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Abstract

With the introduction of hardware-supported raytracing and deep-learning
for denoising, computer graphics has made a considerable step toward real-
time global illumination. However, the per-pixel ray budget is still too low to
support extensive path tracing. In this work, we present an alternative global
illumination method: The stochastic substitute tree (SST), a hierarchical
structure inspired by lightcuts with light probability distributions as inner
nodes. Our approach distributes virtual point lights (VPLs) in every frame
using hardware raytracing and efficiently constructs the SST over those lights
by clustering according to Morton codes. Rebuilding the SST in every frame
allows us to work with a moderate number of VPLs as their locations change
rapidly from frame-to-frame while enabling dynamic lighting scenarios.
Global illumination is approximated by sampling the SST and considers the
BRDF at the hit location as well as the SST nodes’ intensities for importance
sampling directly from inner nodes of the tree. To remove the introduced
Monte Carlo noise, we use a pruned recurrent autoencoder. In combination
with temporal filtering, we deliver real-time global illumination for complex
scenes with challenging light distributions.
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1 Introduction

Real-time global illumination (GI) is one of the most sought-after features in
computer graphics. Path tracing renownedly provides an elegant solution
to simulating global light transport by recursively sampling along a large
number of rays that traverse the scene. In the film industry, path tracing
has become the method of choice and is usually performed off-line on the
central processing unit (CPU). However, its image-order complexity prevents
it from being used in the same way for driving real-time applications.
Today, almost all competitive path tracers leverage the massively parallel
processing power of the graphics processing unit (GPU). Recent GPUs
have been fitted with dedicated ray-tracing modules that help mitigate the
bottleneck of ray-based scene traversal. Furthermore, specialized inferencing
units (tensor cores) have been added to evaluate pre-trained convolutional
neural networks (CNN) to filter undersampled images. Although backed by
hardware, ray-tracing and inference remain prohibitively expensive. Hence,
these novel GPU features are mostly used in combination with rasterization
for bulk geometry rendering, contributing minor visual enhancements.

In contrast to path tracing, instant radiosity (IR) describes an alternative
solution to GI on hardware rasterization. IR effectively reduces the problem
of indirect illumination to trivial direct illumination by introducing a large
number of virtual point lights (VPL) that are distributed throughout the scene.
In addition to avoiding image-order complexity, such many-light rendering
approaches are particularly effective when combined with the concept of
lightcuts: instead of full surface shading with all lights in the scene, a lightcut
selects a subset of VPLs and amplifies their intensity for shading. However,
the generation of high-quality lightcuts is computationally intensive and
thus usually implies off-line processing.

In this paper, we describe a new approach for fast, high-quality global illu-
mination on modern GPUs by extending the concept of stochastic lightcuts
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1 Introduction

(SLC) [Yuk19]. Our Stochastic Substitute Trees (SST) use custom substitute
lights whose geometric properties are not simply adopted from leaf nodes,
but rather purpose-built to stochastically approximate their subhierarchies.
In the context of real-time GI, we show how SSTs provide an ideal com-
plement to recently introduced GPU capabilities as outlined in Fig. 3.1: in
combination with ray-tracing for visibility, deep learning for image recon-
struction and adaptive temporal filtering, SSTs compare favorably to other
state-of-the-art solutions in terms of performance and temporal stability. We
make the following contributions:

• We introduce a novel method for generating substitutes for inner
light tree nodes that model their light contribution as probability
distributions. To the best of our knowledge, we are the first to propose
using representatives whose geometric properties are disjoint from the
initial VPLs.
• We show how SSTs can be generated in parallel on the GPU, enabling

real-time animations and the application of up-to-date light sampling
in every frame.
• We demonstrate how the SST can be efficiently sampled for Lambertian

and specular materials.
• We demonstrate our approach in NVIDIA Falcor and evaluate it

against state-of-the-art methods for global illumination on a variety of
static and animated scenes.
• We discuss the combination with hardware ray-tracing, inferencing

capabilities, and temporal filtering.
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2 Background and Related Work

Following the original rendering equation[Kaj86], path tracing emerged as a
reliable Monte Carlo method for global illumination. Given an input scene,
recursive, probabilistic sampling of light paths is combined with Monte
Carlo integration to yield an initially approximate result that eventually con-
verges to the solution of the rendering equation. To reduce the computational
effort required to reach convergence importance sampling, next-event esti-
mation and bi-directional path tracing have been proposed. Programmable
GPUs further enabled the implementation of high-performance, massively
parallel path tracing variants, leading to an additional boost in their effi-
cacy [Par+10]. While path tracing entire frames remains unattainable in real-
time, ray tracing is commonly employed to generate individual effects such
as shadows, ambient occlusion or specular reflections [Kel+19]. Although
ray tracing is classified as “embarrassingly parallel”, achieving optimal
utilization of the GPU has proven challenging [AL09]. State-of-the-art GPU
models are therefore fitted with dedicated ray tracing hardware [NVI18;
HA19].

Aside from path tracing, the most prominent alternatives for simulating
global illumination include metropolis light transport, photon mapping and in-
stant radiosity [VG97; Jen96; Kel97]. Among these methods, instant radiosity
stands out as an approach that easily maps to standard rasterization APIs,
since all indirect illumination is approximated by VPLs. To compute their
distribution, initial light sources emit multiple VPLs, whose path is traced
throughout the scene. Each intersection with geometry may lead to another
bounce or the termination of the path and final placement of the VPL. Based
on this idea, many-light rendering has emerged as a new class of algorithms
for image synthesis [Dac+14; SIP07; Rit+08; LY19]. While using a higher
number of VPLs yields superior results in most many-light methods, the
implied effort for shading severely inhibits scalability.
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2 Background and Related Work

To cap the number of VPLs that participate in shading, Walter et al. [Wal+05]
presented lightcuts. They generate a static binary light tree over all VPLs,
where each inner node represents the lights in its leafs. These representative
lights are obtained by recursively merging nodes with similar attributes.
While the position of each representative is chosen randomly from one of
its child nodes, its intensity equates to their sum to satisfy the preservation
of radiant flux in arbitrary tree cuts. For a portion of the output image
domain (e.g., one pixel), they traverse the light tree and identify a lightcut
that bounds the error caused by shading with the corresponding represen-
tatives. Visibility determination plays a key role, because fully occluded
light sources and subtrees can be trivially rejected. Multidimensional light-
cuts [Wal+06] extend the core algorithm to raise its efficiency in higher-order
domains accounting for visual effects like depth-of-field, motion blur and
participating media.

Due to the inherent sample correlation between cuts from the static light tree,
visible indicators of undersized lightcuts usually manifest as discretized
penumbrae and isolated “blobs” of light, making them difficult to resolve
with automated filtering. Recently proposed stochastic lightcuts by Yuksel
[Yuk19] trade these structured artifacts for more Monte Carlo noise. The
selection of inner nodes’ light positions is performed probabilistically via
importance sampling of their respective leafs in each individual lightcut,
thus rejecting the idea of precomputed representatives.

As lightcuts were originally devised as an offline method on the CPU,
Hašan, Pellacini, and Bala proposed a GPU-friendly, matrix-based method
for scalable many-light rendering [HPB07]. Formulating the problem as an
M× N matrix with M pixels and N light sources, they sample and select
columns with high overall contribution and compute their weighted sum
to obtain high-quality images at interactive rates. Several optimizations
have been proposed that extend the original idea and further improve its
performance [OP11; Huo+15]. However, while faster than lightcuts, reported
runtimes for rendering single frames with these techniques remain in the
order of seconds to minutes.

Stochastic methods for image synthesis can often be enhanced by the ap-
plication of reconstruction techniques on noisy or undersampled input. In
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many cases, a single sample per pixel suffices to produce high-fidelity out-
put with state-of-the-art image reconstruction techniques [LWC12; Dam+10].
In this context, animations pose a particular challenge since reconstruction
must take both spatial and temporal stability into account to preserve frame-
to-frame coherence [Sch+17; SPD18]. Recent work focusing on machine
learning has shown that spatio-temporal denoising can largely be delegated
to the run-time inference of pre-trained neural networks [Cha+17].
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3 Stochastic Substitute Trees

Our complete pipeline is outlined in Fig. 3.1: We first distribute VPLs ac-
cording to IR and build our SST over the resulting VPLs. We then generate
G-buffers using rasterization and for all fragments sample the illumination
from the SST, yielding a noisy light image. With the help of G-buffers,
we use a CNN for denoising and temporal filtering to ensure consistent
shading over time. In the following, we give a detailed description of the
substitute tree concept and its parallel construction. In Section 4, we de-
scribe the process of drawing samples from the SST and provide additional,
implementation-specific details in Section 5.

3.1 The Substitute Tree

Our substitute light trees are motivated by the original methods for lightcuts
and, specifically, stochastic lightcuts [Wal+05; Yuk19]. The inner nodes of the
light trees used in these approaches copy their geometric properties from
one of the leaf nodes, i.e., one of the original VPLs. This policy necessarily
leads to noticeable lighting patterns when the number of VPLs is low. In
order to support dynamic light sources and animated scenes in real-time,
we aim to keep the number of VPLs low to permit updating the light tree in
every frame, while minimizing visual artifacts.

To better approximate the sampling of the—in general smooth—indirect
illumination, we do not use leaf VPL locations for the inner nodes of our light
tree. Instead, we pretend as if the leafs were distributed more densely than
they actually are by first merging VPLs into clusters and then approximating
those clusters with fitting substitute distributions (see Fig. 3.2). Although we
could theoretically use any probability distribution to describe the clusters,
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3 Stochastic Substitute Trees

SamplingVPL Tracing

new fr
ame

Substitute Tree Denoising + Filtering

Output

Figure 3.1: Global illumination with stochastic substitute trees on a GeForce RTX 2080Ti in
1280× 720: For every frame, we distribute VPLs (0.4 ms), build a new substitute
tree over the VPLs (0.9 ms), stochastically sample the substitute tree (3.4 ms),
apply CNN denoising (17.4 ms) and temporal filtering (0.9 ms). Substitute trees
use random distributions as inner nodes which allow efficient sampling and
approximate the light distributions as if larger numbers of VPLs were used.

we aim to use a compact and efficient representation for sampling. We
intuitively choose a normal distribution to describe the individual clusters,
as the central limit theorem suggests that the addition of independent
random variables will take the shape of a normal distribution. Note that the
central limit theorem only partially holds as the light distributions are in
general not independent.

Similar to previous approaches, we construct the full light tree bottom-up
and merge substitute clusters as we go. For traditional lightcuts, ideal merge
candidates should be spatially close and have similar normals to minimize
the view-dependent deviations from full shading when using representa-
tives. For our approach, the situation is more complicated since we must
ensure that estimated distributions align with the geometry of the scene. For
instance, a naı̈ve substitute distribution may include portions of the scene
that are occluded or “outside” of the scene. As describing distributions
that follow non-trivial surfaces would be costly, we try to limit clusters to
surfaces that can be described and sampled straightforwardly. The simplest
surface, a plane, can be described by a location and normal. Incidentally,
this corresponds to the required information for shading with a VPL: its
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3.1 The Substitute Tree

(a) Traced VPLs

(b) Substitute Distributions

Figure 3.2: (a) 150 k VPLs distributed in the Pink Room with their RGB intensity. (b) While
previous work uses discrete locations from the input VPLs for inner tree nodes,
our stochastic substitute trees store continuous distributions of VPLs, defined
by a substitute position and variance: red and green lines show the standard
deviations on the surface; blue lines along the normal. Notice how large planar
regions are captured by single distributions and variance along the normal is
virtually undetectable.

location and the surface normal. Following our previous considerations, we
generate normally distributed samples on the plane defined by the cluster
position and normal. This strategy works well for nearly planar surfaces, but
surfaces with high curvature or corners are difficult to describe. However,
the memory requirement is minimal, in fact, identical to Lightcuts. The
alternative, a multivariate normal distribution would also work but has
greater memory and computational requirements.
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3 Stochastic Substitute Trees

3.2 Distribution Merging and Errors

To obtain a suitable substitute distribution for each inner node, we compute
the intensity-weighted cluster position p and the positional variance σ2. To
have σ2

x and σ2
y represent the variance of lights on the plane surface, we

transform their positions into a local plane coordinate system where the
z-axis matches the cluster plane normal. Merged position and variance are
computed using

p =
c1 · p1 + c2 · p2

c1 + c2
and (3.1)

σ2 =
c1 · (σ2

1 + ∆′
p1 � ∆′

p1) + c2 · (σ2
2 + ∆′

p2 � ∆′
p2)

c1 + c2
, (3.2)

where c1, c2 are the child contributions, p1, p2 are the child cluster positions,
σ2

1 , σ2
2 are the child cluster variances, and ∆′

p1, ∆′
p2 are the difference vectors

from p to p1 and p2 in transformed cluster space. The weights c1, c2 corre-
spond to the relative luminance of the cluster’s RGB light intensity. While
we could compute a spread (and thus variance) alongside the VPL distri-
bution and use this spread as initial variance, we have found that starting
with simple VPLs works equally well in practice and avoids complex spread
computations. An example for a substitute tree is given in Fig. 3.2b.

Similar to regular Lightcuts, the merged node’s intensity is simply the sum
of the child intensities and its extent is encoded by an axis-aligned bounding
box that encloses all light sources in its subhierarchies. The merged normal is
linearly interpolated based on the child contributions c1, c2. Hence, clusters
with high weights (and thus high intensities) have a stronger influence on
the outcome.

Note that strongly diverging normals will alter the cluster coordinate system
and thus partially invalidate the local variance values during merging. To
avoid corresponding artifacts, we therefore compute and store additional
information on each cluster’s suitability for sampling. During sampling, we
then skip any distribution that does not fulfill the corresponding criteria.
For evaluating the suitability of a substitute node for sampling, we use three
indicators:

• The normal similarity metric ν = ν1 · ν2 ·max(〈n1, n2〉, 0)
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3.3 Parallel Construction

• The variance σz along the plane normal
• The diagonal size τ of the axis-aligned bounding box

For the normal similarity metric ν, n1 and n2 as well as ν1 and ν2 capture nor-
mals and the normal similarities of the child clusters. The normal similarity
metric serves as an indicator for both the similarity between the child cluster
distribution orientations and the curvature of the surface. Furthermore, ν
is guaranteed to decrease when going up the tree. The diagonal size τ of
the bounding box limits the size of the plane described by our substitute
distribution. Since we do not use color similarity, this indicator helps to
avoid merging different color patches. For leaf nodes the normal similarity
is initialized to one and the variance to zero. Given a set of suitable parame-
ter thresholds, we can combine these indicators to form a joint condition
for ensuring that merged substitute clusters are of sufficient quality for
sampling:

ν ≥ νmin ∧ σz ≤ σmax ∧ τ ≤ τmax. (3.3)

3.3 Parallel Construction

Since we aim to rebuild the light tree in every frame, minimizing its con-
struction time is essential. Traditional lightcuts follow an O(n2) approach to
find pairs of lights/clusters that minimize the introduced error according to
their metric. As this approach is incompatible with our real-time constraints,
we follow the algorithm by Karras [Kar12] for building bounding volume
hierarchies.

To start the hierarchy construction, we sort VPLs according to a spatial
indexing using Morton codes. Additionally, we incorporate bits extracted
from the normals, since we seek VPLs that point in similar directions to
obtain candidates for suitable substitute distributions. Using polar coor-
dinates to describe normal directions leads to non-uniform quantization,
as bits cover differently-sized areas on the sphere. Thus, we first identify
the octant the normal points to and then subdivide the octant as a triangle
to yield approximately equally-sized areas [TR98], as shown in Fig. 3.3.
Each octant is represented by three bits, followed six bits to describe the
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3 Stochastic Substitute Trees

(a) Normal octant clustering

00

01 10

1100 1110

1101

1111

Pz Px

Py

Pxy

Pxz

Pyz

(b) Triangle bit encoding

Figure 3.3: (a) Normal clustering in an octant of the unit sphere using 3 refinement levels;
(b) the corresponding bit values for two refinements.

subdivision level of the triangle. Our final code C for each VPL is composed
of the Morton code M, normal code N and a unique id:

C = M⊕ N ⊕ id, (3.4)

where ⊕ is the bit concatenation operator. We thus sort primarily according
to position, since VPLs lying on the same surface will be close to each other.
Secondary sorting occurs according to normals, to ensure that VPLs with
similar normals are prioritized merge targets. To circumvent any duplicate
codes, a unique ID is concatenated at the end. In the final 64-bit code, M
uses 30 bits and N uses 9 bits. The remaining bits are used for the unique
id.

Following the initial sort according to (3.4), the tree is constructed bottom-
up. For merging the inner node substitute distributions, one thread per
leaf node is started. At each level, only one thread may continue to the
next-higher parent. After computing the distributions and corresponding
quality metrics, the node information is stored as an array of structs. For
each node, we store:

12



3.3 Parallel Construction

• distribution variance, ID and child IDs, (3 floats + 3 ints)
• the world space position and normal, (2 × 3 floats)
• the bounding box, (2 × 3 floats)
• light color and intensity, (4 floats)
• a flag indicating if the distribution is suitable for sampling,

yielding a total structure size of 96 bytes (padded). Thus, the full node
information can be written with six vector store instructions.
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4 Stochastic Light Sampling

We sample our stochastic substitute tree by traversing it until we arrive either
at a leaf VPL or a suitable inner node, in which case we draw the sample
from its substitute cluster distribution. For drawing multiple samples, we
can simply run the traversal multiple times from the root. However, since
the evaluation of a sample requires expensive visibility determination, we
aim to maximize the quality gain using only one sample per pixel.

4.1 Tree traversal

We define a cluster’s illumination LC for a shading point x from direction
ω with the same terms as in the original lightcuts paper: ω

LC(x, ω) ≈ Mj(x, ω) · Gj(x) ·Vj(x) · Ij, (4.1)

where for a tree node j, Mj is the material term, Gj is the geometric term,
Vj(x) represents visibility of x from the light source and Ij is the sum of VPL
intensities in the subtree. In order to stochastically sample clusters based on
their expected contribution to the shading of x, we start traversal from the
root and continually compute weights w1, w2 for the current node’s children.
Similar to stochastic lightcuts, the probability of choosing the ith child is
given by wi

w1+w2
. If we enter a dead branch (i.e., w1 + w2 = 0), we stop the

traversal. While this wastes a light sample, backtracking within the shader
is not feasible for our real-time performance requirements. We compute
w = O(LC) for each child by plugging in adequate upper bounds for those
terms in (4.1) that are too expensive to evaluate. To map the RGB value of
Ij to R1, we use its relative luminance in practice. Vj can be trivially set to 1,
thus assuming no occlusions.

15



4 Stochastic Light Sampling

(a) IR ground truth (b) SST sampling (c) SLC sampling

Figure 4.1: Comparing the accuracy of color bleeding in the final image. While SST (b)
faithfully captures the soft reflection of the red fabric on the pillar as it is seen
in the ground truth (a), it is almost entirely missing with SLC (c). The bottom
right half of (b,c) shows the pixel difference ×10.

For the material term Mj, we use the upper bound of the cosine between
ω and the surface normal at x, multiplied by the BRDF. The upper bound
of the cosine is computed w.r.t. the bounding box [Wal+05]. The diffuse
BRDF is independent of the view or light direction, thus constant. For the
specular part of the BRDF, we use the following heuristic: We compute the
perfect reflection R of the view vector along the surface normal at x, i.e.,
a mirror-like reflection. We then test if the ray x + t · R intersects with the
cluster’s bounding box. If so, we use R for the specular BRDF computation.
Otherwise, the BRDF is evaluated with a direction vector R′ that actually
does intersect the bounding box and minimizes the difference to R.

Since we focus on omni-directional lights, Gj reduces to inverse quadratic
attenuation. We note that, in order to guard against singularities in the
geometric term, stochastic lightcuts set Gj = 1 for omni-directional lights
if x lies inside the cluster’s bounding box, i.e., ignoring the distance from
the sample to the cluster. However, we found that this leads to missing
color bleeding, as shown in Fig. 4.1. Noticeable color bleeding at x is often
due to VPLs that are close to x and thus—especially for lower levels of
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4.2 Sampling the Substitute Distribution

SLC
4.87 ms

SST
3.54 ms

SLC
0.0146 RMSE

SST
0.0138 RMSE

Figure 4.2: (left) The color-coded tree traversal depth ( / for low/high) is on average
20 for SLC, whereas SST only requires 15 steps on average for a 100 k VPL tree.
(right) SST are both faster and achieve better image quality compared to the
ground truth (difference ×10).

the tree—likely to be enclosed by the same bounding box as x, leading to
rejection of the distance term. This makes tree traversal more likely to end
up in different subtrees, which do not contribute to the color bleeding. In
contrast, we avoid singularities by simply bounding the distance from below
against an ε term to guard against division by zero.

4.2 Sampling the Substitute Distribution

In contrast to previous many-light methods, which usually focus on diffuse
shading only, we also consider non-Lambertian BRDFs. Before traversing
the tree, we decide whether to sample the diffuse or specular portion of the
BRDF, based on the magnitude of the respective material terms. For diffuse
samples, we stop the traversal at the first usable substitute distribution,
i.e., the first node that has been marked suitable for sampling. A suitable
substitute distribution is often found early on, reducing the sampling depth
significantly without any visible difference to the final illumination (see
Fig. 4.2). For drawing a light position sample pS from the distribution, we
generate three normally distributed random variables, according to the
cluster variance σ2 in the local coordinate frame. After transformation to
world coordinates, we clamp pS by the node’s bounding box and evaluate
the incoming radiance according to Eq. (4.1). This implies accurate visibility

17



4 Stochastic Light Sampling

testing to determine the binary value for Vj at shading point x, which we
resolve through ray tracing.

When sampling the specular portion of the BRDF, we ignore the substitutes
and only consider leaf VPLs as viable candidates, since highly specular
reflections would be overly blurred by picking substitute samples. While
this leads to performance penalties for specular surfaces, it is vital for
ensuring high quality.

18



5 Implementation

We implemented our approach on top of the NVIDIA Falcor framework
[Ben+19] in DirectX 12 and CUDA. Raytracing is done via hardware ac-
celerated RTX. For diffuse lighting, we use the Lambertian model. For the
specular BRDF, we use Cook-Torrance reflectance [CT82].

VPL Generation. For VPL generation, we follow the core approach described
by instant radiosity [Kel97]. We start by probabilistic sampling of the original
light sources according to their size and intensity. The number of VPL paths
to trace for each light depends on its intensity, as well as the configured
maximum number of bounces. To trace these rays, we use hardware sup-
ported DX12 raytracing. At every hit, we generate a new VPL and append
it to a global buffer. We use cosine-weighted sampling for the next bounce
direction and early path termination via Russian Roulette.

Substitute Tree Generation. Substitute trees are built in parallel on the GPU
with CUDA. Internal nodes are stored in the same buffer as the previously
generated VPLs. The tree is constructed by a single kernel, decreasing the
number of active threads while progressing up through the tree. Since
the number of active nodes usually quickly falls below the core count of
modern GPUs, the performance loss due to keeping inactive threads around
is minimal.

Sampling. Substitute tree sampling is directly done by a ray-tracing shader,
since we use shadow rays for visibility. We first fill a GBuffer with first hit
shading information [Dee+88]. For each pixel, we traverse the tree to draw a
VPL sample and cast a shadow ray from the VPL location pS to the pixel’s
stored position in world space in the GBuffer. We found that tracing in
this direction rather than from x to pS yields better performance, which we
ascribe to increased coherence achieved in supplying mulitple pixels with
similar VPL samples. To account for direct illumination, we randomly pick
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5 Implementation

and sample one of the scene’s light sources. Thus, we trace two shadow rays
per pixel—one for tree sampling and one for direct illumination.

Denoising and Temporal Stability. Our approach produces Monte Carlo noise
and thus, in theory, any Monte Carlo denoiser is applicable. In practice,
we use a pruned recurrent autoencoder (RDAE) with the same training
procedure and loss function as stated in the original paper [Cha+17]. To
further improve temporal stability, we apply the temporal accumulation
step of the adaptive spatio-temporal variance-guided filter [Sch+17; SPD18],
using the pixel-wise intensity gradient from the RDAE output as temporal
accumulation factor to control blending. This mitigates artifacts like ghosting
and temporal lags, especially for animated scenes.

To save time on inference, we reduce the number of features of RDAE,
while still maintaining high quality. For downsampling, we use 24, 40, 54,
72, 96, and 96 features. For upsampling, we use (96, 96), (72, 72), (54, 54),
(40, 40), (64, 32). As activation function we use ReLu, for upsampling we
use the deconvolution operator. The network was modeled and trained
with Tensorflow and TensorRT as inference engine. The training data was
generated with the Sponza and San Miguel scene, with 500 captured frames
per scene. Inference is executed on NVIDIA tensor cores in fp16 mode.
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6 Evaluation

We compare our stochastic substitute trees (SST) in detail to regular path
tracing (PT) with varying number of bounces, stochastic lightcuts (SLC),
and show the main differences to the recently proposed real-time method
for Lighting Grid Hierarchies [LY19] (LGH). All timings are generated on
a GeForce RTX 2080Ti. We use νmin = 0.5 and σmax = 0.1; and τmax = ∞, as
we found no benefits of limiting the cluster size for the relatively small test
scenes. The reference path tracer is based on the NVIDIA Falcor framework.
The first hit is determined by a rasterized G-Buffer, additional bounces are
computed with RTX. Next event estimation is applied to improve convergence.
For quality comparisons, we use path tracing with 4000 samples per pixel
(spp) and seven bounces as ground truth.

We evaluate on four scenes with an image resolution of 1280× 720 shown in
Fig. 6.1. The Pink Room and Living Room are simple in terms of geometry,
but offer interesting lighting situations and highly glossy surfaces. Sponza
is slightly more complex in geometry and shows high amounts of color
bleeding and shadowing through the corridors. Finally, San Miguel offers
high geometric load and enforces diverse light paths. Fig. 6.1 shows that SST
produces lighting close to the ground truth and accurately reconstructs the
lighting under noisy conditions and complex setups. Some difficult-to-reach
areas, like the table in the living room scene or the shelfs in the pink room,
appear slightly darker, which is typical for VPL approaches.

For runtime evaluation, we separately look at SST construction, which we
can run in every frame or when lighting changes; SST sampling, which ras-
terizes a G-buffer, samples the tree and performs direct lighting using RTX;
denoising; and temporal filtering. For temporally stable lighting, we require
∼100 k VPLs. Their distribution takes 0.27 ms to 0.85 ms, with an additional
0.9 ms for SST building. Sampling takes 2.5 ms to 7.7 ms, denoising 17.4 ms
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6.1 Comparison

and temporal filtering 0.9 ms. Including VPL distribution and tree building,
an entire frame takes 21.97 ms to 27.75 ms. While we achieve 30fps overall,
denoising is clearly the limiting factor, making up 63 % to 80 % of frame
time. With GPU hardware set to further advance CNN performance, we
expect this issue to lessen in the future.

Table 6.1 shows the sample timings and final image quality for all tested
approaches. SST is always faster and always achieves superior quality to SLC.
We attribute our quality advantage to two factors: First, using substitute
distributions approximates global illumination as if it were generated with
more VPLs and thus can achieve image qualities for which other approaches
require significantly higher VPL counts. Second, our node selection during
tree traversal generalizes attenuation also to close-by VPLs, which have a
higher contribution to localized lighting effects (see Fig. 4.1).

6.1 Comparison

Since the ground truth is generated with path tracing, PT variants may be
slightly advantaged w.r.t. the quality comparison. Nevertheless, Table 6.1
shows that while PT with a single bounce is efficient, the image quality is
clearly inferior to SST (see also Fig. 6.2). In all scenes, there are areas that
require more than a single bounce to be properly lid. When the number of
bounces is increased, PT catches up in terms of quality, but also requires
more time than ours, i.e., PT requires 2 to 3 bounces to achieve our quality
while being 1.5× slower. San Miguel is an exception, where all approaches
struggle to achieve good quality, showing the highest error among all scenes.
However, substitute trees are faster than even single-bounce PT, as ray
tracing is particuarly expensive due to the geometric load.

To quantify the potential gains of the different approaches, we list the
SSIM gain per invested ms when switching to either technique from the
lowest-quality approach, e.g., switching from PT1′ to SST for Pink Room,
achieves an ∼0.052 SSIM increase for the invested 1 ms. SST always yields
the best gains for pure diffuse lighting. When using a non-Lambertian BRDF,
scenes with highly glossy materials, like Pink Room and Living Room, work
slightly better with path tracing. Sponza, featuring only moderately glossy
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6.1 Comparison

Figure 6.2: Path tracing with a single bounce (left) misses significant portions of indirect
illumination. SST (right) distributes VPLs throughout multiple bounces (in a
fraction of the trace time) and thus faithfully recovers the illumination.

materials, again works best with SST. In San Miguel, little gains can be
achieved overall with either method.

Unfortunately we were unable to include LGH in this direct comparison as
the LGH framework is not compatible with Falcor to produce identical scene
setups. Nevertheless, we compare a view of Sponza directly between LGH
and SST, as shown in Fig. 6.3: It is lit with indirect illumination generated
from a single point light, placed at the center of the scene. The ground truth
is generated by the LGH framework using instant radiosity. It is evident that
LGH significantly overestimates lighting in some places, while being too
dark in others. We attribute these issues to LGH’s shadow heuristic, which
is insufficient to distinguish between the brighter (but occluded) VPLs in
the center of the scene and the less bright (but visible) VPLs in the corridors.
Increasing the shadow ray count to 2 per pixel (the maximum supported
by the framework) did not improve quality, but prolonged the frame time
from 26.7 ms to 37.6 ms (from hierarchy generation to final image). For the
entire pipeline, SST requires 24.57 ms and creates clearly superior results
compared to LGH.
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6 Evaluation

LGH 26.7 ms SST 24.57 ms

LG diff ×5

GT

SST diff ×5

Figure 6.3: While LGH requires similar times as SST, it is further from the ground truth
indirect illumination. LGH’s shadowing heuristics overestimate the general
illumination and predict high shadows around corners (red boxes).

6.2 Scalability

Since we regularly (potentially in every frame) generate new VPLs and the
substitute tree, performance of these steps is essential. Table 6.2 shows the
timings for VPL generation and tree building with different scenes. The
runtime for VPL generation is governed by the scene’s complexity, while
the duration of tree building depends only on the number of VPLs. About
100 k VPLs are needed for temporally stable lighting in our tests, resulting
in ∼1.1 ms to 1.5 ms in total.

Table 6.3 shows that the sample time also increases with tree depth. Sam-
pling from the SST is more efficient as soon as the tree is not too shallow.
For very small VPL counts (10k)—which imply temporally instable lighting
conditions—SLC is slightly faster. For 100k VPLs, SST is already 1.35×
faster. Our performance edge increases with the tree size, indicating a better
scalability of substitute trees. When sampling specular reflections, the perfor-
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6.2 Scalability

VPL generation Tree building
# VPLs 10k 100k 500k 1M 10k 100k 500k 1M

Pink Room 0.13 0.27 0.74 1.47 0.58 0.89 2.44 4.51

Living Room 0.13 0.30 0.83 1.54 0.54 0.89 2.38 4.43

Sponza 0.14 0.40 1.32 2.38 0.59 0.88 2.39 4.35

San Miguel 0.19 0.85 3.44 7.05 0.56 0.91 2.35 4.38

Table 6.2: Timings for VPL generation and substitute tree building with varying VPL counts.
VPL generation depends on the scene geometry due to ray-tracing. Tree building
only dependents on the VPL count. All times in ms.

10k 100k 500k 1M
SST SLC SST SLC SST SLC SST SLC

di
ff

us
e Pink Room 2.22 2.10 2.65 3.59 2.88 5.45 3.10 6.79

Living Room 2.27 2.17 2.88 4.34 3.36 6.63 3.73 8.04

Sponza 2.77 2.74 3.36 4.54 3.78 6.12 3.92 7.00

San Miguel 4.81 5.19 5.77 6.83 6.64 8.51 7.30 9.39

+
sp

ec
ul

ar Pink Room 3.90 3.62 4.61 5.08 5.02 7.08 5.18 9.14

Living Room 3.68 3.27 4.43 5.14 5.03 7.01 5.24 8.86

Sponza 3.36 3.26 4.10 5.31 4.58 6.99 4.73 8.02

San Miguel 6.45 6.29 7.71 7.84 8.92 9.85 10.04 11.80

Table 6.3: Sampling timings in ms with 1spp. For shallow trees (which are temporally not
stable) SLC is slightly faster than sampling from SST. However, as the tree size
increases, our substitute sampling clearly has the performance edge.

mance difference is less pronounced, as specular sampling is more complex
and we traverse the tree further. Nevertheless, SST is still faster for all tree
sizes above 10k VPLs. Our performance edge comes from two factors. First,
we stop our traversal early, as outlined in Fig. 4.2. Second, SLC’s random
sampling of VPL locations leads to scattered memory accesses, while SST
sampling leads to coherent fetches of only the distribution information and
thus requires less memory bandwidth.
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6 Evaluation

(a) Occluded Light Source (b) Highly Glossy Material

Figure 6.4: (a) An area light source, pointed at a corner, is sampled well with SST (left).
Path tracing (right) has difficulties connecting the rays to the light source, which
leads to undersampling. (b) While SST (left) supports specular BRDFs, highly
glossy surfaces are challenging to resolve with 1spp, as the reflection directions
are usually not sampled and thus more noise remains compared to path tracing
(right).

6.3 Discussion and Limitations

So far, we only reported our results on image quality for individual still
frames. However, our experiments have shown that denoising the result
of our sampling stage with temporal filtering produces temporally stable
global illumination in animated scenes, where we rebuild the SST each
frame with sufficiently many VPLs. Thus, our approach supports dynamic
light sources and scenes while maintaining good frame-to-frame coherence.
Due to the difficulties of establishing temporal stability via conventional
illustrations and for lack of a universally accepted quality metric, we kindly
refer the reader to our supplemental video for an adequate demonstration.

Compared to path tracing, one particular advantage of SST is that it can
handle difficult-to-reach light sources due to its VPL distribution in the style
of instant radiosity, as shown in Fig. 6.4a.

Although SST does support specular BRDFs, mirrors and glossy reflections
pose a challenge, as sampling the tree will in general not sample the perfect
reflection direction and thus degrade sharpness (see Fig. 6.4b). As a remedy,
one can trace an additional ray for samples that hit a mirror and sample the
tree from the next hit.
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6.3 Discussion and Limitations

Working with VPLs, using heuristically driven importance sampling, and
estimating VPL distributions leads to a biased approach. Additionally, as is
common with VPL approaches, we avoid singularities in the geometric term
by clamping, which results in slightly darkened corners. However, focusing
on the creation of convincing real-time rendering content, being unbiased is
not our main goal.
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7 Conclusion

We have presented a new, scalable many-light rendering approach for simu-
lating global illumination in real-time in animated scenes. Our stochastic
substitute trees approximate the actual global illumination by converting
clusters of input VPLs into suitable probability distributions. While we can
benefit from the same advantages as stochastic lightcuts, sampling with our
tree is more efficient since traversal can be stopped early. Furthermore, our
substitute distributions generate higher-quality lighting than approaches
that directly sample from the underlying VPLs. Our sampling method com-
pares favorably to stochastic lightcuts and the recently proposed Lighting
Grid Hierarchy in terms of quality and runtime. We can usually capture
indirect illumination more accurately with a single bounce than path tracing
and report higher gains for image quality metrics. By combining our sam-
pling method with CNN denoising and temporal filtering, we can generate
temporally stable approximations of global illumination in real-time, in fully
dynamic scenes.

Our approach supports specular highlights and produces agreeable results
for semi-glossy surfaces. However, highly glossy surfaces and sharp, mirror-
like reflections may still produce noise and are better handled with path
tracing. Looking forward, we believe that tracing additional rays for those
hits may combine the best of both worlds, leading to hybrid VPL sampling
and path tracing.
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