TU

Grazm

Markus Reiter-Haas, Bsc

Evaluation of Job Recommendations
for the Studo Jobs Platform

Master’s Thesis
to achieve the university degree of
Diplom-Ingenieur (Dipl.-Ing.) equivalent to the Master of Science (MSc)

Master's degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.Ing. Dr.techn. Elisabeth Lex

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl-Inf. Dr. Stefanie Lindstaedt

Graz, January 2020

This document is set in Palatino, compiled with pdfI&TEX2e and Biber.

The IATEX template from Karl Voit is based on KOMA script and can be found
online: https:/ /github.com/novoid /LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TuGRAZOnNline is identical to the present
master’s thesis.

/ ~ /“ / ! N
January 23, 2020 (/lwﬁew = ;LM/) W owbir

Date Signature

Abstract English

Student job recommendations deal with the data sparsity and cold-start problem.
The cold-start problem is very severe in the job market since there are frequent
changes in both available job vacancies and job seekers. The data sparsity is also
worse for students since they lack substantial work experience. Additionally,
job postings are usually just unstructured textual descriptions. In this thesis, we
incorporate the latent features of textual job descriptions into a recommender
system. We achieve this by transforming the textual content into embeddings
that capture the meaning of the jobs. Additionally, we apply a time decay
equation from cognitive sciences to consider frequency and recency of job
interactions. Our aim is to further improve the recommendations in the job
domain. We evaluate the recommendations in an offline study on accuracy,
beyond-accuracy, and also runtime performance. Furthermore, we examine
different configurations and combinations of algorithms in a hybrid setting in
order to find the best combination. We carry this out on the Austrian student job
platform Studo Jobs in online evaluations for two different scenarios. A vector-
based approach with a focus on recency works best for recommendations shown
next to the job details, whereas, for recommendations shown on the home view, a
focus on frequency is better. For both scenarios, the best combination is achieved
by including collaborative filtering in a hybrid manner. The best combinations
were rolled out on the Studo Jobs platform and provide recommendations in
real-time.

Abstract Deutsch

Jobempfehlungen fiir Studierende behandeln das Datenknappheits- und das
Kaltstartproblem. Das Kaltstartproblem ist auf dem Arbeitsmarkt sehr gravie-
rend, da es zu hdufigen Verdnderungen, sowohl bei den verfiigbaren Stellenan-
geboten als auch bei den Arbeitssuchenden, kommt. Die Datendichte ist auch
bei Studierende geringer, da sie keine ausreichende Berufserfahrung haben.
Zusétzlich sind Stellenausschreibungen in der Regel nur unstrukturierte Textbe-
schreibungen. In dieser Abschlussarbeit integrieren wir die latenten Merkmale
von textuellen Stellenbeschreibungen in einen Recommender System. Dies er-
reichen wir, indem wir den Textinhalt in Einbettungen umwandeln, welche
die Bedeutung der Stellenangebote erfassen. Dartiber hinaus wenden wir eine
Zeitzerfallsgleichung aus den Kognitionswissenschaften an, um die Haufigkeit
und Aktualitdt von Job-Interaktionen zu berticksichtigen. Unser Ziel ist es, die
Empfehlungen der Job-Doméne weiter zu verbessern. Wir werten die Emp-
fehlungen in einer Offline-Studie auf Genauigkeit, Jenseits-Genauigkeit und
Laufzeitleistung aus. Aufierdem untersuchen wir verschiedene Konfigurationen
und Kombinationen von Algorithmen in einer hybriden Umgebung, um die
beste Kombination zu finden. Wir fiihren dies auf der dsterreichischen Jobplatt-
form fiir Studierende, namens Studo Jobs, in Online-Auswertungen fiir zwei
verschiedene Szenarien aus. Ein vektorbasierter Ansatz mit Fokus auf Aktualitat
funktioniert am besten fiir die gezeigten Empfehlungen neben den Jobdetails.
Fiir Empfehlungen auf der Startseite ist ein Fokus auf Haufigkeit besser. Fiir
beide Szenarien wird die beste Kombination erreicht, indem kollaboratives
Filtern auf hybride Weise einbezogen wird. Die besten Kombinationen wurden
auf der Studo Jobs Plattform ausgerollt und liefern Empfehlungen in Echtzeit.

il

Acknowledgements

I would like to thank the Moshbit GmbH and its founders to enable me to write
such an interesting thesis about the job platform. Julian Kainz (CEO) for not only
being open-minded about research in a small company, but very encouraging
about it. Valentin Slawicek (CTO), who always has an open ear for problems
and providing the corresponding solutions. Our designer, Stefanie Horvath,
for the great design of the job platform (and thus also my screenshots) and for
polishing my presentations for conferences among others. Manuel Schmolzer
(CSO) and his legendary sales team for their success, which provided me with
more data to work with. Chris Lanz, who regularly sends me interesting articles
to read about Al. My colleague David Wittenbrink, which is responsible for
the Ul of the job platform and I worked closely with when integrating the
recommendations, which he always sees as a high priority. Zoltan Sasvari
which helped with architectural questions and on the data management tasks.
And the rest of the Talto team for the good teamwork.

I would like to thank my supervisor Elisabeth Lex for her long-time support
and short response time while writing the master thesis. Furthermore, I would
like to thank my co-supervisor and mentor Emanuel Lacic, which provided
me with a constant stream of ideas, insights, and improvements suggestions
throughout the whole time. Moreover, I would like to thank the Know Center
GmbH, especially the Social Computing team, for the fruitful collaboration.

Additionally, I would like to thank both companies once more, as well as the
Graz University of Technology, for the opportunity to write research papers
during my master thesis, which strengthened my research experience.

Finally, I would like to thank my family for their patience and support during
this time of writing, as well as my girlfriend, Helena Adam, who also helped
with proofreading the content.

Contents

Abstract
Acknowledgements
1 Introduction
1.1 ResearchQuestions
1.2 Structure e e e
2 Related Work

2.1 Recommendation Approaches
2.2 Job Recommender Systems
2.3 Deep Learning Approaches for NLP
2.4 Deep Learning Recommender Systems
25 Summary

Job Recommendation Algorithms

3.1 Content Based Filtering
3.2 Collaborative Filtering
3.3 Docz2Vec
331 LastVector.
3.3.2 Average Vectors
3.3.3 Base-Level Learning
3.3.4 Usera2Vec
3.4 Hybrid Recommendations
341 MixedHybrids,
3.4.2 Weighted Hybrids
Studo Jobs Platform
41 StudoApp e
42 StudoJobs
4.3 Recommendation Scenarios
4.3.1 Infobox Scenario,
4.3.2 HomeScenario

13
13
14
15
16
17
17
18
18
19
19

21
21
22
24
24
25

Xi

Contents

4.4 Dataset
441 JobAds
442 CVs .o oo
4.4.3 Interactions L.
4.4.4 Data Processing and Enrichment
5 Implementation Details
5.1 Architecture o o oo
52 Integration 0 00 L.
5.2.1 Datalngestion
52.2 FeedbackLoop
523 A/BTestWorkflow
5.2.4 Realtime Recommendations
5.3 Embedding Training
5.3.1 Parameter Tuning.
5.3.2 Embedding Analysis
6 Evaluation Protocol
6.1 Offline Protocol
6.2 Online Protocol
7 Results
7.1 Offline Evaluation
711 ACCUTACY i
7.1.2 Beyond-Accuracy oL,
713 Runtime
7.1.4 Considering Frequency and Recency
7.1.5 Offline Findings.
7.2 Online Evaluation,
7.2.1 Infobox Tests
722 HomeTests
723 OnlineFindings.
7.3 Comparison and Summarization

8 Conclusion

8.1 Reflections,
8.2 Future Work
Bibliography

Xii

List of Figures

31 PV-DBOWModel 16
41 StudoApp 22
42 JobAdDesign o .. 23
4.3 Recommendation Scenarios 25
51 A/BTestWorkflow 37
5.2 Parameter Tuning 39
5.3 t-SNE Visualization 40
5.4 UMAP Visualization 40
7.1 Accuracy Results 51
7.2 Beyond-Accuracy Results 52
73 RuntimeResults 53
7.4 Impact of embeddings Results 58
7.5 Influence of frequency and recency Results 59
7.6 Merit of recency Results 60
7.7 Considering context Results 61
7.8 Combining embeddings Results 62
7.9 Combining frequency and recency Results 62
7.10 Influence of frequency and recency Results 64
7.11 Combining frequency and recency Results 65

Xiii

List of Tables

4.1 Dataset Statistics

7.1 Offline Evaluation Results

72 WSDM Results

XV

1 Introduction

The job market is a very competitive field for both companies and job seekers
alike. On the one hand, companies are struggling with filling their job vacancies.
On the contrary, getting a desirable job is not an easy task to accomplish. Even
a university degree is no longer a guarantee to find a good job (Jones, Schmitt,
et al.,, 2014). In Austria, the demographic change makes things even more
difficult as the people born in the low birth rate years are about to enter the
job market *. Furthermore, the job market is also subject to other trends that
emerge. Bohm (2013) shows that there is a shift in the job market towards the
mobile phone sector.

Similarly, students are increasingly managing their studies on their phones. One
example of this is the Austrian mobile application for students called Studo’.
It contains various features related to student’s needs, such as student mails
and calendar. One feature is the Studo Jobs platform that tackles the problem
of providing students with suitable jobs. This is a difficult problem to solve,
since their needs differ from the normal workforce. To begin with, students
are more likely to work in part-time jobs to cope with the financial pressure
while studying (Robotham, 2012). Paid bachelor and master thesis are other
very interesting options for them when nearing graduation, while entry-level
jobs become relevant after they graduate. This limitation to entry-level jobs is
due to the fact that students often do not have any substantial work experience
when entering the job market (R. Liu, Rong, Ouyang, et al., 2017). One way
to acquire the experience is via internships. A student job platform needs to
account for these factors.

To leverage the problem of providing relevant jobs to students, a recommender
system can be incorporated into the platform. Starting with the Netflix prize
in 2007 (Bennett, Lanning, et al., 2007), recommender systems have become
state-of-the-art solutions for various problems. Recommender systems have
arrived at the job domain with business-oriented social networks like LinkedIn

"Derived from the Austrian birth rate data of Our World in Data (Max Roser and Ortiz-
Ospina, 2019); Original data from Mitchell (1998)
*https://www.studo.com

https://www.studo.com

1 Introduction

and Xing pushing this trend. As such, job recommendations were the topic of
the RecSys challenge in the years 2016 (Abel, Bencztr, Kohlsdorf, et al., 2016),
as well as 2017 (Abel, Deldjoo, Elahi, et al., 2017), which were organized by
Xing.

A job recommender is a multi-stakeholder system (Zheng, 2017). This means
it has to balance the needs of two parties, the job seekers and the recruiter as
outlined by Abel (2015). Thus, there must be mutual interest between both
sides for a successful application. Even then, there is no guarantee of success.
Typically, employers only hire one candidate per position, while job seekers
only seek one job. This means that both choose their best available option,
respectively. Kenthapadi, B. Le, and Venkataraman (2017) even linked the
competitiveness of popular job offers with a decrease in user satisfaction.

For student job recommendation the lack of data, like work experience, makes
it even harder to generate meaningful personalized recommendations (R. Liu,
Rong, Ouyang, et al.,, 2017). Generating recommendations for a job platform is
not a trivial task on its own. The dataset for job recommendation tends to be
very sparse when compared to other domains like movie recommenders (Mishra
and Reddy, 2016; Lee, Hong, Kim, et al., 2015). This can be attributed to the fact
that users only need one successful recommendation for a job vacancy. After
users find a matching job and get hired, they can leave the system altogether.

Job recommender systems are often seen as a matchmaking problem, where a
CV is directly matched with a job (C. Zhu, H. Zhu, Xiong, et al., 2018; Qin, H.
Zhu, T. Xu, et al., 2018). First, this assumes that job seekers provide high-quality
CVs that accurately state the skills they possess. Another problem lies with
the job postings themselves, which are unstructured in nature. One way to
approach this problem is to consider the fact that different words can have a
similar semantic meaning. Utilizing this knowledge, concepts describing the
textual content can be extracted from the job description and used instead of
the full-text. This is especially true for jobs in the technology domain. There
the job descriptions often contain the technologies required for a given vacancy.
For instance, the job title “Java developer” implies that it is a programming job.
A job recommender system needs to overcome this problem in order to provide
effective job recommendations based on the job description.

As such, this master thesis tackles the problem of providing students with
fitting jobs for their needs by utilizing a deep learning recommender system. In
particular, this thesis deals with the data sparsity and cold-start problem.

1.1 Research Questions

1.1 Research Questions

The master thesis tackles the problem of providing effective job recommenda-
tions for students with a focus on exploiting latent features on a real platform.
We answer two research questions in particular. Research question 1 deals
with the integration of latent features into the recommendations as detailed in
Subsection RQ1. Research question 2 explores the tuning of recommendations
for students in Subsection RQ2.

RQ1: How can latent features be used to improve job
recommendations?

The content of job postings is a valuable source to define whether a job is fitting
for an applicant. However, job postings are usually represented as unstructured
text documents. While the extraction of latent features of such documents has
been thoroughly explored in the past, the actual use should be examined in
greater detail. Hence, we need to extract suitable features from the textual
content of the job posting.

Therefore, this thesis examines different approaches for using the hidden fea-
tures that lie within the job description for job recommendations. Thus, first
creating a suitable representation of those features and then using different
strategies for retrieving relevant documents for the user.

To answer the research question, we extract the latent features and represent
them as embeddings with the Doc2Vec algorithm of Q. Le and Mikolov (2014).
For the retrieval, the content data is combined with the interaction data and
used in conjunction with certain enhancements like the BLL equation from
cognitive sciences (Anderson, Bothell, Byrne, et al., 2004). The results are
evaluated on simulated real-world data in an offline evaluation.

RQ2: How to configure and combine recommendation
algorithms for the best result in student job recommendations?

Here, we research on the specific algorithm configurations and their application
within a hybrid recommender system. The goal is to maximise the effectiveness
of the recommendations in one particular setting.

1 Introduction

Therefore, the thesis explores how to create the best combination and config-
uration for the algorithms in the student job domain. This is carried out on
the Studo Jobs platform. The results are evaluated on real users in an online
study.

1.2 Structure

The master is thesis is structured as follows. Chapter 1 describes the problem
statement and outlines the contribution to the field of recommender systems.
Chapter 2 surveys other works regarding recommender systems. This is fol-
lowed by Chapter 3 which explains all the job recommendations algorithms
relevant for the master thesis. This includes well-established methods such as
collaborative filtering as well as novel approaches based on word embeddings.
In Chapter 4 the focus is on introducing the mobile application called Studo
as well as the job platform called Studo Jobs, which is incorporated in the
mobile application. Moreover, it also describes the dataset used for generating
the recommendations. The dataset was enriched with labels in a previous
work (Reiter-Haas, Slawicek, and Lacic, 2017). How exactly the recommender
system is structured and how it is incorporated into the platform is detailed in
Chapter 5. The evaluation process is explained in Chapter 6, which consists of
an offline as well as an online evaluation. The outcomes of the experiments are
then discussed in Chapter 7. The results are built upon two previous publica-
tions (Lacic, Kowald, Reiter-Haas, et al., 2018; Reiter-Haas, Lacic, Duricic, et al.,
2019). The master thesis is then concluded in Chapter 8, which also reflects on
it critically and provides an outline for future research.

2 Related Work

The related work done in the field of recommender systems and deep learning
is surveyed and is split into four parts. First, the different recommendation
approaches are outlined in Section 2.1. Section 2.2 concentrates on recom-
mendation systems for the job domain. Section 2.3 surveys different deep
learning approaches with the focus on natural language processing. Section 2.4
focuses on the related work with deep learning recommender systems. Finally,
Section 2.5 concludes the related work with a summary.

2.1 Recommendation Approaches

The research on recommender systems is a multi-disciplinary field mainly
related to machine learning, data mining, information retrieval and human-
computer interaction (Ricci, Rokach, and Shapira, 2011). Additionally, the field
of recommender systems can be divided into several categories depending
on the techniques used. The types described in the Recommender Systems
Handbook are the following;:

Content-based filtering (CBF)
Collaborative filtering (CF)
Demographic
Knowledge-based
Community-based

Hybrid recommender systems

AU o e

The focus of this thesis lies in the machine learning and information retrieval
field. Machine learning is used for the extraction of latent features, while
information retrieval is relevant for generating and evaluating the recommen-
dations. Of the different techniques mentioned, this thesis uses four of those
types with the focus being on content-based filtering. Content-based filtering
(CBF) uses content features in order to provide recommendations. The works of
Pazzani and Billsus (2007) is used as a baseline approach and is being compared
against. It uses the term frequency-inverse document frequency (TE-IDF) model

2 Related Work

for retrieval of relevant documents. The incorporation of latent features is
also conducted on the content, which emphasizes the focus on content-based
filtering.

Collaborative filtering (CF) is a popular technique for recommendation systems.
This thesis uses the technique from Aggarwal (2016b) as the baseline. It assumes
that users with a similar history have a similar taste. The personally unexplored
items of similar users are likely of mutual interest. Thus, the algorithm generates
recommendations by searching for similar users (i.e., candidate users) first. This
is achieved by considering the interactions users have performed on the same
items. Next, the algorithm considers all the items of the candidate users as
candidate items. Finally, the most relevant items out of the candidate items
are recommended. Relevant items are typically items that many candidate
users have in common that the target user (i.e., the user who receives the
recommendation) has not seen before. The content data of users can also be
used to generate recommendations. The content of the user data typically
consists of demographic data. Thus, this way of generating recommendations
is considered a demographic recommender system. This thesis conducts one
small experiment with a demographic recommender.

A combination of different approaches is also possible. These hybrid recom-
mender systems are often utilized to improve the performance of the recommen-
dations by exploiting multiple different aspects that might be of importance.
There are multiple ways different recommendations can be combined together
(Burke, 2002). For instance, collaborative filtering is often used in a hybrid set-
ting. Combining CF with CBF eases many problems like the cold-start problem,
where a user does not have any interaction. This hybrid combination uses the
advantages of both. CF poses a strong baseline technique, while CBF does not
require user interactions to work. This thesis uses mixed and weighted hybrids
for combining recommendations. This completes the list of types of recom-
mender systems used in this thesis. The exact details of all used algorithms are
explained in Chapter 3. The two remaining types (i.e., community-based and
knowledge-based) were not applied to the problem at hand.

Community-based abuse the structural information, which is available from
social relations. The assumption is that the taste of individuals is similar to their
community. For instance, people tend to have similar tastes to their friends and
family. This type of recommender system does not apply to this thesis since the
dataset lacks social data.

Knowledge-based recommendations use explicit knowledge models for the
calculation. For instance, a manually crafted ontology that encodes the domain

2.1 Recommendation Approaches

knowledge. This type can be further divided into case-based and constraint-
based recommender systems, respectively. While knowledge-based recommen-
dations might be possible for the given scenario, the extensive modelling process
required to create the knowledge base is out of scope for this thesis.

In Kowald, Pujari, and Lex (2017) the authors use the BLL equation from the
cognitive sciences for recommendations. This equation models the memory
retention of the human brain. The idea is to balance the importance of frequency
and recency with a time decay parameter. In this thesis, we utilize the same
approach to create embeddings of the user history.

Typically, the problem definition for recommendations is a user-item matrix
filled with explicit ratings. The goals are predicting the missing ratings, which
could be done via matrix decomposition. A popular method for this is singular
value decomposition (SVD) as detailed in Koren and Bell (2015). Thus, the
predictions were computed offline and then on just shown to the user on
demand. However, it is hard to do this in a rapidly changing environment,
since each change in the system needs a recalculation to be accurate. This is
especially hard to achieve when the set of items changes frequently and many
new users enter the system and leave shortly after. This scenario is especially
true for job recommendations, which makes this precomputation of results
infeasible. For this reason, many streaming recommendations have emerged
(Yanxiang Huang, Cui, W. Zhang, et al., 2015; Chandramouli, Levandoski,
Eldawy, et al., 2011; C. Chen, Yin, J. Yao, et al., 2013). In order to handle the
fast-changing environment of the job domain, this thesis also provides real-
time recommendations. Unlike, the other works the focus here is to provide
recommendations under real-time constraints and immediately update them
after interactions happen accordingly.

The performance of recommendations can be measured via various metrics.
The paper of Parra and Sahebi (2013) provides an overview of such metrics
for recommender systems. This thesis utilizes nDCG as the main accuracy
metric and all the mentioned beyond-accuracy metrics (i.e., novelty, diversity,
and coverage). The importance of the beyond-accuracy metrics is outlined
in Ge, Delgado-Battenfeld, and Jannach (2010). Additionally, this thesis also
incorporates a runtime analysis into the results.

2 Related Work
2.2 Job Recommender Systems

Recommender systems have already been applied to the job domain and the
work in this field is a hot research topic. Job recommenders are reciprocal
recommenders (Pizzato, Rej, Chung, et al., 2010) since both parties (i.e., job
seekers and companies) need to be satisfied to establish a successful recom-
mendation. Recently, two RecSys challenges tackled the problem in the job
domain. The RecSys 2016 Challenge' was about predicting jobs for users on
Xing (Abel, Benczur, Kohlsdorf, et al., 2016). Conversely, the RecSys Challenge
2017° reversed the problem to predicting users for new jobs, again held by Xing
(Abel, Deldjoo, Elahi, et al., 2017).

In the RecSys Challenge 2016, a content-based recommendation was the baseline
method?. Various methods had significant improvements over this method
with gradient boosting techniques (as proposed by]J. H. Friedman (2002))
being one of the ways to deal with the problem. This rather simple approach
also achieved good results with Mishra and Reddy (2016) using a bottom-up
approach for this technique. The winning paper models the temporal activity
(Xiao, X. Xu, Liang, et al., 2016). Hence, the 2017 baseline* was changed to
be based on this method and utilizing XGBoost (based on the paper by T.
Chen and Guestrin (2016)) instead. The objective of the challenge also changed
to candidate recommendations in a cold-start scenario. The winners of this
challenge focus heavily on feature engineering (Volkovs, G. W. Yu, and Poutanen,
2017). The best performing approaches of both challenges could conduct an
online study for practical evaluation. However, this option is not available to
the general public.

This thesis addresses a similar problem but on the Studo Jobs platform instead.
It also evaluates the result in an online study. Furthermore, the research
focuses on job recommendations for students. This further complicates the user
cold-start problem, since students often lack previous work experience in the
tirst place. Another difference is that the recommendations are calculated in
real-time on retrieval and thus are constrained by the algorithm runtime.

Another way to tackle job recommender systems is to model it as a matchmaking
problem (C. Zhu, H. Zhu, Xiong, et al., 2018; Qin, H. Zhu, T. Xu, et al., 2018).
Thus, given a description of a user and a description of a job find the best
matches between those two sets. This is, however, not applicable in this case,

Thttp://2016.recsyschallenge.com/

2http://2017.recsyschallenge.com/
Shttps://github.com/recsyschallenge/2016/blob/master/Baselines.md
4https://github.com/recsyschallenge/2017/blob/master/baseline/README.md

http://2016.recsyschallenge.com/
http://2017.recsyschallenge.com/
https://github.com/recsyschallenge/2016/blob/master/Baselines.md
https://github.com/recsyschallenge/2017/blob/master/baseline/README.md

2.3 Deep Learning Approaches for NLP

since it requires carefully constructed CVs, which are not available in this form.
Additionally, such an approach ignores the information gained via the various
interactions that are performed on the platform. Furthermore, recommenders
in the job domain can be applied in both directions. First, recommend jobs to
users and second recommend users to jobs. If both are applied the result is a
bilateral recommender system as proposed by Malinowski, Keim, Wendt, et al.
(2006). Again, this not applicable in the setting since the platform does not
allow the suggestions of CVs for jobs.

2.3 Deep Learning Approaches for NLP

Neural networks are a type of machine learning method, as described in Bishop
(2006). They consist of a network of neurons, which resemble the nodes, and
connections between the neurons. The neurons have an activation function,
which calculates their output connections depending on their input connections
and a singular value called the bias. Each connection also has a weight with
which is multiplied with the actual value. Typically, the neurons are structured
into layers. The input layer process the input data. The network then consists of
one or more hidden layers. The result of the network is accessible by the output
layer. The model is then learned with the backpropagation algorithm. The goal
of the learning phase is to find the right weights for the connections. Given a
two-layer neural network (i.e., one hidden and one output layer) and enough
neurons, this network structure is able to approximate any function arbitrarily
close. A simple type of neural network is the feedforward neural network, also
known as a multi-layer perceptron.

Machine learning approaches can be divided into supervised and unsupervised
learning. Supervised learning needs labelled data to train on. To validate the
performance of the model supervised approaches typically withhold some of
the data from the training dataset. The model is then used upon the withheld
data (i.e., test dataset) to estimate the predictive power of the model. In
unsupervised learning, the whole dataset can be used to fit the model. The
model automatically finds hidden structures of the data, which is used as the
output.

Deep learning is a sub-topic of machine learning with deep instead of wide
neural networks. Although it only emerged recently, there are already many
different techniques to apply deep learning. An overview of various deep
learning approaches is seen in Deng, D. Yu, et al. (2014). As noted, for natural

2 Related Work

language (NLP) processing so-called “embeddings” can be created to decrease
the amount of feature engineering required.

Recently, a big area of deep learning focuses on this automatic generation of low
dimensional vectors to describe the latent features of items. A very successful
paper was published by Mikolov, K. Chen, Corrado, et al. (2013) which is
often used as a basis for more complex methods. This approach, often called
Word2Vec, is an unsupervised learning method that finds the regularities of
words appearing next to each other. Q. Le and Mikolov (2014) expanded the
idea of Word2Vec to generate embeddings for text sequences, hereafter referred
to as Doc2Vec. For this, the authors created two models the DBOW and PV-DM
model. First evaluations showed that PV-DM is the dominant model.

Lau and Baldwin (2016) evaluated Doc2Vec and found out that DBOW performs
better than PV-DM. This insight is contrary to the original author’s conclusion.
The text embeddings for this thesis are created using the DBOW algorithm of
Doc2Vec. If Docz2Vec is mentioned thereafter without specifying the type, it
refers to the DBOW implementation by default.

2.4 Deep Learning Recommender Systems

In recent years many deep learning recommender systems have been proposed.
The emergence of this area can be seen from the 15t Workshop on Deep Learn-
ing for Recommender Systems (Karatzoglou, Hidasi, Tikk, et al., 2016). The
methods for the recommendation can vary widely. A survey of deep learning
recommender systems is provided by S. Zhang, L. Yao, and Sun (2017). Recently,
many advancements have been made to use word embeddings for recommen-
dations (Covington, Adams, and Sargin, 2016; Barkan and Koenigstein, 2016;
Greenstein-Messica, Rokach, and M. Friedman, 2017). Embedding approaches
have also been used to generate recommendations in an offline setting (Yanbo
Huang, 2016). This thesis expands on this idea and evaluates the generated
embeddings in an online setting as well. A similar approach was already done
for Xing in Yanbo Huang (2016), which also uses job document embeddings for
the content-based recommendation. However, the author neither evaluates it in
an online scenario nor evaluates it on beyond-accuracy metrics.

Another application for deep-learning recommender systems is session-based
recommender systems, as proposed by Hidasi, Karatzoglou, Baltrunas, et al.
(2015). The problem formulation switches the user with a session. Session-based
recommendations suffer even more from data sparsity since sessions tend to

10

2.5 Summary

have fewer interactions compared to user-based recommendations. Often these
recommender systems are modelled with recurrent neural networks (Chatzis,
Christodoulou, and Andreou, 2017; Hidasi, Karatzoglou, Baltrunas, et al., 2015;
Smirnova and Vasile, 2017). This thesis focuses on modelling the user to the
content via textual embeddings. Although anonymous sessions are present in
the dataset, the majority of the data is about logged in users. Also, the usage of
the deep learning method is not about a direct prediction, but for the conversion
of the content of the jobs. Thus, RNNs do not apply in this setting.

2.5 Summary

This thesis focuses on content-based filtering with text embeddings in the job
domain. For this, it uses the DBOW Implementation of Doc2Vec and combines it
with the BLL equation. Thus, the main line of related research is deep learning
content-based recommenders for the job domain. This thesis is very similar to
previous work done on Xing (Yanbo Huang, 2016). However, the evaluation
focuses more on the practical setting by also conducting an online evaluation.
Furthermore, this thesis uses the dataset from the Studo Jobs platform.

Parts of this thesis have already been published in Reiter-Haas, Slawicek, and
Lacic (2017), Lacic, Kowald, Reiter-Haas, et al. (2018), and Reiter-Haas, Lacic,
Duricic, et al. (2019). Reiter-Haas, Slawicek, and Lacic (2017) focus on processing
the data, while Lacic, Kowald, Reiter-Haas, et al. (2018) and Reiter-Haas, Lacic,
Duricic, et al. (2019) tackle the offline and online evaluation, respectively. This
thesis further expands upon this previous research.

11

3 Job Recommendation Algorithms

This chapter describes the different recommender algorithms used for the
experiments of this thesis. It first starts with two well-known algorithms,
content-based filtering in Section 3.1 and collaborative filtering in Section 3.2.
Later it introduces new deep learning algorithms in Section 3.3. Finally, it
specifies hybrid recommenders in Section 3.4.

Regardless of the algorithm, the system only recommends public items (i.e., job
ads) and excludes the current item from the recommendations. This prevents the
algorithm from recommending the current item again, which would otherwise
be a likely scenario. The algorithms work with implicit feedback, which provides
a natural choice for a dataset with a browsing history (Koren and Bell, 2015).
The type of interaction used for the feedback can differ depending on the
system. Unless stated otherwise, the algorithms are configured to use all
available interactions and treat them equally.

As a fallback mechanism when no recommendations can be generated (i.e.,
user cold-start), the most popular (MP) approach is used. This approach just
recommends items with the highest numbers of interactions. Thus, providing a
non-personalized way for recommendations.

3.1 Content Based Filtering

Content-based filtering (CBF) uses the content features to generate recommen-
dations as described in Pazzani and Billsus (2007). For job recommendation,
the content of job ads is used to generate recommendations for users with a
similar profile as shown by Aggarwal (2016a). For this approach, the content
needs to be preprocessed. One typical method from information retrieval is to
use the term frequency - inverse document frequency (TF-IDF) as described in
Rajaraman and Ullman (2011). For recommender systems, this can be modelled
by Equation 3.1 (Lops, De Gemmis, and Semeraro, 2011). In this equation, f;
specifies the k term and d; specifies the j document. The frequency of the term k

13

3 Job Recommendation Algorithms

in document j is denoted by fj ;. The total documents are denoted by N, while
nx denotes the number of documents the term t; appears in.

. Jrj N
2]
TE IDF

Given this equation, the closeness between two documents can be calculated by a
similarity function, like the cosine similarity. To generate recommendations with
this equation, one of the documents set to the user profile. Then documents that
are similar to the user are considered relevant. For this thesis, the current item
the user views is used as his profile. Thus, the user gets a list of recommended
items that are similar to the current one.

The default configuration for this algorithm considers the top 25 TF-IDF terms
for the recommendation. It uses the job description, title, and teaser from the
dataset described in Chapter 4. However, not all content is of equal value. When
calculating the overall recommendation score the title gets boosted by a factor
of 1.5 and the teaser by a factor of 2. The implementation of the retrieval is
further described in Chapter 5.

3.2 Collaborative Filtering

Collaborative filtering (CF) takes the history of interactions and finds users that
have a similar interaction history (Aggarwal, 2016b). It then recommends the
items, which other users have consumed and not by the target user itself. In
this thesis, only the job ad views are used for the interaction history.

The algorithm can also be enhanced to take the current item more heavily
into account when generating the recommendations. A simple method to
make the recommendation more context-aware is to just consider users that
also interacted with a target item. This context-aware approach is hereafter
referenced as context collaborative filtering (CFcut.).

The default configuration for this algorithm considers the top 40 most similar
users as candidates and does not consider the context for generating recommen-
dations.

14

3.3 Doc2Vec

3.3 Doc2Vec

Research question 1 is about exploiting the latent feature of the job postings. This
thesis explores word embeddings for this cause. The idea of word embeddings
is to construct low dimensional vectors consisting of real numbers that capture
the regularities of words appearing withing texts.

A very influential approach dubbed as Word2Vec was published by Mikolov,
Sutskever, K. Chen, et al. (2013). The authors proposed two new methods in
particular to generate those vectors. The first is called continuous bag of words
(CBOW), which uses the context of a word (a set of nearby words where one
word is left out) as input and tries to predict the missing word. The second
method, called skip-gram, reverses the approach. Thus, given a word as input its
content is predicted. Regardless of the method, the resulting word embeddings
model words that have similar concepts close to each other.

This approach was then extended by Q. Le and Mikolov (2014) to come up
with vectors for longer text segments (e.g., paragraphs or whole documents)
commonly known as DoczVec. There are again