
Thomas Hirsch, BSc

Challenges in test automation
in big Android applications

Master’s Thesis
to achieve the university degree of

Master of Science
Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor
Dipl.-Ing. Dr.techn. Christian Schindler

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Graz, January 2020

This document is set in Palatino, compiled with pdfLATEX2e and Biber.
The LATEX template is based on Karl Voits template around KOMA script

https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

Automated testing is a necessity for the success of complex long-term soft-
ware systems. During continuous development the quality and performance
of a suite of automated tests has a direct influence on the quality, perfor-
mance and development velocity of the production software system. Test
driven development (TDD) is a software development process that uses
short incremental changes on tests to reflect the expected behavior and then
changing production code to satisfy those tests. TDD relies on a fast and
reliable testing framework as well as a stable and extensive test suite.

This thesis intends to shed some light on how to approach challenges in
TDD, automated test strategies, and architecture that arise in big Android
applications. The Android documentation and Google testing recommenda-
tions are overly simplistic and showcase only trivial and small examples,
while the real challenges in testing big Android applications stay untouched.
Test partitioning, classification of tests, and the application of the test pyra-
mid to the Android platform are discussed. Besides a small exploratory
study on the testing situation in a limited sample of open source Android
applications, the consequences of a bad testing strategy and technical debt
in a big and long-term Android project are shown in the case of Catrobat.

By Identifying anti patterns and code smells, general guidelines and
patterns for testing big Android applications are established, as well as
metrics for test code quality. This knowledge was applied to the Catrobat
application, reducing technical debt, measurably increasing test code quality,
and significantly increasing test suite performance. A condensed version of
this thesis has been previously published in Hirsch et al., 2019.

v

Kurzfassung

Testautomatisierung ist eine Notwendigkeit für den Erfolg von komplexen,
langlaufenden Softwareprojekten. Die Qualität und Performance von auto-
matisierten Tests hat während der fortlaufenden Entwicklung einen direkten
Einfluss auf die Qualität, Performance und Entwicklungsgeschwindigkeit
des Softwareproduktes. Test Driven Development (TDD, testgetriebene Ent-
wicklung) ist ein Softwareentwicklungsprozess bei dem kurze, inkrementelle
Änderungen in Form von Tests die die Anforderungen abbilden vollzogen
werden, während daraufhin der ”Production Codeängepasst wird um die-
sen Tests und damit den Anforderungen zu entsprechen. TDD benötigt eine
schnelle und zuverlässige Testumgebung und ein stabiles und umfassendes
Set von bestehenden Tests.

Diese Diplomarbeit beleuchtet Herangehensweisen und Herausforderun-
gen die sich in großen Android Applikationen bei der Umsetzung von
TDD, Testautomatisierung, Teststrategie und Test-Architektur stellen. Die
Android-Dokumentation sowie die Empfehlungen bezüglich Testautoma-
tisierung von Google sind sehr simpel gehalten und beschränken sich auf
triviale Beispiele, während die eigentlichen Herausforderungen die sich
beim testen von großen Android-Applikationen stellen unangetastet bleiben.
Im Zuge dieser Diplomarbeit wird die Einteilung und Klassifizierung von
Test sowie die Anwendung der Testpyramide auf der Android-Plattform
diskutiert. Eine explorative Studie bezüglich Teststrategie und Architektur
in einer Anzahl von größerer Open-Source-Android Applikationen wurde
unternommen. Weiters wurde eine eingehende Untersuchung der Catro-
bat Android Applikation vorgenommen, die mit dem Entwicklungsstand
von Beginn 2016 die Konsequenzen schlechter oder nicht vorhandener Test
Strategie und Architektur zeigt.

Die Identifizierung von Anti Patterns und Code Smells ermöglichte die
Gründung und Festlegung von Richtlinien und Patterns zum Testen von
großen Android-Applikationen. Weiters wurden Metriken für das Abbilden
von Testcode-Qualität identifiziert und angewendet. Das Erworbene Wissen

vii

wurde auf die Catrobat-Android-Applikation angewandt, dabei wurde
Technical Debt reduziert, die Code-Qualität messbar verbessert, und die
Testperformance erheblich verbessert.

Eine Kurzfassung der Ergebnisse und Erkenntnisse aus dieser Diplomar-
beit wurde bereits in Hirsch u. a., 2019 veröffentlicht.

viii

Contents

Abstract v

Kurzfassung vii

List of Figures xi

List of Tables xiii

List of Listings xvi

1 Introduction 1
1.1 Catrobat . 1

1.2 Testing on Android . 4

2 Related work 7

3 Problem statement 9
3.1 Catrobat situation in late 2015 9

3.2 Vital issues summary . 11

4 Approach 13
4.1 Analysis of Android test strategies 13

4.2 Analysis of UI test frameworks 22

4.3 Analysis of Unit test framework and tools 26

5 Implemented short-term measures 29
5.1 Switch from Robotium to Espresso 29

5.2 Refactoring portions of production code 50

5.3 Testsuites and flaky tests . 50

5.4 Increase coverage through JUnit tests 56

5.5 Quality and performance measuring 60

ix

Contents

5.6 Catrobat tests . 66

5.7 Ongoing and persistent measures 70

5.8 Evaluation - Comparison before and after 73

5.9 Proposed followup research . 79

6 Conclusion 83
6.1 Key findings . 83

6.2 Lessons learned for practice . 83

6.3 General implications from the Catrobat case 85

6.4 Reflection . 85

6.5 Summary . 86

Bibliography 89

x

List of Figures

1.1 An example Catrobat script . 3

1.2 Android test packages. 4

4.1 The test pyramid according to Cohn, 2009; Fowler, 2012;
Wacker, 2015; Dijkstra, 2014. 14

4.2 The test pyramid for Android as provided by the Android
documentation (Google, 2019a). 15

4.3 Production and test code LoC distribution in the analyzed
projects. 16

4.4 Test methods grouped by underlying technology and platform. 17

4.5 Suggested extended Android test pyramid. 20

4.6 Catrobat 2015 test code base. 21

4.7 Google trends on Android test frameworks. 25

5.1 ActivityTestRule lifecycle with default parameters. 36

5.2 ActivityTestRule lifecycle with manual Activity launch. 37

5.3 InteractionWrapper class diagram. 41

5.4 BrickDataInteractiongWrapper, onBrickAtPosition(1) 42

5.5 BrickSpinnerDataInteractionWrapper, onSpinner(R.id.SomeSpinner) 44

5.6 FormulaEditorWrapper. 45

5.7 The Assert equals Brick. 67

5.8 The Single tap Brick. 68

5.9 The Wait until Brick. 68

5.10 The Finish Stage Brick. 69

5.11 Number of test methods grouped by underlying technology
and platform. 74

5.12 Catrobat test code base as of 2015 visualized. 75

5.13 Catrobat test code base as of 2019 visualized. 76

5.14 Average LoC per test method, grouped by underlying tech-
nology and platform. 77

xi

List of Figures

5.15 Average cyclomatic complexity, grouped by underlying tech-
nology and platform. 78

xii

List of Tables

4.1 Production and test code LoC in the analyzed projects 16

4.2 Number of test methods grouped by underlying technology
and platform . 17

5.1 Number of test methods per group 73

5.2 Loc per test suite. 77

5.3 Average cyclomatic complexity. 78

5.4 Average runtime for full test suite. 79

xiii

List of Listings

5.1 Espresso onView. 30

5.2 Espresso onData. 30

5.3 Chaining actions and assertions. 31

5.4 Espresso Actions varargs. 31

5.5 Action and assertion on Childview of ViewInteraction. 32

5.6 Action and assertion on Childview of DataInteraction. 32

5.7 Espresso ViewMatchers. 33

5.8 Example Espresso test. 34

5.9 Separate acquisition and the action on Views. 38

5.10 Simple Espresso code style example. 38

5.11 Complex Espresso code style example. 38

5.12 Another complex Espresso code style example. 38

5.13 Verbose performing spinner selection. 39

5.14 Custom entry point. 39

5.15 Example using custom entry point. 39

5.16 Encapsulating complex Espresso actions in methods. 40

5.17 Using ViewInteractionWrapper. 41

5.18 Delete Brick action. 43

5.19 RecyclerView support in Espresso. 47

5.20 RecyclerViewActions break separation. 48

5.21 Usage of RecyclerViewWrapper. 49

5.22 Custom Matcher for RecyclerView. 49

5.23 FlakyTestRule usage. 51

5.24 Category annotations. 52

5.25 Test level annotations. 53

5.26 Usage of category and test level annotations. 53

5.27 Usage of category and test level annotation to build test suites. 54

5.28 ClasspathSuite usage. 55

5.29 AndroidPackageRunner class. 55

xv

List of Listings

5.30 Building test suites using AndroidPackageRunner. 55

5.31 Filter package based on category annotations. 55

5.32 Structure of an JUnit3.8 test. 57

5.33 Structure of an JUnit4 test. 58

5.34 Powermock mock static. 59

5.35 Powermock mock static. 59

5.36 Deep inheritance hierarchy in test class. 60

5.37 Flattened inheritance hierarchy using JUnit Rule 60

5.38 Unnecessary try/catch in test. 61

5.39 Unnecessary try/catch in test. 61

5.40 Unnecessary try/catch in test. 62

5.41 Test throwing exception. 62

5.42 Testing exceptions with try/catch. 62

5.43 Testing exceptions with ExpectedException. 63

5.44 Reflection to access private field for testing. 63

5.45 Reflection to access private field for testing. 64

5.46 Reflection to access private field for testing. 65

5.47 Reflection to access private field for testing. 65

xvi

1 Introduction

1.1 Catrobat

Catrobat is a visual programming language, inspired by MIT labs’s Scratch
programming language. All implementations of the Catrobat language are
FOSS (free and open source) led by the International Catrobat Association
at the Institute of Software Technology of the Technical University of Graz.
It is developed mostly by students of the TU Graz with help of a handful
employed developers, and a few contributors on GitHub. The Catrobat
language, like Scratch, is designed for kids. While Scratch’s main focus
lies on desktop computers as a platform, Catrobat is developed for mo-
bile platforms. Both languages share the same main goal, to offer a low
threshold means to introduce kids to programming and teach them basic
programming paradigms.

Programs are written not in text, but by visually stacking together blocks
that provide certain functionalities, actions, and manipulations. This serves
to maintain a very shallow learning curve, and provides an effective way for
children to quickly write small programs with no programming experience
required beforehand. Having mobile devices as a platform enables the user
to write programs using the vast amount of sensors and interfaces offered
by such a device.

Programming paradigm Catrobat is an event driven programming lan-
guage, offering Sprite based graphics.

1.1.1 Nomenclature

Pocket Code The brand name / marketed name for implementations of
the Catrobat language IDEs for the programming language.

1

1 Introduction

Catroid The working title of the Android implementation of the Catrobat
language and IDE. The app is marketed and can be found as ”Pocket Code”
in Google Play1. While there is an Apple IOs implementation (the already
working HTML5 and Windows phone implementation were cancelled),
Catroid was the first, and is currently also the most comprehensive imple-
mentation of the Catrobat language and IDE. Development started in 2010

and is ongoing.

Bricks Bricks are the smallest building blocks of Catrobat programs. Mul-
tiple Bricks stacked together form Scripts. Bricks contain atomic operations
from setting variables, manipulations on the Sprite they belong to, up to
starting services, for example, starting the camera. Bricks contained in the
category “Control” are concerned with the program’s control flow and
bracket other Bricks, e.g., loops and if-then-else Bricks.

Scripts A Script is an aggregation of Bricks that have to start with a
ScriptBrick. ScriptBricks are special Bricks that are triggered on certain
events (eg. When program starts, When Touched) to then execute the Bricks
in this Script.

Sprite A Sprite object in Catrobat is an object that holds one or more
Looks defining its visual representation, Sounds, and Scripts that define its
behavior.

Scene A Scene is a compound of multiple Sprites and a background Sprite,
and constitutes a ”screen” that is shown to the user when the program is
run. Scenes and its contained Sprites can not interact with other Scenes,
besides trigger a switch to another Scene.

Program / Project A Program in Catrobat is a container for all the Scenes.
Programs cannot interact with other Programs. Sharing programs with
other users is possible via the Pocket Code Share2 web service. Downloaded
Programs can be modified locally and re-uploaded as remixes.

1https://play.google.com/store/apps/details?id=org.catrobat.catroid
2https://share.catrob.at/pocketcode/

2

1.1 Catrobat

Figure 1.1: An example Catrobat script

3

1 Introduction

Backpack The Backpack is Catroid’s functionality for copying objects to
other locations of the same Programs or other Programs.

1.1.2 Further implementations

• HTML5 player
An interpreter for the Catrobat language build on HTML5 that can
run Catrobat programs in a browser.

• IOs Pocket
IOs implementation of the Catrobat interpreter and IDE.

1.2 Testing on Android

1.2.1 Test platforms

Tests are split into two distinct groups, based on the environment they have
to run on. See Fig. 1.2. Either a local JVM, or as so called “instrumented”
tests that are run on emulators (also called virtual device by google) or real
devices. Both have their own advantages and disadvantages. While tests
running on local JVM provide a lot of execution speed and stability, running
tests on a real device provides the highest fidelity but lower execution speed.

Figure 1.2: Android test packages.

4

1.2 Testing on Android

1.2.2 Android architecture and testing

Google, 2019b pushes a model based architectural approach for writing
apps, which eases a lot of problems introduced by lifecycle events and
provides further means for achieving proper separation of concerns. This in
turn will bring a project a step closer to testable code and enable developers
to stick closer to the classic test pyramid while also performing a big portion
of integration tests as local tests running on a regular JVM.

5

2 Related work

The following paragraph has been previously published in Hirsch et al.,
2019. Numerous papers have been published investigating the testing ap-
proach of Android apps quantifying how and why developers test their
apps. Silva et al., 2016 performed an exploratory study on open source
Android applications in regard to automated testing approaches, frame-
work usage, and size comparison of test suites. Linares-Vásquez et al., 2017

further conducted a study on Android developers to identify and analyze
testing practices, tools used, frameworks, and metrics. Coppola, Morisio
and Torchiano, 2017 published a study on Android UI (User Interface) test
fragility examining test suite evolution over time on a significant sample of
open source Android applications. Kochhar et al., 2015 performed a survey
on open source mobile applications, analyzing testing practices, testing tool
and framework usage, as well as applied metrics, performed by both code
analysis and interviews. Yet, little research has been done on the specifics of
testing big Android apps.

Google’s Android documentation and testing recommendations (Google,
2018a; Google, 2018c; Google, 2019a) are overly simplistic and only contain
trivial examples. The actual challenges in testing bigger Android apps are
left out completely.

There is a plethora of scientific literature on test automation and test
strategy. Most notably Beck, 2003 in his book “Test-driven Development: By
Example’, Meszaros, 2006 in “XUnit Test Patterns: Refactoring Test Code”,
and Cohn, 2009 in “Succeeding with agile: software development using
Scrum”. Alégroth, Steiner and Martini, 2016 in their industrial case study
on technical debt in GUI (Graphical User Interface) test suites and their
empirical study on GUI testing with a focus on maintenance costs (Alégroth,
Feldt and Kolström, 2016). Mar and James, 2006 in their work “Technical
Debt and Design Death” discussed technical debt, metrics, and coping
strategies for legacy systems. Chen and Wang, 2012 identified GUI test
smells and proposed refactoring methods to remove them. Persson and

7

2 Related work

Yilmazturk, 2004 in their industry experience report on establishing test
automation in an existing project, discussing pitfalls, and effects of such
an endeavour. Scott, 2019, Cohn, 2019, Fowler, 2012, and Dijkstra, 2014 in
technical blog posts discussed the test pyramid.

8

3 Problem statement

The following subsection has been previously published in Hirsch et al.,
2019.

3.1 Catrobat situation in late 2015

The project’s tests were heavily relying on the Robotium framework, repre-
senting an ice cream cone testing structure as defined by Fowler, 2012 and
Scott, 2019. All tests were designed as instrumented tests which required an
emulator or a real device for execution. Local unit tests did not exist and
most of the tools in use had not been updated to the latest stable version for
a long time.

3.1.1 Execution time

Robotium based UI tests are rather slow in execution since Robotium does
not provide any useful means for synchronization with the Activity under
test. As a result, it is required to introduce additional wait times in the test
code. With a rather big number of UI tests in Catrobat’s code base, the sleep
statements in the tests were responsible for an increased test instability and
flakiness. The sleep statements and the automatic reruns of unstable tests in
combination led to test execution times which became unmanageable (e.g.,
16 hours as of summer 2016).

3.1.2 Flaky and fragile tests

UI tests are inherently fragile (Coppola, Morisio and Torchiano, 2018; Cop-
pola, Morisio and Torchiano, 2017) and bring some flakiness (Micco and
Memon, 2017) with them that has to be dealt with on the Continuous Inte-
gration (CI) side. With a UI test suite as big as in the Catrobat project one

9

3 Problem statement

has the problem that even in the case of one testrun reaching completion, no
assertion about the app’s stability can be made due to a high percentage of
failing tests in each single testrun. Only with multiple reruns it is possible
to identify flaky tests and isolate tests rightfully failing due to regression.
Testing stability and consistency ultimately influences the trust in the app’s
quality and hence the development of new features.

3.1.3 Architectural flaws

Due to the low technical and project specific experience of the developers
the practiced TDD (Test Driven Development) approach was based on UI
tests rather than unit tests. This was amplified by the lack of experience with
mocking frameworks. The high level approach to TDD relying mainly on
UI tests introduced a plethora of architectural flaws that stayed undetected
for a long period of time. Improper encapsulation, strong binding of compo-
nents, reliance on background threads and platform services, significantly
increased the need for sleep statements in the test code.

3.1.4 Test code quality

Since the developers did not focus on test code quality in the past, it was
very low at the first point of consideration for this analysis. Although
test code quality has been intensively researched and well documented
by multiple researchers (e.g., Martin, 2008; Persson and Yilmazturk, 2004;
Alégroth, Steiner and Martini, 2016; Alégroth, Feldt and Kolström, 2016), it
was common practice in the project that new code had to have tests to reach
a high code coverage. This is not a bad approach per se but completely
without test development guidelines and de facto no code reviews the test
code base started to deteriorate showing various known smells and anti
patterns lined out in Section 5.7.1.

3.1.5 Death of a test suite

All of the above points, further amplified through stability issues with the
Polidea testrunner, led to a situation in which it was practically impossible to
get a run of the test suite to completion due to random crashes. Paired with

10

3.2 Vital issues summary

the extremely high execution times, making it infeasible to do reruns, and
often occurring problems on the Jenkins instance related to uncoordinated
updates and changes of the emulators, plugins, OS and drivers, the test
suite was disregarded by developers. By that time a workaround to deal
with Instrumentation exceptions was implemented on the project’s Jenkins
instance (introduced about one year later in summer 2016). About 20% of the
tests were constantly failing due to the fact that the Catrobat application was
modified and further extended. Further, developers still faced considerable
flakiness with about another 10% of tests failing at random every run and
still 16 hours of runtime for the full test suite. As a result, the Robotium
tests were finally abandoned.

3.2 Vital issues summary

• A proper test strategy has to be developed.
• Technical debt in the form of outdated frameworks has to be dealt

with by replacing those frameworks and refactoring adjacent code
parts.

• Production code testability has to be improved by refactoring.
• Test code quality has to be improved by refactoring.

11

4 Approach

4.1 Analysis of Android test strategies

This section analyzing Android test strategies has been previously published
in Hirsch et al., 2019.

4.1.1 Test strategies for Android in developer
documentation and literature

The test pyramid

The test pyramid, as illustrated in Fig. 4.1, is a well established rule of thumb
on how to balance different types and layers of tests in a project, which first
reached a broader audience through Cohn’s 2009 book “Succeeding with
agile: software development using Scrum’. Since then the test pyramid has
been discussed and promoted by a huge number of researchers, coaches,
and developers (such as Fowler, 2012; Wacker, 2015; Dijkstra, 2014; Google,
2019a; Cohn, 2019; Scott, 2019).

Over time slight changes in nomenclature emerged. While Cohn’s 2009

test pyramid had the tip of the pyramid labeled as “UI” and the middle layer
as “Service”, some sources (e.g., Scott, 2019; Wacker, 2015; Google, 2019a)
renamed those layers to “System” or “End to End” for the tip and “Integra-
tion” for the middle layer. Google, 2019a within its guidelines suggests a
70% - 20% - 10% split for Unit, Integration, and System tests.

Test classification

Unit tests are tests on method or class level (Fowler, 2012; Dijkstra, 2014).
Integration tests are defined as testing the full system, or portions of it
through a service (Fowler, 2012; Fowler, 2011) or API level (Dijkstra, 2014).

13

4 Approach

Figure 4.1: The test pyramid according to Cohn, 2009; Fowler, 2012; Wacker, 2015; Dijkstra,
2014.

The border between “unit” and “integration” layers of the test pyramid
becomes blurred in practice and its definition is left to the project. This
leads to different interpretations of unit and integration tests, which has
been observed independently by Fowler, 2014 and Stewart, 2010. Google
internally established three categories to differentiate more clearly and to
be able to enforce restrictions (Google, 2019a):

• @SmallTest - Single thread, no access to network, file system, external
systems, system properties, short runtime.

• @MediumTest - Access to external systems is discouraged, and net-
work limited to localhost.

• @LargeTest - No restrictions, long runtime.

4.1.2 Exploratory study on test strategies in other open
source Android applications

A small sample of eight open source Android apps, listed in Table 4.1, has
been selected for analysis based on overall size in LoC (Lines of Code),

14

4.1 Analysis of Android test strategies

Figure 4.2: The test pyramid for Android as provided by the Android documenta-
tion (Google, 2019a).

popularity, and the developers reputation for applying best practice. The
test suites are investigated in regard to their size and partitioning.

Sampled Android applications

All analyzed apps’ code repositories have been checked out (cloned) for the
analysis process in January 2019. For Catrobat, serving as main case of this
work, two commits (Catrobat-2015 from September 2015, and Catrobat-2019

from March 2019) have been analyzed. These are also used for the in-depth
analysis in Section 3.1 outlining the evolution of a testing strategy and
therewith connected guidelines for practice.

In Table 4.1 we list the actual size of production code and test code in LoC
of the analyzed applications. Fig. 4.3 shows the normalized proportions of
production code and test code of those analyzed applications.

Table 4.2 lists the number of test methods found in the applications’ code
base split into the categories introduced in the previous Section 4.1.3, i.e.,
local JVM tests, instrumented tests, and UI tests. In Fig. 4.4 we show the
normalized proportions of those categories.

Due to the total lack of tests, the projects Telegram and Timber are

15

4 Approach

Table 4.1: Production and test code LoC in the analyzed projects
Android Loc
Application Production Test

code code
AmazeFileManager 30,795 2,533

Catrobat-2015 72,434 36,572

Catrobat-2019 66,983 47,653

ioSched 11,600 4,177

Signal 86,164 603

Telegram 308,100 0

Timber 20,653 0

Wikipedia 53,442 6,725

Wordpress 103,456 4,081

Figure 4.3: Production and test code LoC distribution in the analyzed projects.

16

4.1 Analysis of Android test strategies

Table 4.2: Number of test methods grouped by underlying technology and platform
Android Number of test methods
Application JVM unit Instrumented Ui

tests Unit/Integration tests tests
AmazeFileManager 119 25 2

Catrobat-2015 0 550 597

Catrobat-2019 682 507 397

ioSched 187 0 9

Signal 31 0 0

Telegram 0 0 0

Timber 0 0 0

Wikipedia 403 5 7

Wordpress 145 121 0

Figure 4.4: Test methods grouped by underlying technology and platform.

17

4 Approach

excluded from the following discussion. The evolution of Catrobat is inves-
tigated and discussed in detail in the sections hereafter. The analysis of the
remaining projects shows that four out of five projects heavily rely on local
JVM tests, two do not have any UI tests, three use the Robolectric testing
framework, and only one uses PowerMock. From the analyzed projects,
only two contain parameterized tests to a very limited extent. None of
the analyzed projects consistently uses the @SmallTest, @MediumTest, and
@LargeTest annotations. In the Wordpress project only one out of 30 test
classes, ioSched one out of 42 test classes, AmazefileFileManager two out of
20 test classes, and Wikipedia three out of 79 test classes, were annotated.

This shows that the test pyramid as suggested by the Android developer
documentation is not used in practice. Furthermore, it turns out that the
majority of the analyzed projects is mainly tested through local JVM tests.
Most of these tests would be considered integration and system tests accord-
ing to the original test pyramid. The use of Robolectric further strengthens
this phenomenon. This backs the proposed extended Android test pyramid
we introduced in Section 4.1.3.

4.1.3 Proposed strategy - The Android test pyramid

Tests for Android applications are split into two groups (Google, 2018c).
“Local unit tests” that reside in src/test and run on a local JVM (Java Virtual
Machine) and “Instrumented tests” that reside in src/androidTest and run
on an emulator or a connected device. This poses a challenge on how to
integrate this split into the well established test pyramid.

The Android Developer guide in the best practice article “Fundamentals
of Testing” (Google, 2019a) defines a specific test pyramid for apps, as
depicted in Fig. 4.2 with a slightly different approach by categorizing tests
into @SmallTest, @MediumTest, and @LargeTest:

• @SmallTest - Unit tests running on a local JVM (tests located in sr-
c/test).

• @MediumTest - Instrumented integration tests (tests located in src/an-
droidTest).

• @LargeTest - Instrumented UI tests (tests located in src/androidTest
and use a UI test framework, like Espresso, UI Automator, or Robotium).

18

4.1 Analysis of Android test strategies

The split that occurs due to the two different test targets as discussed above
is put on the border in between @SmallTest and @MediumTest. At first
glance this falls in line with the intent and restrictions of Google’s test
categories.

Whereas the original definition of @SmallTest is already broad, within the
Android context it is further widened and now encompasses significantly
more than the definition of unit in the original test pyramid. This is amplified
by frameworks such as Robolectric and PowerMock that enable developers
to execute more tests on a local JVM. Robolectric simulates an Android
runtime inside a local JVM. PowerMock enables mocking of constructors,
static methods, static initializers, final classes and methods, as well as private
methods. In a big Android application with good architecture and a proper
separation of concerns the middle layer (@MediumTest) will likely disappear
completely, with the majority of tests being located in the @SmallTest and
very few in the @LargeTest layer, which also stands in contrast to the 70% -
20% - 10% rule. Integration and system tests, according to the definitions
from the original test pyramid, will effectively be categorized into the
@SmallTest category as well. We were also able to observe this fact in some
open source Android projects investigated in Section 4.1.2.

While the initial intent for those categories was to establish a naming
convention to prevent ambiguities, especially in the definition of unit and
integration, they lost expressiveness in the Android context.

To achieve a meaningful application of the test pyramid in an Android
project, a need for an additional dimension arises. The classical test pyramid
is enhanced by additional layers along this dimension representing the
test targets and employed technologies. To avoid further confusion, instead
of using Google’s @SmallTest, @MediumTest, and @LargeTest, following
categories are proposed:

• Local JVM tests - Tests running on a local JVM, located in src/test.
• Instrumented tests - Instrumented headless (i.e. without a GUI) tests,

located in src/androidTest.
• UI tests - Instrumented UI tests, located in src/androidTest and use a

UI test framework, like Espresso, UI Automator, or Robotium.

These categories, shown as the vertical plane in Fig. 4.5, are related to
the @SmallTest, @MediumTest, and @LargeTest as defined in the Android
documentation but with an emphasis on the test target and frameworks they

19

4 Approach

Figure 4.5: Suggested extended Android test pyramid.

use and run on. Further classification of tests contained in those categories
is achieved by applying the original test pyramid’s categories on each
horizontal plane.

The experiences gained in Section 3.1 suggest that a large amount of tests
in the middle and top layer, instrumented and UI tests, can be a symptom of
insufficient separation of concerns and bad architecture. This further leads
to the question if the 70% - 20% - 10% split suggested for the original test
pyramid is still applicable in this context and if the partitions’ relations also
differ in the two horizontal planes. These are questions for future research
and need further investigation. However, practice implies that especially in
an Android context this illustrated multi-dimensional approach may be a
powerful guideline to test big mobile applications.

20

4.1 Analysis of Android test strategies

Figure 4.6: Catrobat 2015 test code base.

4.1.4 Status end of 2015 visualized

The status of the test codebase visualized through the proposed Android test
pyramid, makes the deviation from the envisioned good test suite structure
as displayed in Fig. 4.6 apparent.

21

4 Approach

4.2 Analysis of UI test frameworks

Only open source Android UI test frameworks are considered for use in the
project.

4.2.1 Robotium

Robotium is an open source UI automation testing framework for Android.
Version 1.0.0 was released in January of 2010, the last Version 5.6.3 was
released in September 2016. It uses Android Instrumentation to interact with
the activity under test and it can only interact with the application under
test. At its peak robotium was one of the most widespread UI automation
testing frameworks for Android (Kochhar et al., 2015; Lämsä, 2017), but has
since given way to Appium and Espresso, the latter being the official UI
automation testing framework offered and recommended by Google, 2018c.

Execution time Robotium does not provide synchronization measures
beyond sleep-retry mechanism to the developers. Robotium internally also
operates on this sleep-retry basis, making it noticeably slower than Espresso
to begin with, and brings a certain inherent flakiness with it. This leads to
developers introducing additional wait times in test code to reduce flakiness.
With the large number of UI tests in Catroid this accumulates to run times
for test suites that are unmanageable (16 hours as of summer 2016).

Being a 3rd party tool Robotium is a 3rd party framework, and after
development went stagnant the choice fell on Espresso, because it is pro-
vided by Google and the official recommended framework for Android UI
testing (Google, 2018c).

Flakiness Robotium tests show a higher flakiness than Espresso tests
to begin with, which has also been shown in other projects (Lämsä, 2017).
With a test suite as big as in Catroid this poses the problem that even in
the case of a testrun reaching completion the test results are tainted and
without multiple reruns no reliable data is provided on the stability of the
app.

22

4.2 Analysis of UI test frameworks

4.2.2 Espresso

Espresso is an open source UI automation testing framework for Android.
In the current version of the Android developer documentation it is the
recommended single application UI test framework. It is part of the Android
Testing Support Library. Similar to Robotium it uses Android Instrumenta-
tion to interact with the activity under test, and can only interact with the
application under test. Espresso was envisioned to replace Robotium (Za-
kharov, 2014). Version 1.1 was released in January 2014, the current stable
Version is 3.0.1 released in December 2017.

Synchronization Capabilities The main advantage over Robotium lies in
the synchronization capabilities of Espresso. This is achieved by watching the
message queue of the UI thread and the async task pool, while also offering
means to the developer to lever on its synchronization by introducing the
Espresso IdlingResource (Google, 2018a). This provides more stability, speed,
and elegant synchronization methods to the developer compared to sleep
statements in test code.

Extensibility The Espresso API is mostly consisting of

• Espresso entry commands
• ViewMatchers
• ViewActions
• ViewAssertions
• ViewInteractions
• DataInteractions

Espresso was developed as a white box testing tool. It is open for custom
extensions. However, it can also be used in a black box testing manner for
simple examples. The AndroidStudio test recorder plugin produces such
black box tests. ViewMatchers, ViewAction, and ViewAssertions are easily
extendable, with Google offering good documentation on those. ViewInter-
action and DataInteraction, on the contrary were made package private in
Espresso and cannot be extended, which poses significant drawbacks when
working with complex UI interactions.

23

4 Approach

4.2.3 UIAutomator

UIAutomator1 is an open source UI testing framework for Android, and
it is part of the Android Testing Support Library. From version 2.0 on it is
based on Android Instrumentation, the latest version is 2.2.0. UIAutomator
supports cross application testing, including system applications, but does
not support access to internals of the application under test, therefore it can
be only used for black box testing. Android documentation suggests using
Espresso for single application testing and UIAutomator for multi / cross
application testing.

4.2.4 Selendroid

Selendroid2 is an open source Android UI test framework that brings the
Selenium web application test framework to Android. It achieves this by
using Android Instrumentation to interact with the emulator or device and
offers the developer a Selenium client API for writing tests. The current
version is 0.17.0 which was released in 2015, the first release on Github
was in 2013. Selendroid only supportsAndroid API levels 10(Gingerbread
Android version 2.3.3 - 2.3.7) - 19(KitKat Android version 4.4 - 4.4.4), and
allows only black box testing.

4.2.5 Appium

Appium3 is a cross platform open source UI test framework. Android, IOs,
Windows and Mac Desktop are supported. As a driver for Android testing,
Selenium is utilized for Android target API 10 (Gingerbread Android version
2.3.3 - 2.3.7) - 16 (Jelly Bean Android version 4.1.x), while UIAutomator2

is used for target APIs above. Tests are written in the WebDriver protocol,
and it therefore supports multiple languages for writing tests. The current
version is 1.14.0, released in 2019, the first release on GitHub was in 2013.
Appium only allows black box testing on Android.

1https://developer.android.com/training/testing/ui-testing
2http://selenium.googlecode.com/ http://selendroid.io/
3http://appium.io/

24

4.2 Analysis of UI test frameworks

Figure 4.7: Google trends on Android test frameworks.

4.2.6 Other UI test frameworks for Android

Ranorex Android is a proprietary test framework 4.

4.2.7 Spread of UI test frameworks

Analyzing Google trends5, shows that in 2016 the decline of Robotium’s
popularity was already apparent, while Appium and Espresso were on the
rise as can be seen in Fig.4.7.

4.2.8 Proposed UI test frameworks to replace robotium

Espresso UI test framework was chosen to replace the outdated Robotium
framework in the Catroid project. Good benchmarks due to its synchro-

4https://www.ranorex.com/de/android-testautomatisierung/
5https://trends.google.com

25

4 Approach

nization capabilities (Lämsä, 2017), wide spread, good documentation, ex-
tensibility, and the capability to perform white box testing made it the
first choice (Google, 2018a). Google’s Android developer guidelines and
recommendations also weighed heavily in this decision (Google, 2019a).

4.3 Analysis of Unit test framework and tools

4.3.1 Test runner

PolideaTestRunner6 was introduced in 2011 to provide XML output which is
required for integration with Jenkins CI. At that time the AndroidJunitRun-
ner was not able to create the test results as XML. Unfortunately updates
for the PolideaTestRunner ceased in 2013. Furthermore it only supports
JUnit3.*, while the AndroidJunitRunner was significantly enhanced in the
meantime and is still maintained, now providing proper functionality to be
used with Jenkins CI, as well as JUnit4 support.

4.3.2 JUnit version

JUnit47 introduced a number of changes compared to JUnit3. Most apparent
is the heavy use of Annotations in JUnit4 over the strict naming conventions
in JUnit3. Examples of this would be setUp and tearDown methods that now
can have arbitrary names and are marked using the @Before and @After
annotations. Similar change with test methods, while in JUnit3 the method
name had to start with “test”, this is now achieved with @Test annotations.
Test cases now do not extend TestCase anymore and do not have a common
base class. JUnit Rules are now used to capture common behavior of tests,
instead of subclassing tests, while at the same time adding more fine grained
access than simple setUp and tearDown on the stages of test execution on
Android. JUnit4 also offers better support for testing exceptions through
Rules and annotations. JUnit4 requires Java 1.5 or higher.

6https://github.com/Polidea/the-missing-android-xml-junit-test-runner
7https://junit.org/junit4/

26

4.3 Analysis of Unit test framework and tools

4.3.3 PowerMock

PowerMock8 is an open source JUnit mocking framework extending other
mocking frameworks. APIs for extension of either EasyMock, Mockito, or
Mockito2 are available, and PowerMock depends on one of those frame-
works to be available in the project. Since version 2.0 only JUnit4 and above
are supported. PowerMock enables mocking of constructors, static methods,
static initializers, final classes and methods, as well as private methods.

4.3.4 Robolectric

Robolectric9 is an open source testing framework for Android that simulates
an Android runtime inside a local JVM, enabling the developer to run tests
on a local JVM that normally would require an Emulator or real device. This
is useful when mocking is not possible or desired, while still gaining the
performance increase of running tests on a local JVM instead of an emulator
or real device. Use of Robolectric is endorsed in the Android Developer
documentation (Google, 2019a). Version 1.0 was released in 2011, current
version is 4.3.

8https://github.com/powermock/powermock
9http://robolectric.org/

27

5 Implemented short-term
measures

5.1 Switch from Robotium to Espresso

This subsection has been previously published in Hirsch et al., 2019.
All Robotium tests and dependencies have been removed and partially

re-implemented in Espresso to get some coverage back that still could not be
achieved with unit and integration tests due to the hard to test architecture
of the production code.

5.1.1 An object oriented approach to UI testing

A more object oriented approach on UI testing as suggested by various
authors (see Leotta et al., 2013; Alégroth, Steiner and Martini, 2016; Chen and
Wang, 2012) was applied to deal with test fragility in a more effective way in
the future. While Espresso is very open to customization and for extension
through custom Actions and Matchers, it is not possible to customize or
extend upon its interaction objects (ViewInteraction, DataInteraction) to add
functionality to those test abstractions of UI elements. Therefore, wrappers
around those Espresso interactions were implemented. The current version
of Espresso used in the project (3.0.1) unfortunately still lacks decent support
of certain Android UI elements like RecyclerViews. RecyclerViews had to be
introduced in a refactoring effort to modernize the UI in 2017. According to
the Android developer documentation the more performant RecyclerViews
are to be favored over ListViews. Custom Espresso extensions had to be
implemented to properly test components using RecyclerViews.

29

5 Implemented short-term measures

5.1.2 Espresso in action

Espresso relies heavily on Hamcrest Matchers for specifying the targeted
view or data. The matched view or data is presented in the form of an
Espresso ViewInteraction or DataInteraction, on which assertions or actions
can be performed.

Espresso entry points

There are mainly two Espresso entry points to provide the developer with a
handle to perform actions and assertions:
static ViewInteraction onView(Matcher<View> viewMatcher) Returns

a ViewInteraction that fits the given Matcher. This can be used for any kind
of view that is currently visible, although for elements inside AdapterViews
the usage of onData is encouraged.

onView(withText (" Continue "))

DatawInteraction onData(Matcher<? extends Object> dataMatcher)

Returns a DataInteraction for the AdapterView of which the underlying
Data fits the given Matcher. This provides a stable access point for elements
inside AdapterViews, eg. ListViews, where not all contained objects are
currently displayed on the screen. When using onData the developer does
not have to deal with scrolling and or making sure that the object is currently
displayed when having to perform some action or assertion on it, Espresso
takes care of this.

onData(instanceOf(Brick.Class))

ViewInteraction

ViewInteractions are used to perform actions or assertions on the associated
view. The most important methods are:

• ViewInteraction check(ViewAssertion assertion)

To perform an assertion on the view.
• ViewInteraction perform(ViewAction... action)

To perform an action on the view.

30

5.1 Switch from Robotium to Espresso

Methods of ViewInteraction return again ViewInteraction, to make it
possible to stack actions or assertions performed on the same view in
succession.

onView(withId(R.id.SomeEditText))

.perform(click ())

.perform(typeText (" FooBar "))

.perform(closeSoftKeyboard ())

.check(matches(withText(FooBar)));

Which could be shortened even further since perform takes varargs:

onView(withId(R.id.SomeEditText))

.perform(

click (),

typeText (" FooBar "),

closeSoftKeyboard ())

.check(matches(withText(FooBar)));

DataInteraction

Most of the time it is necessary to further narrow down the desired View.
The most important methods for achieving this:

• DataInteraction inAdapterView(Matcher<View> adapterMatcher)

To Narrow down a specific AdapterView if there are multiple that fit
the Matcher in the initial onData.

• DataInteraction atPosition(Integer atPosition)

If there are multiple matching objects contained in the AdapterView.
Example: onData(instanceOf(Brick.Class)) .atPosition(3)

• DataInteraction onChildView(Matcher<View> childMatcher)

To handle specific views contained in the AdapterView. Example: on-
Data(instanceOf(Brick.Class)) .atPosition(3) .onChildView(withText(”FooBar”))
DataInteraction of course also offers the same methods for performing
actions or assertions as ViewInteraction:

• ViewInteraction check(ViewAssertion assertion)

To perform an assertion on the view.
• ViewInteraction perform(ViewAction... action)

To perform an action on the view.

31

5 Implemented short-term measures

onData(instanceOf(Brick.Class))

.atPosition (3)

.onChildView(withId(R.id.SomeTextView))

.check(matches(withText (" FooBar ")))

.perform(click ())

DataInteractions can become rather verbose and hard to read.
onData(instanceOf(Brick.class))

.inAdapterView(

ScriptListMatchers

.isScriptListView ())

.atPosition (5))

.onChildView(withId(R.id.SomeSpinner))

.perform(click ())

ViewMatcher

Espresso offers a big variety of Hamcrest Matchers that match views, just to
list a few simple examples:

• static Matcher<View> withId(int id)

Matches views based on the given resource id.
• static Matcher<View> withText(String Text)

Matches TextViews containing the given text.
• static Matcher<View> isDisplayed()

• static Matcher<View> hasFocus()

ViewAction

Again a big variety of interactions with the views and/or data acquired
with onView and onData, just a few simple examles:

• static ViewAction click()

• static ViewAction longClick()

• static ViewAction scrollTo()

• static ViewAction typeText(String stringToBeTyped)

• ...

32

5.1 Switch from Robotium to Espresso

ViewAssertion

Providing the means to assert properties of the acquired view:

• static ViewAssertion doesNotExist()

To assert that the view or data matched with the entry point is not
existing.

• static ViewAssertion selectedDescendantsMatch(Matcher<View>

selector, Matcher<View> matcher)

To bulk assert that all descendents matching selector are also matching
the given Matcher.

• static ViewAssertion matches(Matcher<? super View>

viewMatcher)

Probably the most important, making it possible to use the vast offer
of ViewMatchers as assertions.

onView(withId(R.id.SomeEditText))

.check(matches(withText(FooBar)))

.check(matches(hasFocus ()));

33

5 Implemented short-term measures

An examplary (simple) Espresso test

public void newProject () {

onView(withText(R.string.main_menu_new))

.perform(click ());

//check if dialog title is displayed

onView(withText(R.string.new_project_dialog_title))

.check(matches(isDisplayed ()));

//enter new project name

onView(withClassName(is(

"android.support.design.widget.TextInputEditText ")))

.perform(

typeText (" TestProject "),

closeSoftKeyboard ());

onView(withText(R.string.ok))

.perform(click ());

//check if orientation dialog is displayed

onView(withText(R.string.project_orientation_title))

.check(matches(isDisplayed ()));

onView(withText(R.string.ok))

.perform(click ());

//open scene

onView(withText(R.string.default_scene_name))

.perform(click ());

//add sprite

onView(withId(R.id.button_add))

.perform(click ());

//check if new object dialog is displayed

onView(withText(R.string.new_look_dialog_title))

.check(matches(isDisplayed ()));

}

34

5.1 Switch from Robotium to Espresso

5.1.3 ActivityTestRule

ActivityTestRule is replacing the now deprecated ActivityInstrumentation-
TestCase2 and is part of the Android testing support library 1. Activi-
tyTestRule provides the developer with the utilities necessary for testing
activities as did the now deprecated ActivityInstrumentationTestCase2 be-
fore. However, instead of an inheritance based approach as with ActivityIn-
strumentationTestCase2, where every test class had to extend upon it (“is
a”-approach), ActivityTestRule is a JUnit4 test rule that the test class has
as a member (“has a”-approach). This helps pushing further away from
inheritance based test structure, as subclassing tests is by now considered
an anti pattern (Koskela, 2013; King, 2018; Kainulainen, 2014).

ActivityTestRule provides better and more fine grained set up and tear
down methods in relation to the Android Activity lifecycle of the Activity
under test. When using the default parameters for the rule on instance
creation, the Activity will be started before any methods of the test class
are run, that includes set up methods. This is very similar to the lifecycle
of ActivityInstrumentationTestCase2, see Fig. 5.1. However, Activity test
rule also allows to postpone the Activity start, to enable the developer to
do set up or test code before the Activity is created, and then starting the
Activity under test by calling ActivityTestRule.launchActivity(Intent intent),
see Fig. 5.2.

5.1.4 Espresso code style rules

With a high number of developers writing tests for the Catroid project, to
keep things simple, the test base stable, and the readability high, following
rules especially for Espresso tests were established.

Separate acquisition and the action on Views

Acquisition of the desired view and action on the view should always be
visually separated by a line break. When complexity is growing this is
absolutely necessary to keep tests from getting an unreadable mess.

1https://developer.android.com/reference/android/test/ActivityInstrumentationTestCase2

35

5 Implemented short-term measures

Figure 5.1: ActivityTestRule lifecycle with default parameters.

36

5.1 Switch from Robotium to Espresso

Figure 5.2: ActivityTestRule lifecycle with manual Activity launch.

37

5 Implemented short-term measures

GET_YOUR_DESIRED_VIEW_OR_OBJECT

.PERFORM_SOMETHING_ON_IT

A simple example:

onView(withText(SomeString))

.check(isDisplayed);

A more complex example:

onData(instanceOf(Brick.class))

.inAdapterView(ScriptListMatchers

.isScriptListView ())

.atPosition (5))

.onChildView(withId(R.id.SomeEditText))

.perform(click ())

.perform(typeText (" FooBar "))

.perform(closeSoftKeyboard ())

.check(matches(withText(FooBar)));

‘or
onData(instanceOf(Brick.class))

.inAdapterView(ScriptListMatchers

.isScriptListView ())

.atPosition (5))

.onChildView(withId(R.id.SomeEditText))

.perform(click (),

typeText (" FooBar "),

closeSoftKeyboard ())

.check(matches(withText(FooBar)));

Order of methods inside test classes

Following order of methods should be applied:

• /@Rule

• /@Before and functions only called from here
• /@Test

• /@After and functions only called from here
• other functions

38

5.1 Switch from Robotium to Espresso

5.1.5 Espresso wrappers

As already mentioned, Espresso can become rather verbose, especially when
using onData and accessing Views inside complex Adapters. Have a look at
the following example, where a value is selected from a spinner:

onData(instanceOf(Brick.class))

.inAdapterView(

ScriptListMatchers.isScriptListView ())

.atPosition (5)

.onChildView(withId(R.id.SomeSpinner))

.perform(click ())

onData(

allOf(is(instanceOf(String.class)),

is(stringToBeSelected)))

.perform(click ());

Entry points

The trivial approach of reducing the amount of boiler plate code is by
creating methods that serve as entry points.

public DataInteraction

onBrickAtPosition(int position) {

return onData(instanceOf(Brick.class))

.inAdapterView(

ScriptListMatchers.isScriptListView ())

.atPosition(position))

}

The example from above would be then reduced to:

onBrickAtPosition (5)

.onChildView(withId(R.id.SomeSpinner))

.perform(click ())

onData(allOf(is(instanceOf(String.class)),

is(stringToBeSelected)))

.perform(click ());

39

5 Implemented short-term measures

Encapsulating more complex user actions

Custom entry points increase readability quite significantly. However, it is
not possible to properly encapsulate more complex interactions in this way.
If required often these create a lot of unreadable boiler plate code. There
is of course the obvious way of encapsulating such complex behavior in
utility methods. This leads to poor readability due to the rapidly growing
number of method parameters, and the poor expressiveness of a method
name. Above example could be encapsulated in a method like the following:

selectItemFromSpinnerOnBrickAtPosition(

stringToBeSelected , R.id.SomeSpinner , 5)

This is not only hard to read, it conflicts with multiple points in Robert C.
Martins Clean Code book. (Robert C. Martin - Clean Code: A Handbook of
Agile Software Craftsmanship)

• Do one thing
• Number of arguments
• and of course the function name

So there is a need to find a better way for encapsulating complex behavior
than in utility methods. Something that is overlooked by many rookie
test authors is that tests and their utility methods are not bound to pure
imperative programming. An object oriented approach to this problem is
not only possible, but beneficial in many cases.

Interaction wrappers

A more object oriented approach to testing is already well established prac-
tice in Web UI testing and known as the PageObject Pattern. It has been
discussed (see Leotta et al., 2013; Alégroth, Steiner and Martini, 2016; Chen
and Wang, 2012) and promoted by multiple researchers and industry spe-
cialists (see Fowler, 2013). Espresso can be extended with custom actions
and wrappers quite easily, but it is mostly closed for modification. DataIn-
teraction and ViewInteraction are package private in Espresso and one cannot
extend their functionality through inheritance. As a workaround wrapper
classes were introduced, which mimic DataInteraction and ViewInteraction
by proxying their existing methods, while offering the possibility to extend

40

5.1 Switch from Robotium to Espresso

Figure 5.3: InteractionWrapper class diagram.

them. As an example, the BrickDataInteractionWrapper includes the custom
entry point, but in contrast to the last example, the entry point returns a
BrickDataInteractionWrapper, and therefore acts as a static factory method.
This pattern of entry points as static factory methods in combination with
wrapper methods creating and returning another object’s wrapper enable
modelling complex UI models while retaining the simple Espresso call style.
A small example class diagram of such a wrapper structure can be seen in
Fig. 5.3.

With all of those wrapper classes in place the above example of selecting
a spinner item that resides on a Brick will look like this:

onBrickAtPosition (1)

.onSpinner(R.id.SomeSpinner)

.performSelect(stringToBeSelected)

onBrickAtPosition(1) will return a BrickDataInteractionWrapper that rep-
resents the Espresso DataInteraction of the highlighted view, seen in Fig. 5.4.

onSpinner(R.id.SomeSpinner) on the above wrapper will return a Brick-

41

5 Implemented short-term measures

Figure 5.4: BrickDataInteractiongWrapper, onBrickAtPosition(1)

42

5.1 Switch from Robotium to Espresso

SpinnerDataInteractionWrapper representing the DataInteraction of the
Spinner highlighted in Fig. 5.5.

The method performSelect(stringToBeSelected) is a shortcut for clicking
the spinner and selecting the desired item from the dropdown. This brings
a lot of advantages, first off this is very easy to read and comprehend. The
Espresso code style for achieving something by first stating a destination
followed by an action stays intact, and the boilerplate code is hidden away.
All of which happens in an easily maintainable method that does only one
thing and takes only one parameter in most cases. This can be pushed
further by wrapping away longer and more complex view interactions, as
with the following example of deleting a Brick:

public void performDeleteBrick () {

dataInteraction.perform(

new GeneralClickAction(

Tap.SINGLE ,

BrickCoordinatesProvider.UPPER_LEFT_CORNER ,

Press.FINGER));

onView(anyOf(

withText(

R.string.brick_context_dialog_delete_brick),

withText(

R.string.brick_context_dialog_delete_script)))

.perform(click ());

onView(withText(R.string.yes))

.perform(click ());

}

The PageObject pattern approach used here is also a useful tool to coun-
teract UI test fragility. By encapsulating the details of the UI objects required
for testing in their wrapper classes, it provides a single point for changes if
the layout is to be changed in the future. A good example in the Catroid
codebase is the FormulaEditorWrapper encapsulating all layout resource
IDs. A class diagram can be seen in Fig. 5.6.

5.1.6 RecyclerView testing in Espresso

Although RecyclerView has been promoted as a better alternative to ListView
in the Android documentation (Google, 2018b) for a long time, Espresso still
lacks proper testing support. The DataInteractions provided by the onData

43

5 Implemented short-term measures

Figure 5.5: BrickSpinnerDataInteractionWrapper, onSpinner(R.id.SomeSpinner)

44

5.1 Switch from Robotium to Espresso

Figure 5.6: FormulaEditorWrapper.

45

5 Implemented short-term measures

method, while very powerful and well thought out, are not applicable when
dealing with RecyclerViews.

Shipped support

The only support for testing RecyclerViews comes in the form of the Recy-
clerViewActions package 2 from Espresso-contrib. However, it lacks some
major functionalities like performing any kind of ViewAssertions on items
or their content. Furthermore, it breaks with the Espresso code style of
separating definition of a target and the action on it, and offers no support
for dealing with more complex ViewHolders that are parent to multiple
child Views. ()

The following functionality is supplied:

2https://developer.android.com/training/testing/espresso/lists

46

5.1 Switch from Robotium to Espresso

static <VH extends RecyclerView.ViewHolder >

RecyclerViewActions.PositionableRecyclerViewAction

actionOnHolderItem(

Matcher <VH > viewHolderMatcher ,

ViewAction viewAction)

// Performs a ViewAction on a view

// matched by viewHolderMatcher.

static <VH extends RecyclerView.ViewHolder >

RecyclerViewActions.PositionableRecyclerViewAction

actionOnItem(

Matcher <View > itemViewMatcher ,

ViewAction viewAction)

// Performs a ViewAction on a view

// matched by viewHolderMatcher.

static <VH extends RecyclerView.ViewHolder >

ViewAction actionOnItemAtPosition(

int position ,

ViewAction viewAction)

// Performs a ViewAction on a view at position.

static <VH extends RecyclerView.ViewHolder >

RecyclerViewActions.PositionableRecyclerViewAction

scrollTo(Matcher <View > itemViewMatcher)

// Returns a ViewAction which scrolls RecyclerView

//to the view matched by itemViewMatcher.

static <VH extends RecyclerView.ViewHolder >

RecyclerViewActions.PositionableRecyclerViewAction

scrollToHolder(Matcher <VH > viewHolderMatcher)

// Returns a ViewAction which scrolls RecyclerView

//to the view matched by viewHolderMatcher.

static <VH extends RecyclerView.ViewHolder >

ViewAction scrollToPosition(int position)

// Returns a ViewAction which scrolls RecyclerView

//to a position.

Espresso code style of separating target matching and action on target
RecyclerViewActions obvuscate this separation by having all methods con-

47

5 Implemented short-term measures

tain the Matcher and the action on the item.
onView(ViewMatchers.withId(R.id.recyclerView))

.perform(

RecyclerViewActions.actionOnItem(

withId(R.id.item_edit_text),

click()));

Once the ViewHolder consists of anything more complex than a single
View, performing an action on a child View is only possible through creating
a custom ViewAction that matches the desired child View. This leads to
further mixing responsibilities since one has to write ViewActions that also
do matching beforehand.

ViewAssertions

As the name already implies, there is simply no functionality included in
RecyclerViewActions to perform any ViewAssertions on the ViewHolder
or any child views. So besides performing a scrollTo or scrollToHolder and
then using ViewInteraction on the examined View, performing any assertion
is not possible. However, using scrollTo is not always feasible and limited to
few use cases. For example trying to assert that ”Hello” is displayed exactly
on the third item in the RecyclerView is impossible this way.

RecyclerView handling in Catroid tests

To get around the problems and shortcomings of RecyclerViewActions
discussed above, a set of custom ViewActions ViewMatchers and ViewInter-
actionWrappers have been implemented.

RecyclerViewInteractionWrapper extends ViewInteractionWrapper, to present
the tester with an interface similar to Espresso’s onData(), but for an under-
lying RecyclerView. This is limited to accessing items via their position in
the RecyclerView. However, by adding another Wrapper for the ViewHolder
it enables us to access child Views inside the ViewHolders and to perform
any kind of ViewAction or ViewAssertion on them.

The complexity is now encapsulated in those Wrapper and ViewMatcher
classes, giving the developer a clear and concise interface for testing, that

48

5.1 Switch from Robotium to Espresso

again sticks to Espresso’s separation of responsibilities and resembles testing
lists using onData().

onRecyclerView ().atPosition (3)

.onChildView(R.id.some_edit_text)

.check(matches(

withText(

R.string.new_item_name)))

.perform(click ());

To match the view inside the RecylcerView at a certain position, as listed
in the example above, a custom Matcher had to be implemented. Using
Matchers to achieve this enables the developer to continue applying Espresso
interactions on the matched view.

public boolean matchesSafely(View view) {

RecyclerView recyclerView =

(RecyclerView) view.getRootView ().findViewById(

recyclerViewId);

return recyclerView != null

&& recyclerView.getId() == recyclerViewId

&& recyclerView.findViewHolderForAdapterPosition(

position) != null

&& view == recyclerView.

findViewHolderForAdapterPosition(position).

itemView;

}

Custom Hamcrest Matchers

A plethora of custom Matchers was implemented to either deal with the
shortcomings of Espresso or to enable developers to match classes and
data from Catroid. Examples of the first category are Matchers for Bundles,
RecyclerViews (as discussed above), Toasts, Spinners, and Intents. Examples
of the second category of Matchers are UserVariables and UserLists, LibGdx
Stage, and various ListAdapters.

49

5 Implemented short-term measures

Custom Actions

Similar to the custom Matchers above, custom ViewActions had to be im-
plemented due to the same reasons. Espresso does not bring any support
for drag and drop handling or swipe actions. Therefore, those were imple-
mented as custom actions, as well as actions for interaction with the LibGdx
Stage.

Intent handling in Espresso tests

Espresso does support testing Intents through Espresso.Intents. Espresso.Intents
enable the developer to perform assertions on outgoing Intents, as well as
catching and returning subbed Intents. This is particularly useful to pre-
vent foreign activities or services to be started in a test environment, while
providing the means to perform assertions on outgoing Intents. However,
the Intent Matchers provided by Espresso lack some basic functionality that
again had to be implemented as custom Matchers.

5.2 Refactoring portions of production code

Portions of production code were refactored with a focus on proper separa-
tion of concerns and dependency injection was introduced in some classes
that were otherwise difficult to test. This increased testability enabled de-
velopers to perform the best practice approach of subcutaneous testing as
described in Meszaros, 2006, while simultaneously having the positive side
effect of breaking up big classes into smaller ones.

5.3 Testsuites and flaky tests

Introducing a set of custom JUnit rules and splitting UI tests into multiple
test suites enabled the Jenkins CI instance to properly deal with test flakiness.
These measures limit the number of reruns since only the flaky tests are
repeated and prevent crashes of the whole instrumentation process.

50

5.3 Testsuites and flaky tests

5.3.1 FlakyTestRule

JUnit does not provide any means to automatically retry failing tests out of
the box. There are various Jenkins plugins, such as the FlakyTestHandler
Plugin3, that retrofit this behavior. Most of those solutions use Java annota-
tions that include the number of maximum retries before marking the test
as failed. However, to allow local test runs to deal with flaky tests another
approach is required. Android does only provide annotations45 and means
for exclusion of flaky tests and not for rerunning of said tests. To provide
this rerunning behavior for both local, and Jenkins CI test runs, the desired
behavior was implemented as a JUnit rule.

The annotation @Flaky for a test method will rerun the test if it fails. By
default the number of reruns is limited to three. This can be overridden in
the annotation by adding a parameter. @Flaky(5) for example, will have the
test rerun 5 times before marking it as failed and progressing to the next
test. To have the test runner account for the annotations the Rule has to be
added to the test class.

@Rule public FlakyTestRule flakyTestRule = new FlakyTestRule

();

5.3.2 Category annotations

Annotations for test categories were introduced and the org.junit.experimental.categories
Categories.class is used to construct category based TestSuites.

3https://plugins.jenkins.io/flaky-test-handler
4https://developer.android.com/reference/android/test/FlakyTest.html
5https://developer.android.com/reference/android/support/test/filters/FlakyTest.html

51

5 Implemented short-term measures

//AppUi for all tests focusing on the pocket

//code application , so the menus , fragments ,

//lists , and their functionality

@Cat.AppUi

// CatrobatLanguage for all tests focusing on

// catrobat language correctness (eg. tests

// verify in stage correctness

//of some catrobat program

@Cat.CatrobatLanguage

// Device for all tests that are required to run /

//are only runnable on a physical android device

@Cat.Device

subparagraph

// Gadgets for all tests focusing on peripheral

// hardware and gadgets (eg. RasPi , Drone , LegoNXT)

@Cat.Gadgets

// SettingsAndPermissions for all tests probably

// require some settings change or permission

// confirmation.

//(eg. NFC , Bluetooth , Camera , etc)

@Cat.SettingsAndPermissions

// Network for all tests that do require an internet

// connection and or any network services , etc.

@Cat.Network

// SensorBox include all tests using the Sensor

// testing box

@Cat.SensorBox

// Regression tests for Api 19(KitKat Android version 4.4 -

4.4.4) , stuff that just works

//on higher Apis , but needs special treatment on 19

@Cat.ApiLevel19Regression

// Educational tests that are in place to demonstrate

//how to test something

@Cat.Educational

//Tests that have side effects that can break other

//tests , therefore should be excluded from bulk

//test runs

@Cat.Quarantine

52

5.3 Testsuites and flaky tests

Additional to categories, levels were introduced to distinguish basic
functionalities from special use case tests. This annotation should also
reflect the number of affected users in case a bug appears in one of the
tested functionalities.

@Level.Detailed

@Level.Functional

@Level.Smoke

This is intended to enable the project to split test runs into smaller
packages, once the test suites grow big. For example, to have nightly test
runs on all levels, while a pull request triggers on GitHub only run the ones
annotated with Smoke and Functional automatically, with the option to
manually trigger detailed runs if necessary. All tests are supposed to have
the following annotations:

• Either CatrobatLanguage or AppUi
• Optionally more categories from the above listing.
• Level

The following minimal usage example, shows a test that verifies basic
behavior of the UI:

@Category ({Cat.AppUi.class , Level.Smoke.class })

@Test

public void testChangeSizeByNBrick ();

Test suites based on category annotations

JUnit4’s Categories.class can be used to generate a test suite based on a
number of listed tests or test suites, and filter those tests according to their
category annotations.

53

5 Implemented short-term measures

@RunWith(Categories.class)

@Categories.ExcludeCategory ({

Cat.SettingsAndPermissions.class ,

Cat.Device.class ,

Cat.Educational.class ,

Cat.SensorBox.class ,

Cat.Quarantine.class})

@Suite.SuiteClasses(PhiroIfBrickTest.class ,

ThinkForBubbleBrickTest.class ,

SayBubbleBrickTest.class ,

WhenConditionBrickTest.class ,

ChangeTransparencyByNBrickTest.class ,

BroadcastBricksTest.class ,

...)

public class FilteredTestSuite {

}

This approach requires the developers to manually list the test classes
that should be included. However, it is possible to have @Suite.SuiteClasses
based on other test suites instead of specifying test classes inline. In the
first iteration a bash script was implemented that generates a test suite
that generates a list of all available test classes, but later this solution was
replaced by a custom JUnit test runner that would automatically include all
tests classes in a given package.

5.3.3 PackageTestRunner

JUnit4 doesn’t provide any functionality or methods to create test suites
based on package paths. Instead, it provides the AllTests.class to emulate
JUnit3.x like handling of dynamic test suite generation6. This however,
requires all test classes to implement a ”suite()” method and be added to
a specific suite manually. Third party tools like Takari/Cpsuite7 offer a
ClassPathSuite to generate TestSuites based on a given class path.

6https://junit.org/junit4/javadoc/4.12/org/junit/runners/AllTests.html
7https://github.com/takari/takari-cpsuite

54

5.3 Testsuites and flaky tests

@RunWith(ClasspathSuite.class)

@ClassnameFilters (".* UnitTest "})

public class MySuite {

}

These tools however, have compatibility issues with Android projects
using Dex. To mitigate these problems a custom JUnit test runner that
provides all tests in a given package path was implemented.

public class AndroidPackageRunner

extends ParentRunner <Runner >

This custom runner can now be used to build a test suite that is composed
of all test classes within the given package path.

@RunWith(AndroidPackageRunner.class)

@AndroidPackageRunner.PackagePath(

"org.catrobat.catroid.uiespresso ")

public class AllEspressoTestsSuite {

}

The resulting test suite can in turn be used as a basis for filtering with
Categories.class to get the desired test suite.

@RunWith(Categories.class)

@Categories.ExcludeCategory ({

Cat.SettingsAndPermissions.class ,

Cat.Device.class ,

Cat.Educational.class ,

Cat.SensorBox.class ,

Cat.Quarantine.class})

@Suite.SuiteClasses(AllEspressoTestsSuite.class)

public class PullRequestTriggerSuite {

}

With the above solution the developer does not have to add new tests
manually to be included in the filtered suites.

55

5 Implemented short-term measures

Currently set up test suits

As of mid-September 2018 the following test suites are set up and are used
by the project’s continuous integration system:

• SensorboxTestSuite
Containing only tests that are run on a real device that is attached to
the sensor test box.

• PullRequestTriggerSuite
Contains all Espresso tests that are runnable on Android emulator
instances, do not require the user to perform any actions in Android
settings beforehand (eg. activating NFC), and filtered by problematic
tests that increase flakiness in other tests.

• ApiLevel19RegressionTestsSuite
Tests that have to run on API level 19(KitKat Android version 4.4 -
4.4.4).

5.4 Increase coverage through JUnit tests

5.4.1 JUnit 4.0

By abandoning the PolideaTestRunner in favor of the AndroidJunitRunner
the number of Instrumentation crashes significantly decreased and all JUnit
tests were updated from JUnit3.8 to JUnit4. Most of the work for the update
was automatable with a custom python script:

• Recursively traverse the unit test package
• For each test

– Remove JUnit3.8 imports
– Add JUnit4 imports
– Remove inheritance from AndroidTestCase
– Add @RunWith annotation to class
– Remove @Override annotations
– Annotate setUp method with @Before
– Annotate tearDown method with @After
– Annotate all test methods with @Test

56

5.4 Increase coverage through JUnit tests

Structure of an Android JUnit3.8 test:

import android.support.test.InstrumentationRegistry;

import android.test.AndroidTestCase;

public class ActionTest extends AndroidTestCase {

@Override

protected void setUp () {

...

}

@Override

protected void tearDown () {

...

}

public void testSomething () {

...

}

}

57

5 Implemented short-term measures

Structure of an Android JUnit4 test:

import android.support.test.InstrumentationRegistry;

import android.support.test.runner.AndroidJUnit4;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import static junit.framework.Assert.assertEquals;

@RunWith(AndroidJUnit4.class)

public class AskActionTest {

@Before

protected void setUp () {

...

}

@After

protected void tearDown () {

...

}

@Test

public void testSomething () {

...

}

}

5.4.2 Replace UI tests with Unit tests

A significant number of UI tests originate from a lack of knowledge about
JUnit testing amongst contributors. Replacing those UI tests with JUnit tests
without losing coverage was trivial. Mocking frameworks like PowerMock
and Mockito enabled the reimplementation of further UI tests as either
instrumented JUnit or local JVM tests. The same approach was applied to
the existing instrumented JUnit tests, which allowed a substantial number
of them (approximately 600 tests, i.e., 50% of the instrumented test suite
at that time) to be relocated to the local JUnit package. Despite mocking
frameworks, there are limits to the type and number of tests that can be
modified to run as local JUnit tests. The main reason for this is that Catrobat
relies heavily on third party libraries that in some parts are Android native,
precompiled libraries, for example LibGdx.

58

5.4 Increase coverage through JUnit tests

An example usage of PowerMock to prevent loading of native precompiled
library in a static block of a class:

public class PhysicsWorld {

static {

GdxNativesLoader.load();

}

...

}

@RunWith(PowerMockRunner.class)

@PrepareForTest(GdxNativesLoader.class)

public class PhysicsTest {

@Before

public void setUp() {

PowerMockito.mockStatic(GdxNativesLoader.class);

}

...

}

However, this only suffices if loading the native library is only an un-
wanted side effect of the class under test. If any methods of the native library
are to be called during the test run this test must run as an instrumented
test.

An example usage of PowerMock to inject mocks into class under test on
creation of mocked type:

@RunWith(PowerMockRunner.class)

@PrepareForTest(JSONObject.class , ClassUnderTest.class)

public class Test {

@Test

public void test() {

JSONObject response = PowerMockito.mock(JSONObject.

class);

PowerMockito.whenNew(JSONObject.class)

.withArguments(anyString ())

.thenReturn(response);

}

...

}

59

5 Implemented short-term measures

5.5 Quality and performance measuring

Reduction of complexity

This section(5.5) has been previously published in Hirsch et al., 2019.
All inheritance hierarchies in test classes were flattened to reduce com-

plexity and to stay closer to testing best practice suggested by Alégroth,
Steiner and Martini, 2016. Wherever necessary, code used in multiple test
classes was moved into test objects (see Section 5.1.1) or when more related
to the test lifecycle to custom JUnit rules8.

An example of a test with a deep inheritance hierarchy:

public class CollisionBetweenTest extends

PhysicsCollisionBaseTest {

...

}

public abstract class PhysicsCollisionBaseTest extends

PhysicsBaseTest implements PhysicsCollisionTestReceiver {

...

}

public class PhysicsBaseTest extends InstrumentationTestCase

{

...

}

Can be refactored into a simple “has-a” relationship to a rule:

public class CollisionBetweenTest {

@Rule

public PhysicsCollisionTestRule rule = new

PhysicsCollisionTestRule ();

...

}

Nearly all branching and loop statements were removed from tests during
reimplementation, either using parameterized tests or by more thoughtful
test design. A parameterized test is a test that is run multiple times with

8https://junit.org/junit4/javadoc/4.12/org/junit/Rule.html

60

5.5 Quality and performance measuring

differing, predefined inputs. When running the test, each test method and
its evaluation are displayed together with an identifier for the specific
parameter used. Therefore, in case of a failure, providing the developer the
information on which input led to the failure.

Example test with a for loop:

@RunWith(JUnit4.class)

public class AngleTest {

@Test

public void testAngle () {

for (int i = 0; i < 4; i++) {

assertEquals(expected , Rotation.Angle(i*90.0f));

}

}

}

An example parameterized test, providing the same test coverage as the
example above, while also providing more information about a failure to
the developer:

@RunWith(Parameterized.class)

public class AngleTest {

@Parameterized.Parameters(name = "{0}")

public static Iterable <Object[]> data() {

return Arrays.asList(new Object [][] {

{0.0f},

{90.0f},

{180.0f},

{270.0f}

});

}

@Parameterized.Parameter

public float angle;

@Test

public void testAngle () {

assertEquals(expected , Rotation.Angle(angle));

}

}

61

5 Implemented short-term measures

Unnecessary Try/catch constructs were removed to the test fail directly in
case of an exception and provide a stack trace:

@Test

public void test() {

try {

formula.interpretFloat(sprite);

} catch (InterpretationException e) {

fail(" Exception ")

}

...

}

Refactoring the test to throw the Exception, in case of a failure, the developer
is provided a stacktrace instead of an assertion error message:

@Test

public void test() throws InterpretationException {

formula.interpretFloat(sprite);

...

}

Testing expected Exceptions using try/catch inside the test method is hard to
read and can be misleading especially when combined with above described
try/catch construct.

@Test

public void test() {

try {

try {

formula.interpretFloat(sprite);

fail(" Exception not thrown ")

} catch (InterpretationException e) {

}

} catch (IOException e) {

fail(" Exception ")

}

}

62

5.5 Quality and performance measuring

Above example refactored to ExpectedExceptionRule9 use as suggested
by Meszaros, 2006:

@Rule

public final ExpectedException exception = ExpectedException.

none();

@Test

public void test() throws IOException {

formula.interpretFloat(sprite);

exception.expect(InterpretationException.class);

}

Requiring reflection to enable a test to perform its task is a telltale sign of
bad testability of the code under test. Those tests are brittle and maintenance
consuming. All reflections to access private members and methods for
testing, as well as a big number of stubs were removed and replaced by
mocks using the Mockito framework instead. This, of course, required some
production code refactorings as well.

Example of using reflection to access a private field of an object:

String version = (String) Reflection.getPrivateField(

projectXmlHeader , "applicationVersion ");

Android test support library provides the @VisibleForTesting10 annota-
tions that allow calls to the method from a test context while defaulting the
access modifier to private in production use. If another access modifier is
desired it can be set as parameter of the annotation.

9https://junit.org/junit4/javadoc/4.12/org/junit/rules/ExpectedException.html
10https://developer.android.com/reference/kotlin/androidx/annotation/VisibleForTesting

63

5 Implemented short-term measures

The reflection example above refactored to use @VisibleForTesting annota-
tion on a getter method:

public class XmlHeader {

...

@VisibleForTesting

public String getApplicationVersion () {

return applicationVersion;

}

}

public class XmlHeaderTest {

...

@Test

public test() {

...

String version = xmlHeader.getApplicationVersion ()

}

}

64

5.5 Quality and performance measuring

Due to the neglect of mocking frameworks in the Catrobat project prior to
this thesis, a variety of stubs were found in the test code base. Arguably
inelegant, this works with small, simple, and stable classes as in the example
below. However this approach does not scale for bigger, more complex
classes that are susceptible to change over time.
An example of a File stub:

private class TestFile extends File {

private boolean exists;

TestFile(boolean exists) {

super ("");

this.exists = exists;

}

@Override

public boolean exists () {

return exists;

}

}

public class Test {

@Test

public test() {

File nonExistingFile = new TestFile(false);

...

}

}

Refactored using Mockito Mocks:

public class Test {

@Test

public test() {

File nonExistingFile = Mockito.mock(File.class);

when(existingFile.exists ()).thenReturn(true);

...

}

}

65

5 Implemented short-term measures

5.6 Catrobat tests

The conformance of a Catrobat interpreter to the Catrobat languages spec-
ification is inherently hard to test in its entirety. The main reason for this
is that without elaborate Hamcrest Matchers and Espresso actions it is
impossible to perform actions or assertions on the LibGdx rendered display.
To further complicate this endeavor, setting up Catrobat projects in tests
using Java is very cumbersome, verbose and brings some fragility due to
the tight binding to objects within the language. A white box test approach
as applied with Espresso is absolutely necessary for such kinds of tests to
be implemented. Due to the reasons stated above the Catrobat language and
its interpreter were almost exclusively tested with unit tests. However, there
is a need to test this on a system level due to the pseudo multithreading
event based approach of the language which cannot be adequately tested
with unit tests only.

5.6.1 Behaviour Driven Development

Additional to the problematic testing situation described above, the wish for
implementation independent tests was expressed by the product owners.
This was intended to reduce development effort of Pocket Code imple-
mentations for other platforms such as iOS and make them comparable.
The requirements for those language tests were as follows: In the spirit of
BDD (Behaviour Driven Development) they should be written on a high
abstraction level, easily understandable by people without knowledge of
the underlying implementation, and provide a test suit that can be used to
verify language and interpreter correctness on different platforms and imple-
mentations of the Catrobat language. Multiple attempts to introduce BDD
tests based on the Cucumber11 tool into the Catrobat project have failed.
Hobl, 2018 basing Cucumber on top of the Espresso framework and strug-
gling with high maintenance efforts and lower reusability than expected.
Pokrievka, 2019 basing Cucumber on the already outdated Robotium frame-
work and struggling with stability issues of his test setup. Lessons learned
from those thesis (Hobl, 2018; Pokrievka, 2019) are that the introduction
of additional test frameworks to provide means for BDD testing adds sig-

11https://cucumber.io/

66

5.6 Catrobat tests

nificant maintenance efforts on multiple platforms while at the same time
reducing stability.

5.6.2 Testing Bricks

Example was taken from other programming languages, and means and
methods were developed to enable self testing of the Catrobat language. This
approach avoids the pifalls (Hobl, 2018; Pokrievka, 2019) of an additional
test framework. The Catrobat language was extended with a number of
test Bricks, that enable developers to write tests in the language itself.
Those tests are directly executable on any other Catrobat implementation
supporting Catrobat language version 0.99995 or higher. The test Bricks are
only available in development builds of the application, and are deactivated
for releases on Google Play.

The Assert equals Brick

The assert equals Brick shown in Fig. 5.7 contains two formula fields, one
for the actual value and one for the expected value. Behaviour in case of
inequality is similar to JUnit assertEquals. The test result is set to failure
including information on the actual value and the position of the assertion
Brick that failed, and terminating the test.

Figure 5.7: Assert equals Brick.

67

5 Implemented short-term measures

The Single tap Brick

To give the developer minimal means of interaction with the program under
test, the single tap Brick was implemented that simply triggers a tap event
at specified coordinates (see Fig. 5.8).

Figure 5.8: Single tap Brick.

The Wait until idle Brick

To get around extensive usage of wait statements in tests, the Wait until idle
Brick was added to provide basic synchronization capabilities. This Brick
will be blocking as long as this and other actors in LibGdx have scripts
running, and will release only if all others have finished (see Fig. 5.9).

Figure 5.9: Wait until Brick.

68

5.6 Catrobat tests

The Finish Stage Brick

Catrobat projects do not have an end due to the event based nature of the
language. Up to this point a system for the Stage to deliver a result back to
the calling Activity was never required. However, for the testing use case it
is necessary to specify when a test is done and have means of reporting test
results. The Finish Stage Brick sets the test result as Android ActivityResult
for the runner and closes the Activity under test. Every test must have such
a Brick(see Fig. 5.10).

Figure 5.10: Finish Stage Brick.

5.6.3 Portability

Catrobat projects can be exported and shared easily crossing platform and
implementation boundaries. In the current implementation these exported
tests are stored in test assets in the Catrobat projects repository. It is planned
to move this test suite into a separate repository to allow integration into
different implementations of Catrobat.

5.6.4 Test runner

A custom test runner for the language tests was implemented. This runner
utilizes AndroidJUnit4 and ActivityTestRule to directly start the Stage
Activity for each test project. It is implemented as a parameterized test that
automatically collects all available Catrobat tests from the assets package,
runs them and evaluates the results.

The initial implementation allowed only a single assertion at the end of
the test and relied on Catrobat’s variable handling for communication with

69

5 Implemented short-term measures

the underlying runner. This enabled the runner to provide proper exception
handling and failure reporting in the same style as regular JUnit assertions,
as well as trivial integration into existing test suites for CI integration and
local execution. However, communication through user variables has a
number of drawbacks. The latest version of the Catrobat testing Bricks
and Catrobat test runner use Android ActivityResult for communication
between runner and test. Besides addressing the aforementioned limitations,
this reduced the complexity and code size of the test runner and assertion
Brick to an absolute minimum, enabled the possibility to evaluate test results
on a device, and made it possible to remove all Espresso dependencies of
the test runner.

5.7 Ongoing and persistent measures

This Section (5.7) has been previously published in Hirsch et al., 2019.
A number of persistent and long term measures based on the aforemen-

tioned findings were introduced to the project. These measures are intended
to prevent regression in test code quality, testability, and stability of the test
suite.

5.7.1 Educate developers

Developers are being educated in proper use of mocking frameworks like
Mockito and PowerMock, JUnit rules, and HamcrestMatchers that allow
the creation of Matcher objects and increase readability. Further usage of
parameterized tests is encouraged and developers are urged to favor unit
tests over UI tests. Educational tests were implemented to serve as templates
of proper usage of those tools and to serve as templates for new developers.

Code smells and anti patterns that were in widespread use in the test
code base as well as best practices are discussed with developers. The most
prevalent anti patterns and code smells in the project were as follows:

• Obscure test - It is difficult to understand the test at a glance.
(Meszaros, 2006)

• Conditional test logic - A test contains code that may or may not be executed.
(Meszaros, 2006)

70

5.7 Ongoing and persistent measures

• Slow test - The tests take too long to run.
(Meszaros, 2006)

• Test logic in production - The code that is put into production contains logic
that should be exercised only during tests.
(Meszaros, 2006)

• Assertion roulette - It is hard to tell which of several assertions within the
same test method caused a test failure.
(Meszaros, 2006)

• Frequent debugging - Manual debugging is required to determine the cause
of most test failures.
(Meszaros, 2006)

• Long macro event - A macro event contains too many actions.
(Chen and Wang, 2012)

• Long parameter list - The parameter list of a keyword or macro event is too
long; it is difficult to understand the meaning of each parameter.
(Chen and Wang, 2012)

• Shotgun surgery - Multiple places need to be modified with a single change.
(Chen and Wang, 2012)

Due to the fact that the test code base was cleaned and the code quality
increased in the immediate measures, tests are now closer to executable
specifications and hence work as documentation to showcase how to prop-
erly test certain components. This is especially beneficial for developers who
are new to the project. However, a re emergence of those smells can only be
prevented by code reviews from senior developers that are aware of those
issues.

5.7.2 Educate senior developers

An additional education focus was set on the project’s senior developers
who usually conduct code reviews. The goal is to trigger knowledge transfer
within the team about test code quality and to make them aware of smells
and anti patterns, which became widespread in the code base. The same
level of quality assurance for production code and test code lead to a
direct improvement of test code maintainability and readability which in
turn flatten the learning curve for new developers. This process of seniors

71

5 Implemented short-term measures

educating other seniors has to be kept in motion constantly by the projects
management.

5.7.3 Code reviews

New and modified test code is now closely examined in frequent code
reviews. Developers are encouraged to refactor and clean up old tests if they
have to modify them. Unnecessary UI tests are to be removed whenever
the same test coverage can be achieved with unit or integration tests. These
measures shall prevent the re-emergence of the test ice cream cone structure,
and increase the test code quality of legacy tests. From early 2018 on a
positive code review is mandatory to be able to merge a pull request. This
is currently enforced via configuration on GitHub. Project management
must keep this restriction in place, while constant grooming of the approval
permission has to be performed.

5.7.4 Persistent monitoring of the test suites

The test suites have to be permanently monitored for flaky tests, their
runtime, and their resource requirements. Both, running test suites locally on
a developer’s machine, and running the test suites on the CI system have to
be considered. If any problems arise, measures have to be taken immediately
to prevent the test system from deteriorating. Tests are to be partitioned
into groups, and depending on their importance and impact, either run on
every pull request, or only on nightly runs. This holds especially true for
resource or runtime expensive tests. Developers and CI engineers have to
collaborate to keep the test suite healthy.

5.7.5 Future of the test suite

All measures described above depend heavily on a project management
focus and prioritization on code quality. Due to the high rate of personnel
turnover in the project a loss in knowledge can occur very fast leading to
a deterioration of the code quality soon after. Currently management pays
a lip service to code quality while its actual focus lies on very specific toy
projects. Leaving the task of quality assurance and pushing aforementioned

72

5.8 Evaluation - Comparison before and after

measures to a small group of dedicated senior developers, that feel their
efforts being belittled by management. Ideas and valid concerns of these
senior members are often dismissed in a rather unfriendly fashion. However,
any negative results from the omission of the suggestions, is again blamed
on the senior developers. As a cautious reminder, fixing the test suite was a
huge effort over the past four years, breaking it can be done within a small
number of months. A TDD project without a working test suite is neither
TDD nor can it be considered tested. There is little to no value to tests that
are not executable. Impact on performance, stability, and maintainability of
the product would be severe, as the past has shown.

5.8 Evaluation - Comparison before and after

This section (5.8) has been previously published in Hirsch et al., 2019.

5.8.1 Size of the test suite

Reimplementing a portion of the UI tests as unit tests and encouraging
developers to write unit tests rather than UI tests when the same coverage
can be achieved has shown a significant change in size of the respective test
suites and a slow tendency away from the ice cream cone structure. This is
depicted in Fig. 5.11 and Tab. 5.1.

Table 5.1: Number of test methods per group
Code Test Methods
Base JVM unit Instrumented Ui

tests Unit/Integration tests tests
Catrobat-2015 0 550 597

Catrobat-2019 682 507 397

Again visualizing the status of the test code base through the Android
test pyramid comparing it before (see Fig. 5.12) and after (see Fig. 5.13) the
refactoring shows significant shift towards a healthier test distribution on
the pyramids horizontal and vertical layers. Although system portions in

73

5 Implemented short-term measures

Figure 5.11: Number of test methods grouped by underlying technology and platform.

74

5.8 Evaluation - Comparison before and after

Figure 5.12: Catrobat test code base as of 2015 visualized.

the instrumented layer are still on the heavy side, while unit tests are rather
dominant in the local JVM layer.

5.8.2 Test code quality

Test code quality is difficult to pin down in a measurable way. However, LoC
per test method, including all utility classes in the total LoC, and average
cyclomatic complexity of the test code were chosen as indicators. Both
metrics show a significant increase of code quality (i.e., a decrease in those
values). The average size (in LoC) of instrumented unit and integration test

75

5 Implemented short-term measures

Figure 5.13: Catrobat test code base as of 2019 visualized.

76

5.8 Evaluation - Comparison before and after

methods shows a reduction of 48.8%, the average size of UI test methods
a reduction of 32.8%. The now local unit tests, compared to their former
location in instrumented tests show a reduction of 49.5% of LoC, as depicted
in Fig. 5.14.

Table 5.2: Loc per test suite.
Code LoC
Base JVM unit Instrumented Ui

tests Unit/Integration tests tests
Catrobat-2015 232 12,681 23,659

Catrobat-2019 11,946 14,375 21,332

Figure 5.14: Average LoC per test method, grouped by underlying technology and platform.

Average cyclomatic complexity of the unit and integration test package
shows a reduction of 18.1%, UI test package shows a reduction of 19.8%, and
the now local unit tests compared to their former location in instrumented

77

5 Implemented short-term measures

unit and integration tests a reduction of 22.6%, as described in detail in
Table 5.3.

Table 5.3: Average cyclomatic complexity.
Code Average cyclomatic complexity
Base JVM unit Instrumented UI

tests Unit/Integration tests tests
Catrobat-2015 1.46 1.49

Catrobat-2019 1.16 1.17 1.22

Figure 5.15: Average cyclomatic complexity, grouped by underlying technology and
platform.

78

5.9 Proposed followup research

5.8.3 Test suite runtime

On the project’s Jenkins CI instance the execution time for a full test run
including all UI and unit tests is now down to an average of 14 min 30 sec,
described in detail in Table 5.4. This was achieved by:

• Lowering the number of UI tests by 42%.
• Espresso synchronization capabilities used over sleep statements in

code.
• Isolation of flaky tests.
• Parallelization efforts on the project’s Jenkins CI instance.

Table 5.4: Average runtime for full test suite.
Code Suite size and runtime
Base Number of Average

tests runtime
Catrobat-2015 1,147 12-16 hours
Catrobat-2019 1,586 14 min

5.9 Proposed followup research

5.9.1 Ratios of the proposed Android test pyramid

The applicability of the 70% - 20% - 10% split suggested for the original test
pyramid (Cohn, 2009; Google, 2019a; Wacker, 2015) in the context of the
horizontal and vertical planes of the proposed Android test pyramid is still
unanswered. This would require performing a study on a large number of
Android applications and their test code bases.

5.9.2 Code quality and and product stability

Intuitively good code quality will cut down bug rates and time to fix.
Catrobat could serve as a good research project to empirically measure the

79

5 Implemented short-term measures

effects from introducing static analysis tools as SonarQube12. Development
resources would have to be dedicated to refactoring hotspots highlighted
by those tools. Furthermore, it would be interesting to identify threshold
values for code quality metrics that ensure product quality and foster its
ratings on the app store.

5.9.3 Catrobat tests as reference

Besides writing more and more Catrobat tests to enable the project to verify
correct and consistent behavior of different implementations of the language,
care must be taken to not overly inflate the system portion of the projects
test pyramid since these tests are to be considered system tests. A study on
the effectiveness of a comprehensive test suite of Catrobat tests serving as
reference tests for multiple implementations could provide valuable insight
regarding the value of those tests. Metrics for quality and code style of those
tests could be established. This would require a Catrobat to be implemented
on a new platform, in contrast to the iOS implementation, this time with
the support of such a test suite.

5.9.4 Study on test suite evolution

Catrobat was suffering from a build-up of technical debt in the form of
outdated frameworks and generally being a late adopter of new testing
frameworks and tools. A study on the adoption behaviour of other open
source Android applications could give valuable insights. Those insights
could be compiled into recommendations to support in resource planning
for the management of the Application in future.

5.9.5 Production code refactoring

The biggest problem of the project is the production code base which is still
far away from being properly testable. Refactoring efforts are still ongoing,
given the size of the project (approx. 70.000 LoC in approx. 800 Java classes,
excluding all Android XML resources) this is still a major effort in the context
of a mobile application. The most challenging parts of this refactoring effort

12www.sonarqube.org

80

5.9 Proposed followup research

will be the reduction of global states in form of singletons which are heavily
overused in the codebase and severely impact testability. The insufficient
separation of concerns, especially the tight binding to Android or third
party APIs is another big problem.

5.9.6 Follow the proposed test pyramid and move tests
down the levels

As the aforementioned production code refactoring is ongoing, more tests
can be refactored from instrumented unit tests to local unit tests. For new
tests an emphasis is put on writing local unit tests instead of instrumented
tests. Robolectric is already in use in the projects, and its use should be
pushed further to move more tests from emulators or real devices to the
local JVM. However this has its limits since the LibGdx13 engine used for
the execution and rendering is tightly bound to Android APIs and partially
consists of native libraries. Since LibGdx and Unity are widely used in open
source Android applications a study on the testing approach of other such
applications could uncover tools, libraries, and patterns that could support
Catrobat’s developers.

13https://libgdx.badlogicgames.com/

81

6 Conclusion

This section has been previously published in Hirsch et al., 2019.

6.1 Key findings

Updating deprecated test frameworks and tools is a key factor for fast
and reliable test suites. Intelligent partitioning of tests into their respective
categories along the vertical dimension, established in Android test pyramid
shown in Fig. 4.5, further increases stability and decreases runtime of the test
suite, while at the same time highlighting architectural shortcomings in the
production code. During the partitioning it also became clear that the tests
contained in the local JVM and instrumented test category again contain
the full spectrum of test classes that the original testing pyramid displays.
Reducing the size and complexity of tests, while keeping the coverage level
by adding more tests, as well as establishing an object oriented approach
to UI tests has shown to be beneficial for maintenance and flattened the
learning curve for new developers in the project. Permanent measures such
as educating developers and keeping the same quality measures for test
and production code are mandatory to keep moving towards a more stable
and fast test suite.

6.2 Lessons learned for practice

6.2.1 Technical debt in tests

Architectural flaws

Improper separation of concerns, and other architectural flaws in the pro-
duction code base will lead to more tests in the instrumented category,
requiring them to run on an emulator or real device. Having the majority of

83

6 Conclusion

tests in the instrumented category as found in Catrobat is a telltale sign of
bad architecture and can lead to maintenance problems downstream. Tools
like PowerMockito, that provide functionality as mocking static methods
and injecting mocks on new instance creation, or Robolectric, that provides
Android APIs on a local JVM, can help moving more tests to the local unit
test category. However, the underlying architectural flaws stay uncorrected.
Establishing an Android test pyramid incorporating a best practice split for
integration and local tests as shown in Section 4.1.3 and conscious usage
of frameworks as PowerMock or Robolectric can help uncover architectural
flaws in a TDD project at an early stage.

Outdated frameworks and technologies

The Android platform is a fast paced, ever changing platform to build
applications upon. Care must be taken to keep frameworks and libraries up
to date and embrace new technologies. While this is a well established rule
for production code, it can be overlooked when it comes to automated tests.
This leads to the accumulation of technical debt as the test code base stays
behind on outdated frameworks and technologies, becoming increasingly
complex and hard to maintain until either expensive big bang refactorings
are undertaken or full test suites have to be dropped. This will reduce the
visibility and the coverage of the production code base and therefore bring
a reduction in quality and stability to the production code.

Test code quality

The same measures for code quality should be employed for test code
as for production code, and enforced in code reviews as suggested by
multiple researchers (e.g., Persson and Yilmazturk, 2004; Alégroth, Feldt
and Kolström, 2016; Martin, 2008). Metrics that can help visualizing test code
quality are cyclomatic complexity, average LoC per test method, runtime,
flakiness, and stability. Developers should be educated on testing best
practices, frameworks, and design patterns. Developers writing more and
better tests lead to more testable production code, which in turn will show
better architecture and proper separation of concerns (Martin, 2008).

84

6.3 General implications from the Catrobat case

6.3 General implications from the Catrobat case

The case of Catrobat should serve as a cautionary tale. After multiple
thousands of hours of refactoring and reimplementing test and production
code it still does not show a healthy test pyramid as suggested above, but
has reached again a stable testing environment. This huge endeavor to
get back on track was only possible because Catrobat is non profit project
and there is practically no time constraints / release pressure and as an
open source projects has a reasonable big workforce of contributors, mostly
consisting of students, who put in thousands of hours to further develop
this project.

6.4 Reflection

This thesis, and the test suite of Catrobat, benefited significantly from the
long time span it covered. This enabled the writer to analyze problems,
including the writer’s own code and solutions in depth that otherwise
would have been “quick fixed”. This also provided the writer a chance to
build up his development skills. The combination of aforementioned points
results in little to no code in the test base that was written once and stayed
untouched by the writer, constantly increasing code quality. The biggest
drain of development hours due to multiple reimplementations arose from
the order in which the work was done. At the beginning of this thesis
the UI test suite and CI system was broken, therefore priority was given
reimplementation of those tests to stabilize the CI system. As the work
progressed to update Junit tests and introduction of testing frameworks as
Robolectric and PowerMock a significant number of UI tests were again
reimplemented, this time as unit tests. Although counter intuitive, the fastest
way would have been to focus on updating the working portion of the test
suite, the unit tests, before dealing with the broken UI tests. Research has
to be done on the proposed Android test pyramid, its validity on a greater
scale and its ratios (See 5.9). The effectiveness of Catrobat tests serving as
reference tests for multiple implementations (See 5.9) has to be investigated.

85

6 Conclusion

6.5 Summary

Automated testing on Android forces developers to separate their test code
base into two distinct categories, instrumented and local JVM tests, based
on the target they are run on. It is not trivial to incorporate this split in
the well established test pyramid. The simplistic approach suggested in
the Android developer documentation places this split right on the border
between unit and integration tests. Investigation into some well established
open source projects in Section 4.1.2 show that this is not applicable in
practice and led us to propose the extended Android test pyramid that
adds a further dimension. This serves as a tool to properly visualize and
categorize the test suites of Android applications, raising awareness that
the test pyramid does play a role on on multiple levels, the test target on
Android, local JVM tests, or instrumented tests. The question if the 70% -
20% - 10% split suggested for the original test pyramid is still applicable in
this context leaves room for future research. The presented case of Catrobat
illustrates the effects of these problems. This underpins that the emergence
of mobile and distributed technologies is challenging theoretical models in
practice and require further work to be applied in big projects.

86

Appendix

87

Bibliography

Alégroth, Emil, Robert Feldt and Pirjo Kolström (2016). ‘Maintenance of
automated test suites in industry: An empirical study on Visual GUI
Testing’. In: Information and Software Technology 73, pp. 66–80 (cit. on
pp. 7, 10, 84).

Alégroth, Emil, Marcello Steiner and Antonio Martini (2016). ‘Exploring
the presence of technical debt in industrial gui-based testware: A case
study’. In: 2016 IEEE Ninth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, pp. 257–262 (cit. on
pp. 7, 10, 29, 40, 60).

Beck, K. (2003). Test-driven Development: By Example. Kent Beck signature
book. Addison-Wesley. isbn: 9780321146533 (cit. on p. 7).

Chen, Woei-Kae and Jung-Chi Wang (2012). ‘Bad smells and refactoring
methods for gui test scripts’. In: 2012 13th ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/Dis-
tributed Computing. IEEE, pp. 289–294 (cit. on pp. 7, 29, 40, 71).

Cohn, Mike (2009). Succeeding with agile: software development using Scrum.
Pearson Education (cit. on pp. 7, 13, 14, 79).

Cohn, Mike (2019). The Forgotten Layer of the Test Automation Pyramid. ac-
cessed 17.4.2019. url: https://www.mountaingoatsoftware.com/blog/
the- forgotten- layer- of- the- test- automation- pyramid (cit. on
pp. 8, 13).

Coppola, Riccardo, Maurizio Morisio and Marco Torchiano (2017). ‘Scripted
GUI Testing of Android Apps: A Study on Diffusion, Evolution and
Fragility’. In: Proceedings of the 13th International Conference on Predictive
Models and Data Analytics in Software Engineering. ACM, pp. 22–32 (cit. on
pp. 7, 9).

Coppola, Riccardo, Maurizio Morisio and Marco Torchiano (2018). ‘Mainte-
nance of Android Widget-based GUI Testing: A Taxonomy of test case
modification causes’. In: 2018 IEEE International Conference on Software

89

https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

Bibliography

Testing, Verification and Validation Workshops (ICSTW). IEEE, pp. 151–158

(cit. on p. 9).
Dijkstra, Bas (2014). The test automation pyramid. accessed 17.4.2019. url:

https://www.ontestautomation.com/the-test-automation-pyramid/

(cit. on pp. 8, 13, 14).
Fowler, Martin (2011). SubcutaneousTest. accessed 17.4.2019. url: https:

//martinfowler.com/bliki/SubcutaneousTest.html (cit. on p. 13).
Fowler, Martin (2012). TestPyramid. accessed 17.4.2019. url: https : / /

martinfowler.com/bliki/TestPyramid.html (cit. on pp. 8, 9, 13, 14).
Fowler, Martin (2013). PageObject. accessed 17.4.2019. url: https://martinfowler.

com/bliki/PageObject.html (cit. on p. 40).
Fowler, Martin (2014). UnitTest. accessed 17.4.2019. url: https://martinfowler.

com/bliki/UnitTest.html (cit. on p. 14).
Google (2018a). Espresso target audience. accessed 17.4.2019. url: https:

//developer.android.com/training/testing/espresso/ (cit. on pp. 7,
23, 26).

Google (2018b). ListView. accessed 17.4.2019. url: https://developer.
android.com/reference/android/widget/ListView (cit. on p. 43).

Google (2018c). Test your app. accessed 17.4.2019. url: https://developer.
android.com/studio/test/ (cit. on pp. 7, 18, 22).

Google (2019a). Fundamentals of Testing. accessed 17.4.2019. url: https:
//developer.android.com/training/testing/fundamentals (cit. on
pp. 7, 13–15, 18, 26, 27, 79).

Google (2019b). Guide to app architecture. accessed 17.4.2019. url: https:
//developer.android.com/jetpack/docs/guide (cit. on p. 5).

Hirsch, Thomas et al. (2019). ‘An Approach to Test Classification in Big
Android Applications’. In: Proceedings - Companion of the 19th IEEE
International Conference on Software Quality, Reliability and Security QRS-C
2019 (cit. on pp. v, viii, 7, 9, 13, 29, 60, 70, 73, 83).

Hobl, Markus (2018). ‘Behaviour-driven development of a 3D programming
environment’. MA thesis. Graz University of Technology (cit. on pp. 66,
67).

Kainulainen, Petri (2014). Three Reasons Why We Should Not Use Inheritance
In Our Tests. accessed 17.4.2019. url: https://www.petrikainulainen.
net/programming/unit-testing/3-reasons-why-we-should-not-use-

inheritance-in-our-tests/ (cit. on p. 35).

90

https://www.ontestautomation.com/the-test-automation-pyramid/
https://martinfowler.com/bliki/SubcutaneousTest.html
https://martinfowler.com/bliki/SubcutaneousTest.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/PageObject.html
https://martinfowler.com/bliki/PageObject.html
https://martinfowler.com/bliki/UnitTest.html
https://martinfowler.com/bliki/UnitTest.html
https://developer.android.com/training/testing/espresso/
https://developer.android.com/training/testing/espresso/
https://developer.android.com/reference/android/widget/ListView
https://developer.android.com/reference/android/widget/ListView
https://developer.android.com/studio/test/
https://developer.android.com/studio/test/
https://developer.android.com/training/testing/fundamentals
https://developer.android.com/training/testing/fundamentals
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/jetpack/docs/guide
https://www.petrikainulainen.net/programming/unit-testing/3-reasons-why-we-should-not-use-inheritance-in-our-tests/
https://www.petrikainulainen.net/programming/unit-testing/3-reasons-why-we-should-not-use-inheritance-in-our-tests/
https://www.petrikainulainen.net/programming/unit-testing/3-reasons-why-we-should-not-use-inheritance-in-our-tests/

Bibliography

King, Tim (2018). Test::Class Hierarchy Is an Antipattern. accessed 17.4.2019.
url: http://blogs.perl.org/users/tim_king/2018/05/testclass-
hierarchy-is-an-antipattern.html (cit. on p. 35).

Kochhar, Pavneet Singh et al. (2015). ‘Understanding the test automation
culture of app developers’. In: 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST). IEEE, pp. 1–10 (cit. on
pp. 7, 22).

Koskela, Lasse (2013). Effective Unit Testing. isbn: 9781935182573 (cit. on
p. 35).

Lämsä, Tomi (2017). ‘Comparison of GUI testing tools for Android applica-
tions’. MA thesis. University of Oulu. url: http://jultika.oulu.fi/
files/nbnfioulu-201706142676.pdf (cit. on pp. 22, 26).

Leotta, Maurizio et al. (2013). ‘Improving test suites maintainability with
the page object pattern: An industrial case study’. In: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation
Workshops. IEEE, pp. 108–113 (cit. on pp. 29, 40).

Linares-Vásquez, Mario et al. (2017). ‘How do developers test android ap-
plications?’ In: 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, pp. 613–622 (cit. on p. 7).

Mar, Kane and Michael James (2006). Technical Debt and Design Death (cit. on
p. 7).

Martin, Robert C. (2008). Clean Code: A Handbook of Agile Software Crafts-
manship. 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR. isbn:
0132350882, 9780132350884 (cit. on pp. 10, 84).

Meszaros, Gerard (2006). XUnit Test Patterns: Refactoring Test Code. Upper
Saddle River, NJ, USA: Prentice Hall PTR. isbn: 0131495054 (cit. on pp. 7,
50, 63, 70, 71).

Micco, John and Atif Memon (2017). How Flaky Tests in Continuous Integra-
tion: Current Practice at Google and Future Directions. accessed 17.4.2019.
url: https://developers.google.com/google- test- automation-
conference/2016/presentations (cit. on p. 9).

Persson, Christer and Nur Yilmazturk (2004). ‘Establishment of automated
regression testing at ABB: industrial experience report on’avoiding the
pitfalls’’. In: Proceedings. 19th International Conference on Automated Soft-
ware Engineering, 2004. IEEE, pp. 112–121 (cit. on pp. 7, 10, 84).

91

http://blogs.perl.org/users/tim_king/2018/05/testclass-hierarchy-is-an-antipattern.html
http://blogs.perl.org/users/tim_king/2018/05/testclass-hierarchy-is-an-antipattern.html
http://jultika.oulu.fi/files/nbnfioulu-201706142676.pdf
http://jultika.oulu.fi/files/nbnfioulu-201706142676.pdf
https://developers.google.com/google-test-automation-conference/2016/presentations
https://developers.google.com/google-test-automation-conference/2016/presentations

Bibliography

Pokrievka, Milš (2019). ‘Platform Independent Hardware Tests with Be-
haviour Driven Development’. MA thesis. Graz University of Technology
(cit. on pp. 66, 67).

Scott, Alister (2019). Testing Pyramids & Ice-Cream Cones. accessed 17.4.2019.
url: https://watirmelon.blog/testing-pyramids/ (cit. on pp. 8, 9,
13).

Silva, Davi Bernardo et al. (2016). ‘An analysis of automated tests for mobile
Android applications’. In: 2016 XLII Latin American Computing Conference
(CLEI). IEEE, pp. 1–9 (cit. on p. 7).

Stewart, Simon (2010). Test Sizes. accessed 17.4.2019. url: https://testing.
googleblog.com/2010/12/test-sizes.html (cit. on p. 14).

Wacker, Mike (2015). Just Say No to More End-to-End Tests. accessed 17.4.2019.
url: https://testing.googleblog.com/2015/04/just-say-no-to-
more-end-to-end-tests.html (cit. on pp. 13, 14, 79).

Zakharov, Valera (2014). Espresso devs comment. accessed 17.4.2019. url:
https://stackoverflow.com/questions/20046021/google-espresso-

or-robotium/20487527 (cit. on p. 23).

92

https://watirmelon.blog/testing-pyramids/
https://testing.googleblog.com/2010/12/test-sizes.html
https://testing.googleblog.com/2010/12/test-sizes.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://stackoverflow.com/questions/20046021/google-espresso-or-robotium/20487527
https://stackoverflow.com/questions/20046021/google-espresso-or-robotium/20487527

	Abstract
	Kurzfassung
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Catrobat
	Testing on Android

	Related work
	Problem statement
	Catrobat situation in late 2015
	Vital issues summary

	Approach
	Analysis of Android test strategies
	Analysis of UI test frameworks
	Analysis of Unit test framework and tools

	Implemented short-term measures
	Switch from Robotium to Espresso
	Refactoring portions of production code
	Testsuites and flaky tests
	Increase coverage through JUnit tests
	Quality and performance measuring
	Catrobat tests
	Ongoing and persistent measures
	Evaluation - Comparison before and after
	Proposed followup research

	Conclusion
	Key findings
	Lessons learned for practice
	General implications from the Catrobat case
	Reflection
	Summary

	Bibliography

