
Markus Reiter-Haas, Bsc

Evaluation of Job Recommendations

for the Studo Jobs Platform

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur (Dipl.-Ing.) equivalent to the Master of Science (MSc)

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.Ing. Dr.techn. Elisabeth Lex

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl-Inf. Dr. Stefanie Lindstaedt

Graz, January 2020

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be found
online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to tugrazonline is identical to the present
master‘s thesis.

Date Signature

iii

January 23, 2020

Abstract English

Student job recommendations deal with the data sparsity and cold-start problem.
The cold-start problem is very severe in the job market since there are frequent
changes in both available job vacancies and job seekers. The data sparsity is also
worse for students since they lack substantial work experience. Additionally,
job postings are usually just unstructured textual descriptions. In this thesis, we
incorporate the latent features of textual job descriptions into a recommender
system. We achieve this by transforming the textual content into embeddings
that capture the meaning of the jobs. Additionally, we apply a time decay
equation from cognitive sciences to consider frequency and recency of job
interactions. Our aim is to further improve the recommendations in the job
domain. We evaluate the recommendations in an offline study on accuracy,
beyond-accuracy, and also runtime performance. Furthermore, we examine
different configurations and combinations of algorithms in a hybrid setting in
order to find the best combination. We carry this out on the Austrian student job
platform Studo Jobs in online evaluations for two different scenarios. A vector-
based approach with a focus on recency works best for recommendations shown
next to the job details, whereas, for recommendations shown on the home view, a
focus on frequency is better. For both scenarios, the best combination is achieved
by including collaborative filtering in a hybrid manner. The best combinations
were rolled out on the Studo Jobs platform and provide recommendations in
real-time.

v

Abstract Deutsch

Jobempfehlungen für Studierende behandeln das Datenknappheits- und das
Kaltstartproblem. Das Kaltstartproblem ist auf dem Arbeitsmarkt sehr gravie-
rend, da es zu häufigen Veränderungen, sowohl bei den verfügbaren Stellenan-
geboten als auch bei den Arbeitssuchenden, kommt. Die Datendichte ist auch
bei Studierende geringer, da sie keine ausreichende Berufserfahrung haben.
Zusätzlich sind Stellenausschreibungen in der Regel nur unstrukturierte Textbe-
schreibungen. In dieser Abschlussarbeit integrieren wir die latenten Merkmale
von textuellen Stellenbeschreibungen in einen Recommender System. Dies er-
reichen wir, indem wir den Textinhalt in Einbettungen umwandeln, welche
die Bedeutung der Stellenangebote erfassen. Darüber hinaus wenden wir eine
Zeitzerfallsgleichung aus den Kognitionswissenschaften an, um die Häufigkeit
und Aktualität von Job-Interaktionen zu berücksichtigen. Unser Ziel ist es, die
Empfehlungen der Job-Domäne weiter zu verbessern. Wir werten die Emp-
fehlungen in einer Offline-Studie auf Genauigkeit, Jenseits-Genauigkeit und
Laufzeitleistung aus. Außerdem untersuchen wir verschiedene Konfigurationen
und Kombinationen von Algorithmen in einer hybriden Umgebung, um die
beste Kombination zu finden. Wir führen dies auf der österreichischen Jobplatt-
form für Studierende, namens Studo Jobs, in Online-Auswertungen für zwei
verschiedene Szenarien aus. Ein vektorbasierter Ansatz mit Fokus auf Aktualität
funktioniert am besten für die gezeigten Empfehlungen neben den Jobdetails.
Für Empfehlungen auf der Startseite ist ein Fokus auf Häufigkeit besser. Für
beide Szenarien wird die beste Kombination erreicht, indem kollaboratives
Filtern auf hybride Weise einbezogen wird. Die besten Kombinationen wurden
auf der Studo Jobs Plattform ausgerollt und liefern Empfehlungen in Echtzeit.

vii

Acknowledgements

I would like to thank the Moshbit GmbH and its founders to enable me to write
such an interesting thesis about the job platform. Julian Kainz (CEO) for not only
being open-minded about research in a small company, but very encouraging
about it. Valentin Slawicek (CTO), who always has an open ear for problems
and providing the corresponding solutions. Our designer, Stefanie Horvath,
for the great design of the job platform (and thus also my screenshots) and for
polishing my presentations for conferences among others. Manuel Schmölzer
(CSO) and his legendary sales team for their success, which provided me with
more data to work with. Chris Lanz, who regularly sends me interesting articles
to read about AI. My colleague David Wittenbrink, which is responsible for
the UI of the job platform and I worked closely with when integrating the
recommendations, which he always sees as a high priority. Zoltán Sasvári
which helped with architectural questions and on the data management tasks.
And the rest of the Talto team for the good teamwork.

I would like to thank my supervisor Elisabeth Lex for her long-time support
and short response time while writing the master thesis. Furthermore, I would
like to thank my co-supervisor and mentor Emanuel Lacic, which provided
me with a constant stream of ideas, insights, and improvements suggestions
throughout the whole time. Moreover, I would like to thank the Know Center
GmbH, especially the Social Computing team, for the fruitful collaboration.

Additionally, I would like to thank both companies once more, as well as the
Graz University of Technology, for the opportunity to write research papers
during my master thesis, which strengthened my research experience.

Finally, I would like to thank my family for their patience and support during
this time of writing, as well as my girlfriend, Helena Adam, who also helped
with proofreading the content.

ix

Contents

Abstract v

Acknowledgements ix

1 Introduction 1
1.1 Research Questions . 3

1.2 Structure . 4

2 Related Work 5
2.1 Recommendation Approaches . 5

2.2 Job Recommender Systems . 8

2.3 Deep Learning Approaches for NLP 9

2.4 Deep Learning Recommender Systems 10

2.5 Summary . 11

3 Job Recommendation Algorithms 13
3.1 Content Based Filtering . 13

3.2 Collaborative Filtering . 14

3.3 Doc2Vec . 15

3.3.1 Last Vector . 16

3.3.2 Average Vectors . 17

3.3.3 Base-Level Learning . 17

3.3.4 User2Vec . 18

3.4 Hybrid Recommendations . 18

3.4.1 Mixed Hybrids . 19

3.4.2 Weighted Hybrids . 19

4 Studo Jobs Platform 21
4.1 Studo App . 21

4.2 Studo Jobs . 22

4.3 Recommendation Scenarios . 24

4.3.1 Infobox Scenario . 24

4.3.2 Home Scenario . 25

xi

Contents

4.4 Dataset . 25

4.4.1 Job Ads . 26

4.4.2 CVs . 29

4.4.3 Interactions . 30

4.4.4 Data Processing and Enrichment 32

5 Implementation Details 33
5.1 Architecture . 33

5.2 Integration . 34

5.2.1 Data Ingestion . 34

5.2.2 Feedback Loop . 35

5.2.3 A/B Test Workflow . 36

5.2.4 Realtime Recommendations 37

5.3 Embedding Training . 38

5.3.1 Parameter Tuning . 38

5.3.2 Embedding Analysis . 38

6 Evaluation Protocol 41
6.1 Offline Protocol . 41

6.2 Online Protocol . 46

7 Results 49
7.1 Offline Evaluation . 49

7.1.1 Accuracy . 50

7.1.2 Beyond-Accuracy . 50

7.1.3 Runtime . 53

7.1.4 Considering Frequency and Recency 54

7.1.5 Offline Findings . 56

7.2 Online Evaluation . 56

7.2.1 Infobox Tests . 57

7.2.2 Home Tests . 63

7.2.3 Online Findings . 66

7.3 Comparison and Summarization 66

8 Conclusion 69
8.1 Reflections . 70

8.2 Future Work . 71

Bibliography 75

xii

List of Figures

3.1 PV-DBOW Model . 16

4.1 Studo App . 22

4.2 Job Ad Design . 23

4.3 Recommendation Scenarios . 25

5.1 A/B Test Workflow . 37

5.2 Parameter Tuning . 39

5.3 t-SNE Visualization . 40

5.4 UMAP Visualization . 40

7.1 Accuracy Results . 51

7.2 Beyond-Accuracy Results . 52

7.3 Runtime Results . 53

7.4 Impact of embeddings Results . 58

7.5 Influence of frequency and recency Results 59

7.6 Merit of recency Results . 60

7.7 Considering context Results . 61

7.8 Combining embeddings Results 62

7.9 Combining frequency and recency Results 62

7.10 Influence of frequency and recency Results 64

7.11 Combining frequency and recency Results 65

xiii

List of Tables

4.1 Dataset Statistics . 26

7.1 Offline Evaluation Results . 50

7.2 WSDM Results . 55

xv

1 Introduction

The job market is a very competitive field for both companies and job seekers
alike. On the one hand, companies are struggling with filling their job vacancies.
On the contrary, getting a desirable job is not an easy task to accomplish. Even
a university degree is no longer a guarantee to find a good job (Jones, Schmitt,
et al., 2014). In Austria, the demographic change makes things even more
difficult as the people born in the low birth rate years are about to enter the
job market 1. Furthermore, the job market is also subject to other trends that
emerge. Böhm (2013) shows that there is a shift in the job market towards the
mobile phone sector.

Similarly, students are increasingly managing their studies on their phones. One
example of this is the Austrian mobile application for students called Studo2.
It contains various features related to student’s needs, such as student mails
and calendar. One feature is the Studo Jobs platform that tackles the problem
of providing students with suitable jobs. This is a difficult problem to solve,
since their needs differ from the normal workforce. To begin with, students
are more likely to work in part-time jobs to cope with the financial pressure
while studying (Robotham, 2012). Paid bachelor and master thesis are other
very interesting options for them when nearing graduation, while entry-level
jobs become relevant after they graduate. This limitation to entry-level jobs is
due to the fact that students often do not have any substantial work experience
when entering the job market (R. Liu, Rong, Ouyang, et al., 2017). One way
to acquire the experience is via internships. A student job platform needs to
account for these factors.

To leverage the problem of providing relevant jobs to students, a recommender
system can be incorporated into the platform. Starting with the Netflix prize
in 2007 (Bennett, Lanning, et al., 2007), recommender systems have become
state-of-the-art solutions for various problems. Recommender systems have
arrived at the job domain with business-oriented social networks like LinkedIn

1Derived from the Austrian birth rate data of Our World in Data (Max Roser and Ortiz-
Ospina, 2019); Original data from Mitchell (1998)

2https://www.studo.com

1

https://www.studo.com

1 Introduction

and Xing pushing this trend. As such, job recommendations were the topic of
the RecSys challenge in the years 2016 (Abel, Benczúr, Kohlsdorf, et al., 2016),
as well as 2017 (Abel, Deldjoo, Elahi, et al., 2017), which were organized by
Xing.

A job recommender is a multi-stakeholder system (Zheng, 2017). This means
it has to balance the needs of two parties, the job seekers and the recruiter as
outlined by Abel (2015). Thus, there must be mutual interest between both
sides for a successful application. Even then, there is no guarantee of success.
Typically, employers only hire one candidate per position, while job seekers
only seek one job. This means that both choose their best available option,
respectively. Kenthapadi, B. Le, and Venkataraman (2017) even linked the
competitiveness of popular job offers with a decrease in user satisfaction.

For student job recommendation the lack of data, like work experience, makes
it even harder to generate meaningful personalized recommendations (R. Liu,
Rong, Ouyang, et al., 2017). Generating recommendations for a job platform is
not a trivial task on its own. The dataset for job recommendation tends to be
very sparse when compared to other domains like movie recommenders (Mishra
and Reddy, 2016; Lee, Hong, Kim, et al., 2015). This can be attributed to the fact
that users only need one successful recommendation for a job vacancy. After
users find a matching job and get hired, they can leave the system altogether.

Job recommender systems are often seen as a matchmaking problem, where a
CV is directly matched with a job (C. Zhu, H. Zhu, Xiong, et al., 2018; Qin, H.
Zhu, T. Xu, et al., 2018). First, this assumes that job seekers provide high-quality
CVs that accurately state the skills they possess. Another problem lies with
the job postings themselves, which are unstructured in nature. One way to
approach this problem is to consider the fact that different words can have a
similar semantic meaning. Utilizing this knowledge, concepts describing the
textual content can be extracted from the job description and used instead of
the full-text. This is especially true for jobs in the technology domain. There
the job descriptions often contain the technologies required for a given vacancy.
For instance, the job title ”Java developer” implies that it is a programming job.
A job recommender system needs to overcome this problem in order to provide
effective job recommendations based on the job description.

As such, this master thesis tackles the problem of providing students with
fitting jobs for their needs by utilizing a deep learning recommender system. In
particular, this thesis deals with the data sparsity and cold-start problem.

2

1.1 Research Questions

1.1 Research Questions

The master thesis tackles the problem of providing effective job recommenda-
tions for students with a focus on exploiting latent features on a real platform.
We answer two research questions in particular. Research question 1 deals
with the integration of latent features into the recommendations as detailed in
Subsection RQ1. Research question 2 explores the tuning of recommendations
for students in Subsection RQ2.

RQ1: How can latent features be used to improve job
recommendations?

The content of job postings is a valuable source to define whether a job is fitting
for an applicant. However, job postings are usually represented as unstructured
text documents. While the extraction of latent features of such documents has
been thoroughly explored in the past, the actual use should be examined in
greater detail. Hence, we need to extract suitable features from the textual
content of the job posting.

Therefore, this thesis examines different approaches for using the hidden fea-
tures that lie within the job description for job recommendations. Thus, first
creating a suitable representation of those features and then using different
strategies for retrieving relevant documents for the user.

To answer the research question, we extract the latent features and represent
them as embeddings with the Doc2Vec algorithm of Q. Le and Mikolov (2014).
For the retrieval, the content data is combined with the interaction data and
used in conjunction with certain enhancements like the BLL equation from
cognitive sciences (Anderson, Bothell, Byrne, et al., 2004). The results are
evaluated on simulated real-world data in an offline evaluation.

RQ2: How to configure and combine recommendation
algorithms for the best result in student job recommendations?

Here, we research on the specific algorithm configurations and their application
within a hybrid recommender system. The goal is to maximise the effectiveness
of the recommendations in one particular setting.

3

1 Introduction

Therefore, the thesis explores how to create the best combination and config-
uration for the algorithms in the student job domain. This is carried out on
the Studo Jobs platform. The results are evaluated on real users in an online
study.

1.2 Structure

The master is thesis is structured as follows. Chapter 1 describes the problem
statement and outlines the contribution to the field of recommender systems.
Chapter 2 surveys other works regarding recommender systems. This is fol-
lowed by Chapter 3 which explains all the job recommendations algorithms
relevant for the master thesis. This includes well-established methods such as
collaborative filtering as well as novel approaches based on word embeddings.
In Chapter 4 the focus is on introducing the mobile application called Studo
as well as the job platform called Studo Jobs, which is incorporated in the
mobile application. Moreover, it also describes the dataset used for generating
the recommendations. The dataset was enriched with labels in a previous
work (Reiter-Haas, Slawicek, and Lacic, 2017). How exactly the recommender
system is structured and how it is incorporated into the platform is detailed in
Chapter 5. The evaluation process is explained in Chapter 6, which consists of
an offline as well as an online evaluation. The outcomes of the experiments are
then discussed in Chapter 7. The results are built upon two previous publica-
tions (Lacic, Kowald, Reiter-Haas, et al., 2018; Reiter-Haas, Lacic, Duricic, et al.,
2019). The master thesis is then concluded in Chapter 8, which also reflects on
it critically and provides an outline for future research.

4

2 Related Work

The related work done in the field of recommender systems and deep learning
is surveyed and is split into four parts. First, the different recommendation
approaches are outlined in Section 2.1. Section 2.2 concentrates on recom-
mendation systems for the job domain. Section 2.3 surveys different deep
learning approaches with the focus on natural language processing. Section 2.4
focuses on the related work with deep learning recommender systems. Finally,
Section 2.5 concludes the related work with a summary.

2.1 Recommendation Approaches

The research on recommender systems is a multi-disciplinary field mainly
related to machine learning, data mining, information retrieval and human-
computer interaction (Ricci, Rokach, and Shapira, 2011). Additionally, the field
of recommender systems can be divided into several categories depending
on the techniques used. The types described in the Recommender Systems
Handbook are the following:

1. Content-based filtering (CBF)
2. Collaborative filtering (CF)
3. Demographic
4. Knowledge-based
5. Community-based
6. Hybrid recommender systems

The focus of this thesis lies in the machine learning and information retrieval
field. Machine learning is used for the extraction of latent features, while
information retrieval is relevant for generating and evaluating the recommen-
dations. Of the different techniques mentioned, this thesis uses four of those
types with the focus being on content-based filtering. Content-based filtering
(CBF) uses content features in order to provide recommendations. The works of
Pazzani and Billsus (2007) is used as a baseline approach and is being compared
against. It uses the term frequency-inverse document frequency (TF-IDF) model

5

2 Related Work

for retrieval of relevant documents. The incorporation of latent features is
also conducted on the content, which emphasizes the focus on content-based
filtering.

Collaborative filtering (CF) is a popular technique for recommendation systems.
This thesis uses the technique from Aggarwal (2016b) as the baseline. It assumes
that users with a similar history have a similar taste. The personally unexplored
items of similar users are likely of mutual interest. Thus, the algorithm generates
recommendations by searching for similar users (i.e., candidate users) first. This
is achieved by considering the interactions users have performed on the same
items. Next, the algorithm considers all the items of the candidate users as
candidate items. Finally, the most relevant items out of the candidate items
are recommended. Relevant items are typically items that many candidate
users have in common that the target user (i.e., the user who receives the
recommendation) has not seen before. The content data of users can also be
used to generate recommendations. The content of the user data typically
consists of demographic data. Thus, this way of generating recommendations
is considered a demographic recommender system. This thesis conducts one
small experiment with a demographic recommender.

A combination of different approaches is also possible. These hybrid recom-
mender systems are often utilized to improve the performance of the recommen-
dations by exploiting multiple different aspects that might be of importance.
There are multiple ways different recommendations can be combined together
(Burke, 2002). For instance, collaborative filtering is often used in a hybrid set-
ting. Combining CF with CBF eases many problems like the cold-start problem,
where a user does not have any interaction. This hybrid combination uses the
advantages of both. CF poses a strong baseline technique, while CBF does not
require user interactions to work. This thesis uses mixed and weighted hybrids
for combining recommendations. This completes the list of types of recom-
mender systems used in this thesis. The exact details of all used algorithms are
explained in Chapter 3. The two remaining types (i.e., community-based and
knowledge-based) were not applied to the problem at hand.

Community-based abuse the structural information, which is available from
social relations. The assumption is that the taste of individuals is similar to their
community. For instance, people tend to have similar tastes to their friends and
family. This type of recommender system does not apply to this thesis since the
dataset lacks social data.

Knowledge-based recommendations use explicit knowledge models for the
calculation. For instance, a manually crafted ontology that encodes the domain

6

2.1 Recommendation Approaches

knowledge. This type can be further divided into case-based and constraint-
based recommender systems, respectively. While knowledge-based recommen-
dations might be possible for the given scenario, the extensive modelling process
required to create the knowledge base is out of scope for this thesis.

In Kowald, Pujari, and Lex (2017) the authors use the BLL equation from the
cognitive sciences for recommendations. This equation models the memory
retention of the human brain. The idea is to balance the importance of frequency
and recency with a time decay parameter. In this thesis, we utilize the same
approach to create embeddings of the user history.

Typically, the problem definition for recommendations is a user-item matrix
filled with explicit ratings. The goals are predicting the missing ratings, which
could be done via matrix decomposition. A popular method for this is singular
value decomposition (SVD) as detailed in Koren and Bell (2015). Thus, the
predictions were computed offline and then on just shown to the user on
demand. However, it is hard to do this in a rapidly changing environment,
since each change in the system needs a recalculation to be accurate. This is
especially hard to achieve when the set of items changes frequently and many
new users enter the system and leave shortly after. This scenario is especially
true for job recommendations, which makes this precomputation of results
infeasible. For this reason, many streaming recommendations have emerged
(Yanxiang Huang, Cui, W. Zhang, et al., 2015; Chandramouli, Levandoski,
Eldawy, et al., 2011; C. Chen, Yin, J. Yao, et al., 2013). In order to handle the
fast-changing environment of the job domain, this thesis also provides real-
time recommendations. Unlike, the other works the focus here is to provide
recommendations under real-time constraints and immediately update them
after interactions happen accordingly.

The performance of recommendations can be measured via various metrics.
The paper of Parra and Sahebi (2013) provides an overview of such metrics
for recommender systems. This thesis utilizes nDCG as the main accuracy
metric and all the mentioned beyond-accuracy metrics (i.e., novelty, diversity,
and coverage). The importance of the beyond-accuracy metrics is outlined
in Ge, Delgado-Battenfeld, and Jannach (2010). Additionally, this thesis also
incorporates a runtime analysis into the results.

7

2 Related Work

2.2 Job Recommender Systems

Recommender systems have already been applied to the job domain and the
work in this field is a hot research topic. Job recommenders are reciprocal
recommenders (Pizzato, Rej, Chung, et al., 2010) since both parties (i.e., job
seekers and companies) need to be satisfied to establish a successful recom-
mendation. Recently, two RecSys challenges tackled the problem in the job
domain. The RecSys 2016 Challenge1 was about predicting jobs for users on
Xing (Abel, Benczúr, Kohlsdorf, et al., 2016). Conversely, the RecSys Challenge
2017

2 reversed the problem to predicting users for new jobs, again held by Xing
(Abel, Deldjoo, Elahi, et al., 2017).

In the RecSys Challenge 2016, a content-based recommendation was the baseline
method3. Various methods had significant improvements over this method
with gradient boosting techniques (as proposed by J. H. Friedman (2002))
being one of the ways to deal with the problem. This rather simple approach
also achieved good results with Mishra and Reddy (2016) using a bottom-up
approach for this technique. The winning paper models the temporal activity
(Xiao, X. Xu, Liang, et al., 2016). Hence, the 2017 baseline4 was changed to
be based on this method and utilizing XGBoost (based on the paper by T.
Chen and Guestrin (2016)) instead. The objective of the challenge also changed
to candidate recommendations in a cold-start scenario. The winners of this
challenge focus heavily on feature engineering (Volkovs, G. W. Yu, and Poutanen,
2017). The best performing approaches of both challenges could conduct an
online study for practical evaluation. However, this option is not available to
the general public.

This thesis addresses a similar problem but on the Studo Jobs platform instead.
It also evaluates the result in an online study. Furthermore, the research
focuses on job recommendations for students. This further complicates the user
cold-start problem, since students often lack previous work experience in the
first place. Another difference is that the recommendations are calculated in
real-time on retrieval and thus are constrained by the algorithm runtime.

Another way to tackle job recommender systems is to model it as a matchmaking
problem (C. Zhu, H. Zhu, Xiong, et al., 2018; Qin, H. Zhu, T. Xu, et al., 2018).
Thus, given a description of a user and a description of a job find the best
matches between those two sets. This is, however, not applicable in this case,

1http://2016.recsyschallenge.com/
2http://2017.recsyschallenge.com/
3https://github.com/recsyschallenge/2016/blob/master/Baselines.md
4https://github.com/recsyschallenge/2017/blob/master/baseline/README.md

8

http://2016.recsyschallenge.com/
http://2017.recsyschallenge.com/
https://github.com/recsyschallenge/2016/blob/master/Baselines.md
https://github.com/recsyschallenge/2017/blob/master/baseline/README.md

2.3 Deep Learning Approaches for NLP

since it requires carefully constructed CVs, which are not available in this form.
Additionally, such an approach ignores the information gained via the various
interactions that are performed on the platform. Furthermore, recommenders
in the job domain can be applied in both directions. First, recommend jobs to
users and second recommend users to jobs. If both are applied the result is a
bilateral recommender system as proposed by Malinowski, Keim, Wendt, et al.
(2006). Again, this not applicable in the setting since the platform does not
allow the suggestions of CVs for jobs.

2.3 Deep Learning Approaches for NLP

Neural networks are a type of machine learning method, as described in Bishop
(2006). They consist of a network of neurons, which resemble the nodes, and
connections between the neurons. The neurons have an activation function,
which calculates their output connections depending on their input connections
and a singular value called the bias. Each connection also has a weight with
which is multiplied with the actual value. Typically, the neurons are structured
into layers. The input layer process the input data. The network then consists of
one or more hidden layers. The result of the network is accessible by the output
layer. The model is then learned with the backpropagation algorithm. The goal
of the learning phase is to find the right weights for the connections. Given a
two-layer neural network (i.e., one hidden and one output layer) and enough
neurons, this network structure is able to approximate any function arbitrarily
close. A simple type of neural network is the feedforward neural network, also
known as a multi-layer perceptron.

Machine learning approaches can be divided into supervised and unsupervised
learning. Supervised learning needs labelled data to train on. To validate the
performance of the model supervised approaches typically withhold some of
the data from the training dataset. The model is then used upon the withheld
data (i.e., test dataset) to estimate the predictive power of the model. In
unsupervised learning, the whole dataset can be used to fit the model. The
model automatically finds hidden structures of the data, which is used as the
output.

Deep learning is a sub-topic of machine learning with deep instead of wide
neural networks. Although it only emerged recently, there are already many
different techniques to apply deep learning. An overview of various deep
learning approaches is seen in Deng, D. Yu, et al. (2014). As noted, for natural

9

2 Related Work

language (NLP) processing so-called ”embeddings” can be created to decrease
the amount of feature engineering required.

Recently, a big area of deep learning focuses on this automatic generation of low
dimensional vectors to describe the latent features of items. A very successful
paper was published by Mikolov, K. Chen, Corrado, et al. (2013) which is
often used as a basis for more complex methods. This approach, often called
Word2Vec, is an unsupervised learning method that finds the regularities of
words appearing next to each other. Q. Le and Mikolov (2014) expanded the
idea of Word2Vec to generate embeddings for text sequences, hereafter referred
to as Doc2Vec. For this, the authors created two models the DBOW and PV-DM
model. First evaluations showed that PV-DM is the dominant model.

Lau and Baldwin (2016) evaluated Doc2Vec and found out that DBOW performs
better than PV-DM. This insight is contrary to the original author’s conclusion.
The text embeddings for this thesis are created using the DBOW algorithm of
Doc2Vec. If Doc2Vec is mentioned thereafter without specifying the type, it
refers to the DBOW implementation by default.

2.4 Deep Learning Recommender Systems

In recent years many deep learning recommender systems have been proposed.
The emergence of this area can be seen from the 1

st Workshop on Deep Learn-
ing for Recommender Systems (Karatzoglou, Hidasi, Tikk, et al., 2016). The
methods for the recommendation can vary widely. A survey of deep learning
recommender systems is provided by S. Zhang, L. Yao, and Sun (2017). Recently,
many advancements have been made to use word embeddings for recommen-
dations (Covington, Adams, and Sargin, 2016; Barkan and Koenigstein, 2016;
Greenstein-Messica, Rokach, and M. Friedman, 2017). Embedding approaches
have also been used to generate recommendations in an offline setting (Yanbo
Huang, 2016). This thesis expands on this idea and evaluates the generated
embeddings in an online setting as well. A similar approach was already done
for Xing in Yanbo Huang (2016), which also uses job document embeddings for
the content-based recommendation. However, the author neither evaluates it in
an online scenario nor evaluates it on beyond-accuracy metrics.

Another application for deep-learning recommender systems is session-based
recommender systems, as proposed by Hidasi, Karatzoglou, Baltrunas, et al.
(2015). The problem formulation switches the user with a session. Session-based
recommendations suffer even more from data sparsity since sessions tend to

10

2.5 Summary

have fewer interactions compared to user-based recommendations. Often these
recommender systems are modelled with recurrent neural networks (Chatzis,
Christodoulou, and Andreou, 2017; Hidasi, Karatzoglou, Baltrunas, et al., 2015;
Smirnova and Vasile, 2017). This thesis focuses on modelling the user to the
content via textual embeddings. Although anonymous sessions are present in
the dataset, the majority of the data is about logged in users. Also, the usage of
the deep learning method is not about a direct prediction, but for the conversion
of the content of the jobs. Thus, RNNs do not apply in this setting.

2.5 Summary

This thesis focuses on content-based filtering with text embeddings in the job
domain. For this, it uses the DBOW Implementation of Doc2Vec and combines it
with the BLL equation. Thus, the main line of related research is deep learning
content-based recommenders for the job domain. This thesis is very similar to
previous work done on Xing (Yanbo Huang, 2016). However, the evaluation
focuses more on the practical setting by also conducting an online evaluation.
Furthermore, this thesis uses the dataset from the Studo Jobs platform.

Parts of this thesis have already been published in Reiter-Haas, Slawicek, and
Lacic (2017), Lacic, Kowald, Reiter-Haas, et al. (2018), and Reiter-Haas, Lacic,
Duricic, et al. (2019). Reiter-Haas, Slawicek, and Lacic (2017) focus on processing
the data, while Lacic, Kowald, Reiter-Haas, et al. (2018) and Reiter-Haas, Lacic,
Duricic, et al. (2019) tackle the offline and online evaluation, respectively. This
thesis further expands upon this previous research.

11

3 Job Recommendation Algorithms

This chapter describes the different recommender algorithms used for the
experiments of this thesis. It first starts with two well-known algorithms,
content-based filtering in Section 3.1 and collaborative filtering in Section 3.2.
Later it introduces new deep learning algorithms in Section 3.3. Finally, it
specifies hybrid recommenders in Section 3.4.

Regardless of the algorithm, the system only recommends public items (i.e., job
ads) and excludes the current item from the recommendations. This prevents the
algorithm from recommending the current item again, which would otherwise
be a likely scenario. The algorithms work with implicit feedback, which provides
a natural choice for a dataset with a browsing history (Koren and Bell, 2015).
The type of interaction used for the feedback can differ depending on the
system. Unless stated otherwise, the algorithms are configured to use all
available interactions and treat them equally.

As a fallback mechanism when no recommendations can be generated (i.e.,
user cold-start), the most popular (MP) approach is used. This approach just
recommends items with the highest numbers of interactions. Thus, providing a
non-personalized way for recommendations.

3.1 Content Based Filtering

Content-based filtering (CBF) uses the content features to generate recommen-
dations as described in Pazzani and Billsus (2007). For job recommendation,
the content of job ads is used to generate recommendations for users with a
similar profile as shown by Aggarwal (2016a). For this approach, the content
needs to be preprocessed. One typical method from information retrieval is to
use the term frequency - inverse document frequency (TF-IDF) as described in
Rajaraman and Ullman (2011). For recommender systems, this can be modelled
by Equation 3.1 (Lops, De Gemmis, and Semeraro, 2011). In this equation, tk
specifies the k term and dj specifies the j document. The frequency of the term k

13

3 Job Recommendation Algorithms

in document j is denoted by fk,j. The total documents are denoted by N, while
nk denotes the number of documents the term tk appears in.

TF-IDF(tk, dj) =
fk,j

maxz fz,j︸ ︷︷ ︸
TF

· log
N
nk︸ ︷︷ ︸

IDF

(3.1)

Given this equation, the closeness between two documents can be calculated by a
similarity function, like the cosine similarity. To generate recommendations with
this equation, one of the documents set to the user profile. Then documents that
are similar to the user are considered relevant. For this thesis, the current item
the user views is used as his profile. Thus, the user gets a list of recommended
items that are similar to the current one.

The default configuration for this algorithm considers the top 25 TF-IDF terms
for the recommendation. It uses the job description, title, and teaser from the
dataset described in Chapter 4. However, not all content is of equal value. When
calculating the overall recommendation score the title gets boosted by a factor
of 1.5 and the teaser by a factor of 2. The implementation of the retrieval is
further described in Chapter 5.

3.2 Collaborative Filtering

Collaborative filtering (CF) takes the history of interactions and finds users that
have a similar interaction history (Aggarwal, 2016b). It then recommends the
items, which other users have consumed and not by the target user itself. In
this thesis, only the job ad views are used for the interaction history.

The algorithm can also be enhanced to take the current item more heavily
into account when generating the recommendations. A simple method to
make the recommendation more context-aware is to just consider users that
also interacted with a target item. This context-aware approach is hereafter
referenced as context collaborative filtering (CFcont.).

The default configuration for this algorithm considers the top 40 most similar
users as candidates and does not consider the context for generating recommen-
dations.

14

3.3 Doc2Vec

3.3 Doc2Vec

Research question 1 is about exploiting the latent feature of the job postings. This
thesis explores word embeddings for this cause. The idea of word embeddings
is to construct low dimensional vectors consisting of real numbers that capture
the regularities of words appearing withing texts.

A very influential approach dubbed as Word2Vec was published by Mikolov,
Sutskever, K. Chen, et al. (2013). The authors proposed two new methods in
particular to generate those vectors. The first is called continuous bag of words
(CBOW), which uses the context of a word (a set of nearby words where one
word is left out) as input and tries to predict the missing word. The second
method, called skip-gram, reverses the approach. Thus, given a word as input its
content is predicted. Regardless of the method, the resulting word embeddings
model words that have similar concepts close to each other.

This approach was then extended by Q. Le and Mikolov (2014) to come up
with vectors for longer text segments (e.g., paragraphs or whole documents)
commonly known as Doc2Vec. There are again two methods to generate these
embeddings. The first method, distributed memory of paragraph vectors (PV-
DM), is similar to CBOW. Additionally, it uses an identifier for the paragraph as
input and predicts a single word as output. On the other hand, distributed bag
of words of paragraph vectors (PV-DBOW), just takes the paragraph id as input
and predicts a set of words as output. Figure 3.1 shows how the job identifier
can predict several words with the PV-DBOW model.

Doc2Vec has already been applied to content-based job recommender systems.
Yanbo Huang (2016) successfully applied this algorithm to career social net-
working site Xing1 in an offline setting. Thus, an offline evaluation was done as
described in 6.1. This thesis goes further and explores the performance of this
approach in 6.2 and applies it to the more specialized field of student recom-
mendations. For this thesis, the PV-DBOW method is used and the vectors are
trained on the job ad description.

The default configuration for this algorithm uses the cosine similarity, while
the embeddings are trained on a single epoch a learning rate of 0.025. The
window size, which configures the sequence length for the input, is set to 20.
The training uses a regularization technique by a negative sampling of 10 items.
The resulting vectors have a dimensionality of 100. The training of the vectors
considers only the job description.

1https://www.xing.com/

15

https://www.xing.com/

3 Job Recommendation Algorithms

Job

Backend Java Developerpart-time

Figure 3.1: Representation of the PV-DBOW model. Given a job, the context of the job is
predicted. In this case, the predicted context is part-time, Backend, Java, and
Developer.

These vectors build one aspect of the deep learning approach. The other aspect
to consider to retrieve relevant documents for a user. This thesis uses three ways
to achieve this. Subsections 3.3.1 explains the most simple retrieval method.
Subsection 3.3.2 describes an intuitive way to model the user history for more
advanced retrieval. Finally, Subsection 3.3.3 focuses on a more sophisticated
method that considers the interaction times as well. For the similarity function
used in all approaches, the cosine similarity is used.

3.3.1 Last Vector

In its most simple form only the current job ad, which is the last interacted one,
is considered and thus the vector of the job ad is taken as it is. By utilizing
a similarity function related documents can be retrieved. This approach is
denoted as LAST strategy. However, this method provides a non-personalized
way to retrieve documents. Given a last interacted job, every user gets the
same recommendations. Thus, it might be useful to consider the user history as
well for generating the reference vector, which the other two retrieval method
cover.

16

3.3 Doc2Vec

3.3.2 Average Vectors

An intuitive way to construct a reference vector, that considers the history of job
interactions, is to just merge the vectors by averaging them (denoted as AVG
strategy). This is similar to how word vectors can be averaged to form sentences
as described by Q. Le and Mikolov (2014). This forms a new target vector to
work with. The recommendations can be generated by simply using a similarity
function on this vector. For such a model, the dimensions that are dominant
in a lot of the interactions stay dominant. Contrary, if the interactions depict
contradicting behaviour the dimensions cancel each other out.

3.3.3 Base-Level Learning

The availability of specific items in human memory is sensitive to the frequency
and recency of its use (Petrov, 2006). This means that frequent or recent
experiences are easier to recall. The base-level learning (BLL) equation from
ACT-R architecture (Anderson, Bothell, Byrne, et al., 2004) reflects this tendency
towards frequency and recency. The equation is part of the declarative memory
module that promotes long-term retrieval. The module provides a model from
cognitive sciences, which captures both aspects of the before mentioned methods
(the recency of LAST, as well as the frequency of AVG). The construction for the
BLL for a given item j is described by Equation 3.2. TSre f refers to the timestamp
when the recommendation is requested. TSj,i specifies the timestamp for the ith

interaction (of n total interactions) on the item j. The parameter d denotes the
magnitude of time decay.

BLLj = ln(
n

∑
i=1

(TSre f − TSj,i)
−d) (3.2)

Thus, it calculates the time difference for each interaction. The time decay is then
applied by the parameter d. Since d is in the exponent the decay happens much
more rapidly in the beginning. This gives more weight to recent interactions.
Whereas, for old interactions, the difference is of little significance. Finally, the
terms are summed up and the value is regularized by the log function. This
prevents the dominance of frequent interactions on the same item. Given the
result for each item, the reference embedding is then calculated by weighting
the individual embeddings vecj as shown in Equation 3.3.

17

3 Job Recommendation Algorithms

vec =
m

∑
j=1

vecj ∗ BLLj (3.3)

The approach is used in a similar way as described in Kowald, Pujari, and Lex
(2017). Given a user’s interaction history, the BLL equation can use the item
embeddings and come up with a vector that describes the user preferences.
This preference vector can then be used to find items that are similar to those
preferences. This approach effectively combines the interactions of the user
with the content of the job ads. Per default, the time parameter d is set to 0.5.

3.3.4 User2Vec

This thesis does not explore a baseline approach for demographic recommen-
dations but applies it in a similar fashion as the content-based recommender
with deep learning. The approach is denoted as User2Vec. This approach is not
explored in greater detail since it is only used for a side experiment.

Similar to documents, user data can also be converted to embeddings. While
one approach might be to convert the user content with the Doc2Vec algorithm
(Section 3.3). It might pose two possible problems. First, a user might not have
any content at all, which is the case for anonymous users in the system. Thus no
content can be used directly for this case. Second, if the content does not form
a meaningful sequence of words. This can be non-textual content, as well as
just unordered lists of keywords. In this case, other methods like autoencoders
might be more suitable.

Regardless of content, the users always have sequences of items they interacted
with. These sequences can then be used with the Doc2Vec approach. A down-
side of this approach is that user interactions are very volatile and thus it is
hard to come up with a stable model.

3.4 Hybrid Recommendations

Each presented algorithm has advantages as well as disadvantages. For in-
stance, collaborative filtering is known to provide good results, but cannot be
applied for new users without interaction data. Thus, a combination of multiple
algorithms might lead to a better overall result. There are several ways at how
to produce hybrid recommendations as detailed in Burke (2007). This thesis

18

3.4 Hybrid Recommendations

utilizes two of those approaches. Firstly, mixed hybrid recommendations are
described in Subsection 3.4.1. Secondly, weighted hybrids are described in
Subsection 3.4.2.

3.4.1 Mixed Hybrids

The mixed hybrid uses a round-robin system of the algorithms. Thus, it
calculates the recommendations for each algorithm and then takes the first
recommended item of the first algorithm, the first of the second algorithm and
so on. When an item is already present in the resulting recommendations, it
is not inserted again. Instead, either the item or the algorithm can be skipped.
When skipping the item the next item of the algorithm result is taken instead.
Conversely, when the algorithm is skipped it just proceeds with the next
algorithm instead.

This process is continued until the specified amount of recommendations is
generated. If an algorithm does not have any recommendations left in its results,
it is skipped entirely.

3.4.2 Weighted Hybrids

The weighted hybrid uses a score for each result of the individual algorithms.
A simple way to come up with such a score is to apply the inverse rank as a
score. Thus for results of length n, the first item of the results gets n as a score,
the second n− 1 and so on. The score of each algorithm is then weighted by
some predefined weights. The weights are simply multiplied by the score as
seen by Equation 3.4, where A is the set of all the individual algorithms. The
algorithm then chooses the items with the highest total score.

si = ∑
a∈A

wa ∗ sa (3.4)

19

4 Studo Jobs Platform

This chapter describes the Studo Jobs platform and the dataset used for the ex-
periments. First, it provides a detailed overview of the Studo mobile application
(Section 4.1), where the job platform is integrated into. Next, the job platform
itself is described in Section 4.2, where the evaluations are carried out. The job
platform consists of two scenarios for showing recommendations, which are
detailed in 4.3. Finally, the dataset is explained in Section 4.4. It consists of user,
job and interaction data.

4.1 Studo App

The Studo mobile application was created early in 2016 and has the main
functionality to provide easier access for university relevant services1. As of
December 2019 the app serves over 100, 000 students of 42 universities in Austria
and is the biggest app of its kind in this country. The user base of the app
is very active as there are 5 million applications starts per month, with many
students using the app multiple times per day.

The app consists of several easily accessible tabs as can be seen in Figure 4.1.
The app has a news feed that provides students with information relevant to
their studies. Figure 4.1a shows a course overview and management system that
is directly integrated into the app. A calendar automatically shows them events
based on the courses they have enrolled in. The Studo Chat allows students of
similar courses or studies to ask questions and exchange information with each
other. The mail client receives mails on the go and makes it easy to send mails
as well. The app also shows the grades of past courses and allows access to the
curriculum of the students. Additionally, it provides students with information
on menus for nearby lunch options. External services are also included in
the app. The cooperation with Iamstudent2 allows access to a wide variety
of vouchers eligible for students. Finally, a job platform can be accessed from

1https://studo.com/
2https://www.iamstudent.at/

21

https://studo.com/
https://www.iamstudent.at/

4 Studo Jobs Platform

within the app (Figure 4.1b). While the job platform can also be accessed from
the browser, the app is the main way students interact with it.

(a) Course tab. (b) Jobs tab.

Figure 4.1: Screenshots of the course (a) and jobs tab (b) in the Studo App. The displayed tabs
depend on the university of the student.

4.2 Studo Jobs

The Studo Jobs platform3 was launched in Summer 2016 in the Austrian federal
state Styria first. It provides companies with a way to advertise their job
vacancies via job postings (also referred to as job ads) to students. A job ad
contains the textual description of the job with some structure. Figure 4.2 shows
an example of a job ad on the platform. One year later in the Summer of 2017,
it was rolled out for the whole of Austria (11

th August 2017).

On the 18
th of September 2017 the first recommender, which was a content-

based filtering algorithm, went live as can be seen in Figure 4.3a. This was
followed by the first deep learning approach by the end of 2017. In the second
quarter of 2018, the recommendations were also used for the job overview page
(i.e., Home page) of the job platform with a collaborative filtering approach,
thus expanding its use case. As of February 2019, all job lists on the platform
are either generated by the recommendation engine or is a result of a search
query.

3previously found on https://studo.co/jobs/

22

https://studo.co/jobs/

4.2 Studo Jobs

The Studo Jobs platform can be accessed via mobile app and via the web
page, most users access it via the app (around 70% as of January 2019). Due
to the limited screen space of mobile phones, it is not possible to show the
recommended jobs in a sidebar as is the case on the web page. Thus, the
recommendations are shown after the job ad. This also limits the number of job
ads that can be shown simultaneously. Due to these limitations, only three job
ads are being recommended per page.

A UI A/B test was conducted to determine whether showing the recommenda-
tions directly after the teaser would lead to higher usage of the recommenda-
tions, as well as raise the awareness that they even exist. This could also lead
to more active users (i.e., interacting with more job ads). However, after some
negative feedback from some customers, which did not like that users were
tempted to view the next job ad before they finished reading theirs, the test
was prematurely cancelled. This shows some of the limitations of conducting
the experiments on a real platform. Furthermore, it shows that optimizing the
platform for the customers is more than just pushing up the numbers.

(a) Desktop layout. (b) Mobile layout.

Figure 4.2: An example job ad, which consists of a textual description. (a) shows the desktop-
optimized layout, while (b) shows the app-optimized layout.

Many job platforms provide the opportunity to buy premium job ads, that gain
more visibility. The Studo Jobs platform has decided against such a practice
since it is designed as a data-driven platform. Thus, the students should always
get the best suiting job ads for them. Furthermore, the winners of the RecSys
2017 challenge also opted for a simpler model, where the premium job ads and

23

4 Studo Jobs Platform

users where not distinguished from the rest (Volkovs, G. W. Yu, and Poutanen,
2017). It seems that the added complexity works against the little benefits such
a business strategy would incur.

A user poll of Studo users with 934 participants, showed that most users (98.4%)
are willing to search for a job on a mobile phone (Horvath, 2018). Moreover,
almost half would also apply per mobile phone (44.9%). This trend was already
predicted by Böhm (2013). Furthermore, the study suggests that mobile users
expect to be able to apply via mobile phone.

Since November 2019, the job platform is superseded by the Talto career plat-
form4. This platform changed the focus from jobs to career-related content in
general. Thus, it puts more emphasizes on the companies and also provides
articles. Nevertheless, this thesis focuses on its predecessor and therefore on job
recommendation for students.

4.3 Recommendation Scenarios

The platform currently has two main recommendation scenarios. Both scenarios
are shown on different parts on the platform. Furthermore, the context in
which they are shown is different. One serves as an overview of available job
ads, while the other serves navigational purposes. Thus, it makes sense to
evaluate and tune the scenarios individually. The Infobox scenario is described
in Subsection 4.3.1, while the Home scenario is described in Subsection 4.3.2.

4.3.1 Infobox Scenario

The first recommendation scenario is shown when viewing a job ad. The
user gets additional jobs recommended, which are shown in the job Infobox.
Depending on the screen size the recommendations get displayed differently.
On mobile devices, the recommendations are shown after the job ad (as seen
in Figure 4.3a). When viewing on the desktop, the job ads are shown on the
sidebar. These recommendations improve the flow on the platform since it is
easier to get to another job ad if one does not quite fit. Due to space limitations,
the number of recommended job ads is quite low (i.e., 3 job ads). This scenario
uses CBF as baselines as described in Chapter 3 Section 3.1.

4https://talto.com/

24

https://talto.com/

4.4 Dataset

(a) Infobox scenario. (b) Home scenario.

Figure 4.3: The two recommendation scenarios on Studo Jobs. The Infobox recommendations
(a) are shown when viewing a job ad. It contains a list of only 3 job ads. The Home
recommendation scenario (b) is shown when viewing the main hub of the job portal.
It contains 5 recommendations of the 25 displayed items.

4.3.2 Home Scenario

The second recommendation scenario was added later to the platform. When
the user is on the Home view, a list of job ads gets recommended. In this
scenario, a longer list can be recommended (i.e., 25) to the user. Of those, the
first 5 are recommended (Figure 4.3b). This scenario also receives a lot more
interactions when compared to the Infobox scenario. This scenario uses CF as
baselines as described in Chapter 3 Section 3.2.

4.4 Dataset

The data that is used for generating the recommendations consists of three
data structures. First, there are the job ads, which are used for content-based
and vector-based algorithms (explained in Subsection 4.4.1). Second, there is
the user-specific content data. This data is referred to as CVs and is further
described in Subsection 4.4.2. Note that there are anonymous users that do
not have this explicit content. The final data structure, the interaction, links

25

4 Studo Jobs Platform

the other two together. This datatype is thoroughly described in Subsection
4.4.3. Finally, Subsection 4.4.4 explains the preprocessing and enrichment of job
ads.

A snapshot of the complete platform stats is shown in Table 4.1. As can be seen,
the data is quite sparse. Moreover, the number of views is dominant over the
other interaction types.

Type Amount
Job Ads 5835
Users 87, 906
CVs 18, 589
Views 401, 267
Applications 8, 529
Contact Details 17, 415
Shares 2, 138
Feedbacks 507, 397
Recommendations used 6371
Sparsity 98.95%

Table 4.1: Overall dataset statistics (as of 19
th of May 2018). Views are the dominant interaction

type. The ratio of interactions to possible user and job ad combination is very sparse.

As a remark, the outlined structures of the dataset are just how the information is
imported into the recommender system. However, the internal representations
in the database differ from those structures. For instance, each generated
interaction also adapts the corresponding user profile and job ads. Thus, each
user profile contains all personally consumed job identifiers. Conversely, each
job ad contains the identifiers of all users who interacted with it. Furthermore,
the job ads have counters for each interaction type. This is done to speed up
the retrieval process of the system.

4.4.1 Job Ads

All job ads follow the same structure and no unstructured or semi-structured
content is permitted for the platform (e.g., PDFs). Although the job ads them-
selves are structured, the content itself is text-based and thus unstructured.

There are 3 textual content fields for the job, namely title, teaser, and description.
The description provides the most details of those three. While the format is
unstructured, the general information within is typically very similar, due

26

4.4 Dataset

to the requirements the document has to fulfill. Normally, it contains the
responsibilities and requirements for the job ad. Often, it also contains job
benefits. Another particularity is that negated sentences are used very sparingly.
This phenomenon is likely a result of overqualified employees (i.e., having too
many skills) being less of an issue than employees lacking the required skills to
perform the job in the first place.

A job ad contains several fields that are detailed below. It contains several
textual fields (i.e., Title, Teaser, Content, ContentHtml) that describe the job ad.
It also contains many fields for the metadata about the job ad (i.e., Categories,
Tags, Language, BeginNow, Effort, Salary, CompanyName). There are fields for
the job location with varying granularity (i.e., LocationCity, LocationFederalState,
LocationCountry) and fields for the different contact information (i.e., Application-
Phone, ApplicationOnlineUrl, ApplicationMail). Finally, it also contains internal
information for the system (i.e., ID, UrlPath, Status, DateCreated, DateModified).
An example job ad is shown by Listing 4.1.

ID specifies a unique identifier for the job ad.
UrlPath specifies the public URL to access the job ad.
Status can be ”PRIVATE”, ”PUBLIC”, ”EXPIRED” and specifies the visibility

of the job ad and whether the job has been public at some point. This is
relevant since expired job ads are valid data sources, while private jobs
might not be filled out completely.

DateCreated is the ISO date representation as string datatype when the job ad
has been created.

DateModified specifies the last modification time, again as ISO representation.
Title specifies the title of the job ad.
Teaser of the job ad. A short text that shall encourage users to read the full job

ad. Often contains information about the company.
ContentHtml specifies the description of the job ad as HTML representation.
Content specifies the description of the job ad as text representation.
Categories specify a list of employment types that suit the job ad.
Tags specify a list of tags that are related to the job ad. The tags are either

referencing a job discipline or a job industry.
Language of the job ad. On the platform, jobs can either be in German, which

is the default option, or in English. The language is automatically detected
from the text.

BeginNow specifies whether the starting time for the position is now.
Effort specifies the hours per week for the job. Can be ”MINI” (0-10h), ”HALF”

(10-35h), ”FULL” (> 35h) or free text.
Salary as free text, which allows any format.

27

4 Studo Jobs Platform

ApplicationPhone specifies the application’s contact phone number.
ApplicationOnlineUrl specifies the URL for an online application.
ApplicationMail specifies the application contact email address.
CompanyName specifies the name of the company.
LocationCity specifies the city of the job vacancy.
LocationFederalState specifies the federal state of the job vacancy.
LocationCountry specifies the country of the job vacancy. The jobs are typically

in Austria, but some are from neighbouring countries like Germany or
Italy.

Listing 4.1: An example of an job ad as JSON.

{
” id ” : ”EJSZ4 . . . ” ,
” ur lPath ” : ”2017/06/ v e r k a u f s m i t a r b e i t e r i n /” ,
” s t a t u s ” : ”PUBLIC” ,
” dateCreated ” : ”2017−06−21T11 : 5 7 : 0 1 . 0 0 0 + 0 2 ” ,
” dateModified ” : ”2017−06−21T11 : 5 7 : 0 1 . 0 0 0 + 0 2 ” ,
” content ” : ” Als Verkauf smi tarbe i te r In . . . ” ,
” contentHtml ” : ”<h3>Als Verk aufsmi tarbe i te r In . . . ” ,
” t i t l e ” : ” Verkaufs mi tarbe i te r In Markthalle ” ,
” c a t e g o r i e s ” : [” T e i l z e i t ”] ,
” tags ” : [” Uni Graz ” , ”TU Graz ”] ,
” language ” : ”de ” ,
” t e a s e r ” : ”IKEA verkauf t a l l e s f u e r s Zuhause . . . ” ,
”beginNow” : true ,
” e f f o r t ” : 0 ,
” s a l a r y ” : ”\euro 1 . 546 / Monat (Bas i s V o l l z e i t) ” ,
” applicat ionPhone ” : ”” ,
” appl i ca t ionMai l ” : ”” ,
” appl i ca t ionOnl ineUr l ” : ” ht tps ://ww8 . ikea . com / . . . ” ,
”companyName” : ”IKEA Moebelhaus OHG” ,
” l o c a t i o n C i t y ” : ”Graz ” ,
” l o c a t i o n F e d e r a l S t a t e ” : ” S t y r i a ” ,
” locat ionCountry ” : ” Austr ia ” ,
”viewCounter” : 227 ,
” a p p l i c a t i o n B u t t o n C l i c k s ” : 0

}

28

4.4 Dataset

4.4.2 CVs

In the system, users can state explicit information about themselves for their
user profiles. The user profiles are also called CVs (although in a very simplistic
form). These are used for the CV recommendations. Furthermore, the platform
uses the data to pre-configure the filtering options on the platform. The user
profiles are generated in the Studo app only. Users have to opt-in to allow this
data to be saved.

A CV contains several fields that are detailed below. Most of those fields are
filled out by the user (i.e., Universities, Studies, ProfessionalField, ExpectedFinalDe-
greeYear, LocationFlexibility, Effort). Two fields track the engagement of the
users with their CVs (i.e., UpdateCount, ViewCount). Finally, the CV is linked
to the user with a unique identifier (i.e., UserID). An example CV is shown in
Listing 4.2.

UserID specifies a unique identifier of the user who filled out the CV. Thus,
each user can have at most one CV.

Universities specify the readable identifiers of the universities of the user (e.g.,
”grazTU” or ”grazUniKF”).

Studies specify the names of the university studies a user is signed up for.
ProfessionalField specifies the selected professional fields. The values are

chosen from a predefined list of fields.
ExpectedFinalDegreeYear specifies the expected final year, which a user has

specified. The format described as regex is ‘>?[0− 9]{4}‘ (e.g., ”2019” or
”> 2018”).

LocationFlexibility can be empty, ”CITY”, ”STATE” or ”GLOBAL”. The empty
string means the value has not been set by the user. This specifies the
range the user is willing to travel for a job.

Effort specifies the work effort in hours per week a user wants to work. Can be
”MINI” (0-10h), ”HALF” (10-35h), ”FULL” (> 35h).

UpdateCount specifies the number of times the user updated the CV.
ViewCount specifies the number of times the user opened the CV. It is always

bigger or equal to the number of the UpdateCount field since users have to
view their CVs to update them.

29

4 Studo Jobs Platform

Listing 4.2: An example of an CV as JSON

{
” userId ” : ”SQH29 . . . ” ,
” u n i v e r s i t i e s ” : [” grazTU ” , ”grazUniKF ”] ,
” s t u d i e s ” : [] ,
” p r o f e s s i o n a l F i e l d ” : [”ASSISTANCE” , ”FINANCE” , . . .] ,
” expectedFinalDegreeYear ” : ”2018” ,
” l o c a t i o n F l e x i b i l i t y ” : ”GLOBAL” ,
” e f f o r t ” : [”MINI” ,”HALF” ,”FULL”] ,
”updateCount” : 5 ,
”viewCount” : 16

}

4.4.3 Interactions

All interactions have the same structure. All the interaction data is collected
implicitly. Thus, the user cannot provide explicit feedback about the recommen-
dation yet. However, the meaning and value of each of those interactions differ.
The interaction data is used for collaborative filtering. It is also implicitly used
for the most popular algorithm, but the data is tracked indirectly on the job
ad. The interaction data consists of different types of interactions (e.g., views,
applications, and opening contact details).

Interactions in the system can be modelled as a quadruple of user, item, times-
tamp and interaction type. As such, the interaction contains two relational
fields (i.e., UserId, JobAdId), as well as the type and the time as other fields. For
data processing purposes a unique identifier is assigned to each interaction.
Furthermore, two other fields provide additional information on the interaction
(i.e., Authenticated, Platform). Finally, interactions that happen as a result of a
recommendation can be linked to the recommendation as well by the Recom-
menderId. Each field is further detailed below. An example of an interaction is
shown in Listing 4.3.

ID specifies a unique identifier for the interaction. It can be created at random.
UserId specifies the identifier of the user, who initiated the interaction.
Authenticated specifies whether it was an authenticated user or an anonymous

user. App users are typically authenticated, while web users tend to access
the platform anonymously.

Time specifies the time and date as ISO representation when the interaction
occurred.

30

4.4 Dataset

Platform specifies the platform where the interaction happened. It can be
”STUDO APP” or ”WEB”. Note that WEB does not distinguish between
mobile and desktop.

RecommenderId specifies the ID of the recommendation that leads to the inter-
action, which is generated by the recommender system. It is left empty if
the interaction happened without the guidance of the recommender.

JobAdId specifies the identifier of the job ad on which the interaction was
performed.

Type specifies the type of interaction. Can be ”AD VIEW” (when clicking
the job ad), ”APPLICATION” (when clicking the apply button while on
job ad, does not guarantee that the user does send the application for
real), ”SHOW CONTACT DETAILS” (when a user expands the contact
details while on job ad, this is separate from the application button),
”COMPANY VIEW” (when a user opens the company information site
from the job ad).

In addition to data for generating the recommendations, the system also needs
to collect data for the online evaluation. Thus, the system also saves all the
parameters for each generated recommendation. Note that in the interaction
data there is the field called RecommenderId. This field is set when the interaction
was generated by a previous recommendation. For job views, it means that the
user clicked on a recommender job ad. For all the other interactions it means
that they were performed on the viewed recommended job ad. The system then
tracks these interactions as feedback for the recommender. This feedback is for
the online evaluation in Chapter 6).

Listing 4.3: An example of an Interaction as JSON

{
” id ” : ”MP9Z4 . . . ” ,
” userId ” : ”SQH29 . . . ” ,
” authen t i ca ted ” : f a l s e ,
” time ” : ”2017−07−12T12 : 5 5 : 3 4 . 1 6 5 + 0 0 0 0 ” ,
” platform ” : ”WEB” ,
”recommenderId” : ”WDF4F . . . ” ,
” jobAdId” : ”EJSZ4 . . . ” ,
” type ” : ”AD VIEW”

}

31

4 Studo Jobs Platform

4.4.4 Data Processing and Enrichment

In preparation for the master thesis, a related experiment has been conducted
in order to automatically enrich the job ads. The goal of this experiment is
to predict labels based on job descriptions. In particular, we are interested in
predicting professional fields. For this purpose, multiple classifiers were trained
and then evaluated on Accuracy, F1-Measure, and AUC. The results showed
that support vector machines can predict the labels very well and performing
even better when optimized with stochastic gradient descent. It evaluates the
algorithms on four labels, namely:

• Business
• Technology
• Catering
• Software

The evaluation compares the results of 10 different classifier models. Three of
these classifiers use decision trees (i.e., Random Forest, CART, and AdaBoost).
Three models use neural networks (i.e., MLP, CNN, and M-CNN). Two methods
are based on probabilities (i.e., Naive Bayes, and Logistic Regression). And
finally, two support vector machines are used (i.e., Linear SVM, and SVM-SGD).
These extracted professional fields are shown as metadata on the job ads and
are represented by the field tags. Additionally, they are used for a qualitative
analysis of the embedding space.

The support vector machine with stochastic gradient descent is the best per-
forming classifier in terms of Accuracy and F1-measure. This classifier has been
incorporated into the platform as a service to automatically infer the profes-
sional fields from the job ad. The findings of this experiment were presented at
the RS-BDA workshop on the I-KNOW conference 2017 (Reiter-Haas, Slawicek,
and Lacic, 2017).

For the tagging experiment, a different dataset was used in order to train the
model. This is because at the time of the experiment not enough data was
provided by the Studo Jobs platform. Thus, for the dataset other job platforms
were crawled. The crawled dataset consists of four fields. The ID uniquely
identifies the job ad. From the content of the job ad, only the text was parsed
out of the HTML. The job title was also crawled but not directly used in the
experiment. Finally, each job ad consists of a set of ground truth labels for the
professional fields. Out of these ground truth labels, only four were used. The
reason for this is that at the time of the experiment, only those four labels were
present at the Studo Jobs platform.

32

5 Implementation Details

Part of the thesis is the implementation of the algorithms in a practical setting
for the evaluation. Especially how the recommender system was set up on
the Studo Jobs platform for the online evaluation. The chapter consists of
three parts. Section 5.1 gives an overview of the recommender architecture in
general. Section 5.2 details the integration of the recommender into the Studo
Jobs platform. Finally, Section 5.3 explains the training of embeddings in more
detail.

5.1 Architecture

The recommender architecture of the Studo Jobs platform uses the ScaR (Scal-
able Recommendation-as-a-service) framework1. The framework is described in
detail by Lacic, Traub, Kowald, et al. (2015). It makes use of the microservice
architecture as proposed by Lewis and Fowler (2014). In this architecture, the
program is split up into individually working components. Since all the compo-
nents function independently from each other, the whole system also functions
independently. Nevertheless, several components need to be configured to work
with the job platform. The system is remotely connected to the job platform
and communicates via HTTP requests.

At the basis of the ScaR framework is a data management service that provides
an interface to the database. Out of the box, it supports Apache Solr2 as a
data source. Solr is built atop of the Apache Lucene search engine. Lucene
supports various functions for the retrieval of documents. For instance, the
scoring function can be adapted by specifying boosting weights. This function-
ality is used for content-based filtering to specify the importance of various
textual fields for the recommendation. The engine service builds the core of
the framework. This service is responsible for generating recommendations.
The exact algorithms and parameters for the generation can be configured via

1http://scar.know-center.tugraz.at/
2https://lucene.apache.org/solr/

33

http://scar.know-center.tugraz.at/
https://lucene.apache.org/solr/

5 Implementation Details

a repository service. Custom-tailored services build upon the basis. A data
importer handles the data schema and is the pivotal point for the integration
detailed in Section 5.2. The recommendation provider processes the recommen-
dations requests and responses. Finally, there is also a service to conduct online
and offline evaluations.

The ScaR framework also contains a deep learning service. This service first
trains on the items in the database. It then uses the computed model to create
the embeddings for existing as well as new items in the system.

The microservices are deployed via Docker3 containers on a Docker stack,
which are configured via a Docker compose file. The servers are set up as
Docker swarm where the Docker services are running on. The recommender
system runs on the production and a staging environment. The staging server
serves for testing and developing purposes. It allows testing the functionality
of updates of the recommender itself, but it also provides recommendations
for local development of the job platform. This is needed since running the
recommender system in a local environment is unfeasible due to the high
amount of resources required.

5.2 Integration

For the full integration of the recommender system and running A/B test in
production, three steps need to be taken. First, the data needs to be fed into
the recommender system, which is described in Subsection 5.2.1. Given this
first step, the system can already generate recommendations but not evaluate
them. The next step is creating a feedback loop, as detailed in Subsection 5.2.2.
This feedback loop enables the evaluation of the recommendation performance
but does not allow conducting A/B tests. Finally, for an A/B test, the user
base needs to be split accordingly, which is described in Subsection 5.2.3.
Additionally, the recommender needs to provide responses in real-time for a
smooth user experience, which is explained in Subsection 5.2.4.

5.2.1 Data Ingestion

For the integration, the Studo Jobs platform has to import its data into the
recommender system. In principle, this can easily be achieved via the data

3https://www.docker.com/

34

https://www.docker.com/

5.2 Integration

importer. Regardless, the synchronization of the two systems is very important
but difficult to implement correctly. Unsynchronized interaction data adversely
affects the recommendation quality since the latest information cannot be used
for the generation. The synchronization is even more important for the state of
job ads. If a job ad expires, this update needs to be sent immediately. Otherwise,
the recommender continues to provide recommendations for a job, which is no
longer available to the user. This leads to unwanted ”404 - not found” pages.

While important, the synchronization of the job platform with the recommender
system cannot be ensured at all times. But given enough time after the last
update, the whole system should become consistent, which is called eventual
consistency. This is a typical trade-off for distributed systems (Vogels, 2009).
Putting it differently, this workflow sacrifices consistency, at least to some extent,
for availability and partition-tolerance. It is stated by the CAP theorem, that only
two of those three properties can be achieved in a distributed system (Gilbert
and Lynch, 2002). Furthermore, the synchronization of a distributed needs
to deal with network issues like timeouts. Thus, it is important to consider
whether the data import request delivers a valid response or retry otherwise.

5.2.2 Feedback Loop

For the evaluation of recommendations in production, a feedback loop has been
established. In ScaR, each recommendation request is logged with a unique
identifier. This identifier gets returned alongside the generated recommen-
dations. There is one adaption needed to close the loop. When delivering
recommendations for the user, this identifier is built into the user events. Thus,
each event that happens as a result of a recommendation links to its recom-
mendation identifier. Furthermore, all subsequent events on the same item get
assigned the same recommendation identifier.

A recommendation request requires several parameters. It consists at least of a
RecommenderProfile and a UserID. An ItemId is only required for some profiles.
The amount of recommendations is specified with MaxResults. All parameters
are detailed below.

UserID specifies a unique identifier of a user.
ItemID specifies a unique identifier of an item.
MaxResults specifies the maximum number of recommendations that shall be

generated.
RecommenderProfile specifies the filters the recommendation by certain criteria

(e.g., companies, job cities).

35

5 Implementation Details

The response of the recommender system is simple. Of course, the most impor-
tant content is the Recommendations of jobs. But, it also contains a RecommID
for the feedback loop and some DebugInformation for practical purposes. The
details of the complete response are described below.

RecommID represents a unique identifier of the produced recommendations.
This information is required to build the feedback loop.

Recommendations represents a list of IDs of recommended items. The items
are ordered by relevance.

DebugInformation contains the HTTP status code, Error ID, and a custom
message.

The recommender system stores the information for both the request and the
response for later evaluation. Additionally, it stores internal information like
the composition of hybrid recommendations. To complete the feedback loop,
the interactions, which are sent to the recommender systems also include the
RecommID. This information is linked to the previously stored recommendation
information. Thus, the available information provides the whole picture of a
recommendation and the resulting interactions.

5.2.3 A/B Test Workflow

To conduct A/B tests for online evaluations, the workflow has been extended.
Figure 5.1 details the typical workflow for an A/B test on a web page. The same
workflow is used for A/B tests on recommendations. When a recommendation
is requested, the system first checks whether the user has already been assigned
an A/B test variant. If it has a variant, it retrieves its settings and creates
the recommendation accordingly. If no variant has been assigned the system
determines into which variant the user shall be put in to achieve the desired
split (typically equal splits). Then, the recommendation is created accordingly
and the chosen variant is stored. Typically, the variant just determines the
recommender algorithm with a particular configuration (i.e., recommendation
profile) for generating the recommendations. This process ensures that each
user is assigned to exactly one group for the complete duration of an A/B test.
When no A/B test is running the system just requests a specific recommendation
profile.

36

5.2 Integration

return

fetch

generate

Generate
Recommendations

with Variant

store

send variant ID

New Variant
Assignment

request

send variant ID

Existing Variant
Retrievalreturn

User
Variant
Store

Return Page
to User

no
yes

User Request A/B Test Workflow

requestGenerate Page
for Variant

check

Check if User
has Variant

Reco
Config
Store

Recommender
System

Figure 5.1: Diagram describing the assignment workflow for A/B tests. When requesting a
web page with a running A/B test, this workflow determines the variant the user
receives. This process ensures that for the whole duration of a test, each user always
gets the same variant. Yellow indicates general web page request handling. Orange
handles the A/B variant assignment. Blue is recommender specific.

5.2.4 Realtime Recommendations

In order to ensure the responsiveness of the platform, the recommendations
have to adhere to realtime constraints. Ideally, the recommendation response
time should be below 100 milliseconds for good user experience (Eksombatchai,
Jindal, J. Z. Liu, et al., 2018). For this reason, the recommender system makes use
of the inverted index provided by Lucene. The recommender implementation
is configured to store all the information in a specific way to allow quick
retrieval. For instance, interactions store the user identifier in the items and
vice versa. This allows the retrieval of users by only considering the item data.
The retrieval of the embeddings is more complex. It makes use of a custom
build Solr plugin using the Lucene payload feature (the same way as in Reiter-
Haas, Lacic, Duricic, et al. (2019)). Payloads store arrays containing arbitrary
information and associate tokens for retrieval. In particular, the tokens for the
embeddings store the position of the vector representation. Storing positional

37

5 Implementation Details

information allows for fast similarity calculations. While various similarity
functions are supported, this thesis uses specifically the cosine similarity for
retrieval.

5.3 Embedding Training

This section details the information for the training of the embeddings. The
embeddings are trained using the Doc2Vec algorithm. In particular, the DBOW
model is used. The Doc2Vec algorithm is written in Deeplearning4j4, which
has the algorithm already implemented and just needs to be configured. This
section is further split into the tuning of the algorithm in Subsection 5.3.1 and
the qualitative analysis of training results in Subsection 5.3.2.

5.3.1 Parameter Tuning

For parameter tuning, we measure the job application rate for different settings.
The tuning of parameters considers window size (i.e., 5, 10, 15, and 20), negative
samples (i.e., 0, 5, 10, and 15), epochs (i.e., 1, 2, 3, 5, and 5), and dimensions
(i.e., 100, 150, 200, 250, and 300). The results of this tuning are visualized in
Figure 5.2.

No clear winning strategy could be derived since the algorithm provides good
results regardless of parameter choice. We use a window size of 20, which is
the largest amount used in tuning. Thus, the algorithms considers long textual
sequences as input. The learning rate is set to 0.025, which is a typical value for
the algorithm. To avoid possible over-fitting, the algorithm is trained on 1 epoch
only. This also speeds up the training time. To keep the model simple, the
resulting embeddings are of size 100. However, we also conducted evaluations
with embedding dimension sizes of 200 and 300. As regularization, the training
uses 10 negative samples.

5.3.2 Embedding Analysis

The embeddings are visualized in two-dimensional space using two techniques.
First, an approach by Maaten and Hinton (2008) called t-distributed stochastic
neighbor embedding (t-SNE), which preserve the distance from the higher

4https://deeplearning4j.org/

38

https://deeplearning4j.org/

5.3 Embedding Training

Figure 5.2: Results of parameter tuning. No correlation between the different tuning parameters
can be observed.

dimensional space. Thus, points that were far apart are still far apart, while
close points stay close. Figure 5.3 shows the trained embeddings, where the
points are colored according to their tags. It was trained with a typical perplexity
of 30, which specifies the number of nearest neighbours for the learning process.
The other approach by McInnes, Healy, and Melville (2018) is called uniform
manifold approximation and projection (UMAP). It exploits the topological
structure and geometry within the data. The authors claim that it preserves
more of the global structure compared to t-SNE. Figure 5.4 shows the results
of the training, with 15 neighbours considered and the euclidean metric. The
color again represents the tags.

With these techniques, a qualitative analysis of the embeddings can be per-
formed. It is apparent from both visualizations that there is no global clustering
pattern regarding tags, while several local clusters are found. The results of
this analysis are in line with the expectations. When jobs are quite similar you

39

5 Implementation Details

20 10 0 10 20
x-tsne

20

10

0

10

20

30

y-
ts

ne

T-SNE
Tags

Assistenz
IT
Design
Forschung
Beratung
EDV
Software
Technik
Verkauf
Gesundheit
Produktion
Logistik
Wissenschaft
Promotion
Management
Kundenbetreuung
Marketing
Controlling

Rechnungswesen
Einkauf
Gastronomie
Coaching
Verwaltung
Vertrieb
Finanzen
Tourismus
Pharma
Personalwesen
PR
Bildung
Rechtswesen
Sachbearbeitung
Bankwesen
Soziales
Reinigung

Figure 5.3: Visualization of embedding space using t-SNE. Colors indicate the tags. The jobs
are spread out rather evenly across the two-dimensional space.

13 12 11 10 9 8 7 6
x-umap

2

3

4

5

6

7

8

9

y-
um

ap

UMAP
Tags

Assistenz
IT
Design
Forschung
Beratung
EDV
Software
Technik
Verkauf
Gesundheit
Produktion
Logistik
Wissenschaft
Promotion
Management
Kundenbetreuung
Marketing
Controlling

Rechnungswesen
Einkauf
Gastronomie
Coaching
Verwaltung
Vertrieb
Finanzen
Tourismus
Pharma
Personalwesen
PR
Bildung
Rechtswesen
Sachbearbeitung
Bankwesen
Soziales
Reinigung

Figure 5.4: Visualization of embedding space using UMAP. Colors indicate the tags. There
are several irregularities in the distribution of points. Local clusters tend to be
dominated by a single tag.

expect them to also have the same tag. However, there are also similarities
between jobs of different tags. When comparing the two visualizations, it is
apparent that t-SNE is spread out rather evenly, while UMAP has large gaps
between clusters. Interestingly, close clusters in UMAP tend to be dominated by
mainly one tag. This indicates that similar jobs with the same tag are typically
more similar than similar jobs of different tags.

40

6 Evaluation Protocol

This chapter explains the procedure for the evaluation of the recommender
system. There are several ways to evaluate recommender systems, namely of-
fline evaluations, online evaluations, and user studies (Shani and Gunawardana,
2011). In this thesis, the recommender system is evaluated using offline as well
as online evaluations. The setup for the offline evaluation is described in Sec-
tion 6.1, while Section 6.2 describes the procedure for the online evaluation.

The metrics to evaluate recommender systems can be split into accuracy based
metrics and beyond-accuracy based metrics. Accuracy metrics measure how
precise the recommendations are in terms of recommending suitable items.
This is done by measuring whether users actually use the recommendation
in a positive manner (e.g., click on the recommended item). Beyond-accuracy
metrics measure other factors that are of interest, like how diverse the generated
recommendations are.

The applied metrics differ depending on the type of evaluation performed. For
the online evaluation, a feedback loop has been established and the metrics can
directly be computed from information available. For offline evaluations, the
simulation based on the user’s interaction history has to be performed first.

Recommender systems are typically evaluated based on explicit feedback like
reviews or ratings. Due to the given dataset only containing interaction data,
the evaluation is only conducted on implicit feedback (as proposed for Netflix
by Koren and Bell (2015)). This is true for both procedures, online and offline.
The problem at hand is formulated as follows: given a target user, find the top-k
most relevant jobs from a set of available jobs.

6.1 Offline Protocol

An offline evaluation uses data from the past and then splits it into a training
and a test set. The algorithms then simulate real interactions given the training
set and measure the results in comparison to the test set. Since part of this

41

6 Evaluation Protocol

master thesis is already published in Lacic, Kowald, Reiter-Haas, et al. (2018),
the evaluation protocol is similar to this publication. In addition to measuring
the accuracy of the recommendations, we explore the impact on other measures
as well.

For the evaluation, the dataset was generated by a method similar to Kowald,
Lacic, and Trattner (2014). Only users with enough (i.e., a predefined variable)
interactions are considered in the evaluation. Then the last k job postings of
the user history are used for the test set, while the others are used for the
training set. For the reported results in this thesis, only users with at least
4 interactions on different job postings are included. The last 3 of those job
postings are added to the test set, while the remaining (i.e., at least 1) items are
put in the training set. Thus, it simulates a previous state of the user’s history.
The recommender system then tries to predict the 3 items in the test set for each
user. The recommendations for the evaluation are configured to return a list of
3 items as well, as is the case for the Infobox scenario described in Chapter 4.

In Lacic, Kowald, Reiter-Haas, et al. (2018) the recommender system’s perfor-
mance was predicted by several measures that are also used for this thesis. The
DCG@k (Equation 6.1) is a measure of accuracy, which also takes the position
of the recommended items into account. The reli signifies how relevant an item
is at position i. Typically it is just the indicator function of whether the item
belongs to the set of relevant items (i.e., 1 if it is relevant and 0 otherwise). The
parameter k specifies how many items are being recommended at most. The
metric is usually normalized by dividing with the iDCG@k, which is the highest
possible (i.e., ideal) value the DCG@k can achieve. The resulting metric is called
the nDCG@k. Since nDCG is an accuracy based measure, it tries to predict how
accurate the recommendations were when comparing it to the test set.

DCG@k =
k

∑
i=1

2reli − 1
log2(i + 1)

(6.1)

nDCG@k =
DCG@k
iDCG@k

(6.2)

Also, other accuracy based measures from information retrieval, like Accuracy
and F1-measure, apply for the problem at hand. However, these measures
do not take the position into account. Accuracy (Equation 6.3) just measures
the percentage of correctly retrieved samples. In particular, it specifies a ratio
of correct relevant (i.e., tp) and correct irrelevant (i.e., tn) documents, over
the whole dataset (f p and f n denote incorrectly considered as relevant or

42

6.1 Offline Protocol

irrelevant, respectively). Typically, only a small fraction of items are considered
relevant for a particular user, which leads to a skewed distribution in the dataset.
Thus, one could achieve good results in terms of Accuracy by only predicting
these towards the skewed side (i.e., predicting no relevancy). In the case of
recommender systems, providing an empty recommendation list might achieve
high results as most items are likely irrelevant. However, this is not the desired
outcome. If one side is more important than the other, this can be achieved
by utilizing either precision or recall. Precision (Equation 6.4) only considers
relevant documents that have been predicted. Thus, it is used when you rather
prefer a small set containing only relevant documents. Recall (Equation 6.5), on
the other hand, considers all relevant documents. It is used when providing
a full list of relevant documents is important. Since both cases can easily be
optimized by either predicting only a few relevant (in case of precision) or
all documents (in case of recall), these measures are usually not used without
another measure. This is where F1-measure (Equation 6.6) comes into play. It
is the harmonic mean of the two other measures. Thus, both metrics have to
be reasonably high for good results. This means that the results have good
precision without sacrificing the recall and vice versa.

accuracy =
tp + tn

tp + f p + tn + f n
(6.3)

precision =
tp

tp + f p
(6.4)

recall =
tp

tp + f n
(6.5)

F1 =
2 ∗ precision ∗ recall

precision + recall
(6.6)

Additionally, two other measures are used for the offline evaluation. The first
is the mean reciprocal rank (MRR). The second is the mean average precision
(MAP). Both equations also consider the rank of the results and serve a similar
purpose as nDCG. The equation for the MRR is given by Equation 6.7, and the
equation for MAP is given by Equation 6.8.

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(6.7)

43

6 Evaluation Protocol

MAP =
∑Q

q=1 AveP(q)

Q
(6.8)

Using accuracy based measures is only one way to evaluate a recommender
system. However, there are also other important factors to consider. Novelty, as
described in Zhou, Kuscsik, J.-G. Liu, et al. (2010), is a measure that considers
whether the recommended items are novel, which means that they were not
often recommended before. Thus, recommending popular items very often
might lead to high accuracy, but very low Novelty. This is undesired as novel
recommendations have been shown to build trust in the recommender system
(Pu, L. Chen, and Hu, 2011). The Novelty@k, as given in Equation 6.9, computes
the fraction of the popularity of the recommended item to the most popular
item. This is done for all k items that are recommended. The log function is
used for regularization, while the addition 1 avoids the computation of log(0).

Depending on the definition, the novelty is the inverse of the calculated sum,
which the definition used from now on. Thus, a list of only the most popular
item (repeating within the recommendation list) would result in a novelty of 0.
Recommending the most unpopular item(s) would yet result in the maximum
novelty, which would be close to 1.

Novelty@k = 1− 1
k ∑

i∈k

log2(popi + 1)
log2(popMAX + 1)

(6.9)

An important consideration when recommending a list of items at once is how
similar those items are. Although recommending very similar items might
result in high accuracy, it might lead to dissatisfaction of the users. Smyth
and McClave (2001) propose a diversity metric for recommender systems and
argue for the advantages of diverse recommendations in certain scenarios.
Equation 6.10 defines Diversity@k, which uses a distance measure to compute
how dissimilar the recommended items are to each other. This is achieved by
applying the dissimilarity function d(i, j) on the content of the job postings.

Diversity@k =
1

k · (k− 1) ∑
i∈R

∑
j∈uk,j 6=i

d(i, j) (6.10)

Serendipity measures how unusual or surprising recommendations are (Y. C.
Zhang, Séaghdha, Quercia, et al., 2012). For this, it computes the similarity of
a recommendation with the expected contents. This expectation is calculated

44

6.1 Offline Protocol

by the items the user has consumed in the past. If it is dissimilar then the
serendipity is high. Very high serendipity might come at the cost of accuracy and
thus would have a negative impact. However, a high serendipity recommender
might recommend something the user likes, but did not explore in the past.
Thus, it might steer the user into a new dimension and boost diversity. The
equation for this measure can be seen in Equation 6.11.

Serendipity@k =
1

|Rk| ∗ |Hs| ∑
i∈Rk

∑
j∈Hs

d(i, j) (6.11)

Computing measures per recommendation does not lead to a global statement
of the recommender system’s performance. Hence, the individual results need
to be aggregated for an overall estimation. Equation 6.12 averages the results
for all user recommendations to calculate the global performance of the metric.
It is applied to all previously mentioned metrics and is the value used to report
the results.

GLOBAL =
1
|U| ∑

u∈U
METRIC (6.12)

For the three previously mentioned beyond-accuracy metrics, no perfect values
exist. Nevertheless, you can still evaluate and optimize towards certain target
values. In Lacic, Kowald, Reiter-Haas, et al. (2018), this was used on the novelty
measure. First, the novelty of consumed (i.e., applications) recommendations
is calculated. This adapted novelty measure is then used as a target value for
optimizing the recommendations. Thus, you want recommendations that are
as close as possible to this target value, since it might boost the number of
applications.

The results are also evaluated in terms of user coverage and recommendation
runtime. User coverage specifies the percentage of users for which recom-
mendations can be generated. Sometimes it is not possible to generate any
recommendations for a user with a certain algorithm. This is typically the case
for cold-start users (i.e., users without any interactions). Non-personalized
approaches should achieve a value of 1 since they are not user-dependent. Note,
that only users with a minimum amount of interactions are considered for the
simulation. Thus, a user without this minimum amount of interaction is not
considered and some algorithms might not work in that case.

The time it takes to generate a recommendation (i.e., runtime) is also interesting.
This measures is especially important when generating recommendations in

45

6 Evaluation Protocol

real-time. It is measured in milliseconds and the runtime metric only considers
the calculation time, but does not account for external factors like the internet
speed of a user. Hence, these external factors might play a more important
role in practice. Nonetheless, it gives the first estimation of the computational
complexity of the algorithms.

As already indicated, an offline evaluation might not catch all the aspects of a
real-world scenario. Thus, the findings have to be validated in an online system.
The protocol for these evaluations is covered in Section 6.2.

6.2 Online Protocol

The online evaluation is done to validate the results of the offline evaluation. In
the online evaluation, different configurations are being tested in a real-life sce-
nario. Thus, this kind of evaluation captures all the aspects of the platform. This
leaves little to no speculation on whether the results are reasonable (provided
that there is a statistical significance). However, the results might be specific to
the platform they are applied to.

The method chosen for the online evaluation is to conduct an A/B test. In an
A/B test, the user base gets split up into two or more groups for the whole
duration of the test. All the tests conducted for this master thesis were split in
two groups where 50% of the user base belongs to each group. The splitting of
users into groups is done in order to easily compare the given approaches with
each other. The equal splits are done to increase the likelihood of statistical
significance when a low amount of data is used. Since more available data
for each approach increases the likelihood of statistical significance for the
results.

To measure the performance of the algorithm, the click-through rate is being
utilized (Equation 6.13). This metric measures the ratio between the impression
against some kind of action that was performed. In particular, the action
specifies whether any action happened on a recommended item. Typically, this
means that at least one click was performed since this is the usual starting point
for other interactions. Unfortunately, no impressions are included in the dataset.
Thus, it is assumed that each generated recommendation is also shown to the
user. This means that the CTR specifies the percentage of recommended items
that lead to an interaction.

46

6.2 Online Protocol

CTR =
#actions

#impressions
(6.13)

For the calculation of CTR, we use the feedback loop established in Chapter 5.
It ensures that actions, which resulted due to a recommendation, can be linked
to the corresponding recommendation. Given this setup, the metric can easily
be calculated by considering all the recommendations in question and their
linked interactions.

Finally, it is important to measure how likely the hypothesis of the result is true
or not. This is done by a hypothesis test. The utilized test statistic for this is the
Person’s chi-squared test statistic χ2 (Pearson, 1900). If the results are not in the
critical area of the chi-squared distribution, they can be said to be statistically
significant. The typical p-value of 0.05 was chosen for this. In Equation 6.14,
Oi specifies the observations, while Ei specifies the expectations, which is the
mean for the null hypothesis.

χ2 =
n

∑
i=1

(Oi − Ei)
2

Ei
(6.14)

Multiple A/B tests were conducted using the previously established method.
Due to the chosen approach (i.e., two 50% splits), only one A/B test can be
performed per recommendation scenario simultaneously. The duration for each
A/B test was approximately between two weeks and one month each. The exact
duration for each test is stated in Chapter 7.

For runtime, the student’s t-test statistic is used to calculate the statistical
significance (Student, 1908). In Equation 6.14, x specifies the samples, µ0
specifies the mean, s specifies the standard deviation, and n specifies the
number of samples.

t =
x̄− µ0

s/
√

n
(6.15)

In theory, an online evaluation should replicate the results of the offline eval-
uations. However, the results cannot be compared directly since they utilize
different metrics. The comparison of CTR to accuracy based measures seems
reasonable, but there is a factor that CTR cannot account for and that is the
length of the session. Since the navigation through the job platform does not
reach an endpoint, the algorithms can never achieve 100% CTR. This factor
becomes smaller as the sessions get longer.

47

7 Results

This chapter provides the findings of the experiments. The evaluations are
conducted with the setup described in Chapter 6. First, the offline evaluation
results are detailed in Section 7.1. Then, in Section 7.2, the online evaluation
results are being covered. Finally, in Section 7.3, the two types of evaluation are
compared against each other, and the findings are summarized.

7.1 Offline Evaluation

The results of the offline evaluations consider three different kinds of measures
on multiple algorithms. The first part of the offline evaluation compares four
baseline algorithms with a vector-based approach. The baseline algorithms
consist of Most Popular (MP), Content-based Filtering (CBF), Collaborative
Filtering (CF), and Context CF (CFcont). The vector-based approach uses the
LAST strategy for aggregation. Each kind of the three different measures is
evaluated in their corresponding subsection. First, the accuracy based measures
in Subsection 7.1.1. These measures are generally used to determine the ex-
pected quality of the recommendation. Second, the beyond-accuracy measures
in Subsection 7.1.2. While the beyond-accuracy measures do not have a direct
goal to achieve, they provide valuable insights into the underlying workings
of the algorithms. Third, the Subsection 7.1.3 very shortly covers the compu-
tational performance of the algorithms. The evaluation is performed with the
protocol defined in Section 6.1. The results of this part of the offline evalua-
tion are displayed in Table 7.1 but are also visualized in their corresponding
subsections.

Next, Subsection 7.1.4 considers the temporal effects of job interactions. Hence,
it incorporates the aspects of frequency and recency into the evaluation. It
summarizes the previous work of Lacic, Kowald, Reiter-Haas, et al. (2018),
which has been published previously in the IFUP 2018: Workshop on multi-
dimensional information fusion for user modeling and personalization. Finally,
Subsection 7.1.5 summarizes the findings of the offline evaluation.

49

7 Results

Approach CBF CF CFcont MP LAST
nDCG 0.0077 0.0284 0.0276 0.0168 0.0074

MRR 0.0049 0.0182 0.0178 0.0106 0.0047

MAP 0.0052 0.0191 0.0186 0.0107 0.0051

F1 0.0073 0.0261 0.0250 0.0158 0.0069

Precision 0.0074 0.0261 0.0250 0.0158 0.0069

Recall 0.0073 0.0261 0.0250 0.0158 0.0069

Diversity 0.4757 0.6568 0.6526 0.6197 0.5592

Novelty 0.5960 0.4067 0.4122 0.3283 0.5924

Serendipity 0.6379 0.6787 0.6774 0.6449 0.6793

User Coverage 0.9029 0.9972 0.9968 1.00000 0.9999

Runtime (ms) 45.1279 41.4760 53.4375 12.9440 50.5185

Table 7.1: Results of the offline evaluation of CBF, CF, CFcont, MP, and LAST. All results were
evaluated when recommending 3 items. First are six accuracy metrics, followed by
four beyond-accuracy, and finally runtime. All accuracy metrics report similar results
across the five approaches.

7.1.1 Accuracy

Figure 7.1 visualizes various accuracy based measures (i.e., nDCG, MRR, MAP,
F1, Precision, and Recall). As the results indicate, all approaches are stable across
the different metrics (i.e., the order and magnitude between the approaches
are relational to the metrics). Thus, we consider all metrics together instead of
analysing each metric individually.

Both CF approaches perform best by far. Interestingly, including the context (i.e.,
CFcont) slightly worsen the performance. We suspect that this effect could be a
result of the small dataset as the candidate filtering further narrows the small
people of similar users. MP also performs well on accuracy. Hence, it already
provides a good baseline in a cold-start scenario. We make use of this fact in
the online evaluation. CBF struggles to generate accurate recommendations
and performs the worst in this regard. The performance of LAST is similar to
CBF.

7.1.2 Beyond-Accuracy

We employ four beyond-accuracy measures for the evaluation (i.e., Diversity,
Novelty, Serendipity, and User Coverage). Unsurprisingly, Figure 7.2 shows that

50

7.1 Offline Evaluation

0.000 0.005 0.010 0.015 0.020 0.025

MAP

MRR

F1

nDCG

Precision

Recall

Accuracy

CBF
CF
CFcont

MP
LAST

Figure 7.1: Results of the accuracy measures. CF performs best. While both content-based
approaches perform significantly worse.

the approaches perform very differently on the various metrics as they measure
very different aspects of the recommendation.

In terms of user coverage, all approaches but CBF achieve almost perfect
results. CBF cannot provide recommendations for jobs that are dissimilar to all
other jobs. Hence, users who interact with those jobs would not receive any
recommendations. This effect vanishes when using LAST since the similarity
function almost certainly finds something to recommend. Considering both CF
approaches, they can almost cover all the users, which the offline evaluation
considers, as well. However, this is only true for users, which have the minimum
amount of interactions required to be included in the evaluation (i.e., at least 4).
Finally, only MP is able to recommend to all users since the recommendations
are the same for all of them (i.e., non-personalized).

Given this and the fact that it also provides reasonably high accuracy, we use
MP for the setup of the online evaluation. There, we use it as a fallback in the
case that not enough recommendations can be generated. This ensures that a
fixed-size list of jobs is always generated for the job platform.

Both MP and CF lead to highly diverse results, while CBF performs poorly
in this regard. This effect is expected since content-based recommendations

51

7 Results

0.0 0.2 0.4 0.6 0.8 1.0

Serendipity

Novelty

Diversity

User Coverage

Beyond-Accuracy

CBF
CF
CFcont

MP
LAST

Figure 7.2: Result of the beyond-accuracy measures. The biggest difference can be observed in
novelty. MP performs worst, while both content-based approaches have a very high
novelty.

consider similar items for recommendation and thus the recommendations
are also similar to each other. The LAST approach performs a bit better in
this regard since it performs the operations not on the content itself, but the
embeddings (i.e., low-dimensional representations of the content) instead. Since
CF is oblivious about the content for the generation of recommendations, a high
diversity is expected. This is true for both CF algorithms. Since CFcont is more
restrictive on the jobs considered for the recommendation, the results are likely
a little less diverse. The diversity of MP depends heavily on the dataset and is
rather high in this case.

The novelty measure differs greatly between the approaches. Both, CBF and
LAST, have a very high novelty since they do not consider interaction data for
generating recommendations. Thus, new items, which are novel per definition,
can be recommended immediately. Unsurprisingly, MP has the lowest novelty
since it recommends the same items to all users. Both CF approaches lie
somewhere in the middle. Interestingly, the more restrictive CFcont has slightly
higher novelty than its counterpart. Thus, its restriction lessens the effect that
popularity has on the algorithm.

The serendipity of all approaches is very similar, with CBF and MP being slightly
less surprising. Apparently, the slightly lower serendipity of CBF is a result of
both the metric and the approach using the content and a similarity function

52

7.1 Offline Evaluation

0 10 20 30 40 50

CBF

CF

CFcont

MP

LAST

Runtime (ms)

Figure 7.3: Comparison of the runtime performance. MP is the quickest to calculate. The other
methods are all pretty equal. All of them can be used for real-time recommendations.

for the calculation. Counter-intuitively, MP also leads to highly surprising
recommendations. This can be attributed to the fact that MP does neither
consider the content nor the user history.

7.1.3 Runtime

Figure 7.3 shows the average time in milliseconds to calculate the results per
recommendation request. Unsurprisingly, the MP algorithm is by far the
quickest. The other four lie relatively close to each other. All algorithms
compute the results in about 50ms, which makes all of them suitable for the
task at hand.

There are some interesting findings, though. The CF is quicker than the CBF
approach. Given the accuracy of this approach, this makes it not only more
accurate but also faster. The LAST approach is only slightly slower than the CBF
approach. Finally, the CFcont is the slowest of them all. This is interesting as this
rather simple algorithm needs more time than the LAST approach, but this can
be explained by the additional filtering step. Note that all of the results have to
be taken with a grain of salt. The results cannot consider the varying calculation
time, depending on the implementation and underlying architecture.

53

7 Results

7.1.4 Considering Frequency and Recency

The previous experiments only evaluated the LAST strategy of the vector-based
approaches. LAST only considers the most recent job interaction. Here, we
also consider the frequency of job interactions by utilizing the AVG approach.
Moreover, we also evaluate the incorporation of the BLL equation into recom-
mendations.

This part of the evaluation has already been published on the WSDM 2018 con-
ference (Lacic, Kowald, Reiter-Haas, et al., 2018). Here, we present a summary
of this publication. The work mainly focuses on the effects of frequency and
recency of job interactions. Moreover, it also explores the effects of dimension-
ality on the results. The evaluation uses three baseline approaches (i.e., MP,
CBF, and CF) and compares them against multiple vector-based approaches.
The vector-based approaches are trained on 100, 200, and 300 dimensions. As
already stated, we consider all three aggregation strategies (i.e., LAST, AVG,
and BLL). Additionally, a mixed hybrid model combining the BLL and CF
model is considered. The evaluation protocol also differs slightly. It considers
recommending 3 and 6 jobs. The results are evaluated on nDCG, novelty, and
diversity. Additionally, an adapted novelty measure (i.e., Novelty*) is evaluated.
This measure considers how close the novelty of the recommendations is to the
novelty value where most applications happen (i.e., the target novelty NA of
0.58).

Table 7.2 shows the results of the publication. We found both MP and CF are far
from the target novelty since their novelty is very low. CBF, on the other hand,
even overshoots the target novelty. Hence, the slightly lower novelty of LAST is
desired. Using AVG, which considers frequency only, decreases accuracy but
increases diversity compared to LAST. Actually, it leads to the lowest accuracy
and highest diversity. It also further increases the already very high novelty of
LAST, which is undesired. These findings suggest a trade-off between frequency
and recency is needed.

The BLL approach balances the effects of both extremes. It leads to just slightly
less accuracy than LAST and just slightly less diversity than AVG. Similarly
to LAST, it outperforms CBF on both those metrics. The novelty metric stays
comparable to LAST (actually BLL with 100 dimensions is closest to the target
novelty).

The effects of embedding dimension on the performance are very small. The
diversity increases slightly with higher dimensions. Interestingly, a higher
dimension typically leads to a decrease in the nDCG metric. The effects on

54

7.1 Offline Evaluation

Approach k = 3 k = 6

Novelty∗ Novelty Diversity nDCG Novelty∗ Novelty Diversity nDCG

MP .5849 .1649 .7261 .0395 .6057 .1857 .7156 .0722

CBF .8124 .7676 .4536 .0122 .7965 .7835 .4854 .0156

CF .7718 .3518 .6736 .0889 .7860 .3660 .6814 .1292

D
oc

2
Ve

c

LA
ST

d=100 .8331 .7469 .4845 .0170 .8161 .7639 .5486 .0217

d=200 .8411 .7389 .5091 .0182 .8212 .7588 .5854 .0219

d=300 .8448 .7352 .5163 .0177 .8206 .7594 .5953 .0220

A
V

G

d=100 .8275 .7525 .6929 .0107 .8144 .7656 .7239 .0154

d=200 .7930 .7870 .7455 .0099 .8050 .7750 .7830 .0135

d=300 .7715 .8085 .7439 .0091 .8003 .7797 .7796 .0133

BL
L

d=100 .8500 .7300 .5974 .0156 .8322 .7478 .6486 .0198

d=200 .8284 .7516 .6408 .0146 .8275 .7525 .7006 .0188

d=300 .8191 .7609 .6388 .0144 .8222 .7578 .7015 .0186

CF + BLL .8731 .4531 .6820 .0721 .9578 .5378 .6890 .0900

Table 7.2: This table provides the evaluation results of Lacic, Kowald, Reiter-Haas, et al. (2018)
and has been previously published in the IFUP 2018: Workshop on multi-dimensional
information fusion for user modeling and personalization. It shows that a recom-
mendation approach that uses the BLL equation provides a good balance between
accuracy and diversity while achieving the best performance with respect to the target
novelty (i.e., the Novelty∗ measure).

novelty depend on whether the focus is on frequency or recency. For recency (i.e.,
LAST), the novelty decreases with higher dimensions. Whereas for frequency
(i.e., AVG), this effect is reversed and the novelty increases with the dimension
size.

Finally, we use a mixed hybrid by combining BLL with CF in a round-robin
fashion. The idea of this trade-off is to use the advantages of both approaches
while counteracting the disadvantages. The result of this combination is a
much higher accuracy than using only a vector-based approach. The nDCG
is comparable to CF alone and thus the combination also outperforms the
LAST and MP approach. Combining algorithms typically boosts the diversity
of recommendations. Unsurprisingly, the combined diversity is higher than
either CF or BLL alone and is only surpassed by MP and AVG. Furthermore,
the hybrid model achieves the highest regarding the adapted novelty measure.
Thus, we conclude that the combined model provides a good balance between
accuracy, diversity, and novelty.

55

7 Results

7.1.5 Offline Findings

In summary, both CF and MP have high accuracy and diversity, but a low
novelty. The results of CBF are opposite, low accuracy and diversity, but a high
novelty. Finally, the LAST performs similar to CBF but improves the diversity
and user coverage.

Using the BLL approach provides a good balance between the recency aspect
of LAST and the frequency aspect of AVG. CF provides a strong baselines
technique for generating recommendations. Finally, a hybrid combination
provides a well-rounded model of the different aspects of recommendations.

From this evaluation, we conclude that the best recommendation technique uses
a combination of various aspects and approaches. In particular, a model that
performs well on all metrics incorporates three types of information. First is
the latent information in the job content, which we model with embeddings.
Second is the temporal information of the job interactions, which we model
with the BLL equation. Last is the similarity information of users, for which we
use CF. These findings are put to the test in various online evaluations.

7.2 Online Evaluation

The online evaluation first covers the results of all conducted A/B tests on
two recommendation scenarios. Subsection 7.2.1 considers the experiments
with the Infobox scenario, while Subsection 7.2.2 deals with the Home scenario.
Both sections provide findings of various A/B tests and are structured into
paragraphs. Each paragraph evaluates one particular A/B test. The name of the
test is denoted at the beginning. We visualize the results in figures that show
the daily CTR on the left and boxplots of the runtime on the right.

The focus of those experiments lies on statistically significant results (i.e., a p-
value lower than 0.05). Nonetheless, we shortly report the results of several other
experiments as well. The evaluations use the protocol defined in Section 6.2.
Five of these evaluations have already been published on the RecSys 2019

conference (Reiter-Haas, Lacic, Duricic, et al., 2019). Those experiments are
marked by a ? after the test name. The online evaluation is then concluded by
presenting the overall findings in Subsection 7.2.3.

56

7.2 Online Evaluation

7.2.1 Infobox Tests

We perform eight experiments within the Infobox scenario. We start by con-
ducting two preliminary experiments on parameter choice for content-based
recommendations. First, we evaluate the Effects of job teasers in CBF. Second,
we deal with the Curse of dimensionality in LAST. Hence, we consider the
effects of higher dimensional embeddings on the recommendations. Moreover,
we evaluate whether this increase in computational cost is justified. Then, we
focus on tests for the vector-based approaches. Thus, we consider the Impact
of embeddings on recommendation performance. The BLL equation is used to
evaluate the Influence of frequency and recency on the results. Experimenting
on the time decay parameter shows the Merit of recency for this scenario. Re-
garding collaborative filtering, we test whether Considering context improves
the results. This evaluation is performed to choose the correct approach for the
following hybrid experiments. To evaluate the performance of embeddings in
a hybrid setting, we are Combining embeddings with collaborative filtering.
Finally, we conduct a similar experiment by Combining frequency and recency.
This experiment concludes the evaluation for Infobox recommendations.

Effects of job teasers. For content-based recommendations, it is important to
select the right features to reach a satisfying result. In this preliminary test, we
evaluate whether using a teaser text (as described in Chapter 4) is necessary
for a good recommendation performance. The test was 30 days long, and
43, 653 recommendation requests from 12, 543 distinct users were received. The
inclusion of the teaser results in a statistically significant increase of 13% in
CTR. In particular, considering the teaser results in a CTR of 0.0272, whereas
no teaser results in only in a CTR of 0.0240. One detail to note is that the teaser
texts are often very similar within the job ads of the same company. Thus, this
might result in a lower diversity of the recommendation when a company has
multiple jobs online.

Curse of dimensionality. In this second test for parameter configuration, we
consider the effects of dimensionality. To optimize the embeddings each di-
mension should encode a meaningful (latent) property. Thus, more dimensions
might adversely affect the results. In this experiment, two popular dimension
sizes were compared, namely 100 and 300. We conducted a 32 days long test,
where 10, 018 distinct users performed 45, 810 recommendation requests. The
results show that the bigger dimension embeddings perform worse in CTR
(i.e., the CTR of 100 dimensions is 16% higher than for 300 dimensions). In

57

7 Results

particular, the CTR is 0.0274 for 100 dimensions and 0.0237 for 300 dimensions.
This suggests that job ads can already be encoded very well within a low dimen-
sional vector space. Moreover, it suggests that the number of features needed
to accurately describe a job ad are rather low and additional dimensions have
a adversary effect. Regarding the runtime, the difference is very minimal (i.e.,
154ms for 100 and 159ms for 300 dimensions).

Impact of embeddings?. An expectation of this master thesis is that using
a low dimensional representation of the content can improve content-based
recommendations. Therefore, this test compares CBF with LAST. Over the
32 days testing period, 31, 968 recommendation requests were performed by
8, 576 distinct users. This experiment is the initial test on whether embeddings
improve the recommendation performance.

0 3 6 9 12 15 18 21 24 27 30
Day

0.01

0.02

0.03

0.04

0.05

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

CBF
LAST

CBF
LAST

20

40

60

80

100

R
un

ti
m

e
(m

s)

Figure 7.4: Results of Impact of embeddings, which compares the CBF baseline to LAST. The
CTR fluctuates greatly but overall LAST outperforms CBF.

Figure 7.4 shows that the performances of both algorithm fluctuate greatly
over testing period. Nonetheless, LAST leads to an overall increase of 18%
in CTR. Surprisingly, LAST also has a 24% lower runtime. Both results are
statistically significant. In particular, LAST has a CTR of 0.0229 and a 39ms
runtime, while CBF has a CTR of 0.0194 and 51ms runtime. This confirms
that indeed a vector-based approach is capable of to improve content-based
recommendations. This experiment has previously been published on the
RecSys 2019 conference (Reiter-Haas, Lacic, Duricic, et al., 2019).

58

7.2 Online Evaluation

Influence of frequency and recency?. The incorporation of the BLL equation
applies the temporal aspects of the user history to the embeddings. This
experiment builds upon the results of the Impact of embeddings and compares
BLL (with a time decay parameter of 0.5) with LAST. Over the 15 days testing
period, 18, 464 recommendation requests were performed by 4, 715 distinct
users.

0 3 6 9 12
Day

0.01

0.02

0.03

0.04

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

LAST
BLL

LAST BLL
0

50

100

150

200

R
un

ti
m

e
(m

s)
Figure 7.5: Results of Influence of frequency and recency, which compares LAST to BLL. The

BLL algorithm could not further improve upon the performance of LAST.

Figure 7.5 shows that BLL could not improve the results, but has the opposite
effect. As such, BLL performs worse on both CTR and runtime. In fact, the
results are very significant for both measures, as the p-value is below 0.0005.
In particular, LAST has a 75% greater CTR and 29% less runtime compared to
BLL. The specific results of LAST are a CTR of 0.0249 and a runtime of 67ms.
While the CTR is comparable to values of Impact of embeddings, the runtime is
a lot higher in this case. This can be attributed to external factors, like server
load. This is also the reason A/B tests are performed in the first place, to avoid
such irregularities in the results. Considering the results of BLL shows that it
only has a very low CTR of 0.0142 and a high runtime of 94ms. These findings
contradict the results of the offline evaluation and need further exploration in
this regard. This experiment has previously been published on the RecSys 2019

conference (Reiter-Haas, Lacic, Duricic, et al., 2019).

Merit of recency?. We suspect that the results of the Influence of frequency
and recency can be attributed to frequency aspects of the BLL equation. Thus, in
this experiment, we investigate this parameter in further detail. We use apply the

59

7 Results

parameter to simulate a shorter (i.e., d = 0.6) and longer (i.e., d = 0.4) memory
retention. Our hypothesis is that a focus on recency (i.e., the higher time decay
parameter) performs better in the given scenario. The test is conducted over a
15 days testing period and received 11, 992 recommendation request from 3, 375
distinct users.

0 3 6 9 12
Day

0.01

0.02

0.03

0.04

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

BLLd=0.4

BLLd=0.6

BLL d=
0.4

BLL d=
0.6

0

50

100

150

200

R
un

ti
m

e
(m

s)

Figure 7.6: Results of Merit of recency, which compares the time decay parameters of 0.4 and
0.6 for BLL. A higher time decay parameter leads to better results. Thus, a focus on
recency is better for the Infobox scenario.

Figure 7.6 supports this hypothesis. BLLd=0.6 has a 36% higher CTR than
BLLd=0.4, which is a significant increase. In particular, BLLd=0.6 has a CTR of
0.0174, while BLLd=0.4 has a CTR of 0.0128. Regarding runtime, no statistically
significant differences could be found as both configurations perform similarly
in speed (i.e., BLLd=0.6 has a runtime of 97ms, and BLLd=0.4 has a runtime of
95ms). This time, the performances are comparable to the Influence of frequency
and recency. BLLd=0.6 performs better, while BLLd=0.4 performs worse on CTR
compared to BLL with a time decay of 0.5. Moreover, the runtime performance
is also very close. This experiment has previously been published on the RecSys
2019 conference (Reiter-Haas, Lacic, Duricic, et al., 2019).

Considering context. This experiment investigates whether considering con-
text (i.e., the current item) is beneficial for collaborative filtering. Thus, it
compares CF with CFCont.. The 29 days long test received 26, 286 recommen-
dation requests from 6, 182 different users. We also evaluate several hybrid
combinations, which we combine with collaborative filtering, later on.

60

7.2 Online Evaluation

0 3 6 9 12 15 18 21 24 27
Day

0.02

0.04

0.06

0.08

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

CFCont.

CF

CF Con
t. CF

50

100

150

200

R
un

ti
m

e
(m

s)

Figure 7.7: Results of Considering context, which compares the context including CFcont to the
simpler CF. Considering the current item for CF does not improve the results.

Unfortunately, no clear (i.e., statistical significant) winner of this test could
be found. Figure 7.7 shows that both approaches perform very similar in
terms of CTR and runtime. CF has a slightly higher CTR (i.e., an 8% increase)
compared to CFCont.. But CF also a slightly higher runtime of 114ms compared
to 111ms of CFCont.. The lower runtime of CFCont. is counteracted by a higher
standard variation. In particular, CF has a CTR of 0.0265, while CFCont. has a
CTR of 0.0244. For runtime, we find that CFCont. has a greater variation. We
attribute this variation to the differences in the number of users considered
for the filtering step. We conclude that the additional complexity that CFCont.
introduces is not worth the effort, and we stick to CF hereafter.

Combining embeddings. We repeat the experiment of the Impact of embed-
dings but in a hybrid setting. As such, we combine both CBF and LAST with CF
in a round-robin fashion. We denote those approaches as HYBCBF and HYBLAST,
respectively. Over 31 days, there were 41, 937 recommendation requests from
9, 434 distinct users.

Figure 7.8 indicates that both combinations have almost identical performance
in CTR. Hence, no statistical significant result was found for CTR. As such,
HYBLAST performs only 5% better than HYBCBF for CTR. Both approaches have
a high CTR, as HYBLAST has 0.0271, and HYBCBF has 0.0259. We suspect that
the performance of CF dominates this combination and leads to the similarity
of the results. The runtime is 125ms for HYBLAST and 133ms for HYBCBF.

61

7 Results

0 3 6 9 12 15 18 21 24 27 30
Day

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

HYBCBF

HYBLAST

HYB CBF

HYB LAST

50

100

150

200

R
un

ti
m

e
(m

s)

Figure 7.8: Results of Combining embeddings, which compares CBF and LAST, both in a hybrid
combination with CF. Both combinations closely resemble each other. Thus, no
significant difference is found. A dominance of CF could explain the phenomenon.

Combining frequency and recency. The results of the Influence of frequency
and recency indicate that BLL is not well suited for the Infobox scenario. We test
this hypothesis again in a hybrid setting, which we set up similar to Combining
embeddings. Thus, we compare LAST and BLL in hybrid combination with CF.
We denote the two approaches as HYBLAST and HYBBLL, respectively. The test
took 20 days and handled 18, 824 recommendation requests from 4, 951 distinct
users.

0 3 6 9 12 15 18
Day

0.02

0.04

0.06

0.08

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

HYBLAST

HYBBLL

HYB LAST

HYB BLL

100

200

300

400

R
un

ti
m

e
(m

s)

Figure 7.9: Results of Combining frequency and recencywhich compares LAST and BLL, both
in a hybrid combination with CF. Even in a hybrid setting BLL with a time decay of
0.5 does not seem suited for the Infobox scenario.

62

7.2 Online Evaluation

Figure 7.9 again confirms our hypothesis, as HYBLAST performs 35% better
on CTR, which is a statically significant increase. In particular, the results are
a CTR of 0.0364 for HYBLAST and 0.0270 for HYBBLL. HYBLAST has runtime
of 184ms, and HYBBLL has 220ms. Comparing the results to testing results of
Combining embeddings, we see that in this case, CF was not able to leverage
the performance to a similar level. Thus, we conclude that BLL, with its
incorporation of frequency, is indeed unsuited for the task.

7.2.2 Home Tests

For the Home scenario, we conduct three experiments. Similar to the Infobox
scenario, we evaluate the Influence of frequency and recency on the recom-
mendation performance and effects of Combining frequency and recency with
collaborative filtering. Thus, we also compare their results against the In-
fobox scenario. Additionally, in a small experiment, we evaluate the effects of
Considering demographics on the recommendation performance.

Influence of frequency and recency?. In the Influence of frequency and re-
cency of the Infobox scenario in Subsection 7.2.1, we report that BLL performs
low. We suspect that this poor performance is a particularity of the Infobox
scenario. Thus, we conduct another test with BLL but for the Home scenario.
The test scenario is similar to the previous one. However, this time we compare
against another baseline (i.e., CF which is the default for the Home scenario).
During the 25 days of the test, 26, 334 recommendation requests were performed
by 9, 620 distinct users.

Figure 7.10, indeed, shows that BLL outperforms CF as it leads to a 16% higher
CTR and 14% lower runtime. Both differences are statistically significant and
confirm our expectations. In particular, BLL has a CTR of 0.0671 and runtime
of 114ms, while CF has a CTR of 0.0580 and a runtime of 132ms. Note that in
this scenario, the CTR for both is significantly higher compared to the Infobox
scenario. This is a result of the more prominent placement of the recommen-
dations for this scenario. Unlike the results of the Home scenario, here, BLL
poses a strong technique for generating recommendations, as suggested by the
offline evaluation. This indicates that the offline evaluation tends to replicate
the results of the Home scenario more closely. This is no surprise as most
interactions happen on the Home page. Interestingly, for the Home scenario,
BLL works far better than predicted by the offline evaluation. Contrary to
the offline evaluation, where CF had a much higher nDCG compared to BLL,

63

7 Results

0 3 6 9 12 15 18 21 24
Day

0.00

0.05

0.10

0.15

0.20

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

CF
BLL

CF
BLL

50

100

150

200

250

300

350

R
un

ti
m

e
(m

s)

Figure 7.10: Results of Influence of frequency and recency, which compares the CF baseline to
BLL. In the Home scenario, BLL performs even better than CF.

for this test, the CTR of BLL is higher. This experiment has previously been
published on the RecSys 2019 conference (Reiter-Haas, Lacic, Duricic, et al.,
2019).

Combining frequency and recency?. We know from the Influence of frequency
and recency that BLL is very suitable for the scenario. Furthermore, in the
offline evaluations, a combination of BLL and CF provides the overall best
results. Here, we investigate whether this combination, which we denote as
HYBBLL, still improves upon CF. We conduct the test over a 19 days period,
where the recommender received 24, 907 recommendation requests from 9, 313
distinct users.

Figure 7.11 confirms our intuition. The combination of BLL and CF (i.e., HYBBLL)
leads to a 33% increase in CTR but comes at the cost of a 38% increase in runtime.
In particular, HYBBLL has CTR of 0.0471 and a 172ms runtime, whereas, CF
has CTR of 0.0354 and a 106ms runtime. The results on both metrics are very
significant (i.e., have a p-value less than 0.0005). Hence, the difference in CTR
is much greater this time compared to the Influence of frequency and recency.
We conclude that the combination of BLL and CF is indeed well suited for the
task. However, you have to account for the higher computational effort required
for such a combination. This experiment has previously been published on the
RecSys 2019 conference (Reiter-Haas, Lacic, Duricic, et al., 2019).

64

7.2 Online Evaluation

0 3 6 9 12 15 18
Day

0.00

0.02

0.04

0.06

0.08

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

CF
HYBBLL

CF

HYB BLL

0

100

200

300

400

500

R
un

ti
m

e
(m

s)

Figure 7.11: Results of Combining frequency and recency, which compares the CF baseline to a
hybrid combination of BLL with CF. The results show that the hybrid combination
with BLL improve upon the CF baseline.

Considering demographics. Until now, the user CV data (i.e., demographic
data) is not considered for the recommendations. Hence, we conduct one final
experiment with a limited scope. In this experiment, we utilize the data of
the user CV and use the User2Vec algorithm for generating recommendations.
However, the algorithm can only generate recommendations for users that have
content data in their CVs. When splitting the user base for the A/B test, we put
half of the users with CV in the User2Vec group, and the other half is joined
by the users without CV data. Over 13 days, 6, 252 recommendations requests
were handled. The experiments show that the recommendations for the users
in the User2Vec group perform better (i.e., a 63% increase in CTR). In particular,
User2Vec has a very high CTR of 0.1178, while CF also has a competitive CTR
of 0.0722. The result indicates that there is indeed potential to consider the user
CV as well for the recommendations. However, there is a big consideration of
the experimental setup. The setup does not account that the choice in splitting
the user base leads to this difference in recommendation performance. Hence,
users that take the effort to fill out their CVs could generally be more engaged
with the platform. Thus, User2Vec could even have a negative impact on the
performance compared to CF. We, therefore, conclude the approach shows
potential, but further investigation is indeed needed.

65

7 Results

7.2.3 Online Findings

The findings of the online evaluations show that vector-based approaches are
suitable for both scenarios (i.e., Infobox and Home). However, the temporal
aspects vary depending on the recommendation scenario in question. The
results of Infobox scenario (Subsection 7.2.1) indicate that a focus on recency
works best. Whereas, the results of the Home scenario (Subsection 7.2.2)
leans more towards a focus on frequency. Additionally, for both scenarios, a
combination with CF leads to top performances. We applied these findings to
the platform and rolled the two winning combinations (i.e., HYBLAST for the
Infobox and HYBBLL for the Home scenario) out on their respective scenarios.

We also performed several tests (i.e., Effects of job teasers, Curse of dimen-
sionality, and Considering context) regarding parameter choice on the Infobox
scenario. While there were some statistically significant differences, there are
no particular interesting findings in this regard. This suggests that these do not
matter a lot in a practical setting compared to the choice of algorithms. We,
therefore, conclude that it is typically better to just use the simpler model (e.g.
use embeddings of 100 instead of higher ones).

Finally, we also shortly explored the potential of the user data for generating
recommendations. The results of Considering demographics are indeed promis-
ing but not very conclusive. While a further investigation is out of scope for
this thesis, we suggest considering demographic data as another source of infor-
mation for recommendations. Moreover, the findings suggest that considering
many different types of information is a key factor for good recommendation
performance.

7.3 Comparison and Summarization

Here, we compare the findings of the offline evaluation in Section 7.1 and
the online evaluation in Section 7.2. The results indicate many similarities
between the two types of evaluation. The findings of both suggest that a
combination of a vector-based approach with CF works best. Both evaluations
also suggest that the temporal information provided by BLL greatly influences
the results. However, the findings disagree on whether the focus should lie on
the frequency or recency aspect for a high recommendation performance. For
the offline evaluation, the balance of frequency and recency in BLL suggests
overall good performance. Contrary, for the online evaluation, the results of
BLL depend greatly on the chosen scenario. For the Infobox scenario, the

66

7.3 Comparison and Summarization

recency aspect of vector-based approaches dominates. Whereas, for the Home
scenario, using BLL with its frequency aspect even outperforms CF, which is
not predicted by the offline evaluation.

Comparing the differences in the evaluation procedures also leads to another
interesting finding. For measuring the accuracy of the recommendations, we
use mainly nDCG, which acts as a surrogate for the other accuracy measures,
for the offline and CTR for the online evaluation. While the results of the
measures are typically comparable across the evaluations, they measure very
different aspects. The nDCG considers the problem completely in isolation of
other factors as it only considers relevancy. Thus, just returning only relevant
items leads to the perfect value of 1. The other factors, which we measure in
the beyond-accuracy metrics, are not included. As stated previously, a low
novelty and diversity might lead to a low user satisfaction (Kenthapadi, B. Le,
and Venkataraman, 2017; Smyth and McClave, 2001). The CTR measure is
completely different in this regard. There, a perfect value is often not feasible
as users likely cannot interact with all recommendations. Moreover, CTR also
indirectly captures beyond-accuracy factors. As such, a too low diversity that
negatively affects user satisfaction is also reflected in the CTR. We observe that
the proposed combination of the offline evaluation, which provides a good
balance between novelty, diversity, and accuracy, also performs well in the
online evaluation. This indicates that beyond-accuracy measures are of great
importance for evaluation purposes.

We summarize our findings in three key takeaways. First, the results seem to
suggest that using multiple different aspects of information provides the best
results. In our case, we use temporal, content, and similarity aspects. In particu-
lar, we model these three aspects as following: (i) we convert the content data
into embeddings, (ii) we include the temporal data with the BLL equation, and
(iii) we create a hybrid combination with CF that considers the user similarity.
Second, we find that an offline evaluation already provides a good estimate
for the real performance of recommendations but cannot easily consider the
differences in the recommendation scenario. Thus, these estimations need to
be put to the test in an online evaluation. Third, we find that algorithms that
perform well on beyond-accuracy metrics in an offline evaluation also perform
well in reality. Hence, we argue that beyond-accuracy plays a vital role in evalu-
ating the performance of recommendations and captures important aspects that
accuracy based measures do not account for.

Conclusively, for the Studo Jobs platform, we propose to use a hybrid combina-
tion of LAST and CF for the Infobox scenario and a combination of BLL and CF
for the Home scenario.

67

8 Conclusion

This thesis tackled the problem of providing job recommendations to students.
For this purpose, we answered two research questions. The first research
question (i.e., RQ1) tackles the problem of how to improve job recommendations
with latent features of job postings. While the second research question (i.e.,
RQ2) explores the configuration and combination of algorithms that provide
the best result in student job recommendations. We answered those questions
by conducting offline and online evaluations, respectively.

Regarding RQ1, the results show that deep learning can be an effective en-
hancement to the recommendation use case. This thesis successfully applies a
deep learning method for the job domain. The applied deep learning approach
outperforms the traditional content-based methods (e.g., the TF-IDF model).
Additionally, the inclusion of time decay (i.e., by using the BLL equation) when
modeling latent features further improves the results according to accuracy.
Moreover, considering the frequency of job interactions improves the diversity
of the generated recommendations. Regarding novelty, the results show that
content-based approaches provide highly novel recommendations in general.
Furthermore, the results suggest that a too high novelty leads to user dissatisfac-
tion. This novelty can be balanced out by combining the content-based approach
with, for instance, collaborative filtering (CF). This, in the end, results in having
highly accurate and diverse results, as the offline evaluation suggests.

Building upon these results, to answer RQ2 we conducted an online evalu-
ation on two recommendation scenarios. First, the Infobox scenario where
recommendations are shown near additional job information, and second, the
Home scenario where recommendations are shown on the Home view. For both
scenarios, the results could improve upon the baseline by using the embeddings
for the recommendations. However, the results also show that the importance
of considering the frequency of job interactions depends on the recommenda-
tion use case. For the Infobox recommendations, there is much more weight
on recent items. Thus, a similar item recommender already performs well in
this scenario. However, for the Home recommendations, the results could be
further improved by incorporating a balance of frequency and recency, as is

69

8 Conclusion

suggested by the results for RQ1. Since there are many more interactions for
the index scenario than are for the sidebar scenario, these results agree with the
offline evaluation. Although, considering the offline evaluation alone leads to
the appearance that the BLL equation is superior in general. This shows the
importance of conducting experiments in an online setting, to alleviate factors
simulations do not account for. Additionally, the CF approach can be used to
further boost the result for both scenarios. This also suggests that CF is well
suited for providing recommendations in the job domain.

Finally, the findings of this master thesis have been applied to the Studo Jobs
platform. Both, the Infobox and the Home, scenarios employ a combination of
a vector-based approach with CF. In addition to the evaluation, several students
reported to us that they have easily found their job on the platform, which
further supports the benefits of applying the recommender system for this use
case.

8.1 Reflections

There are several considerations for this thesis. These arise mainly due to the
evaluation being carried out on a real platform. The main consideration is that
the dataset that was used in this thesis is a proprietary dataset of Moshbit and
thus cannot be released to the public, which limits reproducibility.

Testing environment. The advantage of being able to carry out the experi-
ments on a real platform comes at the expense of possible changes to user
behaviour on the platform. These changes emerge due to several factors. First,
the platform received many alterations over the whole testing period. For this
reason, there was a lot of emphasis on keeping the environment controlled
whenever an online evaluation was running. Thus, major updates were de-
ployed only between the different tests, while only minor and critical updates
happened during testing periods. While this ensures that the A/B test is con-
sistent in itself, the tests cannot be easily compared with one another. Other
factors to consider are seasonal changes and trends of user behaviour. However,
this factor needs to be accounted for in a real application by repeating the
experiments with the same or a similar setup after some time has passed.

70

8.2 Future Work

Different testing periods. Another related problem is the difference in testing
periods. This problem can also be attributed to the practical setup. As stated,
the environment was being kept controlled regarding product changes and
releases of updates have been timed accordingly. However, other factors affect
the timing of releases like critical bugs or the day of the week, which were
accounted for by adjusting the testing period.

Small dataset. Another consideration is regarding the choice of the dataset.
This thesis focused on only one rather small dataset, which limits the generality
of the statements. However, the publication on offline evaluations (which
we also report in Lacic, Kowald, Reiter-Haas, et al. (2018)) were additionally
carried on the larger dataset from the RecSys 2017 challenge. This supports the
evaluation done for RQ1. The evaluation for RQ2 cannot easily be conducted
in another real application and thus has been chosen to be specific for Studo
Jobs.

Evaluation metrics. Finally, while this thesis covered the evaluation from a
wide variety of different angles, there is a wide variety of improvements that
could be included as well. For instance, considerations include newer evaluation
metrics and more experiments on parameter tuning. These are out of scope for
the current work due to the broad range that it already covers. However, many
future extensions to this thesis are being outlined in Section 8.2 that should
help to further improve the recommendation quality.

8.2 Future Work

In this master thesis, a wide range of experiments were conducted over a long
period to answer the two research questions. However, some of the results
generated new questions that can be explored. One such thing is how the
behaviour of the various types of users differ from each other. For instance,
whether users that fill out a CV are generally more engaged with the platform
or how the behaviour of app and web users differ. The interaction data provide
a vast source of information that should be explored in more detail. Moreover,
the results also indicate a potential for including the demographic data of the
user CV, which needs to be further explored.

While this master thesis explored the conversion of text into low dimensional
embeddings via paragraph vectors, there are many more ways in which similar

71

8 Conclusion

results could be achieved. The use of autoencoders is another very popu-
lar method to construct embeddings. Unlike paragraph vectors, which use
sequential data, autoencoders can encode arbitrary data. Recently, network
embeddings have gained much momentum. For instance, one approach tackles
the problem of encoding heterogeneous entities into the same vector space
(C.-J. Wang, T.-H. Wang, Yang, et al., 2017). This allows for heterogeneous
retrieval of items by connecting concepts shared between them. Originally, the
authors used the approach for text to item retrieval, as is the case for the search
functionality. However, it could also be used for recommender systems. In our
case, this would mean, given a user profile retrieve relevant jobs for that user.
The concepts could be modelled by the skills required for the job.

While this thesis focused on job recommendation, other entities can be recom-
mended in this domain as well. Instead of recommending jobs, companies
themselves could be recommended. This would target the business case of em-
ployer branding. Since employees are hard to find, companies need to establish
themselves as an attractive employment option. Furthermore, the process could
also be reversed and companies could get recommendations for potential job
candidates. This could either be done to recommend a candidate that matches
a job or a company.

Besides the recommendation, the manual search functionality is another often
used feature of the Studo Jobs that users use to find the right jobs. The
alternatives, which are filtering and browsing of job postings, are being phased
out slowly as the number of jobs on the platform grows. Since search and
recommendations are very similar conceptually, it might make sense to combine
those two options to enable a personalized search. This personalized search
could be achieved in multiple ways. One way would be to just re-rank the
search results based on the recommendation. For instance, if a job would have
been recommended and is also in the search result, then rank this job higher
than the other results.

Another area that should be explored is how gender influences the system and
whether gender bias is prevalent within the recommendations. While gender is
not considered for the recommendations themselves, the algorithm could learn
a bias that exists within the data. This is due to humans not being unbiased,
which is the source of the data. If such a bias exists, then appropriate steps
should be taken to eliminate it from the recommendations. Moreover, gender
bias is just one example of many different kinds of biases, like racial biases, that
could exist in the system.

Finally, this thesis explored several beyond-accuracy metrics for recommender

72

8.2 Future Work

systems, but it interprets these metrics separately from the accuracy metrics.
Vargas and Castells (2011) proposed metrics that integrate the rank and rele-
vance into novelty and serendipity metrics. Thus, their metrics allow for a more
holistic view of the system and should be used in the future.

As a final remark, the Studo Jobs platform was superseded by the Talto career
platform. Thus, all future work needs to be carried out on Talto instead.

73

Bibliography

Abel, Fabian (2015). “We know where you should work next summer: job
recommendations.” In: Proceedings of the 9th ACM Conference on Recommender
Systems. ACM, pp. 230–230 (cit. on p. 2).

Abel, Fabian, András Benczúr, Daniel Kohlsdorf, Martha Larson, and Róbert
Pálovics (2016). “Recsys challenge 2016: Job recommendations.” In: Proceed-
ings of the 10th ACM Conference on Recommender Systems. ACM, pp. 425–426

(cit. on pp. 2, 8).
Abel, Fabian, Yashar Deldjoo, Mehdi Elahi, and Daniel Kohlsdorf (2017). “Recsys

challenge 2017: Offline and online evaluation.” In: Proceedings of the Eleventh
ACM Conference on Recommender Systems. ACM, pp. 372–373 (cit. on pp. 2,
8).

Aggarwal, Charu C (2016a). “Content-based recommender systems.” In: Recom-
mender systems. Springer, pp. 139–166 (cit. on p. 13).

Aggarwal, Charu C (2016b). “Neighborhood-based collaborative filtering.” In:
Recommender Systems. Springer, pp. 29–70 (cit. on pp. 6, 14).

Anderson, John R et al. (2004). “An integrated theory of the mind.” In: Psycho-
logical review 111.4, p. 1036 (cit. on pp. 3, 17).

Barkan, Oren and Noam Koenigstein (2016). “Item2vec: neural item embedding
for collaborative filtering.” In: 2016 IEEE 26th International Workshop on
Machine Learning for Signal Processing (MLSP). IEEE, pp. 1–6 (cit. on p. 10).

Bennett, James, Stan Lanning, et al. (2007). “The netflix prize.” In: Proceedings of
KDD cup and workshop. Vol. 2007. New York, NY, USA., p. 35 (cit. on p. 1).

Bishop, Christopher M (2006). Pattern recognition and machine learning. Springer
Science+ Business Media (cit. on p. 9).

Böhm, Stephan (2013). “Behavior and expectations of mobile job seekers: an
industry study focusing on job boards.” In: Proceedings of the 2013 annual
conference on Computers and people research. ACM, pp. 105–110 (cit. on pp. 1,
24).

Burke, Robin (2002). “Hybrid recommender systems: Survey and experiments.”
In: User modeling and user-adapted interaction 12.4, pp. 331–370 (cit. on p. 6).

Burke, Robin (2007). “Hybrid web recommender systems.” In: The adaptive web.
Springer, pp. 377–408 (cit. on p. 18).

75

Bibliography

Chandramouli, Badrish, Justin J Levandoski, Ahmed Eldawy, and Mohamed F
Mokbel (2011). “StreamRec: a real-time recommender system.” In: Proceed-
ings of the 2011 ACM SIGMOD International Conference on Management of data.
ACM, pp. 1243–1246 (cit. on p. 7).

Chatzis, Sotirios P, Panayiotis Christodoulou, and Andreas S Andreou (2017).
“Recurrent latent variable networks for session-based recommendation.” In:
Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems.
ACM, pp. 38–45 (cit. on p. 11).

Chen, Chen, Hongzhi Yin, Junjie Yao, and Bin Cui (2013). “Terec: A tempo-
ral recommender system over tweet stream.” In: Proceedings of the VLDB
Endowment 6.12, pp. 1254–1257 (cit. on p. 7).

Chen, Tianqi and Carlos Guestrin (2016). “Xgboost: A scalable tree boosting
system.” In: Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, pp. 785–794 (cit. on p. 8).

Covington, Paul, Jay Adams, and Emre Sargin (2016). “Deep neural networks
for youtube recommendations.” In: Proceedings of the 10th ACM conference on
recommender systems. ACM, pp. 191–198 (cit. on p. 10).

Deng, Li, Dong Yu, et al. (2014). “Deep learning: methods and applications.” In:
Foundations and Trends R© in Signal Processing 7.3–4, pp. 197–387 (cit. on p. 9).

Eksombatchai, Chantat et al. (2018). “Pixie: A system for recommending 3+
billion items to 200+ million users in real-time.” In: Proceedings of the 2018
World Wide Web Conference. International World Wide Web Conferences
Steering Committee, pp. 1775–1784 (cit. on p. 37).

Friedman, Jerome H (2002). “Stochastic gradient boosting.” In: Computational
Statistics & Data Analysis 38.4, pp. 367–378 (cit. on p. 8).

Ge, Mouzhi, Carla Delgado-Battenfeld, and Dietmar Jannach (2010). “Beyond
accuracy: evaluating recommender systems by coverage and serendipity.”
In: Proceedings of the fourth ACM conference on Recommender systems. ACM,
pp. 257–260 (cit. on p. 7).

Gilbert, Seth and Nancy Lynch (2002). “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services.” In: Acm Sigact News
33.2, pp. 51–59 (cit. on p. 35).

Greenstein-Messica, Asnat, Lior Rokach, and Michael Friedman (2017). “Session-
based recommendations using item embedding.” In: Proceedings of the 22nd
International Conference on Intelligent User Interfaces. ACM, pp. 629–633 (cit.
on p. 10).

Hidasi, Balázs, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk
(2015). “Session-based recommendations with recurrent neural networks.”
In: arXiv preprint arXiv:1511.06939 (cit. on pp. 10, 11).

Horvath, Stefanie (2018). “Keep It Lean.” MA thesis (cit. on p. 24).

76

Bibliography

Huang, Yanbo (2016). “Exploiting Embedding in Content-Based Recommender
systems.” MA thesis (cit. on pp. 10, 11, 15).

Huang, Yanxiang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu (2015). “Ten-
centrec: Real-time stream recommendation in practice.” In: Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data. ACM,
pp. 227–238 (cit. on p. 7).

Jones, Janelle, John Schmitt, et al. (2014). “A college degree is no guarantee.” In:
Center for Economic and Policy Research (CEPR) (cit. on p. 1).

Karatzoglou, Alexandros et al. (2016). “RecSys’ 16 Workshop on Deep Learn-
ing for Recommender Systems (DLRS).” In: Proceedings of the 10th ACM
Conference on Recommender Systems. ACM, pp. 415–416 (cit. on p. 10).

Kenthapadi, Krishnaram, Benjamin Le, and Ganesh Venkataraman (2017). “Per-
sonalized job recommendation system at linkedin: Practical challenges and
lessons learned.” In: Proceedings of the Eleventh ACM Conference on Recom-
mender Systems. ACM, pp. 346–347 (cit. on pp. 2, 67).

Koren, Yehuda and Robert Bell (2015). “Advances in collaborative filtering.” In:
Recommender systems handbook. Springer, pp. 77–118 (cit. on pp. 7, 13, 41).

Kowald, Dominik, Emanuel Lacic, and Christoph Trattner (2014). “Tagrec: To-
wards a standardized tag recommender benchmarking framework.” In:
Proceedings of the 25th ACM conference on Hypertext and social media. ACM,
pp. 305–307 (cit. on p. 42).

Kowald, Dominik, Subhash Chandra Pujari, and Elisabeth Lex (2017). “Temporal
effects on hashtag reuse in twitter: A cognitive-inspired hashtag recommen-
dation approach.” In: Proceedings of the 26th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee,
pp. 1401–1410 (cit. on pp. 7, 18).

Lacic, Emanuel, Dominik Kowald, Markus Reiter-Haas, Valentin Slawicek, and
Elisabeth Lex (2018). “Beyond Accuracy Optimization: On the Value of Item
Embeddings for Student Job Recommendations.” In: International Workshop
on Multi-dimensional Information Fusion for User Modeling and Personalization
(IFUP’2018) co-located with the 11th ACM International Conference on Web
Search and Data Mining (WSDM’2018) (cit. on pp. 4, 11, 42, 45, 49, 54, 55, 71).

Lacic, Emanuel, Matthias Traub, Dominik Kowald, and Elisabeth Lex (2015).
“Scar: Towards a real-time recommender framework following the microser-
vices architecture.” In: Proc. of LSRS 15 (cit. on p. 33).

Lau, Jey Han and Timothy Baldwin (2016). “An empirical evaluation of doc2vec
with practical insights into document embedding generation.” In: arXiv
preprint arXiv:1607.05368 (cit. on p. 10).

Le, Quoc and Tomas Mikolov (2014). “Distributed representations of sentences
and documents.” In: Proc. of ICML’14 (cit. on pp. 3, 10, 15, 17).

77

Bibliography

Lee, Yeon-Chang, Jiwon Hong, Sang-Wook Kim, Sheng Gao, and Ji-Yong Hwang
(2015). “On recommending job openings.” In: Proceedings of the 26th ACM
Conference on Hypertext & Social Media. ACM, pp. 331–332 (cit. on p. 2).

Lewis, James and Martin Fowler (2014). “Microservices: a definition of this new
architectural term.” In: MartinFowler. com 25. url: https://martinfowler.
com/articles/microservices.html (visited on 05/17/2018) (cit. on p. 33).

Liu, Rui, Wenge Rong, Yuanxin Ouyang, and Zhang Xiong (2017). “A hierarchi-
cal similarity based job recommendation service framework for university
students.” In: Frontiers of Computer Science 11.5, pp. 912–922 (cit. on pp. 1, 2).

Lops, Pasquale, Marco De Gemmis, and Giovanni Semeraro (2011). “Content-
based recommender systems: State of the art and trends.” In: Recommender
systems handbook. Springer, pp. 73–105 (cit. on p. 13).

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using
t-SNE.” In: Journal of machine learning research 9.Nov, pp. 2579–2605 (cit. on
p. 38).

Malinowski, Jochen, Tobias Keim, Oliver Wendt, and Tim Weitzel (2006). “Match-
ing people and jobs: A bilateral recommendation approach.” In: Proceed-
ings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS’06). Vol. 6. IEEE, pp. 137c–137c (cit. on p. 9).

Max Roser, Hannah Ritchie and Esteban Ortiz-Ospina (2019). “World Popula-
tion Growth.” In: Our World in Data. https://ourworldindata.org/world-
population-growth (cit. on p. 1).

McInnes, Leland, John Healy, and James Melville (2018). “Umap: Uniform
manifold approximation and projection for dimension reduction.” In: arXiv
preprint arXiv:1802.03426 (cit. on p. 39).

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). “Efficient
estimation of word representations in vector space.” In: arXiv preprint
arXiv:1301.3781 (cit. on p. 10).

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean (2013).
“Distributed representations of words and phrases and their composition-
ality.” In: Advances in neural information processing systems, pp. 3111–3119

(cit. on p. 15).
Mishra, Sonu K and Manoj Reddy (2016). “A bottom-up approach to job rec-

ommendation system.” In: Proceedings of the Recommender Systems Challenge.
ACM, p. 4 (cit. on pp. 2, 8).

Mitchell, Brian (1998). International historical statistics: Europe 1750-1993. Springer
(cit. on p. 1).

Parra, Denis and Shaghayegh Sahebi (2013). “Recommender systems: Sources of
knowledge and evaluation metrics.” In: Advanced techniques in web intelligence-
2. Springer, pp. 149–175 (cit. on p. 7).

78

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Bibliography

Pazzani, Michael J and Daniel Billsus (2007). “Content-based recommendation
systems.” In: The adaptive web. Springer, pp. 325–341 (cit. on pp. 5, 13).

Pearson, Karl (1900). “X. On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling.” In: The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
50.302, pp. 157–175 (cit. on p. 47).

Petrov, Alexander A (2006). “Computationally efficient approximation of the
base-level learning equation in ACT-R.” In: Proceedings of the seventh interna-
tional conference on cognitive modeling. Citeseer, pp. 391–392 (cit. on p. 17).

Pizzato, Luiz et al. (2010). “Reciprocal recommenders.” In: ITWP 2010, p. 53

(cit. on p. 8).
Pu, Pearl, Li Chen, and Rong Hu (2011). “A user-centric evaluation framework

for recommender systems.” In: Proceedings of the fifth ACM conference on
Recommender systems. ACM, pp. 157–164 (cit. on p. 44).

Qin, Chuan et al. (2018). “Enhancing person-job fit for talent recruitment: An
ability-aware neural network approach.” In: The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval. ACM,
pp. 25–34 (cit. on pp. 2, 8).

Rajaraman, Anand and Jeffrey David Ullman (2011). Mining of massive datasets.
Cambridge University Press (cit. on p. 13).

Reiter-Haas, Markus, Emanuel Lacic, Tomislav Duricic, Valentin Slawicek, and
Elisabeth Lex (2019). “Should we Embed? A Study on the Online Perfor-
mance of Utilizing Embeddings for Real-Time Job Recommendations.”
In: Proceedings of the 13th ACM Conference on Recommender Systems. ACM,
pp. 496–500 (cit. on pp. 4, 11, 37, 56, 58–60, 64).

Reiter-Haas, Markus, Valentin Slawicek, and Emanuel Lacic (2017). “Studo Jobs:
Enriching Data With Predicted Job Labels.” In: Workshop on Recommender Sys-
tems and Social Network Analysis (RS-SNA’2017) co-located with i-KNOW’2017
(cit. on pp. 4, 11, 32).

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2011). “Introduction to rec-
ommender systems handbook.” In: Recommender systems handbook. Springer,
pp. 11–14 (cit. on p. 5).

Robotham, David (2012). “Student part-time employment: characteristics and
consequences.” In: Education+ Training 54.1, pp. 65–75 (cit. on p. 1).

Shani, Guy and Asela Gunawardana (2011). “Evaluating recommendation sys-
tems.” In: Recommender systems handbook. Springer, pp. 257–297 (cit. on
p. 41).

Smirnova, Elena and Flavian Vasile (2017). “Contextual sequence modeling for
recommendation with recurrent neural networks.” In: Proceedings of the 2nd

79

Bibliography

Workshop on Deep Learning for Recommender Systems. ACM, pp. 2–9 (cit. on
p. 11).

Smyth, Barry and Paul McClave (2001). “Similarity vs. diversity.” In: International
conference on case-based reasoning. Springer, pp. 347–361 (cit. on pp. 44, 67).

Student (1908). “The probable error of a mean.” In: Biometrika, pp. 1–25 (cit. on
p. 47).

Vargas, Saúl and Pablo Castells (2011). “Rank and relevance in novelty and
diversity metrics for recommender systems.” In: Proceedings of the fifth ACM
conference on Recommender systems. ACM, pp. 109–116 (cit. on p. 73).

Vogels, Werner (2009). “Eventually consistent.” In: Communications of the ACM
52.1, pp. 40–44 (cit. on p. 35).

Volkovs, Maksims, Guang Wei Yu, and Tomi Poutanen (2017). “Content-based
neighbor models for cold start in recommender systems.” In: Proceedings of
the Recommender Systems Challenge 2017. ACM, p. 7 (cit. on pp. 8, 24).

Wang, Chuan-Ju, Ting-Hsiang Wang, Hsiu-Wei Yang, Bo-Sin Chang, and Ming-
Feng Tsai (2017). “ICE: Item Concept Embedding via Textual Information.”
In: Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, pp. 85–94 (cit. on p. 72).

Xiao, Wenming, Xiao Xu, Kang Liang, Junkang Mao, and Jun Wang (2016).
“Job recommendation with Hawkes process: an effective solution for RecSys
Challenge 2016.” In: Proceedings of the Recommender Systems Challenge. ACM,
p. 11 (cit. on p. 8).

Zhang, Shuai, Lina Yao, and Aixin Sun (2017). “Deep learning based rec-
ommender system: A survey and new perspectives.” In: arXiv preprint
arXiv:1707.07435 (cit. on p. 10).

Zhang, Yuan Cao, Diarmuid Ó Séaghdha, Daniele Quercia, and Tamas Jambor
(2012). “Auralist: introducing serendipity into music recommendation.” In:
Proceedings of the fifth ACM international conference on Web search and data
mining. ACM, pp. 13–22 (cit. on p. 44).

Zheng, Yong (2017). “Multi-stakeholder recommendation: Applications and
challenges.” In: arXiv preprint arXiv:1707.08913 (cit. on p. 2).

Zhou, Tao et al. (2010). “Solving the apparent diversity-accuracy dilemma of
recommender systems.” In: Proceedings of the National Academy of Sciences
107.10, pp. 4511–4515 (cit. on p. 44).

Zhu, Chen et al. (2018). “Person-Job Fit: Adapting the Right Talent for the
Right Job with Joint Representation Learning.” In: ACM Transactions on
Management Information Systems (TMIS) 9.3, p. 12 (cit. on pp. 2, 8).

80

