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Abstract

Traffic accident prediction has been a hot research topic in the last decades.
With the rise of Big Data, Machine Learning, Deep Learning and the real-
time availability of traffic flow data, this research field becomes more and
more interesting. In this thesis different data sources as traffic flow, weather,
population and the crash data set from the city of Graz are collected over
3 years between 01.01.2015 and 31.12.2017. In this period 5416 accidents,
which were recored by Austrian police officers, happened. Further these
data sets are matched to two different spatial road networks. Beside feature
engineering and the crash likelihood prediction also different imputation
strategies are applied for missing values in the data sets. Especially missing
value prediction for traffic flow measurements is a big topic. To tackle the
imbalance class problem of crash and no-crash samples, an informative
sampling strategy is applied. Once the inference model is trained, the crash
likelihood for a given street link at a certain hour of the day can be estimated.
Experiment results reveal the efficiency of the Gradient Boosting approach
by incorporating with these data sources. Especially the different districts
of Graz and street graph related features like centrality measurements and
the number of road lanes play an important role. Against that, including
traffic flow measurements as pointwise explanatory variables can not lead
to a more accurate output accuracy.
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1 Introduction

Every year, road accidents lead to a dramatic loss of numerous lives re-
sulting from motorized vehicles. In the last decades researchers have paid
increasing attention to determine factors that affect these, often deadly,
incidents on the streets worldwide.
As stated in the work of F. L. Mannering and Bhat, 2014 and Lord and
F. Mannering, 2010, many factors like environmental conditions, roadway
geometrics or traffic volume seem to have a great impact on the frequency
and also on the severity of crashes. Many of these data sources, like traffic
volume measurements, are just available country-wide or region-wide be-
cause they are maintained by several institutions separately.
Driver specific data which would affect the crash likelihood as mentioned
in the study of Howard et al., 2004, are at all hardly to figure out. Personal
factors like driver distraction, sleepiness and health status can not be tackled
but would have a great influence in the sense of crash risk prediction.
Recently, because of the rise of personal GPS trackers as smartphones, fitness
bracelets and so on, human mobility data becomes more and more available
also over national boarders. Also other data sources like weather data, and
road link related features are provided and can be accessed in real-time. This
access to different data sources in real-time will generate a high added-value
in therms of accident risk prediction. Just think of an application on mobile
devices for accident risk estimation which alerts an driver about high risky
road segments on his planned route. Like a traffic jam map, they will be able
to avoid traffic incidents more easily. Not only the data must be provided in
real-time but also the inference model must handle the different explanatory
variables extracted from the according sources and generate the prediction
output in real-time. With the rise of machine learning techniques and Big
Data analytic tools this use-case can be tackled more accurately today. F. L.
Mannering and Bhat, 2014 summarizes the most common methodological
approaches not only in terms of crash-frequency but also in the sense of

1



1 Introduction

crash-injury severity prediction. Despite the availability of different data
sources in real-time, the problem of missing values has generate issues for
researches for years. Especially missing information in dynamic traffic flow
data, mainly due to detector failure and lossy communication systems (Asif
et al., 2016), is still a big topic as mentioned in the work of Qu et al., 2009.

Problem Statement

To summarize, this thesis tackles the following issues:

• Collect and analyze heterogeneous data sets for the city of Graz in-
cluding accident, traffic flow, weather and population data for crash
likelihood estimation.
• Overcome missing values in the data sets by applying different impu-

tation strategies. Especially imputation for the traffic flow data is a big
topic.
• Apply different machine learning models for road accident prediction

not only on the whole data set but also on subsets. Evaluate and
compare these models on different evaluation metrics.

2



2 Related Work

2.1 Preliminary Work

2.1.1 Introduction

In a previous work a road accident severity prediction model based on the
Austrian traffic data set was deployed. Each accident in this data set consists
of several features which had been documented by Austrian police officers.
The use-case of this work was to apply a model which can estimate the
severity class of unlabeled samples based on this features.
Important features of the classification task therefore were figured out and
went through a data preprocessing pipeline. Afterwards different classi-
fication algorithms like Neural Networks, Decision Trees and ensemble
methods like Adaptive Boosting and Random Forest got applied and differ-
ent accuracy measurements where tracked and compared.

2.1.2 Data analysis

For deeper insides histograms of features cited in Table 2.1 were plotted. To
overcome features with missing values, the whole entry got deleted or, if
their are too many unknown values, the whole feature was left out.
Features like the color of the vehicle, the speed limit and the first registration
of a vehicle were completely left out because of too many missing values.
Others, like a certain type of a car trailer, does not seem to have a great
impact because more than 99% of accident participants had not carried a
trailer at all.

3



2 Related Work

In case of the ”VerkehrsartGruppe” feature only the categories: ”Bus”, ”Lkw
3,5-12t”, ”Lkw < 3,5t”, ”Lkw > 12t”, ”Pkw”, ”Fussgaenger”, ”Fahrrad”,
”Moped” and ”Motorrad” were considered.
For the target feature ”Verletzungsgrad” the categories: ”Todeseintritt an der
Unfallstelle”, ”Todeseintritt innerhalb von 30 Tagen” and ”Todeseintritt nach
mehr als 30 Tagen” were combined to the class ”toedlich verletzt” as shown
in Figure 2.2. Entries classified as ”Suizid/Versuch”, ”Tod/Verletzung durch
ploetzliche Erkrankung nicht durch Unfall” and ”o.A.” where completely
left out.
One can see that the classes ”toedlich verletzt” and ”schwer verletzt” are,
thank god, underrepresented which might have an negative impact for the
classification task itself.
Also entries with unknown values for the feature ”Alter” and ”Geschlecht”
were removed from the data set.
For other features like ”Airbag”, ”Helm” and ”Gurt” some classes were
combined to a new one.

4



2.1 Preliminary Work

Feature categorical number categories missing values
Jahr yes 5 no

Monat yes 12 no
Wochentag yes 7 no

Stunde yes 24 no
Tag yes 31 no

Tempolimit yes 16 yes
Gebiet yes 2 no

UnfalltypOG10 yes 10 no
Bundesland yes 9 no
StrZustand yes 5 no

Niederschlag yes 5 no
Nebel yes 2 no
Wind yes 2 no

Lichtverhaeltnisse yes 4 no
Fahrbahndecke yes 6 no

StrassenartGruppe1 yes 3 no
VerkehrsartGruppe yes 14 yes

Anhaenger yes 8 yes
Farbe yes 19 yes

Erstzulassung yes 11 yes
Leistung yes 1 yes

Beteiligung yes 2 no
Alter no - yes

Geschlecht yes 3 yes
Nationalitaet yes 163 yes

Schulweg yes 2 no
Alkoholisiert yes 2 no

ErstzulassungPerson yes 11 no
ErstzulassungFahrzeug yes 11 yes

Airbag yes 5 yes
Gurt yes 5 yes
Helm yes 5 yes

Verletzungsgrad yes 6 yes
Koordinaten0 no - no
Koordinaten1 no - no

Table 2.1: Extracted Features for accident entry

5
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Figure 2.1: ”Verletzungsgrad” before preprocessing.

Figure 2.2: ”Verletzungsgrad” after preprocessing.

6
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Feature ”Airbag”

Regarding the feature ”Airbag”, the classes ”Airbag nicht vorhanden” and
”Airbag vorhanden” were combined to the class ”Airbag nicht ausgeloest”
but only for four wheel vehicles. All other types where set to ”Airbag nicht
vorhanden”.

Figure 2.3: ”Airbag” feature

Feature ”Helm”

In case of the feature ”Helm”, for all four wheel vehicles the class ”Sturzhelm
nicht vorhanden” was chosen. For two wheel vehicles two different semantic
versions of the word ”Helm” namely ”Radhelm” and ”Sturzhelm” are used.
To generalize that, all classes with ”Radhelm” were casted to ”Sturzhelm”.

7
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Figure 2.4: ”Helm” feature

Feature ”Gurt”

For the feature ”Gurt”, the class ”Sicherheitsgurt nicht vorhanden” was
casted to the class ”Sicherheitsgurt nicht verwendet” for all four wheel
vehicles. For all other types this feature was set to ”Sicherheitsgurt nicht
vorhanden”

Figure 2.5: ”Gurt” feature
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2.1.3 Feature transformation

Because most machine learning algorithms can not handle text and categor-
ical features directly, all categorical features were one-hot encoded. This can
be done via the pandas DataFrame function get dummies. After preprocess-
ing all categorical attributes, one entry in the data set now consists of 166

training features.
The only numerical feature is the age of the accident participants. To over-
come bad performance of the different machine learning algorithms, one
has to scale this feature to a given range.

2.1.4 Training Validation and Test Set

The whole preprocessed data set was split into a training (80%) and a test
(20%) set according to the distribution of the target classes. Afterwards
several experiments were done on the remaining samples in the training
set and evaluated on the test set. Because of under represented target
classes, new samples were generated for these classes. This can be done
by oversampling the minority classes during the training process via re-
sampling with replacement. Now the target classes are equally distributed
and also the training set size increased.
For some of the following Machine Leaning models also a extra validation
set has to be considered. The split for this set is done like the one for the
test set, where the validation set takes 33% of the training set.

2.1.5 Classification Models

In this section the used classification models are going to be described
concerning:

• reason of choice
• hyper parameter evaluation
• evaluation

9
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Neural Network model - Multilayer Perceptron (MLP)

Because MLPs are good in learning nonlinearities given a specific data set
it is one of the state of the art classifiers. For the classification task itself
the MLPClassi f ier 1 from the scikit library was used. This class implements
a multilayer perceptron algorithm that trains using Backpropagation. Cur-
rently, the MLPClassifier supports only the Cross-Entropy loss function
which is a common choice for multi-class classification tasks.
The RandomizedSearchCV 2 class from the scikit library was used for hyper
parameter evaluation. For the original data set the estimated hyper parame-
ter values represented in Table 2.2 were evaluated and the accuracy of the
cross-validation was 74.2%

hyper parameter chosen value
activation logistic

hidden layer sizes (100, 200)
alpha 1e-4

early stopping True
solver lbfgs

max iter 50

learning rate constant
tol 1e-5

Table 2.2: List of hyper parameters for randomized grid search for the MLP

For the up-sampled data set the hyper parameter values represented in
Table 2.3 were evaluated and the mean score of the cross-validation was
86.3%

1https://scikit-learn.org/stable/modules/generated/sklearn.neural_

network.MLPClassifier.html (Accessed on: 2019-12-15)
2https://scikit-learn.org/stable/modules/generated/sklearn.model_

selection.RandomizedSearchCV.html?highlight=randomizedsearchcv#sklearn.

model_selection.RandomizedSearchCV (Accessed on: 2019-12-15)
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hyper parameter chosen value
activation relu

hidden layer sizes (250, 500)
alpha 1e-4

early stopping True
solver adam

max iter 50

learning rate constant
tol 1e-3

Table 2.3: List of hyper parameters for randomized grid search for the MLP

Figure 2.6: left: learning curve on the original data set, right: learning curve on the up-
sampled data set

Ordinal Classification

For the classification of accident severities their exists a natural order of the
classes. Starting with 0- ”unverletzt” ending with 3-”toedlich verletzt”.
For this ordinal classification the class ”LogisticIT” 3 provided by the mord
library was used. Again RandomizedSearchCV was used for hyper param-
eter evaluation. The following parameters were evaluated for the original
training data set:

3https://pythonhosted.org/mord/ (Accessed on: 2019-12-15)

11
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hyper parameter chosen value
alpha 1.0

max iter 664

Table 2.4: List of hyper parameters for randomized grid search for the LogisticIT

And for the up-sampled data set the evaluated parameters are:

hyper parameter chosen value
alpha 1e-3

max iter 407

Table 2.5: List of hyper parameters for randomized grid search for the LogisticIT

The accuracy for the original data set is 75.5% whereas for the up-sampled
set is is 55.7%

Figure 2.7: left: learning curve on the original data set, right: learning curve on the up-
sampled data set

Random Forest Classifier

Decision Trees are great classifiers on imbalanced data sets because their
hierarchical structure allows them to learn signals/decisions from different
classes. Because ensemble methods like Random Forests almost always
outperforms single Decision Trees, only the Random Forest was considered.

12
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For this task, the RandomForestClassi f ier 4 from the scikit library was used.
The hyper parameter search offered the following results for the original
data set with an accuracy of 76.8%:

hyper parameter chosen value
bootstrap True

min samples lea f 253

n estimators 20

min samples split 246

criterion entropy
max f eatures 50

max depth None

Table 2.6: List of hyper parameters for randomized grid search for the Random Forest

And for the up-sampled data set with an accuracy of 62.7%:

hyper parameter chosen value
bootstrap True

min samples lea f 186

n estimators 50

min samples split 2866

criterion gini
max f eatures 100

max depth 30

Table 2.7: List of hyper parameters for randomized grid search for the Random Forest

4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html?highlight=randomforestclassifier#sklearn.

ensemble.RandomForestClassifier (Accessed on: 2019-12-15)
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Figure 2.8: left: learning curve on the original data set, right: learning curve on the up-
sampled data set

AdaBoost

Another ensemble method which was evaluated was the so called AdaBoost
Classifier 5, again from the scikit library. It is a meta-estimator that begins
by fitting a classifier on the original data set and then fits additional copies
of the classifier on the same data set but where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers focus more
on difficult cases. The resulting parameters of the hyper parameter search
based on the original data set (mean CV score: 76.8%) and for the up-
sampled data set (mean CV score: 61%) offers the same settings:

5https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.AdaBoostClassifier.html?highlight=adaboost#sklearn.ensemble.

AdaBoostClassifier (Accessed on: 2019-12-15)
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hyper parameter chosen value
learning rate 0.1
n estimators 500

base estimator default Decision Tree with gini criterion
and a max depth of 1

algorithm SAMME.R
max f eatures 100

Table 2.8: List of hyper parameters for randomized grid search for the AdaBoost classifier

Figure 2.9: left: learning curve on the original data set, right: learning curve on the upsam-
pled data set
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GradientBoosting

The Gradient Boosting Classifier builds an additive model and allows
the optimization of arbitrary differentiable loss functions. In each stage
n classes regression trees are fit on the negative gradient of the binomial
or multinomial deviance loss function. The validation score of the training
based on the original data set is 77% and on the up-sampled one 87.7%
Hyper parameters for original data set:

hyper parameter chosen value
warm start True

learning rate 0.9
n estimators 500

max lea f nodes None
criterion entropy

max f eatures None
max depth 1

Table 2.9: List of hyper parameters for randomized grid search for the Gradient Boosting

And for the up-sampled set:

hyper parameter chosen value
warm start False

learning rate 0.9
n estimators 1000

max lea f nodes 20

criterion entropy
max f eatures 100

max depth 6

Table 2.10: List of hyper parameters for randomized grid search for the Gradient Boosting
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Figure 2.10: left: learning curve on the original data set, right: learning curve on the up-
sampled data set

2.1.6 Model evaluation on the test set

For evaluation purpose, these five models, as described in Chapter 2.1.5, got
trained on the training and validation set and afterwards tested on the test
set. For deeper understanding not just the accuracy on the test set but also
the confusion matrices on the training data (training and validation set) and
test data were plotted for each trained model.

MLP evaluation

Figure 2.11 and 2.12 show the according confusion matrices. One can see that
the MLP overfits the training data so that this model don’t generalize well.
Especially the accuracy for the two under represented classes ”schwer ver-
letzt” and ”toedlich verletzt” is very bad. So maybe the RandomOverSampler
does not really work well and therefore a different sampling strategy would
be preferable.

17
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Figure 2.11: Confusion Matrix training set

Figure 2.12: Confusion Matrix test set and an accuracy of 70.9%

Ordinal Classification evaluation

Compared to the MLP model this model seems to be more biased. But it
reaches a better accuracy for the two under represented classes as visualized
in Figure 2.13 and 2.14.

18



2.1 Preliminary Work

Figure 2.13: Confusion Matrix training set

Figure 2.14: Confusion Matrix test set and an accuracy of 60.9%
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Random Forest evaluation

Figure 2.15: Confusion Matrix training set

Figure 2.16: Confusion Matrix test set and an accuracy of 66.4%

20
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AdaBoost evaluation

Figure 2.17: Confusion Matrix training set

Figure 2.18: Confusion Matrix test set and an accuracy of 66.9%
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GradientBoosting evaluation

Figure 2.19: Confusion Matrix training set

Figure 2.20: Confusion Matrix test set and an accuracy of 71.1%

22



2.1 Preliminary Work

Stacked Classifier

Because of the fact that different models perform better on different classes,
a stacked classifier was trained. Therefore all the previous described models
were trained only on the training set.
Afterwards the predictions from the validation set of the different models
got stacked and feet into a meta learner which is, in this case, a MLP with
the parameters mentioned in Table 2.11

hyper parameter chosen value
activation relu

hidden layer sizes (100, 200)
alpha 0.01

early stopping True
solver lbfgs

max iter 200

learning rate constant
tol 1e-05

Table 2.11: List of hyper parameters for randomized grid search for the MLP meta learner

The hyper parameters where evaluated again with the RandomizedSearchCV
but in this case only on the validation data set.
The base estimators are:

• MLP
• Gradient Boosting
• Random Forest

The according confusion matrices on the validation and test set look like:
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Figure 2.21: Confusion Matrix validation set and an accuracy of 90.5%

Figure 2.22: Confusion Matrix test set and an accuracy of 76%
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2.1.7 Feature Importance

One can also evaluate which features from the data set are relevant for
the classification task. Therefore the Random Forest classifier provides the
member variable f eature importances which lists all features with their
importances. The sum over all values is equal to 1. The top results are
shown in Table 2.12

feature importance value
Airbag nicht ausgeloest 0.229

Unfaelle mit nur einem Beteiligten 0.161

Sicherheitsgurt verwendet 0.083

Alter 0.064

Ortsgebiet 0.06

Freiland 0.057

Airbag ausgeloest 0.054

Unfaelle im Begegnungsverkehr 0.04

Sicherheitsgurt nicht verwendet 0.034

Airbag nicht vorhanden 0.032

ausgeloest 0.01

weiblich 0.01

Table 2.12: Feature importances

The feature ”Airbag nicht ausgeloest” seems to have the greatest impact
for the classification. Also the age and the accident type are important
features, whereas features like weather conditions (rainy or foggy weather)
do not have an impact at all. The problem by this estimation is that only
the importance of a single feature is tracked but maybe there are also
combinations of multiples which influences the classification too.

2.1.8 Conclusion

The result shows that the underrepresented target classes ”schwer verletzt”
and ”toedlich verletzt” do not get predicted well with the different trained
classifiers. One should think about an better up-sampling strategy for these
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underrepresented classes. For training imbalanced classes, Random Forest
and also the Ordinal Classification model seem to be the best by predicting
these classes.
Another problem is that the features may not be very representative. So
features like the speed of a vehicle at the moment of the crash would have a
much greater impact for the different classes of injury severities.

2.2 State of the Art

Because of the urbanization around the world, the number of traffic acci-
dents and especially the number of serious accidents has rapidly grown
in the last decades. The ability to analyze and further to predict traffic
accidents become a great research field. Since the rise of Big Data, Deep
Learning and the rapid development of data collection techniques this field
becomes more and more interesting not only for traffic safety institutions
but also for data scientists. Further, because of the access to urban specific
data sets like accident records, rainfall and traffic flow data the prediction
of traffic accidents becomes more realistic.
The related work is split into several research fields as discussed in the
following sections.

2.2.1 Road accident prediction

To gain some basic knowledge about the key factors and explanatory vari-
ables which affects the likelihood of crash accidents, Lord and F. Mannering,
2010 reviews common concepts and methodological approaches. It is stated
that researchers have framed their analytical approaches in a way that spatial
and temporal elements associated with crashes are handled as explanatory
variables in their prediction models. This is because of the fact that detailed
driving data (acceleration, braking and steering information but also driver
related response) and also near-crash events are hardly to figure out or are
typically not available due to privacy issues. This is a great drawback when
framing this problem. Also many minor crashes might not be recorded
which again leads to a loss of important information. For crashes with car

26



2.2 State of the Art

damage only, participants which are involved in the accident in Austria,
do not have to inform the police 6. So therefore no accident record will be
generated.
Another issue comes along with time-varying explanatory variables and
their right aggregations. For example, one is modeling the number of crashes
per month and precipitation is one of the explanatory variables. The dis-
tribution of this variable over the month highly influences the number of
crashes but aggregated precipitation values in an large interval like one
month results in a large loss of information. Because of this information loss
in time-varying explanatory variables, data are often considered in smaller
time intervals.
Not only time-varying but also spatial explanatory variables have an great
impact on the cause of traffic accidents. Therefore F. L. Mannering and Bhat,
2014 cites that all data (temporal and spatial) might have unobserved factors
that might influence the risk of crashes. Ignoring these spatial and temporal
correlations will result in inefficient and inconsistent parameter estimates.
F. L. Mannering and Bhat, 2014 also summarizes, that many factors affecting
the frequency and severity of crashes are not observable or impossible to
collect. These unobserved explanatory variables, also referred as unobserved
heterogeneity, might be correlated with observed factors. As a result biased
parameters will be estimated and incorrect inference results will be drawn.
For example, a statistical model is considered with age as an explanatory
variable. This variable correlates, in the sense of an crash-injury severity
prediction model, with many unobserved factors that affects the crash-injury
severity such as physical health, susceptibility of bones to breakage, body
positioning at the time of crash, reaction times that may mitigate the severity
of the crash, and so on. Considering only the age as an explanatory variable,
age acts as a proxy variable for many underlying factors which might vary
significantly across the same age value or same age category.

The main work in this thesis is to predict the accident probability for a given
street segment under specific conditions. Therefore the most interesting
papers and previous works are in the field of classification models for traffic
accidents. Because of the fact that the availability and accessibility of data
sources strongly differs between countries the most scientific papers are in

6https://www.help.gv.at/Portal.Node/hlpd/public/content/99/Seite.992438.

html (Accessed on: 2019-10-28)
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the form of case studies.
Ren et al., 2018 and Q. Chen et al., 2016 come with similar approaches for
real-time traffic accident prediction. Both discretize traffic accident data in
space and time. Ren et al., 2018 processes the crash data in one hour interval
and a spatial resolution dimension of 1000m x 1000m uniform grid cells.
The problem which arises by spatial discretization is that additional data
sets like a Road Network Graph seems to loose effectiveness because the
direct influence of e.g. speed value of a specific road lane, lane width or
road radius is not given anymore.
Ren et al., 2018 main approach is to find a correlation pattern between the
accident frequency and the discretized spatial grid cells. So additional data
sources such as traffic flow, weather data and road characteristic data sets,
which maybe significant for crash risk prediction, are not considered. Q.
Chen et al., 2016 uses traffic flow data as an additional explanatory variable
for its Stacked denoise Autoencoder (SdAE) to find correlation between this
flow data set and the spatial and temporal information of the crash records.
The inference model outputs the accident risk level in a given grid cell at a
specific hour of the day. But as a conclusion Q. Chen et al., 2016 also states
that because of the complexity of traffic accidents, mobility data are not
enough to construct a satisfactory model for the prediction of risks.
Yuan et al., 2017 comes with a case study in the state of Iowa where they
analyzed traffic accidents between 2006 and 2013 for traffic accident forecast-
ing predictions. They incorporated spatial structure of the road network as
well as hourly weather data including high resolution rainfall data, Annual
Average Daily Traffic (AADT) and demographic data into the predictive
models. For construction of negative samples a informative sampling ap-
proach was proposed. The overall data set contains about 3 times negative
samples than positive samples where negative samples are generated very
close and far away from positive samples. For classification, they applied
Support Vector Machines (SVM), Random Forests (RF) and Deep Neural
Networks (DNN). Regarding performance they stated that the DNN and
RF approach achieved an accuracy and AUC of about 0.95. Compared to
several other works like Chong, Abraham, and Paprzycki, 2005 or Jie Sun
and Jian Sun, 2015 where they achieved an accuracy between 60% and 70%
this increase just because of including the spatial road network graph seems
a bit strange. This might be because of the fact that the sampling of negative
examples has a great impact of the accuracy and the precision/recall metric.
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So when sampling negative values far from the positive, the results seem
far better than sampling from distributions very close to positive samples.
This is a problem in this research field at all, because there is no general rule
how to handle this imbalance issue regarding crash and no-crash events.
Therefore accuracy analysis between different studies are hardly to com-
pare. The most common approach at the data level is a synthetic minority
oversampling strategy (SMOTE) as applied in Yuan et al., 2017 or Ke et al.,
2019. Ke et al., 2019 matches 10 non-crash samples for each crash samples
with predefined matching rules:

• The location of non-crash events should be the same as crash events.
• The within day time of a non-crash event should be the same as a

crash event but in a different day.
• The non-crash event should be of the same day type (weekday or

weekend) as the crash event.

This matching rule seems to be much stricter as the matching rule as stated
in Yuan et al., 2017. Ke et al., 2019 also comes up with a solution at the
algorithmic level called cost-sensitive learning. This learning technique
simply adjusts the objective function by penalizing the misclassification of
a minority class sample (crash events in this case) much stronger than a
majority class sample. Another scientific works like Anderson, 2009 focus on
traffic accidents hot spot detection. It can be seen a bit like the preprocessing
step as stated in Q. Chen et al., 2016 and Ren et al., 2018. In this special case
the kernel of the hot spot detection process divides the entire study area
into a given number of cells whereas in Q. Chen et al., 2016 and Ren et al.,
2018 these cell discretization is done manually by fixed values. But again
multiple street segments will be merged and road specific data get lost.

2.2.2 Missing value imputation techniques

Real-time traffic records from loop detectors are not ready to be processed
because they contain a lot of missing data samples. Because missing values
of a specific detection loop often occur in whole series one has to overcome
this missing value problem by some imputation process. These missing
values can be lead back due to temporary power or communication failures.
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Many research efforts have been undertaken in therms of estimating missing
traffic flow values and therefore many imputation methods have been
proposed. Ke et al., 2019 offers some review of state of the art imputation
techniques not only for missing traffic volume data but also for other related
areas like road network data sets and in the area of traffic safety. The chosen
imputation technique strongly depends on the pattern or distribution of
missing values in the specific data set. Therefore Little and Rubin, 2019

comes up with a more general classification of missing patterns:

• Missing Completely At Random (MCAR)
• Missing At Random (MAR)
• Not Missing At Random (NMAR)

MCAR and MAR problems can be addressed by some universal imputation
strategies while the NMAR problem can hardly be solved because of count-
less possibilities in the distribution of missing values. Tan et al., 2013 and
Qu et al., 2009 comes up with a categorization of the different methods of
imputation:

• Prediction based methods
• Interpolation based methods
• Statistical learning based methods

Shang et al., 2018 summarizes these main concepts and cites different al-
gorithms and solving strategies for each of these imputation categories.
Imputing missing values by an interpolation based method aims to estimate
these values by including spatial and temporal relations. Therefore several
transportation studies paid attention on approaches where missing values
are estimated by choosing an multivariate approach in terms of spatial
relationships. Considering that loop detectors have spatial and temporal
dependencies, this method has an advantage over the other imputation
methods because it takes observed neighbouring data, in space and time,
correlated with these missing values into account.
Bae et al., 2018 aims to extend the spatial kriging approach to a multivariate
imputation framework by including secondary data sources. Haworth and
Cheng, 2012 developed a non-parametric imputation approach based on
K-nearest neighbour which has been trained and tested on 5 minute travel
time data in the London metropolitan area. Henrickson, Zou, and Wang,
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2015 comes up with a multiple imputation approach called Multiple Im-
putation by Chained Equations (MICE) introduced by Rubin, 2004. MICE
is a multiple imputation approach where a multivariate inference model
is defined separately for each variable with missing data. In the sense of
traffic flow data a variable represents a specific loop detector. Henrickson,
Zou, and Wang, 2015 applied this imputation strategy to a loop detector
volume data set collected on Interstate 5 in Washington State. The outcome
of this study is that MICE outperforms elementary pairwise regression and
offers reliable estimates even when a larger time period of missing values
appear.
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3 Background

In this chapter the most important tools used for prediction, imputation and
visualization in this work are covered.

3.1 Machine Learning Preliminaries

3.1.1 Decision Trees and Random Forests

Decision Trees (DT) and further Random Forests (RF) are versatile machine
learning algorithms which can handle classification and also regression
tasks (Géron, 2017). Decision Trees are the basic components of Random
Forests which are still one of the most powerful algorithms today. One of
the advantages of decision trees is that, against to other machine learning
algorithms, no feature scaling is necessary and continuous and categorical
variable can be handled at the same time.
A Random Forest is a ensemble of Decision Trees for the purpose of intro-
ducing some extra randomness when growing trees. As a result the tree
diversity rises, which results in a decreasing variance and an increasing
accuracy especially on the validation set.
Another great advantage of Random Forests is the ability to measure the
relative importance for each input feature. The Scikit library keeps track
of these measurement by observing how much the impurity decreases on
average for a specific feature over all trees in the ensemble.
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3.1.2 XGBoost

XGBoost is a scalable end-to-end tree boosting algorithm introduced by a re-
search project at the University of Washington (T. Chen and Guestrin, 2016).
One main difference between Random Forests and the XGBoost approach
is that this boosting algorithm trains each DT sequentially, each trying to
correct its predecessor. Again there are several boosting strategies, however
XGBoost follows the Gradient Tree Boosting approach. The tree boosting
algorithm follows in general the existing literature in gradient boosting as
stated in Friedman, 2001 only with small adaption in the regularization
therm. A deeper insight in this strategy can be viewed in T. Chen and
Guestrin, 2016.

3.2 Graph Theory

In this section all relevant graph definitions will be explained inspired by a
road link network. Also different applied graph algorithms and measure-
ments are stated. At the end required python packages which are able to
create, manipulate and study structures of graphs are mentioned.

Directed Multigraph

A Directed Multigraph is a graph with directed links where multiple links
can have the same start and end node. In therms of a street network graph,
street links with a practicability in both direction are represented in this
way.

Line graph

A line graph L(G) of a given graph G consists of nodes generated from each
edge in G and edges iff two edges in G share a node. For a directed graph

1https://wntr.readthedocs.io/en/latest/networkxgraph.html (Accessed on:
2019-11-29)
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Figure 3.1: Example of a directed multigraph1

G, the directed line graph L(G) consists of nodes generated from the set of
edges of G. Edges are generated in a way that if a and b are two nodes in
L(G), then (a, b) is an edge in L(G) iff the tail of a matches the head of b
(Gross and Yellen, 2005).
This conversion is further necessary for analysis purpose like PageRank and
centrality calculation of street links.

Figure 3.2: Example of a line graph generated from a directed graph2

2http://mathworld.wolfram.com/LineGraph.html (Accessed on: 2019-11-29)
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PageRank

The PageRank algorithm (Page et al., 1999 and Langville and Meyer, 2005)
generates a ranking of nodes in a graph based on on the structure of
incoming links. Originally this algorithm was introduced to rank web pages.
But it can be applied to all kind of graph related applications, like ranking
street links in a given street network graph. The idea, in therms of a street
network graph, is that each street link gets a numerical weighting assigned
with the purpose of measuring the relative importance within the whole set.
To get a high PageRank, a street link has to be linked by also high ranked
links and/or by a high amount of other links. Because only graph nodes
can be weighted, the street network graph first has to be converted to a line
graph so that the street links become nodes and nodes (street junctions)
become edges.

Figure 3.3: Example PageRank

2https://en.wikipedia.org/wiki/PageRank#/media/File:PageRanks-Example.

jpg (Accessed on: 2019-11-29)
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NetworkX

NetworkX (Hagberg, Schult, and Swart, 2008) is a python package for
creation, manipulation and analyzing complex graphs. NetworkX provides
not only all necessary analysis functions used in this thesis, but also comes
with the functionality to export and visualize graphs in different formats
like shape files.

OSMNX

OSMNX (Boeing, 2017) is a python library for downloading street networks
based on the OpenStreetMap (OSM) graph. It allows one to download a
whole street network for a given place, city, country name or by bounding
box and coordinates. One can also specify the road network type to down-
load as e.g. get all drivable roads or just all streets with private-access etc.
The downloaded street network graph comes with all meta data for street
links and junctions provided by OSM. Also different graph analysis tools,
based on NetworkX 3 and Shapely 4 are available.

3.2.1 Inverse distance weighting (IDW)

This interpolation method, based on the work of Shepard, 1968, is usually
applied on high variable data sets. The basic idea of this strategy is to
estimate local measurements by taking the moving average of nearby given
data points. Data points lying farther away from the interpolated value do
have a much lower impact (weighting) than data points lying closer as one
can see in equation 3.1:

u(x) =
N

∑
k=1

w(x, xk)

∑N
j=1 w(x, xj)

uk (3.1)

3https://networkx.github.io/documentation/stable/ (Accessed on: 2019-11-29)
4https://shapely.readthedocs.io/en/latest/manual.html (Accessed on: 2019-11-

29)
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Where u(x) is the interpolation value of a point x based on known samples
uk = u(xk) for k = 1, 2, ..., N.
w(x, xk) represents the weighting function

w(x, xk) =
1

d(x, xk)p (3.2)

Where d stands for a given distance metric, typically the Euclidean distance,
between x and xk.

3.2.2 Visualization tools

In this section the two main visualization tools are mentioned. In case of
geospatial data, the QGIS Desktop application is used. For tabular data and
data analysis visualization the python graphing library and plotly dash is
used.

QGIS

QGIS is a Geographic Information System licensed under the GNU General
Public License. It runs on Linux, Unix, Mac OSX and Windows and supports
viewing, editing, and analysis of geospatial data.

Vector Layer

QGIS supports raster and vector layers. For this thesis, the main visual
representation of the different geospatial data sources is to export these
data as shape files 5. Therefore vector data is stored as either point, line, or
polygon features.

5https://en.wikipedia.org/wiki/Shapefile (Accessed on: 2019-11-30)
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3.2.3 Plotly

Plotly.py

The plotly python package6 is an open-source visualization library that
supports all relevant chart types for statistical, geographical and scientific
use cases. Because this python library is build on the top of the JavaScript
library, it enables the creation of interactive web based visualizations out of
Jupyter Notebooks7 or IDEs like Pycharm8.

3.2.4 Dash

Plotly dash 9 is a Python open-source library for creating reactive web
applications. Dash is written on the top of Flask, Plotly.js and React.js and
is ideal for building custom user interfaces in python. Applications are
rendered in the web browser and therefore comes with a core set of typical
HTML elements like inputs, buttons drop downs and so on but also with
more complex components as interactive tables and graphs.

6https://plot.ly/python/ (Accessed on: 2019-11-30)
7https://jupyter.org/ (Accessed on: 2019-11-30)
8https://www.jetbrains.com/de-de/pycharm/ (Accessed on: 2019-11-30)
9https://dash.plot.ly/ (Accessed on: 2019-11-30)
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4 Data Sources

In this chapter all required data sets and their sources are cited. Also the
according data management strategies regarding data collection and storage
will be stated.

4.1 Vehicle Crash Data

The vehicle crash data set from Austria was obtained from the Kuratorium
für Verkehrssicherheit 1 (KFV). It is the same data set which was used in
the preliminary work chapter although only crash records from the city of
Graz are used. Each crash entry has been documented by an Austrian police
officer. The crash entries are not unique by accidents but unique by accident
participants. So if a crash with n-vehicles occurred than n-crash entries for
this particular accident exist. Identified with the same Accident id, called
U ID but with their participant specific meta data.
As mentioned before only Graz related crash entries are used. So therefore
samples with the feature Gemeinde ID = 60101 are kept for further process-
ing. The Gemeinde ID is a unique identifier for municipalities in Austria.
Further, only entries between 01.01.2015 and 31.12.2017 are used. This is
because older crash entries hardly have any GPS related information so that
they can not be linked with other geospatial data sets later on.
At all, there are 11.788 accident entries with 5.416 different U IDs. Therefore
5.416 different recorded accidents occurred in this 3 years in Graz.
Each categorical feature of this data set is referenced to a look up table via
an ID.

1https://www.kfv.at/ (Accessed on: 2019-08-28)
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Figure 4.1: Accident heatmap Graz with crash entries between 2015 and 2017
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4.2 Open Data Graz

4.2.1 Population

Open Government Data Austria 2 offers public, state specific data for free.
For this thesis the data set ”population for Graz by district and age”3 is used
for additional information. To overcome the age attribute, the whole data
set is aggregated by district and date time. Each entry represents the whole
population of a specific district in the according month between 01.01.2015

and 31.12.2017.
This aggregated data set is stored as an MySQL Table for further processing
steps.

4.2.2 Districts as Geo Data Export

For coming calculations and visualization purpose, the districts and their
boarders are needed as Geo Data. This geo data set can be exported from
the GIS Steiermark 4.
The export represents the 17 districts of Graz as separate polygons in one
shape file in WGS84 coordinates. Against the population data set, the export
remains as shape file because of the fact that MySQL 5.6 hardly supports
spatial data types and the conversion effort would have been too high.

2https://www.data.gv.at (Accessed on: 2019-08-28)
3https://www.data.gv.at/katalog/dataset/stadt-graz_

die-grazer-bev-lkerung-nach-bezirk-und-alter (Accessed on: 2019-08-28)
4www.gis.steiermark.at (Accessed on: 2019-08-28)
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Figure 4.2: Shape file export from the districts of Graz
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4.3 Road Networks

4.3.1 OpenStreetMap (OSM)

OpenStreetMap 5 is a collaborative project which offers a free editable map
of the whole world. It provides spatial and routable geometries like street
links with additional map features.
To download the street network for Graz, the python library OSMNX is
used. OSMNX downloads the Graz related street network as a NetworkX
graph given a place name or the bounding box (bbox) specific coordinates
using the OverPass API6 of OSM. Also the type of the street network, in
this case all drivable roads, can be specified.
The downloaded graph, where each vertex represents a street junction or
the end of a street and each edge stands for a street segment between two
junctions, is stored as a graphml file. This simplification of graph nodes
is done under the hood by the OSMNX framework 7. Therefore all graph
related operations can be applied.
As stated in Table 4.1, OSMNX also downloads the specific meta information
for street links and junctions.

Feature Description
osmid unique street vertex identifier
lanes representing number of lanes

length representing the street segments length
maxspeed maximum speed value

name street name
oneway True if there is an access restriction for this street segment

Table 4.1: Required OSM street meta information

5https://wiki.openstreetmap.org (Accessed on: 2019-08-28)
6https://wiki.openstreetmap.org/wiki/Overpass_API (Accessed on: 2019-08-29)
7https://geoffboeing.com/2016/11/osmnx-python-street-networks/ (Accessed

on: 2019-08-29)
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Because of the internal street merging functionality it can happen that
OSMNX combines streets with different street attributes. E.g. two or more
street segments with different osmids or maxspeed values. Then these
attributes also get combined and saved as different array values for these
features. An example of this is represented in Table 4.2 and Figure 4.3.
One can see that in this special case three different road links with osmids
205401689, 388770482, 47884494 get combined with different maxspeed
values.

Figure 4.3: OSM street network with vertices and links

Feature Value
osmid [205401689, 388770482, 47884494]
lanes NULL

length 160.492

maxspeed [30, 20]
name Beethovenstraße

oneway True

Table 4.2: Merged street links for Beethovenstraße
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4.3.2 Graphenintegrations-Plattform (GIP)

In contrast to OSM, GIP 8 is a joint Project of the Austrian federal states,
ASFINAG, ÖBB Infrastruktur, the Austrian Federal Ministry of Transport,
Innovation and Technology and ITS Vienna Region. Also the Austrian
Association of Cities and Towns is a partner of this project.

GIP Structure

GIP itself consists of several databases, where each of them are maintained
by their respective GIP partner. These databases get synchronized every
two months and merged to an global, Austrian Street network graph with
according meta data9.
Regarding the road network graph, GIP defines the roads central axes as
graph edges. Vertices are more complicated, because not only junctions are
represented as a vertex but also changes in street attributes like the street
name. Also when an low-level road network joins a higher-level network, a
so called virtual vertex is generated.
OSMNX overcomes this issue internally when using OSM as road network,
for GIP there is at all no framework which provides a simpler access to the
GIP graph.
GIP comes with different graph sources, where the standard routing export
is used in this thesis.
The export itself includes multiple CSV tables as one can see in Figure 4.4.
For this thesis the relevant tables are:

• Link
• LinkUse
• LinkCoordinate
• Node
• TurnUse
• TurnEdge

8http://gip.gv.at (Accessed on: 2019-08-31)
9http://open.gip.gv.at/ogd/0_dokumentation_gipat_ogd.pdf (Accessed on: 2019-

08-31)
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Link

The Link Table includes all edges of the GIP Graph. The main attributes are
stated in Table 4.3

Attribute Details
Link ID unique link id
NAME1 the main name of the link

NAME2
all additional link namings seperated with
slash

FROM NODE node id of the start vertex
TO NODE node id of the target vertex

SPEED TOW CAR average speed in km/h in digitization di-
rection

SPEED BKW CAR average speed in km/h against
digitization direction

MAXSPEED TOW CAR max speed in km/h in
digitization direction

MAXSPEED BKW CAR max speed in km/h against
digitization direction

ACCESS TOW bitmask of practicability in digitization di-
rection

ACCESS BKW bitmask of practicability against digitiza-
tion direction

LENGTH length of the link in meters
LANES TOW number of lanes in digitization direction

LANES BKW number of lanes against digitization direc-
tion

WIDTH width of the link in meters

ONEWAY
allowed driving direction: 1 stands for in
digitization direction, 0 against digitization
direction, 2 in both directions, -1 unknown

Table 4.3: Link table attributes
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LinkUse

This table includes all the different link usages per street link. All relevant
attributes for this thesis are mentioned in Table 4.4.

Attribute Details
USE ID Use ID
LINK ID GIP link id where the linkuse lies

Offset

horizontal distance between linkuse central
axis and link central axis in meter. (neg-
ative values represent distance to the left
regarding digitization direction)

Width average width of linkuse in meter
MINWIDTH minimal width of linkuse in meter

SURFACE road surface ID according to the
LUT SURFACE table

Table 4.4: Linkuse attributes

LinkCoordinate

The LinkCoordinate table contains all points between the start and the end
point of a link. The coordinate points of the FROM and TO nodes are also
included.

Attribute Details
LINK ID according link id

COUNT ongoing numeration of all between points
of the link starting at 1

X x-coordinate of the between point
Y y-coordinate of the between point
Z z-coordinate of the between point

Table 4.5: LinkCoordinate attributes
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Node

The Node table includes all vertices of the GIP graph.
The main attributes are the Node ID and the coordinates X, Y and Z in
WGS84 CRS format.

TurnEdge

The TurnEdge table includes the turn permissions on link basis. In Table 4.6
all relevant attributes are stated.

Attribute Details
TURN ID ID of the turn relation
FROM LINK link ID of the FROM edge
TO LINK link ID of the TO edge
VEHICLE TYPE vehicle type for which the turn is permitted

Table 4.6: TurnEdge attributes

TurnUse

The TurnUse table includes the turn permissions on linkuse basis. In Table
4.7 all relevant attributes are mentioned.

Attribute Details
TURN ID ID of the turn relation
FROM USE linkuse ID of the FROM edge
TO USE linkuse ID of the TO edge
VEHICLE TYPE vehicle type for which the turn is permitted

Table 4.7: TurnUse attributes
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LUT Surface

This lookup table matches the surface id, which is stated in the LinkUse
tabel, to the specific road surface type.

ID Name
-1 unknown
3 unattached (like gravel)
4 paved road (like asphalt)
6 pavement
8 off road

Table 4.8: Lookup table surface attributes

Figure 4.4: Overall database schema of the GIP routing export
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4.4 Traffic Flow

Traffic flow specific data is handled by two main institutions in Styria: GIS
Steiermark10, and the department of roads of the city of Graz 11.
GIS Steiermark maintains all Styria specific county roads, federal highways
and highways. They also handle some specific city street streets but not
Graz.
Instead of GIS Steiermark, the city of Graz maintains all of their city roads
and so also the according traffic flow measurement stations by their own.
Both data sets are not open source.

4.4.1 GIS Steiermark

GIS Steiermark maintains 30 traffic flow stations for different county roads
and federal highways in Graz. Traffic flow entries are available for this
stations between 01.01.2017 and 31.12.2017 where each entry consists of the
following attributes as mentioned in Table 4.9.

Attribute Details

measurementId unique identifier of the traffic flow measure-
ment station

vehicle1
number of cars in digitization direction of
GIS Steiermark

vehicle2
number of cars against digitization direc-
tion of GIS Steiermark

truck1
number of trucks in digitization direction
of GIS Steiermark

truck2
number of trucks agains digitization direc-
tion of GIS Steiermark

dateTime timestamp when the vehicle was tracked

Table 4.9: Traffic flow attributes for GIS Steiermark measurement stations

10http://www.gis.steiermark.at (Accessed on: 2019-09-07)
11https://www.graz.at/cms/beitrag/10023623/7755415/Verkehrssteuerung_und_

Strassenbeleuchtung.html (Accessed on: 2019-09-07)
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4.4 Traffic Flow

Each measurement station tracks a specific road link in both driving direc-
tion and distinguishes between cars and trucks. Compared to the GIP road
network one can say that the GIS digitization direction not directly matches
the GIP digitization direction.

Figure 4.5: Overview over all GIS traffic flow measurement stations in Graz

4.4.2 Department of Roads Graz

The Department of Roads in Graz maintains about 200 measurement stations
for traffic flow. In contrast to the GIS stations, traffic flow entries are now
available between 01.01.2015 and 31.12.2017. One issue which has to be
overcome is the fact that not all of these measurement units provide traffic
flow values the whole time range. This has several reasons which will be
discussed in a later chapter but the two obvious reasons are that one unit
just started working some time later on or stopped working before the
31.12.2017.
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Attribute Details

measurementId unique identifier of the traffic flow measure-
ment station

datetime timestamp of the measured value
count number of tracked vehicles

Table 4.10: Traffic flow attributes for measurement units maintained by the city of Graz

Another difference compared to the GIS related traffic flow units is that
now 4 wheel vehicles, independent of the vehicle type, are tracked and
aggregated in an interval of a quarter-hour.
Also one measurement unit does not track the whole cross-section of the
road link like the GIS units do, but only one lane of this specific road link.
By adding up all lane specific measurement values at a certain timestamp
of a given road link outputs the real traffic flow value in the last quarter
hour.

Figure 4.6: Overview over all traffic flow measurement stations in Graz maintained by the
City of Graz
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4.5 Weather Data

To make use of weather related explanatory variables for the accident
prediction model, rainfall and temperature data of the main weather stations
in and around Graz are considered. These stations are maintained by the
official meteorological and geophysical service of Austria, named ZAMG
12.

Figure 4.7: Overview over all ZAMG weather stations in and around Graz

weather station name elevation in meters
Graz/Strassgang 357

Graz/Thalerhof 340

Schöckl 1445

St. Radegund 724

Graz/Universität 366

Table 4.11: Overview over weather station attributes

12https://www.zamg.ac.at/cms/de/aktuell (Accessed on: 2019-10-04)
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4 Data Sources

In Figure 4.7 and Table 4.11 the considered weather stations are shown. One
measurement sample of a weather station includes the temperature and the
precipitation. The resolution of the measurements is one hour.
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5 Data Preprocessing and Feature
Engineering

In this chapter all necessary preprocessing steps for each data set are
explained. Also some additional features are extracted and generated based
on the different data sources. Another important step in this section is to
define the right feature scaling methods for a standardized model input
data set.
For the GIP related data set, all additional features are stored in a separate
GIP metadata table. In this case, a completely new GIP export can be
imported without corrupting the pipeline itself. For visualization purpose,
a shape file is generated at the end of the pipeline with all the necessary
attributes as metadata.
Against that, the additional generated OSM features are directly stored in
a shape file and not in a separate table. This is because the OSM export
already comes in a graphml file and not as a database export.

5.1 Road Network Pipeline

In this section the preprocessing pipeline for the road network graphs are
explained. Both, the GIP and the OSM graph are considered so that in the
following sections the evaluation on both can be done.
The GIP specific network data is read in from the different database tables:

• Link
• LinkCoordinate
• Node
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Out of this sources the whole road graph can be generated via the NetworkX
library. It must be stated that only Graz related roads are considered. This
can be achieved as that each road link must lie in one of the districts of Graz
or intersect one of them. Further, only roads with the attribute access tow
or access bkw greater than 3 are taken into account. This is because the
practicability of a road link is described via a bitmask where the two lowest
bits stand for pedestrian and bike practicability only. In the accident data
set no entry exists where only bikes or pedestrians are mentioned. So there
must be at least one motorized vehicle involved in an accident.

ID Bit Name Bit Value (decimal)
0 pedestrian 1

1 bike 2

2 private car 4

3 public bus 8

4 railway 16

5 tram 32

6 subway 64

7 ferry boar 128

Table 5.1: Practicability-bits

The OSM graph is much easier to handle because it can be directly down-
loaded as a graphm file via the OSMNX function graph f rom place. This
function returns a NetworkX graph from OSM data within the spatial
boundaries of the given geocodable place. One can also specify the street
network type via the parameter network type. For this use case the type
drive is chosen which means that the graph is generated out of all drivable
public streets of the given place.

5.1.1 PageRank Road Network Graph

In this step all the road links from the city of Graz are page ranked. First,
the graph is converted to a directed graph, and afterwards converted to a
line graph. This means that a line graph of a graph G has a node for each
edge in G and an edge joining those nodes if the two edges in G share a
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common node.
Afterwards the line graph is used as input for the NetworkX PageRank
method. At the end the ranked line graph nodes must be matched to the
road network links of the original graph. The highest ranked roads are
stated in Table 5.2

osmid road name road category pagerank
122564305 Grazbachgasse primary 0.89

187770191 Weblinger Gürtel primary 0.83

48377963 Friedrichgasse residential 0.76

147282924 Wiener Straße primary 0.76

[188716194,
188716188,
187417426]

Pyhrn Autobahn motorway 0.75

[4100026,
332304639] Grüne Gasse residential 0.72

[24302451,
197653615] Joanneumring primary 0.70

4354717 Schmiedgasse residential 0.70

Table 5.2: Highest page ranked roads in Graz based on the OSM graph

As one can see in Table 5.2, the calculated PageRank values are based on the
OSM graph and scaled between zero and one. The PageRank measurements
differ from the values calculated on the GIP graph. This is because in GIP
not every graph node represents a junction and so the graph structure
itself is not the same as for the OSM. So the PageRank values based on the
OSM graph are much more representative than the values based on the GIP
network, although GIP contains some more road links, especially residential
roads.
For the calculation regarding the OSM graph the page ranked values are
not based on the road link directly but on the direction of the specific road
link lanes. This means if the road is passable in both directions than there
exist two different PageRank values, each for one driving direction.
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5.1.2 Centrality Calculation of the Road Network Graph

For the calculation of the road centrality the NetworkX function closeness centrality
1 is used. This centrality measurement represents the reciprocal of the av-
erage shortest path distance from one node to all the other nodes in the
graph.

C(u) =
n− 1

∑n−1
v=1 d(v, u)

(5.1)

where d(v, u) is the shortest-path distance between node u and node v, and
where n stands for the number of nodes that can reach node u.
Therefore, higher values of closeness indicate higher node centrality.
Again the road network graph is converted to a directed line graph. This
new graph is used as input for the closeness centrality calculation. The
output is visualized in Figure 5.1 and the most central road links are stated
in Table 5.3.

Figure 5.1: Closeness centrality for the road network of Graz

1https://networkx.github.io/documentation/networkx-1.10/reference/

generated/networkx.algorithms.centrality.closeness_centrality.html (Accessed
on: 2019-09-10)
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osmid road name road category value
[188652278, 25716155,
121165757, 127761350,
188652269]

Pyrn Autobahn motorway 1.0

[526110760, 5132424,
5132425, 5113079,
191915152, 191915153,
26603987, 35401652,
35401653, 26603990,
206372489, 5113080,
191915156]

Süd Autobahn motorway 0.93

[136332200, 136332201] Liebenauer Tan-
gente primary 0.93

[95541665, 27445571,
27445573, 5116323,
108616723, 132659645]

Conrad-von-
Hötzendorf-
Straße

primary 0.93

[163080140, 173538868,
108616733, 163080142,
5112957]

Conrad-von-
Hötzendorf-
Straße

primary 0.93

134122989 Grazerstraße primary 0.92

[32425488, 132659672,
163080160, 377169733,
197686471]

Schönaugürtel primary 0.92

[108616640, 5098330] Jakominigürtel residential 0.92

Table 5.3: Roads with the highest centrality measurement values in Graz based on the OSM
graph
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Like for the PageRank calculation, the estimated centrality measurements
are based on the OSM graph and scaled between zero and one. Once more,
the calculation differs between OSM and GIP graph because of the different
graph structure. The centrality measurement is now link specific and does
not depend on the roads traffic directions.

5.1.3 Road Slope Estimation

The estimation of a road link slope values can only be done based on the
GIP graph because GIP comes with height values in the LinkCoordinate
table. Therefore the slope between the start and end node of a link can be
calculated like mentioned in Equation 5.2.

∆height = |vz − uz|

slope = tan(arcsin(
∆height

length(link)
)) ∗ 100

(5.2)

where u represents the start node and v the target node.
For the right estimation of the road link the distance has to be transformed
from the Euclidean Distance to the orthodromic distance of the specific road
link. Therefore the python library pyproj is used.

5.1.4 Road Curvature Estimation

A road links curvature is calculated like defined in Equation 5.3

curvelink =
length(link)

d(linkstart, linkend)
(5.3)

where d(linkstart, linkend) is the orthodromic length of a straight line between
the first and the last link coordinate. Therefore, higher curvature values
indicates higher degree of road curves.
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5.1.5 Junction Plateau definition

In Austria the StVO law2 states that a road junction is defined as a place
where one road intersects or joins another, no matter in which angel. Further,
the junction area is the overlapping space of these roads bounded by the
imaginary lines of the contiguous roadsides.
Following this law, polygonal representations of street junctions can be
generated. For rectangular X-junctions this approach is not so complex to
handle as shown in Figure 5.2.

Figure 5.2: Road junction with polygonal and radial area representation

Most of the junctions are not in this shape. Another issue is that some
junctions are very close to each other as one can see in Figure 5.3. In this
case it would be preferable to handle these different junctions as one greater
junction. So for an abstract representation of junctions the following steps
are carried out:
First, only consider graph nodes where more than two links are joining.
This is necessary especially for the GIP graph, because otherwise this graph
node is a virtual node and does not represent a real junction.
Next gather all road links width joining this specific node and take the link
with the maximum width.
Define a radial area around the node with a radius of the maximum link
width.

2https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=

JJT_20080124_OGH0002_0020OB00062_07T0000_000 (Accessed on: 2019-09-11)
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If radial areas intersect each other, merge them recursively until no more
intersections occur.

(a) (b)

Figure 5.3: (a) represents the polygonal road junction areas whereas (b) visualizes the
abstracted radial representation with the merging strategy

The generated plateau IDs are stored in a separate junction SQL table with
reference to the specific graph node IDs.

64



5.2 Map Matching

5.2 Map Matching

In order to generate the input data set for the prediction model, all additional
data sets have to be matched to the GIP and OSM road network. Therefore
different map matching strategies, depending on the data set, are used.

5.2.1 Match Vehicle Crash Data with Road Network

For further analysis all road accidents which occurred in Graz are mapped to
the road network graph. Accidents can either be matched with an according
road link, a junction plateau or both.

Match on road network links

Each crash event is matched with the nearest road segment from the OSM
and GIP network where the traffic mode of the accident entry matches the
street practicability. This means, when there occurred an accident with a
tram the accident has to be matched to the nearest link where the practica-
bility of this link is also possible for trams.
One additional consideration was not only to check the nearest possible
link with the right practicability but also if the street name coincides. This
approach fails in some cases because not all accident entries contain the
street name attribute and sometimes the street name of the crash entry just
not matches with the n-nearest road links. So the assumption in this case is
that the GPS data is more reliable than the manually filled attribute for the
street name in the accident data set.
In Figure 5.4 the street segments with the highest accident rates are visual-
ized.
One can also see that the most crashes happen in the districts of Gries
and Lend, whereas the fewest occur in Mariatrost, Waltendorf and Ries. It
also has to be said that ”Gries” and ”Lend” have a dense street network
with a considerable number of arterial roads like the ”Bahnhofgürtel” or
”Eggenberger Gürtel”. Also typically accidents take place on streets with
one lane in a direction as the attribute lanes tow and lanes bkw shows.
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Figure 5.4: Distribution of road features where crashes occurred

GIP ID road name number accidents
201005262 Joanneumring 24

201007193 Annenstraße 18

201007177 Keplerstraße 17

201000754 Kärntnerstraße 15

101571709 Lazarettgürtel 14

101374559 Conrad-von-Hötzendorf-Straße 14

Table 5.4: GIP links with highest accident rates

In Table 5.4 the link IDs are matched with the according street names and in
Figure 5.5 the street segment of Joanneumring is visualized being the link
with the highest accident rate in Graz.
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Figure 5.5: Street link Joanneumring with according crash events

Match on Road Network Intersection Plateaus

In this section accidents are matched to intersection plateaus if minimum
one of the following cases is true:

• If the coordinates of an crash entry intersects a intersection plateau
• If an crash entry in the accident data set is mentioned to happen at an

intersection.

The first point is straightforward. Each accidents entry coordinate pair in the
KFV crash data set is checked if there is an intersection with the intersection
plateau generated in Chapter 5.1.5. Then this crash belongs to the specific
intersection plateau.
The second step is necessary if the specific accident is identified as an
intersection accident in the crash data set but not directly intersects an
intersection plateau. Then the plateau is chosen which has the smallest
euclidean distance.
The accident entry in the crash data set is determined to be at an intersection
if the attribute Kennzeichnung1 IDs Kve has one of the IDs stated in table
5.5
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Kennzeichnung1 IDs Kve description
14 4-way-intersection
15 3-way-intersection
16 5-way-intersection
17 intersection with shifted joining roads
102 intersection

Table 5.5: Lookup table Kennzeichnung1 IDs Kve

In Figure 5.6 the junction plateaus with the highest accident rates are
visualized. Against the road link, nodes do not have names but only IDs.
The plateau with the highest accident rate is shown in Figure 5.7.

Figure 5.6: Distribution of crashes over intersection plateaus
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Figure 5.7: Intersection plateau with the highest crash rate

5.2.2 Match districts with road network

To get an impact of the population in the different districts the population
density, as stated in Equation 5.4, is calculated. Therefore the according
district has to be mapped to all road links. This is done by choosing the
district which is intersected by a road link. If the road link passes multiple
districts, choose the one containing the greatest part of the link.
Because the population not only depends on the district but also on date
and time a static mapping of the population density can not directly be
made. A more detailed examination follows in Chapter 7.3.

density(district) =
population(district)

area(district)
(5.4)

5.2.3 Match weather data with road links

Since the weather related data from the different measurement stations can
not directly be matched to each road segment, an interpolation technique
is used to calculate these measurements at each road link separately. This
can be realized via inverse distance weighting (Noori, Hassan, and Mustafa,
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2014 and Mair and Fares, 2010) given the GPS coordinates of the 5 different
weather stations. Not only the temperature but also the rainfall data is
interpolated in that way. In python this can be realized via the KDTree 3

approach from the scipy library. The temperature and precipitation for each
road link is estimated on the median coordinate entry of each road link.

3https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.

spatial.KDTree.html (Accessed on: 2019-11-27)
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6 Missing Value Imputation for
Traffic Flow Data

In this section the traffic flow data set provided from the department of
roads in Graz is analyzed and preprocessed so that it can be used as an
additional input for the accident risk prediction model.
First some traffic flow stations (TFS) and their time series measurements
are analyzed. One will see that, depending on the TFS, a great percentage
of missing values occur. This problem can be overcome by using different
imputation strategies. Some of these strategies will be compared and ex-
plained in detail depending on this special use case.
At the end one imputation strategy is chosen and evaluated on different
subsets of the traffic flow data set so that the imputed values have a high
level representation of the missing values.

6.1 Traffic flow data analysis

For analysis purpose, a small plotly dash1 application should support to get
a deeper insight about the measured values of a given TFS. Given a specific
TFS and a date range, a histogram visualization in a quarter hour interval
with standard deviation is generated.
Also a Kernel Density Estimation (KDE) graph, as shown in Figure 6.4 and
6.5, is visualized. One can aggregate the measured values of a station by
day, hour and quarter hour intervals. This plot is for illustrative purposes
only so no further fine tuning regarding the width of the histogram bins,
which is defined as a constant value of 10, is carried out.

1https://plot.ly/dash/ (Accessed on: 2019-09-12)
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6 Missing Value Imputation for Traffic Flow Data

Figure 6.1: Histogram of traffic flow measurements on workdays between 01.01.2017 and
01.01.2018 in an quarter hour interval

Figure 6.2: Histogram of traffic flow measurements on weekends between 01.01.2017 and
01.01.2018 in an quarter hour interval
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Figure 6.3: Histogram of traffic flow measurements on public holidays between 01.01.2017

and 01.01.2018 in an quarter hour interval

Looking at the TFS 504.52, which is mounted on an arterial road where a
high traffic volume can be detected, the following conclusions can be drawn:

• On workdays, as visualized in Figure 6.1, a steep rise of numbers of
vehicle can be viewed between 05:00 and 07:30 with a relative small
standard deviation compared to the absolute values. At around 07:30

the highest traffic volume of the day is reached. The average value in
this quarter hour is around 140 cars with a standard deviation of ± 25

cars.
Afterwards the traffic volume decreases slowly over the day till around
16:30 when it slowly starts increasing again and reaches a local maxi-
mum between 18:00 and 18:45. One can not clearly detect a maximum
in this afternoon rush our because the mean values are very close to
each others in this time range and so the standard deviation plays an
important role in this case.
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• On weekends, visualized in Figure 6.2, the absolute values in the night
between 00:00 and 04:00 are slightly larger than on weekdays. This
is because of the vicinity to a greater nightlife scene with bars and
clubs in Graz. Also there is no absolute rush hour in the morning but
a slightly increase of the traffic volume over the day. The maximum is
reached at around 18:30. One can also view an increase of the standard
deviation compared to weekdays over the whole day. The increase of
the standard deviation might be because of special events in the closer
vicinity at certain time which may cause slightly different traffic flow
values. So one solution in further consideration would be to get a very
detailed event plan for the whole city so that an additional aggregation
mode with ”event day” / ”no event day” can be introduced.
• The measurements on holidays as stated in Figure 6.3 are closely com-

parable to the traffic flow values on weekends although the standard
deviation is not as large as for the weekend distribution.

Another reason why this station is good for analysis purpose is that com-
pared to many other station it has no missing values in this time range.
On can see that for specific intervals the standard deviation is quite small
compared to the mean value. But there are still some regions where the
opposite is true. This may be overcome by aggregate not only by day and
time but also by months or by seasonal factors.
Another view on the problem is to generate a probability density function
(pdf), which can be adjusted by the different aggregation modes. The goal
is to get something like a unimodal distribution with a small variance so
that for a given TFS under certain conditions like year, day, hour and so one
one can sample missing values from the specific distribution.
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Figure 6.4: Unimodal probability density function with a small variance

Figure 6.5: Probability density function with large variance

In Figure 6.4 a unimodal distribution with small variance is shown. So for
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the TFS 504.52 on Mondays at 20:00 there are no great changes in the traffic
volume. The problem of a pdf with a large variance as displayed in Figure
6.5 arises the most time at the rush hours.
So therefore the imputation can not be seen as a univariate analysis problem.
Further experiments will show that other TFS might have an great impact
on the imputation process of a missing value for a given TFS.

6.2 Missing Value Statistics

For a adequate imputation model selection the missing values over all TFS
have to be analyzed. Not only the percentage of missing values regarding
the TFS are considered but also if series of consecutive missing values oc-
cur. In Figure 6.6 the percentage of missing and valid values for all TFS
are mentioned. One can see that for more than 170 TFS the percentage of
missing values is lower than 15. But there are also about 15 stations where
approximately half of the measurements are missing. A special case regard-
ing missing values can be viewed for station 515.21: The station, located at
the Riesstraße in the district of Geidor f recorded measurements between
01.01.2017 and 01.01.2018. Between this period only 8 valid values for a
quarter hour interval could be generated.
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6.2 Missing Value Statistics

Figure 6.6: Missing value statistic in percentage

Figure 6.7 plots the cumulative sum of the number of different consecutive
missing value series. One can see that about 40 percent of all missing value
series is just a series with one not valid measurement. 61 percent of missing
values are series lower than 4, which implies that these series are not longer
than one hour. Also some peaks can be figured out at 26 (6.5 hours), 84 (21

hours) and 96 (1 day) consecutive missing values.
As a summarization it can be said that 90 percent of all missing measure-
ments are values in a series of missing values which lasts less than one day,
or in other words less than 96 consecutive missing periods.
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Figure 6.7: Cumulative sum over number of consecutive missing value series

6.3 Imputation Model selection

6.3.1 Missing data mechanism

Before the right imputation model can be selected the following missing
data mechanism have to be discussed as stated in Soley-Bori, 2013:

• Missing Completely at Random (MCAR)
Given a variable Y with some missing values. It can be stated that
these values are MCAR if the probability of missing data regarding Y
is unrelated to the value of Y itself or to any other variable in the data
set.
• Missing at Random (MAR)

Compared to MCAR this is a weaker assumption. The probability
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of missing data for a variable Y is again unrelated of the value of
Y but might be related to some other observed data. More formally
speaking:

P(Ymissing|Y, X) = P(Ymissing|X) (6.1)

• Missing not at Random (MNAR)
Missing values do depend on some unobserved values.

If one of the first two cases, namely MCAR or MAR, is observed it is legiti-
mate to remove data with missing values. If MNAR is detected, removing
missing values can bias the prediction model.
For the use case of traffic flow imputation one can say that different TFS
might correlate with each other. But there is at all no dependency between
the missingness of the data samples itself. So a missing sample does not
depend on its value nor on the measurements of other correlated TFS there-
fore this data samples are MCAR or MAR. Thus, from the pool of several
methods for missing data handling, as shown in Figure 6.8 can be chosen.

6.3.2 Data deletion

Deletion of data can again be split in three different sections. For the
purpose of traffic flow imputation the method of deleting columns is the
most interesting one. This means, not a single invalid measurement sample
is deleted, but the whole TFS and its measured values are left out if the
missing value percentage exceeds a certain threshold.
In a later Chapter a deeper insight will be given how this column wise
deletion is processed because it strongly depends on the chosen imputation
technique and validation requirements.

2https://miro.medium.com/max/1222/1*_RA3mCS30Pr0vUxbp25Yxw.png (Accessed
on: 2019-09-16)
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Figure 6.8: Different methods for handling missing data2

6.3.3 Imputation

IterativeImputer

As discussed in Chapter 6.1 a multivariate feature imputation is preferred
over a univariate method because there might exist some strong corre-
lation between different TFS which can be used for estimating missing
values. Therefore scikit comes with a multivariate imputer approach called
IterativeImputer3. This imputer models each feature with missing values as
a function of other features and uses the estimated values for imputation.
This is done in an iterated round-robin fashion where by one iteration each
feature column becomes the output and all the other feature columns act as
input. One iteration is defined as that each feature column acts as an output

3https://scikit-learn.org/stable/modules/impute.html#

multivariate-feature-imputation (Accessed on: 2019-09-16)
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once. The maximum imputation rounds can be defined via the parameter
max iter.
This basic imputer can be used for different imputation strategies like
AMELIA, MICE, missForrest just by passing in different regressors.

Single vs. Multiple Imputation

Single imputation is per definition running the whole imputation process
once an tread the imputed values as real values afterwards. The drawback
of this imputation method is that the uncertainty increases when the rate of
the missing value increases. To overcome this problem, multiple imputation
can be used. Therefore the whole imputation process is repeated multiple
times resulting in multiple imputed data sets. This imputation strategy
consists of three phases 4:

• Imputation phase
In this phase the imputation is done on several copies of the original
data set. E.g. regression analysis is used to predict missing values.

• Analysis phase
The analysis phase carries out the statistic, like mean, variance etc, of
the imputed values for all different imputed data sets.

• Pooling phase
Finally, the pooling phase creates the overall estimation of the imputed
values by combining the results of the different imputed data sets.
If the estimates are pooled by Rubin’s Rules the result values are
calculated by averaging the different parameter estimations of the
different imputed data sets as given in Formula 6.2. The total variance
can be calculated by combining the within imputation variance and
the between imputation variance as stated in Equation 6.5

θMI =
1
M

M

∑
i=1

θi (6.2)

4https://www.iriseekhout.com/missing-data/missing-data-methods/

multiple-imputation/ (Accessed on: 2019-09-17)
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Varwithin =
∑M

i=1 SE2
i

M
(6.3)

Varbetween =
∑M

i=1(θi − θMI)
2

M− 1
(6.4)

VarMI = Varwithin + (1 +
1
M

)Varbetween (6.5)

Where SE is the standard error, and M the number of imputed data
sets.

6.4 Multivariate imputation by chained equations
(MICE)

The IterativeImputer is inspired by the R MICE package but differs from it
in a way that only the output of a single imputation is returned and not
the outputs of multiple imputations. Still one can make use of it as a base
imputer and expand it so that multiple imputations can be performed. For
the following section Buuren and Groothuis-Oudshoorn, 2010 and Azur
et al., 2011 serves as a template of how to expand this IterativeImputer to a
specific multiple imputation approach called MICE.

6.4.1 Notation

Xj with (j = 1, ..., p) stands for one incomplete feature vector in the data set
where X = (X1, ..., Xp) represents the whole data set. According to the use
case of imputing missing traffic flow values one can say that each feature
vector represents a specific TFS for a given time period. The observed values
of a specific TFS vector j is denoted by Xobs

j whereas the missing values are

characterized by Xmis
j . Therefore (Xobs

1 , ..., Xobs
p ) and (Xmis

1 , ..., Xmis
p ) stands

for the observed and missing measurement values of the whole TFS data
set. X−j denotes the subset of p− 1 feature vectors excluding Xj.
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Q has the form of a multivariate vector and represents the model parameters
like regression coefficients.
The number of different imputations is equal to m ≥ 1.

6.4.2 Bayesian Regression

As mentioned in Chapter 6.3.3, in the imputation phase a regression model
tries to predict the missing values Xmis of the data set X. In the case of the
MICE imputation a Bayesian regression model called BayesianRidgeRegression5

form the sklearn library is used.
Against a classical linear regression approach the Bayesian regression
method, as cited in Kruschke, Aguinis, and Joo, 2012, uses probability
distributions rather than point estimates as stated in Equation 6.6

y ∼ N (βTX, σ2 I) (6.6)

Where y is sampled from a normal distribution where the mean is charac-
terized by the multiplication of the weight matrix and the feature matrix
and the variance is characterized by the multiplication of the square of the
standard deviation and the Identity matrix.
Not only the model output is sampled from a probability distribution but
also the model parameters are generated out of a posterior distribution as
stated in equation 6.7

P(β|y, X) =
P(y|β, X) ∗ P(β|X)

P(y|X)
(6.7)

Regarding the Bayesian Ridge Regression, the variance of the distribution
from where the output is sampled, is abstracted as a random variable which
has to be estimated from the data as stated in formula 6.8:

y ∼ N (βTX, α) (6.8)

5 https://scikit-learn.org/stable/modules/linear_model.html#

bayesian-ridge-regression (Accessed on: 2019-09-17)
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The prior for the coefficient β for the Bayesian Ridge Regression is given by
a spherical Gaussian:

P(β|λ) = N (β|0, λ−1 I) (6.9)

Further, the priors over α and λ are chosen to be gamma distribution, the
conjugate prior for the precision of the Gaussian.
During the imputation process the parameters β, α and λ are estimated
jointly, where α and λ are calculated by maximizing the log marginal
likelihood 5.

Figure 6.9: Diagram for multiple linear regression cited in Kruschke, Aguinis, and Joo, 2012

6.4.3 Method

Data Set

For generating the feature matrix the whole traffic flow measurements are
split up after years. Therefore 3 different feature matrices with missing
values exist. Further, three different imputation models are trained based on
the specific data set. Also hyperparameter search is applied to each model
independently.
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Training

The chained equation approach can be split into six steps:

• In the first imputation step, all missing values are masked so that for
further turns the imputed values still can be recognized and the mean
over Xobs

j is imputed. These imputation can be thought of as place
holders.
• In the second step, the place holder mean imputations for Xj is set

back to missing.
• In the third step Xmis

j are regressed on X−j via the BayesRidgeRegression
approach. Not all X−j features are taken for imputation but just the n
strongest correlated feature vectors. The Pearson correlation coefficient
is used for estimating these n vectors.
• In the fourth step the missing values Xmis

j are replaced with the re-
gressed values.
• In step five step two to step four is repeated for all Xmiss

j with (j =
1, ..., p)
• In step six the imputation process as stated in step 5 is repeated for a

given number of cycles with the imputations being updated at each
cycle.

Regarding the last step one can also track the change of the within variance
and determine some threshold ε for the stop criterion instead of a fixed
number of cycles. This ε strongly depends, in the use case of traffic flow
imputation, on the number of missing values of a given TFS. So therefore
no global ε exists.
As mentioned in the previous section, the hyperparameter search is ap-
plied to each model independently. The following parameters have to be
optimized:

• number nearest features
stands for the number of features which are chosen as input for the
regression analysis.
• max imputation cycles

together with the parameter di f f variance threshold it describes the
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maximum number of regression runs per imputation run.
• diff variance threshold early stopping criterion tracks the difference

in the variance between regression runs and stops when di f f variance threshold
is reached.
• nr multiple imputation number of imputation runs to fulfill the mul-

tiple imputation approach.

Validation

Because the whole traffic flow data set is split after years for the training
process, the validation is also separately done for each of the three models.
Therefore a given percentage of non missing values for each traffic flow
station is randomly removed and has to be predicted. Also hyperparameter
search with the Grid Search strategy is applied to each of the MICE models.
The following hyperparameters can be estimated:

hyper parameter possible values
number nearest features 5,10,15,20,25

max imputation cycles 10,15,20,25,30

diff variance threshold 1e3, 1e2, 1e1, 1

nr multiple imputation 5,10,15,20

In the experiment a missing rate between 10% and 70% with a step size of
10% is applied. To compare the different experimental results, the root mean
squared error (RMSE) is used as evaluation metric as stated in Equation
6.10:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2 (6.10)

where ŷi and yi are the estimated and ground truth values of the ith imputed
value. N represents the total number of imputed values. The evaluation
is not only done on the whole imputed data set, considering all different
feature vectors but also have a view on each traffic flow station separately.
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Results

The estimated hyperparameter values for the different models are mentioned
in Table 6.1.

hyper parameter model
2015/2016 2016/2017 2014/2018

number nearest features 20 20 20

max imputation cycles 10 10 10

diff variance threshold - - -
nr multiple imputation 10 10 10

Table 6.1: Selected hyper parameters for the three imputation models

Because of multiple imputation runs, one can first track the within variance
of the imputed values. One might suggest that a small within variance of
a given traffic flow station would mean a strong correlation to some other
traffic flow stations and also a small missing rate of traffic flow values. A
more general indication, not on the level of a single imputed value but on
the level of traffic flow stations can be considered by the RMSE per station.

The validation result for each of those models with the according hyper-
parameters over the missing value percentages are shown in Figure 6.10.

Figure 6.10: RMSE over missing value ratios of imputation models
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The different MICE imputation models remain stable regarding the RMSE
by choosing different missing rates. Also the overall absolute RMSE value
is very low. A deeper insight is given in Table 6.2 where the RMSE of each
traffic flow station is calculated separately.

traffic flow station missing ration RMSE

363.22

10% 0.18

30% 0.2
70% 0.26

801.31

10% 1.22

30% 1.29

70% 1.52

Table 6.2: RMSE evaluation per traffic flow station in 2015

traffic flow station missing ration RMSE

707.41

10% 0.2
30% 0.21

70% 0.25

824.36A
10% 1.1
30% 1.1
70% 1.3

Table 6.3: RMSE evaluation per traffic flow station in 2016

traffic flow station missing ratio RMSE

806.11

10% 0.18

30% 0.2
70% 0.24

824.34

10% 1.0
30% 1.02

70% 1.04

Table 6.4: RMSE evaluation per traffic flow station in 2017

As an example only the traffic flow stations with the lowest and highest
RMSE per year are compared. One can see in Figures 6.2, 6.3 and 6.4 that
over all three years the RMSE differ by a factor of lower equal 10. By
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investigating the reasons of that, it can be stated that not only the overall
missing rate of traffic flow values per station and year is decisive but the
combination of the missing rate and the correlation to other traffic flow
stations.
Considering station number 363.22, the overall missing rate is about 20%
and the correlation factors to the 10 closest stations regarding the Pearson
correlation coefficient is between 0.96 and 0.94 which is quite high. Against
that for station 801.31 the missing rate is about 85% and also the correlation
to other stations is very low with about 0.53 to 0.2 for the 10 closest stations.
As stated above not only a low missing rate is relevant for a low RMSE
but the combination with strong correlated stations with preferably low
missing value rates. By looking at station number 707.41 and 824.36A for the
year 2016, the missing rates are likely the same with about 0.5%. But 707.41

correlates much stronger to other stations than 824.36A does. So therefore
the RMSE for 707.41 is much lower than the RMSE for 824.36A
Comparing station number 806.11 and 824.34 for the year 2017 the influence
of strong correlated features again can be viewed. Although the missing
rate for 806.11 with 25% is more than 10 time higher as the missing rate for
824.34 the RMSE is much lower just because of stronger dependencies to
other stations with lower missing rates.

Figure 6.11: Imputation sequence of traffic flow station 707.41

Another issue which arise for some traffic flow stations can be viewed in
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Figure 6.12: Imputation sequence of traffic flow station 824.34

Figure 6.12. One can see that compared to other stations, as shown in Figure
6.11, no classical daily pattern can be recognized. Also the variance of the
imputed values and the deviation between imputed values and ground
truth values is much higher as for those traffic flow stations where an
daily pattern occur. One explanation might be that most of these confusing
patterns occur on street segments where multiple driving lanes in the same
direction are tracked separately. So on the 2nd lane or outside lane a regular
daily traffic pattern can hardly be detected. Another simpler explanation is
that wrong measurement values are outputted by these stations.
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As mentioned in the introductory chapters, one of the main objective of
this paper is to evaluate different classifier approaches for real-time crash
likelihood prediction based on different data sources.
At first some basic statistics of the merged data set are generated in an
explanatory manner. In a second step a negative sampling strategy for non-
crash events has to be deployed. Based on the chosen classification model
input features might also have to get scaled or one hot encoded.
Given the preprocessed feature matrix, the classifiers hyperparameters have
to be estimated based on the given evaluation metric. These classifiers are
not only trained and tested on the whole feature set but also on subsets of
them. For the traffic flow features the imputed data set from Chapter 6 is
used. At the end the different results get compared in terms of different
evaluation metrics to figure out how well and robust the different classifiers
behave.
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7.1 Exploratory data analysis

7.1.1 Crash statistics

In this section, some basic statistics regarding different attributes in the crash
data set are mentioned. Between 01.01.2015 and 31.12.2017, 5416 accidents
in the streets of Graz occurred. The number of accidents per month can be
viewed in Figure 7.1. Also the number of injured and deadly injured accident
participants is visualized over the three years. Injured participants again
can be split into slightly injured and seriously injured accident participants
as displayed in Figure 7.2.

Figure 7.1: Accidents per month between 01.01.2015 and 31.12.2017
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It is shown that the absolute numbers of accidents per year over the 3 years
slightly increased. In the winter months between December and March the
lowest accident rates can be mentioned. Against that the accident rate rises
in the summer and autumn months between May and October. The relation
between accidents and injured participants as well as between slightly and
seriously injured participants can be viewed as constant over the three
years.

Figure 7.2: Stacked number of slightly and seriously injured accident victims between
01.01.2015 and 31.12.2017

Each accident is classified in the crash data set into 13 categories. The
number of accidents per class can be viewed in Figure 7.3. Priority violation,
including disregard red traffic lights and negligence or distraction of the
driver followed by too low safety distance are the most important reasons
why an accident happens in Graz.

In Figure 7.4 the influence of precipitation and the influence of alcohol over
the different districts of Graz is visualized. One can see that the percentage
of accidents under rainy or snowy road conditions is very low compared
to the overall accidents per district. In the district of St. Leonhard the
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Figure 7.3: Cause of accidents categories

percentage seems a bit higher than compared to the other districts. Also
accidents under alcohol influence are relatively rare compared to the overall
number. The most accidents therefore can be figured out in the districts of
Gries and Lend.

Another interesting statistic is the number of accident participants (not
accident causers) per gender over the 17 districts as visualized in Figure
7.5. In every district more male than female are involved into crashes.
Especially in the inner districts Gries, Jakomini and Lend the number of
male participants is much higher than compared to the outer districts.
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(a) (b)

Figure 7.4: (a) accidents under precipitation (b) accidents under alcohol influence

Figure 7.5: Number of accident participants per gender
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7.1.2 Correlation between traffic flow and accidents

As stated in Chapter 2.2, not only the absolute traffic flow values for a given
street segment seems to have an big impact regarding crash accidents but
also the change of these values over time. In this section, two street links
with a high accident probability over the years are considered and the traffic
flow values for these links are analyzed at the time of crashes.

Joanneumring

The Joanneumring is a one-way street link with 3 lanes, each of them tracked
separately by the measurement stations 104.41A, 104.42A and 104.43A. On
the 7th of May 2017 at 06:45 p.m. a crash happened on this road link.
By considering the traffic flow values of the three measurement stations
as visualized in Figure 7.6, 7.7 and 7.8 one can see that for 104.42A the
absolute traffic flow one hour before the crash is greatly increased compared
to the average traffic flow in the same month. At the time of crash the flow
dramatically decreased. Station 104.41A and 104.43A therefore show no
relevant deviation from the months average till 06:45 p.m. where the flow
significantly increased.

(a) (b)

Figure 7.6: (a) traffic flow of 104.41A on the day of crash (b) average traffic flow of 104.41A
over the month with standard deviation

Another crash on the 7th of June 2017 at 03:31 p.m. as Figures 7.9, 7.10 and
7.11 point out, that the traffic flow tracked at 104.42A and 104.43A confirms
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(a) (b)

Figure 7.7: (a) traffic flow of 104.42A on the day of crash (b) average traffic flow of 104.42A
over the month with standard deviation

(a) (b)

Figure 7.8: (a) traffic flow of 104.43A on the day of crash (b) average traffic flow of 104.43A
over the month with standard deviation

with the average traffic flow of the June 2017. Against that, 104.41A shows
a high flow rate also one hour before the accident. Short time after the
accident, at 03:45 p.m. 104.41A and 104.43A a dramatically increase of the
flow can be stated. One reason for this might be because of the dispersion
of the traffic jam.
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(a) (b)

Figure 7.9: (a) traffic flow of 104.41A on the day of crash (b) average traffic flow of 104.41A
over the month with standard deviation

(a) (b)

Figure 7.10: (a) traffic flow of 104.42A on the day of crash (b) average traffic flow of 104.42A
over the month with standard deviation

Weinzötlstraße

The Weinzötlstraße is a two-way street with 2 lanes, one leads to the north
one to the south. The street lane to the north is tracked by the station
359.11A, the lane to the south by station 359.11. One representative crash
is taken from the 29th of May 2017 at 03:00 p.m. As visualized in Figure
7.12 and 7.13, a high increase of the flow can be noticed at station 359.11 in
the 15 minute interval prior the crash. The absolute flow value matches the
monthly average of May 2017. 359.11A matches at all the monthly average.
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(a) (b)

Figure 7.11: (a) traffic flow of 104.43A on the day of crash (b) average traffic flow of 104.43A
over the month with standard deviation

(a) (b)

Figure 7.12: (a) traffic flow of 359.11 on the day of crash (b) average traffic flow of 359.11

over the month with standard deviation

A second crash happened on the 30th of March at 05:30 p.m. As one can
see in Figure 7.14 and 7.15 the absolute flow value clearly increased from
05:00 p.m. to 05:15 p.m. and exceeds the average flow of March 2017 at
station 359.11. Also around 05:30 p.m. the flow is still higher as the months
average. Clearly the same can be said about station 359.11A. The traffic flow
of both stations increased 30 minutes earlier than the months average of
both stations show.
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(a) (b)

Figure 7.13: (a) traffic flow of 359.11A on the day of crash (b) average traffic flow of 359.11A
over the month with standard deviation

(a) (b)

Figure 7.14: (a) traffic flow of 359.11 on the day of crash (b) average traffic flow of 359.11

over the month with standard deviation

(a) (b)

Figure 7.15: (a) traffic flow of 359.11A on the day of crash (b) average traffic flow of 359.11A
over the month with standard deviation
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7.2 Accident statistic by beginning rainfall

In this Section the influence of beginning precipitation on road accidents is
considered. The weather data is, as mentionde in Section 4.5, aggregated
into 1 hour measurements over the years. The measurement unit is stated in
mm. Given these measurements the beginning of rainfall and snowfall can
be determined when in the prior hour no precipitation is measured. Some
basic statistics can be stated:

• Between 01.01.2015 and 31.12.2017 5.416 accidents happened in Graz.
710 accidents happened when rain or snowfall was tracked and inter-
polated for a given roadway. Out of these 710 accidents, 184 accidents
happened by beginning rain- or snowfall.
• Overall 26.280 measurement values for each of the different stations

are within the data set. Approximately on 640 different timestamps
the beginning of precipitation can be tracked.

Considering these facts the probability of an accident under the condition
that it just started to rain or snow is about 3.4%. The marginal probability
of beginning rain- or snow fall is about 2.45% taking the mean value of the
different weather stations. It can be stated that the beginning of rain- or
snowfall does not have a great impact on the crash likelihood in Graz.

7.3 Data set generation

To train the different accident prediction models, the first step is to generate
a training, test and validation data set. Therefore the different data sources
have to be merged together. Each record of the merged data set represents
one crash sample. For each crash sample, n non-crash samples should be
generated. For this thesis, the matched case control strategy (Ahmed and
Abdel-Aty, 2013, Ke et al., 2019) with small adaption is used to select the
negative samples.
As mentioned above all different data sources are merged but the classifiers
not only get trained on the whole feature set but also on subsets.
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7.3.1 Positive samples generation

In Figure 7.1 the extracted features are shown. Depending on feature type,
the categorical features have to be one hot encoded. The accidents date and
time features are one hot encoded in terms of the year, month, day, hour
and minute. Depending on the classifier, the numerical features have to get
scaled because of the different value ranges.
One can also see that for some features, especially features regarding the
the GIP road network graph, still missing values occur which are hardly
to impute. So therefore classifiers, which are able to handle missing values
internally, would be preferable.
Because traffic flow measurements can not directly be calculated for each
street link, the traffic flow values for each measurement station 15min and
30min prior to the occurrence of the crash is joint to the specific entry. As
stated in Chapter 6.4.3 measurement stations do not deliver traffic flow
values over all three years but only in a specific time range. Again missing
values will occur which should be handled by the classifier itself. The
schema with all necessary traffic flow features is provided in Appendix
9.1

7.3.2 Negative samples generation

For negative sampling the matched case control strategy is applied. For each
crash sample 3 non-crash entries are sampled with the following matching
rules:

• Road Link: If an accident occurred on road A, randomly pick a
road link B which is similar to link A regarding the link attributes
average speed, width, page − rank, centrality and curvature. Similar
links are calculated via the K-Means cluster functionality of the sklearn
library. 1 Changing the road link will cause the change of road related
features, district related features and also minor changes in weather
related features.

1https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

KMeans.html (Accessed on: 2019-11-25)
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7.3 Data set generation

feature name feature type details data source
accident date categorical 01.01.2015 - 31.12.2017

Crash data set

accident time categorical 24 categories
is holiday categorical 2 categories
lighting conditions categorical 4 categories
fog categorical 2 categories
wind categorical 2 categories
roadway ceiling categorical 5 categories
road condition categorical 5 categories
max speed numerical 0-80 km/h
is junction categorical 2 categories

GIP graph

average speed numerical 0-100 km/h
number lanes numerical 0-6 lanes
road width numerical 0-22 meters
road surface categorical 2 categories
page-rank numerical 0.03 - 0.86

centrality numerical 0 - 1

curvature numerical 1 - 2

slope numerical 0% - 18.56%
district categorical 17 categories Open Data Graz
population density numerical 663 - 10423 resident per km2

temperature numerical −14.3◦C - +33.3◦C ZAMG dataprecipitation numerical 0 - 15.1 mm

Table 7.1: Accident crash training sample without traffic flow features

• Datetime: If an accident occurred on road A at a timestamp T1, ran-
domly take the same road link or one of the similar road links one
hour prior and later if no accident occurred. Changes in date and time
will cause the change of traffic flow related features and changes for
weather related features.

Finally, the data set contains about 3 times negative samples than positive
ones. The overall data set contains 37624 examples.
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7.4 Model selection

For the accident likelihood estimation one of the most common concepts
is the use of Decision Trees (DT) and Random Forests (RF) as mentioned
in Yuan et al., 2017 or Ke et al., 2019. Regarding the input data set of this
thesis, DTs and RF have some great advantages over other approaches like
Neural Networks (NN):

• Good performance also on small data sets
• Works with continuous and categorical variable at the same time.
• Can handle missing values in the data set
• Does not require feature scaling

For the crash likelihood estimation in this thesis, a Gradient Boosting (Fried-
man, 2001) library called XGBoost (T. Chen and Guestrin, 2016) is used as
the primary classification model.

7.4.1 Hyperparameter Search

The hyperparameters for the XGBoost classifier are evaluated via the Grid-
SearchCV2 method, offered by the sklearn library.
In a first step the whole data set, which was generated in Chapter 7.3, is split
into a training and test set by a ratio of 4:1. For the grid search approach the
training set is internally split again into 5 folds where by each iteration one
fold is left out as validation set. The parameter search is done by searching
the whole hyperparameter space for the best cross validation score. In this
case the Area Under the Receiver Operating Characteristic Curve (ROC
AUC) score is used as evaluation metric.

2https://scikit-learn.org/stable/modules/generated/sklearn.model_

selection.GridSearchCV.html (Accessed on: 2019-11-25)
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7.5 Experiments and Results

7.5 Experiments and Results

In this section, different experiments on the whole and on selected features
of the data set are performed. The XGBoost classifier is trained and evaluated
for each experiment separately. Therefore the hyperparameters have to be
separately evaluated too.
The test set is once generated by randomly sample over the three years and
once by taking the whole year 2017 into account.

7.5.1 Feature selection

The crash likelihood estimation is processed only for accident, road link,
population and weather related features, extracted form the overall data set
as shown in Table 7.1. The traffic flow measurements are ignored in this
initial experiment. For this data set the estimated model parameters are
cited in Table 7.2.

hyper-parameter estimated value
objective binary:logistic

learning rate 0.1
max depth 10

min child weight 2

subsample 1

colsample bytree 0.7
n estimators 350

Table 7.2: Hyper-parameters for the XGBoost classifier

Testing the classifier with the retained test set, different evaluation metrics
can be generated. As one can see in Figure 7.16 the TP value is quite low
whereas the FP value is high. So the correct classification rate of accidents
itself reaches not more than 61%, whereas the correct classification of non-
accidents is straight 100%. By interpreting the precision-recall functions in
Figure 7.17, the precision for class accidents drops dramatically at a recall of
0.8. Instead the curve for non-accident still keeps a constant precision score
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of 1.0 over the whole recall space.
The XGBoost classifiers prediction method internally classifies samples by a
prediction probability of greater 50% as non-accident. This is a quite low for
samples of class non-accident. Regarding the output of Figure 7.17, one can
try to increase this threshold.
Figure 7.18 visualizes the confusion matrix where the threshold for classi-
fying samples as non-accidents is increased to 85%. The TPR increased to
about 82% and the FNR hardly decreased to about 97%.
This seems to be a much more acceptable result as it is more important to
increase the recall for crash events as to have a high precision score. In other
words, trying to figure out most crash events by simultaneously classify
some non-crash events wrongly as crash events. The different evaluation
outputs regarding the probability threshold for the class non-accident can
be viewed in Table 7.3.

(a) (b)

Figure 7.16: (a) confusion matrix absolute values (b) confusion matrix normalized

The XGBoost classifier is also utilized to calculate the feature importance of
the explanatory variables as shown in Figure 7.19. Only the most relevant
features are displayed here. The feature importance is based on the Gain
importance metric. This metric implies the relative contribution of a specific
feature to the models decision by taking the feature’s contribution to each
DT in the forest. It can be observed that the different districts might have a
great impact on the output result. Also street graph related features like the
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(a) (b)

Figure 7.17: (a) precision-recall (b) ROC

(a) (b)

Figure 7.18: (a) confusion matrix absolute values (b) confusion matrix normalized

number of lanes, PageRank and centrality are important features.
Another evaluation can be made by permuting the input features separately
and looking at how much the score (accuracy, F1 score etc.) decreases when
this feature is hold out. This method is also known as ”permutation im-
portance” (Breiman, 2001) or Ablation study. In this experiment, iteratively
all the features are shuffled and the decrease of the F1 score is tracked.
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test set
threshold
for class

non-accident
precision recall accuracy f1-score

sample over
three years

>50% 0.98 0.61 0.94 0.76

>85% 0.82 0.81 0.95 0.82

year 2017
>50% 0.90 0.63 0.94 0.74

>85% 0.62 0.82 0.90 0.71

Table 7.3: evaluation metrics

The results can be viewed in Table 7.4. One can see that, against the gain
evaluation metric, road specific features like the centrality, curvature and
PageRank are the most important ones. For these attributes the F1 score
decreases the most when permuted. Against that, features like lighting
conditions and the speed does not really to have an impact at all.
One issue which arises when using the permutation importance is when
the data set contains multicollinear features. As shown in the Appendix
9.2, there are still no great correlations of input features. In Figure 7.20 and
7.21 some weak correlations are carried out. In the plots higher correlated
features are brighter than lower correlated once.

permuted feature F1 score
none 0.85

centrality 0.59

curvature 0.63

PageRank 0.64

slope 0.64

width 0.66

lanes total 0.69

population density 0.71

district 0.78

precipitation 0.81

temperature 0.82

Table 7.4: permutation evaluation
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Figure 7.19: Feature importance ranking by XGBoost classifier

Figure 7.20: Correlation heatmap
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Figure 7.21: Correlation heatmap
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7.5.2 Including traffic flow measurements

In this section, the crash prediction is performed on the whole input data
set, also including the traffic flow measurements. The estimated model
hyperparameters, evaluated via grid search, can be viewed in Table 7.5. As
evaluation metric the area under the precision recall curve (aucpr) is chosen.

hyper-parameter estimated value
objective binary:logistic

learning rate 0.05

max depth 20

min child weight 2

subsample 1

colsample bytree 0.7
n estimators 400

eval metric aucpr

Table 7.5: Hyper-parameters for the XGBoost classifier

Testing the classifier with the chosen model parameters again with the
retained test set, the following accuracy measurements as stated in Table
7.6 are estimated. In comparison with the results in Chapter 7.5.1, one can
see that the recall decreased when using traffic flow data as pointwise
explanatory variables. Also by having a look on the confusion metrics in
Figure 7.22 and 7.24 it is obvious that the the TPR rate, also when choosing
a classification threshold for non-accidents of 94% to get a relative close
result in terms of the FNR compared to 7.5.1, decreased. This also can be
viewed in the precision-recall plot in Figure 7.23, where the area under the
curve also decreased.
So at all, adding the traffic flow values as pointwise features to the input
data set does not seem to have a positive impact on the output results in
general.

Also for this experiment, the feature importance for the most important
values can be viewed in Figure 7.25. Closely the same features show a high
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(a) (b)

Figure 7.22: (a) confusion matrix absolute values (b) confusion matrix normalized

(a) (b)

Figure 7.23: (a) precision-recall (b) ROC

importance rate for the output. One can also see that no TFS has an great
impact on the model.
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(a) (b)

Figure 7.24: (a) confusion matrix absolute values (b) confusion matrix normalized

test set
prediction threshold

for class
non-accident

precision recall accuracy f1-score

sample over
three years

>50% 1.0 0.39 0.91 0.53

>94% 0.76 0.71 0.93 0.74

year 2017
>50% 0.91 0.41 0.91 0.57

>94% 0.36 0.84 0.76 0.51

Table 7.6: evaluation metrics

7.5.3 Discussion

The previous experiments show that the crash likelihood estimation score,
based on different evaluation metrics, can be compared to other state of the
art studies. Road link related features and the different districts of Graz seem
to have the most impact on the overall result. Whereas taking pointwise
measurement stations 15min and 30min prior accidents into account does
not have any positive effect. One obvious reason for this might be that it is
not essential for the output to include all measurement stations into the set
of explanatory variables. It would be preferable to include only the closest
n- stations for the given road link where the accident occurred. This will rise
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Figure 7.25: Feature importance ranking by XGBoost classifier

another problem, because not all accidents happen on street links closely
to traffic flow measurement stations. So the model again will be biased
through this effect. To overcome this problems, measurement data for all
road links in the network graph of Graz would be necessary. This might be
achieved by applying a traffic (forecasting) model based on the given traffic
flow data. Another possibility would be to take other data sources under
consideration where e.g. GPS data of the vehicles are tracked.
As stated in Chapter 2.2, the output of the model also strongly depends
on the sampling strategy of negative samples. The non-accident events are
sampled via the matched case strategy which can be said to be one of the
state of the art sampling approaches. Another approach would be to sample
similar roads only from a set of street links where accidents happened.
Therefore a more accurate traffic flow data set which provides measurement
data for all of these street links is required. One can argue that traffic flow
data might has an much higher impact for the likelihood estimation when
all the other explanatory variables vary not that much between accident and
non-accident samples.
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8 Conclusions

This thesis attempts the approach to estimate the crash likelihood in the city
of Graz. Therefore different data sources like weather related measurements,
population data, but also the street network graph with road link specific
data and traffic flow measurements were matched with the crash data set.
An additional problem statement arised with the high missing value rate
in the traffic flow data set. The MICE technique was used to overcome
this multivariate imputation problem. It can be shown that the imputation
quality of missing values strongly depends on the time series pattern of
the stations. Values for stations with a clear daily pattern could be better
predicted than stations where no pattern occurred at all. Also the correlation
between measurement stations had a great impact on the estimation process
itself.
Regarding the real-time estimation of the crash likelihood a Gradient Boost-
ing approach was used. Before using this classification model, negative
samples were generated with the matched case strategy. The output of
the classification model strongly depended on the sampling strategy for
negative samples.
It was observed that using the measurements of all stations 15min and
30min prior an accident as additional input variables, did not have an posi-
tive impact on the evaluation metrics for the classification model. Therefore
an alternative strategy like using only the n-closest measurement stations
would be preferable. For this approach a traffic flow model for the street
network of Graz has to be applied or alternative data sources, tracking these
traffic flow values per street link, have to be considered.
The results show that by including spatial, weather and crash data the
precision and recall were around 0.82 and 0.81 respectively.
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8 Conclusions

8.1 Future Work

This thesis assumes a clean crash data set, but as already mentioned in
Chapter 2.2.1, crashes with car damage only do not have to be reported by
the police. This is a great drawback in terms of a reliable crash forward
prediction. Therefore other, more accurate, sources will be preferable for
future work. Another interesting attempt might be, as tackled in Chapter
7.1.1, to figure out crashes based on the change in traffic flow measurements.
In this work, the injury severity was completely left out in the prediction
process. It might be interesting how the accuracy of the model changes
when introducing some kind of weighting samples based on the severity of
a certain accident.
With the rise of Internet of Things (IoT), also in the automotive industry,
cars become the opportunity for data exchange in real-time. Cars will be
able to provide and share detailed driving data like acceleration, speed,
steering information but also driver related responses. This availability of
real-time car and driver specific data will also have an great impact in the
research field of road safety analysis and crash likelihood estimation. For
the first time, personal driving data will be accessible and useable as an
alternative explanatory data set in real-time. With this opportunity, many
unobserved factors in terms of crash prediction will be overcome and the
accuracy of the forecasting models will improve. This additional data might
also serve as an opportunity to tackle the issue of near-accidents.
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9 Appendix

9.1 Traffic flow features for classification model

number traffic flow 15min prior number traffic flow 30min prior
1 t1 104.41A 197 t2 104.41A
2 t1 104.42A 198 t2 104.42A
3 t1 104.43A 199 t2 104.43A
4 t1 106.41A 200 t2 106.41A
5 t1 106.42A 201 t2 106.42A
6 t1 106.43A 202 t2 106.43A
7 t1 106.44A 203 t2 106.44A
8 t1 106.81A 204 t2 106.81A
9 t1 106.82A 205 t2 106.82A
10 t1 107.81A 206 t2 107.81A
11 t1 108.21A 207 t2 108.21A
12 t1 1123.21 208 t2 1123.21

13 t1 1123.22A 209 t2 1123.22A
14 t1 1123.23A 210 t2 1123.23A
15 t1 205.11 211 t2 205.11

16 t1 205.12 212 t2 205.12

17 t1 205.21A 213 t2 205.21A
18 t1 205.22A 214 t2 205.22A
19 t1 205.23 215 t2 205.23

20 t1 205.24 216 t2 205.24

21 t1 301.35 217 t2 301.35

22 t1 301.36 218 t2 301.36

23 t1 302.11 219 t2 302.11

24 t1 302.12 220 t2 302.12

117



9 Appendix

25 t1 306.11 221 t2 306.11

26 t1 306.11A 222 t2 306.11A
27 t1 306.12 223 t2 306.12

28 t1 306.12A 224 t2 306.12A
29 t1 357.21 225 t2 357.21

30 t1 357.22A 226 t2 357.22A
31 t1 358.31 227 t2 358.31

32 t1 358.32 228 t2 358.32

33 t1 358.35A 229 t2 358.35A
34 t1 358.36A 230 t2 358.36A
35 t1 359.11 231 t2 359.11

36 t1 359.11A 232 t2 359.11A
37 t1 363.21A 233 t2 363.21A
38 t1 363.22 234 t2 363.22

39 t1 363.22A 235 t2 363.22A
40 t1 363.23 236 t2 363.23

41 t1 365.14 237 t2 365.14

42 t1 365.15 238 t2 365.15

43 t1 365.16 239 t2 365.16

44 t1 365.20 240 t2 365.20

45 t1 365.25 241 t2 365.25

46 t1 365.26 242 t2 365.26

47 t1 402.11 243 t2 402.11

48 t1 402.12 244 t2 402.12

49 t1 402.13 245 t2 402.13

50 t1 402.14A 246 t2 402.14A
51 t1 402.15A 247 t2 402.15A
52 t1 403.31 248 t2 403.31

53 t1 403.32 249 t2 403.32

54 t1 404.11 250 t2 404.11

55 t1 404.12 251 t2 404.12

56 t1 404.13 252 t2 404.13

57 t1 404.31 253 t2 404.31

58 t1 404.32 254 t2 404.32

59 t1 406.11 255 t2 406.11
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60 t1 406.12 256 t2 406.12

61 t1 406.13 257 t2 406.13

62 t1 406.14 258 t2 406.14

63 t1 406.15A 259 t2 406.15A
64 t1 406.16A 260 t2 406.16A
65 t1 406.21 261 t2 406.21

66 t1 406.22 262 t2 406.22

67 t1 406.31 263 t2 406.31

68 t1 406.32 264 t2 406.32

69 t1 408.31 265 t2 408.31

70 t1 408.32 266 t2 408.32

71 t1 408.33A 267 t2 408.33A
72 t1 408.34A 268 t2 408.34A
73 t1 408.35A 269 t2 408.35A
74 t1 419.22 270 t2 419.22

75 t1 419.23 271 t2 419.23

76 t1 419.24 272 t2 419.24

77 t1 419.25 273 t2 419.25

78 t1 419.42 274 t2 419.42

79 t1 419.43 275 t2 419.43

80 t1 419.44 276 t2 419.44

81 t1 423.32 277 t2 423.32

82 t1 423.33 278 t2 423.33

83 t1 423.34A 279 t2 423.34A
84 t1 423.35A 280 t2 423.35A
85 t1 423.41 281 t2 423.41

86 t1 423.42 282 t2 423.42

87 t1 423.43A 283 t2 423.43A
88 t1 425.11 284 t2 425.11

89 t1 425.12 285 t2 425.12

90 t1 425.13 286 t2 425.13

91 t1 425.14A 287 t2 425.14A
92 t1 425.15A 288 t2 425.15A
93 t1 501.71 289 t2 501.71

94 t1 501.72 290 t2 501.72
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95 t1 501.74 291 t2 501.74

96 t1 501.75 292 t2 501.75

97 t1 501.81 293 t2 501.81

98 t1 501.82 294 t2 501.82

99 t1 501.83AD 295 t2 501.83AD
100 t1 501.84AD 296 t2 501.84AD
101 t1 504.21 297 t2 504.21

102 t1 504.22 298 t2 504.22

103 t1 504.23 299 t2 504.23

104 t1 504.24A 300 t2 504.24A
105 t1 504.31 301 t2 504.31

106 t1 504.32 302 t2 504.32

107 t1 504.51 303 t2 504.51

108 t1 504.52 304 t2 504.52

109 t1 504.53 305 t2 504.53

110 t1 505.11 306 t2 505.11

111 t1 505.31A 307 t2 505.31A
112 t1 505.32A 308 t2 505.32A
113 t1 508.31A 309 t2 508.31A
114 t1 508.32A 310 t2 508.32A
115 t1 509.31 311 t2 509.31

116 t1 509.32A 312 t2 509.32A
117 t1 514.21A 313 t2 514.21A
118 t1 514.41A 314 t2 514.41A
119 t1 514.42A 315 t2 514.42A
120 t1 515.22 316 t2 515.22

121 t1 518.11 317 t2 518.11

122 t1 518.12 318 t2 518.12

123 t1 518.13A 319 t2 518.13A
124 t1 554.11 320 t2 554.11

125 t1 554.12 321 t2 554.12

126 t1 554.13A 322 t2 554.13A
127 t1 554.14A 323 t2 554.14A
128 t1 555.31 324 t2 555.31

129 t1 555.32 325 t2 555.32
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130 t1 556.31A 326 t2 556.31A
131 t1 601.21A 327 t2 601.21A
132 t1 601.22A 328 t2 601.22A
133 t1 602.21A 329 t2 602.21A
134 t1 602.22A 330 t2 602.22A
135 t1 602.23A 331 t2 602.23A
136 t1 606.21A 332 t2 606.21A
137 t1 606.22A 333 t2 606.22A
138 t1 707.41 334 t2 707.41

139 t1 707.42 335 t2 707.42

140 t1 707.43A 336 t2 707.43A
141 t1 707.44A 337 t2 707.44A
142 t1 708.31 338 t2 708.31

143 t1 708.32 339 t2 708.32

144 t1 708.33 340 t2 708.33

145 t1 708.36A 341 t2 708.36A
146 t1 708.37A 342 t2 708.37A
147 t1 712.21 343 t2 712.21

148 t1 712.22 344 t2 712.22

149 t1 712.23 345 t2 712.23

150 t1 712.24A 346 t2 712.24A
151 t1 715.31 347 t2 715.31

152 t1 715.32A 348 t2 715.32A
153 t1 719.21D 349 t2 719.21D
154 t1 719.22D 350 t2 719.22D
155 t1 719.23 351 t2 719.23

156 t1 720.41D 352 t2 720.41D
157 t1 720.42D 353 t2 720.42D
158 t1 748.21 354 t2 748.21

159 t1 748.22 355 t2 748.22

160 t1 748.33 356 t2 748.33

161 t1 748.34 357 t2 748.34

162 t1 748.41 358 t2 748.41

163 t1 748.42 359 t2 748.42

164 t1 748.43 360 t2 748.43
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165 t1 751.11 361 t2 751.11

166 t1 751.12 362 t2 751.12

167 t1 751.13A 363 t2 751.13A
168 t1 753.31 364 t2 753.31

169 t1 753.31A 365 t2 753.31A
170 t1 753.41 366 t2 753.41

171 t1 753.41A 367 t2 753.41A
172 t1 801.31 368 t2 801.31

173 t1 801.32 369 t2 801.32

174 t1 801.33A 370 t2 801.33A
175 t1 801.34A 371 t2 801.34A
176 t1 801.41 372 t2 801.41

177 t1 801.42A 373 t2 801.42A
178 t1 805.11 374 t2 805.11

179 t1 805.12A 375 t2 805.12A
180 t1 805.13A 376 t2 805.13A
181 t1 806.11 377 t2 806.11

182 t1 806.12A 378 t2 806.12A
183 t1 806.13A 379 t2 806.13A
184 t1 818.21 380 t2 818.21

185 t1 818.22A 381 t2 818.22A
186 t1 822.11 382 t2 822.11

187 t1 822.12 383 t2 822.12

188 t1 822.13A 384 t2 822.13A
189 t1 822.14A 385 t2 822.14A
190 t1 824.31 386 t2 824.31

191 t1 824.34 387 t2 824.34

192 t1 824.35A 388 t2 824.35A
193 t1 824.36A 389 t2 824.36A
194 t1 905.21 390 t2 905.21

195 t1 905.31 391 t2 905.31

196 t1 905.32 392 t2 905.32
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