
Shield Synthesis

Runtime Enforcement for Reactive Systems

by

Bettina Könighofer

A PhD Thesis
Presented to the Faculty of Computer Science and Biomedical Engineering,

Graz University of Technology (Austria),
in Partial Ful�llment of the Requirements for the PhD Degree

Assessors

Prof. Roderick Bloem (Graz University of Technology, Austria)
Prof. Ufuk Topcu (University of Texas at Austin, USA)

December 16, 2019

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science and Biomedical Engineering

Graz University of Technology, Austria

�We can only see a short distance ahead, but we
can see plenty there that needs to be done.�

Alan Mathison Turing

Abstract

Technological advances enable the development of increasingly sophisticated sys-
tems. Smaller and faster microprocessors, wireless networking, and new theoret-
ical results in areas such as machine learning and intelligent control are paving
the way for transformative technologies across a variety of domains � self-driving
cars that have the potential to reduce accidents, tra�c, energy consumption, and
pollution; and unmanned systems that can safely and e�ciently operate on land,
underwater, in the air, and in space. However, in each of these domains, con-
cerns about safety are being raised. Speci�cally, there is a concern that due to
the complexity of such systems, traditional test and evaluation approaches will
not be su�cient for �nding errors, and alternative approaches, such as those
provided by formal methods, are needed. Runtime enforcement is a powerful
technique to ensure that a running system respects some speci�ed properties.

This dissertation presents a new general synthesis approach for runtime en-
forcement for reactive systems called shield synthesis. We specify the safety
properties which have to be obeyed by the system in temporal logic. From this
speci�cation, we automatically synthesize a correct-by-construction runtime re-
inforcement module called a shield. A shield enforces safety properties of a
running system while being minimal interfering with the system. The shield
synthesis approach is based on solving a 2-player game.

A shield can be attached to a system in two alternative ways. A post-posed
shield is implemented after the system. It monitors the system and corrects the
system's output only if necessary and as little as possible. A preemptive shield
is placed before the system and provides a list of safe outputs to the system at
each time step. This list restricts the choices of the system.

This thesis proposes di�erent types of shields to be applied in various ap-
plication areas. We discuss k-stabilizing shields and admissible shields with the
ability to recover from system errors as soon as possible. We de�ne explanatory
shields, which provide for each single deactivated output the information, which
part of the speci�cation was responsible for the deactivation. Furthermore, we
propose deterministic and probabilistic shields for reinforcement learning agents
to guarantee safety with certainty and with high probability during the learning
phase and the execution phase.

The thesis discusses the strengths and weaknesses of shields and shows their
potential and versatility by discussing the results of several case studies, by
pointing out the impact that shields already have on the research community
and beyond, and by giving several promising directions for future work.

v

Kurzfassung

Der technologische Fortschritt ermöglicht die Entwicklung von intelligenten Sys-
temen mit stetig steigender Komplexität. Kleinere und schnellere Mikroprozes-
soren, drahtlose Vernetzung, und neue theoretische Ergebnisse in Bereichen des
maschinellen Lernens und intelligenter Steuerung ebnen den Weg für transfor-
mative Technologien in einer Vielzahl von Bereichen � autonome Fahrzeuge mit
dem Potential Unfälle, Verkehr, Energieverbrauch und Umweltverschmutzung
zu reduzieren; und unbemannte Systeme, die sicher und e�zient an Land, unter
Wasser, in der Luft und im Weltraum agieren können. Aufgrund der hohen
Komplexität heutiger Systeme sind herkömmliche Test- und Veri�zierungsan-
sätze nicht mehr ausreichend und alternative Ansätze wie Formale Methoden,
welche nachweisliche Sicherheitsgarantien liefern können, sind erforderlich.

Diese Dissertation präsentiert einen neuen, allgemeinen Syntheseansatz,
genannt Shield Synthesis, um Fehler von reaktiven Systemen zur Laufzeit zu
korrigieren. Sicherheitskritische Eigenschaften des Systems werden in temporaler
Logik spezi�ziert. Basierend auf dieser Spezi�kation wird automatisch durch das
Lösen eines 2-Spieler-Spiels ein beweisbar richtiges Modul zur Fehlerkorrektur
erzeugt, genannt ein Shield. Ein Shield garantiert sicherheitskritische Eigen-
schaften und schränkt dabei die Systemausführung so wenig wie möglich ein.

Ein Shield kann einem System vor- oder nachgeschaltet werden. Ein nachge-
schaltetes Shield wird Post-posed Shield genannt. Ein Post-posed Shield über-
wacht das System und ändert seine Ausgaben nur ab, wenn dies unbedingt
erforderlich ist, um die Spezi�kation zu erfüllen. Ein vorgeschaltetes Shield,
genannt ein Preemptive Shield, berechnet zu jedem Zeitpunkt eine Liste sicherer
Ausgaben. Das System darf nur Ausgaben aus dieser Liste wählen.

In dieser Dissertation werden verschiedene Typen von Shields erörtert. k-
Stabilizing Shields und Admissible Shields sind in der Lage, nach Systemfehlern
die Kontrolle an das System so schnell wie möglich zurück zu geben. Explana-
tory Shields liefern zu jeder deaktivierten Ausgabe die Information, warum eine
Deaktivierung notwendig war. Des Weiteren werden Shields für bestärkendes
Lernen diskutiert. Wir erörtern deterministische und probabilistische Shields
für Lernagenten, um die Sicherheit während der Lern- und Anwendungsphase
mit Gewissheit oder mit hoher Wahrscheinlichkeit zu garantieren.

Diese Dissertation diskutiert die Stärken und Schwächen von Shields und
weist auf deren Potential und Vielseitigkeit hin, indem die Ergebnisse mehrerer
Fallstudien diskutiert werden, die steigende Verbreitung von Shields im akademis-
chen Bereich und darüber hinaus aufgezeigt wird und verschiedenste vielver-
sprechende Richtungen für zukünftige Forschung erläutert werden.

vii

Acknowledgements

I am indebted to numerous people who supported me in my doctoral studies
and this thesis. First of all, I thank my supervisor Roderick Bloem for his trust
and con�dence in my abilities right from the start, for sparking my interest
in research, and for guiding my work with his expertise and farsightedness. I
could not have hoped for a better advisor. I also thank all my colleagues from
my working group for the countless discussions and fruitful collaborations. A
special thanks goes to Robert Könighofer, Georg Ho�erek and Ayrat Khalimov
for monitoring me, especially at the beginning of my studies. I thank all my co-
authors, especially Rüdiger Ehlers who reviewed my phd-proposal, Ufuk Topcu,
whom I had the pleasure to visit for research collaboration at the University at
Austin in Texas and who came the long way to Austria from Texas speci�cally
for my phd-defense. Moreover, I thank all my friends, especially Ariane Wagner,
Ursula Urwanisch, Georg Ho�erek and Florian Lorber for motivating me to write
this thesis, and additional thanks goes to Florian for babysitting, which often
made my life a lot easier. I thank my parents, especially my mum, for enduring
all the ups and downs, all the progress and the delays that writing a thesis with
two little kids brings with it.

I thank my two amazing kids Benedikt and Nikolas for being my source of
happiness. Nothing has made me prouder than to watch both of you grow up.
Last but not least, I thank Robert Eberhardt for being in my life. Robert has
always been there in the smallest ways and the biggest ways. I could never ask
for a better partner or friend.

Funding. The research in this thesis has been �nancially supported by
the Austrian Science Fund (FWF) through the national research network RiSE
(S11406-N23) and by Graz University of Technology.

Bettina Könighofer
Graz, December 2019

ix

Table of Contents

Abstract v

Kurzfassung vii

Acknowledgements ix

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Background and Motivation . 1
1.2 Problem Description and Contribution 3
1.3 Related Work . 9
1.4 Outline of this Thesis . 15

2 Preliminaries 19

2.1 Motivation and Outline . 19
2.2 Basic Notation . 19
2.3 Reactive Systems . 20
2.4 Automata . 21
2.5 Acceptance Conditions . 21
2.6 Logics and Speci�cations . 22

2.6.1 Safety and Liveness Speci�cations 22
2.6.2 Propositional Logic . 23
2.6.3 Linear Temporal Logic . 23

2.7 Games . 24
2.8 Reactive Synthesis from Safety Speci�cations 26
2.9 Markov Decision Processes . 26
2.10 Reinforcement Learning . 27

3 Post-Posed and Preemptive Shields 31

3.1 Motivation and Outline . 31
3.2 Post-posed Shields . 32

3.2.1 Post-posed Shielding Setting 32
3.2.2 Illustrative Example . 32
3.2.3 De�nition of Post-posed Shields 34

xi

xii Table of Contents

3.2.4 Synthesis of Post-posed Shields 35
3.3 Preemptive Shields . 36

3.3.1 Preemptive Shielding Setting 36
3.3.2 Illustrative Example . 37
3.3.3 De�nition of Preemptive Shields 38
3.3.4 Synthesis of Preemptive Shields 39

4 k-Stabilizing and Admissible Shields 41

4.1 Motivation and Outline . 41
4.2 k-Stabilizing Shields . 43

4.2.1 Illustrative Example . 43
4.2.2 De�nition of k-stabilizing Shields 43
4.2.3 Synthesis of k-stabilizing Shields 44

4.3 Admissible Shields . 49
4.3.1 Illustrative Example . 50
4.3.2 De�nition of Admissible Shields 51
4.3.3 Synthesis of Admissible Shields 53

4.4 Liveness-Preserving k-stabilizing Shields 54
4.4.1 Illustrative Example . 54
4.4.2 Synthesis of Liveness-Preserving k-stabilizing Shields . . . 55

4.5 Experimental Results . 57
4.5.1 A Shield for the ARM AMBA Bus Arbiter 57
4.5.2 A Shield for LTL Speci�cation Patterns 59

5 Explanatory Shields 61

5.1 Motivation and Outline . 61
5.2 Explanatory Shielding Setting . 61
5.3 De�nition of Explanatory Shields 62
5.4 Synthesis of Explanatory Shields 63
5.5 Experimental Results . 64

6 Safe Reinforcement Learning via Deterministic Shields 69

6.1 Motivation and Outline . 69
6.2 Abstractions . 72
6.3 Post-posed Shields for RL . 74

6.3.1 Post-posed Shielding Setting for RL 74
6.3.2 Synthesis of Post-posed Shields for RL 76

6.4 Preemptive Shields for RL . 79
6.4.1 Preemptive Shielding Setting for RL 79
6.4.2 Synthesis of Preemptive Shields for RL 80

6.5 Convergence . 82
6.6 Experimental Results . 82

6.6.1 A Shield for a Water Tank 82
6.6.2 A Shield for simple PacMan 83

Table of Contents xiii

7 Safe Reinforcement Learning via Probabilistic Shields 87

7.1 Motivation and Outline . 87
7.2 Probabilistic Shielding Setting . 89
7.3 Synthesis of Probabilistic Shields 91

7.3.1 Scalable Shield Construction 96
7.4 Experimental Results . 97

7.4.1 A shield for PacMan. 97
7.4.2 A Shield for Service Units in a Warehouse 100

8 Conclusion 103

8.1 Summary and Goals Achieved . 103
8.2 Future Work . 104
8.3 Last Words . 106

Bibliography 107

A List of Publications 119

A.1 Journal Publications . 119
A.2 Publications in Conference and Workshop Proceedings 119
A.3 Informal Publications . 121
A.4 Relationship between Publications and Thesis 121

B Cooperations 123

Statutory Declaration 125

List of Tables

3.1 Controller corrected by a post-posed shield S. 34
3.2 Controller shielded by a preemptive shield S. 38

4.1 Controller shielded by SA. 43
4.2 Controller shielded by SB . 43
4.3 Controller corrected by a post-posed shield S. 51
4.4 Shield S correcting the arbiter. 55
4.5 Performance results for AMBA properties 59
4.6 Synthesis results for the LTL patterns. 60

5.1 Results for UAV experiments . 67

7.1 Average scores and win rates for PacMan. 99
7.2 Average scores and win rates for warehouse. 101

xv

List of Figures

1.1 Post-posed shielding . 5
1.2 Preemptive shielding . 6

2.1 Reactive system implementing a simple arbiter. 20
2.2 Reinforcement learning . 28

3.1 Post-posed shielding - Detail . 32
3.2 Safety speci�cation ϕ for the tra�c light controller. 33
3.3 A post-posed tra�c light shield S. 33
3.4 The safety automaton ϕ of Example 5. 35
3.5 Preemptive shielding - Detail . 37
3.6 A preemptive tra�c light shield S. 37

4.1 Recovery phases of k-stabilizing shields. 44
4.2 Outline of the shield synthesis procedure for k-stabilizing and

admissible shields. 45
4.3 Violation monitor U of Example 6. 46
4.4 The deviation monitor T. 47
4.5 Safety speci�cation for the tra�c light controller with 4 phases. 50
4.6 Safety speci�cation ϕs of simple arbiter. 54
4.7 Guarantee 3 from the AMBA case study 58
4.8 Shield execution results . 58

5.1 Explanatory Shielding Setting 62
5.2 A map for UAV mission planning. 65
5.3 Safety automaton of Property P1. 66
5.4 Simulation of explanatory preemptive shield developed on AMASE. 67

6.1 Post-posed shielded reinforcement learning 70
6.2 Preemptive shielded reinforcement learning 71
6.3 A hot water storage tank with an in�ow, an out�ow, and a tank

heater. 73
6.4 The speci�cation ϕs for the water tank controller. 73
6.5 The abstraction ϕM of the water tank behavior. 74
6.6 Post-posed shielded reinforcement learning - Detail 75
6.7 An excerpt for the product game of the water storage tank ex-

ample. 77

xvii

xviii List of Figures

6.8 Preemptive shielded reinforcement learning - Detail 80
6.9 Accumulated reward for the water tank example. 83
6.10 Simple PacMan . 84
6.11 Resulting scores for simple PacMan 84

7.1 Work�ow of the Shield Construction 92
7.2 Still from video on small PacMan. 97
7.3 Scores during training for small PacMan. 97
7.4 Still from video on classic PacMan. 98
7.5 Scores during training for classic PacMan. 98
7.6 Still from the video on warehouse. 100
7.7 Scores during training for warehouse. 100

1
Introduction

1.1 Background and Motivation

The future of mobility is autonomous. Most major automobile manufacturers
are experimenting with fully autonomous vehicles and advanced driver-assist
systems are already installed as standard equipment. Designers of trains and
plains are deploying partially autonomous control systems and are experimenting
with fully autonomous systems. These autonomous systems are increasingly
sophisticated and complex and make extensive use of machine learning, such as
reinforcement learning, and other optimization techniques for smart control in
open environments [Ful18]. However, due to the complexity of such systems, it
is practically infeasible to cover the entire input space with test cases. Hence,
for critical applications, testing alone is often not enough to achieve a satisfying
level of con�dence in the correctness of a system [LBR09, DVP11].

Model checking [CE81, QS82] can formally verify that a hardware or software
system satis�es a temporal logic speci�cation. It exhaustively considers all pos-
sible input scenarios for a system, thereby eliminating the incompleteness that is
inherent in testing. Model checking is often used to verify systems at design time,
but this is not always realistic. Some systems are too large to be fully veri�ed:
for complex systems, the number of inputs and states of the system can be enor-
mous. Thus, model checking approaches su�er from scalability problems, and
it may be infeasible to prove the correctness of a complex system with respect
to a given speci�cation. Other systems, especially systems that operate in rich,
dynamic environments or those that continuously adapt their behavior through
methods such as machine learning, cannot be fully modeled at design time. Still,
others may incorporate components that have not been previously veri�ed and

1

2 Chapter 1. Introduction

cannot be modeled, e.g., proprietary components or pre-compiled code libraries.
Also, even systems that have been fully veri�ed at design time may be subject
to external faults such as those introduced by unexpected hardware failures or
human inputs. One way to address this issue is to model non-deterministic be-
haviors (such as faults) as disturbances and to verify the system with respect to
this disturbance model [MMM+14]. However, it may be impossible to model all
potential unexpected behavior at design time. An alternative in such cases is to
perform runtime veri�cation to detect violations of speci�ed properties while a
system is executing [BLS11, LS09].

Reactive synthesis [Chu63, BJP+12, Pnu77] is even more ambitious than
model checking since it aims to generate a provably correct reactive system
from a given speci�cation fully automatically. Reactive systems continuously
interact with their environment over inputs and outputs in a synchronous way.
In every time step, the environment �rst provides input values, after which
the system responds with output values. A temporal logic speci�cation for a
reactive system de�nes the allowed interaction between the environment and
the system. The speci�cation may only express what the system shall do but
does not de�ne how this is to be achieved. Therefore, writing a speci�cation
can be signi�cantly easier than implementing it. The correct-by-construction
property of synthesis eliminates the need for testing, veri�cation, and debugging
of the implementation, thereby saving development time and costs.

However, in order to synthesise complete systems from given temporal logic
speci�cations, reactive synthesis requires a complete speci�cation, which de-
scribes every aspect of the desired system. For complex systems, writing such
a speci�cation can sometimes be as hard as implementing the system itself, or
even unmanageable, because certain aspects of a system are often easier to de�ne
imperatively. Furthermore, the problem of synthesizing reactive systems from
Linear Temporal Logic (LTL) [Pnu77] speci�cations has a doubly exponential
worst-case complexity [Ros92]. Hence, synthesis algorithms may not be scalable
enough to realize large speci�cations. Applicability and scalability are the two
main reasons why synthesis of complete systems from declarative speci�cations
is often unrealistic in practice.

Runtime enforcement extends runtime veri�cation by not only detecting
property violations, but also altering the behavior of the system in a way that
maintains the desired property [Fal10, FFM12]. Runtime enforcement has been
studied in domains such as action systems: a monitor watches the current ex-
ecution sequence of a system and either halts the system, or suppresses, in-
serts, or bu�ers actions, whenever the system deviates from the speci�ed prop-
erty [LBW09]. Runtime enforcement for reactive systems poses unique challenges
where runtime enforcers must act without delay. In particular, when correct-
ing reactive systems, a runtime enforcer cannot insert or delete time steps, and
cannot halt the system in the case of a violation.

Synthesis of runtime reinforcement modules for reactive systems from tem-
poral logic speci�cations was not studied before the work this thesis is based on.

1.2. Problem Description and Contribution 3

1.2 Problem Description and Contribution

Shield Synthesis

In this thesis, we discuss a new general synthesis approach for runtime
enforcement for reactive systems called shield synthesis. Given the tem-
poral logic speci�cation that is to be obeyed by a system, we propose to
synthesize a reactive system called a shield via correct-by-construction
reactive synthesis algorithms. The shield is attached to the system to
enforce the speci�ed properties at run time. The shield continuously
monitors the input/output of the system and interferes with the system
only if necessary, and as little as possible, so other non-critical properties
are likely to be retained.

We propose shield synthesis as a way to complement model checking and
reactive synthesis. Our goal is to enforce safety properties at runtime, even
if these properties may be violated by the system. Imagine a complex system
and a set of properties that cannot be proven due to scalability issues or other
reasons (e.g., third-party IP cores). In this setting, we are in good faith that the
properties hold, but we need to have certainty. In such situations, we propose
to automatically synthesize a shield, attach the shield to the system, and the
shielded system is then guaranteed to satisfy the speci�ed properties. The shield
monitors the input/output of the system and is able to correct or to restrict the
system's output, but only if necessary and as little as possible.

Shields may also be used to simplify certi�cation. Instead of certifying a com-
plex system against critical requirements, we can synthesize a shield to enforce
them, regardless of the behavior of the system. Then, we only need to certify
this shield, or the synthesis procedure, against the critical requirements.

Advantages of shielding. Shield synthesis is a promising new direction for
synthesis in general because it uses the strengths of reactive synthesis (provable
correctness) while avoiding its weaknesses (scalability, applicability). The main
advantages of shielding are the following:

� Provable correctness. The main task of a shield is to ensure correct-
ness against a formal speci�cation. Shields are constructed via correct-by-
construction reactive synthesis methods that provide mathematical guar-
antees on correct behavior with respect to the speci�cation. Therefore, it
is guaranteed that the shielded system satis�es the safety speci�cation.

� Preserving optimality. A shield is minimal interfering and restricts
the system as little as possible and intervenes only if safe system behavior
would be endangered otherwise. The minimum interference property of the

4 Chapter 1. Introduction

shield is important, because the system may satisfy additional noncritical
properties that are not considered by the shield but should be retained as
much as possible.

� Scalability and applicability. Shield synthesis can succeed where model
checking and reactive synthesis fail because it only considers the safety
critical properties, as opposed to the complex system (the system is treated
as black box and it is not required to synthesize a shield), or the complete
speci�cation in the case of reactive synthesis. The set of safety-critical
properties can be small and relatively easy to specify, which implies both
usability and scalability.

� Universality. Shields can be attached to almost any system that is in
constant interaction with its environment, e.g., to reactive controllers, to
machine learning agents, or shields may even be used to support human
operators.

Example 1

Consider the example of a path planner for autonomous vehicles. Many require-
ments on system behaviors such as safety concerns may be known and expressed
as speci�cations in temporal logic and can be enforced by reactive controllers.
This includes always driving in the correct lane, never jumping a red light, and
never exceeding the speed limit [WET15].

The complete speci�cation of the path planner may incorporate more subtle
considerations, such as speci�c intentions for the current scenario and personal
preferences of the human driver, such as reaching some goal quickly but at the
same time driving smoothly. A path planner implementing the complete spec-
i�cation and optimizing all performance properties might be very complex and
might be obtained by applying a machine learning algorithm, rendering complete
testing or formal veri�cation of the planner with respect to the safety properties
infeasible.

A shield attached to the path planner can provide correctness guarantees con-
cerning the safety speci�cation while preserving the optimality provided by the
path planner. Even though the path planner is very complex, shielding is man-
ageable, since only the safety properties are considered for the construction of
the shield, i.e., the correctness guarantees are agnostic to the actual path plan-
ner. Optimality is preserved as long as the planner acts correctly since the shield
intervenes with the path planner only if this is necessary to guarantee safety.

Types of shields. A shield can be attached to a system in two alternative
ways, depending on the location at which the shield is implemented. We distin-
guish between post-posed shields and preemptive shields.

� Post-posed shields. In post-posed shielding, depicted in Figure 1.1, the
shield is introduced after the system. The post-posed shield monitors
the inputs and outputs from the system and corrects the system's output
if necessary. Thereby, the shield ensures (1) correctness (it corrects any

1.2. Problem Description and Contribution 5

Environment System
input

output

safe output

Figure 1.1: Post-posed shielding

erroneous output values instantaneously such that the safety speci�cation
is satis�ed) and (2) minimum interference (it deviates from the system's
output as little as possible). One big advantage of post-posed shielding is
that the system can be designed as usually. The fact that the system will
be shielded at runtime causes no additional e�ort in the design process of
the system. During shielding, the system is used purely as a black box.

� Preemptive shields. In preemptive shielding, depicted in Figure 1.2, the
shield is placed before the system and provides a list of safe outputs to the
system at each time step. This list restricts the choices for the system. If
the system chooses only outputs from the list of outputs provided by the
shield at any time step, the preemptive shield provides (1) correctness (at
any time step, the system can only choose safe outputs) and (2) minimum
interference (the shield allows the system to pick any output as long as it
is safe).

The concept of shielding has a broad area of application. Shields can be
attached to many di�erent types of systems to ensure safety, e.g., to reactive
controllers, to human operators, or reinforcement learning agents. Depending
on the setting, a shield may need to correct, restrict, or communicate with the
system in particular ways. Therefore, we further categorize shields based on
their properties they satisfy additionally to the two basic properties of shields
(correctness and minimum interference). In this thesis, we discuss the following
types of shields in detail:

� k-Stabilizing and admissible shields. In post-posed shielding, a shield
has to correct erroneous output values instantaneously. Since the system
satis�es many properties that are not considered by the shield, shields
should end phases of deviations as soon as possible, recovering quickly.

The di�culty lies in the fact, that a shield with the ability to recover has to
overwrite the outputs in such a way, that the recovery phase ends as soon
as possible, without any knowledge of the implementation of the system
or future inputs from the environment.

To this end, we will discuss two concrete shield synthesis methods to
automatically construct shields that can recover. The resulting shields

6 Chapter 1. Introduction

Environment System

input

safe outputs

safe output

Figure 1.2: Preemptive shielding

are called k-stabilizing shields and admissible shields. k-stabilizing shields
guarantee recovery in a �nite time. When the system arrives at a state
where a property violation becomes unavoidable for some possible future
inputs, the shield is allowed to deviate for at most k consecutive steps.
Whereas k-stabilizing shields take an adversarial view on the system, ad-
missible shields take a collaborative view. That is, if there is no shield
that guarantees recovery within k steps regardless of system behavior, the
admissible shield will attempt to work with the system to recover as soon
as possible.

� Explanatory shields. If the outputs to be corrected are not initiated by
a system but by a human operator, it is essential to provide simple and
intuitive explanations to the operator for any restrictions of the shield.
When shielding human operators, we attach the shield before the operator,
i.e., the shield is a preemptive shield and acts each time the operator is
about to make a decision and provides a list of safe outputs. Additionally,
the shield o�ers for each single deactivated output the information, which
part of the speci�cation was responsible for the deactivation. We call such
shields explanatory shields.

� Deterministic shields for reinforcement learning. We consider post-
posed and preemptive deterministic shields for learning agents and modify
the loop between the learning agent and its environment in two alternative
ways, respectively. In the post-posed implementation of the shield, the
shield monitors the actions selected by the learning agent and corrects
them if and only if the chosen action is unsafe. In the case of preemptive
shielding, the shield is implemented before the learning agent and acts
each time the learning agent is to make a decision and provides a list of
safe actions. The shield allows the agent to follow any policy as long as it
is safe according to a given safety speci�cation. In both cases, the shield
ensures safety with certainty during learning and execution.

� Probabilistic shields for reinforcement learning. Using a determin-
istic shield, a learning agent avoids safety violations altogether. However,

1.2. Problem Description and Contribution 7

in many cases this tight restriction limits the agent's exploration and un-
derstanding of the environment, and policies satisfying the restrictions may
not even exist.

Without randomness, all states are either absolutely safe or unsafe. How-
ever, in the presence of randomness, safety may be seen as a quantitative
measure: in some states, all actions may induce a considerable risk, while
in other states, one action may be considered relatively safe. A proba-
bilistic shield enables decision-making to adhere to safety constraints with
high probability. If an action increases the probability of a safety violation
by more than a factor 1/δ with respect to the optimal safety probability,
the shield blocks the action from the agent. The shield is adaptive with
respect to δ, as a high value for δ yields a stricter shield, and a smaller
value yields a more permissive shield.

Limitations of shielding. Besides the many strengths of shields synthesis,
shields also have several limitations. These limitations suggest directions for
future research to overcome or to compensate them.

� Representation of strategies. Post-posed shields implement (memo-
ryless) deterministic strategies, i.e., given the current state and current
input, the strategy de�nes a �xed output. Preemptive shields implement
(memoryless) non-deterministic strategies that permit per con�guration
many outputs instead of prescribing one. If such strategies, especially non-
deterministic strategies, are computed as a list, these lists can easily take
several gigabytes and cannot be exported easily. Therefore, compact rep-
resentations of strategies, which can yield to acceptably short and simple
code, are needed. This is still an ongoing research topic [EKH12, AKL+19].

� Inaccurate environment models. The computation of shields is based
on a faithful abstraction of the physical environment dynamics. In case
of an inaccurate model, the current approach fails, even for minor errors.
Fur future work, we propose a self-correcting modeling approach using
automata learning and model repair, where the model will correct itself
whenever discrepancies between the model and the real environment dy-
namics are detected.

� Expressiveness of speci�cations. At the moment, we consider as spec-
i�cations LTL safety formulas over Boolean signals. These speci�cations
may not be expressive enough to formalize the required safety properties
of cyber-physical systems, which involve real-valued signals and work in
continuous time steps. To this end, as future work, we will explore more
expressive speci�cations like speci�cations given in signal temporal logic
(STL) of timed automata to construct shields, and we will investigate gen-
eral synthesis methods for these kinds of speci�cations, building on the
work of Wu et al. [WWDW19].

8 Chapter 1. Introduction

� Complexity of k-stabilizing and admissible shields. k-stabilizing
and admissible shields use a subset construction to construct a belief set
that captures all possibilities to avoid unjust verdicts by the shield. This
subset construction leads to an exponential blow-up of the state space.
Therefore, these types of shields can currently only be used if the prop-
erties to be shielded are relatively simple. For future work, we will apply
heuristics to avoid this blow-up for concrete application scenarios [ET15].

Contributions of this thesis. In summary, the main contributions of this
thesis are the following:

Contribution

� We proposed a new direction in reactive synthesis for synthesizing
runtime enforcement modules, called shields. Shields guarantee
correctness of the shielded system with respect to a temporal lo-
gic speci�cation and provide minimal interference to preserve the
optimality of the system.

� We proposed two basic types of shielding: preemptive and post-
posed shielding.

� We enhanced post-posed shields with the ability to recover quickly
and called these shields k-stabilizing and admissible shields.

� We proposed explanatory shields designed for shielding human op-
erators that provide explanations for any actions deactivated by
the shield.

� We were the �rst to combine reactive synthesis with reinforce-
ment learning. We discuss deterministic and probabilistic shields
to guarantee safety with certainty and with high probability during
exploration and exploitation.

� For all types of shields, we discussed the setting, motivated the
problem and technical challenges with examples, de�ned the shield,
and provided synthesis algorithms to construct such shields auto-
matically.

1.3. Related Work 9

1.3 Related Work

Reactive synthesis. In 1962, Alonzo Church [Chu63] �rst posed the syn-
thesis problem for speci�cations given in the so-called Monadic Second Order
Logic of One Successor (S1S). A few years later, Büchi and Landweber [BL69]
gave a solution to Church's problem. Unfortunately, the worst-case complexity
of the synthesis problem from S1S speci�cations is non-elementary, i.e., can-
not be expressed with a �xed number of exponentiations. In 1989, Pnueli and
Rosner [PR89] studied the synthesis of reactive systems from Linear Temporal
Logic (LTL) [Pnu77] speci�cations and established a doubly exponential lower
bound for this problem. Due to these high complexities, synthesis was deemed
intractable for any industrial examples and was mainly of academic interest for
quite some time.

Despite these high worst-case complexities, much research e�ort has been
invested over the last two decades on reactive synthesis theory, algorithms, and
tools and the developments made synthesis techniques applicable to real-world
problems. One approach is to limit the expressiveness of the speci�cation lan-
guage. For instance, Bloem et al. [BGJ+07] have shown that Generalized Re-
activity of Rank 1 (GR(1)) is a speci�cation language that is expressive enough
for many applications, and that can e�ectively be used to synthesize examples
of industrial scale. Furthermore, symbolic synthesis algorithms and tools imple-
menting them were developed [ER16]. Existing synthesis approaches mostly use
Binary Decision Diagrams (BDDs) [Bry86] as a reasoning engine. Satis�ability-
based bounded synthesis [SF07] by Finkbeiner and Schewe is an alternative
to classical BDD-based synthesis approaches. This approach sets a bound on
the size of the systems to construct and increases this bound iteratively un-
til an implementation is found. The rationale behind this approach is that
real-world speci�cations typically have relatively simple implementations. Over
the past decade, reactive synthesis from temporal logic speci�cations became
a hot topic with tons of publications. To give just a few examples, consider
[BJP+12, JGWB07, FJR09, SS13, JB12].

Our work on shield synthesis builds on the above-mentioned work on syn-
thesis of reactive hardware modules from temporal logic formulas. However, our
approach di�ers in that we do not synthesize an entire system, but rather a
shield that considers only a small set of properties and corrects the output of
the system at runtime.

Methodologically, our shield synthesis algorithms build upon the existing
work on synthesis of robust systems [BCG+14], which aims to generate a com-
plete system that satis�es as many properties of a speci�cation as possible if
assumptions are violated. However, our goal is to synthesize a shield compo-
nent, which can be attached to any system, to ensure that the shielded system
satis�es a given set of critical properties. Our k-stabilizing synthesis method
aims at minimizing the ratio between shield deviations and property violations
by the system, but achieves it by solving pure safety games. Furthermore, the
synthesis method in [BCG+14] uses heuristics and user input to decide from
which state to continue monitoring the environmental behavior, whereas we use

10 Chapter 1. Introduction

a subset construction to capture all possibilities to avoid unjust verdicts by the
shield. We use the notion of k-stabilization to quantify the shield deviation from
the system, which has similarities to Ehlers and Topcu's notion of k-resilience
in robust synthesis [ET14] for GR(1) speci�cations [BJP+12]. However, the
context of our work is di�erent, and our k-stabilization limits the length of the
recovery period instead of tolerating bursts of up to k glitches.

Runtime enforcement. Runtime veri�cation is a technique that monitors
the execution of an underlying system against a set of speci�ed properties at
runtime. Runtime enforcement is an extension of runtime veri�cation, aiming to
enforce speci�ed behaviors. Within this technique, an enforcer not only observes
the current system execution, but the enforcer also modi�es it such that the
execution is always correct.

In 2000, the concept of runtime enforcement was �rst introduced by Schnei-
der [Sch00]. In his work, he proposed security automata, which watch the current
execution sequence of a system and simply halt the system whenever it deviates
from the speci�ed property. Such security automata are able to enforce safety
properties stating that something bad can never happen.

More recently, Ligatti et al. [LBW09] proposed more powerful enforcement
modules called edit-automata, able to suppress or insert actions. Falcone et
al. [FFM12] proposed to bu�er actions and dump them once the execution is
shown to be safe.

None of these approaches is appropriate for reactive systems where the en-
forcer must act upon erroneous outputs on-the-�y, i.e., without delay and with-
out knowing what future inputs/outputs are. In particular, our shield cannot
insert or delete time steps, and cannot halt in the case of a violation.

Li et al. [LSSS14] focused on the problem of synthesizing a semi-autonomous
controller that expects occasional human intervention for correct operation. A
human-in-the-loop controller monitors past and current information about the
system and its environment. The controller invokes the human operator only
when it is necessary, but as soon as a speci�cation is violated ahead of time, such
that the human operator has su�cient time to respond. Similarly, our shields
monitor the behavior of systems at run time, and interfere as little as possible.

The term runtime assurance is often used in frameworks in which a switch-
ing mechanism alternates between running a high-performance system and a
provably safe one [Sha01], and has applications, for example, in control of
robotics [PYG+17] and drones [DGS+19].

Safe reinforcement learning. In reinforcement learning (RL), an agent acts
to optimize a long-term return that models the desired behavior for the agent
and is revealed to it incrementally in a reward signal as it interacts with its
environment [SB98].

During the exploration, the current policy of the learning agent may be
unsafe in the sense that it harms the agent or the environment. This shortcoming
restricts the application of RL mainly to academic or uncritical application areas

1.3. Related Work 11

where safety is not a concern and has triggered the direction of safe exploration
for RL, in short, safe RL [GF15, PS14].

An exploration process is called safe if no undesirable states are ever visited,
which can only be achieved through the incorporation of external knowledge
[GF15, MA12]. The safety fragment of temporal logic that we consider is more
general than the notion of safety of [GF15] (which is technically a so-called in-
variance property [BK08]). One way of guiding exploration in learning is to
provide teacher advice. A teacher (usually a human) provides advice (e.g., safe
actions) when either the learner [PS14, Clo97] or the teacher [TB06] considers
it to be necessary to prevent catastrophic situations. Most approaches to safe
RL [GF15, PS14] rely on reward engineering and e�ectively changing the learn-
ing objective. For example, in the teacher setting, the human teacher tunes
the reward signal before sending it to the agent [TB06, TB08]. In contrast to
ensuring temporal logic constraints, reward engineering designs, or �tweaks� the
reward functions such that a learning agent behaves in a desired, potentially
safe manner. As rewards are specialized for particular environments, reward
engineering runs the risk of triggering negative side e�ects or hiding potential
bugs [SPE+14]. Recently, it was shown that reward engineering is not su�cient
to capture temporal logic constraints in general [HPS+19].

Our work is closely related to teacher-guided RL, since a shield can be con-
sidered as a teacher, who provides safe actions and restricts the agent only if
absolutely necessary. In contrast to previous work, the reward signal does not
have to be manipulated by the shield, since the shield corrects unsafe actions in
the learning and exploitation phases.

Formal methods and reinforcement learning. All of the above approaches
for reactive synthesis have in common that a faithful, yet precise enough, ab-
straction of the physical environment is required, i.e., the synthesized controllers
guaranty to satisfy the speci�cation under the known environment dynamics.
Therefore, it is necessary to combine reactive synthesis with faithful environ-
ment modeling and abstraction. Wongpiromsarn et al. [WTM12] de�ne a re-
ceding horizon control approach that combines continuous control with discrete
correctness guarantees. For simple system dynamics, the controller can be com-
puted directly [HK99]. For more complex dynamics, the approach is computa-
tionally too di�cult. An adequate abstraction of the environment is not only
di�cult to obtain in practice but also introduces the mentioned computational
burden. Control methods based on reinforcement learning partly address this
problem, but do not typically incorporate any correctness guarantees.

First approaches directly incorporating formal speci�cations tackle this prob-
lem with pre-computations; making assumptions on the available information
about the environment [WET15, JND+16, FP18, HAK18, MCKB17, MA12].
For example, Wen et al. [WET15] propose a method to combine strict correct-
ness guarantees with reinforcement learning. They start with a non-deterministic
correct-by-construction strategy and then perform reinforcement learning to
limit it towards cost optimality without having to know the cost function a

12 Chapter 1. Introduction

priori. Junges et al. [JND+16] adopt a similar framework in a stochastic set-
ting. A major di�erence between the works by Wen et al. and Junges et
al. [WET15, JND+16] on the one hand and the shielding framework on the
other hand is the fact that the computational cost of the construction of the
shield depends on the complexity of the speci�cation and a very abstract ver-
sion of the environment, and is independent of the state space components of
the environment to be controlled that are irrelevant for enforcing the safety
speci�cation.

In this thesis, we will discuss deterministic shields that guarantee safety with
certainty, and probabilistic shields that guarantee safety with high probabil-
ity. Consideration of stochastic behavior is natural to RL. Intuitively, without
stochasticities, a learning agent does not take any risk, which is unrealistic in
most scenarios. Moreover, often one cannot assume that almost-sure safety is
realizable. A similar approach to our probabilistic shields was developed inde-
pendently in [BKN+19], but targets a di�erent case study and does not consider
scalability issues of formal veri�cation.

In a related direction, methods from reinforcement learning have been suc-
cessfully employed to improve the scalability of veri�cation methods for MDPs.
Such approaches often use rich speci�cations like ω-regular languages as a control
to guide the exploration of MDP during learning [SKC+14, BCC+14, HAK18,
KPR18].

Safe model-based RL for continuous state spaces employing Lyapunov func-
tions is considered in [BTSK17, CNDGG18]. Ohnishi et al. [OWNE19] use con-
trol barrier functions (CBFs) for safe RL. The tool UPPAAL STRATEGO provides
several algorithms combining safety synthesis with optimizing RL for continuous
space MDPs [DJL+15].

Probabilistic planning considers similar problems as probabilistic model check-
ing [SHB16, Kol12]. A recent comparison between tools from both areas can be
found in [HHH+19].

Follow-up shield synthesis papers. Shield synthesis opened a new research
area in reactive synthesis, and especially the combination of shields with rein-
forcement learning agents became a hot topic in the last two years. This is
witnessed by the fact that the papers on shield synthesis by the author are al-
ready cited over a hundred times, and several follow up papers were already
published by the time this thesis was written. Several research groups adapted
the name shield synthesis for their synthesis approaches. We cite a few papers
that build on the papers this thesis is built on.

� M. Wu J. Wang, J Deshmukh, C. Wang: Shield Synthesis for Real: En-
forcing Safety in Cyber-Physical Systems. arXiv. 2019 [WWDW19]
Wu et al. extend shields for boolean signals to real-valued shields to en-
force the safety of cyber-physical systems. Boolean shields do not handle
real-valued signals ubiquitous in cyber-physical systems, meaning their
corrections may be either unrealizable or ine�cient to compute in the real
domain. The proposed approach analyzes the compatibility of predicates

1.3. Related Work 13

de�ned over real-valued signals, and uses the analysis result to constrain
the corrections of the shield.

� H. Zhu, Z. Xiong, S. Magil, S. Jagannathan: An Inductive Synthesis
Framework for Veri�able Reinforcement Learning. PLDI. 2019 [ZXMJ19]
The authors developed a counterexample-guided inductive synthesis frame-
work (CEGIS) that treats the neural control policy as an oracle to guide the
search for a simpler deterministic program that approximates the behavior
of the network but which is more amenable for veri�cation. Veri�cation
methods are used to guarantee that all actions proposed by the synthesized
program are safe according to the speci�cation. The synthesized program
is treated as a safety shield, overriding the proposed actions of the network
whenever such actions can cause the system to enter into an unsafe region.

� O. Bastani: Safe Reinforcement Learning via Online Shielding. arXiv.
2019 [Bas19]
Bastani proposed an approach based on shielding, which uses a backup con-
troller to override the learned controller if necessary to ensure that safety
holds. Rather than to compute when to use the backup controller ahead-
of-time, this computation is performed online, which enables adaptivity to
new environments.

� S. Bharadwaj, S. Carr, N. Neogi, H. Poonawala, A. B. Chueca, U. Topcu:
Tra�c Management for Urban Air Mobility. NFM. 2019 [BCN+19]
The authors presented a localized shield synthesis method to generate
shields to perform tra�c management for an urban air mobility (UAM)
systems. Their method exploits the geographic separation of the tra�c
management problem to avoid the full distributed synthesis problem and
focus on localized shield synthesis where shields can observe the outputs
of neighbors. Assume-guarantee contracts between neighboring shields are
used to ensure that each shield can still satisfy its safety requirements
without violating the ability of neighbors to satisfy theirs.

The following two publications on shield synthesis are from the author of this
thesis but are not captured in this thesis.

� S. Bharadwaj, R. Bloem, R. Dimitrova, B. Könighofer, U. Topcu: Synthe-
sis of Minimum-Cost Shields for Multi-agent Systems. ACC. 2019 [BBD+19]
In this paper, we presented a technique for synthesizing quantitative shields
for multi-agent systems. Each agent of the multi-agent system is moni-
tored, and if needed corrected, by the shield, such that a global speci�ca-
tion is satis�ed.

The distributed nature of the problem gives rise to a number of consid-
erations to be made during the shield synthesis procedure. To explore
the design space of possible shields for multi-agent systems, we catego-
rized shields based on three criteria according to (1) the interference of
the shield processes with the individual agents, (2) the assumptions on the

14 Chapter 1. Introduction

behavior of the agents the shield can rely on, and (3) the fairness of the
shield with respect to the individual agents.

1. Quantifying interference. By construction, a shield is guaranteed to
enforce the correct operation of the shielded system. However, we might
prefer one shield over another, based on how much the shield interferes
with the system as a whole, or how it interferes with the individual agents
in case of an error. In this paper, we introduced the notion of interfer-
ence cost to quantify the quality of a shield and synthesize cost-optimal
shields that minimize the interference cost for the worst-case behavior of
the multi-agent system. We discussed di�erent cost functions and provided
algorithms to synthesize cost-optimal shields.

2. Assumptions on the multi-agent system. The shield synthesis procedure
does not rely on the particular implementation of the system or speci�ca-
tions of each of the agents, which is the key to the practicability of the
approach. Instead, a shield has to guarantee safety for any possible im-
plementation. However, it is often realistic to make assumptions on the
worst-case behavior of the system and synthesize optimal shields with re-
spect to the chosen interference cost under these assumptions. A natural
assumption is that wrong outputs rarely occur, i.e., the length of all se-
quences of wrong outputs is bounded. When such knowledge is available,
we computed a cost-optimal shield considering the worst-case behavior of
any system satisfying the assumptions.

3. Fair shielding. In the multi-agent setting, in which each agent might
have to ful�ll some individual goals, it is often important that a shield
treats all agents fairly: in case of an error, a fair shield does not always
interfere with the same agent repeatedly. In the paper, we de�ned a fairness
notion for shields, and discussed the corresponding synthesis procedure.

We demonstrated the applicability of our approach via a detailed case
study on UAV mission planning for warehouse logistics and simulating the
shielded multi-agent system on ROS/Gazebo.

� G. Avni, R. Bloem, K. Chatterjee, T. A. Henzinger, B. Könighofer, S.
Pranger: Run-Time Optimization for Learned Controllers Through Quan-
titative Games. CAV. 2019 [ABC+19]
Besides safety issues, learned controllers have further shortcomings. In
particular, it is di�cult to add features without retraining, to guarantee
any level of performance, and to achieve acceptable performance when
encountering untrained scenarios.

In this work, we used quantitative shields to deal with the limitations of
learned or any other black-box controllers by optimizing quantitative mea-
sures. We were interested in synthesizing lightweight shields. We assumed
that the controller performs well on average, but has no worst-case guar-
antees. When combining the shield and the controller, intuitively, the
controller should be active for the majority of the time, and the shield in-
tervenes only when it is required. We formalized the controller performance

1.4. Outline of this Thesis 15

as well as the interference cost using quantitative measures. Unlike safety
objectives, where it is clear when a shield must interfere, with quantitative
objectives, a non-interference typically does not have a devastating e�ect.
It is thus challenging to decide, at each time point, whether the shield
should interfere or not; the shield needs to balance the cost of interfering
with the decrease in performance of not interfering.

The problem of constructing a shield that guarantees maximal performance
with minimal interference is the problem of �nding an optimal strategy in
a stochastic 2-player game with a quantitative objective obtained from
combining the performance and interference measures. Our construction
of the game can be seen as a two-step procedure: we construct a stochastic
game with two mean-payo� objectives, where the shield player's goal is to
minimize both the behavioral and interference scores separately. We then
reduce the game to a �one-dimension� game by weighing the scores with
the parameter λ.

Finally, in our setting, the parameter λ provides a meaningful tradeo�: it
can be associated with how well we value the quality of the controller. If the
controller is of poor quality, then we charge the shield less for interference
and set λ to be low. On the other hand, for a high-quality controller, we
charge the shield more for interferences and set a high value for λ.

We illustrated the e�ectiveness of our approach by automatically construct-
ing lightweight shields for learned tra�c-light controllers in various road
networks. The shields we generated avoid liveness bugs, improved con-
troller performance in untrained and changing tra�c situations, and added
features to learned controllers, such as giving priority to emergency vehi-
cles.

1.4 Outline of this Thesis

After this introductory chapter, Chapter 2 will revisit the theoretical background
on which our research is based. We will also give essential de�nitions and estab-
lish notation conventions.

Chapter 3 is dedicated to the motivation and the de�nition of shields. We
will de�ne and synthesize preemptive and post-posed shields based on their two
basic properties: correctness and minimum interference.

In Chapter 4, we will discuss two concrete shield synthesis approaches to
synthesize (1) k-stabilizing shields that guarantee recovery within k steps, and
(2) admissible shields that recover with the help of the system. Following, we
will extend the k-stabilizing shield synthesis procedure to be liveness preserving,
i.e., erroneous output values of the reactive system are corrected in such a way
that liveness properties of the system are preserved. To conclude this chapter,
we will provide experimental results for both shield synthesis approaches.

In Chapter 5, we will discuss preemptive shields for human operators who
work with autonomous systems. In this setting, we discuss explanatory shields

16 Chapter 1. Introduction

that aim to provide simple explanations to human operators for any interferences.
We will motivate the need for shielding a human operator via a case study
involving mission planning for an unmanned aerial vehicle (UAV), and we will
conclude this chapter with experimental results on this case study.

In Chapter 6, we will introduce a deterministic shield in the classical rein-
forcement learning setting to guarantee safety with certainty during the explo-
ration and exploitation phase, and discuss post-posed and preemptive shielded
learning. Furthermore, we will discuss the consequences of shielding for conver-
gence guarantees of the underlying learning algorithm. Finally, we will demon-
strate the versatility of our approach on several challenging reinforcement learn-
ing scenarios.

As in Chapter 6, Chapter 7 is also dedicated to shielding a reinforcement
learning agent, but this time, the shield exploits the underlying stochastic be-
havior of the MDP model of the environment. We will synthesize a probabilistic
shield that forces decision-making to provably adhere to the safety requirements
with high probability. This allows the learning agent to take some risks in or-
der to foster progress in su�ciently exploring the environment. We will show
tradeo�s between su�cient progress in the exploration of the environment and
ensuring strict safety. In our experiments, we will show that the learning e�-
ciency increases as the learning needs orders of magnitude fewer episodes.

Chapter 8 will summarize our work, point out the most important contribu-
tions, and talk about potential future work.

1.4. Outline of this Thesis 17

Declaration of Sources

Chapter 1 was based on and reuses material from the following sources,
previously published by the author:

� [BKKW15] R. Bloem, B. Könighofer, R. Könighofer, C. Wang:
Shield synthesis - runtime enforcement for reactive systems.
TACAS. 2015

� [HKKT16] L. R. Humphrey, B. Könighofer, R. Könighofer, U.
Topcu: Synthesis of admissible shields. HVC. 2016

� [KAB+17] B. Könighofer, M. Alshiekh, R. Bloem, L. R. Humphrey,
R. Könighofer, U. Topcu, C. Wang: Shield synthesis. FMSD. 2017

� [ABE+18] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, Scott
Niekum, and Ufuk Topcu: Safe reinforcement learning via shield-
ing. AAAI. 2018

� [JKJB18a] N. Jansen, B. Könighofer, S. Junges, R. Bloem: Shielded
decision-making in MDPs. ArXiv. 2018

References to these sources are not always made explicit.

2
Preliminaries

2.1 Motivation and Outline

In this section, we will revisit some theoretical background on which our work
builds. We assume that the reader is already familiar with temporal logic, game
theory, reactive synthesis, and reinforcement learning. Thus, we will only brie�y
recapitulate some important de�nitions to avoid ambiguities and establish a
consistent notation.

Outline. In the remainder of this chapter, we will �rst establish some basic
notation (Section 2.2), followed by the formalization of a reactive system as
Mealy machine (Section 2.3). Next, we will establish some basic de�nitions
of automata theory (Section 2.4), and we will de�ne several basic acceptance
conditions (Section 2.5). In Section 2.6, we will discuss formal speci�cations of
reactive systems given in temporal logic. We will elaborate on game theory in
Section 2.7, and we will discuss the automated synthesis of reactive systems via
game solving in Section 2.8. After that, we will consider the probabilistic setting,
and we will discuss Markov decision processes (Section 2.9) and reinforcement
learning (Section 2.10).

2.2 Basic Notation

In general, we will use upper case letters for sets, lower case letters for set
elements, and calligraphic fonts for tuples de�ning more complex structures.
We will write i� as a shorthand for �if and only if�.

19

20 Chapter 2. Preliminaries

qGNTb qIDLE qGNTa

¬ra¬rb¬ga¬gbrb¬gagb raga¬gb

ra¬ga¬gb

¬ra¬ga¬gb

¬rarb¬ga¬gb

¬rb¬ga¬gb

Figure 2.1: Reactive system implementing a simple arbiter.

We denote the Boolean domain by B = {>,⊥}, the set of natural numbers
(including 0) by N, and abbreviate N ∪ {∞} by N∞.

A word is de�ned to be a �nite or in�nite sequence of elements from some
alphabet Σ. The set of �nite words over Σ is denoted by Σ∗, and the set of
in�nite words over Σ is written as Σω. The union of Σ∗ and Σω is denoted by
the symbol Σ∞. We will also refer to words as traces σ. We write |σ| for the
length of a trace σ ∈ Σ∞. A set L ⊆ Σ∞ of words is called a language. We
denote the set of all languages as L = 2Σ∞

.

2.3 Reactive Systems

We formalize a general model of a �nite-state reactive system by a Mealy ma-
chine with a �nite set I = {i1, . . . , im} of Boolean inputs and a �nite set
O = {o1, . . . , on} of Boolean outputs. The alphabet Σ = ΣI × ΣO of a re-
active system composes of the input alphabet ΣI = 2I and the output alphabet
ΣO = 2O. For σI = x0x1 . . . ∈ Σ∞I and σO = y0y1 . . . ∈ Σ∞O , we write σI ||σO for
the composition (x0, y0)(x1, y1) . . . ∈ Σ∞.

A Mealy machine is a 6-tuple D = (Q, q0,ΣI ,ΣO, δ, λ), where Q is a �nite
set of states, q0 ∈ Q is the initial state, δ : Q×ΣI → Q is a complete transition
function, and λ : Q × ΣI → ΣO is a complete output function. Given the
input trace σI = x0x1 . . . ∈ Σ∞I , the system D produces the output trace σO =
D(σI) = λ(q0, x0)λ(q1, x1) . . . ∈ Σ∞O , where qi+1 = δ(qi, xi) for all i ≥ 0. The
set of traces produced by D is denoted L(D) = {σI ||σO ∈ Σ∞ | D(σI) = σO}.
Example 2 � Reactive system implementing a simple arbiter.

As an example, consider a simple arbiter that coordinates the access of some
shared resource for two clients. The clients send requests for the shared resource
to the arbiter with the input propositions {ra, ra}; whenever proposition rc = >,
then client c ∈ {a, b} requests access. The arbiter provides grants to the clients
by indicating them with the values of the output propositions {ga, gb}, where
gc = > indicates that client c can make use of the shared resource. The values
of the propositions change during the trace of the arbiter such that the clients
can take turn in utilizing the shared resource.

Figure 2.1 shows an example of a reactive system D = (Q, q0,ΣI ,ΣO, δ, λ)
for the resource arbiter introduced above. The system D has the following com-

2.4. Automata 21

ponents:

� the input alphabet ΣI = {rarb,¬rarb, ra¬rb,¬ra¬rb},

� the output alphabet ΣO = {gagb,¬gagb, ga¬gb,¬ga¬gb},

� the states Q = {qIDLE , qGNT0 , qGNT1} represent which grant was given
last during the execution of the system, where the system being in qIDLE

denotes that no grant has been given in the previous step of the system's
trace,

� the transition function δ (which, e.g., has δ(qIDLE ,¬ra¬rb) = qIDLE), and

� the output labeling function λ (which, e.g., has λ(qIDLE ,¬ra¬rb) = ¬ga¬gb).

Serial composition of reactive systems. Let D = (Q, q0,ΣI ,ΣO, δ, λ) and
D′ = (Q′, q′0,ΣI × ΣO,ΣO, δ

′, λ′) be two reactive systems. A serial composition
of D and D′ is realized if the input and output of D are fed to D′.

We denote such composition as D̂ = D ◦ D′ = (Q̂, q̂0,ΣI ,ΣO, δ̂, λ̂), where
Q̂ = Q × Q′, q̂0 = (q0, q

′
0), δ̂((q, q′), σI) = (δ(q, σI), δ

′(q′, (σI , λ(q, σI)))), and
λ̂((q, q′), σI) = λ′(q′, (σI , λ(q, σI))).

2.4 Automata

The speci�cations used in this thesis either given as temporal logic speci�cations
(that can be turned into automata), or are given directly as automata.

An automaton A is a tuple A = (Q, q0,Σ, δ, Acc) , where Q is a �nite set of
states, q0 ⊆ Q is the initial state, δ : Q× Σ→ Q is the transition function, and
Acc is the acceptance condition. The run induced by trace σ = σ0σ1 . . . ∈ Σω

is the state sequence q = q0q1 . . . such that qi+1 = δ(qi, σi). An acceptance
condition is a predicate Acc : Qω → B, mapping in�nite runs q to > or ⊥.
An automaton A accepts a trace σ if its run q is accepting (Acc(q) = >); its
language L(A) consists of the set of traces it accepts.

2.5 Acceptance Conditions

We use automata and temporal logic to specify systems, and we synthesize a
system that realizes a given speci�cation using games. For both, automata
and games, an acceptance condition is a predicate Acc : Qω → B, mapping
in�nite runs q to > or ⊥ (accepting and not accepting, or winning and losing,
respectively). Commonly used acceptance conditions are the following:

� The safety acceptance condition is Acc(q) = > i� ∀i ≥ 0 . qi ∈ F , where
q = q0q1 . . . and F ⊆ Q is the set of safe states.

� The reachability acceptance condition is Acc(q) = > i� ∃i ≥ 0 . qi ∈ F ,
with F ⊆ Q is the set of reachable states.

22 Chapter 2. Preliminaries

� The Büchi acceptance condition is Acc(q) = > i� inf(q) ∩ F 6= ∅, where
F ⊆ Q is the set of accepting states and inf(q) is the set of elements that
occur in�nitely often in q. We abbreviate the Büchi condition as B(F).

� A Generalized Reactivity 1 (GR(1)) acceptance condition is a predicate∧m
i=1 B(Ei)→

∧n
i=1 B(Fi), with Ei ⊆ Q and Fi ⊆ Q.

� The acceptance condition is a generalized Büchi acceptance condition if
m = 0, i.e., it is a predicate

∧n
i=1 B(Fi), with Fi ⊆ Q.

� A Streett acceptance condition with k pairs is a predicate
∧k
i=1 B(Ei) →

B(Fi).

2.6 Logics and Speci�cations

A speci�cation ϕ is de�ned by a set L(ϕ) ⊆ Σ∞ of allowed traces. A reactive
system D realizes ϕ, denoted by D � ϕ i� L(D) ⊆ L(ϕ). A speci�cation ϕ is
realizable if there exists a system D that realizes it.

In formal methods, speci�cations of reactive systems are typically given as
formulas in temporal logic. In this thesis, we use linear temporal logic (LTL).

2.6.1 Safety and Liveness Speci�cations

Safety Speci�cations. A speci�cation ϕs is called a safety speci�cation [AS85]
if �nite traces that do not satisfy ϕs cannot be extended to traces that satisfy
ϕs, i.e.,

∀σ ∈ Σ∗ .(σ 6� ϕs → (∀σ′ ∈ Σ∞ .(σ · σ′) 6� ϕs)).
Intuitively, a safety speci�cation states that �something bad should never

happen�. If ϕs does not hold for a trace, then at some point some �bad thing�
must have happened and such a �bad thing� must be irremediable. Safety spec-
i�cations can be simple invariance properties (such as �the level of a water tank
should never fall below 1 liter�), but can also be more complex (such as �whenever
a valve is opened, it stays open for at least three seconds�).

We represent a pure safety speci�cation ϕs by a safety automaton ϕs =
(Q, q0,Σ, δ, F), where F ⊆ Q is a set of safe states. A trace σ of a reactive
system D satis�es ϕs if the induced run q is accepting, i.e., only safe states are
visited in q. The language L(ϕs) is the set of all traces satisfying ϕ.

Liveness Speci�cations. A property ϕl de�nes a liveness property [AS85],
if every �nite trace can be extended in an in�nite trace that satis�es ϕl, i.e.,

∀σ ∈ Σ∗ .∃σ′ ∈ Σω .(σ · σ′) � ϕl.

Informally, a liveness property stipulates that a �good thing� happens during
execution eventually.

2.6. Logics and Speci�cations 23

A formal characterization for safety and liveness properties is given in terms
of a Büchi automaton ϕ = (Q, q0,Σ, δ, F), where F ⊆ Q is a set of accepting
states. Intuitively, the �bad thing� for a Büchi automaton is attempting an
unde�ned transition, and the �good thing� is entering an accepting state in�nitely
often. A trace σ satis�es ϕ if the induced run q is accepting, i.e., if states in F
occur in�nitely often in q.

2.6.2 Propositional Logic

Propositional logic is a language based on atomic propositions which can either
be true (>) or false (⊥). Let B be a set of variables ranging over the Boolean
domain B = {>,⊥} and let AP be the set of atomic propositions. The syntax of
propositional logic is de�ned as follows:

a ∈ AP := > | ⊥ | b,
φ ∈ propositional-formulas := a | ¬φ | φ ∨ φ,

for each b ∈ B. As usual we denote ¬(¬φ∨¬ψ) by φ∧ψ and ¬(φ∨ψ) by φ→ ψ.
We will call anything that conforms to this grammar a propositional formula.
A model for a propositional formula is a mapping that assigns either > or ⊥ to
each variable. The semantics of the connectives ¬, ∧, ∨, and → are de�ned as
usual.

2.6.3 Linear Temporal Logic

Linear Temporal Logic (LTL) [Pnu77] is one of the most popular logic used to
specify reactive systems. LTL reasons over linear traces through time. At each
point in time, there is only one future timeline that will occur. Traditionally,
that timeline is de�ned as starting in the current time step and progressing
in�nitely into the future.

LTL extends Boolean logic by the introduction of temporal operators such as
X (next time), � (globally/always), ♦ (eventually), and U (until). LTL formulas
are constructed as follows [PP06]:

φ ∈ LTL-formulas := φ ∈ propositional-formulas | Xφ | φUφ.

As usual, we denote >Uφ by ♦φ and ¬♦¬φ by �φ. Given a set of propositions
AP, an linear temporal logic (LTL) formula φ describes a language L(φ) in
(2AP)ω. For a word σAP = σ0σ1σ2 . . . ∈ (2AP)ω, we denote with σi the set of
propositions that are true in location i. We present an inductive de�nition of
when a formula holds in σAP at time i:

� for a ∈ AP we have σi � a i� a ∈ σi,

� σi � ¬φ i� σi 2 φ,

� σi � φ ∨ ψ i� σi � φ or σi � ψ,

24 Chapter 2. Preliminaries

� σi � Xφ i� σi+1 � φ, and

� σi � φUψ i� there exists k ≥ i such that σk � ψ and forall i ≤ j < k we
have σj � φ.

For a formula φ and a position j ≥ 0 such that σj � φ, we say that φ holds at
position j of σAP. If σ0 � φ we say that φ holds on σAP and denote it by σAP � φ.
The language L(φ) describes the set of words that satisfy φ.

LTL for reactive systems. To use LTL for specifying a set of allowed traces
by a reactive system, the joint alphabet Σ = ΣI × ΣO of the system must be
decomposable into Σ = 2API × Σrest

I × 2APO × Σrest
O for some system input and

output components Σrest
I and Σrest

O that we do not want to reason about in the
LTL speci�cation. Then, the LTL formula can use AP = API ∪ APO as the set
of atomic propositions. Given a trace σ, we write σAP to denote a copy of the
trace where, in each character, the factors Σrest

O and Σrest
I have been stripped

away so that σAP ∈ (2AP)ω.

Example 3 � LTL speci�cation of a simple arbiter.

Let us consider an example for an LTL speci�cation (for the arbiter introduced
above in Example 2, Section 2.3) that we build from ground up. By default,
LTL formulas are evaluated at the �rst element of a trace. The LTL formula
ra holds on a trace σAP = σ0σ1σ2 . . . ∈ (2AP)ω if and only if ra ∈ σ0. The
next-time operator X allows to look one step into the future, so the LTL formula
Xga holds if ga ∈ σ1. We can take the disjunction between the formulas ra and
Xga to obtain an LTL formula (ra ∨ Xga) which holds for a trace if at least one
of ra or Xga hold. We can then wrap (ra ∨Xga) into the temporal operator � to
obtain �(ra ∨ Xga). The e�ect of adding this operator is that in order for σAP

to satisfy �(ra ∨ Xga), the subformula (ra ∨ Xga) has to hold at every position
in the trace. All in all, we can formalize this description by stating that we
have that σ � �(ra ∨ Xga) holds if and only if for every i ∈ N, at least one of
ra ∈ σi and ga ∈ σi+1 holds. Note that the reactive system given in Figure 2.1
does not satisfy the speci�cation �(ra ∨ Xga) along all of its traces. The system
induces, for instance, a trace of the form σ = (¬ra¬rb,¬ga¬gb)ω that results
from staying in the qIDLE state forever, along which this speci�cation is not
ful�lled. A speci�cation that is however satis�ed along all traces of the system
is �(�(ra ∧ ¬rb) → ♦�ga), which can be read as �If from some point onwards,
request ra is always set to > while request proposition rb is not, then eventually,
a grant is given to process a for eternity.�

2.7 Games

In this section, we introduce basic concepts from game theory that are relevant
for us to synthesize a system that realizes a given speci�cation via game solving.

A (2-player, alternating) game is a tuple G = (G, g0,ΣI ,ΣO, δ, Acc), where
G is a �nite set of game states, g0 ∈ G is the initial state, δ : G×ΣI ×ΣO → G
is a complete transition function, and Acc : Gω → B is a winning condition.

2.7. Games 25

Plays. The game is played by two players: the system and the environment.
In every state g ∈ G (starting with g0), the environment �rst chooses an input
letter σI ∈ ΣI , and then the system chooses some output letter σO ∈ ΣO. This
de�nes the next state g′ = δ(g, σI , σO), and so on. Thus, a �nite or an in�nite
word over Σ results in a �nite or an in�nite play, a sequence g = g0g1 . . . of game
states. A play is won by the system i� Acc(g) is >.

It is easy to transform a safety speci�cation ϕs into a safety game such that
a trace satis�es the speci�cation i� the corresponding play is won.

Strategies. A deterministic (memoryless) strategy for the environment is a
function ρe : G→ ΣI . A non-deterministic (memoryless) strategy for the system
is a relation ρs : G × ΣI → 2ΣO and a deterministic (memoryless) strategy
for the system is a function ρs : G × ΣI → ΣO. A strategy ρs is winning
for the system if, for all strategies ρe of the environment, the play g that is
constructed when de�ning the outputs using ρe and ρs satis�es Acc(g). The
winning region W is the set of states from which a winning strategy for the
system exists. A counterstrategy is a winning strategy for the environment from
g0. A counterstrategy exists if q0 6∈W . Let G = (G, g0,ΣI ,ΣO, δ, F) be a safety
game with winning region W . If g0 6∈W , a counterstrategy can be computed by
solving a reachability game G′ = (G, g0,ΣI ,ΣO, δ, Q\F).

In safety, reachability and Büchi games, both players have memoryless win-
ning strategies, whereas for GR(1), Streett and generalized Büchi games, �nite-
memory strategies are necessary for the system.

Wrong traces and outputs. A �nite trace σ ∈ Σ∗ is wrong if the corre-
sponding play g contains a state outside the winning region W . Otherwise, σ is
called correct. An output is called wrong if it makes a trace wrong; i.e., given
ϕs, a trace σ ∈ Σ∗, σI ∈ ΣI , and σO ∈ ΣO, σO is wrong i� σ is correct, but
σ · (σI , σO) is wrong. Otherwise, σO is called correct. We will also refer to wrong
outputs as unsafe outputs and to correct outputs as safe outputs.

Comparing strategies. First, we compare non-deterministic winning strate-
gies of the system by comparing the behaviours that they allow [BJW02]. If ρ
is a strategy and g is a state of G from which ρ is winning then Beh(G, g, ρ) is
the set of all plays starting in g and respecting ρ. If ρ is not winning from g
then we put Beh(G, g, ρ) = ∅. A strategy subsumes another strategy if it allows
more behaviours, i.e., a strategy ρ′ is subsumed by ρ, which is denoted ρ′ v ρ,
if Beh(G, g, ρ′) ⊆ Beh(G, g, ρ) for all g ∈ G. A strategy ρ is permissive if ρ′ v ρ
for every memoryless strategy ρ′.

Second, we compare deterministic strategies of the system in game states
from which the system cannot force a win [Fae09]. A system strategy ρs is
cooperatively winning if there exists an environment strategy ρe such that the
play g constructed by ρe and ρs satis�es Acc(g). For a Büchi game G with
accepting states F , consider a strategy ρe of the environment, a strategy ρs of the
system, and a state g ∈ G. We de�ne the distance dist(g, ρe, ρs) = d if the play

26 Chapter 2. Preliminaries

g de�ned by ρe and ρs reaches from g an accepting state that occurs in�nitely
often in g in d steps. If no such state is visited, we set dist(g, ρe, ρs) =∞. Given
two strategies ρs and ρ′s of the system, we say that ρ′s dominates ρs if: (i) for
all ρe and all g ∈ G, dist(g, ρe, ρ′s) ≤ dist(g, ρe, ρs), and (ii) there exists ρe and
g ∈ G such that dist(g, ρe, ρ′s) < dist(g, ρe, ρs). A strategy is admissible if there
is no strategy that dominates it.

2.8 Reactive Synthesis from Safety Speci�cations

Consider a safety speci�cation to be given in the form of a deterministic safety
word automaton ϕs = (Q, q0,Σ, δ, F), i.e., an automaton in which only safe states
in F may be visited. Reactive synthesis enforces ϕs by solving a safety game G =
(Q, q0,ΣI ,ΣO, δ, F) built from ϕs. Given an explicit representation of the safety
speci�cation ϕs as a game graph G, the problem of deciding the realizability of
a safety speci�cation is known to be solvable in linear time [Maz01].

The standard textbook algorithm for solving safety games [Tho95] proceeds
in two steps. First, compute the winning region W ⊆ F and the winning strat-
egy ρs from the safety game G. Second, implement the winning strategy ρs in
a circuit. Any system implementing ρs ensures that unsafe states will never be
visited. If no such implementation exists, a synthesis algorithm reports unreal-
izability.

Since reactive synthesis is a game, the true power of synthesis is planning
ahead : synthesized systems will never allow to visit a state from which the
environment can force to visit an unsafe state in the future.

Example 4

Suppose that a car is heading towards a cli�. To enforce that the car never
crosses the cli�, it has to be slowed down long before it reaches the cli�, and thus
far before an abnormal operating condition such as falling can be detected. In
particular, the system has to avoid all states from which avoiding to reach the
cli� is no longer possible. These states are outside of the winning region of the
safety game.

2.9 Markov Decision Processes

When discussing shields for reinforcement learning, we model the environment
as Markov Decision Process (MDP) [Put94].

For a set X, let 2X denote the power set of X. A probability distribution
over a �nite or countably in�nite set X is a function µ : X → [0, 1] ⊆ R
with

∑
x∈X µ(x) = µ(X) = 1. The set of all distributions on X is denoted by

Distr(X). The set supp(µ) = {x ∈ X | µ(x) > 0} is the support of µ ∈ Distr(X).
A Markov decision process (MDP) M = (S, sI , A, P,R) is a tuple with a

�nite set S of states, a unique initial state sI ∈ S, a �nite set A = {a1 . . . an}
of actions, a probabilistic transition function P : S × A → Distr(S), and an

2.10. Reinforcement Learning 27

immediate reward function R : S×A→ R. The reward function may sometimes
be omitted.

MDPs operate by means of nondeterministic choices of actions at each state,
whose successors are then determined probabilistically with respect to the as-
sociated probability distribution. The set of enabled actions at state s ∈ S is
denoted by A(s) = {a ∈ A | P (s, a) 6= 0}. To avoid deadlock states, we assume
that |A(s)| ≥ 1 for all s ∈ S. A cost function c : S × A → R≥0 for an MDP M

adds a cost to each transition (s, a) ∈ S ×A with a ∈ A(s).
A path in an MDP M is a �nite (or in�nite) sequence π = s0a0s1a1 . . . with

P (si, ai, si+1) > 0 for all i ≥ 0. The set of all paths in M is denoted by PathsM,
and all paths starting in state s ∈ S are denoted by PathsM(s). The cost of
a �nite path π is de�ned as the sum of the costs of all transitions in π, i.e.,
c(π) =

∑n−1
i=0 c(si, ai) where n is the number of transitions in π.

If |A(s)| = 1 for all s ∈ S, all actions can be disregarded and the MDP M

reduces to a discrete-time Markov chain (MC), yielding a transition probability
transition function of the form P : S → Distr(S).

A policy is a function σ : S∗ → Distr(A) with supp(σ(s1 . . . sn)) ⊆ A(sn),
where S∗ denotes a �nite sequence of states. For many speci�cations, it su�ces
to consider stationary, deterministic policies σ : S → A [Put94]. For multiple�
possibly con�icting�speci�cations, more general policies (with randomization
and �nite memory) are necessary [CMH06].

For an MDP M, probabilistic model checking [Kat16, Kwi03] employs value
iteration or linear programming to compute the probabilities of all states and
actions of the MDP to satisfy an LTL property ϕ. Tool support is readily
available in PRISM [KNP11], Storm [DJKV17] or Modest [HH14]. Speci�cally,
we compute ηmax

ϕ,M : S → [0, 1] or ηmin
ϕ,M : S → [0, 1], which give for all states

the minimal (or maximal) probability over all possible policies to satisfy ϕ. For
instance, for ϕ encoding to reach a set of states F , ηmax

ϕ,M(s) describes the maximal
probability to �eventually� reach a state in F .

2.10 Reinforcement Learning

In reinforcement learning (RL) [SB98], an agent must learn behavior through
trial-and-error via interactions with an unknown environment. The typical fram-
ing of a reinforcement learning scenario is illustrated in Figure 2.2. A learning
agent takes an action in an unknown environment. The environment executes
the action, moves to a next state, and computes a reward, which is fed back
into the agent. The goal of a reinforcement learning agent is to collect as much
reward as possible.

More formally, we have the following. The environment is modeled by an
MDP M = (S, sI , A, P,R). The goal of reinforcement learning is to discover a
policy Π : S → A that maximizes the expected long-term cumulative reward.
The learning agent and the environment interact in discrete time steps.

� At each time step t, the agent receives an observation of the environment's
state st and a reward rt.

28 Chapter 2. Preliminaries

Environment Learning Agent
observation st+1

reward rt+1

action at

Figure 2.2: Reinforcement learning

� Using st and rt, the agent updates its current policy and chooses a next
action at ∈ A.

� The environment then moves to a new state st+1 with the probability
P (st, at, st+1) and determines the reward rt+1 = R(st, at, st+1).

� The observation of the state st+1 and the reward rt+1 are fed back to the
agent. Based on this information, the agent updates its current policy and
picks a new action at+1.

We refer to negative rewards rt < 0 as punishments. The return ret =∑∞
t=0 γ

trt is the cumulative future discounted reward, where rt is the immediate
reward at time step t, and γ ∈ [0, 1] is the discount factor that controls the
in�uence of future rewards. The objective of the agent is to learn an optimal
policy Π : S → A that maximizes (over the class of policies considered by the
learner) the expectation of the return; i.e. maxπ∈ΠEπ(ret), where Eπ(.) stands
for the expectation with respect to the policy π.

To discover the optimal policy, a reinforcement learning agent has to try
actions that it has not selected before. On the one hand, the agent has to
exploit what it has already experienced in order to obtain reward, on the other
hand it also has to explore in order to make better action selections in the future.
This tradeo� between exploration and exploitation is one of the big challenges
that arise in reinforcement learning.

In this thesis, we use Q-learning [SB98] as a reinforcement learning algorithm
and an ε-greedy exploration policy [SB98]. For any �nite Markov decision pro-
cess, Q-learning �nds an optimal policy, given in�nite exploration time and a
partly-random policy. In ε-greedy exploration, 0 < ε < 1 is a parameter con-
trolling the amount of exploration versus exploitation. Exploitation is chosen
with probability 1− ε, and exploration is chosen with probability ε. The param-
eter ε can be a �xed parameter or can be adjusted, making the agent explore
progressively less.

2.10. Reinforcement Learning 29

Declaration of Sources

Chapter 2 was based on and reuses material from the following sources,
previously published by the author:

� [KAB+17] B. Könighofer, M. Alshiekh, R. Bloem, L. R. Humphrey,
R. Könighofer, U. Topcu, C. Wang: Shield synthesis. FMSD. 2017

� [ABE+18] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, Scott
Niekum, and Ufuk Topcu: Safe reinforcement learning via shield-
ing. AAAI. 2018

� [JKJB18a] N. Jansen, B. Könighofer, S. Junges, R. Bloem: Shielded
decision-making in MDPs. ArXiv. 2018

References to these sources are not always made explicit.

3
Post-Posed and Preemptive Shields

3.1 Motivation and Outline

In shield synthesis, we automatically construct a correct-by-construction reactive
system that acts as a runtime reinforcement module from a given safety speci-
�cation. We call such a reactive system a shield. A shield can be implemented
before or after the system which has to obey the safety speci�cation.

� If the shield is implemented after the system, we call it a post-posed shield.

� If the shield is implemented before the system, we call it a preemptive
shield.

In both settings, the shield enforces the speci�ed properties at run time. The
shield continuously monitors the inputs and outputs of the system and interferes
with the system only if necessary, and as little as possible, so other non-critical
properties are likely to be retained. A shield satis�es the following two properties:

1. Correctness: the shielded system satis�es the safety speci�cation.

2. Minimum interference: the shield keeps any interferences with the sys-
tem to a minimum and intervenes only if safe system behavior would be
endangered otherwise.

Outline. In this chapter, we will discuss post-posed shielding in Section 3.2
and preemptive shielding in Section 3.3. For both, we will discuss the setting,
illustrate the problem with a motivating example, give the de�nition of the

31

32 Chapter 3. Post-Posed and Preemptive Shields

Environment System D

Shield S

σI
t+1

σtO,D

σtO,S

Figure 3.1: Post-posed shielding - Detail

shield, and provide synthesis algorithms to construct such shields. In the fol-
lowing chapters, we will equip these basic shields with additional features to be
used for di�erent settings.

3.2 Post-posed Shields

3.2.1 Post-posed Shielding Setting

The post-posed shielding setting is illustrated in detail in Figure 3.1. The shield
S monitors the inputs and outputs of the reactive system D and substitutes
the selected outputs by safe outputs whenever this is necessary to prevent the
violation of the safety speci�cation ϕ. In each step t, the system selects an
output σtO,D. The shield forwards σtO,D to the environment, i.e., σtO,S = σtO,D.
Only if σtO,D is unsafe with respect to ϕ, the shield selects a di�erent safe output
σtO,S 6= σtO,D instead. The environment executes at σtO,S, moves to the next state
and provides the next input σI t+1 to the system and the shield. The system
receives σI t+1 and picks the next output σt+1

O,D based on that information.
More formally, we have as input alphabet for the shield ΣI,S = ΣI × ΣO,

as the shield observes the input from the environment and the output to be
corrected from the system. For the output alphabet, we have ΣO,S = ΣO, as
the shield sends the safe output to the environment. For the input and output
alphabet of D, nothing changes when being post-posed shielded, i.e., ΣI,D = ΣI
and ΣO,D = ΣO.

3.2.2 Illustrative Example

Let us consider the example of a tra�c light controller of two roads. There are
red (r) or green (g) lights for both roads. Although the tra�c light controller
interface is simple, the actual implementation can be complex. The controller
may have to be synchronized with other tra�c lights, and it can have input sen-
sors for cars, buttons for pedestrians, and sophisticated algorithms to optimize
tra�c throughput and latency based on all sensors, the time of the day, and
even the weather. As a result, the actual design may become too complex to be
formally veri�ed.

3.2. Post-posed Shields 33

F N S
rr rr

gr rg

gr rr rg

Figure 3.2: Safety speci�cation ϕ for the tra�c light controller.

F N S
rr rr

gr rg

gr rr rg

else → rr

else → rr else → rr

Figure 3.3: A post-posed tra�c light shield S.

Suppose that two safety properties are crucial and must be satis�ed with
certainty: (1) The output gg � meaning that both roads have green lights �
is never allowed. (2) The output cannot change from gr to rg, or vice versa,
without passing rr. These two properties serve as speci�cation ϕ for the shield,
and can be de�ned by the following LTL safety formula:

ϕ = �¬(gg) ∧�(gr→ X(gr ∨ rr)) ∧�(rg→ X(rg ∨ rr)).

The speci�cation ϕ can also be expressed by a safety automaton, which is
shown in Figure 3.2. The edges of the automaton are labeled with the controller's
outputs for the two roads. There are three non-error states: F indicates the state
where the �rst road has the green light, S denotes the state where the second
road has the green light, and N denotes the state where both have red lights.
There is also an error state, which is not shown. Missing edges lead to this
error state, denoting forbidden situations, e.g., gg is never allowed. Although
the automaton is still not a complete speci�cation, the corresponding shield can
prevent catastrophic failures.

Figure 3.3 illustrates the behavior of one particular post-posed shield S for ϕ
(which we could get by using one of the synthesis approaches explained later in
this thesis). Intuitively, the states of the shield correspond to the states of the
speci�cation automaton. Red dashed edges denote situations, where the output
of the shield is di�erent from its inputs. The modi�ed output is written after the
arrow. For all non-dashed edges, the shield forwards the output of the controller
to the environment.

Table 3.1 shows how the shields S corrects a sample output of a tra�c light
controller. The initial state of the shield is F , i.e., initially, the �rst road has the
green light. In time step 1, the controller sends the output rr, which is accepted
by S, and the shield moves to state N . In step 2, the controller sends gg, which
violates ϕ. S corrects the output to rr and remains in state N . In step 3, the
controller gives the output gr, that is accepted by the shield and it moves to

34 Chapter 3. Post-Posed and Preemptive Shields

Time Step 1 2 3 4 5 6
Controller rr gg gr rg rg rg

Shield S rr rr gr rr rg rg

Table 3.1: Controller corrected by a post-posed shield S.

state F . In step 4, the controllers gives rg. Since the tra�c light cannot toggle
from gr to rg according to ϕ (there is no edge leading from state F to state S), S
changes the output again to rr and moves to state N . Afterwards, the controller
sends again rg and S gives the same output and moves to state S. From here on,
S gives the same output as the controller until the next speci�cation violation.

Let us analyse the behavior of the shield S. First, the shield's output was
correct with respect to ϕ. Second, S only deviated from the controller in case
of a property violation and afterward handed back control to the tra�c light
controller.

3.2.3 De�nition of Post-posed Shields

In this section, we formally de�ne post-posed shields based on its two desired
properties: correctness and minimal interference.

The Correctness Property. By correctness, we refer to the property
that the post-posed shield corrects any system's output such that a given safety
speci�cation is satis�ed.

De�nition 1 � Correctness for Post-posed Shields

Let ϕ be a safety speci�cation, and let D = (Q, q0,ΣI ,ΣO, δ, λ) and S = (Q′, q′0,Σ,
ΣO, δ

′, λ′) be two reactive systems. We say that S ensures correctness if for any
D it holds that (D ◦ S) � ϕ.

The Minimal Interference Property. Since a shield must work for any
system, the synthesis procedure does not consider the system's implementation.
This property is crucial because the system may be unknown or too complex
to analyze. On the other hand, the system may satisfy additional (noncritical)
speci�cations that are not speci�ed in ϕ but should be retained as much as
possible (i.e., as long as these additional properties are not in con�ict with the
critical ones).

The basic requirement for minimal interference is that a post-posed shield
can only deviate from the system if a property violation becomes unavoidable.
This property can be extended in several ways, e.g., one could require that the
shield's output is only allowed to deviate from the system's output as little
as possible [BBD+19]. In Chapter 4, we will extend the minimal interference
property by requiring that the shield has to change the output in such a way
that it can hand back control to the system as soon as possible.

De�nition 2 � Minimal Interference for Post-posed Shields

Let ϕ be a safety speci�cation, let D = (Q, q0,ΣI ,ΣO, δ, λ) be a reactive system,

3.2. Post-posed Shields 35

r0 r1 rx

o = i

o 6= i

¬i
i

>

Figure 3.4: The safety automaton ϕ of Example 5.

and let S = (Q′, q′0,Σ,ΣO, δ
′, λ′) be a reactive system to be attached after D, i.e.,

(D ◦ S). We say that S is minimal interfering if for any D and any trace σI ||σO
of D that is correct, we have that S(σI ||σO) = σO.

In other words if D does not violate ϕ, S keeps the output of D intact.

De�nition 3 � Post-posed Shield

Given a speci�cation ϕ, a reactive system S is a post-posed shield if for any
reactive system D, it holds that (D ◦ S) � ϕ (De�nition 1) and S is minimal
interfering with D (De�nition 2).

De�nition 4 � Post-posed Shielded System

We call the reactive system D̂ = D ◦ S a post-posed shielded system.

3.2.4 Synthesis of Post-posed Shields

In this section, we discuss the synthesis procedure to automatically construct
post-posed shields from safety speci�cations via solving a safety game.

Algorithm 1 � Synthesis of Post-posed Shields

Let ϕ be the critical safety speci�cation, which is represented as a safety automa-
ton ϕ = (Q, q0,Σ, δ, F). Starting from ϕ, we perform the following two steps to
compute a post-posed shield.

Step 1. Constructing and solving the Safety game G: We translate
ϕ = (Q, q0,Σ, δ, F) to a safety game G = (G, g0,ΣI ,ΣO, δ, F) with G = Q and
g0 = q0 between two players. In the game, the environment player chooses the
inputs σI ∈ ΣI and the system chooses the outputs σO ∈ ΣO. We use standard
algorithms for safety games (cf. [Fae09]) to compute the winning regionW ⊆ F ,
so that every reactive system D � ϕ must produce outputs such that the next
state of ϕ stays in W . Only in cases in which the next state of ϕ is outside of
W is the shield allowed to interfere.

Example 5

Consider the safety automaton ϕ in Figure 3.4, where i is an input, o is an
output, and rx is an unsafe state. The winning region is W = {r0} because
from r1 the input i controls whether rx is visited. The shield must be allowed to
deviate from the original transition r0 → r1 if o 6= i. In r1 it is too late because
visiting an unsafe state cannot be avoided anymore, given that the shield can
modify the value of o but not i.

36 Chapter 3. Post-Posed and Preemptive Shields

Step 2. Translate G and W to a reactive system S: We translate G and
W to a reactive system S = (QS, q0,S,ΣI,S,ΣO,S, δS, λS), which constitutes the
post-posed shield. The shield has the following components:

� QS = G is the state space,

� q0,S = g0 is the initial state,

� ΣI,S = ΣI × ΣO is the input alphabet,

� ΣO,S = ΣO is the output alphabet,

� δS is the next-state function with

δS(g, σI , σO) = δ(g, σI , λS(g, σI , σO))

for all g ∈ G, σI ∈ ΣI , σO ∈ ΣO, and

� λS is the output function with

λS(g, σI , σO) =


σO if δ(g, (σI , σO)) ∈W
σO
′ if δ(g, (σI , σO)) /∈W for some arbitrary

but �xed σO ′ with δ(g, (σI , σO ′)) ∈W.

The shield's output is the output that is actually executed by the environ-
ment. Therefore, to determine the next state, the transition function of the
shield uses the shield's output σO,S = λS(qS, σI , σO) and picks next state via
q′S = δS(qS, σI , σO) = δ(g, σI , σO,S).

Theorem 1

A reactive system S constructed according to Algorithm 1 is a post-posed shield
(De�nition 3).

Proof. We have to proof that S is correct and minimal interfering. The output
function λS ensures correctness (i.e., D ◦ S � ϕ) by always selecting outputs
in such a way that only states in the winning region are visited during a play.
Hence, S is correct (De�nition 1). At the same time, λS keeps the output σO ofD
intact if σO is correct. Hence, S is minimal interfering (De�nition 2). Q. E. D.

3.3 Preemptive Shields

3.3.1 Preemptive Shielding Setting

Figure 3.5 depicts the preemptive shielding setting in detail. The interaction
between the system, the environment, and the shield is as follows: at every time
step t, the shield computes a set of all safe outputs σtO,S ={σO1,t . . . σO

k,t}. The

3.3. Preemptive Shields 37

Environment System D

Shield S

σI
t+1

σI
t

σtO,S ={σO1,t . . . σO
k,t}

σtO,D

Figure 3.5: Preemptive shielding - Detail

F N S

rr {gr,rr,rg} rr {gr,rr,rg}

gr {gr,rr} rg {rr,rg}
gr {gr,rr} rr {gr,rr,rg} rg {rr,rg}

Figure 3.6: A preemptive tra�c light shield S.

system receives σtO,S from the shield and the input σI t from the environment,
and picks an output σtO,D ∈ σtO,S = {σO1,t . . . σO

k,t} from it. The environ-
ment executes σtO,D, repeats the current input σI

t and provides the next input
σI
t+1. The shield receives σI t, σtO,D, and σI

t+1. The shield moves to the
next state based on σI

t and σtO,D and computes the next set of safe outputs

σt+1
O,S ={σO1,t+1 . . . σO

k,t+1} based on its next state and σI t+1.
More formally, for a preemptive shield, we have as output alphabet ΣO,S =

2ΣO , as the shield outputs the set of safe outputs for the system to choose from for
the respective next step. The shield observes the input from the environment
σI
t, the output chosen by the system σ′tO and the next input σI t+1 from the

environment. So for the input alphabet of the shield, we have ΣI,S = ΣI ×
ΣO ×ΣI . The input alphabet of the system is ΣI,D = ΣI × 2ΣO and the output
alphabet of the system is ΣO,D = ΣO.

3.3.2 Illustrative Example

Let us consider the example of a tra�c light controller from Section 3.2.2, and
let us apply the preemptive shielding approach on this example.

The behavior of a particular preemptive shield S for the given tra�c light
speci�cation ϕ is illustrated in Figure 3.6. Edges are labeled with the inputs
(blue) and outputs (black, set) of the shield. In this example, we do not have any
inputs from the environment and the input of S consists only of the last output
of the tra�c light controller D that was already executed by the environment,
i.e., σtI,S = σt−1

O,D. The output of S constitutes to the set of safe outputs for time
step t that is forwarded to D, i.e., σtI,D = σtO,S.

38 Chapter 3. Post-Posed and Preemptive Shields

Time Step t 1 2 3 4 5 6

State of S F N F N N S

Input of S =

Output of D at t− 1 rr gr rr rr rg rr

Next state of S N F N N S N

Output of S {gr,rr,rg} {gr,rr} {gr,rr,rg} {gr,rr,rg} {rr,rg} {gr,rr,rg}

Output of D gr rr rr rg rr rr

Table 3.2: Controller shielded by a preemptive shield S.

Table 3.2 shows how the preemptive shields S (illustrated in Figure 3.6)
ensures correctness in the tra�c light setting. The initial state of S is F . In
time step 1, the shield receives σ1

I,S = σ0
O,D = rr as input, i.e., the last output

of the controller D at t = 0 was rr.. Since the last executed action from the
environment was rr, the shield moves to state N and allows all outputs except
gg, i.e., σ1

O,S = {gr, rr, rg}. The controller picks the output σ1
O,D = gr and the

environment executes it.
In time step 2, the shield`s input is σ2

I,S = σ1
O,D = gr, i.e., gr was the last

tra�c light phase. The shield moves to state F and outputs σ2
O,S = {gr, rr} as

safe actions. The controller pics σ2
O,D = gr and forwards it to the environment.

In the following steps, the shield continues to monitor the last output of the
controller and to provide the list of next safe outputs to the controller.

Let us analyse the behavior of the preemptive shield S. The shielded system
was correct, since the controller was only allowed to choose from safe outputs
provided by the shield. The shield was minimal interfering with the controller,
since it allowed the controller to pick any output as long as it was a safe one.

3.3.3 De�nition of Preemptive Shields

As for post-posed shields, we de�ne preemptive shields based on correctness and
minimal interference.

The Correctness Property. At every time step, a preemptive shield com-
putes the set of safe outputs such that the safety speci�cation is satis�ed for any
output of this set. If the system only chooses outputs that are allowed by the
shield, the preemptive shielded system will satisfy the speci�cation.

De�nition 5 � Correctness for Preemptive Shields

Let ϕ be a safety speci�cation, and let S = (Q′, q′0,ΣI ×ΣO×ΣI , 2
ΣO , δ′, λ′) and

D = (Q, q0,ΣI × 2ΣO ,ΣO, δ, λ) be two reactive systems. We say that S ensures
correctness if for any D it holds that (S ◦D) � ϕ.

The Minimal Interference Property. The minimal interference property
in case of preemptive shielding is simpler than for the post-posed shielded setting.

3.3. Preemptive Shields 39

To ensure minimum interference, a preemptive shield has to allow any output as
long as it is safe.

De�nition 6 � Minimal Interference for Preemptive Shields

Given a safety speci�cation ϕ, a reactive system S is minimal interfering if for
any trace σI ||σO that is correct, we have that σO ∈ S(σI ||σO).

De�nition 7 � Preemptive Shield

Given a speci�cation ϕ, a reactive system S is a preemptive shield if for any
reactive system D that gives only outputs enabled by S, it holds that (S ◦D) � ϕ
(De�nition 5) and S is minimal interfering with D (De�nition 6).

De�nition 8 � Preemptive Shielded System

We call the reactive system D̂ = S ◦D a preemptive shielded system.

3.3.4 Synthesis of Preemptive Shields

We now detail the synthesis procedure to synthesize preemptive shields.

Algorithm 2 � Synthesis of Preemptive Shields

Starting from ϕ = (Q, q0,Σ, δ, F), we perform the following steps to compute a
preemptive shield:

Steps 1. Constructing and solving the Safety game G: Perform as step
1 in Section 3.2.4.

Step 2. Translate G and W to a reactive system S: We translate G =
(G, g0,ΣI ,ΣO, δ, F) andW to a reactive system S = (QS, q0,S,ΣI,S,ΣO,S, δS, λS)
that constitutes the preemptive shield. The shield has the following components:

� QS = G is the state space,

� q0,S = g0 is the initial state,

� ΣI,S = ΣI × ΣO × ΣI is the input alphabet,

� ΣO,S = 2ΣO is the output alphabet,

� δS is the next-state function with

δS(g, σI , σO) = δ(g, σI , σO)

for all g ∈ G, σI ∈ ΣI , σO ∈ ΣO, and

� λS is the output function with

λS(g, σI , σO, σ
′
I) = {σ′O ∈ ΣO | δ(δ(g, σI , σO), σ′I , σ

′
O) ∈W}

for all g ∈ G, σI ∈ ΣI , and σO ∈ ΣO.

40 Chapter 3. Post-Posed and Preemptive Shields

For selecting the next transition, the preemptive shield makes use of the
output of the system, i.e., the next transition is chosen via the last observed
input from the environment and the last output of the system. The next output
of the shield contains all outputs σ′O, that lead from the current state of the
shield g′ = δ(g, σI , σO) and the current input of the environment σ′I to another
state in the winning region, i.e., σ′O is safe.

Theorem 2

A reactive system S constructed according to Algorithm 2 is a preemptive shield
(De�nition 18).

Proof. λS of S deactivates all actions that would lead to states outside of the
winning region. Therefore, only safe states are visited during the play, and S is
correct (i.e., S ◦D � ϕ).

Due to the construction of S, an output is only deactivated if taking this
output would lead to a state outside of the winning region. From any state
that is not winning, the shield cannot ensure that ϕ will not be violated in the
future. Hence, the output needs do be deactivated, and S is minimal interfering.

Q. E. D.

Declaration of Sources

Chapter 3 was based on and reuses material from the following sources,
previously published by the author:

� [BKKW15] R. Bloem, B. Könighofer, R. Könighofer, C. Wang:
Shield synthesis - runtime enforcement for reactive systems.
TACAS. 2015

� [KAB+17] B. Könighofer, M. Alshiekh, R. Bloem, L. R. Humphrey,
R. Könighofer, U. Topcu, C. Wang. Shield synthesis. FMSD. 2017

� [ABE+17] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, Scott
Niekum, and Ufuk Topcu. Safe reinforcement learning via shield-
ing. arXiv. 2017

� [ABE+18] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, Scott
Niekum, and Ufuk Topcu. Safe reinforcement learning via shield-
ing. AAAI. 2018

References to these sources are not always made explicit.

4
k-Stabilizing and Admissible Shields

4.1 Motivation and Outline

In this chapter, we will discuss two post-posed shield synthesis approaches for re-
active systems. We call the resulting shields k-stabilizing and admissible shields.
In Chapter 3, we discussed post-posed shields with the minimum interference
property requiring that the shield cannot deviate from the system's output be-
fore a speci�cation violation by the system is unavoidable. k-stabilizing and
admissible shields extend the minimal inference property by providing guaran-
tees on the recovery time:

� k-stabilizing shields guarantee recovery in a �nite time, and

� admissible shields attempt to work with the system to recover as soon as
possible.

The challenge in recovering quickly lies in the fact that in shield synthesis we
treat the system as a black box. Therefore, the shield has no information about
the current state of the system, nor any information about future inputs and
outputs of the system. Nevertheless, the shield should avoid unnecessarily large
deviations.

k-stabilizing shields guarantee recovery in a �nite time. Since we are given a
safety speci�cation, we can identify wrong outputs, that is, outputs after which
the speci�cation is violated (more precisely, after which the environment can
force the speci�cation to be violated). A wrong trace is then a trace that ends in
a wrong output. k-stabilizing shields modify the outputs so that the speci�cation
holds, but that such deviations last for at most k consecutive steps after a wrong
output.

41

42 Chapter 4. k-Stabilizing and Admissible Shields

Admissible shields overcome the following shortcoming of k-stabilizing shields:
the k-stabilizing shield synthesis problem is unrealizable for many safety-critical
systems, because a �nite number of deviations cannot be guaranteed. To address
this issue, admissible shields guarantee the following:

1. For any wrong trace, if there is a �nite number k of steps within which
the recovery phase can be guaranteed to end, an admissible shield takes an
adversarial view on the system and will always achieve this. Admissible
shields are subgame optimal and guarantee to end the recovery phase for
any state for the smallest k possible if such a k exists for that state.

2. The shield is admissible in the following sense: for any state in which there
is no such number k, it takes a collaborative view on the system and always
picks a deviation that is optimal in that it ends the recovery phase as soon
as possible for some possible future inputs.

As a result, admissible shields work well in settings in which �nite recovery
cannot be guaranteed, because they guarantee correctness and may well end the
recovery period if the system does not pick adversarial outputs.

Both, k-stabilizing shields and admissible shields enforce critical safety prop-
erties and ensure minimum interference, such that other noncritical properties
of the system that are not considered by the shield are retained as much as
possible. In addition to critical safety properties, many systems must also meet
critical liveness properties. However, a challenge for enforcing liveness properties
using shields is that liveness property violations cannot be detected at any �nite
point in time (at any point, the property may still be satis�ed in the future).
Due to the minimum interference property of shields, a shield would have to
delay enforcing a liveness property as long as possible. Since liveness properties
can always be satis�ed at some point in the future, the shield in practice would
never enforce the liveness property. So rather than enforcing liveness properties,
we focus on retaining liveness properties under the assumption that the system
satis�es them. Therefore, we discuss an extension of the k-stabilizing shield
synthesis procedure that allows liveness-preserving corrections of the system's
output.

Outline. The remainder of this chapter is organized as follows. First, we will
discuss k-stabilizing shields in Section 4.2 and admissible shields in Section 4.3.
For both, we will start with an illustrative example to show the technical chal-
lenges and our solution approach. Next, we will de�ne both types of shields
and provide synthesis procedures to construct them. In Section 4.4, we will dis-
cuss liveness-preserving k-stabilizing shields. We will conclude this chapter with
experimental results in Section 4.5.

4.2. k-Stabilizing Shields 43

Time Step 1 2 3 4 5

Controller rr gg gr gr rr

Shield SA rr rg rr gr rr

Table 4.1: Controller shielded by SA.

Time Step 1 2 3 4 5

Controller rr gg gr gr rr

Shield SB rr rr gr gr rr

Table 4.2: Controller shielded by SB .

4.2 k-Stabilizing Shields

4.2.1 Illustrative Example

Consider the speci�cation ϕ of the tra�c light example of Section 3.2.2.
Table 4.1 and Table 4.2 show how two di�erent post-posed shields (SA and

SB , respectively) correct a sample output of a tra�c light controller. Let us �rst
consider Table 4.1. In time step 1, the controller sends the output rr which is
accepted and passed on by the shield SA. In step 2, the controller sends gg,
which violates ϕ. SA has three options for a correction: changing the output
from gg to either rg, gr, or rr. SA corrects the output to rg. In step 3, the
controller gives the output gr. Since the tra�c light cannot toggle from rg to gr
according to ϕ, SA changes the output to rr. Afterwards, the controller again
sends gr. SA can end the deviation and to pass on outputs from the controller
until the next speci�cation violation.

According to our de�nition of a post-posed shield, SA is a shield: (1) SA en-
forced correctness, and (2) did not deviate unnecessarily. Regarding the recovery
time, the shield ended deviation after two steps before handing back control to
the tra�c light controller.

In Table 4.2, we use the shield SB . In step 2, SB corrects the controller's
output to rr. This time, if the controller sends gr in step 3, the shield can give
the same output as the controller immediately. If we compare the shields SA and
SB , SB ends the deviation phase faster than SA. Hence, we prefer the behavior
induced by SB . The behavior of the shield SB corresponds with the shield of
Figure 3.3.

The challenge in synthesizing shields that recover quickly lies in the fact
that we do not know the future inputs/outputs of the system. The question
is, without knowing what the future inputs/outputs are, how should the shield
correct bad behavior of the system to avoid unnecessarily large deviation in the
future? For instance, in step 2, the correction of the shield SA was suboptimal
since it caused a deviation for two steps instead of one.

4.2.2 De�nition of k-stabilizing Shields

We assume that through transmission errors, an arbitrary number of correct
outputs by the system D are replaced by wrong outputs, i.e., by outputs after
which a property violation becomes unavoidable (in the worst case over future
inputs). After each wrong output, a k-stabilizing shield S enters a recovery phase
and is allowed to deviate from the system's outputs for at most k consecutive

44 Chapter 4. k-Stabilizing and Admissible Shields

time
k-step

recovery

Shield deviation: forbidden allowed forbidden allowed

k-step
recovery

Figure 4.1: Recovery phases of k-stabilizing shields.

time steps, including the current step. This is illustrated in Figure 4.1. Wrong
outputs are indicated by lightning.

We will now de�ne k-stabilizing shields.

De�nition 9 � k-Stabilization of Traces

Let ϕ be a safety speci�cation, and let σ = (σI ||σO) ∈ Σω be a correct trace. A
post-posed shield S adversely k-stabilizes σ if, for any trace σf = (σI ||σOf) ∈ Σω

in which for any i with σO[i] 6= σO
f [i] it holds that (σI [0 . . . i − 1]||σO[0 . . . i −

1]) · (σI [i], σO[i]f) is wrong and E = {i | σO[i] 6= σO
f [i]}, we have

σO
? = S(σI , σO

f),

(σI ||σO?) � ϕ and,

∀j . σO?[j] 6= σO
f [j]→ ∃i ∈ E.j − i ≤ k.

Substituting an arbitrary number of outputs in σO by wrong outputs results
in a new trace σf . E denotes the indices of outputs in σf that are wrong. After
any wrong output σOf [i] with i ∈ E, the output of the shield σO? and the output
of the system σO

f are allowed to deviate for at most k consecutive time steps.
Note that it is not always possible to adversely k-stabilize any �nite trace

for a given k, or even for any k.

De�nition 10 � k-Stabilizing Shields
A post-posed shield S is k-stabilizing if it adversely k-stabilizes any �nite trace.

A k-stabilizing shield guarantees to deviate from outputs of the system for
at most k steps after each wrong output and to produce a correct trace. To
understand the intuition behind adversely k-stabilizing a trace, suppose we take
the point of view that the system produces some wrong trace σf = (σI ||σOf),
but intended to produce some correct trace σ = (σI ||σO). For each wrong output
of σOf , the shield must �guess� what correct output the system intended in order
to produce some correct trace σ? = (σI ||σO?). If the shield �guesses� a particular
output incorrectly, it may have to deviate from subsequent outputs of the system
that would have been correct in σO in order to meet the speci�cation. The term
adversely k-stabilizing means that such periods of deviation will last for at most
k steps for any intended trace σO of the system, i.e., even if σO? 6= σO.

4.2.3 Synthesis of k-stabilizing Shields

The �ow of our synthesis procedure is illustrated in Figure 4.2.

4.2. k-Stabilizing Shields 45

Game

GameViolation
Monitor U

Deviation
Monitor T

Shield S𝜑

Figure 4.2: Outline of the shield synthesis procedure for k-stabilizing and admissible
shields.

Algorithm 3 � Synthesis of k-stabilizing Shields
Let ϕ be the critical safety speci�cation, which is represented as a safety au-
tomaton ϕ = (Q, q0,Σ, δ, F). Starting from ϕ, our k-stabilizing shield synthesis
procedure consists of three steps.

Step 1. Constructing the Violation Monitor U: From ϕ, we build an
automaton U = (U, u0,Σ, δ

u) to monitor property violations by the system. The
goal is to identify the latest point in time from which a speci�cation violation
can still be corrected with a deviation by the shield. This constitutes the start
of the recovery phase, in which the shield is allowed to deviate from the system.
The violation monitor U observes the system from all states the system could
reach under the current input and a correct output. Note that when multiple
states are being monitored if the system's output is wrong from all monitored
states, U monitors all states the system could reach from all currently monitored
states under the current input. If the system's output is correct from one or more
currently monitored states, it only continues monitoring states reachable from
those monitored states under the system's output.

The �rst phase of the construction (Step 1-a) of U considers ϕ = (Q, q0,Σ, δ, F)
as a safety game and computes its winning region W ⊆ F so that every reactive
system D � ϕ must produce outputs such that the next state of ϕ stays in W .
Only in cases in which the next state of ϕ is outside of W is the shield allowed
to interfere.

The second phase (Step 1-b) expands the state space Q to 2Q via a subset
construction with the following rationale. If D makes a mistake (i.e., picks
outputs such that ϕ enters a state q 6∈ W), the shield has to �guess� what
the system actually meant to do. U considers all output letters that would
have avoided leaving W and continues monitoring D from all the corresponding
successor states in parallel. Thus, U is a subset construction of ϕ, where a state
u ∈ U of U represents a set of states in ϕ.

The third phase (Step 1-c) expands the state space of U by adding a Boolean
variable d to indicate whether the shield is in the recovery period, and a Boolean
output variable z. Initially d is ⊥. Whenever there is a property violation by D,
d is set to > in the next step. If d = >, the shield is in the recovery phase and
can deviate. In order to decide when to set d from > to ⊥, we add an output z
to the shield. If z = > and d = >, then d is set to ⊥.

46 Chapter 4. k-Stabilizing and Admissible Shields

F,⊥ N,⊥ S,⊥

FN,> NS,>

FNS,>

rr rr

gr rg

gr rr rg

gg∨rg gr gg∨grrg

rr

rg

rr

gr

gr rr rg

gg gg

gg

Figure 4.3: Violation monitor U of Example 6.

From ϕ, the �nal violation monitor is U = (U, u0,Σ
u, δu), such that:

� U = (2Q × {>,⊥}) is the state space,

� u0 = ({q0},⊥) is the initial state,

� Σu = ΣI × ΣuO is the input/output alphabet with ΣuO = 2O∪z, and

� δu is the next-state function which obeys the following rules:

1. δu((u, d), (σI , σO)) =(
{q′∈W | ∃q ∈ u, σO ′ ∈ ΣuO . δ(q, (σI , σO

′)) = q′},>
)

if ∀q ∈ u . δ(q, (σI , σO)) 6∈W , and

2. δu((u, d), σ)= (
{q′∈W | ∃q∈u . δ(q, σ) = q′}, dec(d)

)
if ∃q∈u . δ(q, σ)∈W , and dec(⊥) = ⊥, and if z is > then dec(>) = ⊥,
else dec(>) = >.

Our construction sets d = > whenever D leaves the winning region, rather
than waiting until the system enters an unsafe state. Conceptually, this allows
S to take remedial action as soon as the �the crime is committed� but before the
damage actually takes place, which may be too late to correct erroneous outputs
of the system.

Example 6

We illustrate the construction of U using the speci�cation ϕ from Figure 3.2,

4.2. k-Stabilizing Shields 47

t0 t1

σO = σO
′

σO 6= σO
′

σO 6= σO
′

σO = σO
′

Figure 4.4: The deviation monitor T.

which becomes a safety automaton if we make all missing edges point to an
(additional) unsafe state. The winning region consists of all safe states, i.e.,
W = {F,N, S}. The resulting violation monitor U is illustrated in Figure 4.3.
In this example, z is always set to >. For the sake of clarity, z is not shown. The
update of d is as follows: whenever the system commits a violation (indicated by
red dashed edges), then d is set to >. Otherwise, d is set to ⊥.

Let us take a closer look at some of the edges of U in Figure 4.3. If the current
state is ({F},⊥) and U observes the output gg from the system, a speci�cation
violation occurs. We assume that D meant to give an allowed output, i.e., either
gr or rr. U continues to monitor both states F and N ; thus, U enters the state
({F,N},>). If the next observation is again gg, which is neither allowed in F
nor in N, we know that a second violation occurred. U continues to monitor
the system from all states that are reachable from the current set of monitored
states: in this case, the set of monitored states are all three states, and U enters
the state ({F,N, S},>). If the next observation is rr, then d is set to ⊥, and U

enters the state ({F},⊥). This constitutes the end of the recovery period.

Step 2. Constructing the Deviation Monitor T. We build T = (T, t0,ΣO×
ΣO, δ

t) to monitor deviations between the shield's and system's outputs. Here,
T = {t0, t1} and δt(t, (σO, σO ′)) = t0 i� σO = σO

′. That is, if there is a deviation
in the current time step, then T will be in t1 in the next time step. Otherwise,
T will be in t0. The deviation monitor is shown in Figure 4.4.

Step 3. Constructing and Solving the Safety Game Gs. We construct a
safety game Gs such that any shield that implements a winning strategy for Gs

is allowed to deviate in the recovery phase only, and the output of the shield is
always correct.

Let the automata U and T and the safety automaton ϕ be given. LetW ⊆ F
be the winning region of ϕ when considered as a safety game. We construct a
safety game Gs = (Gs, gs0,Σ

s
I ,Σ

s
O δs, F s), which is the synchronous product of

U, T and ϕ such that:

� Gs = U × T ×Q is the state space,

� gs0 = (u0, t0, q0) is the initial state,

� ΣsI = ΣI × ΣO is the input alphabet,

� ΣsO = ΣO is the output alphabet,

48 Chapter 4. k-Stabilizing and Admissible Shields

� δs is the next-state function with δs
(
(u, t, q), (σI , σO), σO

′) =(
δu(u, (σI , σO)), δt(t, (σO, σO

′)), δ(q, (σI , σO
′))
)
, and

� F s is the set of safe states with

F s = {(u, t, q) ∈ Gs | ((q ∈W) ∧ (u = (w ∈ 2W ,⊥)→ t = t0))}.

In the de�nition of F s, we require that q ∈ W , i.e., it is a state of the
winning region, which ensures that the shield output will satisfy ϕ. The second
term ensures that the shield can only deviate in the recovery period, i.e., while
d = > in U.

We use standard algorithms for safety games (cf. [Fae09]) to compute the
winning region W s and the permissive winning strategy ρs : G×ΣI → 2ΣO that
is not only winning for the system, but also subsumes all memoryless winning
strategies.

Step 4. Constructing the Büchi Game Gb. A shield S that implements
the winning strategy ρs of the safety game ensures correctness (D ◦ S � ϕ) and
keeps the output of the system D intact if D does not violate ϕ. What is still
missing is to keep the number of deviations per violation to a minimum. As a
basic requirement, we would like the recovery period to be over in�nitely often.
We will see later (in Theorem 7) that this basic requirement is enough to ensure
not only a �nite recovery period but also the shortest possible recovery period.
This requirement can be formalized as a Büchi winning condition. We construct
the Büchi game Gb by applying the permissive safety strategy ρs to the game
graph Gs.

Given the safety game Gs = (Gs, gs0,Σ
s
I ,Σ

s
O, δ

s, F s) with the non-deterministic
winning strategy ρs and the winning region W s, we construct a Büchi game
Gb = (Gb, gb0,Σ

b
I ,Σ

b
O, δ

b, F b) such that:

� Gb = W s is the state space,

� gb0 = gs0 is the initial state,

� ΣbI = ΣsI and ΣbO = ΣsO is the input/output alphabet which remain un-
changed,

� δb = δs ∩ ρs is the transition function, and

� F b = {(u, t, q) ∈W s | u = (w ∈ 2W ,⊥)} is the set of accepting states.

A play is winning if d = ⊥ in�nitely often.

4.3. Admissible Shields 49

Step 5. Solving the Büchi Game Gb. We use standard algorithms for
Büchi games (cf. e.g. [Maz01]) to compute a winning strategy ρb for Gb. If a
winning strategy exists, we implement this strategy in a new reactive system
S = (Gb, gb0,Σ

b
I ,Σ

b
O, δ

′, ρb) with δ′(g, σI) = δb(g, σI , ρ
b(g, σI)). Otherwise, the

synthesis problem is not realizable.

Theorem 3

A system that implements the winning strategy ρb in the Büchi game Gb =
(Gb, gb0,Σ

b
I ,Σ

b
O, δ

b, F b) in a new reactive system S = (Gb, gb0,Σ
b
I ,Σ

b
O, δ

′, ρb) with
δ′(g, σI) = δb(g, σI , ρ

b(g, σI)) is a k-stabilizing shield for the smallest k possible.

Proof. Since ρb v ρs, implementing ρb ensures correctness (D ◦ S � ϕ) and
that S does not deviate from D unnecessarily. Therefore, S is a post-posed
shield (see De�nition 3). Furthermore, the strategy ρb ensures that the recovery
period is over in�nitely often. Since winning strategies for Büchi games are
subgame optimal, a shield that implements ρb ends deviations at any state after
the smallest number of steps possible, i.e., S adversely k-stabilizes any trace for
the smallest k possible. Hence, S is a k-stabilizing shield (see De�nition 10).

Q. E. D.

The standard algorithm for solving Büchi games contains the computation of
attractors. The i-th attractor for the system contains all states from which the
system can �force� a visit of an accepting state in i steps. For all states g ∈ Gb
of the game Gb, the attractor number i of g corresponds to the smallest number
of steps within which the recovery phase can be guaranteed to end.

Theorem 4

Let ϕ = {Q, q0,Σ, δ, F} be a safety speci�cation and |Q| be the cardinality of the
state space of ϕ. A k-stabilizing shield with respect to ϕ can be synthesized in
O(|Q|3 · 2|Q|) time if it exists.

Proof. Our safety game Gs and our Büchi game Gb have at most m = (2 · 2|Q|) ·
2 · |Q| states and at most n = m2 edges. Safety games can be solved in O(m+n)
time and Büchi games in O(m · n) time [Maz01]. Q. E. D.

While an exponential runtime may not look appealing at the �rst glance, keep
in mind that the critical safety properties of a system are typically simple and
that the complexity of the system is irrelevant for the shield synthesis procedure.

4.3 Admissible Shields

The proposed k-stabilizing shield synthesis approach (Section 4.2) has a limi-
tation with a signi�cant impact in practice: the k-stabilizing shield synthesis
problem is unrealizable for many safety-critical systems, because a �nite number
of deviations cannot be guaranteed. In this section, we will introduce admis-
sible shields, which improve k-stabilizing shields in the following way: whereas
k-stabilizing shields take an adversarial view on the system, admissible shields
take a collaborative view. That is if there is no shield that guarantees recovery

50 Chapter 4. k-Stabilizing and Admissible Shields

F

N1

N2

S

yyr rg

yrygrgr rg

Figure 4.5: Safety speci�cation for the tra�c light controller with 4 phases.

within k steps regardless of system behavior (for any �nite k), the admissible
shield will attempt to work with the system to recover as soon as possible.

4.3.1 Illustrative Example

Let us extend the simple tra�c light controller of Section 3.2 to a controller for a
tra�c light with three colors and four phases. For both roads the phases are red
(r), yellow (y), green (g), and red-and-yellow (yr). The safety properties encode
the following.

1. The output gg is never allowed.

2. The output cannot change from gr to rg without passing yyr.

3. The output cannot change from rg to gr without passing yry.

4. The output yyr is always followed by rg, and the output yry is always
followed by gr.

These properties can be formulated by the following LTL formula ϕ :

ϕ =�¬(gg) ∧�(gr→ X(gr ∨ yyr)) ∧�(rg→ X(rg ∨ yry))∧
�(yyr → Xrg) ∧�(yry→ Xgr).

Figure 4.5 shows the speci�cation ϕ expressed by a safety automaton. The
edges of the automaton are labeled with the controller's outputs for the two
roads. There are four non-error states: F denotes the state where the �rst road
has the green light, and S denotes the state where the second road has the green
light. In N1, the �rst road has the yellow light, and the second road has the
red and yellow light. In N2, the �rst road has the red and yellow light, and the
second road has the yellow light.

Using a k-stabilizing shield. Table 4.3 shows how a post-posed shield S

corrects a sample output of a tra�c light controller. Initially, the �rst road has
the green light, and the controller sends the output rg to keep it that way, which
is accepted by the shield. In step 2, the controller sends gg, which violates ϕ.

4.3. Admissible Shields 51

Time Step 1 2 3 4 5 6 7
Controller gr gg rg yry gr yyr rg

Shield S gr gr yyr rg yyr gr yry

Table 4.3: Controller corrected by a post-posed shield S.

To enforce correctness, a shield could either overwrite the output to yyr or gr.
S corrects the output to gr, and the �rst road keeps the green light. In step 3,
the output of the controller is rg. Since ϕ does not allow to switch from gr to rg

directly, the shield has to alter the output again and chooses yyr. In step 4, the
controller commands to change the phase of the tra�c light again, this time to
yyr. The shield deviates again and gives rg, and so on.

Therefore, a single speci�cation violation can lead to an in�nitely long de-
viation between the controller's output and the shield's output. A k-stabilizing
shield is allowed to deviate from the controllers outputs for at most k consecutive
time steps. Hence, no k-stabilizing shield exists.

Using an admissible shield. Recall the situation in which the shield caused
the actual tra�c light phase to �fall behind� the tra�c light phase requested
by the controller. The shield should then implement a best-e�ort strategy to
�synchronize� the actual tra�c light phase with the phase commanded by the
controller. Though this cannot be guaranteed, the controller is not adversar-
ial towards the shield, so the shield will likely be possible to achieve this re-
synchronization, for instance when the controller keeps the same phase for sev-
eral time steps. This possibility motivates the concept of an admissible shield.
For instance, if in step 7 the controller sends the output rg, the shield will be
able to catch up and to end the deviation by the next speci�cation violation.

4.3.2 De�nition of Admissible Shields

In this section, we discuss admissible shields. We distinguish between two sit-
uations. In states of the system in which a �nite number k of deviations can
be guaranteed, an admissible shield takes an adversarial view on the system: it
guarantees recovery within k steps regardless of system behavior, for the small-
est k possible. In these states, the strategy of an admissible shield conforms to
the strategy of a k-stabilizing shield. In all other states, admissible shields take
a collaborative view: the admissible shield will attempt to work with the system
to recover as soon as possible. In particular, an admissible shield plays an ad-
missible strategy, that is, a strategy that cannot be beaten in recovery speed if
the system acts cooperatively.

De�nition 11 � Adversely Subgame Optimal Shield

A post-posed shield S is adversely subgame optimal if, for any trace σ ∈ Σ∗, S
adversely k−stabilizes σ (De�nition 9) and there exists no shield that adversely
l-stabilizes σ for any l < k.

52 Chapter 4. k-Stabilizing and Admissible Shields

An adversely subgame optimal shield S guarantees to deviate in response to
an error for at most k time steps, for the smallest k possible.

De�nition 12 � Collaborative k-Stabilization of Traces

Let ϕ be a safety speci�cation and let σ = (σI ||σO) ∈ Σω be a correct trace. Let
σf = (σI ||σOf) ∈ Σω be a trace in which ∀i with σO[i] 6= σO

f [i] it holds that
(σI [0 . . . i − 1]||σO[0 . . . i − 1]) · (σI [i], σO[i]f) is wrong and let E = {i | σO[i] 6=
σO

f [i]} be the set of indices of the wrong outputs.
A shield S collaboratively k-stabilizes σ if or any wrong output σO

f [i] with
i ∈ E the following holds: For any correct output σO

c ∈ ΣO (i.e.,σ[0 . . . i −
1] · (σI [i], σOc) is correct), there exists a correct trace (σI

c||σOc) ∈ Σω (i.e.,
σ[0 . . . i− 1] · (σI [i], σOc) · (σIc||σOc) is correct), such that

σ# := σ[0 . . . i]f · (σIc||σOc),
σO

? := S(σ#),

(σI ||σO?) � ϕ, and

∀j ≥ i . σO?[j] 6= σO
#[j]→ j − i ≤ k.

The trace σf results from substituting outputs in σ by wrong outputs, and E
contains the indices of the wrong outputs as de�ned in Section 4.2.2. The shield
has to correct any wrong output σOf [i] with i ∈ E with an output such that, for
some correct output σOc and some correct continuation (σI

c||σOc), the shield
is able to end the deviation after k-steps, and the shielded trace satis�es ϕ.

De�nition 13 � Collaborative k-Stabilizing Shield
A shield S is collaboratively k-stabilizing if it collaboratively k-stabilizes any �nite
trace.

A collaborative k-stabilizing shield requires that it must be possible to end
deviations after k steps, for some future input and output of D. It is not nec-
essary that this is possible for all future behavior of D allowing in�nitely long
deviations.

De�nition 14 � Collaborative Subgame Optimal Shield

A shield S is collaborative subgame optimal if, for any trace σ ∈ Σ∗, S collabo-
ratively k−stabilizes σ and there exists no shield that adversely l-stabilizes σ for
any l < k.

De�nition 15 � Admissible Shield

A shield S is admissible if, for any trace σ, whenever there exists a k and a shield
S′ such that S′ adversely k-stabilizes σ, then S is an adversely subgame optimal
shield and adversely k-stabilizes σ for a minimal k. If such a k does not exist for
trace σ, then S acts as a collaborative subgame optimal shield and collaboratively
k-stabilizes σ for a minimal k.

An admissible shield ends deviations as soon as possible. In all states of the
system D from which it is possible to k-adversely stabilize traces, an admissible
shield does this for the smallest k possible. In all other states, the shield corrects
the output in such a way that there exists system's inputs and outputs such that
deviations end after l steps, for the smallest l possible.

4.3. Admissible Shields 53

4.3.3 Synthesis of Admissible Shields

The �ow of the synthesis procedure for admissible shields is similar to the �ow for
synthesizing k-stabilizing shields and is illustrated in Figure 4.2. To synthesize
an admissible shield, a Büchi game is constructed in the same way as for k-
stabilizing shields. The di�erence lies in the computation of the strategy of the
Büchi game: for k-stabilizing shields, we compute a winning strategy of the
Büchi game, and for admissible shields, we compute an admissible strategy.

Algorithm 4 � Synthesis of Admissible Shields

Given is a safety speci�cation ϕ = (Q, q0,ΣI × ΣO, δ, F). Starting from ϕ, our
admissible shield synthesis procedure is as follows:

Steps 1-4. Perform as in Section 4.2.3.

Step 5. Solving the Büchi Game Gb. A Büchi game Gb may contain reach-
able states for which d = ⊥ cannot be enforced in�nitely often, i.e., states from
which a recovery in a �nite time cannot be guaranteed. We implement an ad-
missible strategy that visits states with d = ⊥ in�nitely often whenever possible.
This criterion essentially asks for a strategy that is winning with the help of the
system.

The admissible strategy ρb for a Büchi game Gb = (Gb, gb0,Σ
b
I ,Σ

b
O, δ

b, F b) can
be computed as follows [Fae09]:

1. Compute the winning region W b and a winning strategy ρbw for Gb (cf.
[Maz01]).

2. Remove all transitions that start in W b and do not belong to ρbw from Gb.
This results in a new Büchi game Gb1 = (Gb, gb0,Σ

b
I ,Σ

b
O, δ

b
1, F

b) with

(g, (σI , σO), g′) ∈ δb1

{
if (g, σI , σO) ∈ ρbw, or
if ∀σO ′ ∈ ΣbO .(g, σI , σO

′) /∈ ρbw ∧ (g, (σI , σO), g′) ∈ δb.

3. In the resulting game Gb1, compute a cooperatively winning strategy ρb.
In order to compute ρb, one �rst has to transform all input variables to
output variables. This results in the Büchi game Gb2 = (Gb, gb0, ∅,ΣbI ×
ΣbO, δ

b
1, F

b). Afterwards, ρb can be computed with the standard algorithm
for the winning strategy on Gb2.

The strategy ρb is an admissible strategy of the game Gb, since it is winning
and cooperatively winning [Fae09]. Whenever the game Gb starts in a state of
the winning region W b, any play created by ρbw is winning. Since ρb coincides
with ρbw in all states of the winning region W b, ρb is winning. We know that ρb

is cooperatively winning in the game Gb1. A proof that ρb is also cooperatively
winning in the original game Gb can be found in [Fae09].

Theorem 5

A shield that implements the admissible strategy ρb in the Büchi game Gb =

54 Chapter 4. k-Stabilizing and Admissible Shields

S1 S2 S3

¬r ¬r

r a1¬a2 r ¬a1a2

r ¬r r

Figure 4.6: Safety speci�cation ϕs of simple arbiter.

(Gb, gb0,Σ
b
I ,Σ

b
O, δ

b, F b) in a new reactive system S = (Gb, gb0,Σ
b
I ,Σ

b
O, δ

′, ρb) with
δ′(g, σI) = δb(g, σI , ρ

b(g, σI)) is an admissible shield.

Proof. Since ρb v ρs, S is a shield according to De�nition 3. S is an adversely
subgame optimal shield (see De�nition 11) for all states of the system in which
a �nite number of deviations can be guaranteed. This is due to the fact that
ρb is winning for all winning states of the Büchi game Gb, and winning strate-
gies for Büchi games are subgame optimal. Furthermore, S is a collaborative
subgame optimal shield (see De�nition 14), since ρb is cooperatively winning
in the Büchi game Gb, and cooperative winning strategies for Büchi games are
subgame optimal for some inputs. Therefore, S is an admissible shield (see
De�nition 15). Q. E. D.

4.4 Liveness-Preserving k-stabilizing Shields

Reactive systems usually not only satisfy safety properties, but are also expected
to satisfy liveness properties, which guarantee that certain good events eventu-
ally happen. Unfortunately, it is not guaranteed that the corrections of the shield
preserve the liveness properties satis�ed by the system (without shielding).

De�nition 16 � Liveness-Preserving Shield

A post-posed shield preserves a given set of liveness properties if any liveness
properties satis�ed by the system without shielding are also satis�ed by the shielded
system.

In this section, we discuss an extension to the k-stabilizing shield synthesis
procedure that allows liveness-preserving shielding.

4.4.1 Illustrative Example

Consider a simple arbiter with one input signal r, with which clients request
permissions, and two output signals a1 and a2 to grant resource 1 and resource
2. The implementation of the arbiter is already given, but the full speci�cation of
the arbiter is unknown. Suppose we know that the arbiter satis�es the following
two liveness properties:

� ϕl1: resource 1 has to be granted in�nitely often, i.e., �♦(a1).

� ϕl2: resource 2 has to be granted in�nitely often, i.e., �♦(a2).

4.4. Liveness-Preserving k-stabilizing Shields 55

Time Step 1 2 3 4 5
Arbiter ¬r¬a1¬a2 r a1a2 ¬r¬a1¬a2 r a1a2 . . .
Shield S ¬r¬a1¬a2 r ¬a1a2 ¬r¬a1¬a2 r ¬a1a2 . . .

Table 4.4: Shield S correcting the arbiter.

We attach a post-posed shield to the arbiter to enforce the safety property
ϕs expressed by the safety automaton in Figure 4.6. ϕs states that if there is a
request r in state S2, then one resource has to be granted immediately: either
resource 1 with a1¬a2, or resource 2 with ¬a1a2. As usual, the error state is not
shown, and missing edges lead to this error state, e.g., granting both resources
(with a1a2) or no resource (with ¬a1¬a2) after a request r in state S2.

Table 4.4 shows how a post-posed shield S may correct the arbiter. Initially,
the arbiter is in state S2 and receives no request (i.e., ¬r). In this case, every
possible output from the arbiter is accepted by the shield. In step 2, the arbiter
is still in S2 and receives a request (i.e., r). The arbiter grants both resources at
once (i.e., a1a2), which violates ϕs. The shield corrects the output to ¬a1a2 and
monitors the arbiter from state S1 and S3. In step 3, the arbiter receives ¬r and
sets all outputs to ⊥. The shield accepts the output, ends the deviation, and
monitors the arbiter from state S2. From there on, everything repeats in�nitely
often.

Let us analyse the corrections of the shield with respect to the liveness prop-
erties ϕl1 and ϕl2. The arbiter gave a1 and a2 in�nitely often, thereby satisfying
both ϕl1 and ϕl2. The output of the shield however never included the symbol
a1. Although the arbiter satis�ed all liveness properties, through the correction
of the shield, the �rst liveness property ϕl1 is violated.

4.4.2 Synthesis of Liveness-Preserving k-stabilizing Shields

To construct a system that has all the properties of a k-stabilizing shield and is
liveness-preserving, we construct and solve a Streett game with two pairs. The
�rst Streett pair, called the shielding pair, encodes that the recovery phase has
to end in�nitely often. The second Streett pair, called the liveness-preservation
pair, encodes that if the system satis�es all liveness properties, then the shield
has to preserve all liveness properties.

Algorithm 5 � Synthesis of liveness-preserving Shields

Let ϕs = (Qs, qs0,Σ
s, δs, F s) be the safety speci�cation to be enforced by the

shield. Let ϕl = {ϕl1, . . . , ϕln} be the set of liveness properties that if sat-
is�ed by the system, have to be preserved after shielding. Each ϕli is rep-
resented as a Büchi automaton ϕli = (Qli, q

l
0,i,Σ

l, δli, F
l
i), with F li the set of

states that have to be visited in�nitely often. The synchronous product ϕl of
{ϕl1, . . . , ϕln} de�nes an automaton with generalized Büchi acceptance condition
ϕl = (Ql, ql0,Σ

l, δl, {F l1, . . . , F ln}). Given ϕs and ϕl, our shield synthesis proce-
dure consists of three steps.

56 Chapter 4. k-Stabilizing and Admissible Shields

Step 1. Encode the shielding Streett pair 〈E1,F1〉. Given the safety
speci�cation ϕs, we construct a one-pair Streett game Gs1 in such a way that
the winning strategy corresponds to a k-stabilizing shield.

First (Step 1-a), we construct a Büchi game Gb = (Gb, gb0,ΣI×ΣO,ΣO, δ
b, F b),

using the construction described in Section 4.2.3. The resulting transition rela-
tion δb contains only transitions in which the output of the shield satis�es ϕs,
and there are no illegal deviations between the output of the shield and the
output of the system. F b covers all states with d = ⊥, i.e., if these states are
visited in�nitely often, the recovery phase will be over in�nitely often.

Next (Step 1-b), we transform the Büchi game Gb into the Streett game
Gs1 = (Gs1, gs10 ,ΣI × ΣO,ΣO, δ

s1, 〈E1, F1〉) such that:

� Gs1 = Gb is the state space,

� gs10 = gb0 is the initial state,

� δs1 = δb is the next-state function, and

� 〈E1, F1〉 = 〈Gs1, F b〉 is the GR(1) acceptance condition.
The intuition is that the states in F1 = F b must always be visited in�nitely often
(the deviation phase should end in�nitely often). Therefore, we set E1 to the
set of all states.

Step 2. Encode the liveness-preservation Streett pair 〈E2,F2〉. From
the liveness speci�cation ϕl = (Ql, ql0,Σ

l, δl, {F l1, . . . , F ln}), we construct another
one-pair Streett game Gs2 such that a winning strategy in this game corresponds
to a liveness preserving implementation. Therefore, we turn the condition that
if the system satis�es ϕl, then the shield has to satisfy ϕl as well, into the
second Streett pair 〈E2, F2〉, called the liveness-preservation Streett pair. The
construction of Gs2 consists of two steps.

In the �rst phase (Step 2-a), we create a GR(1) game Gg = (Gg, gg0 ,ΣI ×
ΣO,ΣO, δ

g, Acc), such that:

� Gg = Ql ×Ql is the state space,
� g0 = (ql0, q

l
0) is the initial state,

� ΣI × ΣO is the input,

� ΣO is the output,

� δg is the next-state function such that

δg
(
(q, q′), (σI , σO), σO

′) =
(
δl(q, (σI , σO)), δl(q′, (σI , σO

′))
)
, and

� Acc is the GR(1) acceptance condition such that

Acc =
∧
i

inf(q) ∧ F li 6= ∅ →
∧
i

inf(q′) ∧ F li 6= ∅

with gg = q||q′ = (q0q
′
0)(q1q

′
1) · · · .

4.5. Experimental Results 57

In the second phase (Step 2-b), the GR(1) game Gg is transformed into a
one-pair Streett game Gs2 = (Gs2, gs20 ,ΣI ×ΣO,ΣO, δ

s2, 〈E2, F2〉) via a counting
construction [BCG+10].

Step 3: Construct and solve the two-pair Streett Game. From Gs1 and
Gs2, we construct a Streett game Gst with two Streett pairs Gst = (Gst, gst0 ,ΣI ×
ΣO,ΣO, δ

st, Acc) such that:

� Gst = Gs1 ×Gs2 is the state space,

� gst0 = (gs10 , g
s2
0) is the initial state,

� δst is the next-state function with

δst
(
(gs1, gs2), (σI , σO), σO

′) =
(
δs1(gs1, (σI , σO)), δs2(gs2, (σI , σO

′))
)
, and

� Acc is the Streett acceptance condition with

Acc = {〈E1, F1〉, 〈E2, F2〉}.

A winning strategy for the two-pair Streett game Gst corresponds to a liveness-
preserving k-stabilizing shield. Streett games with n Streett pairs can be solved
using the recursive �xpoint algorithm of [PP06].

4.5 Experimental Results

We implemented our k-stabilizing and admissible shield synthesis procedures in
a Python tool that takes a set of safety automata de�ned in a textual represen-
tation as input. This allows the user to specify a set of simple safety properties
instead of one complicated property. In the �rst step, our tool builds the prod-
uct of all safety automata and construct the violation monitor (see Section 4.2.3
and Section 4.3.3). This step is performed on an explicit representation. For
the remaining steps, we use Binary Decision Diagrams (BDDs) for symbolic
representation.

We have conducted two sets of experiments, where the benchmarks are (1)
selected properties for an ARM AMBA bus arbiter [BJP+12], and (2) selected
properties from LTL speci�cation patterns [DAC99]. All experiments were per-
formed on a machine with an Intel i5-3320M CPU@2.6 GHz, 8 GB RAM, and
a 64-bit Linux.

4.5.1 A Shield for the ARM AMBA Bus Arbiter

We used properties of an ARM AMBA bus arbiter [BJP+12] as input to our
shield synthesis tool. We present the result on one example property, and then
present the performance results for other properties. The property that we
enforced was Guarantee 3 from the speci�cation of [BJP+12], which says that if

58 Chapter 4. k-Stabilizing and Admissible Shields

S0

S4

S3 S2 S1

Sx

¬B ∨ ¬s

B¬Rs

BRs

R¬s

¬R¬s

s

R¬s

¬R¬s

s

R¬s

¬R¬s

s

R¬s

¬R¬ss

>

Figure 4.7: Guarantee 3 from the AMBA case study

Step 3 4 5 6 7 8 9 10 11 12
State in Fig. 4.7 S0 S4 S3 S2 S1 S0 S0 S0 S0 . . .
State in Arbiter S0 S3 S2 S1 S0 S3 S2 S1 S0 . . .
B 1 1 1 1 1 1 1 1 1 . . .
R 0 1 1 1 1 1 1 1 1 . . .
s from Arbiter 1 0 0 0 1 0 0 0 0 . . .
s from Shield 1 0 0 0 0 0 0 0 0 . . .

Figure 4.8: Shield execution results

a length-four locked burst access starts, no other access can start until the end of
this burst. The safety automaton is shown in Figure 4.7, where B, R, and s are
short for hmastlock ∧ HBURST=BURST4, HREADY, and start, respectively. Upper
case signal names are inputs, and lower-case names are outputs of the arbiter.
The state Sx is unsafe. S0 is the idle state waiting for a burst to start (B ∧ s).
The burst is over if input R has been > 4 times. State Si, where i = 1, 2, 3, 4,
means that R must be > for i more times. The counting includes the time step
where the burst starts, i.e., where S0 is left. Outside of S0, s is required to be
⊥.

Our tool generates a 1-stabilizing shield and an admissible shield within a
fraction of a second. The 1-stabilizing shield has 8 latches and 142 (2-input)
multiplexers, which is then reduced by ABC [BM10] to 4 latches and 77 AIG
gates. The admissible shield has 9 latches and 340 multiplexers, which is reduced
by ABC to 7 latches and 271 AIG gates. We veri�ed the shield against an arbiter
implementation for two bus masters, where we introduced the following bug: the
arbiter does not check R when the burst starts but behaves as if R was >. This
corresponds to removing the transition from S0 to S4 in Figure 4.7, and going
to S3 instead. An execution trace is shown in Figure 4.8. The �rst burst starts

4.5. Experimental Results 59

Table 4.5: Performance results for AMBA properties

Property |Q| |I| |O| k Time[sec]
P1: G1 3 1 1 2 0.1
P2: G1+2 5 3 3 2 0.6
P3: G1+2+3 12 3 3 5 0.26
P4: G1+2+4 8 3 6 2 12
P5: G1+3+4 15 3 5 5 117
P6: G1+2+3+5 18 3 4 5 325
P7: G1+2+4+5 12 3 7 2 66 (admissible)
P8: G2+3+4 17 3 6 5 129 (admissible)
P9: G1+3+4+5 23 3 6 5 786 (admissible)

with s = > in Step 3. R is ⊥, so the arbiter counts incorrectly. The erroneous
output shows up in Step 7, where the arbiter starts the next burst, which is
forbidden, and thus blocked by the shield. The arbiter now thinks that it has
started a burst, so it keeps s = ⊥ until R is > 4 times. In actuality, this burst
start has been blocked by the shield, so the shield waits in S0. Only after the
suppressed burst is over and the components are in sync again, the next burst
can start normally.

To evaluate the performance of our tool, we ran a stress test with increas-
ingly larger sets of safety properties for the ARMAMBA bus arbiter in [BJP+12].
Table 4.5 summarizes the results. The �rst columns list the set of speci�cation
automata and the number of states, inputs, and outputs of their product au-
tomata. The next two columns list the results for shields synthesis: the table
�rst lists the smallest number of steps under which the shield can recover (ad-
versely for the properties P1-P6, cooperatively for properties P7-P9) and second,
the time for synthesizing a shield in seconds. For the �rst six properties P1-P6,
a �nite number k of deviations can be guaranteed, and the results for admissi-
ble shields conform with the results for k-stabilizing shields. For the last three
experiments P7-P9, no k-stabilizing shield exists, and the results are given for
admissible shields. Both methods run su�ciently fast on all properties.

4.5.2 A Shield for LTL Speci�cation Patterns

Dwyer et al. [DAC99] studied frequently used LTL speci�cation patterns in ver-
i�cation. As an exercise, we applied our tool to the �rst ten properties from
their list [LTL], synthesized k-stabilizing shields, and summarized the results
in Table 4.6. For a property containing liveness aspects (e.g., something must
happen eventually), we imposed a bound on the reaction time to obtain the
safety (bounded-liveness) property. The bound on the reaction time is shown
in Column 3. The next column lists the number of states in the safety speci�-
cation. The last columns list the synthesis time in seconds, and the shield size
(latches and AIG gates) for k-stabilizing shields. Overall, the synthesis method
run su�ciently fast on all properties, and the resulting shield size is small. We

60 Chapter 4. k-Stabilizing and Admissible Shields

Table 4.6: Synthesis results for the LTL patterns.

Nr. Property b |Q| Time[sec] #Latches #AIG-Gates
1 �¬p - 2 0.01 0 0
2 ♦r → (¬pUr) - 4 0.01 3 10
3 �(q → �(¬p)) - 3 0.01 2 8
4 �((q ∧ ¬r ∧ ♦r)→ (¬pUr)) - 4 0.01 3 15
5 �(q ∧ ¬r → (¬pWr)) - 3 0.02 3 19
6 ♦p 0 3 0.01 1 1
6 ♦p 4 7 0.01 6 30
6 ♦p 16 19 0.34 10 66
6 ♦p 64 67 0.67 14 95
6 ♦p 256 259 39 18 106
7 ¬rW(p ∧ ¬r) - 3 0.01 5 27
8 �(¬q) ∨ ♦(q ∧ ♦p) 0 3 0.01 4 19
8 �(¬q) ∨ ♦(q ∧ ♦p) 4 7 0.02 6 54
8 �(¬q) ∨ ♦(q ∧ ♦p) 16 19 0.05 10 89
8 �(¬q) ∨ ♦(q ∧ ♦p) 64 67 0.58 14 114
8 �(¬q) ∨ ♦(q ∧ ♦p) 256 259 38 18 150
9 �(q ∧ ¬r → (¬rW(p ∧ ¬r))) - 3 0.03 5 58

also investigated how the synthesis time increased with an increasingly larger
bound b. For the properties P6 and P8, the run time and shield size remained
small even for large automata.

Declaration of Sources

Chapter 4 was based on and reuses material from the following sources,
previously published by the author:

� [BKKW15] R. Bloem, B. Könighofer, R. Könighofer, C. Wang:
Shield synthesis - runtime enforcement for reactive systems.
TACAS. 2015

� [HKKT16] L. R. Humphrey, B. Könighofer, R. Könighofer, U.
Topcu: Synthesis of admissible shields. HVC. 2016

� [KAB+17] B. Könighofer, M. Alshiekh, R. Bloem, L. R. Humphrey,
R. Könighofer, U. Topcu, C. Wang: Shield synthesis. FMSD. 2017

References to these sources are not always made explicit.

5
Explanatory Shields

5.1 Motivation and Outline

In this chapter, we consider shielding a human operator, who works with an au-
tonomous system. In the context of shielding a human operator, we often refer to
outputs of the human operator as actions selected by the operator. We apply a
preemptive shield, which restricts the possible actions of the operator. Shielding
a human operator requires innovation in the shielding procedure: when shielding
a human operator, it is necessary to provide simple and intuitive explanations to
the operator for the interferences of the shield. We call such shields explanatory
shields. Explanatory shields are particularly useful in cases in which the speci-
�cation is very complex, and it isn't very easy for the operator to comprehend
why the shield had to interfere.

Outline. In Section 5.2, we will discuss the setting for shielding human-autonomy
interactions. We will de�ne explanatory shields in Section 5.3, and we will dis-
cuss the synthesis of explanatory shields in Section 5.4. We will conclude this
chapter with a case study on UAV mission planning in Section 5.5.

5.2 Explanatory Shielding Setting

Consider a setting in which a human operator controls an autonomous reactive
system as part of the environment: in every time step, the environment provides
an input (sensor measurements, state information) to the operator. Then the
operator selects the next action, and the environment executes the selected action
and moves to the next state.

61

62 Chapter 5. Explanatory Shields

Environment Human Operator

Shield S

σI
t+1

σI
t

{ats,1, . . . , ats,k}

ats

{(atu,1, exp1), . . . , (atu,l, expl)}

Figure 5.1: Explanatory Shielding Setting

The human operator has to select actions in such a way that a given safety
speci�cation ϕ = (Q, q0,ΣI × ΣO, δ, F), with ΣO = A is the set of available
actions, is met. We modify the loop between the human operator and the envi-
ronment, as depicted in Figure 5.1. The shield is implemented before the human
operator and acts each time the operator is to make a decision. The shield pro-
vides a list of safe actions and for each unsafe action, an explanation of why the
action is unsafe.

The interaction between the environment, the human operator, and the
shield is as follows: at every time step, the shield S computes a set of all
safe actions {ats,1, . . . , ats,k} and the list of unsafe actions {atu,1, . . . , atu,l} =

A \ {ats,1, . . . , ats,k}. Additionally, S computes for each au ∈ {atu,1, . . . , atu,l} an
explanation exp that explains why au is unsafe (we discuss in the next section,
how such an explanation looks like). The human operator receives the input
from the shield and from the environment. The operator may consider the list
of unsafe actions and explanations to understand the restrictions made by the
shield. Afterwards, the operator picks an action as ∈ {ats,1, . . . , ats,k} from the
list of safe actions. The environment executes as, moves to the next state, and
provides the next input to the shield and the operator.

5.3 De�nition of Explanatory Shields

Explanatory shields provide a simple diagnosis to the operator and explain why
certain actions are unsafe in the current situation. This is particularly helpful
if ϕ is very complex, e.g., consists of thousands of states, and it is di�cult for
the operator to comprehend why the shield had to forbid an action. To explain
unsafe actions, we propose to use techniques for debugging formal speci�ca-
tions [KHB13].

Understanding why an action for a given state-input pair is unsafe may be
di�cult, but often only a small part of the speci�cation is responsible. Removing
extraneous parts from the speci�cation gives a speci�cation that still forbids the
action but is much smaller and thus easier to understand. We call this part of
the speci�cation the unsafe core for a given state-input combination.

Typically, a safety speci�cation ϕ is composed of several safety properties

5.4. Synthesis of Explanatory Shields 63

ϕ = {ϕ1 . . . ϕl}, where each ϕi de�nes a relatively self-contained and independent
aspect of the system behavior. Our goal is to identify minimal sets of properties
ϕi that explain the unsafe action on their own.

De�nition 17 � Unsafe Core

Let ϕ = {ϕ1, . . . , ϕl} with ϕ1 × · · · × ϕl = (Q, q0,ΣI × ΣO, δ, F) be a safety
speci�cation. Let φ ⊆ ϕ be a subset of ϕ with φ = (Q′, q′0,ΣI × ΣO, δ

′, F ′).
φ de�nes an unsafe core for a state q ∈ Q, an input σI ∈ ΣI , and an output

σO ∈ ΣO if executing σIσO from q′ ∈ Q′ (q′ deduced from q ∈ Q) results in a
next state outside the winning region of φ (when φ is interpreted as a game),
and there is no strict subset of φ for which the same holds.

In the computation of unsafe cores, one can also remove signals from the
speci�cation in addition to properties. Removal of signals allows the operator
to focus on those signals that are relevant to the problem at hand.

De�nition 18 � Explanatory Shield

Given a speci�cation ϕ, a reactive system S is an explanatory shield if S is a
preemptive shield (De�nition 18), and it provides the unsafe core for any unsafe
action in any situation, (i.e., state-input combination of ϕ).

5.4 Synthesis of Explanatory Shields

In this section, we discuss a synthesis approach to construct explanatory shields.

Algorithm 6 � Synthesis of Explanatory Shields

Let ϕ = {ϕ1, . . . , ϕl} be the safety speci�cation, where each ϕi is represented
as an safety automaton ϕi = (Qi, q0,i,Σ, δi, Fi). The synchronous product ϕ =
(Q, q0,Σ, δ, F) of these automata is again a safety automaton. Starting from
these automata, our explanatory shield synthesis procedure consists of two steps.

Step 1. Compute a Preemptive Shield. Using ϕ, compute a preemptive
shield S = (QS, q0,S,ΣI,S,ΣO,S, δS, λS) with ΣI,S = ΣI × ΣO × ΣI and ΣO,S =
2ΣO via Algorithm 2, presented in Section 3.3.4.

Step 2: Compute the Unsafe Cores. For each state q ∈W , input σI , and
unsafe output σO, compute the unsafe core exp(q, σI , σO) ⊆ ϕ. Unsafe cores are
very similar to unrealizable cores [CRST08], i.e., parts of ϕ that are unrealizable
on their own. Computing unsafe cores reduces to computing unrealizable cores,
which can e�ciently be computed by computing minimal hitting sets [LS08].

To obtain a new reactive system SE = (QE , q0,E ,ΣI,E ,ΣO,E , δE , λE) that
constitutes the explanatory shield, we extend the output function of the pre-
emptive shield S. The explanatory shield has the following components:

� QE = QS is the state space,

� q0,E = q0,S is the initial state,

� ΣI,E = ΣI,S is the input alphabet,

64 Chapter 5. Explanatory Shields

� ΣO,E = ΣO,S × 22L

is the output alphabet with L = {1, . . . , l},

� δE = δS is the next-state function, and

� λE is the output function with

λE(g, σI , σO, σ
′
I) =λS(g, σI , σO, σ

′
I)∪

{σ′O ∈ ΣO | δ(g′, σ′I , σ′O) /∈W}∪
{i|ϕi ∈ exp(q′, σI

′, σO
′)}

with g′ = δ(g, σI , σO) and for all g ∈ G, σI ∈ ΣI , and σO ∈ ΣO.

Counterstrategies and Countertraces. Additionally to providing the un-
safe core to the operator for each unsafe action in a given situation, an explana-
tory shield may also provide counterstrategies and countertraces to the operator.

Suppose we are given a safety speci�cation ϕ = (Q, q0,ΣI × ΣO, δ, F) to
be enforced by S. Explaining why an output σO from a state q and an input
σI is unsafe boils down to presenting that from q′ = δ(q, σI , σO), there exists a
strategy for selecting future inputs such that a state outside F is reached eventu-
ally, no matter how future outputs are selected. This strategy for selecting such
inputs is called a counterstrategy. Understanding the counterstrategy implies
understanding why the output is unsafe.

In general, a counterstrategy cannot be presented as a single trace of inputs,
since inputs may depend on previous outputs. The dependencies can become
quite complex, especially for large speci�cations. This makes it di�cult for the
operator to comprehend which environment behavior leads to unsafety. The
operator may prefer one single trace of inputs such that there are no future
outputs able to satisfy ϕ. Such a trace is called a countertrace. Unfortunately, a
countertrace does not always exist. Even if one exists, its computation is often
expensive. Therefore, we propose to use a heuristic to compute countertraces as
presented in [KHB13].

5.5 Experimental Results

In this section, we apply shields on a scenario in which an unmanned aerial
vehicle (UAV), controlled by a human operator, must maintain certain properties
while performing a surveillance mission in a dynamic environment. We show
how an explanatory shield can be used to enforce the desired properties and to
provide feedback to the operator for any restrictions on the commands available.

To begin, note that a common UAV control architecture consists of a ground
control station that communicates with an autopilot onboard the UAV [CCC10].
The ground control station receives and displays updates from the autopilot
on the UAV's state, including position, heading, airspeed, battery level, and
sensor imagery. It can also send commands to the UAV's autopilot, such as
waypoints to �y to. A human operator can then use the ground control station to
plan waypoint-based routes for the UAV, possibly making modi�cations during

5.5. Experimental Results 65
MAP FMCAD

at 𝑙𝑜𝑐1

𝑙𝑜𝑐8𝑙𝑜𝑐7

𝑙𝑜𝑐6𝑙𝑜𝑐5 𝑙𝑜𝑐3

𝑙𝑜𝑐2 𝑙𝑜𝑐4
𝑈𝐺𝑆1

𝑈𝐺𝑆2 at 𝑙𝑜𝑐𝑥

𝑙𝑜𝑐𝑦
𝑙𝑜𝑐10

𝑙𝑜𝑐9

𝑙𝑜𝑐11

𝑙𝑜𝑐𝑧
Communication
relay region

Communication
relay point

𝑙𝑜𝑐12

𝑙𝑜𝑐14

𝑙𝑜𝑐13

𝑙𝑜𝑐15

ROZ

Adversary

Figure 5.2: A map for UAV mission planning.

mission execution to respond to events observed through the UAV's sensors.
However, mission planning and execution can be workload intensive, especially
when operators are expected to control multiple UAVs simultaneously [DNC10].
Errors can easily occur in this type of human-automation paradigm because a
human operator might neglect some of the required safety properties due to high
workload, fatigue, or an incomplete understanding of exactly how a command is
executed.

As the mission unfolds, waypoint commands will be sent to the autopilot.
A shield that monitors the inputs and restricts the set of available waypoints
would be able to ensure the satisfaction of the desired properties. Additionally,
a shield should explain any restrictions it makes in a simple and intuitive way
to the operator.

Consider the mission map in Figure 5.2 [FWHT16], which contains three tall
buildings (illustrated as blue blocks), over which a UAV should not attempt to
�y. It also includes two unattended ground sensors (UGS) that provide data
on possible nearby targets, one at location loc1 and one at locx, as well as two
locations of interest, locy and locz. The UAV can monitor locx, locy, and locz
from several nearby vantage points. The map also contains a restricted operating
zone (ROZ), illustrated with a red box, in which �ight might be dangerous, and
the path of a possible adversary that should be avoided (the pink dashed line).
Inside the communication relay region (large green area), communication links
are highly reliable. Outside this region, communication relies on relay points
with lower reliability.

Given this scenario, properties of interest include:

P1. Adjacent waypoints. The UAV is only allowed to �y to directly con-
nected waypoints.

66 Chapter 5. Explanatory Shields

MAP FMCAD

𝑠2 𝑠1

𝑠5 𝑠6 𝑠3

𝑠9

𝑠10

𝑠11

𝑠12 𝑠13

𝑠14𝑠15

𝑠7 𝑠8

𝑠4

Figure 5.3: Safety automaton of Property P1.

P2. No communication. The UAV is not allowed to stay in a zone with
reduced communication reliability and has to leave this zone within one
time step.

P3. Restricted operating zones. The UAV has to leave a ROZ within two
time steps.

P4. Detected by an adversary. Locations on the adversary's path cannot
be visited more than once over any window of three time steps.

P5. UGS. (a) If UGS1 reports a target, the UAV should visit loc1 within 7
steps. (b) If UGS2 reports a target, the UAV should visit loc5, loc6, loc7,
or loc8 within seven steps.

P6. Refuel. Once the UAV's battery is low, it should return to a designated
landing site at loc14 within ten time steps.

The task of the shield is to ensure these properties during operation. In this
setting, the human operator responds to mission-relevant inputs, e.g., in this
case data from the UGSs and a signal indicating whether the battery is low.
In each step, the operator sends the next waypoint to the autopilot, which is
encoded in a bit representation via outputs l4, l3, l2, and l1. The shield is
implemented before the operator. It monitors mission inputs, and provides a
list of safe waypoints to the operator each time the operator is going to select a
next one. This list restricts the choices of the operator.

We represent each of the properties by a safety automaton, the product of
which serves as the shield speci�cation ϕ. Figure 5.3 models the �connected
waypoints� property, where each state represents a waypoint with the same
number. Edges are labeled by the values of the variables l4 . . . l1. For example,
the edge leading from state s5 to state s6 is labeled by ¬l4l3l2¬l1. For clarity,
we drop the labels of edges in Figure 5.3. The automaton also includes an
error state, which is not shown. Missing edges lead to this error state, denoting
forbidden situations.

5.5. Experimental Results 67

Property |Q| |I| |O| Time [sec]
1 16 0 4 0.01
1+2 16 0 4 0.13
1+2+3 19 0 4 0.27
1+2+3+4 23 0 4 0.92
1+5a 84 1 4 0.9
1+5a+2 84 1 4 3.95
1+5a+2+3 100 1 4 12.48
1+5b 64 1 4 0.5
1+5b+2 64 1 4 1.97
1+6 115 1 4 1.6

Table 5.1: Results for UAV experiments

Figure 5.4: Simulation of explanatory preemptive shield developed on AMASE.

For our experiments, we used the six Properties P1-P6 as safety speci�cation
ϕ1, . . . , ϕ6. We synthesized explanatory shields using the properties {ϕ1, . . . , ϕ6}
to compute the unsafe cores. All results are summarized in Table 5.1. The left
four columns list the set of properties and the number of states, inputs, and
outputs of their product automata, respectively. The last column lists the time
to synthesize the explanatory shield.

All computation times are for a computer with an Intel Xeon 4.0GHz CPU
and 16GB RAM running a 64-bit distribution of Linux.

We integrated our shields in the AMASE multi-UAV simulator [Duq09].
AMASE is a �ight simulation environment, which models UAVs using a kine-
matic �ight dynamics model that includes environmental e�ects (e.g., wind) on
performance. Figure 5.4 visualizes the map of Figure 5.2 using AMASE, and
shows one UAV (in blue), currently in the ROZ at location loc11 and controlled
by the human operator, and a second adversarial UAV (in pink) on its way

68 Chapter 5. Explanatory Shields

to loc8. We integrate a shield to ensure the six safety properties P1-P6. On
the right-hand side of the graphical interface, the operator can select the next
waypoint for the controlled UAV. In the current situation, adjacent waypoints
for the controlled UAV are loc3, loc10, loc11, and loc12, with loc3 and loc10 be-
ing outside the ROZ. The shield disables all other waypoints because the UAV
is only allowed to �y to directly connected waypoints, according to Property
P1. Assume that the controlled UAV already spent two time steps in the ROZ.
Therefore, it has to leave the ROZ in the next time step, according to Property
P3, and the shield disables the waypoints at location loc11 and loc12 as well. The
explanation for any restrictions made by the shield are illustrated in the upper
right corner of the GUI.

Declaration of Sources

Chapter 5 was based on and reuses material from the following sources,
previously published by the author:

� [KAB+17] B. Könighofer, M. Alshiekh, R. Bloem, L. R. Humphrey,
R. Könighofer, U. Topcu, C. Wang: Shield synthesis. FMSD. 2017

� [HKKT16] L. R. Humphrey, B. Könighofer, R. Könighofer, U.
Topcu: Synthesis of admissible shields. HVC. 2016

References to these sources are not always made explicit.

6
Safe Reinforcement Learning via

Deterministic Shields

6.1 Motivation and Outline

In recent years, arti�cial intelligence (AI) evolved from areas like game-playing
or language-translation to critical domains such as health, energy, defense, or
transportation. In particular advances in reinforcement learning (RL) enabled a
new paradigm for developing controllers for autonomous systems that accomplish
complicated tasks in uncertain and dynamic environments. In such an RL-
framework, an agent acts to optimize a long-term return that models the desired
behavior for the agent and is revealed to it incrementally in a reward signal as
it interacts with its environment [SB98].

Increasing use of learning-based controllers in physical systems in the prox-
imity of humans strengthens the concern of whether these systems will operate
safely. Particularly during the exploration phase, when an agent chooses random
actions to examine its surroundings, it is important to avoid actions that may
cause unsafe outcomes.

While convergence, optimality, and data-e�ciency of learning algorithms are
relatively well understood, safety or more generally correctness of controllers
has attracted signi�cantly less attention. For systems employing RL, safety
of decision-making, particularly during the exploration phase, is a major open
challenge [SSP+17, FZ16, Nat16, RDT16]. The area of safe exploration aims
to guide RL agents to adhere to safety requirements during this phase [PS14,
AOS+16].

We approach the problem of ensuring safety in reinforcement learning from

69

70 Chapter 6. Safe Reinforcement Learning via Deterministic Shields

Environment Learning Agent
reward

observation
actions

safe action

Figure 6.1: Post-posed shielded reinforcement learning

a formal methods perspective, and use our shields to guide the learning agent
during exploration. We investigate the question �how can we let a learning
agent do whatever it is doing, and also monitor and interfere with its operation
whenever absolutely needed to ensure safety?�

In this chapter, we introduce shielded learning, a framework that allows ap-
plying machine learning to control systems in a way that the correctness of the
system's execution against a given speci�cation is assured during the learning
and controller execution phases.

In the traditional reinforcement learning setting, in every time step, the learn-
ing agent chooses an action and sends it to the environment. The environment
evolves according to the action and sends the agent an observation of its state
and a reward associated with the underlying transition. The objective of the
learning agent is to optimize the reward accumulated over this evolution.

Our approach introduces a shield into the traditional reinforcement learning
setting. The shield is computed upfront from the safety part of the given system
speci�cation and an abstraction of the agent's environment dynamics. It ensures
safety and minimum interference. As before, with minimum interference, we
mean that the shield restricts the agent as little as possible and forbids actions
only if they could endanger safe system behavior.

We distinguish between post-posed shielded learning and preemptive shielded
learning, and we modify the loop between the learning agent and its environ-
ment in two alternative ways, depending on the location at which the shield
is implemented. In the post-posed implementation of the shield, depicted in
Figure 6.1, the shield monitors the actions selected by the learning agent and
corrects them if and only if the chosen action is unsafe. In the preemptive case,
depicted in Figure 6.2, the shield is implemented before the learning agent and
acts each time the learning agent is to make a decision and provides a list of
safe actions. This list restricts the choices for the learner. The shield provides
minimum interference since it allows the agent to follow any policy as long as it
is safe.

The goal of shielded learning is to combine the best of two worlds, namely (1)
the formal correctness guarantees of a controller against a temporal logic spec-
i�cation, as provided by formal methods (and reactive synthesis in particular),

6.1. Motivation and Outline 71

Environment Learning Agent

observation

reward

safe actions

action

Figure 6.2: Preemptive shielded reinforcement learning

and (2) the optimality with respect to an a priori unknown performance crite-
rion, as provided by RL. Additionally, shielded learning o�ers further pragmatic
advantages:

1. Scalability. Even though the inner working of learning algorithms is of-
ten complex, shielding with respect to critical safety speci�cations may
be manageable. The algorithms we present for the computation of shields
make relatively mild assumptions on the input-output structure of the
learning algorithm (rather than its inner working). Consequently, the cor-
rectness guarantees are agnostic to the learning algorithm of choice.

2. Separation of concerns. Our setup introduces a clear boundary between
the learning agent and the shield. This boundary helps to separate the
concerns, e.g., safety and correctness on one side and convergence and
optimality on the other and provides a basis for the convergence analysis
of a shielded RL algorithm.

By combining RL with reactive synthesis, we achieve safe reinforcement learn-
ing which we de�ne in the following way:

De�nition 19 � Safe Reinforcement Learning

Safe RL is the process of learning an optimal policy while satisfying a temporal
logic safety speci�cation ϕs during the learning and execution phases.

Outline. This chapter is dedicated to shielded reinforcement learning. Given
that in reinforcement learning the environment is often represented as an MDP,
we will �rst discuss how to obtain a deterministic safety word automaton that
is a conservative abstraction with respect to the behavior of the real MDP (see
Section 6.2). Using this abstraction, we will discuss post-posed shielded learning
in Section 6.3 and preemptive shielded learning in Section 6.4. For both, we will
discuss the setting and provide synthesis algorithms to construct such shields.
Section 6.6 concludes this chapter with experimental results.

72 Chapter 6. Safe Reinforcement Learning via Deterministic Shields

6.2 Abstractions

We consider a safety speci�cation to be given in the form of a deterministic
safety word automaton ϕs = (Q, q0,Σ, δ, F), i.e., an automaton in which only
safe states in F may be visited.

Reactive synthesis does not require the environment dynamics to be com-
pletely known in advance. However, to reason about when exactly a speci�cation
violation cannot be avoided, we have to give a (coarse �nite-state) abstraction
of the environment dynamics.

Given that in reinforcement learning the environment is often represented as
an MDP, such an abstraction has to be conservative with respect to the behavior
of the real MDP. This approximation may have �nitely many states, even if the
MDP has in�nitely many states and/or is only approximately known.

De�nition 20 � MDP Abstraction

Given an MDP M = (S, sI , A, P,R) and an MDP observer function f : S → L
for some set L, we call a deterministic safety word automaton ϕM = (Q, q0,Σ, δ, F)
an abstraction of M if

(i) Σ = A× L, and

(ii) for every trace s0s1s2 . . . ∈ Sω with the corresponding action sequence
a0a1 . . . ∈ Aω of the MDP, for every automaton run q = q0q1 . . . ∈ Qω

of ϕM with qi+1 = δ(qi, (li, ai)) with li = L(si) for all i ∈ N, we have that

q always stays in F.

An abstraction of an MDP describes how its executions can possibly evolve,
and provides the needed information about the environment to allow planning
ahead with respect to the safety properties of interest. Without loss of generality,
we assume that ϕM has no states in F from which all in�nite paths eventually
leave F . This ensures that paths that model traces that cannot occur in M are
rejected by ϕM as early as possible.

For both shielded learning settings we make the following assumptions:

1. The environment can be modeled as an MDP M = (S, sI , A, P,R).

2. We have constructed an abstraction ϕM = (Q, q0,Σ, δ, F).

3. The learner accepts elements from S ×Q as state input.

Example 7

We want to learn an energy-e�cient controller for a hot water storage tank,
depicted in Figure 6.3. Stored water is kept warm by a heater whose energy
consumption depends on the �lling level of the tank, but we do not know what
the exact relationship is. The out�ow is always between 0 and 1 liters per second,
and the in�ow is known to be between 1 and 2 liters per second whenever the
valve is open (and it is 0 otherwise). The capacity of the tank is limited to 100
liters, and whenever the in�ow is switched on or o�, the setting has to be kept

6.2. Abstractions 73

Figure 6.3: A hot water storage tank with an in�ow, an out�ow, and a tank heater.

qa

(close, 1 ≤ level ≤ 99)

qb
(open,

1 ≤ level ≤ 99)

qc

(open,
1 ≤ level ≤ 99)

qd

(open,
1 ≤ level ≤ 99)

(open, 1 ≤ level ≤ 99)

qe

(close,
1 ≤ level ≤ 99)

qf
(close,

1 ≤ level ≤ 99)

(close,
1 ≤ level ≤ 99)

Figure 6.4: The speci�cation ϕs for the water tank controller.

for at least three seconds to limit the wear-out of the valve. Also, the tank must
never over�ow or run dry.

We can express the safety speci�cation for the water tank valve controller
using the following LTL formula:

ϕs = �(level > 0) ∧�(level < 100)∧
�((open ∧ Xclose)→ XXclose ∧ XXXclose)∧
�((close ∧ Xopen)→ XXopen ∧ XXXopen).

The speci�cation consists of four conjuncts, where the �rst two conjuncts
enforce the water levels to be between the minimum and maximum thresholds.
The next conjunct enforces that if the valve is open and then closed, then it has
to stay closed for two more time steps (seconds). The �nal conjunct enforces that
if the valve is closed and then opened, it has to stay open for two more steps.

We can translate the speci�cation to the safety automaton shown in Fig-
ure 6.4. All states are accepting and transitions leading to the error state (which
exists in addition to the states in Figure 6.4 and is not accepting) are not shown.
It uses the action sets A = {open, closed} for the in�ow valve state, and the label
set L = {level < 1, 1 ≤ level ≤ 99, level > 99} as needed information about the
water tank �lling status. What we know about the behavior of the water tank can
be summarized as the abstraction automaton that we give in Figure 6.5.

We will show in Section 6.3 how to compute a post-posed shield from an
abstraction automaton and a safety speci�cation automaton. We will then revisit

74 Chapter 6. Safe Reinforcement Learning via Deterministic Shields

q0

q1

q2

. . .

q99

(∗, 0 ≤ level < 1)

(∗, 1 ≤
level < 2)

(∗, 2 ≤ level < 3)

(∗, 99 ≤ level < 100)

(open, 1
≤ level < 2)

(close, 0 ≤ level < 1)

(open, 2
≤ level < 3)(close, 1

≤ level < 2)

.

.

(open, 2 ≤ level < 3)

. . .

(open, 3 ≤ level < 4)

. . .

(open, 4 ≤ level < 5)

. . .

(open, 99 ≤ level < 100)

Figure 6.5: The abstraction ϕM of the water tank behavior.

this example and give the resulting shield that enforces the speci�cation. The
shield will enforce that when the water level in the tank becomes too low, the
in�ow valve is opened until some minimum level of 4 is reached, and it will
also prevent the in�ow from being opened when the level is above 93. The latter
is necessary as the valve has to stay open for at least three time steps. So as
the in�ow maybe up to 2 liters/second during this time and the out�ow may
be 0, there is otherwise an over�ow risk. As the shield is generated using the
speci�cation, it plans ahead for this not to happen, so it must prevent the opening
of the in�ow valve if the level is above 93.

6.3 Post-posed Shields for RL

6.3.1 Post-posed Shielding Setting for RL

The post-posed shielded learning setting is shown in Figure 6.6. The shield
monitors the actions of the agent, and substitutes the selected actions by safe

6.3. Post-posed Shields for RL 75

Environment Learning Agent

Shield S

rt+1

st+1

{a1
t , . . . , a

k
t }

at

Figure 6.6: Post-posed shielded reinforcement learning - Detail

actions whenever this is necessary to prevent the violation of ϕs.
In detail, we have the following. In each step t, the agent selects an action

a1
t . The shield forwards a1

t to the environment, i.e., at = a1
t . Only if a1

t is unsafe
with respect to ϕs, the shield selects a di�erent safe action at 6= a1

t instead. The
environment executes at, moves to st+1 and provides rt+1. The agent receives
at and rt+1, and performs policy updates based on that information. For the
executed action at, the agent updates its policy using rt+1. The question is what
the reward for a1

t should be in case we have at 6= a1
t . We discuss two di�erent

approaches.

1. Assign a punishment r′t+1 to a1
t . The agent assigns a punishment

r′t+1 < 0 to a1
t and learns that selecting a1

t at state st is unsafe, without
ever violating ϕs. However, there is no guarantee that unsafe actions are
not part of the �nal policy. Therefore, the shield has to remain active even
after the learning phase.

2. Assign the reward rt+1 to a1
t . The agent updates a1

t with the reward
rt+1. Therefore, picking unsafe actions can likely be part of an optimal
policy by the agent. Since an unsafe action is always mapped to a safe
one, this does not pose a problem, and the agent never has to learn to
avoid unsafe actions. Consequently, the shield is (again) needed during
the learning and execution phases.

Properties of Post-Posed Shielding. To be less restrictive to the learning
algorithm, we propose that in every time step, the agent provides a ranking
rankt = (a1

t , . . . , a
k
t) on the allowed actions, i.e., the agent wants a1

t to be exe-
cuted the most, a2

t to be executed the second-most, etc. The ranking does not
have to contain all available actions, i.e., 1 ≤ |rankt| ≤ nt, where nt is the num-
ber of available actions in step t. The shield selects the �rst action at ∈ rankt
that is safe according to ϕs. Only if all actions in rankt are unsafe, the shield se-
lects a safe action at /∈ rankt. Both approaches for updating the policy discussed
before can naturally be extended for a ranking of several actions.

A second advantage of having a ranking on actions is that the agent can
perform several policy updates at once; e.g., if all actions in rankt are unsafe,

76 Chapter 6. Safe Reinforcement Learning via Deterministic Shields

the agent can perform |rankt|+1 policy updates in one step by using the rewards
r′t+1 or rt+1 for all of them, depending on which of the above variants is used.

The big advantage of post-posed shielding is that it works even if the learning
algorithm is already in the execution phase and therefore follows a �xed policy.
In every step, the learning algorithm only sees the state of the MDP (without the
state of the shield), and then the shield corrects the learner's actions whenever
this is necessary to ensure safe operation of the system. The learning agent does
not even need to know that it is shielded.

6.3.2 Synthesis of Post-posed Shields for RL

In this section, we give an algorithm to compute post-posed shields from ϕs and
an MDP abstraction ϕM that represents the environment in which the agent
shall operate. We prove that the computed shields (1) enforce the correctness
criterion, and (2) are the minimally interfering shields among those that enforce
ϕs on all MDPs for which ϕM is an abstraction.

Given is an RL problem in which an agent has to learn an optimal policy for
an unknown environment that can be modelled by an MDP M = (S, sI , A, P,R)
while satisfying a safety speci�cation ϕs = (Q, q0,Σ, δ, F) with Σ = ΣI × ΣO
and A = ΣO. We assume some abstraction ϕM = (QM, q0,M, A× L, δM, FM) of
M for some MDP observer function f : S → L to be given. Since ϕs models a
restriction of the traces of the MDP and the learner together that we want to
enforce, we assume it to have Σ = L × A, i.e., it reads the part of the system
behavior that the abstraction is concerned with.

Algorithm 7 � Synthesis of Post-posed Shields for RL

Staring from ϕs = (Q,L×A,Σ, δ, F) and ϕM = (QM, q0,M, A× L, δM, FM), we
perform the following steps to compute a post-posed shield.

Step 1. Constructing a safety game G: We translate ϕs and ϕM to a
safety game G = (G, g0,ΣI ,ΣO, δ, F

g) between two players. In the game, the
environment player chooses the next observations from the MDP state (i.e.,
elements from L), and the system chooses the next action (i.e., elements from
A). Formally, G has the following components:

� G = Q×QM is the state space,

� g0 = (q0, q0,M) is the initial state,

� ΣI = L is the input alphabet,

� ΣO = A is the output alphabet,

� δ is the next-state function with

δ((q, qM), l, a) = (δ(q, (l, a)), δM(qM, (l, a))),

for all (q, qM) ∈ G, l ∈ L, a ∈ A, and

6.3. Post-posed Shields for RL 77

(q3, qd) (q2, qe) (q1, qf) qfail

.

. . .
open, close

0≤ level≤ 1

close

1≤ level≤2

close

2≤ level≤3

open

close,
1≤ level≤2

close,
2≤ level≤3

open,
4≤ level≤5

open,
5≤ level≤6

close,
3≤ level≤4

Figure 6.7: An excerpt for the product game of the water storage tank example.

� F g is the set of safe states with

F g = (F ×QM) ∪ (Q× (QM \ FM)).

In the construction, the state space of the game is the product between
the speci�cation automaton state set and the abstraction state set. The safe
states in the game (in the set F g) are the ones at which either the speci�cation
automaton is in a safe state, or the abstraction is in an unsafe state. The latter
case represents that the observed MDP behavior di�ers from the behavior that
was modeled in the abstraction. For game solving, it is important that such cases
(whose occurrence in the �eld witnesses the incorrectness of the abstraction)
count as winning for the system player, as the system player only needs to play
correctly in environments that conform to the abstraction.

Step 2. Compute the winning region W of G: In the second step, we
compute the winning region W ⊆ F g of G by standard safety game solving as
described by Bloem et al. [BKKW15].

Example 8

To exemplify the shield construction, let us reconsider Example 7. Building the
product game between the speci�cation automaton ϕs and the MDP abstraction
ϕM leads to a safety game with 602 states (if we merge all states in (Q\F)×QM

into a single error state and all states in Q× (QM \ FM) into a single paradise
state from which the game is always won by the system). If we solve the game,
then most of the states are winning, but a few are not. Figure 6.7 shows a
small fraction of the game that contains such non-winning states. Transitions
to paradise states are not shown. In state (q3, qd), the system should not choose
action close, as otherwise the system cannot avoid to reach qfail for some possible
evolution of the environment that is consistent with our abstraction. It could be
the case that qfail is not reached when the environment chooses to let the level
stay the same for a step, but the system cannot be sure about this, so the action
close must not be picked.

A shield allows all actions that are guaranteed to lead to a state in W , no
matter what the next observation is. Since these states, by the de�nition of the

78 Chapter 6. Safe Reinforcement Learning via Deterministic Shields

set of winning states, are exactly the ones from which the system player can
enforce not to ever visit a state not in F , the shield is minimally interfering. It
disables all actions that may lead to an error state (according to the abstraction).

Step 3. Translate G and W to a reactive system S: We translate G and
W to a reactive system S = (QS, q0,S,ΣI,S,ΣO,S, δS, λS) that constitutes the
post-posed shield. The shield has the following components:

� QS = G is the state space,

� q0,S = g0 is the initial state,

� ΣI,S = L×A is the input alphabet,

� ΣO,S = A is the output alphabet,

� δS is the next-state function with

δS(g, l, a) = δ(g, l, λS(g, l, a))

for all g ∈ G, l ∈ L, a ∈ A, and

� λS is the output function with

λS(g, l, a) =


a if δ(g, (l, a)) ∈W
a′ if δ(g, (l, a)) /∈W for some arbitrary

but �xed a′ with δ(g, (l, a′)) ∈W.

The construction of a shield can be extended naturally if a ranking of actions
rank t = {a1

t , . . . , a
n
t } is provided by the agent. Then, the shield selects the �rst

action at = ait that is allowed by ϕs. Only if all actions in rank t are unsafe, the
shield is allowed to deviate and to select a safe action at /∈ rankt.
Theorem 6

A reactive system S constructed according to Algorithm 7 is a post-posed shield
(De�nition 3).

Proof. We have to proof that S has the claimed properties, namely correctness
and minimal interference.

Correctness: A shield works correctly if for every trace s0a0s1a1 . . . ∈ (S ×
A)ω that MDP, shield and learner can together produce, we have that

σ = (f(s0), a0)(f(s1), a1) . . . � ϕS .

Let S(σ) = qS,0qS,1 . . . ∈ QωS be the run of the shield, with qS,i = (qi, qM,i).
for all i. Therefore, qM,0qM,1 . . . is the run of ϕM and q0q1 . . . is a run of ϕS .

6.4. Preemptive Shields for RL 79

λS of S corrects all actions that would lead to states outside of the winning
region. Therefore, S only has reachable states qS = (q, qM) that are in the set of
winning positions, i.e., for all states qS ∈ QS, and all possible next labels l ∈ L,
there exists at least one action a ∈ A such that if a is taken, then the next state
q′ = (q′, q′M) is winning as well. Since only winning states are visited during a
play, the error state of ϕS can only be visited after the error state of ϕM has
been visited (and hence the abstraction turned out to be incorrect). Hence, S
ensures correctness.

Minimal Interference: Let the shield, learner, and MDP together produce
a trace s0a0s1a1s2a2 . . . sk. Assume that S overwrites an action ak+1 that is
available from state sk in the MDP.

We show that S had to overwrite ak+1 as there is another MDP that is
consistent with the observed behavior and the abstraction for which, regardless
of the learner's policy, there is a non-zero probability to violate the speci�cation
after the trace s0a0s1a1s2a2 . . . skak+1. Using ϕM, we de�ne this other MDP
M′ = (S′, s′I , A, P

′) with the following components:

� S′ = QM × L is the state space,

� s′I = (qM,0, f(s0)) is the initial state, and

� the probabilistic transition function P ′((qM, l), a) is a uniform distribution
over all elements from the set {(q′M, l′) ∈ QM×L | q′M = δM(qM, (l, a)), q′M ∈
FM,∃a′ ∈ A.δM(q′M, (l

′, a′)) ∈ FM} for every (qM, l) ∈ S′ and a ∈ A,
Assume now, that an action ak+1 is overwritten by another action from S

after the trace s0a0s1a1s2a2 . . . sk while S is in a state (q, qM). We have that
M′ is an MDP in which every �nite-length label sequence that is possible in
the abstraction for some action sequence has a non-zero probability to occur
if the action sequence is chosen. Due to the construction of S, action ak+1

is only forbidden in state (q, qM) if in the game, the environment player had
a strategy to violate ϕS using only traces allowed ϕM. Since ϕS is a safety
property, the violation would occur in �nite time. Since in M′, all �nite traces
that can occur in ϕM have a non-zero probability, allowing ak+1 would imply a
non-zero probability to violate ϕS in the future. Hence, S could not prevent a
violation in such a case, and ak+1 needs to be corrected. Hence, S is minimal
interfering. Q. E. D.

6.4 Preemptive Shields for RL

6.4.1 Preemptive Shielding Setting for RL

Figure 6.8 depicts the preemptive shielding learning setting. The interaction
between the agent, the environment and the shield is as follows. At every time
step t, the shield computes a set of all safe actions {a1

t , . . . , a
k
t }, i.e., it takes the

set of all actions available, and removes all unsafe actions that would violate the

80 Chapter 6. Safe Reinforcement Learning via Deterministic Shields

Environment Learning Agent

Shield S
st+1

st

rt+1

{a1
t , . . . , a

k
t }

at

Figure 6.8: Preemptive shielded reinforcement learning - Detail

safety speci�cation ϕs. The agent receives this list from the shield, and picks
an action at ∈ {a1

t , . . . , a
k
t } from it. The environment executes action at, moves

to a next state st+1, and provides the reward rt+1. The task of the shield is
basically to modify the set of available actions of the agent in every time step
such that only safe actions remain.

For a preemptive shield, we have ΣO = 2A, as the shield outputs the set of
actions for the learner to choose from for the respective next step. The shield
observes the label of the last MDP state in the sequence so far and provides the
set of safe actions. For selecting the next transition of the �nite-state machine
that represents the shield, it also makes use of the action actually chosen by the
agent. So for the input alphabet of the shield, we have ΣI = L × A × L. See
Section 3.3 for a more detailed explanation of the input and output alphabet of
preemptive shields.

The shield and the learner together produce a trace s0a0s1a1 . . . ∈ (S ×A)ω

in the MDPM = {S, si, A, P,R} if there exists a trace q0q1 . . . ∈ Qω in the shield
such that, for every i ∈ N, we have ai ∈ λ(qi, L(si)) and qi+1 = δ(qi, (L(si), ai).

Properties of Preemptive Shielding. The preemptive shielding approach
can also be seen as transforming the original MDP M = {S, si, A, P,R} into a
new MDPM′ = (S′, sI , A

′, P ′, R′) with the unsafe actions at each state removed,
and where S′ is the product of the original MDP and the state space of the shield.
For each s ∈ S′, we create a new subset of available actions A′s ⊆ As by applying
the shield to As and eliminating all unsafe actions. From each state s ∈ S′, the
transition function P ′ contains only transition distributions from P for actions
contained in A′s.

6.4.2 Synthesis of Preemptive Shields for RL

Algorithm 8 � Synthesis of Preemptive Shields for RL

Starting from ϕs = (Q,L×A,Σ, δ, F) and ϕM = (QM, q0,M, A×L, δM, FM), to
compute a preemptive shield, we perform the following steps:

Steps 1-2. Perform as in Section 6.3.2.

6.4. Preemptive Shields for RL 81

Step 3. Translate G and W to a reactive system S: We translate G and
W to a reactive system S = (QS, q0,S,ΣI,S,ΣO,S, δS, λS) that constitutes the
post-posed shield. The shield has the following components:

� QS = G is the state space,

� q0,S = g0 is the initial state,

� ΣI,S = L×A× L is the input alphabet,

� ΣO,S = 2A is the output alphabet,

� δS is the next-state function with

δS(g, l, a) = δ(g, l, a)

for all g ∈ G, l ∈ L, a ∈ A, and

� λS is the output function with

λS(g, l, a, l′) = {a′ ∈ A | δ(δ(g, l, a), l′, a′) ∈W}

for all g ∈ G, a ∈ A, and l ∈ L.

For selecting the next transition, the preemptive shield makes use of the
action actually chosen by the agent, i.e., the next transition is chosen via the
last observed state from the MDP l and the last executed action a. The next
output of the shield contains all actions a′, that lead from the current state of
the shield g′ = δ(g, l, a) and the current observation of the MDP l′ to another
state in the winning region, i.e., a′ is correct.

Theorem 7

A reactive system S constructed according to Algorithm 8 is a preemptive shield
(De�nition 18).

Proof. We have to proof that S is correct and minimal interfering. For both, the
proof is very similar to the proof for post-posed shields discussed in Detail in
Section 6.3.2.

Correctness: λS of S deactivates all actions that would lead to states outside
of the winning region. Therefore, only winning states are ever visited along a
play, i.e., the error state of ϕS can only be visited after the error state of ϕM

has been visited. Hence, S ensures correctness.

82 Chapter 6. Safe Reinforcement Learning via Deterministic Shields

Minimal Interference: We construct an MDP M′ = (S′, s′I , A, P
′) in which

every �nite-length label sequence that is possible in ϕM for some action sequence
has a non-zero probability (see Section 6.3.2 for the construction of M′).

Assume, that S deactivates ak+1 after the trace s0a0s1a1s2a2 . . . sk, while
the shield is in a state (q, qM). Due to the construction of S, action ak+1 is
only deactivated in (q, qM) if the environment player had a strategy to violate
ϕS using only traces allowed by ϕM. Since in M′, all �nite traces that can
occur in ϕM have a non-zero probability, allowing ak+1 would imply a non-zero
probability to violate ϕS in the future, for any action sequence. Hence, ak+1

needs to be deactivated and S is minimal interfering. Q. E. D.

6.5 Convergence

De�ne an MDP M = (S, sI , A, P,R), with discrete state set S, discrete state-
dependent action sets A, and state-dependent transition functions P (s, a, s′) that
de�ne the probability of transitioning to state s′ when taking action a in state
s. Assume also that a shield S = (QS, qS,0,ΣI,S,ΣO,S, δS, λS) is given for M and
for some MDP labeling function f : Q→ L.

We can build a product MDP M′ that represents the behavior of the shield
and the MDP together. Since M′ is a standard MDP, all learning algorithms
that converge on standard MDPs can be shown to converge in the presence of a
shield under this construction.

Note, that for the post-posed shielding case, this argument requires that
whenever an unsafe action is chosen by the learner, there is a �xed probability
distribution over the safe actions executed instead. This distribution may depend
on the state of the MDP and the shield and the selected ranking, but must be
constant over time, as otherwise we could not model the joint behavior of the
shield and the environment MDP as a product MDP.

6.6 Experimental Results

We applied post-posed shielded RL in two domains: (1) the water tank scenario
from Example 7, and (2) a simple PacMan example. The simulations were
performed on a computer equipped with an Intel® Core�i7-4790K and 16 GB
of RAM running a 64-bit version of Ubuntu® 16.04 LTS.

6.6.1 A Shield for a Water Tank

In this example, the tank must never run dry or over�ow by controlling the
in�ow switch (ϕs1). In addition, the in�ow switch must not change its mode
of operation before three time steps have passed since the last mode change
(ϕs2). Refer to Example 7, for a full description of the abstract water tank
dynamics and speci�cation. We generated a concrete MDP in which the energy
consumption depends only on the state, and there are multiple local minima. A

6.6. Experimental Results 83

0 200 400 600 800 1,000
0

5

10

Training episodes

A
cc
u
m
u
la
te
d
re
w
a
rd

Unshielded
Shielded

Figure 6.9: Accumulated reward for the water tank example.

post-posed shield was synthesized in less than a second. Figure 6.9 shows that
the shielded (orange dashed line) and unshielded (blue solid line) Q-learning
experiment do reach an optimal policy. However, the shielded implementation
reaches the optimal policy in a signi�cantly shorter time than the unshielded
implementation.

6.6.2 A Shield for simple PacMan

To demonstrate our methods, we conducted another experiment on the arcade
game PacMan. The task is to eat food in a maze and not get eaten by the
ghost. PacMan achieves a high score if it eats all the food as quickly as possible
while minimizing the number of times to get eaten by the ghosts. RL approaches
exist [Ber18], but they su�er primarily from the fact that during the exploration
phase, PacMan is eaten by the ghosts many times and thus achieves very poor
scores.

Setting. We employ a script that can automatically generate an abstraction
ϕM for any maze. ϕM encodes all possible movements of PacMan and the
ghost. The safety speci�cation ϕS states that PacMan should not be eaten by
the ghost. During the play, PacMan achieves the following scores: food earns
reward (+10), while each step causes a small penalty (−1). A large reward
(+500) is granted if PacMan eats all the food in the maze. If PacMan gets
eaten, a large penalty (−500) is imposed, and the game is restarted.

Reinforcement Learning. Our implementation employs an existing Pac-

Man environment1 and uses an approximate Q-learning agent [SB98] with the
following feature vector: (1) how far away the next food is, (2) whether a ghost
collision is imminent, and (3) whether a ghost is one step away. The result is
a basic re�ex controller for PacMan. The Q-learning uses the learning rate
α = 0.2, the discount factor γ = 0.8 for the Q-update, and an ε-greedy explo-
ration policy with ε = 0.05.

1http://ai.berkeley.edu/project_overview.html

http://ai.berkeley.edu/project_overview.html

84 Chapter 6. Safe Reinforcement Learning via Deterministic Shields

Figure 6.10: Simple PacMan

0 40 80 120 160 200 240 280
−500

0

500

1,000

Training episodes

A
v
er
a
g
e
re
w
a
rd

Unshielded
Shielded

Figure 6.11: Resulting scores for simple PacMan

Results. We consider the labyrinth illustrated in Figure 6.10 with one ghost.
We synthesized a post-posed shield in less than seven seconds. We compare RL to
shielded RL. The key comparison criterion is the score composed by rewards and
penalties, as explained above. Figure 6.11 shows the scores obtained during RL.
In particular, the curves (blue, solid: unshielded, orange, dashed: shielded) show
the average scores for every ten training episodes. One episode lasts until either
the game is won (all food is eaten) or lost (ghost eats PacMan). As expected,
in the shielded case, PacMan is always able to clear the game starting from the
�rst episode, since the shield always saves it. Moreover, the shield helps to learn
an optimal policy much faster because fewer restarts are needed.

6.6. Experimental Results 85

Declaration of Sources

Chapter 6 was based on and reuses material from the following sources,
previously published by the author:

� [ABE+17] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, Scott
Niekum, and Ufuk Topcu. Safe reinforcement learning via shield-
ing. arXiv. 2017

� [ABE+18] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, Scott
Niekum, and Ufuk Topcu: Safe reinforcement learning via shield-
ing. AAAI. 2018

References to these sources are not always made explicit.

7
Safe Reinforcement Learning via

Probabilistic Shields

7.1 Motivation and Outline

In Chapter 6, we discussed deterministic shields as a suitable technique to guar-
antee correctness with certainty in reinforcement learning. Deterministic shields
prevent an agent from taking any unsafe actions at runtime. To this end, the
performance objective of the learning agent is extended with a constraint speci-
fying that unsafe states are never visited, i.e., there are no safety violations (the
safety objective).

However, in many cases, this tight restriction on the decision-making of the
agent to adhere to the safety requirements limits the agent's exploration and
understanding of the environment [PS14, AOS+16]. Such restrictions may cause
insu�cient progress in following the original objective of the decision-maker, or
policies satisfying the restrictions may not exist.Thus, there is a trade-o� between
safety and progress.

Example 9

For instance, take a self-driving car. The main objective of the underlying AI
is to follow a road while avoiding accidents. The objective of the shield is to
prevent accidents by enforcing emergency brakes. However, there is the tradeo�
mentioned above between safety and progress: In critical situations, the car has
to brake, but frequent (unnecessary) emergency brakes are not desirable in terms
of many performance measures. To avoid too many interferences by the shield,
the shield has to evaluate how critical the current situation is. Therefore, the
shield must take the inherent randomness and uncertainty in the actions of other

87

88 Chapter 7. Safe Reinforcement Learning via Probabilistic Shields

tra�c participants into account.

In this chapter, we propose probabilistic shields that incorporate more liberal
constraints that enforce safety violations to occur only with a small probability.
If an action increases the probability of a safety violation by more

than a factor 1/δ with respect to the optimal safety probability, the

shield blocks the action from the agent.

Consequently, an agent augmented with a shield is guided to satisfy the safety
objective during exploration (or as long as the shield is used). The shield is
adaptive with respect to δ, as a high value for δ yields a stricter shield, a smaller
value a more permissive shield. The value for δ can be changed on-the-�y and
may depend on the individual minimal safety probabilities at each state.

We base our formal notion of a probabilistic shield on Markov decision pro-
cesses (MDPs), which constitute a popular modeling formalism for decision-
making under uncertainty [Whi85] and is widely used in model-based RL. We
assess safety using probabilistic temporal logic constraints [BK08] that limit, for
example, the probability for reaching a set of critical states in the MDP.

Advantages of probabilistic shields. We identify the following key bene�ts
for shielding MDPs:

� Scalability. Model checking�as any model-based technique�is suscep-
tible to scalability issues. A key advantage of using a separate safety
objective is that we may analyze safety on just a fraction of the system.
In our experiments, these MDP fragments are at least ten orders of mag-
nitude smaller than a full model of the system, rendering model checking
applicable to realistic scenarios and enables the usage of model checking
to compute a shield. Note that the learner respecting the performance
has to consider the full model, but may do so using either model-based or
model-free approaches.

� Adaptivity. Without randomness, all states are either absolutely safe
or unsafe. However, in the presence of randomness, safety may be seen
as a quantitative measure: in some states, all actions may induce a large
risk, while one action may be considered relatively safe. Therefore, it is
essential to have an adaptive notion of shielding, in which the pre-selection
of actions is not based on absolute thresholds, i.e., if necessary, the shield
needs to dynamically adapt to allow more, potentially less safe, decisions.

� Trade-o� between safety and progress. Shielding may restrict ex-
ploration and lead to suboptimal policies. Therefore, it should not be
considered in isolation. The aforementioned trade-o� between optimizing
the performance objective and the achieved safety is intricate. Intuitively,
taking a bit additional risk short-term may allow for e�cient exploration
and limit the risk long-term. To this end, we provide and discuss mecha-
nisms that allow adjusting the shield based on such observations.

7.2. Probabilistic Shielding Setting 89

Construction of probabilistic shields. We outline the synthesis process to
create probabilistic shields (see Section 7.3 for more details).

1. For a large MDP setting with a potentially unknown reward function, we
construct a smaller MDP that is su�cient for safety assessments, called the
safety-relevant MDP. In particular, we �rst construct a behavior model for
the environment, for example using model-based RL [DN08], in a training
environment together with suitable data augmentation techniques. We can
plug this behavior model into any concrete scenario to obtain the safety-
relevant MDP for the shield computation. While reinforcement learning
targets the full scenario, we never need the full (large) MDP for the con-
struction of the shield.

2. The shield is computed from the safety-relevant MDP and the safety spec-
i�cation. For any state and any possible decision, the synthesis procedure
computes precise probabilities for violating the safety speci�cations. Based
on these values and the factor δ, the shield deactivates actions that induce
a too large risk.

3. The probabilistic shield then readily augments either model-free or model-
based RL and is placed before the learning agent. At each time step,
the shield provides a list of actions with the actions that are too risky
deactivated.

Outline. In the remainder of this chapter, we �rst describe the setting and
the problem that we want to solve in Section 7.2. Next, we describe in detail
how to construct a probabilistic shield and provide optimizations towards a com-
putationally tractable implementation in Section 7.3. We demonstrate several
concepts on how to maintain su�cient progress in exploring an environment
while shielding decision-making. In Section 7.4, we demonstrate our implemen-
tation and experiments based on the arcade game PacMan and a case study
involving service robots in a warehouse. Shielded RL leads to improved policies
for both case studies with fewer safety violations and performance superior to
unshielded RL.

7.2 Probabilistic Shielding Setting

In this section, we �rst de�ne the setting in which we want to apply the proba-
bilistic shield and discuss several potential applications. Next, we give a problem
statement about what we would like to achieve by applying a shield in the dis-
cussed setting.

We de�ne a partially-controlled multi-agent system [BT96, VdHW08], where
one controllable agent (the avatar) and a number of uncontrollable agents (the
adversaries) operate within a �nite graph representation of an arena. The arena
is a compact, high-level description of the underlying model. From this arena,

90 Chapter 7. Safe Reinforcement Learning via Probabilistic Shields

the potential states and actions of all agents may be inferred. For safety con-
siderations, the reward structure can be neglected, e�ectively reducing the state
space for our model-based safety computations.

De�nition 21 � Arena

An arena is a directed graph A = (V,E) with a �nite sets V of nodes and
E ⊆ V ×V of edges. The agent's position is de�ned via the current node v ∈ V.
The agent decides on a new edge (v, v′) ∈ E and determines its next position v′.

Some combinations of agent positions are safety-critical (e.g., they may cor-
respond to collisions). A safety property may describe reaching such positions,
or any other property expressible in the safety fragment of temporal logic.

While the underlying model for the arena su�ces to specify the safe behavior,
it is not su�ciently succinct to model the performance via rewards. Consider an
edge that is safety-relevant, but the agent is only rewarded the �rst time taking
this edge. Thus, in a �at model with rewards, two di�erent edges are necessary
to model this behavior. However, the reward (and thus the di�erence between
these edges) is not needed to assess the safety, and the safety-relevant model
may be pruned to an exponentially smaller model. We use a token function
that implicitly extends the underlying model by a reward structure, enabling
separation of concerns between safety and performance.

Technically, we associate edges with a token function ◦ : E → {0, 1}, indi-
cating the status of an edge. Naturally, tokens can be extended to describe
an n-ary status. Tokens can be (de-) activated and have an associated reward
earned upon taking edges with an active token. The performance objective is
the maximization of the expected reward.

Application. In the experiments for this chapter, we demonstrate our ap-
proach using the arcade game PacMan and a case study involving service robots
in a warehouse. However, we designed the formal setting to be applicable to a
series of further scenarios. We detail a few possibilities here that go beyond
other arcade games.

� Autonomous driving. An autonomous taxi (the avatar) operates within
a road network encoded by an arena. The taxi has to visit several points to
pick up or drop o� passengers. Upon visiting such a point, a corresponding
token activates, and a reward is earned. Afterward, the token is deacti-
vated permanently. Meanwhile, the taxi has to account for other tra�c
participants or further environmental factors (the adversaries) [Die00],
for which we may learn behavior models over time [SSSD16, SLS+18]. A
sensible safety speci�cation may restrict the probability for collision with
other cars, say, to 0.05. Note that the token structure is not relevant for
such a speci�cation. By employing our shielding technique, we can achieve
safe learning to obtain an optimal route for the taxi.

� Robot logistics in a smart factory. Take a factory �oor plan with
several corridors. The nodes describe crossings, the edges the corridors

7.3. Synthesis of Probabilistic Shields 91

with the machines, and the distances the lengths of the corridors. The
adversaries are (possibly autonomous) transporters moving parts within
the factory. The avatar models a speci�c service unit, moving around and
inspecting machines where an issue has been raised (as indicated by a
token), while accounting for the behavior of the adversaries. All agents
follow the corridors and take another corridor upon reaching a crossing.
Corridors might be to narrow for multiple (facing) robots, which poses a
safety-critical situation. The tokens allow having a state-dependent cost,
either as long as they are present (indicating the costs of a broken machine)
or for removing the tokens (indicating costs for inspecting the machine).
A similar scenario has been investigated in [BLP+18].

Problem. Consider an environment described by an arena as above and a
safety speci�cation. We assume stochastic behaviors for the adversaries, e.g,
obtained using RL [SLS+18, SSSD16] in a training environment. In fact, this
stochastic behavior determines all actions of the adversaries via probabilities.
The underlying model is then a Markov decision process: the avatar executes
an action, and upon this execution the next exact positions (the state of the
system) are determined stochastically.

We compute a δ-shield that prevents avatar decisions that violate this speci-
�cation by more than a threshold δ with respect to the optimal safety probability.
We evaluate the shield using a model-based or model-free RL avatar that aims to
optimize the performance. The shield therefore has to handle an intricate trade-
o� between strictly focussing on (short and midterm) safety and performance.

7.3 Synthesis of Probabilistic Shields

We outline the work�ow of our approach in Figure 7.1 and below, starting with
the setting from the previous section. We employ a separation of concerns be-
tween the model-based shield construction and potentially model-free reinforce-
ment learning (RL). First, based on observations in multiple arenas, we construct
a general (stochastic) behavior model for each adversary. Combining these mod-
els with a concrete arena yields to a compact MDP model. At this point, we
ignore the token function and the potentially unknown reward function, so the
MDP is a safety-relevant quotient of the full model that models the real sys-
tem within which we only assess safe behavior. We therefore call the MDP
the safety-relevant quotient. The underlying full MDP incorporates the token
function, where associated rewards may be known or observed during learning.
Including tokens constitutes an exponential blowup of the safety-relevant quo-
tient, rendering probabilistic model checking or planning practically infeasible.
Using the safety-relevant MDP, we construct a shield using probabilistic model
checking.

We now detail the individual technical steps to realize our proposed method.

92 Chapter 7. Safe Reinforcement Learning via Probabilistic Shields

Behavior models
for Adversaries

Observations
of Adversaries

Fig. 3. Graphical representation of our gridworlds

areas Gh, Gr ✓ loc. Locations are given by

loc = {(x, y) | x 2 [0,Gridx] y 2 [0,Gridy]}

for Gridx,Gridy 2 N and the features are a set of tuples Feattp ✓ {tp}⇥loc.

A feature f = (tpf , `f) 2 Feat consists of a type and a(feature-)location. [NJ] What is tpf?

[NJ] Perhaps Loc for
the set of locations and
type is a set Tp :=
{Obst, Litt, Wpt} which
can be defined before the
definition.

Example 1. Consider the example depicted in Fig. 3, which we use as a
running example. The environment depicted is formally given as Env =
{loc, Feat}

[NJ] Envshould be a tu-
ple as defined, right?
Goal areas missing.

with

loc = {(x, y) | x 2 [0, 4] y 2 [0, 5]}, and

Feat = {fi = (Wpt, (2, i)) | i 2 {0 . . . 5} }
[{f6 = (Obst, (1, 1)), f7 = (Obst, (3, 3))}
[{f8 = (Litt, (1, 3)), f9 = (Litt, (4, 3))}

Human. The human is represented by its position which is a tuple of a
location and orientation posh = (`h,↵h). An orientation has 8 possible
directions, i.e. ↵h 2 Orient = {i · 1

4⇡ | i 2 [0, 7]}. As an auxiliary we
define for each direction an associated direction vector Dir : Orient !
{�1, 0, 1}2 \ {(0, 0)}, which we depict in Fig. 4(a). Human movements
Mh = {LEFT, STRAIGHT, RIGHT} have associated changes in angle of
� = �1

4⇡, 0, or 1
4⇡. We depict the movement options in Fig. 4(b).

[NJ] Do we really need
the Orient-definition, or
would the direction suf-
fice?

7

Arena

Fig. 3. Graphical representation of our gridworlds

areas Gh, Gr ✓ loc. Locations are given by

loc = {(x, y) | x 2 [0,Gridx] y 2 [0,Gridy]}

for Gridx,Gridy 2 N and the features are a set of tuples Feattp ✓ {tp}⇥loc.

A feature f = (tpf , `f) 2 Feat consists of a type and a(feature-)location. [NJ] What is tpf?

[NJ] Perhaps Loc for
the set of locations and
type is a set Tp :=
{Obst, Litt, Wpt} which
can be defined before the
definition.

Example 1. Consider the example depicted in Fig. 3, which we use as a
running example. The environment depicted is formally given as Env =
{loc, Feat}

[NJ] Envshould be a tu-
ple as defined, right?
Goal areas missing.

with

loc = {(x, y) | x 2 [0, 4] y 2 [0, 5]}, and

Feat = {fi = (Wpt, (2, i)) | i 2 {0 . . . 5} }
[{f6 = (Obst, (1, 1)), f7 = (Obst, (3, 3))}
[{f8 = (Litt, (1, 3)), f9 = (Litt, (4, 3))}

Human. The human is represented by its position which is a tuple of a
location and orientation posh = (`h,↵h). An orientation has 8 possible
directions, i.e. ↵h 2 Orient = {i · 1

4⇡ | i 2 [0, 7]}. As an auxiliary we
define for each direction an associated direction vector Dir : Orient !
{�1, 0, 1}2 \ {(0, 0)}, which we depict in Fig. 4(a). Human movements
Mh = {LEFT, STRAIGHT, RIGHT} have associated changes in angle of
� = �1

4⇡, 0, or 1
4⇡. We depict the movement options in Fig. 4(b).

[NJ] Do we really need
the Orient-definition, or
would the direction suf-
fice?

7

Arena with To-
kens and Rewards

Full MDP

Safety-Relevant
MDP Quotient

Shield
Construction

Model-free or
model based RL

Safe Policy
for Avatar

Figure 7.1: Work�ow of the Shield Construction

Step 1. Construct behavior models for adversaries: We learn an ad-
versary model by observing behavior in a set of similar (small) arenas, until
we gain su�cient con�dence that more training data would not change the be-
havior signi�cantly [SLS+18, SSSD16]. An upper bound on the necessary data
may be obtained using Hoe�ding's inequality [ZMBD08]. To reduce the size of
the training set, we devise a data augmentation technique using domain knowl-
edge of the arenas [KSH12, WFHP16]. In particular, we abstract away from the
precise con�guration of the arena by partitioning the graph into zones that are
relative to the view-point of the adversary (e. g., near or far, north or south, east
or west). The intuitive assumption is that the speci�c position of an adversary
is not important, but some key information is (e.g., the relation to the position
of the avatar). This approach (1) speeds up the learning process and (2) renders
the resulting behavior model applicable for varying the concrete instance of the
same setting.

Zones are uniquely identi�ed by a coloring with a �nite set C of colors.

De�nition 22 � Zones

For an arena G = (V,E, d), zones relative to a node v ∈ V are given by a
function zv : V → C, where C is a �nite set of colors.

For nodes x, y ∈ V , with zv(x) = zv(y), the assumption is that the adversary
in v behaves similarly regardless whether the avatar is in x or y. From our
observations, we extract a histogram h : E × C → N, where h(e, c) describes
how often the adversary takes an edge e = (v, v′) ∈ E while the avatar is in a
node u with zv(u) = c. We translate these likelihoods into distributions over the
possible edges in the arena to obtain the behavior model for adversaries.

De�nition 23 � Adversary Behavior

For an arena G = (V,E, d), zones zu : V → C for every u ∈ V , and a histogram

7.3. Synthesis of Probabilistic Shields 93

h : E×C → N, the adversary behavior is a function B : V ×C → Distr(E) with

B(v, c) =
h
(
(v, v′), c

)∑
(v,v′)∈E h

(
(v, v′), c

) .
While we employ a simple normalization of likelihoods, alternatively one may

also utilize, e. g., a softmax function which is adjustable to favor more or less
likely decisions [SB98].

Step 2. Compute the safety-relevant quotient MDP: The construction
of the safety-relevant (quotient) MDP M = (S,A, P) augments an arena by
behavior models Bi for adversaries.

Starting from an arena A = (V,E) with agents 0, . . . ,m, where agent 0 is the
avatar and agents 1, . . . ,m are adversaries, and the adversary behavior models
B1, . . . , Bm, we compute the safety-relevant quotient MDP M = (S,A, P), such
that:

� S = V m+1 × {0, . . . ,m} is the state space,

� A = {a0} ∪AE with AE = {ae | e ∈ E} is set of actions, and

� P is the probabilistic transition function with

P (s, a, s′) =



1 if s = (v0, . . . , vm, 0), s′ = (v′0, v1 . . . , vm, 1),

a = ae and (v0, v
′
0) = e ∈ E

Bi(vi, c)(vi, v
′
i) if i 6= 0, s = (v0, . . . , vm, i),

s′ = (v′0, . . . , v
′
m, (i+ 1) modm),

(vi, v
′
i) = e ∈ E, v′j = vj for j 6= i,

a = a0 and zv(v0) = c.

The reward function r remains unde�ned.
The states S = V m+1 × {0, . . . ,m} encode the positions for all agents and

whose turn it is. The actions A = {α0}∪AE with AE = {αe | e ∈ E} determine
the movements of the avatar and the adversaries. Observe there are only certain
states where the avatar has to make choices.

De�nition 24 � Decision States

The decision states of the safety-relevant MDP M = (S,A, P) are Sd = {sd ∈
S | sd = (. . . , 0)}, i.e., it's the turn of the avatar.

A policy only needs to select actions at the decision states as at all other
states only the unique action a0 emanates. Consequently, a policy for M is a
policy for the avatar.

For (v, . . . , 0) = sd ∈ Sd (the avatar moves next), the available actions are
ae ∈ A(sd) ⊆ Ae, where ae corresponds to an outgoing edge of v. For (v, . . . , 0) =
sd ∈ Sd, ae with e = (v, v′) leads with probability one to a state se = (v′, . . . , 1).

94 Chapter 7. Safe Reinforcement Learning via Probabilistic Shields

For (v, . . . , vi, . . . , i > 0) (an adversary moves next), there is a unique action
a0 where vi is changed to v′i, randomly determined according to the behavior
Bi, which also updates i to i + 1 modulo m. These transitions induce the only
probabilistic choices in the MDP.

In theory, one can build the full MDP for the arena (V,E) and the token
function ◦ : E → {0, 1} under the assumption that the reward function is known.
Then, one can compute the reward-optimal and safe policy without need for
further learning techniques. As there are 2E token con�gurations, the state
space blows up exponentially, which prevents the successful application of model
checking or planning techniques for anything but very small applications.

Step 3. Construct the δ-shield: For an arena A = (V,E) and the cor-
responding safety-relevant MDP M = (S,A, P), a set of unsafe states T ⊆ S
should preferably not be reached from any state. The property ϕ = ♦T encodes
the violation of this safety constraint, that is, eventually reaching T within M.
The shield needs to limit the probability to satisfy ϕ. We evaluate all decision
states sd ∈ Sd with respect to this probability: We compute ηmin

ϕ,M(se), i.e., the
minimal probability to satisfy ϕ from se, which is the state reached after taking
action ae ∈ Ae in sd [CHVB18].
De�nition 25 � Action-valuation and optimal action-value

An action-valuation for action ae ∈ Ae at state sd ∈ Sd is

valMsd : A(sd)→ [0, 1], with valMsd (ae) = ηmin
ϕ,M(se) .

The set of all action-valuations at sd is ActValssd . The optimal action-value for
sd is

optvalMsd = min
a′∈A

valMsd (a′).

We now de�ne a shield for the safety-relevant MDP M using the action
values. Speci�cally, a δ-shield for δ ∈ [0, 1] determines a set of actions at each
decision state sd that are δ-optimal for the speci�cation ϕ. All other actions are
�shielded� or �blocked�.

De�nition 26 � δ-Shield
For action-valuation valMsd and δ ∈ [0, 1], a δ-shield for state sd ∈ Sd is

Ssdδ : ActValssd → 2A(sd)

with Ssdδ 7→ {a ∈ A(sd) | δ · valMsd (a) ≤ optvalMsd}.
Intuitively, δ enforces a constraint on actions that are acceptable with respect

to the optimal probability. The shield is adaptive with respect to δ, as a high
value for δ yields a stricter shield, a smaller value a more permissive shield. The
shield is stored using a lookup-table, and the value for δ can then be changed
on-the-�y. In particularly critical situations, the shield can enforce the decision-
maker to resort to (only) the optimal actions with respect to the safety objective.

A δ-shield for the MDP M is built by constructing and applying δ-shields to
all decision states.

7.3. Synthesis of Probabilistic Shields 95

De�nition 27 � Shielded MDP

The shielded MDP M = (S,AP) for a safety-relevant quotient MDP M =
(S,A, P) and a δ-shield for all sd ∈ Sd is given by the transition probability P
with

P (s, a) =

{
P (s, a) if a ∈ Ssδ(val

M
s)

⊥ otherwise.

At least the actions that induce the optimal probability to satisfy ϕ are always
present in the shielded MDP. There is no state where all actions are blocked by
the shield.

Lemma 1

The MDP M is deadlock-free if and only if the shielded MDP M is deadlock-free.

We compute the shield relative to optimal values optvalMsd . Consequently, for
δ = 1, only optimal actions are preserved, and for δ = 0 no actions are blocked.

Theorem 8

For an MDP M and a δ-shield, it holds for any state s that valMs = val
M
s .

As optimal actions for the safety objective are not removed, optimality with
respect to safety is preserved in the shielded MDP. Thus, during construction
of the shield, we compute the action-valuations in fact for the shielded MDP.
Observe that computing a shield for a state is done independently from the
application of the shield to other states.

Guaranteed Safety. A δ-shield ensures that only actions that are δ-optimal
with respect to an LTL property ϕ are allowed. In particular, for each action
a ∈ Ae at state se, we use the minimal probability ηmin

ϕ,M(se) to satisfy ϕ, see
De�nition 25. Under optimal (subsequent) choices, the value ηmin

ϕ,M(se) will be
achieved. In contrast, a sequence of bad choices may violate ϕ with high proba-
bility. A more conservative notion would be to use the minimal action value while
assuming that in all subsequent states the worst-case decisions corresponding to
the maximal probabilities are taken. These values are computable by model
checking [CHVB18]. Regardless of subsequent choices, at least valMsd (ae) is then
guaranteed. A sensible notion to construct a shield would then be to impose a
threshold λ ∈ [0, 1] such that only actions with valMsd (ae) ≤ λ are allowed. A
shield with such a guaranteed safety probability may induce a shielded MDP
(De�nition 27) that is not deadlock free. Moreover, the shield may become too
restrictive for the agent.

Shielding versus Performance. A shield which is minimal interfering gives
the RL agent the most freedom to optimize the performance objective. We pro-
pose two methods to alleviate interference, all of them assume domain knowledge
of the rationale behind the decision procedure.

1. Iterative Weakening. During runtime, we may observe that the progress of
the avatar regarding the performance objective is not increasing anymore.

96 Chapter 7. Safe Reinforcement Learning via Probabilistic Shields

In that case, we weaken the shield by δ − ε, allowing additional actions.
As soon as progress is made, we reset δ to its former value. The adaption
of Ssδ to Ssδ−ε can be done on the �y, without new computations.

2. Adapted Speci�cations. If the goal of the decision maker is known and
can be captured in temporal logic, we may adapt the original speci�cation
accordingly. There are often natural trade-o�s between safety and perfor-
mance. These trade-o�s might be resolved via weights, but this process is
often undesirable [RVWD13] and similar to reward engineering.

7.3.1 Scalable Shield Construction

Although we apply model checking only to the decision states in the safety-
relevant MDP, scalability issues for large applications remain. We employ several
optimizations towards computational tractability.

Finite horizon. For in�nite horizon properties, the probability to violate
safety (in the long run) is often one. Furthermore, our learned MDP model
is inherently an approximation of the real world. Errors originating from this
approximation accumulate for growing horizons. Thus, we focus on a �nite hori-
zon such that the action values (and consequently, a policy for the avatar) carry
only guarantees for the next steps. This assumption also allows us to prune
the safety-relevant MDP (see below), and thus increase the scalability of model
checking.

Piecewise construction. Computing a shield for all states in an MDP con-
currently yields a large memory footprint of the probabilistic model checker. To
alleviate this footprint, we compute we can compute the shield states indepen-
dently, in accordance with Theorem 8. The independent computation prunes
the relevant part of the MDP, as the number of states reachable within the hori-
zon is drastically reduced. Additionally, the independent computation allows for
parallelizing the computation.

Independent agents. The explosion of state spaces stems mostly from the
number of agents. Situationally, it may be possible to make the assumptions that
the agents operate independently from each other. In particular, the probability
for the avatar to crash with an adversary may be stochastically independent from
crashing with the others. In such situations, instead of determining the shield
for all adversaries at once, we perform computations for each agent individually,
and combine them via the inclusion-exclusion principle. Afterward, the shield is
composed from the shields dedicated to individual adversaries.

Abstractions. We observe that for �nite horizon properties and piecewise con-
struction, adversaries may be far away�beyond the horizon�without a chance
to reach the avatar. We do not need to consider such (positions for) adversaries,
as in these states, the shield will not block any actions.

7.4. Experimental Results 97

Figure 7.2: Still from video on small PacMan.

0 40 80 120 160 200 240 280
−500

0

500

1,000

Training episodes

A
v
er
a
g
e
re
w
a
rd

Unshielded
Shielded

Figure 7.3: Scores during training for small PacMan.

7.4 Experimental Results

We run experiments using an Intel Core i7-4790K CPU with 16 GB of RAM
using 4 cores. We give the timing results for a single CPU. Since the shield
may be computed in a multi-threaded architecture, this time can be divided by
the number of cores available. The supplementary materials, namely the source
code and videos are available online.2

We demonstrate the applicability of our approach by means of two case
studies: (1) the arcade game PacMan and (2) robots in a warehouse. For both
case studies, we learn adversary behavior in small arenas individually for each
adversary. These behavior models are applicable to any benchmark instance, as
they are independent of concrete positions.

7.4.1 A shield for PacMan.

We extend the PacMan example from Section 6.6.2 from the deterministic set-
ting to the probabilistic setting. For the deterministic setting, we assumed the
ghost to be purely adversarial: for the construction of the deterministic shield,
we did not consider any behavior model of the ghost and created a shield able
to guarantee 100 percent safety for any possible movement of the ghost. Note,
that it is possible to synthesize a deterministic shield for a single ghost only,

2http://shieldrl.nilsjansen.org

http://shieldrl.nilsjansen.org

98 Chapter 7. Safe Reinforcement Learning via Probabilistic Shields

Figure 7.4: Still from video on classic PacMan.

0 40 80 120 160 200 240 280
−500

0

500

1,000

Training episodes

A
v
er
a
g
e
re
w
a
rd

Unshielded
Shielded

Figure 7.5: Scores during training for classic PacMan.

since two ghosts could always encircle PacMan. Therefore, no deterministic
shield for more than one ghost exists. In this section, we synthesize probabilistic
δ-shields for original versions of PacMan with up to four ghosts.

Setting. The setting is very similar to the setting in Section 6.6.2. We model
various instance of the game (with di�erent sizes) as an arena, where tokens
represent the dots at each position in the maze, such that a dot is either present
or collected. The score (reward, performance) is positively a�ected (+10) by
collecting a dot and negatively by time (each step: -1). If PacMan either
collects all dots (+500) or is caught (-500), the game is restarted.

The safety speci�cation places a lower bound on the probability of reaching
states in the underlying MDP that correspond to being caught.

Adversary models and safety-relevant MDP. Transferring the stochas-
tic adversary behavior to any arena (without tokens) yields a concrete safety-
relevant MDP. In particular, we specify an arena with the positions of the
avatar and the adversaries as well as the behavior in the high-level PRISM-
language [KNP11]. We employ a script that automatically generates arenas
to enable a broad set of benchmarks. Taking, e.g., the PacMan arena from

7.4. Experimental Results 99

Size,
#Ghosts

#MC
time
(s)

Score
No Shield

Score
Shield

Win Rate
No Shield

Win Rate
Shield

9x7,1 5912 584 -359,6 535,3 0,04 0,84
17x6,2 5841 1072 -195,6 253,9 0,04 0,4
17x10,3 51732 3681 -220,79 -40,52 0,01 0,07
27x25,4 269426 19941 -129,25 339,89 0,00 0,00

Table 7.1: Average scores and win rates for PacMan.

Figure 7.4, the considered MDP has roughly 1012 states (compared to 1050 for
the full MDP). For a safety-relevant MDP, we compute a δ-shield (with iterative
weakening) via the model checker Storm [DJKV17], using a horizon of 10 steps.
The immense size even of safety-relevant MDPs requires optimizations such as
a piecewise and independent shield construction, see Section 7.3.1. Moreover, a
multi-threaded architecture lets us construct shields for very large examples. In
particular, we perform model checking for (many) MDPs of roughly 106 states.
The computation time for the largest PacMan instance takes about 6 hours,
while memory is not an issue due to the piecewise shield construction.

Results. For our experiments, we reused the approximate Q-learning agent
from Section 6.6.2 with the same feature vector and parameters. We compare
RL to shielded RL on di�erent instances. The key comparison criterion is the
performance (detailed above) during learning. We describe results for the train-
ing phase of RL (300 episodes).

Figures 7.2 and 7.4 show screenshots of a series of videos. Each video com-
pares how RL performs either shielded or unshielded on a instance of the case
study. In the shielded version, at each decision state in the underlying MDP, we
indicate the risk of decisions from low to high by the colors green, orange, red.

Figure 7.3 and Figure 7.5 depict the scores obtained during RL. The curves
(blue, solid: unshielded, orange, dashed: shielded) show the average scores for
every ten training episodes. Table 7.1 shows results for instances in increasing
size. We list the number of model checking calls and the time to construct
the shield. We list the scores with and without shield, and the winning rate
capturing the ratio of successfully ended episodes. For all instances, we see
a large di�erence in scores due to the fact that PacMan is often rescued by
the shield. The winning rates di�er for most benchmarks, favoring shielded
RL. For three or four ghosts, a shield with a ten-step horizon cannot guide
PacMan to avoid being encircled by the ghosts long enough to successfully end
the game. Nevertheless, the shield often safes PacMan, leading to superior
scores. Moreover, the shield helps learning an optimal policy much faster as
fewer restarts are needed.

In general, learning for an arcade game like PacMan is di�cult to perform
according to safety constraints if no knowledge about future events is available.
Given our relatively loose assumptions about the setting, the shield proved a

100 Chapter 7. Safe Reinforcement Learning via Probabilistic Shields

Figure 7.6: Still from the video on warehouse.

0 40 80 120 160 200 240 280

−500

0

500

1,000

1,500

Training episodes

A
v
er
a
g
e
re
w
a
rd

Unshielded Shielding 2 Cross.
Shielding 4 Cross. Shielding 8 Cross.

Figure 7.7: Scores during training for warehouse.

feasible means to ensure an appropriate measure of safety. Moreover, as in the
classic PacMan instance, safety with certainty is not possible. In our exper-
iments, we found that while �nite horizons of 10 steps lead to good results,
in several cases (such as long hallways), presumably safe behavior was in fact
unsafe.

7.4.2 A Shield for Service Units in a Warehouse

As a second case study, we consider a warehouse �oor plan with several cor-
ridors. A similar scenario has been investigated in [BLP+18]. In the arena,
nodes describe crossings, the edges the corridors with shelves, and the distances
the corridor length. The agents are fork-lift units picking up packages from the
shelves and delivering them to the exit; tokens represent the presence of a pack-
age at its position. Corridors might be too narrow for multiple (facing) units,
which poses a safety-critical situation. Most crucial is the crowded area near the
exit, since all units have to deliver the packages to the exit.

Setting. The avatar is a speci�c (yellow) fork-lift unit that has to account for
other units, the adversaries. The performance (reward) is positively a�ected by
loading and delivering packages (+20, respectively) and negatively by time (each
step: -1). Delivering all packages yields a large bonus (+500) and a collision leads

7.4. Experimental Results 101

Crossings shielded 0 2 4 8

Score -186 -27.6 303 420
Win Rate 0.16 0.31 0.59 0.71

Table 7.2: Average scores and win rates for warehouse.

to a large punishment (-500), both cases end the scenario.

Reinforcement Learning. Our implementation us4es an approximate Q-
learning agent with the following feature vectors:

1. Has the unit loaded or unloaded,

2. the distance to the next package,

3. the distance to the exit,

4. whether another unit is three steps away, and

5. whether another unit is one step away.

The Q-learning uses the learning rate α = 0.2 and the discount factor γ = 0.8
for the Q-update and an ε-greedy exploration policy with ε = 0.05. We describe
results for the training phase of RL (300 episodes).

Results. For the warehouse case study, we choose to vary the positions of
the avatar for which we compute a shield. We present results for shielding the
2�8 crossings closest to the exit. Figures 7.6 shows a screenshot of a series of
videos on the warehouse example. As for the PacMan example, each video
compares how RL performs either shielded or unshielded on a instance of the
case study. Figure 7.7 shows the average score for the di�erent variants, and
Table 7.2 summarizes average score and win rate. Unsurprisingly, the score gets
better the more states are shielded. Furthermore, we have seen that shielding
even more states has only a very limited e�ect.

Declaration of Sources

Chapter 7 was based on and reuses material from the following sources,
previously published by the author:

� [JKJB18a] N. Jansen, B. Könighofer, S. Junges, R. Bloem: Shielded
decision-making in MDPs. ArXiv. 2018

References to these sources are not always made explicit.

8
Conclusion

We believe that our work points to an exciting new direction for reactive synthe-
sis in general and for applying synthesized controllers in real-world applications,
because the set of critical properties of a complex system tends to be small and
relatively easy to specify, thereby making shield synthesis scalable and usable.
Many interesting extensions and variants remain to be explored, both theoreti-
cally and experimentally, in the future.

To conclude this thesis, we highlight the most important goals achieved and
the contributions made to advance the prior state-of-the-art. Finally, we will
present new challenges that emerged due to our work, and that remain for future
investigation.

8.1 Summary and Goals Achieved

Shield synthesis is an approach to enforce safety properties at runtime. A shield
monitors the system and corrects any erroneous output values instantaneously.
Additionally, a shield deviates from the given outputs as little as it can.

In this thesis, we have formally de�ned the shield synthesis problem for re-
active systems and presented a general framework for solving the problem. We
distinguished between preemptive and post-posed shields and discussed basic
synthesis approaches for both types of shields. Building on these basic shields,
we considered shields with additional properties and applied di�erent types of
shields in various settings.

First, we considered shields with the ability to recover and to hand back con-
trol to the system as soon as possible. We discussed k-stabilizing shields, which
guarantee recovery in a �nite time, and admissible shields, which attempt to

103

104 Chapter 8. Conclusion

work with the system to recover as soon as possible. Following, we discussed an
extension of k-stabilizing shields, where erroneous output values of the reactive
system are corrected while the liveness properties of the system are preserved.

Next, we considered shielding a human operator. A preemptive shield de-
activates all actions that are unsafe in the current situation, and the human
operator can choose from safe actions only. Additionally, the shield provided for
every single deactivated action the information, which part of the speci�cation
was responsible for the deactivation. We called these shields explanatory shields.

Finally, we focused on shielding reinforcement learning agents. We developed
a method for RL under safety constraints expressed as temporal logic speci�ca-
tions. The method is based on shielding the decisions of the underlying learning
algorithm from violating the speci�cation. We pursued two di�erent approaches
for shielded learning. First, we used deterministic post-posed and preemptive
shields to guarantee safety with certainty during learning and execution. How-
ever, for some RL settings, this restriction on the decision-making of the learning
agent might be to tight, and the agent may need to take some risks to explore
the environment su�ciently. In such settings, we proposed probabilistic shields
that incorporate more liberal constraints, that enforce safety violations to occur
only with a small probability. Furthermore, in most experiments, the learning
performance of the shielded agents improved compared to the unshielded case
since unsafe policies do not have to be explored.

8.2 Future Work

Many ideas for new shield synthesis methods and new application areas for
shields arose from working on shield synthesis for the last few years. We also
came across several technical challenges along the way, for which further research
is clearly indicated. We list a few possible directions for future work.

Shielding reinforcement learning agents. We see great potential for shields
in its application in reinforcement learning. Recently, reinforcement learning,
especially the state-of-art technology of deep reinforcement learning, has shown
outstanding performance in a variety of tasks, and the list for successes of re-
inforcement learning is becoming longer almost by the day. The problem of
safety in reinforcement is still an open research problem, which is attracting
more attention every year. Shields proved a feasible means to ensure safety in
the reinforcement learning setting. Since our work on shield synthesis was the
�rst that combined formal synthesis techniques with machine learning and since
this research area is so new, current approaches are not advanced enough for
complex industrial use cases.

In future work, we will tackle the challenge of developing formal synthesis
methods that can provide safety guarantees for modern learning algorithms, e.g.,
that employ deep recurrent neural networks as means of decision-making [HS15],
applied in complex and changing environments.

8.2. Future Work 105

Online shielding via model re�nement and repair. The computation of
shields is based on a faithful abstraction of the physical environment dynamics.
In the case of an inaccurate model, the current approach fails, even for minor
errors. We propose a self-correcting modeling approach. During runtime, a mon-
itor observes the behavior of the environment. Whenever discrepancies between
the model and the real environment dynamics are detected, the model will be
corrected, and a new shield will be synthesized based on the updated model.
This approach allows shielding in dynamic environments.

Shielding partially observable Markov decision processes. For future
work, we will extend shields to richer models such as partially-observable MDPs
(POMDPs). POMDPs are e�ective in modeling several real-world applications,
e.g., modeling autonomous agents that make decisions under uncertainty and
incomplete information. In this setting, while an agent makes decisions within
an environment, it obtains observations and infers the likelihood of the system
being in a particular state. The synthesis problem for POMDPs is to determine
strategies that provably adhere to a probabilistic temporal logic speci�cation.
This problem is computationally intractable and theoretically hard [MHC99].
Shield synthesis could counteract scalability issues by considering only the safety
part of the speci�cation.

Shields for multi-agent systems. In [BBD+19], we proposed a general ap-
proach to the synthesis of shields for multi-agent systems. Swarm technology
enables a large number of agents (e.g., UAVs) to become highly interconnected,
with the ability to e�ciently plan and allocate mission objectives, make coordi-
nated tactical decisions, and collaboratively react to a dynamic environment with
minimal supervision while making recommendations to human operators. This
inter-connectivity with one another makes multi-agent systems a perfect setting
for shielding to enforce global properties and to prevent congestions and colli-
sions. In the paper, we demonstrated the applicability of the proposed shielding
approach on a range of quantitative interference requirements by synthesizing
shields for a multi-UAV system.

However, the current approach is not advanced and scalable enough to be
applied on swarms with a large number of agents, and further research is needed
to apply shields in advanced multi-agent settings. A promising avenue for fu-
ture work is to investigate bounded synthesis with quantitative objectives to
synthesize distributed shields.

Shields for timed systems. In future work, we will investigate methods
to drive shields for real-time systems from timed automata speci�cations. We
will consider shields for timed systems under di�erent fault models, and we
will extend our k-stabilizing shield synthesis approach to t-stabilizing shields:
t-stabilizing shields guarantee recovery within t time units, regardless of future
behavior of the system or the environment. First experiments implemented in
the tool Uppaal Tiga suggest the potential of this new research direction.

106 Chapter 8. Conclusion

Shields for cooperative systems. In previous work, we made no assump-
tions on the system to be shielded and treated it adversarially. Since the system
might have bugs, modeling it as adversarial is reasonable. Though it is also
a crude abstraction since typically, the objectives of the system and shield are
similar. For future work, we plan to study ways to model the spectrum be-
tween cooperative and adversarial systems to be shielded together with solution
concepts for the games that they give rise to.

8.3 Last Words

I conclude this thesis with the following words:

�One tool to control them all, One tool to save them,

One tool to shield them all, and through their failures guide them.�

by Florian Lorber

Bibliography

[ABC+19] Guy Avni, Roderick Bloem, Krishnendu Chatterjee, Thomas A.
Henzinger, Bettina Könighofer, and Stefan Pranger. Run-time op-
timization for learned controllers through quantitative games. In
Computer Aided Veri�cation - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I, pages 630�649, 2019.

[ABE+17] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement
learning via shielding. CoRR, abs/1708.08611, 2017.

[ABE+18] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement
learning via shielding. In Proceedings of the Thirty-Second AAAI
Conference on Arti�cial Intelligence, (AAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 2669�2678, 2018.

[AKL+19] Pranav Ashok, Jan Kretínský, Kim Guldstrand Larsen, Adrien Le
Coënt, Jakob Haahr Taankvist, and Maximilian Weininger. SOS:
safe, optimal and small strategies for hybrid markov decision pro-
cesses. In Quantitative Evaluation of Systems, 16th International
Conference, QEST 2019, Glasgow, UK, September 10-12, 2019,
Proceedings, pages 147�164, 2019.

[AOS+16] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano,
John Schulman, and Dan Mané. Concrete problems in AI safety.
CoRR, abs/1606.06565, 2016.

[AS85] B. Alpern and F. B. Schneider. De�ning liveness. Information
Processing Letters, 21(4):181�185, October 1985.

[Bas19] Osbert Bastani. Safe reinforcement learning via online shielding.
CoRR, abs/1905.10691, 2019.

[BBD+19] Suda Bharadwaj, Roderik Bloem, Rayna Dimitrova, Bettina
Könighofer, and Ufuk Topcu. Synthesis of minimum-cost shields
for multi-agent systems. In 2019 American Control Conference,
ACC 2019, Philadelphia, PA, USA, July 10-12, 2019, pages 1048�
1055, 2019.

107

108 Bibliography

[BCC+14] Tomá² Brázdil, Krishnendu Chatterjee, Martin Chmelík, Vojt¥ch
Forejt, Jan K°etínský, Marta Z. Kwiatkowska, David Parker, and
Mateusz Ujma. Veri�cation of Markov decision processes using
learning algorithms. In ATVA, 2014.

[BCG+10] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel,
Thomas A. Henzinger, and Barbara Jobstmann. Robustness
in the presence of liveness. In Computer Aided Veri�cation, 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-19,
2010. Proceedings, pages 410�424, 2010.

[BCG+14] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel,
Thomas A. Henzinger, Georg Ho�erek, Barbara Jobstmann,
Bettina Könighofer, and Robert Könighofer. Synthesizing robust
systems. Acta Inf., 51(3-4):193�220, 2014.

[BCN+19] Suda Bharadwaj, Steven Carr, Natasha Neogi, Hasan Poonawala,
Alejandro Barberia Chueca, and Ufuk Topcu. Tra�c management
for urban air mobility. In NASA Formal Methods - 11th Interna-
tional Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019,
Proceedings, pages 71�87, 2019.

[Ber18] UC Berkeley. Intro to AI � Reinforcement Learning , 2018.
http://ai.berkeley.edu/reinforcement.html.

[BGH+12] Roderick Bloem, Hans-Jürgen Gamauf, Georg Ho�erek, Bettina
Könighofer, and Robert Könighofer. Synthesizing robust systems
with RATSY. In Proceedings First Workshop on Synthesis, SYNT
2012, Berkeley, California, USA, 7th and 8th July 2012., pages
47�53, 2012.

[BGI+18] Roderick Bloem, Hannes Groÿ, Rinat Iusupov, Bettina Könighofer,
Stefan Mangard, and Johannes Winter. Formal veri�cation of
masked hardware implementations in the presence of glitches. In
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual In-
ternational Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II, pages 321�353, 2018.

[BGJ+07] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piter-
man, Amir Pnueli, and Martin Weiglhofer. Automatic hardware
synthesis from speci�cations: a case study. In DATE, pages 1188�
1193, 2007.

[BHK+14] Roderick Bloem, Georg Ho�erek, Bettina Könighofer, Robert
Könighofer, Simon Ausserlechner, and Raphael Spork. Synthesis of
synchronization using uninterpreted functions. In Formal Methods
in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland,
October 21-24, 2014, pages 35�42, 2014.

Bibliography 109

[BJP+12] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa'ar.
Synthesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911�
938, 2012.

[BJW02] Julien Bernet, David Janin, and Igor Walukiewicz. Permissive
strategies: From parity games to safety games. ITA, 36(3):261�
275, 2002.

[BK08] Christel Baier and J.P. Katoen. Principles of Model Checking. MIT
Press, 2008.

[BKKW15] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and
Chao Wang. Shield synthesis: - runtime enforcement for reactive
systems. In Tools and Algorithms for the Construction and Analy-
sis of Systems - 21st International Conference, TACAS 2015, Held
as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, pages 533�548, 2015.

[BKN+19] Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fu-
jimura, Mykel J. Kochenderfer, and Jana Tumova. Reinforce-
ment learning with probabilistic guarantees for autonomous driv-
ing. CoRR, abs/1904.07189, 2019.

[BL69] J. Richard Büchi and Lawrence H. Landweber. Solving sequential
conditions by �nite-state strategies. Transactions of the American
Mathematical Society, 138:295�311, 1969.

[BLP+18] Arthur Bit-Monnot, Francesco Leofante, Luca Pulina, Erika
Ábrahám, and Armando Tacchella. Smartplan: a task planner
for smart factories. CoRR, abs/1806.07135, 2018.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Run-
time veri�cation for LTL and TLTL. ACM Trans. Softw. Eng.
Methodol., 20(4):14:1�14:64, 2011.

[BM10] R. K. Brayton and A. Mishchenko. ABC: An academic industrial-
strength veri�cation tool. In CAV, LNCS 6174, pages 24�40.
Springer, 2010.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Computers, 35(8):677�691, 1986.

[BT96] Ronen I Brafman and Moshe Tennenholtz. On partially controlled
multi-agent systems. J. of Artif. Intell. Res., 4:477�507, 1996.

[BTSK17] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and An-
dreas Krause. Safe model-based reinforcement learning with sta-
bility guarantees. In NIPS, pages 908�919, 2017.

110 Bibliography

[CCC10] H. Chao, Y. Cao, and Y. Chen. Autopilots for small unmanned
aerial vehicles: A survey. Int. J. Control, Automation and Systems,
8(1):36 � 44, 2010.

[CE81] Edmund M Clarke and E Allen Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic. In
Workshop on Logic of Programs, pages 52�71. Springer, 1981.

[Chu63] Alonzo Church. Logic, arithmetic, and automata. In Proceedings
of the International Congress of Mathematicians (ICM'62), pages
23�35, 1963.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors. Handbook of Model Checking. Springer,
2018.

[Clo97] J. Clouse. On integrating apprentice learning and reinforcement
learning title2:. Technical report, Amherst, MA, USA, 1997.

[CMH06] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Hen-
zinger. Markov Decision Processes with Multiple Objectives. In
STACS, volume 3884 of LNCS, pages 325�336. Springer, 2006.

[CNDGG18] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh.
A Lyapunov-based approach to safe reinforcement learning. In
NIPS, pages 8103�8112, 2018.

[CRST08] Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Andrei
Tchaltsev. Diagnostic information for realizability. In Veri�ca-
tion, Model Checking, and Abstract Interpretation, 9th Interna-
tional Conference, VMCAI 2008, San Francisco, USA, January
7-9, 2008, Proceedings, pages 52�67, 2008.

[DAC99] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in prop-
erty speci�cations for �nite-state veri�cation. In ICSE, pages 411�
420. ACM, 1999.

[DGS+19] Ankush Desai, Shromona Ghosh, Sanjit A. Seshia, Natarajan
Shankar, and Ashish Tiwari. SOTER: A runtime assurance frame-
work for programming safe robotics systems. In 49th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2019, Portland, OR, USA, June 24-27, 2019,
pages 138�150, 2019.

[Die00] Thomas G Dietterich. Hierarchical reinforcement learning with the
maxq value function decomposition. Journal of Arti�cial Intelli-
gence Research, 13:227�303, 2000.

Bibliography 111

[DJKV17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and
Matthias Volk. A storm is coming: A modern probabilistic model
checker. In CAV (2), volume 10427 of LNCS, pages 592�600.
Springer, 2017.

[DJL+15] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Mar-
ius Mikucionis, and Jakob Haahr Taankvist. Uppaal stratego. In
TACAS, volume 9035 of Lecture Notes in Computer Science, pages
206�211. Springer, 2015.

[DN08] Peter Dayan and Yael Niv. Reinforcement learning: the good, the
bad and the ugly. Current opinion in neurobiology, 18(2):185�196,
2008.

[DNC10] B. Donmez, C. Nehme, and M. L. Cummings. Modeling workload
impact in multiple unmanned vehicle supervisory control. IEEE
Trans. Syst. Man Cybern. A., Syst. Humans, 40(6):1180 � 1190,
2010.

[Duq09] M. Duquette. E�ects-level models for UAV simulation. In AIAA
Modeling and Simulation Technologies Conference, 2009.

[DVP11] K. Dalamagkidis, K. P. Valavanis, and L. A. Piegl. On integrat-
ing unmanned aircraft systems into the national airspace system:
Issues, challenges, operational restrictions, certi�cation, and rec-
ommendations, volume 54. Springer Science & Business Media,
2011.

[EKH12] Rüdiger Ehlers, Robert Könighofer, and Georg Ho�erek. Symboli-
cally synthesizing small circuits. In Formal Methods in Computer-
Aided Design, FMCAD 2012, Cambridge, UK, October 22-25,
2012, pages 91�100, 2012.

[ER16] Rüdiger Ehlers and Vasumathi Raman. Slugs: Extensible GR(1)
synthesis. In Computer Aided Veri�cation - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II, pages 333�339, 2016.

[ET14] R. Ehlers and U. Topcu. Resilience to intermittent assumption
violations in reactive synthesis. In 17th I. Conference on Hybrid
Systems: Computation and Control, HSCC'14, Berlin, Germany,
April 15-17, 2014, pages 203�212, 2014.

[ET15] Rüdiger Ehlers and Ufuk Topcu. Estimator-based reactive syn-
thesis under incomplete information. In Proceedings of the 18th
International Conference on Hybrid Systems: Computation and
Control, HSCC'15, Seattle, WA, USA, April 14-16, 2015, pages
249�258, 2015.

112 Bibliography

[Fae09] M. Faella. Admissible strategies in in�nite games over graphs.
In Mathematical Foundations of Computer Science 2009, 34th I.
Symposium, MFCS 2009, Novy Smokovec, Slovakia, 2009, pages
307�318, 2009.

[Fal10] Yliès Falcone. You should better enforce than verify. In Runtime
Veri�cation - First International Conference, RV 2010, St. Julians,
Malta, November 1-4, 2010. Proceedings, pages 89�105, 2010.

[FFM12] Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you verify
and enforce at runtime? STTT, 14(3):349�382, 2012.

[FJR09] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. An an-
tichain algorithm for LTL realizability. In CAV, pages 263�277,
2009.

[FP18] Nathan Fulton and André Platzer. Safe reinforcement learning via
formal methods: Toward safe control through proof and learning.
In AAAI. AAAI Press, 2018.

[Ful18] Nathan Fulton. Veri�ably safe autonomy for cyber-physical sys-
tems. Ph. D. thesis, Computer Science Department, School of
Computer Science, Carnegie Mellon University, 2018.

[FWHT16] L. Feng, Clemens Wiltsche, L. Humphrey, and U. Topcu. Synthesis
of human-in-the-loop control protocols for autonomous systems. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2016.

[FZ16] Richard G Freedman and Shlomo Zilberstein. Safety in AI-HRI:
Challenges complementing user experience quality. In AAAI Fall
Symposium Series, 2016.

[GF15] Javier Garc�a and Fernando Fernández. A comprehensive survey
on safe reinforcement learning. Journal of Machine Learning Re-
search, 16(1):1437�1480, 2015.

[HAK18] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel
Kroening. Logically-correct reinforcement learning. CoRR,
abs/1801.08099, 2018.

[HGK+13] Georg Ho�erek, Ashutosh Gupta, Bettina Könighofer, Jie-
Hong Roland Jiang, and Roderick Bloem. Synthesizing multiple
boolean functions using interpolation on a single proof. In Formal
Methods in Computer-Aided Design, FMCAD 2013, Portland, OR,
USA, October 20-23, 2013, pages 77�84, 2013.

[HH14] Arnd Hartmanns and Holger Hermanns. The modest toolset: An
integrated environment for quantitative modelling and veri�cation.
In TACAS, volume 8413 of LNCS, pages 593�598, 2014.

Bibliography 113

[HHH+19] Ernst Moritz Hahn, Arnd Hartmanns, Christian Hensel, Michaela
Klauck, Joachim Klein, Jan Kretínský, David Parker, Tim Quat-
mann, Enno Ruijters, and Marcel Steinmetz. The 2019 comparison
of tools for the analysis of quantitative formal models - (qcomp
2019 competition report). In TACAS (3), volume 11429 of Lecture
Notes in Computer Science, pages 69�92. Springer, 2019.

[HK99] Thomas A. Henzinger and Peter W. Kopke. Discrete-time con-
trol for rectangular hybrid automata. Theor. Comput. Sci., 221(1-
2):369�392, 1999.

[HKKT16] Laura R. Humphrey, Bettina Könighofer, Robert Könighofer, and
Ufuk Topcu. Synthesis of admissible shields. In Hardware and
Software: Veri�cation and Testing - 12th International Haifa Ver-
i�cation Conference, HVC 2016, Haifa, Israel, November 14-17,
2016, Proceedings, pages 134�151, 2016.

[HPS+19] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi,
Ashutosh Trivedi, and Dominik Wojtczak. Omega-regular objec-
tives in model-free reinforcement learning. In TACAS (1), vol-
ume 11427 of Lecture Notes in Computer Science, pages 395�412.
Springer, 2019.

[HS15] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning
for partially observable mdps. CoRR, abs/1507.06527, 2015.

[JB12] Swen Jacobs and Roderick Bloem. Parameterized synthesis. In
TACAS, pages 362�376, 2012.

[JGWB07] Barbara Jobstmann, Stefan J. Galler, Martin Weiglhofer, and Rod-
erick Bloem. Anzu: A tool for property synthesis. In CAV, pages
258�262, 2007.

[JKJB18a] Nils Jansen, Bettina Könighofer, Sebastian Junges, and Roderick
Bloem. Shielded decision-making in mdps. CoRR, abs/1807.06096,
2018.

[JKJB18b] Nils Jansen, Bettina Könighofer, Sebastian Junges, and Roderick
Bloem. Shielded decision-making in mdps. CoRR, abs/1807.06096,
2018.

[JND+16] Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu,
and Joost-Pieter Katoen. Safety-constrained reinforcement learn-
ing for MDPs. In TACAS, volume 9636 of LNCS, pages 130�146.
Springer, 2016.

[KAB+17] Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem,
Laura R. Humphrey, Robert Könighofer, Ufuk Topcu, and Chao
Wang. Shield synthesis. Formal Methods in System Design,
51(2):332�361, 2017.

114 Bibliography

[Kat16] Joost-Pieter Katoen. The probabilistic model checking landscape.
In LICS, pages 31�45. ACM, 2016.

[KHB13] Robert Könighofer, Georg Ho�erek, and Roderick Bloem. Debug-
ging formal speci�cations: A practical approach using model-based
diagnosis and counterstrategies. STTT, 15(5-6):563�583, 2013.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
PRISM 4.0: Veri�cation of probabilistic real-time systems. In CAV,
volume 6806 of LNCS, pages 585�591. Springer, 2011.

[Kol12] Andrey Kolobov. Planning with Markov decision processes: An
AI perspective. Synthesis Lectures on Arti�cial Intelligence and
Machine Learning, 6(1):1�210, 2012.

[KPR18] Jan Kretínský, Guillermo A. Pérez, and Jean-François Raskin.
Learning-based mean-payo� optimization in an unknown MDP
under omega-regular constraints. In CONCUR, volume 118 of
LIPIcs, pages 8:1�8:18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Imagenet
classi�cation with deep convolutional neural networks. In NIPS,
pages 1097�1105, 2012.

[Kwi03] Marta Z. Kwiatkowska. Model checking for probability and time:
from theory to practice. In LICS, page 351. IEEE CS, 2003.

[LBR09] R. Loh, Y. Bian, and T. Roe. UAVs in civil airspace: Safety
requirements. IEEE Aerospace and Electronic Systems Magazine,
24(1):5�17, Jan 2009.

[LBW09] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of
nonsafety policies. ACM Trans. Inf. Syst. Secur., 12(3), 2009.

[LS08] Mark H. Li�ton and Karem A. Sakallah. Algorithms for computing
minimal unsatis�able subsets of constraints. J. Autom. Reasoning,
40(1):1�33, 2008.

[LS09] M. Leucker and S. Schallhart. A brief account of runtime veri�ca-
tion. The Journal of Logic and Algebraic Programming, 78(5):293�
303, 2009.

[LSSS14] W. Li, D. Sadigh, S. Sastry, and S. Seshia. Synthesis for human-
in-the-loop control systems. In Tools and Algorithms for the Con-
struction and Analysis of Systems - 20th I. Conference, TACAS
2014, Grenoble, France, April 5-13, 2014. Proceedings, pages 470�
484, 2014.

Bibliography 115

[LTL] LTL Speci�cation Patterns. http://patterns.projects.cis.ksu.

edu/documentation/patterns/ltl.shtml.

[MA12] Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in
markov decision processes. In ICML. icml.cc / Omnipress, 2012.

[Maz01] R. Mazala. In�nite games. In Automata, Logics, and In�nite
Games: A Guide to Current Research, LNCS 2500, pages 23�42.
Springer, 2001.

[MCKB17] George Mason, Radu Calinescu, Daniel Kudenko, and Alec Banks.
Assured reinforcement learning with formally veri�ed abstract poli-
cies. In ICAART (2), pages 105�117. SciTePress, 2017.

[MHC99] Omid Madani, Steve Hanks, and Anne Condon. On the undecid-
ability of probabilistic planning and in�nite-horizon partially ob-
servable markov decision problems. In Proceedings of the Sixteenth
National Conference on Arti�cial Intelligence and Eleventh Con-
ference on Innovative Applications of Arti�cial Intelligence, July
18-22, 1999, Orlando, Florida, USA., pages 541�548, 1999.

[MMM+14] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. Any-
time system level veri�cation via random exhaustive hardware in
the loop simulation. In Digital System Design (DSD), 2014 17th
Euromicro Conference on, pages 236�245, Aug 2014.

[Nat16] National Science and Technology Council. Preparing for the Future
of Arti�cial Intelligence. 2016.

[OWNE19] M. Ohnishi, L. Wang, G. Notomista, and M. Egerstedt. Barrier-
certi�ed adaptive reinforcement learning with applications to
brushbot navigation. IEEE Transactions on Robotics, pages 1�20,
2019.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Sym-
posium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977, pages 46�57, 1977.

[PP06] Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett
games. In 21th IEEE Symposium on Logic in Computer Science
(LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings,
pages 275�284, 2006.

[PR89] A. Pnueli and R. Rosner. Automata, Languages and Program-
ming: 16th Int. Colloquium Stresa, Italy, July 11�15, 1989 Pro-
ceedings, chapter On the synthesis of an asynchronous reactive
module, pages 652�671. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1989.

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

116 Bibliography

[PS14] Martin Pecka and Tomas Svoboda. Safe exploration techniques for
reinforcement learning�an overview. In International Workshop on
Modelling and Simulation for Autonomous Systems, pages 357�
375. Springer, 2014.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc., New
York, NY, USA, 1st edition, 1994.

[PYG+17] Dung Phan, Junxing Yang, Radu Grosu, Scott A. Smolka, and
Scott D. Stoller. Collision avoidance for mobile robots with limited
sensing and limited information about moving obstacles. Formal
Methods in System Design, 51(1):62�86, 2017.

[QS82] J. P. Quielle and J. Sifakis. Speci�cation and veri�cation of concur-
rent systems in CESAR. In Symposium on Programming, LNCS
137. Springer, 1982.

[RDT16] Stuart J. Russell, Daniel Dewey, and Max Tegmark. Research
priorities for robust and bene�cial arti�cial intelligence. CoRR,
abs/1602.03506, 2016.

[Ros92] R. Rosner. Modular Synthesis of Reactive Systemsk. PhD thesis,
Weizmann Institute of Science, Rehovot, Israel, 1992.

[RVWD13] Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and
Richard Dazeley. A survey of multi-objective sequential decision-
making. J. Artif. Intell. Res., 48:67�113, 2013.

[SB98] Richard S Sutton and Andrew G Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

[Sch00] F. B. Schneider. Enforceable security policies. ACM Trans. Inf.
Syst. Secur., 3:30�50, 2000.

[SF07] Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In ATVA,
pages 474�488, 2007.

[Sha01] Lui Sha. Using simplicity to control complexity. IEEE Software,
18(4):20�28, 2001.

[SHB16] Marcel Steinmetz, Jörg Ho�mann, and Olivier Bu�et. Goal proba-
bility analysis in probabilistic planning: Exploring and enhancing
the state of the art. J. Artif. Intell. Res., 57:229�271, 2016.

[SKC+14] Dorsa Sadigh, Eric S Kim, Samuel Coogan, S Shankar Sastry, and
Sanjit A Seshia. A learning based approach to control synthesis of
markov decision processes for linear temporal logic speci�cations.
In Decision and Control (CDC), 2014 IEEE 53rd Annual Confer-
ence on, pages 1091�1096. IEEE, 2014.

Bibliography 117

[SLS+18] Dorsa Sadigh, Nick Landol�, Shankar S Sastry, Sanjit A Seshia,
and Anca D Dragan. Planning for cars that coordinate with people:
leveraging e�ects on human actions for planning and active infor-
mation gathering over human internal state. Autonomous Robots,
42(7):1405�1426, 2018.

[SPE+14] D Sculley, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, and
Michael Young. Machine learning: The high-interest credit card of
technical debt. 2014.

[SS13] Saqib Sohail and Fabio Somenzi. Safety �rst: a two-stage algorithm
for the synthesis of reactive systems. STTT, 15(5-6):433�454, 2013.

[SSP+17] Ion Stoica, Dawn Song, Raluca Ada Popa, David Patterson,
Michael W Mahoney, Randy Katz, Anthony D Joseph, Michael
Jordan, Joseph M Hellerstein, Joseph E Gonzalez, et al. A berke-
ley view of systems challenges for AI. CoRR, abs/1712.05855, 2017.

[SSSD16] Dorsa Sadigh, Shankar Sastry, Sanjit A Seshia, and Anca D Dra-
gan. Planning for autonomous cars that leverage e�ects on human
actions. In Robotics: Science and Systems, 2016.

[TB06] Andrea L. Thomaz and Cynthia Breazeal. Reinforcement learning
with human teachers: Evidence of feedback and guidance with
implications for learning performance. In Proceedings of the 21st
National Conference on Arti�cial Intelligence - Vol. 1, pages 1000�
1005. AAAI Press, 2006.

[TB08] Andrea Lockerd Thomaz and Cynthia Breazeal. Teachable robots:
Understanding human teaching behavior to build more e�ective
robot learners. Artif. Intell., 172(6-7):716�737, 2008.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in in�nite games.
In STACS 95, 12th Annual Symposium on Theoretical Aspects of
Computer Science, Munich, Germany, March 2-4, 1995, Proceed-
ings, pages 1�13, 1995.

[VdHW08] Wiebe Van der Hoek and Michael Wooldridge. Multi-agent sys-
tems. Foundations of Arti�cial Intelligence, 3:887�928, 2008.

[WET15] Min Wen, Rüdiger Ehlers, and Ufuk Topcu. Correct-by-synthesis
reinforcement learning with temporal logic constraints. In IROS,
pages 4983�4990. IEEE CS, 2015.

[WFHP16] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal.
Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2016.

[Whi85] Douglas J White. Real applications of Markov decision processes.
Interfaces, 15(6):73�83, 1985.

118 Bibliography

[WTM12] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray.
Receding horizon temporal logic planning. IEEE Trans. Automat.
Contr., 57(11):2817�2830, 2012.

[WWDW19] Meng Wu, Jingbo Wang, Jyotirmoy Deshmukh, and Chao Wang.
Shield synthesis for real: Enforcing safety in cyber-physical sys-
tems, 2019.

[ZMBD08] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and
Anind K. Dey. Maximum entropy inverse reinforcement learning.
In AAAI, pages 1433�1438. AAAI Press, 2008.

[ZXMJ19] He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan.
An inductive synthesis framework for veri�able reinforcement
learning. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019., pages 686�701, 2019.

A
List of Publications

According to the Statutes of the Doctoral School of Computer Science at Graz
University of Technology, a PhD thesis must contain a list of publications of
the candidate, detailing the relationship between the thesis and the (relevant)
publications. The reference date for the following list of publications is December
2019.

A.1 Journal Publications

This section lists all journal publications in reverse chronological order.

� [KAB+17] Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura R.
Humphrey, Robert Könighofer, Ufuk Topcu, and Chao Wang. Shield syn-
thesis. Formal Methods in System Design, 51(2):332�361, 2017.

� [BCG+14] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A.
Henzinger, Georg Ho�erek, Barbara Jobstmann, Bettina Könighofer, and
Robert Könighofer. Synthesizing robust systems. Acta Inf., 51(3-4):193�
220, 2014.

A.2 Publications in Conference andWorkshop Pro-

ceedings

This section lists all publications in conference and workshop proceedings in
reverse chronological order.

119

120 Appendix A. List of Publications

� [BBD+19] Suda Bharadwaj, Roderik Bloem, Rayna Dimitrova, Bettina
Könighofer, and Ufuk Topcu. Synthesis of minimum-cost shields for multi-
agent systems. In 2019 American Control Conference, ACC 2019, Philadel-
phia, PA, USA, July 10-12, 2019, pages 1048�1055, 2019

� [ABC+19] Guy Avni, Roderick Bloem, Krishnendu Chatterjee, Thomas A.
Henzinger, Bettina Könighofer, and Stefan Pranger. Run-time optimiza-
tion for learned controllers through quantitative games. In Computer Aided
Veri�cation - 31st International Conference, CAV 2019, New York City,
NY, USA, July 15-18, 2019, Proceedings, Part I, pages 630�649, 2019

� [ABE+18] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement learning
via shielding. In Proceedings of the Thirty-Second AAAI Conference on Ar-
ti�cial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 2669�2678, 2018

� [BGI+18] Roderick Bloem, Hannes Groÿ, Rinat Iusupov, Bettina Könighofer,
Stefan Mangard, and Johannes Winter. Formal veri�cation of masked
hardware implementations in the presence of glitches. In Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 321�353, 2018

� [HKKT16] Laura R. Humphrey, Bettina Könighofer, Robert Könighofer,
and Ufuk Topcu. Synthesis of admissible shields. In Hardware and Soft-
ware: Veri�cation and Testing - 12th International Haifa Veri�cation Con-
ference, HVC 2016, Haifa, Israel, November 14-17, 2016, Proceedings,
pages 134�151, 2016

� [BKKW15] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and
Chao Wang. Shield synthesis: - runtime enforcement for reactive systems.
In Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, pages 533�548, 2015

� [BHK+14] Roderick Bloem, Georg Ho�erek, Bettina Könighofer, Robert
Könighofer, Simon Ausserlechner, and Raphael Spork. Synthesis of syn-
chronization using uninterpreted functions. In Formal Methods in Computer-
Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014,
pages 35�42, 2014

� [HGK+13] Georg Ho�erek, Ashutosh Gupta, Bettina Könighofer, Jie-Hong Roland
Jiang, and Roderick Bloem. Synthesizing multiple boolean functions using
interpolation on a single proof. In Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pages
77�84, 2013

A.3. Informal Publications 121

� [BGH+12] Roderick Bloem, Hans-Jürgen Gamauf, Georg Ho�erek, Bet-
tina Könighofer, and Robert Könighofer. Synthesizing robust systems with
RATSY. In Proceedings First Workshop on Synthesis, SYNT 2012, Berke-
ley, California, USA, 7th and 8th July 2012., pages 47�53, 2012

A.3 Informal Publications

This section lists all informal publications in reverse chronological order.

� [JKJB18b] Nils Jansen, Bettina Könighofer, Sebastian Junges, and Rod-
erick Bloem. Shielded decision-making in mdps. CoRR, abs/1807.06096,
2018

� [ABE+17] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement learning
via shielding. CoRR, abs/1708.08611, 2017

A.4 Relationship between Publications and The-

sis

This thesis is based on the following publications (in reverse chronological order):

� [ABE+18] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement learning
via shielding. In Proceedings of the Thirty-Second AAAI Conference on Ar-
ti�cial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 2669�2678, 2018

� [JKJB18b] Nils Jansen, Bettina Könighofer, Sebastian Junges, and Rod-
erick Bloem. Shielded decision-making in mdps. CoRR, abs/1807.06096,
2018

� [KAB+17] Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura R.
Humphrey, Robert Könighofer, Ufuk Topcu, and Chao Wang. Shield syn-
thesis. Formal Methods in System Design, 51(2):332�361, 2017

� [ABE+17] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement learning
via shielding. CoRR, abs/1708.08611, 2017

� [HKKT16] Laura R. Humphrey, Bettina Könighofer, Robert Könighofer,
and Ufuk Topcu. Synthesis of admissible shields. In Hardware and Soft-
ware: Veri�cation and Testing - 12th International Haifa Veri�cation Con-
ference, HVC 2016, Haifa, Israel, November 14-17, 2016, Proceedings,
pages 134�151, 2016

122 Appendix A. List of Publications

� [BKKW15] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and
Chao Wang. Shield synthesis: - runtime enforcement for reactive systems.
In Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, pages 533�548, 2015

Throughout this thesis, sections that reuse material from these publications
are marked with grey boxes entitled: Declaration of Sources. These boxes are
placed at the end of each chapter. In addition to that, the most important
relations between these publications and this dissertation are stated below.

In [BKKW15], we introduced the concept of a shield and de�ned a general
framework for solving the shield synthesis problem for reactive systems. Thus,
Chapter 1 and Section 3.2 are largely based on this paper. Furthermore, we
proposed in [BKKW15] k-stabilizing shields which we discuss in Section 4.2.

In [HKKT16], we proposed another synthesis method to automatically con-
struct shields for reactive systems and called the resulting shields admissible
shields. In this thesis, admissible shields are discussed in Section 4.3.

In [KAB+17], we summarized the approaches of [BKKW15] and [HKKT16].
Additionally, the paper introduced liveness-preserving shielding which is the
basis for Section 4.4, and introduced explanatory shields which is the basis for
Chapter 5.

In [ABE+18], we discussed post-posed shields for reinforcement learning
agents in the deterministic setting. Thus, Section 6.3 is largely based on [ABE+18].

The informal publication [ABE+17] is an extended version of [ABE+18],
which proposed preemptive shields for reinforcement learning agents. Thus,
Section 6.4 is largely based on [ABE+17].

In [JKJB18b], we discussed shields for reinforcement learning agents in the
probabilistic setting. This publication is the basis for Chapter 7.

B
Cooperations

According to the Statutes of the Doctoral School of Computer Science at Graz
University of Technology, a PhD thesis must contain an explanation of cooper-
ations concerning the work described in the thesis. The following list details all
such notable cooperations between the author and other persons. The list is in
no particular order.

� On all parts of this thesis, there have been frequent and ongoing discussions
with Roderick Bloem.

� Ufuk Topcu participated in many discussions on many di�erent aspects of
this thesis and provided valuable feedback.

� The initial idea of shields was developed in cooperation with Chao Wang.

� The concept of shields for reinforcement learning was developed in close
cooperation with Rüdiger Ehlers.

� Scott Niekum provided his vast expertise in machine learning which en-
abled us to formulate the shielding concept for the AI community proper.

� Laura R. Humphrey contributed to many fruitful discussions on suitable
application domains for shields, which resulted in a detailed case study on
shields for UAV mission planning.

� Mohammed Alshiekh assisted in performing the case study on shields for
UAV mission planning.

� Robert Könighofer contributed to the initial developments of the shielding
concept by helping to develop the theory for k-stabilizing shields and by
assisting with the experiments.

123

124 Appendix B. Cooperations

� The concept of shielded decision making for MDPs was developed in co-
operation with Nils Jansen and Sebastian Junges.

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

	Title Page
	Epigraph
	Abstract
	Kurzfassung
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Problem Description and Contribution
	Related Work
	Outline of this Thesis

	Preliminaries
	Motivation and Outline
	Basic Notation
	Reactive Systems
	Automata
	Acceptance Conditions
	Logics and Specifications
	Safety and Liveness Specifications
	Propositional Logic
	Linear Temporal Logic

	Games
	Reactive Synthesis from Safety Specifications
	Markov Decision Processes
	Reinforcement Learning

	Post-Posed and Preemptive Shields
	Motivation and Outline
	Post-posed Shields
	Post-posed Shielding Setting
	Illustrative Example
	Definition of Post-posed Shields
	Synthesis of Post-posed Shields

	Preemptive Shields
	Preemptive Shielding Setting
	Illustrative Example
	Definition of Preemptive Shields
	Synthesis of Preemptive Shields

	k-Stabilizing and Admissible Shields
	Motivation and Outline
	k-Stabilizing Shields
	Illustrative Example
	Definition of k-stabilizing Shields
	Synthesis of k-stabilizing Shields

	Admissible Shields
	Illustrative Example
	Definition of Admissible Shields
	Synthesis of Admissible Shields

	Liveness-Preserving k-stabilizing Shields
	Illustrative Example
	Synthesis of Liveness-Preserving k-stabilizing Shields

	Experimental Results
	A Shield for the ARM AMBA Bus Arbiter
	A Shield for LTL Specification Patterns

	Explanatory Shields
	Motivation and Outline
	Explanatory Shielding Setting
	Definition of Explanatory Shields
	Synthesis of Explanatory Shields
	Experimental Results

	Safe Reinforcement Learning via Deterministic Shields
	Motivation and Outline
	Abstractions
	Post-posed Shields for RL
	Post-posed Shielding Setting for RL
	Synthesis of Post-posed Shields for RL

	Preemptive Shields for RL
	Preemptive Shielding Setting for RL
	Synthesis of Preemptive Shields for RL

	Convergence
	Experimental Results
	A Shield for a Water Tank
	A Shield for simple PacMan

	Safe Reinforcement Learning via Probabilistic Shields
	Motivation and Outline
	Probabilistic Shielding Setting
	Synthesis of Probabilistic Shields
	Scalable Shield Construction

	Experimental Results
	A shield for PacMan.
	A Shield for Service Units in a Warehouse

	Conclusion
	Summary and Goals Achieved
	Future Work
	Last Words

	Bibliography
	List of Publications
	Journal Publications
	Publications in Conference and Workshop Proceedings
	Informal Publications
	Relationship between Publications and Thesis

	Cooperations
	Statutory Declaration

		2020-01-13T10:08:00+0100
	Signature Box
	Bettina KÃ¶nighofer
	Signature

