis.
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Figure B.4.: Evolution of the median of Halsteads E�ort and Volume measure. The X-axis shows the
di�erent sprints which mark speci�c points in time over the course of the development.
The Y-axis shows the value of the median after the completion of the sprint shown on
the X-axis.
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Figure B.5.: Evolution of the median of Halsteads Di�culty measure. The X-axis shows the di�erent
sprints which mark speci�c points in time over the course of the development. The
Y-axis shows the value of the median after the completion of the sprint shown on the
X-axis.
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Figure B.6.: Evolution of the median of Halsteads Time and Bugs measure. The X-axis shows the
di�erent sprints which mark speci�c points in time over the course of the development.
The Y-axis shows the value of the median after the completion of the sprint shown on
the X-axis.
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Figure B.7.: Evolution of the median of the logical lines of code and the Maintainability Index. The
X-axis shows the di�erent sprints which mark speci�c points in time over the course
of the development. The Y-axis shows the value of the median after the completion of
the sprint shown on the X-axis. Contrary to the results received by investigating the
arithmetic mean of the Maintainability Index, the median shows the expected positive
impact of ReactJS’s general high degree of separation of concerns on the Maintainability
Index.
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