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Abstract

This work focuses on positioning on a 2D plane using a massive MIMO software defined radio,
yielding distance and angle of a movable mobile station relative to a stationary base station.
Within the scope of this work, the software defined radio (built by National Instruments) was
programmed to save channel estimates from real-world measurements of an 8 by 2 antenna
MIMO OFDM transmission. The measurements were done outdoors and indoors, as to give re-
sults with and without significant multi path components and different environments. Hardware
limitations, especially very small available bandwidth had to be taken in consideration. Fur-
thermore, a mathematical model of the signal processing in the hardware, the channel, received
signals and estimation of the distance and angle was formulated. This mathematical model
was implemented and used with data from the measurements, yielding estimates for the two
parameters. Lastly, focus shifted on a statistical evaluation of the results, comparing them to
theoretical lower limits of accuracy imposed by the Cramer-Rao lower bound. Results showed
that for two evaluated measurements the performance of distance estimation was sub-par, be-
cause the (unwired) synchronization between base station and mobile station was insufficient.
In a third evaluated measurement, synchronization was done with an external cable, yielding
results near the Cramer-Rao lower bound for distance estimates. The angle estimation generally
performed more reliable, but showed systematic errors for indoor localization, which could be
attributed to reflections being dominant over line of sight components.

Kurzfassung

Das Ziel dieser Arbeit bestand darin, mittels einem Massive MIMO Software Defined Radio,
Winkel und Distanz (in einer Ebene) einer beweglichen Mobile Station relativ zu einer fest-
stehenden Base Station zu ermitteln. Dieses Software Defined Radio, vertrieben von National
Instruments, wurde softwareseitig modifiziert, um Schätzungen einer Kanalübertrangungsfunk-
tion von Messungen einer 8-mal-2 MIMO OFDM-Übertragung zu speichern. Diese Messungen
wurden im Inneren eines Gebäudes sowie draußen, auf einer weitläufigeren Wiese, durchgeführt,
um die Effekte von Mehrwegeausbreitung und verschiedene Umgebungen zu betrachten. Ein-
schränkungen der Hardware, vorrangig die geringe verfügbare Bandbreite, mussten in weiterer
Folge beachtet werden. Weiters wurde eine mathematische Beschreibung der Signalverarbeitung
der Hardware, des Kanals, der empfangenen Signale und der Schätzung von Winkel und Distanz
gefunden, welche weitergehend in Software umgesetzt wurde. Diese Umsetzung nutzt Daten der
schon besprochenen Messungen, und liefert Schätzwerte für die beiden Parameter. Im letzten
Teil der Arbeit wurde eine statistische Auswertung der gefundenen Schätzwerte vorgenommen,
in welcher die Daten mit einer unteren Grenze für die Genauigkeit, der Cramer-Rao Lower
Bound verglichen werden. Die Ergebnisse für zwei von drei Messungen zeigten relativ hohe
Abweichungen für die Schätzung der Distanz, vorwiegend weil die nötige Synchronisierung zwis-
chen Base Station und Mobile Station nicht ausreichend gut war. In einer dritten ausgewerteten
Messung zeigte sich, dass durch eine externe Synchronisierung mittels Kabel Ergebnisse im Bere-
ich der Cramer-Rao Lower Bound für die Distanzschätzung möglich sind. Die Winkelschätzung
war im Allgemeinen zuverlässiger, zeigte aber systematische Fehler bei den Messungen im Innen-
raum, welche auf Reflektionen zurückgeführt werden können, die die Line of Sight-Komponenten
überlagern.
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1
Introduction

1.1 Introduction

The aim of this Master thesis, as described in the abstract, was to use a software defined
radio (SDR) available at the Signal Processing and Speech Communications Laboratory (SPSC)
for indoor and outdoor positioning. This was achieved by first modifying existing code from
National Instruments (NI) as described in Chapter 2, to save needed data, writing code in
Matlab for finding the distance and angle of the measurements as described in Chapter 4 and
lastly evaluating the estimation with regards to their theoretical lower limit as described in
Chapter 5. The used SDR is a multiple input multiple output (MIMO) system, here configured
with 8 antennas for the base station (BS) and 2 antennas for the mobile station (MS). The data
of the 8 antennas on the BS is used to estimate the position of the MS. The system’s main
purpose lies in research for 4G and 5G communication. However, research in the direction of
location-awareness [1] is ongoing, and is deemed necessary for some future applications. MIMO
systems are one possibility to achieve satisfying resolution of localization, to overcome multi
path propagation degrading the localization performance of single antenna solutions [2]. Most
research done in this field relies only on simulations, and thus real-world measurements are
needed to verify theoretical limits. This has been done for example by [3], but the antenna
array used was a big cylindrical antenna array with 64 dual-polarized antennas. They were
using hardware capable of directly measuring the channel impulse response (CIR), as opposed
to this work using the transfer function (TF) from channel estimation, a by-product of the
coding. The antenna array used here is an 8 antenna uniform linear array (ULA), which is a
configuration explicitly allowed for example by Wi-Fi 6 (802.11ax) [4].

1.2 Overview of Chapters

In Chapter 2 there is a short overview of the used hardware and limitations imposed by it.
Further, one can find an overview of the used transmission scheme, orthogonal frequency division
multiplexing (OFDM), the hardware uses for data transmission, the principle of pilot symbols
and reciprocity calibration. Lastly in Chapter 2, there is a short description of the changes made
in code to get the data needed for further processing. In Chapter 3 a mathematical description
of the processing done in the Hardware from NI, and the further signal processing done in
the algorithms can be found. Chapter 4 focuses on the code written in Matlab which applies
the previous mathematical description. It outlines used principles like grid-search, a modified
maximum-likelihood (ML)-estimator and output-calibration of data. Also the measurements are
described in more detail. Chapter 5 is focusing on the performance of the estimator, comparing
it to the Cramer-Rao lower bound (CRLB). This is performed for one outdoor and two indoor
measurements. One of the indoor measurements was done with wired synchronization between
BS and MS instead of over the air (OTA) synchronization. In Chapter 6, there is a conclusion
of this Master thesis, and further outlook as to what could be done to improve the positioning
accuracy. The last Chapter 7 contains references, pictures, acronyms and some code.

– 7 –
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2
Hardware and Implementation

2.1 Overview

The used hardware is an SDR from NI, consisting of multiple USRP-RIOs, which are dedicated
antenna controllers. The key features of the massive MIMO system are a frequency coverage
from 50MHz – 6GHz, a bandwidth of about 20MHz, 2 – 128 antennas for the BS (seen in
Figure 2.2(a)) and up to 12 different MSs (seen in Figure 2.2(b)). In our configuration, there
are 8 antennas for the BS and 2 antennas on the MS. These 2 antennas of the MS are handled
as two different MSs by the software running on the BS. The different MSs are further called
layers, shown also in Figure 2.1. The software running on both BS and MS is Labview from
NI, a graphical programming language. This work is based on an existing program from NI,
modified to save TFs. The program is able to transmit data between BS and MS using OFDM,
synchronizing between them, visualizing TFs of all antennas as well as their corresponding CIRs.
It communicates with the USRP-RIOs (seen in Figure 2.1), which are doing the actual signal
processing in a field programmable gate array (FPGA) running custom software. The interesting
parts are the channel estimates, which are saved as TFs, as they can be used for positioning.
The actual transmission of data is not interesting, as this does not affect the channel estimation.

2.2 Base Station

The BS used for measurements in this thesis is capable of using up to 128 antennas, in our
case it was configured for 8 antennas. Two antennas each are connected to a single USRP-RIO,
a device combining an FPGA and two separate SDR modules. These USRP-RIOs only have
two channels each. Four of these modules are connected via peripheral component interconnect
extended (PCI-X) to another FPGA module, which pre-processes the data. Lastly, also via the
PCI-X bus, the USRP-RIOs are connected to a regular x86-Server, running Labview. They are
able to perform the transmission and channel estimation in the FPGAs, and are synchronized
with each other, using an external clock. This synchronization is done by a separate clock server
within the BS, but will not be described in further detail here. Also, they each have a global
navigation satellite system (GNSS) module, which would be able to retrieve accurate time from
satellites, but this is not included in this thesis.

– 8 –



2 Hardware and Implementation

Figure 2.1: Simplified block diagram of the hardware

(a) Base Station (b) Mobile Station in the used
configuration

Figure 2.2: BS and MS in the used configuration

– 9 –
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In this thesis, the antenna array was always configured in the same way, a ULA spaced λ
2 apart.

This choice was made so several mathematical and practical simplifications could be made, as
seen in Chapter 3. Also, the phase differences of the received signals are unambiguous if the
spacing equals λ

2 .

x = 0

x

y

∆ = λ/2

y = 0
x = −7λ/8

x = −5λ/8 x = +7λ/8

. . . . . .

Figure 2.3: Array Geometry, ULA.

As seen in Figure 2.3, for our array geometry, with a ULA, the BS antennas are in-line. The
antenna array which is used for actual measurements (Figure 2.4), is connected to the BS. The
geometry of the array is described with the equation xn = −7λc

8 + λc
2 (n − 1) depending on the

antenna number n, with the leftmost being n = 1, and λc being the carrier wavelength.

2.3 Mobile Station

The MS used for this thesis, were two antennas connected to one USRP-RIO, which was directly
connected via PCI-X to another x86-PC. The two antennas are treated as separate MSs for this
thesis, but the software (also running Labview) on the MS processed data for both antennas
simultaneously. The two antennas are treated in software as separate layers, working indepen-
dently. The MS is assumed to be able to move on a plane. For the measurements there was a
carriage in use, as depicted in Figure 2.2(b).

Figure 2.4: Actual used antenna array at the BS

– 10 –
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2.4 OFDM

The modulation for data transmission implemented in the hardware from NI is OFDM. OFDM
splits the data-stream into multiple parallel streams in the frequency domain. These parallel
streams are called subcarriers. These subcarriers have to be orthogonal in order to be separated
at the receiver, as described in [5, Ch 19]. The modulation on the subcarriers is pulse amplitude
modulation (PAM), with rectangular pulses and complex-valued constellations. In the frequency
domain, the spectrum of each modulated carrier has a sin(x)/x shape. At the receiver, the
demodulation has to be done appropriately, by multiplying with exp(−j2πfkt) with frequencies
fk = kW/K, where k is an integer subcarrier index, K the number of subcarriers and W the
available bandwidth, and afterwards integrating over symbol duration.

Pilot symbols are a way for channel estimation, which is needed for reliable and good data
transmission for OFDM. This method involves sending a dedicated known symbol over the
channel, meaning data for every subcarrier is known. Afterwards, the known data is used in a
linear minimum mean square error (LMMSE) estimator (see [6, Ch 12, p.379-418]), for getting
an estimate of the channel. This is done in hardware for every pilot, and the channel estimates
are saved to a file. This will be further described in chapter 3.

Subcarriers are spaced equally over the bandwidth of the hardware, and depend on the used

layer m. For a description of this, f
(m)
k is defined, where k is the number of the subarrier. This

vector was retrieved by analyzing the software from NI, and has the form

f
(m)
k = (fη +mfλ + fδ(k − 1)) + fc (2.1)

As one can see, the frequencies depend on the layer used, whereas each layer can be assigned to
a different MS. fc mentioned in (2.1) is the carrier frequency, fη is the relative lower frequency
of the spectrum, fλ is a frequency shift between layers, as to differentiate between different MSs
and the spacing between subcarriers is fδ. The parameters of this are defined in Chapter 4 for
the actual measurements. As a short example with values

fc fη fλ fδ m

3GHz −9MHz 15kHz 180kHz 2

Table 2.1: Example values

f (m) equates to f (2) =
[
−8.97MHz −8.79MHz −8.61MHz . . . 8.85MHz

]T
+ 3GHz. If m

would be changed by 1, fλ = 15kHz would be added or subtracted.

2.5 Reciprocity Calibration

At the BS, a reciprocity calibration is done between antennas, as the different RF transceiver
chains are non-reciprocal. This causes random phase and amplitude differences. This is done
every time the BS is powered on, and only once. Internally, single-hop reciprocity coefficients
are measured at all subcarriers, which get averaged afterwards. Then, some antennas are chosen
as reference antennas, for which estimates for all paths between a random antenna and the
reference antennas are estimated. These estimates in turn are combined to get one reciprocity
coefficient for every antenna. These coefficients are applied to every transmission (multiplication

– 11 –



2 Hardware and Implementation

of the data stream in the frequency domain).

2.6 Limitations of the Hardware

There are four main limitations imposed by this hardware, which specifically affect our use-case:

System bandwidth: The bandwidth of the system is limited to 17.82MHz. This bandwidth is
split into 100 Subcarriers. Using Tp = 1

W , with W being the total bandwidth and dsample = Tpc,
where c is the speed of light, this bandwidth and number of subcarriers leads to a resolution
dsample ≈ 16.82m. This means that without any subsampling techniques applied, resolution in
the time-domain is low, compared to, e.g., UWB, where bandwidths of up to 1GHz are available.

Snapshot rate: The hardware is limited by the snapshot interval in the time domain. In
this work, a snapshot means a full measurement and calculation of TFs. With continuous
measurement, there are only 30 to 40 snapshots per second calculated, meaning the channel
estimation and following saving is done in this time period. This is due to the channel estimation
being computationally expensive.

Number of antennas: The number of antennas on the BS is limited by the available band-
width of the PCI-X bus, as the OFDM modulation is done at the USRP-RIOs. Without any
further description, the number of BS antennas is limited to 128 by the data transmission needed
to support 12 layers to the USRP-RIOs.

Number of layers: On the MS side, 12 antennas are the maximum. This comes from the
modulation only differentiating between 12 layers, every layer corresponding to one antenna.
The antennas can also be mounted to different MSs, effectively being able to have one user per
antenna/MS.

2.7 Changes in Labview Code

The Labview code from NI was modified for this thesis to being able to save the TFs which are
estimated by the pilot symbols. This is done (as stated in the previous section) 30 to 40 times
per second. The speed of this is determined by the main execution loop. Beside the channel
estimation for every antenna in the array, the reciprocity calibration data and timestamps (which
are relative to the start of execution) are saved too. A proprietary format from NI is used, called
TDMS. The usage of this format was a necessity, as other formats were not reasonably time-
efficient, and thus would hinder execution of other important subprograms. For reference as
to where this saving occured, see (Snapshot*) in Figure 2.1. In order to save these values, the
main program and some of the subprograms had to be modified, to allow the routing of values
to the correct subroutine. As Labview is a graphical programming language, but still holds on
to the concept of scopes of variables, this was a rather tedious task. For some reference on the
Labview code see Chapter 7.

– 12 –
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3
Mathematical Description and Model

In this chapter there will be a short mathematical description of the channel, the signal model,
and the optimization problem. This knowledge is fundamental for the algorithms and imple-
mentations done in Chapter 4.

3.1 Channel Model

For better understanding of the following mathematical description, the geometry of the antenna
array at the MS relative to the BS is shown here:

x

y

a 1

first path, LoS

a
p

p-th path

τp

reflective surface τ1

φ1

φp

BS

MS

pMS =
[
xMS yMS

]T

pBS =
[
xBS yBS

]T
Figure 3.1: Geometry of BS and MS

Here, p denotes the index of the multi path component (MPC), with p = 1 being the line-of-
sight (LoS) path (as depicted), and p ≥ 2 are so-called specular MPCs. The parameters φp and
τp are the angle and delay for the respective path or the LoS component. The vectors pBS and
pMS consist of the x and y coordinates of the BS and MS. As an estimate of distance and angle
is to be found, one can convert between the x and y coordinates by computing

φ = − arctan (
yMS − yBS
xMS − xBS

)− π

2
(3.1)

– 13 –
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and
d =

√
(yMS − yBS)2 + (xMS − xBS)2 (3.2)

with d being cτ . The MS shown in Figure 3.1 is a single antenna, the BS is a ULA, as described
in Chapter 2. The channel is modeled as

x(t, τ) =
P∑
p=1

ap(t)δ(τ − τt) (3.3)

In (3.3), P is the maximum number of paths, ap(t) are the time-dependent complex amplitudes
of the signal, τ is the delay relative to measurement time, and τt are the delays corresponding
to the signal amplitudes ap(t). This is a model for a wide-sense stationary and uncorrelated
scattering (WSSUS) channel, as described in [5, p. 111]

3.2 Signal Model

3.2.1 Received Signal

For this, we assume a received signal overlayed by some noise and transformed to the frequency
domain for demodulation. Our interest here lies within the channel gain vector, a byproduct of
the OFDM scheme. The received signal vector is written as

y(m) = H(m)a(m) +w (3.4)

y(m) ∈ CNK×1 for every layer m. N is the number of antennas, and K is the number of
subcarriers. H(m) ∈ CNK×K is the (complex) channel gain matrix, which is of interest to us.
a(m) ∈ CK×1 is the transmitted signal vector of size K, and w is a noise vector, which contains
elements of a complex Gaussian noise process, distributed according to w ∼ CN (0, σ2). It has
the same dimension as y(m).

The channel gain matrix H(m) has the form

H(m) =



h
(m)
1,1 0 · · · 0

0 h
(m)
1,2

. . .
...

...
. . .

. . . 0

0 · · · 0 h
(m)
1,K

h
(m)
2,1 0 · · · 0

0 h
(m)
2,2

. . .
...

...
. . .

. . . 0

0 · · · 0 h
(m)
2,K

...
...

...
...

h
(m)
N,1 0 · · · 0

0 h
(m)
N,2

. . .
...

...
. . .

. . . 0

0 · · · 0 h
(m)
N,K



(3.5)
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For limitations on M and N , see Chapter 2. Furthermore, a vector for the channel frequency

response is defined as h
(m)
n =

[
h

(m)
n,1 h

(m)
n,2 . . . h

(m)
n,K

]T
. As h

(m)
n is a vector with length K, a

corresponding frequency vector is needed, which is defined in Chapter 2.

The channel matrix has to be estimated. This is done in the Labview code by an FPGA, in a
similar fashion as described in [5, Ch 19, p.426]. Adjusted to the MIMO environment imposed

by the Hardware, the mathematical description is as following: h̃
(m)
n = R

hhLSR
−1
hLShLSh

(m)LS
n

and shows the LMMSE estimate of h
(m)
n , called h̃

(m)
n . R

hhLS is the covariance matrix of channel
gains and the LS estimate of channel gains, R

hLShLS is the autocovariance matrix of the LS

estimates and h
(m)LS
n is the LS estimate of the channel. This LS estimate is obtained from the

received signal vector y(m) on layer m, using the known pilot sequence a(m). I.e. we get the

k-th element of h
(m)LS
n from [

h(m)LS
n

]
k

=
[
y(m)

]
(n−1)K+k

/
[
a(m)

]
k

(3.6)

where [x]k denotes the k-th element of x.

Furthermore, assuming that noise falls in the category of additive white Gaussian noise (AWGN),
for every subcarrier k, meaning the subcarriers are uncorrelated, R

hhLS = R
hh

and R
hLShLS =

(R
hh

+ σ2IK), with IK being a unit matrix of size K.

Similar to [5, Ch 19, p.426] we define:

R
hh

= E[h(m)
n h(m)H

n ] (3.7)

with E[ ] denoting the expectation operator.

3.2.2 Time-Domain Signal Model

As a simplification, the dependence on m is neglected in further calculations. Also, the calibrated
channel estimates hn are transformed into the time-domain. This is not a necessary step, but
allows for much easier visualization in the subsequent chapters. It is done by an inverse discrete
Fourier transform (IDFT) operation:

rn = F−1{hn} (3.8)

rn can now be interpreted as a CIR, which is more comparable to other work done with a
channel sounder [7]. Assuming a sum of pulses as a model for rn

rn =

P∑
p=1

apsn(τp, φp) (3.9)

one can see the relation to the channel model (3.3). Note that ap is not time-dependent anymore,
and sn(τp, φp) only depends on the corresponding delay and angle for ap. If one can find an
estimator finding the dominant component of (3.9), the delay τp of this can be used as an
estimate for the delay, leading to the distance.
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Figure 3.2: TF and CIR of a single measurement from an outdoor environment

Figure 3.2(a) shows an exemplary TF for a single antenna and layer at one time. This cor-
responds to h1. Figure 3.2(b) shows the CIR of this, computed via (3.8). The main peak is
assumed to correspond to the LoS component of the CIR.

The following signal model is calculated, depending on τp (for time of arrival (ToA))and φp (for
angle of arrival (AoA)).

sn(τp, φp) = F−1


e−2jπf1(τp+∆τn)

e−2jπf2(τp+∆τn)

...

e−2jπfK(τp+∆τn)

 (3.10)

∆τn =
xn
c

cos(φp) (3.11)

Equation (3.10) describes the signal model for a single antenna, with length K. xn used in (3.11)
is defined for our geometry in Figure 2.3. sn(τp, φp) is our signal atom, and can be described as

a unit function shifted by the ToA τp and a vector ∆τ =
[
∆τ1 ∆τ2 . . . ∆τN

]T
depending

on array geometry and AoA. ∆τ can be adapted to an arbitrary array geometry rather easily,
but is skipped in this work. For arbitrary array geometries, see [5, Ch 9.3]. The signal model
shown here is cyclic, which is a property of the IDFT used in (3.10). As our CIR retrieved from
the channel estimation in (3.8) has the same mathematical operation applied, it is also cyclic.
This is in contrast to a directly measured CIR from a channel sounder, but had to be taken in
mind for the signal model as to retrieve reliable results.
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x

y

τ

φ

TXn
∆ = λ/2

Figure 3.3: Array geometry, ULA.

Figure 3.3 shows the array geometry used in this thesis, consisting of eight antennas spaced λ/2
apart. The AoA φ is perpendicular when φ = 0. TXn shown here is the number of the antenna.
From here it can be seen that the ToA depends on both the angle φ and and the position of the
antenna in the ULA.

3.2.3 Likelihood of the Signal Model

Now, it is possible to calculate a likelihood function of the error between the CIR and the signal
model:

p(rn; τ, φ) =
1

πKN det(Cn)
e−(rn−αnsn)HC−1

n (rn−αnsn) (3.12)

describes the likelihood-function for our parameters. Here, sn is the estimated signal from (3.10)
parametrized by τ and φ, and rn is the CIR, calculated from the channel estimates. Please note
from (3.10) that τ and φ cannot be estimated from a single antenna measurement as described
by (3.12). Multiple antenna signals are needed; see Section 4.2.3. This is analogous to [8], and
needs the assumption that the signal model/estimate has the same first moment as the CIR,
and thus the mean eliminates in the calculation.

For the estimation, a function which could be minimized had to be found. As an intermediate
step, the amplitude of the estimated signal is estimated, which is as following:

αn = (sHn sn)−1sHn rn (3.13)
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Signal Processing on SDR

4
Algorithms and Measurements

4.1 Introduction

Implementation of the model described in Chapter 3 was done via Matlab, a programming
language used often in engineering. In general, knowledge of the used programming language is
not relevant for discussion of further points in this chapter. As an overview, the implementation
consists of a part for pre-calibrating the data, an implementation of the equations used in
Chapter 3, a grid search for finding the optimal parameters, and an output calibration as to
offset systematic errors.

4.2 Algorithms

4.2.1 Frequencies and Parameters used for Measurements

The fc used here was chosen because the used antennas are capable to transmit and receive
at this frequency with a good attenuation, and the band is relatively unused. The other three
parameters are imposed by the hardware/software from NI, and can’t be changed easily. With
the definition of the frequencies imposed by (2.1), the parameters are as following, for every
further measurement:

fc fη fλ fδ NFFT M K N

3GHz -9MHz 15kHz 180kHz 2048 12 100 8

Table 4.1: Frequencies and parameters used for measurements

The FFT Block Length NFFT and the sample length K are fixed in length, and can’t be changed
without modifying significant parts of the Labview Code. The other parameters are imposed
by the number of antennas (N) and the number of layers which are measured (M , altough only
one was evaluated).

4.2.2 Data Import and Pre-Calibration

As the data recorded on the hardware from NI was saved in a proprietary format called TDMS,
the first step in coding was to read data from this format. This was achieved by using code
from [9]. The data was pre-processed, seen in (4.1), as to get an appropriate format for further
calculations.
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Figure 4.1: TF of one antenna and layer over multiple snapshots

As seen in Figure 4.1, the estimates of the TFs were saved for every snapshot. The first few
snapshots showed no data for estimation in this figure because the MS corresponding to layer 1
was not active until a few snapshots later. The shown data corresponds to a measurement done
indoors and with cable synchronization, which both will be explained later in this chapter.

After the import of the TFs, (4.4) was implemented. For this, the parameter φcal (see (4.1))
had to be estimated, which was done via taking a look at the data and trying a few values. This
calibration value was constant over a measurement, and varied only slightly between different
measurements.

For further calculations, these TFs were converted via (3.8) into CIRs.

CIR of Antenna: 1, Layer: 0
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Figure 4.2: CIR of one antenna and layer over multiple snapshots

In Figure 4.2 the corresponding CIRs are shown, which show peaks in the areas of lower distances.
This is due to distances in this example being small. For easier interpretation, the time-delay
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4 Algorithms and Measurements

was converted into a distance.

To compensate the channel estimation being systematically shifted in a direction, which is caused
by the system or software from NI, pre-calibration had to be done in the frequency domain to
compensate this error.

Φ
(m)
k = f

(m)
k

λc
c
φcal (4.1)

Φ
(m)
k is a calibration value, which is depending on the frequency values f

(m)
k , which in turn

depend on the layer m. λc is the carrier wavelength. φcal is the relevant part of the equation,
and is a constant for calibration, different for every measurement, but constant within the
measurement.

Ψ(m)
n [k] = e−2jΦ

(m)
k (n−1) (4.2)

Ψ(m)
n =

[
Ψ

(m)
n [1] Ψ

(m)
n [2] . . . Ψ

(m)
n [K]

]
(4.3)

h(m)
n = Ψ(m)

n h̃(m)
n (4.4)

Equations (4.1), (4.2) and (4.4) describe the necessary pre-calibration. In principle, the calibra-
tion is equivalent to a beamformer, as described in [5, Ch 19, p.160]. The value n denotes the
antennas in the ULA, with n = 1 being the first antenna. The equation is simplified because
the spacing of antennas is assumed to always be λ/2 apart. As one can deduct from (4.2), there

is a dependency on the number of the antennas. h
(m)
n are the calibrated channel estimations for

every antenna and layer.

4.2.3 Distance and Angle Estimation

For the covariance-matrix Cn, seen in (3.12), one can assume that the noise variance is equal
over all subcarriers, so the covariance-matrix Cn can be written as Cn = σ2IK , where IK is the
unit matrix of size K. As σ2 and everything before the exponential seen in (3.12) can be treated
as constant and not relevant for the optimization problem, and multiplying all antennas, this
leads to

p(r; τ, φ) =

N∏
n=1

p(rn; τ, φ) ∝ e
∑N

n=1−(rn−αsn)H(rn−αsn) (4.5)

being the function we would like to maximize, in order to solve the estimation problem. This
equation further needs the assumption that antennas are uncorrelated and identically dis-
tributed, and thus Cn is equal for every antenna. For easier calculation, the log-likelihood
is used, which is the natural logarithm of (4.5). This yields

p̃(r; τ, φ) = −ln
(

e−(r−αs)H(r−αs)
)

(4.6)

which can be further simplified to

p̃(r; τ, φ) = (r− α̂s)H(r− α̂s) (4.7)

an equation which can be implemented easily in software. r here is the received signal vector,
defined as a stack of all received signals r = (rT1 , r

T
2 , . . . , r

T
N )T , and s is our model for the signal,

also stacked as s = (sT1 , s
T
2 , . . . , s

T
N )T . α̂ seen here is the unique amplitude across all antennas,
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4 Algorithms and Measurements

which is needed for a joint estimation of τ and φ using the models from Chapter 3. It is obtained
from α̂ = (sHs)−1sHr.

Lastly, to get an estimate of the parameters τ called τ̂ and φ called φ̂, function (4.6) is minimized:

(τ̂ , φ̂) = argmin
τ,φ

p̃(r; τ, φ) (4.8)

This is only valid for the LoS path of the signal. If further MPCs are to be estimated, the p-th
path can be estimated via recursively calculating:

(τ̂p, φ̂p) = argmin
τp,φp

p̃(r −
p−1∑
a=1

s(τ̂a, φ̂a)) (4.9)

The ML estimation was done via implementing (4.8). This was done using Matlab and a grid
search.
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Figure 4.3: CIR of all antennas, generated signal, matched generated signal and after substracting the esti-
mated pulse, yielding the residual

Figure 4.3 shows a single (normalized) CIR for all 8 antennas in the upper left. The upper right
depicts a generated pulse with (3.10). The cyclic properties of the measured and the generated
pulse can be seen in detail in these sub-figures. The lower left of Figure 4.3 shows the generated
pulse (in red) layered over the pulse achieved via (3.10). Note that the generated pulse here was
already matched using the estimator with the signal. Lastly, the residual of the measurement is
shown, which is the received signal minus the previous estimated signal. The residual was not
used for further calculations, but it is illustrated to show the error of estimation.

The parameter estimation itself is done via a grid search over φ and τ , yielding joint estimates
φ̂ and τ̂ . The grid was chosen depending on the geometry, meaning this is prior knowledge from
floorplans and the environment. Used grids for the measurements discussed in this thesis were:
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Measurement φrange[°] φstep[°] drange[m] dstep[m]

Outdoor -80 . . . +80 0.5 40 . . . 80 0.5
Indoor without Sync. -80 . . . +80 0.5 40 . . . 120 0.5

Indoor with Sync. -80 . . . +80 0.5 52.5 . . . 77.5 0.1

Table 4.2: Grids used for estimation

In Table 4.2, values for φrange are the upper and lower search boundaries for the angle φ, values
for drange are the upper and lower search boundaries for the distance d = τc, where τ is the delay
defined in Chapter 3, and φstep, dstep are the step sizes used in grid search for the respective
parameters. These values were chosen as to minimize computation time, but still yield good
results for the estimation. The grid search was also done recursively three times, with the first
grid having bigger step sizes, yielding a minimum over the whole range, then an estimate of
the angle φ and distance d was found in the area around the first minimum as a second run,
and lastly the estimate for the distance was found in an even finer grid, but the angle was left
at the value found in the second run. This grid search was done for every snapshot of the
three measurements, yielding estimates φ̂ and d̂. The code shown here next, is a simplified
pseudo-code for this. For further code, see the appendix.

1 min = i n f ;
2 f o r i = 1 : 1 : num samples
3 %f i r s t run
4 d i s t e s t g r i d = 4 0 : 5 : 8 0 ;
5 a l p h a e s t g r i d = −80:2 :80 ;
6
7 f o r k = 1 : 1 : l ength ( d i s t e s t g r i d )
8 f o r m = 1 : 1 : l ength ( a l p h a e s t g r i d )
9 minvar = e s t ima t o r j o i n t m l a oa t o a ( [ a l p h a e s t g r i d (m) d i s t e s t g r i d (k ) ] , y ) ;

10 i f minvar < min
11 min = minvar ;
12 minplace = [m, k ] ;
13 d i s t min ( i ) = d i s t e s t g r i d (k ) ;
14 alpha min ( i ) = a l ph a e s t g r i d (m) ;
15 end
16 end
17 end
18 min = i n f ;
19
20 %second f i n e r run
21 d i s t e s t g r i d = ( d i s t min ( i ) −2.5) : 1 : ( d i s t min ( i ) +2.5) ;
22 a l p h a e s t g r i d = ( alpha min ( i )−(1*pi /180) ) : ( 0 . 5 * pi /180) : ( alpha min ( i )+(1* pi /180) ) ;
23
24 f o r k = 1 : 1 : l ength ( d i s t e s t g r i d )
25 f o r m = 1 : 1 : l ength ( a l p h a e s t g r i d )
26 minvar = e s t ima t o r j o i n t m l a oa t o a ( [ a l p h a e s t g r i d (m) d i s t e s t g r i d (k ) ] , y ) ;
27 i f minvar < min
28 min = minvar ;
29 minplace = [m, k ] ;
30 d i s t min ( i ) = d i s t e s t g r i d (k ) ;
31 alpha min ( i ) = a l ph a e s t g r i d (m) ;
32 end
33 end
34 end
35 min = i n f ;
36
37 %th i rd run , only f o r d i s t ance
38 d i s t e s t g r i d = 4 0 : 0 . 5 : 8 0 ;
39 a l p h a e s t g r i d = alpha min ( i ) ;
40
41 f o r k = 1 : 1 : l ength ( d i s t e s t g r i d )
42 f o r m = 1 : 1 : l ength ( a l p h a e s t g r i d )
43 minvar = e s t ima t o r j o i n t m l a oa t o a ( [ a l p h a e s t g r i d (m) d i s t e s t g r i d (k ) ] , y ) ;
44 i f minvar < min
45 min = minvar ;
46 minplace = [m, k ] ;
47 d i s t min ( i ) = d i s t e s t g r i d (k ) ;
48 alpha min ( i ) = a l ph a e s t g r i d (m) ;
49 end
50 end
51 end
52 min = i n f ;
53 end

Listing 4.1: pseudo-code of the grid search
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4.2.4 Post-Calibration of Estimates

As the values estimated have a systematic shift for distance and angle estimation, some post-
processing had to be done to achieve viable estimates. This post-processing consisted of a simple
calibration to a known good sample. For this, a ground truth of the data for the algorithms was
measured in person by hand. This data was written into code, and as times of movement were
known (via videos of the measurement), absolute positions of stand-still and linearly interpolated
positions of movement were evaluated to achieve a ground truth for φ and d of the measurements.
The reason for these shifts is a delay in the code from NI, which leads to a shift in synchronization.
Calibration itself was done via:

d̂cali = d̂i − dref (4.10)

φ̂cali = φ̂i − φref (4.11)

where dref and φref are obtained from the ground truth measurements of the MS positions, d̂i
and φ̂i are the estimates for every snapshot i.
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Figure 4.4: Uncalibrated and calibrated distance estimates and ground truth for one measurement

Figure 4.4 shows the calibration process of (4.10). The shown measurement is from the outdoor
measurement.
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(a) Uncalibrated angle estimate and ground truth
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Figure 4.5: Uncalibrated and calibrated angle estimates and ground truth for one measurement
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Figure 4.5 shows the calibration process of (4.11). The shown measurement is from the outdoor
measurement. As the pre-calibration done previously already corrects for most of the angular
error, the shift in angle from the calibration can not be seen this easily. Further effects seen in
this estimation will be discussed in an individual section for the measurement.

Figure 4.6: Transmit and receive scheme of BS and MS

Figure 4.6 describes the transmission scheme between BS and MS. This explains why the
calibration is needed. Assuming time t for the BS and time t′ = t + ε for the MS, one can see
that the receive time at the uplink is t = τ − ε. This leads to a measured delay of τ − ε at the
uplink. The receive time at the downlink, for the MS equals t′ = 2T + τ + ε, where T is the
packet duration.

As the BS accounts for the delay at the uplink (meaning that −τ + ε is added to the transmit
time), this leads to a measured delay at the downlink receive of t = (−τ + ε) + τ or t′ = 2ε,
which can be used as an estimate for the synchronization offset ε.

The excess delay −ε is the reason for the post-calibration.. As ε can not be computed exactly
without synchronized measurement data from the MS, the solution using a reference distance
was chosen.
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4.3 Measurement 1 – Outdoor

4.3.1 Environment and Conditions

This measurement was performed outdoors, as to minimize the influence of multipath propa-
gation by being some distance away from surrounding buildings. The place chosen is a small
park at one side of the building Inffeldgasse 16c, on the campus Inffeldgasse of TU Graz. The
relative position is shown in Figure 4.7 by a blue rectangle.

Figure 4.7: Position of measurement at campus Inffeldgasse, adapted from [10]
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Figure 4.8: True path of measurement 1, BS is at position (0,0)
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Figure 4.8 shows a bird’s-eye view of the true path taken by the MS during this measurement.
Numbers from 1 to 7 depict different positions where the MS was stationary. When the MS was
moved, it moved from number to number in ascending order, with two intermediate stops at
number 2 between 4 and 5, and number 1 between 6 and 7. Position (0,0) is the reference point
(center) of the ULA, the x axis is parallel to the ULA.

The measurement was done without cable synchronization between BS and MS, because the
distance between these was too large. The effects of the cable synchronization are examined in
the indoor measurements.

4.3.2 Evaluated TFs and CIRs

The following Figures 4.9 and 4.10 show the TFs of all 8 antennas of the BS in Figure 4.9 and
the corresponding CIRs in Figure 4.10. In Figure 4.9, one can see the magnitude of the TFs
changing over time. This is due to the distance between BS and MS changing, and thus with
greater distance the magnitude is decreasing and vice versa. Also, for example at approximately
snapshot 8000, channel fading can be seen.

Translated to Figure 4.10, one can see that the CIRs still have their biggest peaks at low
distances. These peaks correspond to wave-fronts arriving at the BS antennas.
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(a) TF of antenna 1, layer 0
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(b) TF of antenna 2, layer 0
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(c) TF of antenna 3, layer 0
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(d) TF of antenna 4, layer 0
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(e) TF of antenna 5, layer 0
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(f) TF of antenna 6, layer 0
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(g) TF of antenna 7, layer 0
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Figure 4.9: TFs of all 8 antennas and layer 0 for measurement 1
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Figure 4.10: CIRs of all 8 antennas and layer 0 for measurement 1
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Within the measurement done here, a second layer (corresponding to the second antenna on the
MS) was measured, but will not be discussed. As the CIRs shown within Figure 4.10 do not
show great detail for smaller distances, a further plot is shown here for illustration:
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Figure 4.11: CIR of antenna 1, layer 0, measurement 1, detail view

Figure 4.11 shows that the main peaks of the signal occur for distances between about 40
and 80m. This explains why the search parameters for the grid search were chosen as seen in
Table 4.2. Other smaller peaks can be seen, which correspond to reflections from the surrounding
buildings.
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Figure 4.12: CIR of antenna 1, layer 0, measurement 1, detail view, waterfall plot

Figure 4.12 shows an additional view of the CIRs, with less snapshots. Here, the problems with
synchronization can be seen rather well, causing variation in the peaks of the CIRs with some
periodicity.
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4.3.3 Amplitude of the TFs
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Figure 4.13: Mean amplitude from TFs of antenna 1, layer 0, measurement 1

Figure 4.13 shows the mean amplitude of the TFs, defined as
∑
|h2
n|, which correlates to some

degree to the estimated distance. This was not used further in this work, and is only for
illustration.

4.3.4 Estimates

As one can see from Figure 4.15(a), calibration (as explained in (4.10)) was a necessity for this
measurement. In Figure 4.15(b) some effects of the hardware/software from NI can be seen:
The distance estimation seems to jump between two whole samples of the CIR best seen at the
snapshots at the beginning, jumping at snapshot of approximately 1000 to the correct values.
Also, the estimates seem to be distorted by noise. Both of these problems can be interpreted
to come from inaccurate synchronization of the sampling time between BS and MS, because
these effects are not visible when the system is synchronized via cable, as seen in measurement
3. The distortion between snapshots can be mitigated by a simple smoothing filter, in this case
computing the mean of 101 snapshots, as seen in Figure 4.15(c).

This can still not resolve the big jumps between whole samples of the CIR. As can be seen,
between snapshots of approximately 3500 to 4000, the distance estimate is not reliable. Here,
the magnitude of the TFs was too small for a reliable estimation, and the grid search did not
converge. This was at larger distances between BS and MS, so it is reasonable to assume that
this effect is attributable to small signal-to-noise ratios (SNRs). Also, the BS had just turned
around before this happened (position 3), as can be seen in some still-frames in the appendix. It
could be possible that there was shadowing of the other antenna before, and then after turning
shadowing was less of a problem.

Another problem seen here is that the estimation was getting less accurate over time. An inter-
pretation for this is that measurements were done outdoors in August, when it was exceptionally
hot for Austria. As the sun was shining brightly on the SDR, one can assume that it was heating
up while measuring, affecting for example amplifiers in the SDR. As a rise in temperature also
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affects the coefficients of the reciprocity calibration (see Chapter 2), but this calibration only is
done once when starting the measurement, the estimation of the TF is less accurate with rising
temperature [11, Ch 5].
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Figure 4.14: Distance estimation of measurement 1, calibrated, detail view

Figure 4.14 shows a detail view of a jump between two samples, at approximately snapshot 1070.
The ground truth is in there for reference, ground truth shifted is the ground truth minus the
error one clock cycle offset would have. This comes from an internal sampling rate of the USRP-
RIOs of fsampling = 30.72MHz, leading to an offset for one clock cycle of c/fsampling = 9.76m.

With angle estimation, similar effects can be seen as with distance estimation. Altough, jump-
ing between samples of the CIR is not a relevant problem here, as estimation of the angle is
dependent on the relative ToAs between antennas, which are not affected by synchronization.
Calibration, as seen happening between Figure 4.16(a) and Figure 4.16(b) is not doing as much
as for distance, as pre-calibration already resolves most of the error in angle. But another effect
can be seen well after smoothing in Figure 4.16(c): There are systematic jumps to false values, as
for example before snapshot 8000. As the antenna array can be seen as a beamformer depending
on antenna spacing and number of antennas (as seen in [12, p. 529]), side lobes in angular signal
energy are to be expected. These sometimes overshadow the main lobe in estimation, and thus
lead to systematic false estimates sometimes. This also happens after snapshot 12000, where
even jumps between two lobes can be seen.
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(a) Distance estimation of measurement 1, uncalibrated
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(b) Distance estimation of measurement 1, calibrated
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Figure 4.15: Distance estimates, uncalibrated, calibrated and smoothed over ground truth
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(a) Angle estimation of measurement 1, uncalibrated
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(b) Angle estimation of measurement 1, calibrated
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(c) Angle estimation of measurement 1, calibrated and smoothed

Figure 4.16: Angle estimates, uncalibrated, calibrated and smoothed over ground truth
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4.4 Measurement 2 – Indoor without Synchronization

4.4.1 Environment and Conditions

This measurement was done indoors, in the building Inffeldgasse 16c, the building marked in
red in Figure 4.7. As the measurement was done indoors, it was a logical conclusion to partake
the measurement in the largest space available. This was the corridor, stretching most of the
building.
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Figure 4.17: True path of measurement 2

Figure 4.17 shows the true path within the building, relative to the BS. It should be noted, that
the angle to the BS φ was always 0 for this measurement. The path taken was from mark 1 to
mark 9 and back, with intermediate stops at every mark except at the BS itself. The corridor
has largely varying width (as can be seen in the Figure) and height (as the corridor stretches
over 3 floors, with passages over the corridor), and thus the corridor allows for diverse MPCs.
For this measurement, again, no cable-synchronization was used, as distances were again too
far. For positions 5 to 9, a measurement with cable-synchronization was done, which will be
shown in measurement 3.

4.4.2 Evaluated TFs and CIRs

In Figures 4.18 the TFs for the indoor measurement without cable-synchronization are shown.
In general, they are comparable to the outdoor TFs, but show much more fading over the
bandwidth. For example, this can be seen well at snapshot 9000. In the beginning of the
measurement, until around snapshot 300, the channel estimation didn’t seem to work. This
could be due to a low SNR, as the distance was at a maximum for this measurement. The
Figures 4.19 are of more interest here, as several MPCs can be seen as additional (smaller)
peaks in the CIR. These could be attributed to reflections from walls etc. in the measurement
environment, i.e. the corridor.
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Figure 4.18: TFs of all 8 antennas and layer 0 for measurement 2
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(a) CIR of antenna 1, layer 0
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(f) CIR of antenna 6, layer 0
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Figure 4.19: CIRs of all 8 antennas and layer 0 for measurement 2
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Figure 4.20: CIR of antenna 1, layer 0, measurement 2, detail view

As done for measurement 1, Figure 4.20 shows another smaller excerpt with less distance for the
CIR of antenna 1. Here, MPCs can be seen really well, especially one component which shows
up as a distorted mirror image with less magnitude of the main component. The mirroring
happens at about 100m here. Taking in mind that these distances are not calibrated yet, and
thus have a bias in them, the mirroring distance corresponds rather well to the distance from
the back-wall of the corridor to the BS.
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Figure 4.21: CIR of antenna 1, layer 0, measurement 2, detail view, waterfall plot

As seen for measurement 1, Figure 4.21 shows the same problem again: Varying peaks in the
CIRs, caused by bad synchronization between BS and MS.
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4.4.3 Amplitude of the TFs
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Figure 4.22: Mean amplitude from TFs of antenna 1, layer 0, measurement 2

Figure 4.22 shows the mean amplitude of the TFs, similar to measurement 1 not used in this
work.

4.4.4 Estimates

In Figure 4.23(a) one can see again that distance calibration is a necessity for this measurement.
More interesting, as seen in Figure 4.23(b), the distance estimation seemed to not converge
well when the MS was in movement. This could be explained in part by the Doppler-shift
lowering SNR because it leads to inter carrier interference [6, Ch. 19.7]. Again, problems with
synchronization between BS and MS led to similar effects as in measurement 1, with jumps
between samples of the CIR leading to jumps in the distance estimation, and noise within one
sample of the CIR. In Figure 4.23(c), the distance estimation is again smoothed by calculating
the mean over 101 snapshots. This led to a relatively good estimate for distance, with most
outliers being either within periods of movement or from the jumps explained earlier. The
error getting bigger over time can not be seen here, at least partially confirming the theory of
temperature rise leading to an error in reciprocity calibration within measurement 1.

The estimation done via grid search led to the following estimates:
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(a) Distance estimation of measurement 2, uncalibrated
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(b) Distance estimation of measurement 2, calibrated
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(c) Distance estimation of measurement 2, calibrated and
smoothed

Figure 4.23: Distance estimates, uncalibrated, calibrated and smoothed over ground truth
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(a) Angle estimation of measurement 2, uncalibrated
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(b) Angle estimation of measurement 2, calibrated
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(c) Angle estimation of measurement 2, calibrated and smoothed

Figure 4.24: Angle estimates, uncalibrated, calibrated and smoothed over ground truth
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Similar to measurement 1, Figure 4.24(a) and Figure 4.24(b) do not differ significantly. What
can be seen in both of them, is that the angle estimation seemed to (as seen also for distance
estimation) have problems when the MS was in movement, for the same reason. In Figure 4.24(c),
with smoothing applied, the angle estimation does seem to differ from the ground truth for a few
positions. Leaving out the errors when the MS was in movement, these angle estimates could
be a result of a reflection from the wall parallel to the path being the dominant component of
the wave. As the measurements were done in a path to the BS and back, snapshots from about
6000 onwards are from the way back. The path back seems to be almost mirrored from the path
forward, and thus leads to the conclusion that these errors depend on the geometry of the room,
supporting the idea that the dominant path is a reflection.

4.5 Measurement 3 – Indoor with Synchronization

4.5.1 Environment and Conditions

This measurement was done indoors, in the same corridor as measurement 2, with the intention
that this would lead to comparable results, and thus a means of getting to know which errors
are caused by erroneous synchronization. The path itself although had to be shortened, as the
cables used for synchronization would not allow for the long distances seen in measurement 2.
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Figure 4.25: True path of measurement 3

Reiterating, Figure 4.25 shows the true path of measurement 3, for consistency with the same
marks as measurement 2. The path taken was almost identical with measurement 2, the dif-
ference being that the starting point was at position 5, going to position 9 and back to 5, with
intermediate stops at positions 6, 7 and 8.
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(b) TF of antenna 2, layer 0
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(c) TF of antenna 3, layer 0
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(d) TF of antenna 4, layer 0
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(e) TF of antenna 5, layer 0
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(f) TF of antenna 6, layer 0
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(g) TF of antenna 7, layer 0
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Figure 4.26: TFs of all 8 antennas and layer 0 for measurement 3
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(f) CIR of antenna 6, layer 0
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(g) CIR of antenna 7, layer 0
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Figure 4.27: CIRs of all 8 antennas and layer 0 for measurement 1
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Figures 4.26 show the TFs of measurment 3, for all 8 antennas and one layer/MS. The first
approximately 300 snapshots showed no estimation of the TF, as the MS was not powered on
at these times. This is due to cable-synchronization requiring that the BS is powered on first,
resulting from the software from NI. Here again, like in measurement 2, channel fading can be
seen clearly for several times, and the TF was less well defined when the MS was in movement.
Also, compared to measurement 2 there are only about half as many snapshots, due to the
measurement 2 being longer in time because a longer path was chosen. Figures 4.27 show the
CIRs of measurement 3, corresponding to the TFs. At first glance, they seem to be comparable
to those resulting from measurement 2, but they are slightly more confined in distance than
Figures 4.19.
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Figure 4.28: CIR of antenna 1, layer 0, measurement 3, detail view

Figure 4.28 shows an excerpt of Figure 4.27, comparable to those from measurement 1 and 2.
Again, some mirroring can be seen, as in measurement 2, but the main peaks of measurement
3 are more defined.
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Figure 4.29: CIR of antenna 1, layer 0, measurement 3, detail view, waterfall plot
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Compared to Figure 4.21, Figure 4.29 shows much less variation in the peaks of the CIRs,
stemming from a much better synchronization. In further results, one can see that these smaller
variations lead to much more reliable results.

4.5.2 Amplitude of the TFs
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Figure 4.30: Mean amplitude from TFs of antenna 1, layer 0, measurement 3

Figure 4.30 shows the mean amplitude of the TFs, similar to the two previous measurements.

4.5.3 Estimates

The estimation done via grid search led to the following estimates:
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(a) Distance estimation of measurement 3, uncalibrated
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(b) Distance estimation of measurement 3, calibrated

0 1000 2000 3000 4000 5000 6000 7000

snapshot

0

5

10

15

20

25

e
s
ti
m

a
te

d
 d

is
ta

n
c
e
 i
n
 m

calibrated estimation, smoothed

ground truth

(c) Distance estimation of measurement 3, calibrated and
smoothed

Figure 4.31: Distance estimates, uncalibrated, calibrated and smoothed over ground truth
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(a) Angle estimation of measurement 3, uncalibrated
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(b) Angle estimation of measurement 3, calibrated
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(c) Angle estimation of measurement 3, calibrated and smoothed

Figure 4.32: Angle estimates, uncalibrated, calibrated and smoothed over ground truth
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As one can clearly see in Figure 4.31(a), calibration is still a necessity with cable-synchronization.
Also, the first few snapshots did not yield any useful result for estimation, as the BS was not
yet powered on. More interestingly, in Figure 4.31(b) one can clearly see that the estimation
is much more reliable and less noisy with cable-synchronization. The random jumps between
two samples of the CIR, as in the previous measurements, are no longer present. Also, the
estimation itself is less noisy. With Figure 4.31(c), with smoothing applied in the same manner
as in measurements 1 and 2, the results seem to be very accurate. Most estimates seem to be
within 1m of the ground truth, and especially for nearer measurements, the estimation is very
accurate. Also, here the measurement was working well mostly when the MS was in movement,
as the additional noise from the Doppler-shift did still allow for a good enough SNR.

Figure 4.32(a) shows the uncalibrated angle estimation for measurement 3. As can be seen,
the estimation of the angle did not profit from better synchronization in the same way as the
distance estimation, but did still improve a little bit compared to measurement 2, mostly when
the MS was in movement. With calibration applied in Figure 4.32(b), the angle estimation
shows an accuracy comparable to measurement 2, with errors within about 20° of the ground
truth. Figure 4.32(c) is looking rather similar to Figure 4.24(c) from measurement 2. It also
shows almost mirrored estimations around the position nearest to the BS. The explanation for
the estimation not showing the ground truth is the same as in measurement 2: It is possible
that reflections were overshadowing the LoS components.
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5
Statistical Evaluation of Estimates

5.1 Introduction

In this chapter, the results are evaluated by calculating the Cramer-Rao lower bound of the
estimates, a statistical lower bound of estimator performance. These results are then discussed
and compared for the three measurements.

5.2 Cramer-Rao lower bound

Calculation of the CRLB was done via adapting equations from [12, p.528] and [13, (33)]. This
led to following equations, where Jφ and Jτ are the position information of the AoA and ToA
respectively:

D2
λ(φ) =

(
N2 − 1

)
24

1 + cos2(2φ+ π)

2
(5.1)

Jφ ≈ 8π2D2
λ (φ)N · SNR (5.2)

Jτ = 8π2β2N · SNR (5.3)

D2
λ(φ) is the quadratic aperture for a λ/2 ULA, depending on the AoA. β2 is the mean squared

bandwidth, defined as β2 = ‖ṡ‖2/
(
4π2‖s‖2

)
=
∫
f f

2|S(f)|2df for a normalized pulse ‖s‖2Ts = 1.

Here, ṡ is the sampled derivative of of the pulse [13]. N is the number of antennas, and SNR
is the signal-to-noise ratio (SNR) described in the next section. This leads to the following
angulation error bound (AEB) and ranging error bound (REB):

var(φ̂) ≥ AEB =
√
J−1
φ (5.4)

var(τ̂) ≥ REB =

√
J−1
τ (5.5)

The CRLB is the statistical lower bound on the variance for any unbiased estimator [6, p.480].
The AEB is the CRLB for the angle estimation, and the REB is the CRLB for the range/distance
estimation. These results follow from the Fisher information matrix

Jτ,φ = Er;τ,φ

[(
∂

∂(τ, φ)
ln((p̃(r; τ, φ))

)(
∂

∂(τ, φ)
ln(p̃(r; τ, φ))

)T]
(5.6)

which is comparable to the Fisher information matrix in [13, (7)].
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5.3 Estimation of SNR

For the calculation of the CRLB seen in the previous section, an estimate for the SNR had
to be found. The complex amplitude estimated in Chapter 3, with (3.13) was used for this
purpose. The signal amplitude can be assumed to be approximately the mean of αn[i] over
several snapshots i and the noise can be assumed to be approximately the variance of αn[i].
Thus, the following equations can be used to obtain the SNR, with L + 1 being the number of
snapshots used for estimation:

µα,n[i] =
1

L+ 1

i+L∑
a=i

|αn[a]| (5.7)

σ2
α,n[i] =

∑i+L
a=i |αn[a]|2 − (

∑i+L
a=i |αn[a]|)2/(L+ 1)

L
(5.8)

SNRn[i] ≈ µα,n[i]2

σ2
α,n[i]

(5.9)

Equation (5.7) is for the calculation of the mean of αn[i] for snapshots from i to i + L, (5.8)
calculates the Variance of αn[i] for given samples, with the normalization factor L being due to
Bessel’s correction for an unbiased estimate. Lastly, the SNR is calculated with (5.9). It should
be noted, that this is an approximation, which could yield false values if there was interference
at the times αn[i] was estimated. To get an estimate for the SNR of all used antennas, the mean
of SNRn[i] is used:

SNR[i] =
1

N

N∑
n=1

SNRn[i] (5.10)
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5.4 Evaluation of Measurement 1

5.4.1 Estimated SNR
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Figure 5.1: SNR of measurement 1 with L = 100

Figure 5.1 shows the SNR over measurement 1. As can be seen, the SNR was mostly in the
range of 0 − 40dB. At snapshots of approximately 3500 to 4000 the estimation of parameters
was not converging, which leads to an estimated SNR of approximately 0dB.
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Figure 5.2: SNR of measurement 1 overlayed over the path, bigger marker width and darker color denotes
better SNR. The SNR in dB has been normalized to [0,1]; 1 being the maximum SNR.

Figure 5.2 shows the SNR along the actual path, with bigger marker width and darker markers
denoting a better SNR. Here it can be seen that some areas along the path seemed to work
rather well, but others seemed to show interferences because of channel fading or shadowing
between antennas.
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5.4.2 CRLB Ellipses

Figure 5.3(a-i) shows the error ellipses for the estimated values and the corresponding CRLB
ellipses, calculated using (5.4) and (5.5). As one can see, the error ellipses for some subfigures
(e.g. for position 1 and 7) show a large deviation from the CRLB error ellipses. This is due to
the synchronization problems already discussed in Chapter 4. Other positions (i.e. position 9)
show a big margin in the angle estimation between the CRLB error ellipse and the error ellipse
from the estimated values. This is due to the estimator finding two local minima in the angle,
and thus the error ellipse showing the deviation between these two angle estimates. Otherwise,
the estimation performance was overall not as good as the CRLB indicates, but mostly these
problems in this measurement arose from the erroneous synchronization.

Note that the axis scaling is not by any means equal in these plots, which is to illustrate smaller
angle deviations easier. Also, the positions here correspond to the sequence in which the points
were gone through in the measurement, and the numbers seen in the plots correspond to the
numbers seen in Figure 5.2. This is because some positions were measured twice, as a result of
crossing paths.
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tion 2 (moving towards 3)
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(e) CRLB and estimates of posi-
tion 2 (moving towards 5)
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Figure 5.3: Error ellipses for the CRLB and actual estimates of measurement 1. x and y axes are not eqal.
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5.4.3 Errorbars of CRLB and Estimation
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Figure 5.4: Error variance for AEB and REB and distance and angle estimates, measurement 1

Figure 5.4(a) shows the AEB as errorbars from calculating the CRLB and the errorbars for the
estimated values for the angle. As one can see, the estimation had its flaws and is not near the
theoretical limit, due to the fact that the algorithm seemed to find other local minima. Still,
some measurements, where SNR was good and the algorithm converged to the right minimum,
show promising results. Figure 5.4(b) shows the REB as errorbars from calculating the CRLB
and the errorbars for the estimated values for the distance. These values are also not very
reliable, as can be seen at the large error bars. Again, these large errors come mostly from the
erroneous synchronization.
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Figure 5.5: Mean for angle and distance error, measurement 1

Figure 5.5(a) shows the mean error of the angle estimation, Figure 5.5(b) shows the mean error
of distance estimation. Explanations for the errors here are the same as for the variance errors.
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5.5 Evaluation of Measurement 2

5.5.1 Estimated SNR
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Figure 5.6: SNR of measurement 2 with L = 100

As can be seen in Figure 5.6, the SNR for the indoor measurement without cable-synchronization
was comparable to the SNR from measurement 1. The biggest difference is the harsher dampen-
ing when in movement, and the bigger dependence on distance, which can be attributed simply
to the bigger distances when measuring.
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Figure 5.7: SNR of measurement 2 overlayed over the path, bigger marker width and darker color denotes
better SNR. The SNR in dB has been normalized to [0,1]; 1 being the maximum SNR.

Plotting The SNR over the actual path, one can see the dependence of SNR on distance much
better, and that the SNR was better when the MS was not in movement. Here again, darker
color denotes a better SNR, lighter color denotes a smaller SNR.
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5.5.2 CRLB Ellipses

Within Figures 5.7(a-q) similar to measurement 1, one can again see the error ellipses for the
estimated values and the corresponding CRLB ellipses. The same problems arose here, as with
measurement 1, mostly insufficient synchronization led to bad estimates for the distance. The
angle estimation showed another effect: Mostly the estimation seemed to work rather well,
converging to a relatively small angular error. But most values do have a bias (e.g. in position
2, 5, 7, 8, 11, 12 ...). This could be due to reflections from the walls being the dominant pulse,
not the LoS component. As the hallway is narrow, and reflections from walls are not easily
discernible in distance from LoS components, this seems like a plausible explanation.
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Figure 5.7: Error ellipses for the CRLB and actual estimates of measurement 2. x and y axes are not eqal.
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5.5.3 Errorbars of CRLB and Estimation
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Figure 5.8: Error variance for AEB and REB and distance and angle estimates, measurement 2

Figure 5.8(a) shows the error bars for the AEB and the estimated angles. Here, the estimation
of reflections is seen once more (for example at position 6). Figure 5.8(b) again shows the error
bars for the REB and the estimated distances. Here again, one can see the problems arising
form erroneous synchronization: Large error ranges, and biases for some measurements. These
results are comparable to the results from measurement 1.
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Figure 5.9: Mean for angle and distance error, measurement 2

Figure 5.9(a) shows the bias of the angle estimation, the reflections can be seen in more detail.
Figure 5.9(b) shows the bias of the distance estimation.
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5.6 Evaluation of Measurement 3

5.6.1 Estimated SNR
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Figure 5.10: SNR of measurement 3 with L = 100

Figure 5.10 shows the estimated SNR for measurement 3. The first few samples are to be
ignored, as the MS was not transmitting data yet. Otherwise, the SNR seems to be in general
about 10dB better than the SNR of measurement 2, especially when the MS was in movement.
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Figure 5.11: SNR of measurement 3 overlayed over the path, bigger marker width and darker color denotes
better SNR. The SNR in dB has been normalized to [0,1]; 1 being the maximum SNR.

Figure 5.11 shows the SNR plotted over the the true path, again darker color denoting better
SNR. The results show better SNR when standing still and lower SNR when moving, but the
difference is less compared to measurement 2.
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5.6.2 CRLB Ellipses

Figures 5.12(a-i) show the error ellipses for estimated values and the CRLB, comparable to
measurement 2. A bias in angle estimation can be seen, for the same reasons as in measurement
2. But otherwise, the distance estimation seems to be much more reliable and showing useful
results. Some estimates seem to even be better than the CRLB, but similar to an explanation
done for measurement 2, this is clearly the result of a bad estimate for the SNR. Comparing
Figure 5.12(b) with Figure 5.12(i) one can see that the latter has a bigger error ellipse, although
data points suggest a better error ellipse. This is because for Figure 5.12(i), there are other
clusters of data points, which can not be seen. Figure 5.12(b) is the other way around: There
are multiple data points plotted over each other, causing a smaller error ellipse than suggested.
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Figure 5.12: Error ellipses for the CRLB and actual estimates of measurement 3. x and y axes are not eqal.
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5.6.3 Errorbars of CRLB and Estimation
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Figure 5.13: Error variance for AEB and REB and distance and angle estimates, measurement 3

Figure 5.13(a) shows the AEBs and the error variance of the estimated angle. Results for this
figure are comparable to the results from measurement 2, and show the same bias in estimation.
This bias can be attributed to the same problem: Reflections being dominant over the LoS path.
More interestingly, Figure 5.13(b), showing the REBs and the estimated distances, shows much
improvement over measurement 2. This clearly shows that a better synchronization between
BS and MS leads to a better performance of the algorithms. It should be noted, that although
it seems that the REB is larger than the estimation itself, the calculated REB is relying on an
estimation of the SNR (see (5.9)), and not on an actual measured value. For example destructive
interference can lead to a CRLB which is not representing the real value.
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Figure 5.14: Mean for angle and distance error, measurement 3

Figure 5.14(a) is comparable to the results of measurement 2, the angle estimates have the same
problems as described for measurement 2. Figure 5.14(b) shows the bias of the estimation being
much smaller for distance than the bias of measurement 2.
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6
Conclusion and Further Outlook

6.1 Conclusion

This work shows that indoor positioning is possible using an OFDM based, 8x1 MIMO system
developed for field-testing of massive MIMO systems. Still, there are several problems that need
to be solved, the largest being an insufficient synchronization between BS and MS on the specific
hardware used here. Furthermore, the algorithm used for estimation now only accounts for LoS
components, and thus is neglecting information which could be extracted from the estimated
TFs. Nonetheless, results especially from an indoor environment with complex geometries are
very promising, as seen in the third measurement. The mean error for distance estimation was
less than 40cm, and the mean error for angle estimation was less than −4°. The error variance for
the distance estimation was less than 10cm, and the error variance for angle estimation was less
than 22cm, translated to position estimation. These values hold only true for LoS conditions.

6.2 Outlook

Further research with hardware of this kind should focus primarily on a reliable OTA synchro-
nization, which could be implemented by analyzing the errors measured here, and taking a
deeper look at the programs from NI, or by implementing a time division duplex based syn-
chronization scheme. Also, the algorithms used could be improved to model MPCs in a better
way to improve general positioning. Furthermore, performance of the measured data could be
evaluated for less antennas, for example using only 2 of the 8 antennas, and seeing if the results
are still reliable enough.

Other research could focus on implementing the algorithms used here in real-time, and in smaller,
more consumer-oriented hardware. As Wi-Fi 6 is already on the doorstep during completion
of this work [4], and the standard specifies similar antenna configurations and bandwidths,
one could try to implement such algorithms on a standard compliant Wi-Fi node. As Wi-
Fi 6 does not allow for time division duplex, a workaround for this would have to be found,
but the specification allows for example trigger frames, which could be used to achieve similar
functionality.

Overall, as computing power and MIMO systems get increasingly cheaper, the research done
here could hopefully lead to much better indoor positioning in the near future.
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7
Appendix and Bibliography

7.1 Acronyms

AEB angulation error bound

AoA angle of arrival

AWGN additive white Gaussian noise

BS base station

CIR channel impulse response

CRLB Cramer-Rao lower bound

FPGA field programmable gate array

GNSS global navigation satellite system

IDFT inverse discrete Fourier transform

LMMSE linear minimum mean square error

LoS line-of-sight

MIMO multiple input multiple output

ML maximum-likelihood

MPC multi path component

MS mobile station

NI National Instruments

OFDM orthogonal frequency division multiplexing

OTA over the air

PAM pulse amplitude modulation

PCI-X peripheral component interconnect extended

PDF probability density function

REB ranging error bound

SDR software defined radio

SNR signal-to-noise ratio

– 65 –



7 Appendix and Bibliography

SPSC Signal Processing and Speech Communications Laboratory

TF transfer function

ToA time of arrival

ULA uniform linear array

WSSUS wide-sense stationary and uncorrelated scattering
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7.2 Still Frames of Measurement Videos

Figure 7.1: Still frames of measurement 1
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Figure 7.2: Still frames of measurement 2
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Figure 7.3: Still frames of measurement 3

– 69 –



7 Appendix and Bibliography

7.3 Excerpts of the Code (Matlab)

1 func t i on s = gene r a t e pu l s e (md, tau 0 , tau , normalize , f )
2 %func t i on s = gene r a t e pu l s e (md, tau 0 , tau , normal ize )
3 %
4 % Generates a pu l se (RC, RRC) s p e c i f i e d by md at po s i t i o n tau 0 .
5 %The pu l se i s de f ined over the vector tau , with opt i ona l
6 %normal ize i s op t i ona l :
7 % 1 : normal ize to uni t maximum amplitude
8 % 2 : normal ize to uni t energy ( d i s c r e t e time )
9 % 3 : normal ize to uni t energy ( cont inuous time , acc . to tau vector )

10 %
11 % Example :
12 % md. type = 'RRC' ;
13 % md.Tp = 1e−9;
14 % md. beta = 0 . 6 ;
15 % tau = (−5*md.Tp:1 e−12:5*md.Tp) ' ;
16 % tau 0 = 1.23456 e−12;
17 % s = gene r a t e pu l s e (md, tau 0 , tau , 0) ;
18 % f i g u r e ; p l o t ( tau , s ) ;
19
20
21 % based on : Paul Meissner , Dec . 2012 , update Feb . 2016 Ste fan Hinteregger
22 % adapted : Thomas Wilding , Jan . 2019 , Andreas Fuchs , Nov . 2019
23
24 %% In i t i a l i z e and preliminaries
25 i f ( ˜( strcmp (md. type , 'RC ' ) | | strcmp (md. type , 'RRC ' ) | | strcmp (md. type , ' s i n c ' ) ) )
26 e r r o r ( 'Only RC, RRC and s i n c pu l se supported ! ' )
27 end
28
29 tau = tau ( : ) ;
30
31 i f l ength ( tau ) > 1
32 t au r e s = tau (2) − tau (1) ;
33 e l s e
34 t au r e s = 0 ;
35 end
36 %% RC
37 i f strcmp (md. type , 'RC ' )
38 t = tau−tau 0 ;
39 i=f i nd ( t==0) ;
40 % RC pul se
41 a = s in ( p i * t /md.Tp) ;
42 b = cos ( p i *md. beta * t /md.Tp) ;
43 c = pi * t /md.Tp ;
44 d = 1−4*md. beta ˆ2* t .ˆ2/md.Tpˆ2 ;
45
46 s = a .*b . / ( c .*d) ;
47 s ( abs ( abs ( t ) − 0) < t au r e s /1 e3 ) = 1 ;
48 s ( abs ( abs ( t ) − md.Tp/2/md. beta ) < t au r e s /1 e3 ) = s i n c (1/2/md. beta ) * pi /4 ;
49 %% RRC
50 e l s e i f strcmp (md. type , 'RRC ' )
51 t = bsxfun(@minus , tau , tau 0 ) ;
52 i=f i nd ( t==0) ;
53 t au r e s = tau (2)−tau (1) ;
54
55 a = 4*md. beta * cos ( p i *(1+md. beta ) * t /md.Tp) ;
56 b = s in ( p i *(1−md. beta ) * t /md.Tp) ;
57 c = md.Tp./ t ;
58 d = 1−16*md. beta ˆ2* t .ˆ2/md.Tpˆ2 ;
59
60 s = 1/( p i * sq r t (md.Tp) ) * ( a+b .* c ) . / d ;
61 s ( i ) = 1/ sq r t (md.Tp) *(1 − md. beta + 4*md. beta / pi ) ;
62 s ( abs ( abs ( t ) − md.Tp/4/md. beta ) < t au r e s /1 e3 ) = ... %do not use mu l t i p l e s o f 4* beta f o r Ts !
63 md. beta / sq r t (2*md.Tp) *( (1+2/ pi ) * s i n ( p i /4/md. beta ) + (1−2/ pi ) * cos ( p i /4/md. beta ) ) ;
64 e l s e i f strcmp (md. type , ' s i n c ' )% tau i s the f requency vector
65 s = i f f t ( ones ( s i z e ( f ) ) .* exp(−2 i * pi * f * tau 0 ) ) . ' ;
66 end
67 %% If desired , normalize
68 i f ( narg in > 3)
69 i f ( normal ize == 0)
70 i f strcmp (md. type , 'RC ' )
71 normFactor = sq r t ((1−md. beta /4) *md.Tp) ;
72 e l s e
73 normFactor = 1 ;
74 end
75 e l s e i f ( normal ize == 1)
76 normFactor = max( abs ( s ) ) ;
77 e l s e i f ( normal ize == 2)
78 normFactor = sq r t ( s igEnergy ( s ) ) ;
79 e l s e i f ( normal ize == 3)
80 normFactor = sq r t ( s igEnergy ( s , tau ) ) ;
81 end
82
83 s = s . / normFactor ;
84 end

Listing 7.1: generate pulse.m
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1 func t i on [ l h f ] = estimator joint ML AOA TOA ( theta , r w , time ,md, array )
2 % ( I )&( I I ) : estimator joint ML AOA TOA ( aoa , Cinv , r , alpha , time ,md, array )
3 % ( I I I ) : f o r fminsearch and ML est imator
4 % func t i on f o r j o i n t ML est imate o f ToA and AoA. needs est imated alphas .
5 c = 299792458;
6 r w = r w ( : ) ;
7 %−−−− ( I I I ) : j o i n t e s t imate s to use as func t i on f o r fminsearch ( )
8 % est imate amplitudes
9

10 s = g e t a r r a y s i g n a l s ( array , theta (1) , theta (2) /c , time , md) ;
11 s w = s ;
12
13 a hat = ( s w ' * s w )ˆ−1*s w ' * r w ; %est imate alpha at cur rent tau
14 l h f = +(r w − a hat * s w ) ' * ( r w − a hat * s w ) *1 e6 ; % + due to fminsearch
15
16 i f theta (2) >= 200
17 l h f = i n f ;
18 end
19 i f theta (2) <= 0.8
20 l h f = i n f ;
21 end
22 end

Listing 7.2: estimator joint ML AOA TOA.m

1 func t i on [ s a r r ay ] = getArrayS igna l s ( array , aoa mpc , tau mpc , time , md)
2 % outputs the array s i g n a l f o r a s i n g l e pu l se s in a stacked vector o f s i z e
3 % M*N. needs the c o r r e c t array s t r u c t
4 % M . . . array elements
5 % N . . . s i g n a l l ength in samples
6 % aoa mpc . . . ang le o f a r r i v a l ( s i n g l e value )
7 % tau mpc . . . time o f a r r i v a l at array cente r ( s i n g l e value )
8 %
9 % s a r r ay . . . s tacked array s i g n a l s

10 %
11 % Thomas Wilding , January 2018
12 % July 2018
13 % August 2018
14 switch ˜ i s f i e l d ( time , ' N sig samp ' )
15 case i s f i e l d ( time , 'N ' )
16 time . N sig samp = time .N;
17 end
18
19 NORMALIZE = 1 ;
20
21 s a r r ay = ze ro s ( time . N sig samp* array .M, 1 ) ;
22
23 s = gene ra t e pu l s e (md, tau mpc , time . tau , NORMALIZE, md. f ) .* exp(−2 i * pi *md. f c * tau mpc ) ;
24 tau de lay = ge t a r r ay d e l a y s ( array , aoa mpc ) ;
25
26 f o r mm = 1 : array .M
27 s a r r ay ( (mm−1)* time . N sig samp+1:mm* time . N sig samp , 1 ) =

s h i f t p u l s e ( s , time . tau , tau de lay (mm) ,md) ;
28 end

Listing 7.3: get array signals.m

1 func t i on [ de l ta tau ] = ge t a r r ay d e l a y s ( array , aoa )
2 % get the de lays f o r each array element corresponding to a c e r t a i n aoa
3 % the element po s i t i o n vec to r s in array .pm should be column vec to r s
4 % Thomas Wilding , 2018/01
5 c = 299792458;
6
7 aoa = aoa ( : ) ' ;
8
9 i f s i z e ( array .pm, 2 ) == array .M

10 de l ta tau = −1/c *( ( array .pm( 1 , : )−array . p (1) ) * cos ( aoa − array . p s i ) + ...
11 ( array .pm( 2 , : )−array . p (2) ) * s i n ( aoa − array . p s i ) ) ' ;
12 e l s e i f s i z e ( array .pm, 2 ) ˜= array .M
13 de l ta tau = −1/c *( ( array .pm( : , 1 )−array . p (1) ) * cos ( aoa − array . p s i ) + ...
14 ( array .pm( : , 2 )−array . p (2) ) * s i n ( aoa − array . p s i ) ) ' ;
15 warning ( 'Check the i f array de lays are c o r r e c t ! ' )
16 end

Listing 7.4: get array delays.m
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1 %% grid search
2 t ime loop = 1 ;
3 min = i n f ;
4 f o r i = 1 : 1 : num samples
5 t i c
6 y = squeeze ( b s i f f t ( : ,LAYER+1 ,: , i ) ) ;
7
8 %normal ize CIR f o r every Antenna to 1
9 f o r k = 1 :MAXANTENNA

10 y ( : , k ) = y ( : , k ) / max( abs (y ( : , k ) ) ) ;
11 end
12
13 d i s t e s t g r i d = 4 0 : 5 : 8 0 ;
14 a l p h a e s t g r i d = −80:2 :80 ;
15 a l p h a e s t g r i d = a l ph a e s t g r i d .* pi . / 1 80 ;
16
17 c l c ;
18 d i sp ( [ ' s t a r t o f search ' num2str ( i ) ] ) ;
19 d i sp ( [ num2str ( c e i l ( ( ( i −1)/num samples ) * 100) ) '% of g r id search ' ] ) ;
20 d i sp ( [ num2str ( t ime loop * ( num samples − i ) ) ' seconds remaining ( est imated ) ' ] ) ;
21
22 f o r k = 1 : 1 : l ength ( d i s t e s t g r i d )
23 f o r m = 1 : 1 : l ength ( a l p h a e s t g r i d )
24 minvar = e s t ima t o r j o i n t m l a oa t o a ( [ a l p h a e s t g r i d (m)

d i s t e s t g r i d (k ) ] , y , time , s i gna l , array ) ;
25 i f minvar < min
26 min = minvar ;
27 minplace = [m, k ] ;
28 d i s t min ( i ) = d i s t e s t g r i d (k ) ;
29 alpha min ( i ) = a l ph a e s t g r i d (m) ;
30 %disp ( [ 'New min f o r d i s t : ' num2str ( d i s t min ( i ) ) ] ) ;
31 %disp ( [ 'New min f o r alpha : ' num2str ( alpha min ( i ) ) ] ) ;
32 end
33 end
34 end
35 min = i n f ;
36 try
37 alpha min ( i ) ;
38 d i s t min ( i ) ;
39 catch
40 alpha min ( i ) = 0 ;
41 d i s t min ( i ) = 50 ;
42 end
43
44 d i s t e s t g r i d = ( d i s t min ( i ) −2.5) : 1 : ( d i s t min ( i ) +2.5) ;
45 a l p h a e s t g r i d = ( alpha min ( i )−(1*pi /180) ) : ( 0 . 5 * pi /180) : ( alpha min ( i )+(1* pi /180) ) ;
46
47 %second f i n e r run
48
49 f o r k = 1 : 1 : l ength ( d i s t e s t g r i d )
50 f o r m = 1 : 1 : l ength ( a l p h a e s t g r i d )
51 minvar = e s t ima t o r j o i n t m l a oa t o a ( [ a l p h a e s t g r i d (m)

d i s t e s t g r i d (k ) ] , y , time , s i gna l , array ) ;
52 i f minvar < min
53 min = minvar ;
54 minplace = [m, k ] ;
55 d i s t min ( i ) = d i s t e s t g r i d (k ) ;
56 alpha min ( i ) = a l ph a e s t g r i d (m) ;
57 %disp ( [ 'New min f o r d i s t : ' num2str ( d i s t min ( i ) ) ] ) ;
58 %disp ( [ 'New min f o r alpha : ' num2str ( alpha min ( i ) ) ] ) ;
59 end
60 end
61 end
62 min = i n f ;
63 try
64 alpha min ( i ) ;
65 d i s t min ( i ) ;
66 catch
67 alpha min ( i ) = 0 ;
68 d i s t min ( i ) = 50 ;
69 end
70
71 %th i rd run , only f o r d i s t ance
72 d i s t e s t g r i d = 4 0 : 0 . 5 : 8 0 ;
73 a l p h a e s t g r i d = alpha min ( i ) ;
74
75 f o r k = 1 : 1 : l ength ( d i s t e s t g r i d )
76 f o r m = 1 : 1 : l ength ( a l p h a e s t g r i d )
77 minvar = e s t ima t o r j o i n t m l a oa t o a ( [ a l p h a e s t g r i d (m)

d i s t e s t g r i d (k ) ] , y , time , s i gna l , array ) ;
78 i f minvar < min
79 min = minvar ;
80 minplace = [m, k ] ;
81 d i s t min ( i ) = d i s t e s t g r i d (k ) ;
82 alpha min ( i ) = a l ph a e s t g r i d (m) ;
83 end
84 end
85 end
86 min = i n f ;
87 end

Listing 7.5: Excerpt of estimation main.m, grid search
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7.4 Excerpts of the Code (Labview)

Figure 7.4: Base Station Host.gvi, excerpt
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Figure 7.5: save file cal.gvi

Figure 7.6: save file tf.gvi
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[3] X. Li, E. Leitinger, M. Oskarsson, K. Åström, and F. Tufvesson, “Massive mimo-based
localization and mapping exploiting phase information of multipath components,” arXiv
preprint arXiv:1811.04494, 2018.

[4] M. Turner, “Wi-Fi 6 Explained: The Next Generation of Wi-Fi,” https://www.techspot.
com/article/1769-wi-fi-6-explained/, 2019, accessed: 2019-12-09.

[5] A. F. Molisch, Wireless Communications, Second Edition. Wiley, 2011.

[6] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice
Hall, 1993, vol. 1.
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