

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

Datum

Unterschrift

Danksagung

Ich möchte mich bei allen Personen bedanken, die zum Ergebnis dieser Masterarbeit beigetragen haben. Ein besonderer Dank gilt Mag. Markus Oberhauser, der mir in den letzten Jahren den geologischen Horizont erweitert und meine unzähligen Fragen mit Geduld und fachlichem Wissen beantwortet hat. Auch bedanke ich mich für die Räumlichkeiten, die Unterlagen und Literatur sowie die Geräte und Rammsonde, die mir für diese Masterarbeit zur Verfügung gestellt wurden. Bernhard Kempf, MSc., danke ich für die fachlichen Ratschläge bezüglich Geologischen Fragestellungen und der Unterstützung bei der Durchführung der Arbeit.

Ganz besonders möchte ich mich bei Oberrat Dipl.-Ing. Otto Leibniz bedanken. Sein Engagement und fachliches Wissen bei der Betreuung waren mir stets eine große Hilfe bei dieser Arbeit. Die vielen Gespräche haben mir einen Einblick in die bodenmechanische Sichtweise eines Bauingenieurs gegeben. Ich bedanke mich auch bei allen Mitarbeitern im Labor für Bodenmechanik der Technischen Universität Graz, die mir stets bei Fragestellungen zur Seite standen, ihr Fachwissen weitervermittelt haben und mich bei meinen Versuchen tatkräftig unterstützt haben. Dazu gehören Frau Dipl.-Ing. Odalys Del Carmen Morales-Calderon, Laborleiter Stv. Thomas Theißl, Daniel Vidonja, Andreas Hasawend sowie Aleksandar Djokic.

Darüber hinaus bedanke ich mich bei Assoz. Prof. Dr. Gerfried Winkler, der meine Arbeit durch seine fachliche und persönliche Unterstützung begleitet hat.

Ich bedanke mich bei Univ.-Prof. Dr. Michael Strasser, der mir die Untersuchungen der Rammkerne an der Leopold-Franzens-Universität in Innsbruck ermöglicht hat.

Ein weiterer Dank gilt Dr. Christine Latal und Markus Kaspar, MSc., für die Untersuchungen zur Ermittlung der Gesamtmineralogie und Tonmineralanalyse am Institut für Geowissenschaften der Technischen Universität Graz.

Auch möchte ich mich bei Frau Dipl.-Geol. Eva Vigl für die Bereitstellung von Bohrdaten vom Land Vorarlberg bedanken.

Vorwort

Die vorliegende Masterarbeit beschäftigt sich mit den bautechnischen und hydrogeologischen Eigenschaften der Seetone im Bregenzerwald. Bei dieser Arbeit kam es zu einer Kooperation der Technischen Universität Graz, der Karl-Franzens-Universität-Graz und der Leopold-Franzens-Universität Innsbruck.

Im Untersuchungsgebiet im mittleren Bregenzerwald wurden Bodenproben am offenen Aufschluss und aus Kernbohrungen entnommen, sowie in situ-Versuche durchgeführt.

Die Laborversuche erfolgten am Institut für Bodenmechanik, Grundbau und Numerische Geotechnik an der Technischen Universität Graz.

Die Untersuchungen zur Bestimmung des Gesamtmineralbestandes und der Tonmineralanalysen wurden am Institut für Angewandte Geowissenschaften an der Technischen Universität Graz durchgeführt.

Die Rammkerne wurden im Labor für Limnogeologie am Institut für Geologie an der Universität Innsbruck untersucht.

Abschließend wurde versucht, die Ergebnisse der verschiedenen Untersuchungsmethoden an unterschiedlichen Ausbildungen der Seetone zu korrelieren und Rückschlüsse auf die geotechnischen Eigenschaften zu ziehen.

Graz, im Dezember 2019

Richard Albrecht

Kurzfassung

Im Bregenzerwald liegen große Teile der bebauten und bebaubaren Grundstücke auf und in den Seetonen. Motivation dieser Arbeit ist, ein besseres Verständnis für diese, in geotechnischer Hinsicht, anspruchsvollen Böden zu erhalten. Gegenstand der Untersuchung ist ein Bodenprofil im Bereich einer ca. 4 m tiefen Baugrubenböschung sowie Probenmaterial von zwei Kernbohrungen, welche im Zusammenhang mit einer Untergrunderkundung für ein anderes Bauvorhaben abgeteuft wurden. Beim Aufschluss wurden 14 Handproben sowie 28 Stechzylinder aus 7 verschiedenen Tiefen entnommen. Zusätzlich wurden unmittelbar bergseitig der Baugrube eine 6 m tiefe Rammkernbohrung abgeteuft. Das Probenmaterial der 2 Rotationskernbohrungen wurde von der Firma GEOMAC, Ingenieurbüro für Geologie, zur Verfügung gestellt. Die Proben wurden im geotechnischen Labor für Bodenmechanik. Grundbau und Numerischer Geotechnik der Technischen Universität Graz (TUG) untersucht. Dabei wurde eine Klassifizierung des Bodens mittels Korndichtebestimmung, Untersuchung des Wassergehalts, Dichtebestimmung, Korngrößenverteilung, Scherversuch, Konsistenzgrenzen, Durchlässigkeit in der Triaxialzelle und dem Oedometerversuch durchgeführt.

Die Untersuchung der Gesamtmineralogie und der Tonmineralanalyse erfolgte durch das Institut für Angewandte Geowissenschaften an der Technischen Universität Graz.

Die Rammkerne wurden am Institut für Geologie der Leopold-Franzens-Universität in Innsbruck untersucht. Dabei konnte mit Hilfe des Multi Sensor Core Logger eine Dichtebestimmung, die Ermittlung der P-Wellengeschwindigkeit und der Grad der magnetischen Suszeptibilität ermittelt werden. Zudem wurden die Kerne geöffnet und mit Hilfe einer Kameravorrichtung verzerrungsfrei fotografiert.

Am Aufschluss selbst erfolgten in situ-Versuche mit dem TinyPerm, einem Gerät zur Ermittlung der Permeabilität, sowie eine Rammsondierung bis in eine Tiefe von 15 m.

Die Ergebnisse sämtlicher Untersuchungsmethoden, bezogen auf die unterschiedlichen Ausbildungen der Seetone, wurden in weiterer Folge miteinander verglichen bzw. korreliert, um damit mögliche Rückschlüsse auf die geotechnischen Eigenschaften der jeweiligen Bodenart zu ziehen.

Abstract

In the Bregenzerwald, large parts of the built-up and buildable land are on and in the sea clays. The motivation of this work is to get a better understanding of these, from a geotechnical point of view, demanding soils.

The subject of the investigation in this Master thesis is an outcrop with a depth of 4 m and the sample material of two core drillings, which were taken within an investigation of another construction project. At the outcrop 14 hand samples were taken at different depths and 28 stinging cylinders from 7 different depths. In addition, a 6 m ramming core was taken next to the outcrop. The sample material of the 2 core drillings was provided by *GEOMAC*, *Engineering Office of Geology*. The samples were examined int the Geotechnical Laboratory for Soil Mechanics, Foundation Engineering and Numerical Geotechnical Engineering of the University of Technology of Graz. A classification of the soil was carried out by means of grain density determination, investigation of the water content, density determination, grain size distribution, shear test, consistency limits, permeability in the triaxial cell and the oedometric test.

The study of the total mineralogy and the clay mineral analysis was carried out by the Institute of Applied Geosciences at the University of Technology of Graz.

The ramming cores were investigated at the Institute of Geology of the Leopold Franzens University in Innsbruck. With the Multi Sensor Core Logger a density determination, the determination of the P-wave velocity and the degree of the magnetic susceptibility could be determined. In addition, the ramming cores were opened and photographed distortion-free using a camera device.

The in situ-tests were carried out with the TinyPerm, a device for determining the permeability, as well as a dynamic ramming probe down to a depth of 15 m.

After carrying out the experiments, the results were evaluated and subsequently compared with each other to make statements about the properties of the soils and a correlation of the various experiments.

Inhalt

1	Einleitung	1
2	Untersuchungsgebiet	2
	2.1 Geographischer Überblick	2
	2.2 Geologie	3
	2.2.1 Geologischer Überblick	3
	2.2.2 Quartäre Geologie	5
	2.3 Verbreitung der Seetone	9
	2.4 Probenahme	12
3	Methoden	16
	3.1 Labor	16
	3.1.1 Bodenphysikalische Untersuchungen	16
	3.1.1.1 Korndichte	16
	3.1.1.2 Wassergehalt	17
	3.1.1.3 Dichte	18
	3.1.1.4 Korngrößenverteilung	21
	3.1.1.5 Scherversuch	26
	3.1.1.6 Konsistenzgrenzen	29
	3.1.1.7 Durchlässigkeit	35

3.1.1.8 Oedometerversuch	39
3.1.2 Mineralogie	41
3.1.2.1 Gesamtmineralbestand	41
3.1.2.2 Tonmineralanalyse	42
3.1.3 Rammkernanalyse	42
3.1.3.1 Multi Sensor Core Logger	44
3.1.3.2 Öffnen und Fotografieren der Rammker	rne 45
3.1.3.3 Fallkegelversuch	47
3.1.3.4 Flügelscherversuch	48
3.2 In situ-Versuche	49
3.2.1 Rammsondierung	49
3.2.2 Tiny Perm	52
4 Ergebnisse	54
4.1 Labor	54
4.1.1 Bodenphysikalische Untersuchungen	54
4.1.1.1 Korndichte	54
4.1.1.2 Wassergehalt	54
4.1.1.3 Dichte	57

Literaturverzeichnis	94
Schlussfolgerung	92
Diskussion	85
4.2.2 Tiny Perm	83
4.2.1 Rammsondierung	81
4.2 In situ-Versuche	81
4.1.3.4 Flügelscherversuch	79
4.1.3.3 Fallkegelversuch	77
4.1.3.2 Öffnen und Fotografieren der Rammkerne	70
4.1.3.1 Multi Sensor Core Logger	69
4.1.3 Rammkernanalyse	69
4.1.2.2 Tonmineralogie	68
4.1.2.1 Gesamtmineralogie	68
4.1.2 Mineralogie	67
4.1.1.8 Oedometerversuch	65
4.1.1.7 Durchlässigkeit	63
4.1.1.6 Konsistenzgrenzen	62
4.1.1.5 Scherversuch	60
4.1.1.4 Korngrößenverteilung	57

8	Abbildungsverzeichnis
---	-----------------------

9 Anhang

Formelzeichen und Abkürzungen

Große Buchstaben

Α	[m²]	Querschnittsfläche
I_C	[-]	Konsistenzzahl
I_L	[-]	Liquiditätszahl
I_P	[-]	Plastizitätszahl
E_s	[kPa]	Steifemodul
K	[Darcy]	Permeabilität
LD	[m]	Trockenlänge
L_S	[%]	Lineare Schrumpfgrenze
L_0	[mm]	ursprüngliche Länge des Probenkörpers
S	[-]	Sensitivität
S_r	[-]	Sättigung
V	[m ³ /s]	Volumenstrom
V_d	[cm ³]	Trockenvolumen
V_{ges}	[cm ³]	Gesamtvolumen
V_p	[cm ³]	Hohlraumvolumen
V_K	[cm ³]	Volumen der Körner

Kleine Buchstaben

С	$[kN/m^2]$	Kohäsion
c	$[kN/m^2]$	effektive Kohäsion
Cuc	$[kN/m^2]$	Fallkegelscherfestigkeit
Cu	$[kN/m^2]$	Undränierte Scherfestigkeit
d	[m]	Durchmesser
d_F	[mm]	Einsinktiefe Fallkegel
е	[-]	Porenziffer
8	$[m/s^2]$	Erdbeschleunigung
h	[m]	Druckhöhenunterschied
h_0	[mm]	ursprüngliche Probenhöhe
i	[1]	hydraulischer Gradient
k	[m/s]	Durchlässigkeitsbeiwert
k	[-]	Konstante
k_{10}	[cm/s]	Durchlässigkeitsbeiwert bei 10° C
k_δ	[cm/s]	Durchlässigkeitsbeiwert bei Versuchstemperatur
l	[m]	Fließlänge
т	[kg]	Masse
m_F	[kg]	Masse Fallkegel
m_d	[kg]	Masse trocken

m_f	[kg]	Masse feucht
m_w	[kg]	Masse Wasser
n	[-]	Porenvolumen
n ₁₀	[-]	Anzahl der Schläge je 10 cm Vordringung
р	[N/m²]	Druck
pref	$[kN/m^2]$	Referenzspannung
q_s	$[MN/m^{2}]$	Spitzendruck
S	[mm]	Setzung
W	[%]	Wassergehalt
WL	[%]	Fließgrenze
WP	[%]	Ausrollgrenze
WS	[%]	Schrumpfgrenze
x	[-]	Gerätespezifischer Messwert

Griechische Buchstaben

α	[-]	Beiwert
γ	[N/m ³]	Wichte
γw	[N/m ³]	Wichte des Wassers
ε _z	[%]	Spezifische Setzung
ζv	[1]	Verlustbeiwert
η	[kg/ms]	kinematische Viskosität
φ	[⁰]	innerer Reibungswinkel des Bodens
$arphi^{\prime}$	[⁰]	effektiver Reibungswinkel
ρ	[kg/m³]	Dichte
$ ho_{f}$	[kg/m³]	Feuchtdichte
$ ho_d$	[kg/m³]	Trockendichte
$ ho_s$	[kg/m³]	Korndichte
$ ho_{\scriptscriptstyle W}$	[kg/m³]	Dichte des Wassers
σ	[kN/m²]	Normalspannung
$\sigma^{'}$	[kN/m²]	effektive Normalspannung
σ_z	[kN/m²]	Belastung in z-Richtung
τ	[kN/m²]	Scherspannung
$ au_{f}$	[kN/m²]	Scherfestigkeit
τ_r	[kN/m²]	Restscherfestigkeit

1 Einleitung

Alpine Beckenlandschaften, geformt während der letzten Eiszeit, wurden nach dem Rückzug der Gletscher mit Feinkorn-dominierten Sedimenten verfüllt. Das Andelsbucher Becken, situiert im Bregenzerwald, ist durch die oben beschriebene Entstehungsgeschichte charakterisiert.

Siedlungsgebiete, im mittleren und vorderen Bregenzerwald, sind häufig auf Feinkorn-dominierten, lakustrinen und fluviatilen Feinsedimenten (in weitere Folge als Seetone bezeichnet) situiert. Sowohl die Gründung von Bauwerken als auch die Erstellung von Baugruben in den zumeist ausgeprägt plastischen (und/oder wasserführenden lithifizierten (Feinsand- Grobschlufflagen)) Seetonen, stellen für die Geotechnik herausfordernde Baugründe dar. In den proximalen Abschnitten des ursprünglichen Eisrandstausees werden die stark tonigen, Schluff-dominierten Seetone häufig durch Grobschluff-Feinsand Einschaltungen von wenigen Zentimetern bis Dezimetern getrennt. Entlang dieser Schichten traten in der Vergangenheit häufig Böschungsbrüche im Zuge von Starkniederschlägen auf.

Die unzureichende Charakterisierung der beschriebenen Seetone ist Motivation für die gegenständliche Masterarbeit. Diese Arbeit setzt sich zum Ziel, die bodenmechanischen und hydrogeologischen Kennwerte der Seetone im Bregenzerwald besser zu bestimmen.

In diesem Zusammenhang erfolgte in einem ersten Schritt die Einarbeitung von bestehenden Aufschlüssen (Kernbohrung, Baggerschürfen) in eine neue QGIS-Datenbank. In einem weiteren Schritt wurden Bodenproben entnommen, welche bodenmechanisch sowie hydrogeologisch im Labor charakterisiert wurden. Neben der Korngrößenverteilung, den Atterberg'schen Grenzen und dem Oedometerversuch wurden u.a. direkte Scherversuche sowie Durchlässigkeitsversuche in der Triaxialzelle durchgeführt. Darüber hinaus erfolgte eine in situ Erkundung mittels Rammsondierung und TinyPerm. Die hydraulischen Parameter wurden in unterschiedlichen Skalen untersucht, um einen Vergleich der verschiedenen Methoden ziehen zu können.

In der gegenständlichen Arbeit werden die Labor- und in situ Ergebnisse hinsichtlich ihrer geotechnischen und hydrogeologischen Eigenschaften miteinander verglichen. Darüber hinaus erfolgt der Vergleich mit den in der Literatur angeführten Richtwerten.

2 Untersuchungsgebiet

2.1 Geographischer Überblick

Das Untersuchungsgebiet befindet sich in Vorarlberg, im mittleren Bregenzerwald, auf dem Gemeindegebiet von Andelsbuch. Die Gemeinde Andelsbuch liegt im Bezirk Bregenz und grenzt von Norden bis Westen an das Gemeindegebiet von Egg, im Süden an die Gemeindegebiete von Bezau und Reuthe und im Westen an das Gemeindegebiet von Schwarzenberg (siehe Abb. 1).

Abb. 1: Geographischer Überblick mit der Gemeinde Andelsbuch in grüner Umrandung und gelber Markierung (aus www.geoland.at)

Der Aufschluss in der Parzelle Itter liegt auf 612,1 m.ü.A., ca. 25 m auf der orographisch linken Seite des Brühlbachs und weist die Koordinaten -33292,9/ 252303,4 (Gauß-Krüger-Koordinatensystem) auf. Die Kernbohrungen sind ca. 700 m nordöstlich vom Aufschluss entfernt und wurden in der Parzelle Hof abgeteuft. Die Geländeoberkante der Kernbohrung 1 liegt auf 612,4 m.ü.A., mit den Koordinaten -32972,9/252887,9. Die Kernbohrung 4 wurde von 611,2 m.ü.A. abgeteuft und weist die Koordinaten -32931,6/252897,5 auf. Die Entfernung der beiden Kernbohrungen beträgt 42,3 m. Abbildung 2 zeigt einen Überblick des Untersuchungsgebiets in Andelsbuch mit dem Aufschluss im Südwesten und den Kernbohrungen im Norden.

2.2 Geologie

2.2.1 Geologischer Überblick

Die Geologie von Vorarlberg baut sich sowohl aus westalpinen wie auch aus ostalpinen Gesteinen auf. Die ostalpinen Einheiten bestehen aus dem Silvrettakristallin, der variszischen Molasse und den nördlichen Kalkalpen. Zum Westalpin zählen Penninikum, Flyschzone und Helvetikum. Da die Molassezone erst nach der alpidischen Orogenese entstanden ist, lässt sie sich weder zum Ostalpin noch zum Westalpin einordnen (Friebe, 2007). Abbildung 3 zeigt eine tektonische Übersicht von Vorarlberg.

Abb. 3: Tektonische Übersicht von Vorarlberg mit dem Untersuchungsgebiet innerhalb der roten Umrandung (nach Friebe, 2007)

Die ältesten Gesteine in Vorarlberg befinden sich im Süden und werden vom Metamorphen Altkristallin der Silvretta ausgemacht. Das Altkristallin wurde bereits in der variszischen Gebirgsbildung im Karbon metamorph überprägt und erlebte bei der alpidischen Gebirgsbildung eine weitere Metamorphose. Die variszische Molasse, die einen schmalen Streifen vom Montafon bis zum Arlberg ausmacht, besteht aus Abtragungsschutt des variszischen Gebirges an der Basis der Kalkalpen. Im Oberkarbon (vor 290 bis 310 Millionen Jahren) entstanden kleine Sedimentbecken mit Konglomeraten und Tonsteinen, die in weiterer Folge trockenfielen. Die nördlichen Kalkalpen wurden im Erdmittelalter (Trias, Jura, Kreide) im Thetys-Meer abgelagert. Mit dem Anfang der Trias vor 245 Millionen Jahren wurde die variszische Molasse überflutet und es konnten sich Sandsteine an der Basis der Kalkalpen bilden, gefolgt von Kalkplattformen, bei denen sich die Absenkung und Sedimentation die Waage hielten. Im Jura kam es zu einer Ablöse der Flachwassergebiete durch tiefere Ablagerungsräume, was zur Entstehung von Schwellen- und Beckenbereichen geführt hat. Vor 97 bis 65 Millionen Jahren entstand der Rhenodanubische Flysch in einer Tiefseerinne des Penninischen Ozeans, mit Sedimenten aus Trübeströmen des ostalpinen Altkristallins. Das Helvetikum ist hauptsächlich von Kalken und Mergeln aufgebaut, die sich am ehemaligen Südrand Europas in einem Flachmeer gebildet haben. Die Gesteine wurden vorherrschend im Malm und der Kreide abgelagert. Gegen Ende der alpidischen Orogenese entstand die Molassezone in einer Senke nördlich des Alpenkörpers, die sich durch die Auflast der Alpen gebildet hat. Diese Senke wurde mit Abtragungsschutt

der Alpen aufgefüllt, wobei ein zweifacher Wechsel zwischen Meeres- und Süßwassermolasseablagerungen stattgefunden hat (Friebe, 2007). Der Festgesteinsuntergrund im Bereich des Untersuchungsgebiets wird von ultrahelvetischen Tonmergeln der Schmiedebach Formation aufgebaut (Zacher, 1995). Die Schmiedebach Formation ist eine Melange aus Bregenzerach-Formation mit Gesteinen der Liebensteiner- und Feuerstätter Decke (GBA, 2007; Legende der Geologischen Karte von Vorarlberg).

2.2.2 Quartäre Geologie

Gegen Ende des Pliozäns und im ältesten Pleistozän erfolgte die primäre morphologische und landschaftliche Gestaltung der Alpen durch die Bildung von Tälern. Die Flussnetze entwickelten sich vorwiegend parallel zu den Faltenachsen und entlang von tektonischen Störungszonen. Die weitere landschaftliche Gestaltung geht auf die pleistozänen Eiszeiten und Zwischeneiszeiten zurück. Eine Vergletscherung erodierte die meisten Quartärablagerungen früherer Zeiten, gleichzeitig wurden aber sehr viel Ablagerungen hinterlassen. Die quartären Ablagerungen in Vorarlberg wurden hauptsächlich in der Würm-Eiszeit abgelagert (De Graaf et al, 2007). Tabelle 1 zeigt eine Grobgliederung und ungefähre Zeitgrenzen der Inter-/Glaziale ab der Riss-Kaltzeit.

	Grobgliederung		Chronologie	
Holozän			Nacheiszeit [Warmzeit]	~11.500 bis heute
		Oberes Würm	Letzte Haupt- vergletscherung	~30.000 bis 11.500
Pleistozän	Jüngeres Pleistozän än	Mittleres Würm Unteres Würm	Teilvergletsche- rung	~115.000 bis 30.000
	Mittleres Pleistozän	Riss/Würm- Interglazial	(Esem-) Warmzeit	~127.000 bis 115.000
		Riss-Kaltzeit	Vorletzte Haupt- vergletscherung	bis 127.000

Tab. 1:Grobgliederung und Zeitgrenzen der Inter-/Glaziale ab der Riss-Kaltzeit (nach De Graaf et al, 2007)

Abgeleitet aus den Klimakurven des oberen Pleistozäns dürften sich die Gletscher in Vorarlberg dynamisch an die Klimaänderungen angepasst haben, was sich in einer vielfältigen Fluktuation bemerkbar gemacht hat. Im Allgemeinen folgten die Gletscher den bestehenden Tälern. Im Norden Vorarlbergs und weiter westlich im Bodenseeraum haben sich mehrere Abzweigungen des Rheintalgletschers entwickelt. So hat sich während der letzten Eiszeit der Rheintalgletscher und der Illtalgletscher bei Feldkirch vereint, wobei der Illtalgletscher an der östlichen Rheintalflanke zur Seite gedrängt wurde und weiter im Norden über die Talwasserscheide von Alberschwende gedrängt wurde (siehe Abb. 4, Weissachzunge). Auch der Rheintalgletscher wurde in nordöstlicher Richtung abgezweigt und blockierte die untere Talstrecke der Bregenzerach (Krasser, 1936).

Abb. 4: Vergletscherungsphase in Vorarlberg vor 17.000 Jahren

Bei Gletscherhochstand floss der Rheintalgletscher über die natürliche Wasserscheide des Rotachtals ins süddeutsche Alpenvorland hinein. Das Eindringen dieser beiden Gletscher verhinderte den Bregenzerachgletscher das Rheintal zu erreichen und musste südseitig des Weißachtals in nordöstliche Richtung abbiegen (De Graaf et al, 2007).

Im Bereich von Andelsbuch, Lingenau, Egg und Schwarzenberg war der Bregenzerachgletscher für eine maßgebliche Eintiefung verantwortlich und führte zur Bildung des Andelsbucher Beckens. Dieses Becken wurde von späteiszeitlichen Sedimenten aufgefüllt, was sich in gut ausgebildeten Terrassen wiederspiegelt. (De Graaf et al, 2007).

Die quartäre Geschichte dieser Region kann mit vier Rückzugskomplexen der Gletscher beschrieben werden (De Graaf et al, 2007):

Frühglazial – Hochglazial – Erster Rückzugskomplex (RC I)

Der vorstoßende Rheingletscher erreichte vor ca. 25.000 Jahren das Bodenseegebiet. Durch das Verschließen des Bregenzerachtals bildete sich im vorderen Bregenzerwald ein Stausee mit einer Höhe von rund 620-630 m. Der Gletscher hinterließ eine beträchtliche Menge an Talverfüllungen und stabilisierte sich nach einem lokalen Rückschmelzen, einem kurzen Interstadial. Kurz danach reichte der Rheingletscher weit in das Alpenvorland. Der Eishochstand wurde vor ca. 24.000 Jahren erreicht. Im Alpenvorland wurde die von Penck & Brückner (1909) bekannte "Äußere Jungendmoräne" auf ein Alter von ca. 24.500 bis 22.500 J.v.h. datiert. In Vorarlberg ist der RC I nur im Bereich des Hochhäderichs zu finden, da die Ausschmelzgrenze der Eisüberdeckung zu weit nördlich lag. Im Vorderen Bregenzerwald wurde vermutlich ein Eishochstand mit 1500-1600 m erreicht. Die Gleichgewichtslinie des Gletschers konnte an der Nordseite des Hochhäderichs und auch an der Nordseite der Winterstaude in Andelsbuch mit 1100-1000 m.ü.A. nachgewiesen werden.

Zweiter Rückzugskomplex (RC II)

Vor ca. 21.500 Jahren zog sich der Gletscherrand im Alpenvorland auf die Inneren Jungendmoränen zurück. Im Bregenzerwald vertreten die höchstgelegenen Moränenrücken von Schuttannen, Bödele, Sulzberg und auch im Lecknertal den Zweiten Rückzugskomplex. Zu dieser Zeit beginnt der rasche Verfall des Eisstromnetzes im Rheintal und Bregenzerwald. Vor ca. 18.000 Jahren, am Ende des RC II, fand im Bregenzerwald ein rasches Abschmelzen der Talgletscher statt und große Teile des Vorderen Bregenzerwaldes wurden eisfrei. Westlich von Schwarzenberg markiert eine Reihe von rückenartigen Ablationsmoränen des Bregenzerachgletschers den Rückgang seit dem Bödelestand. Interessant ist der plötzliche Umschlag von moränenartigen Ablagerungen zu fluvial entstandenen Eisrandterrassen unter dem Einfluss der immer mehr Sediment und Wasser führenden lokalen Bä-

che, die dem Gletscherrand entlang abgeleitet wurden. Durch den Stau des Bregenzerachgletschers sind in den Seitentälern wie etwa im Bolgenachtal oder Subersachtal Seetone bis in eine Höhe von 920-930 m.ü.A. entstanden. Darauf folgte die Stauseebildung von Hittisau in einer Höhe von ca. 800 m.ü.A..

Dritter Rückzugskomplex (RC III)

Nach ca. 400 Jahren stabilisierten sich die Gletscher wieder und der Dritte Rückzugskomplex entwickelte sich im Vorderen Bregenzerwald, der auf 16.800 J.v.h. datiert wurde und mit dem Konstanzer Stadium im Voralpenland vergleichbar ist. Der RC III kennzeichnet den vorderen Bregenzerwald mit der Entwicklung eines umfangreichen Stausees auf 660-650 m und vielen Deltaterrassen. Der Stausee umfasste das Rotachtal und die unteren Talläufe der Bregenzerach, Weißach und Subersach. Der Wasserstand blieb über Jahrhunderte konstant, da die Entwässerung über eine natürliche Talwasserscheide im Rotachtal erfolgte und der Rheintalgletscher die Entwässerung über Bregenz blockierte. Der Bregenzerachgletscher reichte kurz vor Ende des RC III noch bis Egg (siehe Abb. 4)

Vierter Rückzugskomplex (RC IV) und letzte Abbaustadien

Das Eisstromnetz im Rheintal und Illtal begann zu verfallen und die letzten Verbindungen mit den meisten Seitentalgletschern gingen verloren. Im Bregenzerwald konnte die Entwässerung vor ca. 16.000 J.v.h. wieder Richtung Bregenz erfolgen. Dadurch senkte sich die Stauhöhe der Seen sehr rasch von 650 m auf 600 m ab und Deltaterrassen bildeten sich in dieser Höhe. Dieses Stadium dauerte vielleicht nur ein Jahrhundert an und die Stauseebildung im Bregenzerwald nahm ein abruptes Ende. Der westliche Bodensee war laut Wessels (1998) um ca. 16.000 J.v.h. wieder eisfrei.

Abbildung 5 zeigt einen Vergleich der rekonstruierten Höhenlagen von Ill- und Rheintalgletscher mit Schneegrenzdepressionswerten (SGD). Der SGD-Wert ist der Betrag in Höhenmetern, um den die pleistozäne Schneegrenze während der letzten Eiszeit tiefer lag als heute. Die Schneegrenze wurde von Klebelsberg (1948/49) wie folgt definiert: "Die Schneegrenze ist die Linie, jenseits der im Verlauf längerer Zeit mehr Schnee fällt als abschmilzt oder verdunstet." Escher (1970) formulierte die Schneegrenze folgendermaßen: "Die klimatische Schneegrenze liegt in jener Höhenlage, in welcher im Mittel einiger Jahre oder Jahrzehnte die Schneedecke 365 Tage dauert."

Nach Gross et al (1978) kann die Gleichgewichtslinie eines Gletschers im Mittel für einen längeren Zeitraum vereinfacht als Schneegrenze bezeichnet werden. Damit deckt sich dieser Begriff weitgehend mit dem der "lokalen oder orographischen Schneegrenze" der älteren Literatur.

Abb. 5: Rekonstruierte Höhenlagen von Ill- und Rheintalgletscher im oberen Würm (De Graaff, 1993)

2.3 Verbreitung der Seetone

Im Bereich des Untersuchungsgebiets auf der Andelsbucher Ebene konnte mit Hilfe von Erkundungsdaten der Firma *GEOMAC* und mit Daten aus dem Bohrkernkataster der *Vorarlberger Landesregierung* eine "Untergrundkartierung" der Seetone gemacht werden. Abbildung 6 zeigt eine Verteilung der punktuellen Erkundungen, die aus Schürfen, Baugruben oder auch Bohrungen zusammengestellt sind. Die geologische Karte (Zacher, 1995) weist im Untersuchungsgebiet große Teile mit "Hangschutt, unerschlossenes Gelände" (6, schwarze Punkte auf weißem Hintergrund) aus. Teilweise werden kleine Gebiete als "Seesediment, Seeton" (10, hellblaue, waagrechte Striche auf weißem Hintergrund) dargestellt.

Anhand der vorliegenden Datenbasis können die Seetone im umliegenden Bereich der Andelsbucher Ebene, welche von Terrassenschottern des RC IV aufgebaut wurden, großflächig ausgewiesen werden (siehe Abb. 7). Innerhalb dieser Ausweisung kann davon ausgegangen werden, dass die Seetone unter einem geringmächtigen Verwitterungshorizont vorliegen.

Abb. 6: Erkundungsdaten der Firma GEOMAC in Grün, der Vorarlberger Landesregierung in Orange und die Untersuchungspunkte in Rot (erstellt mit QGIS und WMS Daten der Vorarlberger Landesregierung)

Die Abbildung 6 zeigt die Andelsbucher Ebene in der Mitte, aufgebaut aus Terrassensedimenten, mit einer Breite von etwas über 1 km und einer Längserstreckung von Nord nach Süd mit ca. 2 km. Auf der linken Seite der Andelsbucher Ebene ist der markante Einschnitt der Bregenzerach zu sehen. Auf der rechten Seite der Ebene hat sich der viel kleinere Brühlbach einige Meter in die Sedimente eingeschnitten.

Die Punkte, welche auf der Karte zu sehen sind, stellen Untergrunderkundungen dar, bei denen Seetone aufgeschlossen sind.

Abb. 7: Geologische Karte (Zacher, 1995) unverändert (oben) und mit Verbreitung der der Seetone (unten) aufgrund der Erkundungsdaten (QGIS, WMS Daten GBA)

2.4 Probenahme

Aufgrund einer baulichen Unternehmung der Familie Fink in Andelsbuch/Itter war die Möglichkeit für eine Untersuchung der Seetone an einem Aufschluss gegeben. Die Baugrube zeigte ab GOK 1 m Mutterboden, gefolgt von ca. 1 m fluviatilen Kiesen. In einer Tiefe von 2.0 m konnte der oberste Wasseraustritt beobachtet werden. Unter den Kiesen waren stark sandige bis stark tonige Schluffe mit einer Mächtigkeit von ca. 0,5 m aufgeschlossen, gefolgt von stark kiesigen bis kiesig schluffigen Sanden von 2,5 m bis 3,2 m. Ab einer Tiefe von 3,2 m folgten die stark tonigen Schluffe bis in die Aushubtiefe von 4,3 m. Beim Aufschluss Andelsbuch/Itter wurden 14 Handproben für die Ermittlung des Wassergehalts, der Korngrößenverteilung und der Gesamtmineralogie und Tonmineralanalyse entnommen (siehe Abb. 8). Aus 7 verschiedenen Tiefen wurden jeweils 4 Stechzylinder für die Untersuchung der Durchlässigkeiten und weiteren Untersuchungen herausgestochen (siehe Abb. 9). Am Aufschluss erfolgte zudem eine Untersuchung mit dem TinyPerm für die Ermittlung der Permeabilität. Etwa 2 m neben dem Aufschluss wurden eine Rammkernbohrung mit einer Tiefe von 6 m abgeteuft. Die Rammkerne wurden in weiterer Folge mit dem Core Logger der Universität Innsbruck untersucht. Zur Korrelation der Rammkernbohrung und dem Bodenprofil am Aufschluss wurde eine Rammsondierung bis in eine Tiefe von 15 m durchgeführt.

Abb. 8: Aufschluss Andelsbuch/Itter mit Darstellung der Handproben (Fotos: R. Albrecht)

Abb. 9: Stechzylinderentnahme am Aufschluss und Übersichtsplan der entnommenen Stechzylinder (Foto: R. Albrecht)

Im Rahmen einer geotechnischen Untergrunderkundung der Firma *GEOMAC*, *In-genieurbüro für Geologie*, wurden in Andelsbuch/Hof mehrere Kernbohrungen abgeteuft. Die Firma *GEOMAC* stellte für die Untersuchungen zwei Proben mit einer Länge von jeweils 45 cm zur Verfügung. Das Probenmaterial der Kernbohrung 1 stammt aus einer Tiefe von 10,0-10,45 m, das Probenmaterial der Kernbohrung 4 aus 8,0-8,45 m (siehe Abb. 10). Der Durchmesser der PVC-Rohre lag bei 100 mm. Die Kernbohrungen sind ca. 700 m vom Aufschluss Andelsbuch/Itter entfernt und wurden einer bodenmechanischen Klassifizierung unterzogen.

Abb. 10: Geöffneter Bohrkern der Kernbohrung 4 (Foto: R. Albrecht)

3 Methoden

3.1 Labor

3.1.1 Bodenphysikalische Untersuchungen

Die Bodenphysikalischen Untersuchungen wurden am Institut für Bodenmechanik, Grundbau und Numerische Geotechnik an der Technischen Universität Graz durchgeführt.

3.1.1.1 Bestimmung der Korndichte (ÖNORM EN ISO 17892-3:2015)

Mit dem Pyknometerverfahren wird die Korndichte von Böden bestimmt. Die Korndichte ρ_s ist die Masse der festen Bestandteile m_d eines Bodens bezogen auf ihr Volumen V_K .

$$\rho_s = \frac{m_d}{V_K} \quad [g/cm^3] \tag{1}$$

$ ho_s$	$[g/cm^3]$	Korndichte
m _d	[g]	Trockenmasse
V_K	[cm ³]	Volumen der Körner

Die Korndichte ist als Mittelwert der in der Probe enthaltenen einzelnen Gesteinsminerale anzusehen. Bei diesem Versuch wird das Volumen einer bekannten Masse eines Bodens mittels Flüssigkeitsverdrängung bestimmt.

Für den Versuchsablauf werden pro Untersuchung drei Kapillarpyknometer aus Glas (siehe Abb. 11) mit einem Volumen von 100 ml verwendet. Der Stöpsel ist mit einer Kapillarbohrung versehen. In die Pyknometer werden jeweils 18–20 g Probenmaterial eingefüllt, welches zuvor bei 105° C getrocknet und mit einem Mörser zerkleinert wurde. Die genaue Abwaage der Probenmenge erfolgt mit einer Waage, die eine Genauigkeit von 0,001 g aufweist. Anschließend werden die Pyknometer bis ca. zu einem Drittel mit destilliertem Wasser aufgefüllt und in einem Vakuumgerät entlüftet. Die Entlüftung erfolgt über die Kapillarbohrung der Glasstöpsel. Nach dem Entlüften werden die Pyknometer bis zum Rand mit destilliertem Wasser aufgefüllt. Nach kurzer Absetzzeit der Partikel in der Suspension wird der Glasstöpsel eingesetzt, wobei die Kapillare vollständig mit Wasser gefüllt sein

muss und sich keine Luft mehr in dem Gefäß befinden darf. Die Pyknometer werden abgetrocknet, erneut abgewogen und die Temperatur der Suspension gemessen. Über eine Temperaturkorrektur auf 20° C zur tatsächlich gemessenen Temperatur wird die Korndichte berechnet.

Abb. 11: Kapillarpyknometer mit Stöpsel (Foto: R. Albrecht)

3.1.1.2 Bestimmung des Wassergehalts (ÖNORM EN ISO 17892-1:2014)

Der Wassergehalt (*w*) ist das Verhältnis der Masse des in einer Bodenprobe befindlichen Wassers zur Masse der trockenen Bestandteile. Die Bestimmung des Wassergehaltes erfolgt durch Ofentrocknung bei 105° C. Die Probe gilt als "trocken", sobald diese die Massekonstanz erreicht hat.

$$w = \frac{m_w}{m_d} = \frac{m - m_d}{m_d} \qquad [\%]$$

m[kg]Masse m_d [kg]Masse trockene Bestandteile m_w [kg]Masse Wasserw[%]Wassergehalt

Die Bestimmung des Wassergehaltes sollte möglichst bald nach der Probenentnahme erfolgen. Die Mindestmengen der Proben sollten aus nachstehender Tabelle entnommen werden (ÖNORM EN ISO 17892-1:2014):

D ₉₀ ^a [mm]	Mindestmenge der feuchten Proben [g]	
1,0	25	
2,0	100	
4,0	300	
16,0	500	
32,5	1500	
63,0	5000	
^a Maschenweite des Siebes bei 90 % Siebdurchgang.		

Tab. 2: Mindestmengen der Proben

Für die Ermittlung des Wassergehaltes muss ein sauberer, trockener Behälter mit bekannter Masse verwendet werden. In diesen Behälter wird die feuchte Probe gegeben, abgewogen, das Gewicht protokolliert und in einen Ofen mit 105° C gestellt. Ist die Massekonstanz erreicht (wenn bei zwei aufeinanderfolgenden Wägungen im Abstand von mehr als einer Stunde die Änderung weniger als 0,1 % der Probenmasse aufweist, nach ÖNORM EN ISO 17892-1:2014), wird der Behälter mit der Probe erneut abgewogen und wieder das Gewicht protokolliert. Durch den aus der Trocknung resultierenden Masseunterschied kann der Wassergehalt berechnet werden (siehe Gleichung 2).

3.1.1.3 Bestimmung der Dichte des Bodens (ÖNORM EN ISO 17892-2:2015)

Das Verfahren der Tauchwägung dient der Ermittlung von Masse und Volumen von unregelmäßigen Bodenproben. Aus der Masse und dem Volumen wird die Dichte berechnet. Aus dem Versuch ermittelt sich die Feuchtdichte ρ . Nach dem Trocknen der Bodenprobe lässt sich zudem die Trockendichte ρ_d errechnen. Die Ermittlung dieser Dichten ist für die Berechnung des Porenanteils und des Sättigungsgrades eines Bodens erforderlich. Abbildung 12 zeigt ein Modell für die Bodenkennwerte, Tabelle 3 eine Zusammenstellung der Bodenkennwerte.

Abb. 12: Modell für Bodenkennwerte; n bezieht sich auf das Gesamtvolumen, e bezieht sich auf die Porenfreie Festmasse (nach Prinz & Strauß, 2011)

$$e = \frac{n}{1-n} = \frac{\text{Hohlraumvolumen}[m^3]}{\text{Trockenvolumen}[m^3]} = \frac{V_p}{V_d} [-]$$
(3)

$$n = \frac{e}{1+e} = \frac{\text{Hohlraumvolumen } [m^3]}{\text{Gesamtvolumen } [m^3]} = \frac{V_p}{V_{ges}} \quad [-] \tag{4}$$

$$w = \frac{m_w}{m_d} = \frac{\text{Wassermasse [kg]}}{\text{Trockenmasse [kg]}} \quad [\%]$$
(5)

$$S_r = \frac{\rho_s * w}{e} = \frac{\text{Korndichte * Wassergehalt}}{\text{Porenziffer}}$$
 [-] (6)

$$\rho = \frac{m_f}{V_{ges}} = \frac{\text{Masser der feuchten Probe [kg]}}{\text{Gesamtvolumen [m^3]}} \quad [kg/m^3] \quad (7)$$

$$\rho_d = \frac{m_d}{V_{ges}} = \frac{\text{Masser der trockenen Probe [kg]}}{\text{Gesamtvolumen [m^3]}} \quad \text{[kg/m^3]} \quad (8)$$

- e [-] Porenziffer
- *m*_d [kg] Masse der trockenen Probe
- *m_f* [kg] Masse der feuchten Probe
- m_w [kg] Masse Wasser
- *n* [-] Porenvolumen
- *S_r* [-] Sättigung
- V_d [cm³] Trockenvolumen
- V_{ges} [cm³] Gesamtvolumen
- V_p [cm³] Hohlraumvolumen
- *w* [%] Wassergehalt
- ρ [g/cm³] Feuchtdichte
- ρ_d [g/cm³] Trockendichte
- ρ_s [g/cm³] Korndichte

Boden		stark bindig	schwach bindig	nicht bindig
Porenvolumen	n [-]	30 - 75	25 - 45	30 - 45
Porenziffer	e [-]	0,4-2,5	0,3-0,8	0,4 - 0,8
Korndichte	$\rho_s [g/cm^3]$	2,67 – 2,78	2,63 - 2,70	2,60 - 2,66
Wassergehalt	w [%]	20 - 100	10 - 20	2 - 10
Feuchtdichte	ρ [g/cm ³]	2,27 – 1,36	2,20 - 1,76	1,90 - 1,60
Trockendichte	$\rho_d [g/cm^3]$	1,84 – 0,86	2,00 - 1,47	1,86 – 1,46

Tab. 3:Zusammenstellung der Bodenkennwerte

Bei der Dichtebestimmung durch Tauchwägung wird die Bodenprobe auf einen Drahtkorb mit bekannter Masse gelegt und abgewogen. Der Drahtkorb mit der Bodenprobe wird in einen mit heißem Wachs gefüllten Behälter eingetaucht (siehe Abb. 13), wobei darauf geachtet werden muss, dass der gesamte Probenkörper von einer Wachsschicht umschlossen wird.

Abb. 13: Drahtkorb und Probenkörper nach dem Eintauchen in das heiße Wachs (Foto: R. Albrecht)

Die Masse der Bodenprobe mit dem Korb und dem Wachs wird erneut abgewogen und protokolliert. Anschließend wird die mit Wachs überzogene Probe mit dem Drahtkorb unter Wasser abgewogen, die Masse des Korbes unter Auftrieb ist bekannt. Für die Berechnung der aus der Untersuchung resultierenden Parameter ist auch die Temperatur des Wassers zu ermitteln. Nach der Durchführung der Tauchwägung wird das Wachs vom Probenkörper entfernt und eine Bestimmung des Wassergehalts durchgeführt.

3.1.1.4 Korngrößenverteilung (ÖNORM EN ISO 17892-4:2016)

Die Korngrößenverteilung gibt die Massenanteile der in einer Bodenart vorhandenen Körnungsgruppen an. Korngrößen über 0,063 mm werden durch Siebung (siehe Abb.14), Korngrößen unter 0,125 mm durch Sedimentation (Schlämmanalyse) getrennt. Die Korngrößen werden nach der Lochweite der Quadratlochsiebe oder Maschenweite der Siebgewebe benannt, durch die sie zuletzt gefallen sind. Die durch Sedimentation ermittelten Korngrößen werden nach dem gleichwertigen Durchmesser bezeichnet, d.h. nach dem Durchmesser von Kugeln gleicher Dichte, die beim Sedimentieren mit der gleichen Geschwindigkeit zu Boden sinken. In der Bodenmechanik ist das Aräometer-Verfahren nach Bouyoucos-Casagrande gebräuchlich. Dabei wird die Dichte der Suspension mit einem Aräometer (siehe Abb. 14) in zweckmäßig festgelegten Zeitabständen gemessen.

Abb. 14. Siebturm und Aräometer in einem mit Suspension gefüllten Messglas (Foto und Abbildung: R. Albrecht)

Aus den Dichten und Eintauchtiefen des Aräometers wird die Korngrößenverteilung berechnet. Der Zusammenhang zwischen Korngröße, Dichte und Sinkgeschwindigkeit wird durch das Gesetz von Stokes gegeben. Vereinfacht sinken im stehenden Wasser verschieden große Körner mit unterschiedlicher Geschwindigkeit. Da dieses Gesetz nur für kugelförmige Körper gilt, werden bei seiner Anwendung für die Körner natürlicher Böden nur äquivalente Korndurchmesser ermittelt (ÖNORM B 4400-1).

Großer Block	über	630 mm		
Block	über	200 mm	bis	630 mm
Steine	über	63 mm	bis	200 mm
Kies	über	2 mm	bis	63 mm
Sand	über	0,063 mm	bis	2 mm
Schluff/Silt	über	0,002 mm	bis	0,063 mm
Feinstkorn/Ton			kleiner als	0,002 mm

Tab. 4:Korngrößenbereiche (ÖNORM B 4400-1)

Die verschiedenen Korngrößenbereiche werden zusätzlich von der Korngröße Kies bis Schluff in Grob-, Mittel- und Feinfraktionen unterschieden.

Tab. 5:Unterteilung der Korngrößenbereiche (ÖNORM B 4400-1)

Kies	über	2 mm	bis	63 mm
Grobkies	über	20 mm	bis	63 mm
Mittelkies	über	6,3 mm	bis	20 mm
Feinkies	über	2 mm	bis	6,3 mm
Sand	über	0,063 mm	bis	2mm
Grobsand	über	0,63 mm	bis	2 mm
Mittelsand	über	0,2 mm	bis	0,63 mm
Feinsand	über	0,063 mm	bis	0,2 mm
Schluff	über	0,002 mm	bis	0,063 mm
Grobschluff	über	0,02 mm	bis	0,063 mm
Mittelschluff	über	0,0063 mm	bis	0,02 mm
Feinschluff	über	0,002 mm	bis	0,0063 mm

Mit Hilfe von Abkürzungen kann der Boden einer Bodenprobe dargestellt werden, z.B.: sa cl'MSi: stark sandiger, gering toniger Mittelschluff.

Die Nebenanteile werden von grob nach fein vor den Hauptanteilen angeschrieben (ÖNORM EN ISO 17892-4: 2016).

Bezeichnung	Kurzzeichen	Bezeichnung	Kurzzeichen
Blöcke	Во	Ton	Cl
blockig	bo	tonig	cl
Steine	Со	Organischer Boden	Or
steinig	со	org. Beimengungen	or
Kies	Gr	Mutterboden	Mu
kiesig	gr	Faulschlamm	F
Sand	Sa	Torf	Н
sandig	sa	torfig	h
Schluff	Si	Anschüttung	А
schluffig	si		
Grob-	С	grob-	с
Mittel-	М	mittel-	m
Fein-	F	fein-	f
sehr gering (2–5 %)	"	stark (>30 %)	_
gering (<15 %)	,		

Tab. 6:Kurzzeichen für die Bezeichnung von Böden (ÖNORM B 4400-1)

Die Abkürzungen d_{10} , d_{30} und d_{60} sind die Korngrößen, die 10 %, 30 % und 60 % Massenanteile der Körnungslinie entsprechen. Die Ungleichförmigkeitszahl C_U ist das Maß für die Steilheit der Körnungslinie im Bereich von d_{10} bis d_{60} . Die Krümmungszahl C_C weist auf den Verlauf der Körnungslinie im Bereich von d_{10} bis d_{60} hin:

$$C_U = \frac{d_{60}}{d_{10}} \tag{9}$$

$$C_C = \frac{(d_{30})^2}{d_{10} * d_{60}} \tag{10}$$

C_C	[-]	Krümmungszahl
C_U	[-]	Ungleichförmigkeitszahl
d_{10}	[%]	Korngröße bei 10 % Massenanteil
d_{30}	[%]	Korngröße bei 30 % Massenanteil
d_{60}	[%]	Korngröße bei 60 % Massenanteil

Für die Korngrößenverteilung werden die Proben mit Wasser durch ein Sieb mit einer Maschenweite von 0,125 mm gespült (siehe Abb. 15). Die Kornanteile größer 0,125 mm werden in einem Gefäß bei 105° C zur Trocknung gebracht. Die getrockneten Kornanteile größer 0,125 mm werden in einen Siebturm gegeben und die Anteile der verschiedenen Korngrößen durch Handsiebung oder Maschinensiebung ermittelt.

Abb. 15: Durchspülung durch ein Sieb mit der Maschenweite von 0,125 mm (Foto: R. Albrecht)

Die aufgeschlämmten Kornanteile kleiner 0,125 mm befinden sich, zusammen mit dem Wasser, in einer Wanne. Es wird gewartet, bis sich die in Suspension befindlichen Teilchen am Boden abgesetzt haben. Nach dem die Kornanteile abgesunken sind, wird das Wasser abgesaugt und der Rest in einer Schüssel unter eine Trocknungslampe (siehe Abb. 16) gestellt, damit das restliche Wasser verdampfen kann.

Abb. 16: Absaugung des Wassers aus dem Auffanggefäß und Trockenlampe (Foto: R. Albrecht)

Nach dem Trocknen unter der Lampe wird die Probe in einen Trockenschrank mit 65° C gegeben. Der Grund für die niedrigeren Temperaturen bei der Trocknung der Kornanteile kleiner 0,125 mm liegt bei den Tonmineralen. Durch eine zu hohe Temperatur können die Tonminerale zusammenballen und die Tone werden gröber (Correns & Schott, 1933). Von der getrockneten Bodenprobe werden 40-44 g abgewogen und in einen Messzylinder mit einer Messmarke bei 1000 cm³ gegeben. Um eine Koagulation (Flockenbildung) der Feinstteilchen zu verhindern, wird ein Dispergierungsmittel zugegeben. In diesem Fall handelt es sich dabei um Natri-umpyrophosphat (Na4P₂0₇ x 10 H₂O). In einer vorbereiteten Stammlösung werden 20 g Natriumpyrophosphat in 1000 cm³ destilliertem Wasser aufgelöst. Von dieser Lösung sind 25 cm³ zu verwenden (ÖNORM 17892-2).

Der Messzylinder mit der Bodenprobe und dem Dispergierungsmittel wird bis ca. zur Hälfte mit destilliertem Wasser aufgefüllt, in ein Mischgerät (siehe Abb. 17) eingespannt und für 12 - 24 Stunden durchmischt.

Abb. 17: Mischgerät mit eingespannten Messzylindern

Bevor die Aräometer-Lesungen gestartet werden können, wird der Messzylinder mit der gut durchmischten Suspension bis zur Messmarke mit destilliertem Wasser aufgefüllt und für eine Minute gut durchgeschüttelt. Dabei muss der Zylinder wiederholt vollkommen umgedreht werden, ohne dass er Teile des Inhalts verliert. Danach wird der Zylinder mit der Suspension auf den Tisch gestellt. Gleichzeitig wird eine Stoppuhr gestartet und das Aräometer in die Suspension eingetaucht (siehe Abb. 18) bis es schwimmt. Nach 30 Sekunden, 1 und 2 Minuten wird der jeweilige Aräometer-Wert am oberen Rand des Meniskus abgelesen und notiert (siehe Abb. 14). Das Aräometer wird vorsichtig herausgenommen und die Lesungen werden nach 5, 15 und 45 Minuten und nach 2, 6, und 24 Stunden wiederholt (ÖNORM 17892-2).

Abb. 18: Eintauchen des Aräometers in die Suspension (Foto: R. Albrecht)

3.1.1.5 Direkter Scherversuch (ÖNORM EN ISO 17892-10:2018)

Beim direkten Scherversuch werden in Laborversuchen die effektiven Scherparameter von Böden festgelegt. Der Probenkörper wird in ein Rahmenschergerät eingebaut und mit der Normalspannung σ konsolidiert. Nach der Konsolidierung wird die horizontale Scherspannung τ angebracht und der Probenkörper in horizontaler Richtung mit zwei Rahmenbüchsen in die entgegengesetzte Richtung verformt (siehe Abb. 19). Das Scheren wird mit einer konstanten Geschwindigkeit durchgeführt und die horizontalen Scherkräfte und Verformungen werden gemessen. Bei diesen Versuchen handelt es sich um einen sogenannten CU-Versuch (konsolidiert, undräniert). Dabei wird der Probenkörper konsolidiert, damit keine Porenwasserdrücke *u* mehr vorhanden sind. Für die Ermittlung der effektiven Scherfestigkeit eines Bodens wird der innere Reibungswinkel φ' und die Kohäsion *c* ' benötigt. Der Restscherwinkel φ_r (Restfestigkeit) wird ermittelt, indem der Schervorgang in beiden Richtungen so oft wiederholt wird, bis zwischen zwei aufeinanderfolgenden Abschervorgängen kein weiterer Festigkeitsabfall mehr erfolgt (ÖNORM EN ISO 17892-10:2018).

Abb. 19: 1. und 2. Phase des Rahmenscherversuches

Die Scherfestigkeit ist für Stabilitätsprobleme wie Böschungsstabilitäten, Tragfähigkeiten, Erddruck u.a. die maßgebende Größe. Um Scherfestigkeiten zu beschreiben, ist ein Bruchkriterium notwendig. Mit dessen Hilfe können die Ergebnisse von experimentellen Untersuchungen ausgewertet und dargestellt werden. In den Geowissenschaften hat sich das einfache Kriterium von Mohr-Coulomb (siehe Abb. 20) durchgesetzt. Für einen Boden mit Kohäsion kann die Scherfestigkeit τ_f folgendermaßen geschrieben werden:

$$\tau_f = c' + \sigma' \tan \phi' \tag{11}$$

 τ_f [kN/m²]Scherfestigkeitc'[kN/m²]effektive Kohäsion σ' [kN/m²]effektive Normalspannung φ' [°]effektiver Reibungswinkel

Das Mohr'sche Bruchkriterium besagt, dass bei einem vorgegebenen Verhältnis der größten (σ'_1) und kleinsten (σ'_3) Hauptspannungen die Festigkeiten proportional zu den Normalspannungen sind. Für die experimentelle Untersuchung der Scherfestigkeit wird an gleichen Bodenproben der Versuch bei verschiedenen Spannungszuständen durchgeführt. Die aus allen resultierenden Bruchkreisen Umhüllende ist das Bruchkriterium oder Gesetz der Scherfestigkeit. Die Bruchgerade beginnt auf der y-Achse mit der effektiven Kohäsion c' und nimmt die Steigung des effektiven Reibungswinkels φ' an.

Abb. 20: Mohr´scher Spannungskreis des Bruchzustandes eines Bodens mit Kohäsion (nach Lang et al, 2011)

Für eine untersuchte Bodenprobe mussten jeweils 3 Probenkörper in die Scherbüchsen der Scherbank (siehe Abb. 21) eingebaut werden. Die Scherbüchsen haben eine Abmessung von 10 x 10 cm. Der untere Rahmen hat eine Probenhöhe von 1,5 cm, der obere Rahmen eine Höhe von 2 cm. Die gesamte Einbauhöhe betrug 3 cm. Die Konsolidierungszeit dauerte 90 Stunden bei einem Konsolidierungsdruck von 200 kN/m². Nach der Konsolidierung wurden die Normalspannungen auf 50, 100 und 200 kN/m² eingestellt. Die Schergeschwindigkeit betrug 0,003 mm/min, die Restschergeschwindigkeit 2,328 mm/min. Nach der Aufzeichnung durch ein Computerprogramm und dem Erreichen der Peaks der Scherkurven konnte der Versuch beendet werden. Die Proben wurden ausgebaut und für die Bestimmung des Wassergaltes bei 105° C getrocknet.

Abb. 21: Scherbüchsen und Scherbank

3.1.1.6 Bestimmung der Fließ- und Ausrollgrenze (ÖNORM EN ISO 17892-12:2018)

Bei bindigen Böden sind die Plastizitätseigenschaften ein Maß für das Wasserbindungsvermögen. Nimmt der Wassergehalt eines Bodens ab, geht er vom flüssigen in den bildsamen (plastischen), dann halbfesten und schließlich in den festen Zustand über. Diese Vorgänge wurden von Atterberg folgendermaßen definiert:

- Die Fließgrenze *w_L* ist der Wassergehalt am Übergang von der flüssigen zur bildsamen Zustandsform.
- Die Ausrollgrenze *w_P* ist der Wassergehalt am Übergang von der bildsamen zur halbfesten Zustandsform
- Die Schrumpfgrenze *w_s* ist der Wassergehalt am Übergang von der halbfesten zur festen Zustandsform.

Bei der Bestimmung der Fließ- und Ausrollgrenzen wurde sowohl das Fallkegelverfahren als auch die Methode mit dem Fließgrenzengerät nach Casagrande durchgeführt. Das Verfahren nach Casagrande eignet sich besonders für tonige Böden, deshalb wurde dieses nur bei der Untersuchung der Bohrkerne eingesetzt. Für die Schluff-dominierten Böden beim Aufschluss Andelsbuch/Itter wurde das Fallkegelverfahren verwendet. Diese Verfahren sind nach ÖNORM B 4411:2009 als gleichwertig anzusehen.

Die Ermittlung der Plastizitätsgrenze (Ausrollgrenze) w_P erfolgte mit dem Ausrollverfahren und über die Bestimmung mit dem Linearschrumpfversuch durch Rückrechnung. Auch hier sind beide Verfahren nach ÖNORM B 4411:2009 als gleichwertig anzusehen.

Die Schrumpfgrenze *ws* kann auch indirekt berechnet werden (ÖNORM EN ISO 17892-12:2018).

$$w_S = w_L - 1,25 I_P \tag{12}$$

I_P	[-]	Plastizitätszahl
WL	[%]	Fließgrenze
WS	[%]	Schrumpfgrenze

Die Differenz zwischen der Fließgrenze und der Ausrollgrenze (w_L - w_P) eines feinkörnigen Bodens wird als Plastizitätszahl I_P bezeichnet. Die Plastizitätszahl kennzeichnet die Spanne des Wassergehalts, bei der eine Probe bildsam bleibt (ÖNORM EN ISO 17892-12:2018).

$$I_P = w_L - w_P \tag{13}$$

 I_P [-]Plastizitätszahl w_L [%]Fließgrenze w_P [%]Ausrollgrenze

Abb. 22: Konsistenzband nach DIN 18122

Eine weitere Kenngröße ist die Konsistenzzahl I_c , wobei der natürliche Wassergehalt *w* miteinbezogen wird (ÖNORM EN ISO 17892-12:2018).

$$I_C = \frac{W_{L-}W}{W_L - W_P} \tag{14}$$

I_C	[-]	Konsistenzzahl
W	[%]	natürlicher Wassergehalt
W_L	[%]	Fließgrenze
WP	[%]	Ausrollgrenze

Tab. 7:

Aufgrund der Konsistenzzahl I_C kann der Boden in folgende Bereiche unterteilt werden:

Konsistenzzahl Ic von Schluffen und Tonen (EN ISO 14688-2:2018)

Konsistenzzahl I _C	Konsistenz
< 0,25	breiig
0,25 bis 0,50	sehr weich
0,50 bis 0,75	weich
0,75 bis 1,00	steif
> 1,00	halbfest

Die Liquiditätszahl I_L ist ein Maß für die Zustandsform des Bodens und stellt eine Verknüpfung der Plastizitätseigenschaften mit dem natürlichen Wassergehalt dar (ÖNORM EN ISO 17892-12: 2018):

$$I_L = \frac{W_- W_P}{I_P} \tag{15}$$

I_L	[-]	Liquiditätszahl
I_P	[-]	Plastizitätszahl
W	[%]	natürlicher Wassergehalt
WP	[%]	Ausrollgrenze

Die Aktivitiätszahl *I*_A zeigt das Verhältnis der Plastizität zum Tonanteil an und beschreibt die Art der Tonminerale (DIN 18122).

$$I_A = \frac{I_P}{m_{dT}/m_d} \tag{16}$$

IA	[-]	Aktivitätszahl
I_P	[-]	Plastizitätszahl
m_{dT}	[%]	Trockenmasse der Körner $\leq 0,002$ mm in der Probe
m_d	[%]	Trockenmasse der Körner $\leq 0,4$ mm in der Probe

Mit der Zunahme der Aktivität steigt die Fähigkeit des Tons zu quellen oder zu schwinden. Folgende Bereiche werden unterteilt (DIN 18122):

Tab. 8: Bereiche der Aktivitätszahl I_A nach DIN 18122

Aktivitätszahl I _A	Beschreibung
$I_A < 0,75$	inaktiver Ton
$0,\!75 \le I_A < 1,\!25$	normaler Ton
$I_A \geq 1,25$	aktiver Ton

Beim Fallkegelverfahren wird der Wassergehalt an der Fließgrenze w_L mit einem 80g/30°-Fallkegel bei einer Eindringung von 20 mm definiert. Für diesen Versuch werden jeweils ca. 200 g Probenmaterial bei 105° C getrocknet. Das getrocknete Probenmaterial wird in diesem Fall zu fünf Proben mit jeweils unterschiedlichen Wassergehältern angemischt (siehe Abb. 23). Die Bodenprobe wird in ein speziell für den Versuch bestimmtes Gefäß möglichst ohne Lufteinschlüsse eingebracht. Der Fallkegel des Fallkegelgeräts wird so eingestellt, dass er die Oberfläche der Probe gerade berührt (siehe Abb. 24). Oberhalb des Fallkegels befindet sich eine

Schiebelehre, die auf null gestellt werden muss. Beim Start des Versuchs fällt der Kegel für fünf Sekunden in die Probe und die Eindringtiefe kann abgelesen werden. Nach dem Fallkegelversuch wird eine Probenmenge möglichst nahe dem Eindringkegel entnommen und der Wassergehalt bestimmt.

Abb. 23: Anmischen der Proben und Fallkegel mit Probenbehälter und Probe (Foto: R. Albrecht)

Abb. 24: 30°-Fallkegel mit Probenbehälter und Probe (Foto: R. Albrecht)

Für den Versuch mit dem Fließgrenzengerät nach Casagrande wird die Bodenprobe mit Wasser angereichert und homogen vermengt. Das Material wird möglichst luftraumfrei mit einer Spatel waagrecht in die Messingschale des Apparats gestrichen. Mit einem genormten Furchenzieher wird eine Furche gezogen (siehe Abb. 25). Die Schale wird über eine Kurbel ca. zwei Mal pro Sekunde angehoben und fallen gelassen. Wenn sich die Furche auf eine Länge von einem Zentimeter geschlossen hat, wird die Anzahl der Schläge notiert. Im Bereich der geschlossenen Furche wird ca. 10-15 g Probenmaterial für die Bestimmung des Wassergehalts entnommen. Die Fließgrenze w_L ist erreicht, wenn sich die gezogene Furche nach 25 Schlägen auf eine Länge von einem Zentimeter geschlossen hat (ÖNORM EN ISO 17892-12:2018)

Abb. 25: Fließgrenzengerät nach Casagrande mit Probenmaterial und Furche (Foto: R. Albrecht)

Für die Ermittlung der Plastizitätsgrenze w_P mit dem Ausrollverfahren wird Probenmaterial auf einer Mischplatte zu einer Kugel geformt. Auf einer Tonplatte oder einer anderen, Feuchtigkeit entziehenden Unterlage werden kleinere Stücke der Kugel zu Röllchen geformt. Diese Röllchen lassen sich beim gesuchten Wassergehalt zu 3 mm dicken Röllchen formen und zerbrechen gleichzeitig in Längsund Querrichtung (siehe Abb. 26). Ist dieser Zustand erreicht, wird das Probenmaterial für die Bestimmung des Wassergehalts getrocknet. Dabei darf die Trockenmasse das Gewicht von 2 g nicht unterschreiten (ÖNORM B 4411: 2009).

Abb. 26: Ausrolltest auf Tonplatte (Foto: R. Albrecht)

Bei der Ermittlung der Plastizitätsgrenze w_P über den Linearschrumpfversuch wird die prozentuelle Längenänderung einer Probe ermittelt. Dafür werden pro Versuch mindestens drei genormte Hohlformen (siehe Abb. 27) mit dem Probenmaterial möglichst ohne Lufteinschlüsse gefüllt und anschließend getrocknet. Die Bodenprobe muss vor dem Einfüllen in die Hohlform den Wassergehalt an der Fließgrenze aufweisen. Die getrockneten, rissfreien Bodenproben müssen in einem Stück gemessen werden. Dabei wird die Trockenlänge L_D ermittelt. Von den durch Trocknung verformten Proben wird der Mittelwert gebildet, wobei sich die Trockenlängen der einzelnen Proben nicht mehr als ± 1 mm unterscheiden dürfen. Aus dem Mittelwert der Proben wird die Plastizitätszahl I_P berechnet (ÖNORM B 4411: 2009).

$$I_P = 2,13 \text{ x } \text{L}_{\text{S}} \qquad \text{mit} \tag{17}$$

$$L_S = \left(1 - \frac{L_d}{L_0}\right) \ge 100 \tag{18}$$

- *I*_P [-] Plastizitätszahl
- *L*_S [%] Lineare Schrumpfgrenze
- *L*_d [mm] Trockenlänge

*L*₀ [mm] ursprüngliche Länge des Probenkörpers

Die Plastizitätsgrenze w_P ergibt sich damit als Differenz der Fließgrenze w_L und der Plastizitätszahl I_P (siehe Gleichung 13).

Abb. 27: Abmessungen der Hohlform in mm (nach ÖNORM B 4411: 2009)

3.1.1.7 Durchlässigkeit in der Triaxialzelle (ÖNORM EN ISO 17892-11:2018)

Der Durchlässigkeitsbeiwert k ist abhängig vom Widerstand eines von Fluid (Wasser) durchflossenen Bodens und von den Eigenschaften des Fluids (Dichte, Viskosität, Temperatur) sowie des Grundwasserleiters. Darcy erlangte die Erkenntnis, dass der durch eine bestimmte Fläche A hindurchfließende Volumenstrom \dot{V} dem Druckhöhenunterschied h direkt proportional und umgekehrt proportional der Fließlänge l ist (Hölting & Coldewey, 2009):

$$\dot{V} = k A i \tag{19}$$

V	$[m^{3}/s]$	Volumenstrom
k	[m/s]	Durchlässigkeitsbeiwert
Α	[m2]	durchflossene Fläche
i	[-]	hydraulischer Gradient (= $\Delta h/\Delta l$)
h	[m]	Druckhöhe
1	[m]	Fließlänge

Abbildung 28 zeigt einen schematischen Aufbau für die Ermittlung des Durchlässigkeitsbeiwerts *k* in der Triaxialzelle. Die Druckluft wird von einem Kompressor bereitgestellt und über Druckregler wird der Zelldruck und der Durchströmungsdruck bestimmt. Das Wasser für die Durchströmung ist in einem Druckluftbehälter, der unter konstantem Druck entlüftetes Wasser an die Probe abgibt. Der Zelldruck wird über eine Druckluftleitung, die von oben in die Triaxialzelle kommt, aufgebaut. Der Probenkörper in der Triaxialzelle ist an der Ober- und Unterseite mit Filtersteinen begrenzt, um Ausschwemmungen zu verhindern. Die Filtersteine sollten die Durchlässigkeit der Probe mindestens um eine Zehnerpotenz übersteigen. Seitlich ist die Probe mit einer wasserundurchlässigen Gummihülle ummantelt. Die Gummimembran stützt die Probe über den aufgebrachten Zelldruck, der pro 100 cm Wassersäule 0,1 bar höher sein muss als der Durchströmungsdruck, um ein seitliches Vorbeifließen zu verhindern. Der hydraulische Gradient *i* wird laut Norm üblich mit i = 30 angesetzt. Der Probenkörper muss von unten nach oben durchströmt werden. Bei diesem Versuch wird die Masse des Wassers, welches den Probenkörper durchströmt hat, sowie die Zeitintervalle der Messungen und die Temperatur notiert (ÖNORM EN ISO 17892-11:2018).

Abb. 28: Schematischer Versuchsaufbau (nach Laborsituation TUG)

Als Ergebnis der Versuche erhält man den Durchlässigkeitsbeiwert k, der die Dimension einer Geschwindigkeit (m/s oder cm/s) hat. Tabelle 9 zeigt übliche Werte für die Durchlässigkeitsbereiche (ÖNORM B 4422-1).

Tab. 9:	Bezeichnung von	Durchlässigkeitsbereichen	(ÖNORM B	4422-1)
---------	-----------------	---------------------------	----------	---------

Bodenart	k in m/s	Bezeichnung
Ton, Lehm	<10-8	sehr schwach durchlässig
Schluff; lehmiger, schluffiger Sand	10 ⁻⁸ -10 ⁻⁶	schwach durchlässig
Feinsand, Mittelsand	10-6-10-4	durchlässig
Grobsand, Mittelkies, Feinkies	10-4-10-2	stark durchlässig
Grobkies	>10-2	sehr stark durchlässig

Der *k*-Wert eines Bodens hängt vor allem vom Gehalt der Feinanteile ab. Ein weiterer wesentlicher Einfluss ist die Lagerungsdichte, ausgedrückt durch die Größe der Dichte ρ , der Porosität *n* oder der Porenzahl *e*. Es gibt verschiedene Formeln für die Abschätzung des *k*-Wertes, wie z.B. von Hazen (1911), die jedoch nur für die Schüttkorndichte gilt:

$$k \approx 100d_{10}^2 \tag{20}$$

k[cm/s]Durchlässigkeitsbeiwertd10[%]Korngröße bei 10 % Massenanteil

Diese Formel ergibt aber nur für gleichförmige Sande vernünftige Resultate. Für ungleichförmige Böden kann folgende Formel verwendet werden (Lang et al, 2010).

$$k \approx \frac{100d_{10}^2}{C_U} \tag{21}$$

k	[cm/s]	Durchlässigkeitsbeiwert
d_{10}	[mm]	Korngröße bei 10 % Massenanteil
C_U	[-]	Ungleichförmigkeitszahl

Nach Beyer (1964) gilt für Böden mit Einzelkornstruktur:

$$k = \left(\frac{268}{C_U + 3.4} + 55\right) * d_{10} \tag{22}$$

k	[cm/s]	Durchlässigkeitsbeiwert
d_{10}	[cm]	Korngröße bei 10 % Massenanteil
C_U	[-]	Ungleichförmigkeitszahl

Aufgrund der Temperaturschwankungen bei der Versuchsdurchführung werden die festgestellten *k*-Werte auf eine Vergleichstemperatur von 10° C umgerechnet (ÖNORM B 4422-1:1992):

$$k_{10} = \frac{1,359}{1 + 0,0337\delta + 0,00022\delta^2} \quad k_{\delta} = \alpha * k_{\delta}$$
(23)

<i>k</i> 10	[cm/s]	Durchlässigkeitsbeiwert bei 10° C
k_δ	[cm/s]	Durchlässigkeitsbeiwert bei Versuchstemperatur
α	[-]	Beiwert

Dabei ist δ die Wassertemperatur in °C beim Versuch und k_{δ} der ermittelte Durchlässigkeitsbeiwert. Der Beiwert α kann aus Tabellen entnommen werden.

Beim Aufschluss Andelsbuch/Itter wurden in sieben verschiedenen Tiefen jeweils vier Stechzylinder für die Ermittlung der Durchlässigkeiten entnommen. Die Probenbezeichnung a und b beziehen sich auf die x-Richtung, c auf die y-Richtung und d auf die z-Richtung (siehe Abb. 29). Daher wurden in x-Richtung jeweils zwei Stechzylinder entnommen, in den restlichen Richtungen jeweils ein Stechzylinder. Aus den entnommenen Stechzylindern werden die Bodenproben mit einer hydraulischen Presse herausgedrückt und abgewogen.

Abb. 29: Probenbezeichnung mit x-, y- und z-Richtung (Foto: R. Albrecht)

Die Bodenproben, mit einem Durchmesser *d* von 10 cm und einer Höhe *h* von 12 cm, werden auf dem Filterstein auf der Grundplatte der Triaxialzelle positioniert (siehe Abb. 30). Eine Gummihülle sowie vier Gummiringe werden vorsichtig über die Probe gestülpt. Nach dem Auflegen des oberen Filtersteins werden die Gummiringe in die dafür vorgesehenen Nuten in der Grundplatte und der oberen Platte positioniert. Die Triaxialzelle kann zusammengebaut und mit Wasser gefüllt werden (siehe Abb. 30). Beim Anschließen der Triaxialzelle wird zuerst der Zelldruck, bei diesem Versuch mit 4,6 bar, angeschlossen. Danach kann die Durchströmung gestartet werden, der Druck liegt bei 3,6 bar. Bei dem dafür vorgesehenen Austritt der durchströmten Probe wird das Wasser mit einem Messglas aufgefangen.

Abb. 30: Probe mit Filtersteinen und eingebaute Probe in der mit Wasser gefüllten Triaxialzelle (Fotos: R. Albrecht)

3.1.1.8 Oedometerversuch (ÖNORM EN ISO 17892-5:2017)

Bei der Druckbeanspruchung einer Bodenprobe im Kompressionsversuch (=Oedometerversuch) wird eine scheibenförmige, meist ungestörte Probe stufenweise in senkrechter Richtung belastet. Die Probe wird durch die starren Wände des Geräts am seitlichen Ausweichen gehindert. Daher wird der Versuch auch "Druckversuch mit behinderter Seitendehnung" bezeichnet. In erster Linie wird die Zusammendrückbarkeit des Bodens untersucht und daraus das Steifemodul E_s bestimmt. Das Steifemodul E_s ermöglicht die Berechnung in vertikaler Richtung verlaufender Setzungen bei einer Belastungsänderung (ÖNORM 17892-5):

$$\varepsilon_z = \frac{\sigma_z}{E_s}$$
 mit (24)

$$E_s = \frac{s}{h_0} \tag{25}$$

εz	[%]	Spezifische Setzung
σ_z	[kPa]	Belastung in z-Richtung
E_s	[kPa]	Steifemodul
S	[mm]	Setzung
h_0	[mm]	ursprüngliche Probenhöhe

Bei Kompressionsversuchen wird die Setzung bei jeder Laststufe gemessen und als Funktion der Zeit dargestellt. Terzaghi (1925) formulierte in Bezug auf den Kompressionstest folgende Arten von Setzungen:

• Sofortsetzung:

Unmittelbar nach der Lastaufbringung entsteht eine Sofortsetzung, die der elastischen Zusammendrückung entspricht.

• Primär- oder Konsolidierungssetzung:

Die Primarsetzung ist auf die Konsolidation zurückzuführen, wobei bei bindigen Böden das Porenwasser aus der Probe herausgedrückt wird. Die Konsolidierungstheorie ist nur für diesen Bereich gültig

• Sekundärsetzung:

Bei der Sekundärsetzung handelt es sich um plastisches Fließen (Kriechen), wobei dieser Ast der Setzungslinie noch nicht restlos wissenschaftlich erklärbar ist.

Mit Hilfe eines Schneidrings (siehe Abb. 31) wird aus einer möglichst ungestörten Probe eine dem Haltering entsprechende Probe herausgearbeitet. Die Probenabmessung im Haltering beträgt 80 mm im Durchmesser und 20 mm in der Höhe. Der Haltering (siehe Abb. 31) wird anschließend in das Versuchsgerät (siehe Abb. 32) eingebaut, wobei die Probe zwischen zwei Filtersteinen, die einen Wasseraustausch ermöglichen, zu liegen kommt.

Abb. 31: Ausstechring und Haltering mit Probenmaterial (Fotos R. Albrecht)

Abb. 32: Versuchsgerät für den Oedometertest (Foto R. Albrecht)

Die bei diesem Versuch verwendeten Laststufen in N/cm² sind:

2 4 8 16 32 64

Die Konsolidierung der Proben wurde mit 1 N/cm² für 12 Stunden durchgeführt, bevor die erste Laststufe mit 2 N/cm² aufgebracht wurde. Die Erhöhung der Laststufen erfolgte im 6 bzw. 12 Stundenrhythmus. Die genauen Laststufen über die Zeit sind in den Ergebnissen ersichtlich. Die Verformung der Probe wird auf 1/100 mm gemessen. Nach dem Belastungsprogramm wird die Probe mit dem Ring ausgebaut und abgewogen. Mit dem bekannten Ringvolumen werden verschieden Parameter wie Wassergehalt w, Porenvolumen n, Porenziffer e, Sättigung S_r, Dichte ρ oder die Trockendichte ρ_d berechnet.

3.1.2 Mineralogie

Die Untersuchungen zur Bestimmung des Gesamtmineralbestandes und der Tonmineralanalysen wurden am Institut für Angewandte Geowissenschaften an der Technischen Universität Graz durchgeführt.

3.1.2.1 Gesamtmineralbestand

Für die Ermittlung des Gesamtmineralbestandes wird ein Teil jeder Probe aufgemahlen und auf einen Probenträger gepresst. Mittels Röntgendiffraktometeranalyse (Panalytical XPert Pro/Co-Röhre) im Winkelbereich von 3° bis 85° 20 wird eine qualitative und semiquantitative Bestimmung der gesteinsbildenden Minerale durchgeführt. Die semiquantitativen Bestimmungen der Mineralanteile erfolgen aufgrund von Vergleichen charakteristischer Röntgenreflexintensitäten mit Eichaufnahmen.

3.1.2.2 Tonmineralanalysen

Bei der Tonmineralanalyse wird ein Teil jeder Probe durch Schütteln in destilliertem Wasser aufgeschlossen und mittels Ultraschall dispergiert. Proben mit erhöhtem Karbonatanteil werden zur Entfernung des karbonatischen Anteils mit einer 0,1 molaren EDTE-Lösung (Ethylendiamintetraessigsäure) behandelt. Die Lösung wurde mit NaOH auf einen pH-Wert von 8-8,5 eingestellt. Die Proben werden für ca. 1 Stunde auf 60-80° C erhitzt und für weitere 12 Stunden zur vollständigen Ausreaktion geschüttelt. Die darauffolgende Entfernung der EDTE-Lösung erfolgt durch Zentrifugieren, Dekantieren und Wiederaufnehmen mit destilliertem Wasser. Nach dem Abtrennen der Kornfraktion < 2 µm im Sedimentationsverfahren werden aus der Suspension 3 Texturpräparate auf Keramikträgern angefertigt. Für die Differenzierung der Tonmineralgruppen werden an je 2 Texturpräparaten Ionen-Austauschbehandlungen mit Kalium und Magnesium durchgeführt. Zudem erfolgen Quellversuche mit Glyzerin und Dimethylsulfoxid.

Nach jedem dieser Behandlungsschritte erfolgt eine Analyse mittels Röntgendiffraktometer. Die qualitative und semiquantitative Mineralbestimmung der Fraktion < 0,002 mm wurde in den wesentlichen Teilen gemäß ÖNORM B 4810 durchgeführt. Durch Berücksichtigung des Anteils der Kornfraktion < 2 μ m wurde der effektive Smektitgehalt der Gesamtprobe ermittelt.

3.1.3 Rammkernanalyse

Die Untersuchungen der Rammkerne wurden am Institut für Geologie an der Universität Innsbruck, im Labor für Limnogeologie durchgeführt. Die Austrian Core Facility ist die erste Forschungseinrichtung in Österreich mit einer hochmodernen Laborausstattung zur Untersuchung von Bohrkernen. Die verschiedenen Scanner arbeiten mit nicht-destruktiven Analysemethoden und liefern hochauflösende Daten für wissenschaftliche Kernanalysen (https://www.uibk.ac.at/geologie/corescanlab/).

Die Gewinnung der Rammkerne erfolgte mit dem Raupengerät *GTR 780 V* der Firma *Geotool.* Eine Rammkernziehung ermöglicht die Entnahme von Bodenproben im Rahmen geotechnischer Erkundungen und Prüfungen. Die Erkundungen dienen der Gewinnung von Boden- und Felsproben für eine allgemeine Eignung für geotechnische Zwecke zu beurteilen und die geforderten boden- und felsmechanischen Eigenschaften im Labor zu bestimmen. Weiters kann die Feststellung von Art, Zusammensetzung und Zustand der einzelnen Schichten beurteilt werden (ÖNORM EN ISO 22475-1:2006). Die Rammkernziehung wurde mit einer Linersonde und einem Schutzrohr (siehe Abb. 33) durchgeführt. Beim Aufschluss Andelsbuch/Itter wurden sechs 1 m lange Rammkerne in PVC-Linern mit einem Durchmesser von 80 mm gezogen (siehe Abb. 34). Nach dem Ziehen der Kerne sind diese möglichst Luftdicht zu verpacken, um das Austrocknen der Proben zu verhindern. Der Transport und die Lagerung der Rammkerne sollten schonend erfolgen.

Abb. 33: Linersonde und Schutzrohr (Produktbeschreibung Carl Hamm, Röhrenwerk)

Abb. 34: Rammkernziehung und Rammkerne (Foto R. Albrecht)

3.1.3.1 Multi Sensor Core Logger (MSCL)

Der Multi Sensor Core Logger (MSCL) der Firma *GEOTEK ltd.* (siehe Abb. 35) ermöglicht die Messung der P-Wellen-Geschwindigkeit, der Gamma-Dichte und der Magnetischen Suszeptibilität an Bohrkernen. Der MSCL ist das einzige kommerziell verfügbare Gerät für eine automatisierte und qualitätsgeprüfte Datenerfassung von Bohrkernen. Es können geschlossene sowie geöffnete Bohrkerne, mit einem Durchmesser von 50-150 mm untersucht werden. Die Intervalle der Untersuchungen an den Bohrkernen lassen sich bis auf 1 mm einstellen (https://www.uibk.ac.at/geologie/corescanlab/infrastructure/index.html.en#mscl).

Abb. 35: Multi Sensor Core Logger (Foto R. Albrecht)

Die Messungen wurden an den geschlossenen Rammkernen durchgeführt. Vor der Untersuchung muss das Gerät kalibriert werden. Dies erfolgt mit Hilfe eines im Durchmesser abgestuften Aluminiumzylinders, der sich in einem mit Wasser gefüllten PVC-Rohr befindet (siehe Abb. 36).

Die P-Wellen-Geschwindigkeit wird über einen sogenannten ARC-Sensor (Acoustic Rolling Contact) gemessen. Der ARC-Sensor muss bei der Messung direkt am Bohrkern anliegen. Eine rotierende, federbelastete, akustisch abgestimmte Kupplung sendet Signale mit einer mittleren Frequenz von 230 kHz aus. Die Messungenauigkeit bei einer Messdauer von 50 nS liegt laut Hersteller bei ca. 0,5 %, abhängig vom Zustand und Durchmesser des Kerns (GEOTEK, 2007).

Abb. 36: MSCL mit abgestuftem Aluminiumzylinder in einem mit Wasser gefüllten PVC-Rohr für die Kalibration (Foto R. Albrecht)

Für die Bestimmung der Magnetischen Suszeptibilität wird dem Bohrkern ein äußeres Magnetfeld angesetzt. Das Ergebnis der Untersuchung ist der Magnetisierungsgrad des Sediments.

Der MSCL misst die Dichte mit Hilfe von γ -Strahlung (Cäsium 137). Die γ -Strahlen werden durch den Kern geschickt und mittels Sensor die Intensität der abgelenkten γ -Strahlen gemessen. Für die Auswertung bedeutet eine geringere Intensität der Strahlen eine höhere Dichte, da mehr Teilchen abgelenkt wurden. Der Hersteller gibt abhängig vom zeitlichen Umfang der Messung und dem Zustand des Kerns eine Messungenauigkeit von weniger als 1 % an (GEOTEK, 2007).

3.1.3.2 Öffnen und Fotografieren der Rammkerne

Nach den Untersuchungen der physikalischen Eigenschaften am MSCL wurden die Kerne geöffnet. Dafür werden die PVC-Liner der Kerne mit einer Schneidemaschine aufgeschnitten (siehe Abb. 37). Nach dem ersten Schnitt wird dieser mit einem Klebeband zugeklebt und der Kern um 180° gedreht um den zweiten Schnitt vorzunehmen. In den aufgeschnittenen Kern werden zwei dünne Metallplatten gedrückt. Nachdem mit den Blechen der gesamte Kern durchtrennt wurde, können diese auseinandergedrückt und der Sedimentkern in zwei Hälften geteilt werden. Mit einem hochauflösenden Foto Scanner wurden von den geöffneten Kernen unverzerrte Bilder erstellt (siehe Abb. 38).

Abb. 37: Öffnen der Kerne mit Hilfe einer Schneidemaschine (Foto R. Albrecht)

Abb. 38: Foto Scanner (Foto R. Albrecht)

3.1.3.3 Fallkegelversuch (ISO 17892-6:2017)

Der Fallkegelversuch dient der Abschätzung der undränierten Scherfestigkeit c_u eines Bodenprobekörpers. Dabei wird ein Kegel mit seiner Spitze auf einen Probenkörper fallengelassen und die resultierende Eindringung des Kegels in den Boden gemessen. Der Fallkegelversuch erzeugt eine komplexe Scherbeanspruchung in der Probe und stellt weder Versuche der vertikalen, triaxialen Zusammendrückung noch der horizontalen Scherspannung dar (ISO 17892-6:2017).

Der Versuch gilt allerdings nur als Indexversuch, da die mit dem Fallkegel ermittelten Werte nicht unbedingt der undränierten Scherfestigkeit in situ entsprechen. Die undränierte Scherfestigkeit, die mit dem Fallkegelgerät ermittelt wurde, wird deshalb auch als Fallkegelscherfestigkeit c_{uc} bezeichnet (Prinz & Strauß, 2011). Nach Hansbo (1957) kann die undränierte Scherfestigkeit mit der Gleichung

$$c_u = k \frac{mg}{d^2} \tag{26}$$

Cu	$[kN/m^2]$	Undränierte Scherfestigkeit
k	[-]	Konstante
m_F	[kg]	Masse Fallkegel
8	$[m/s^2]$	Erdanziehungskraft
d_F	[mm]	Einsinktiefe Fallkegel

berechnet werden. Für einen 30°-Fallkegel ist laut Wood (1985) der Wert für die Konstante k 0,85.

Beim Fallkegelversuch wurde ein 80g/30°-Fallkegel an der gewünschten Stelle des Rammkerns in das Sediment fallen gelassen (siehe Abb. 39).

Abb. 39: Fallkegel im Rammkern (Foto R. Albrecht)

Der Fallkegel des Fallkegelgeräts wird so eingestellt, dass er die Oberfläche der Probe gerade berührt. Oberhalb des Fallkegels befindet sich eine Schiebelehre, die auf null gestellt werden muss. Beim Start des Versuchs fällt der Kegel für fünf Sekunden in die Probe und die Eindringtiefe kann abgelesen und notiert werden.

3.1.3.4 Drehflügelsonde

Die Undränierte Scherfestigkeit τ_f einer Bodenprobe kann über eine Drehflügelsonde (siehe Abb. 40) bestimmt werden. Dabei handelt es sich um einen vierblättrigen Drehflügel, der in das Sediment eingeführt wird und sich dreht bis das Sediment abgeschert ist.

Abb. 40: Drehflügelsonde vor und beim Einführen in das Sediment (Foto R. Albrecht)

Der Drehflügel dreht sich mit einer vorgegebenen Geschwindigkeit und das Drehmoment *T*, welches benötigt wird um das Sediment zu scheren, gibt eine relative Messung der Scherkraft. Mit Hilfe einer Konstante *K*, die sich auf die Flügelabmessungen bezieht, wird die Scherfestigkeit τ_f ermittelt (Blum, 1997). Für die Flügelscherfestigkeit ist auch *su* eine gebräuchliche Bezeichnung (Lambe & Whitman, 1979).

$$\tau_f \sim s_u = T/K \tag{27}$$

- τ_f [kN/m²] Undränierte Scherfestigkeit
- s_u [kN/m²] Flügelscherfestigkeit
- *K* [m³] Konstante
- T [Nm] Drehmoment (Torque)

Für die Untersuchung wurde der "Fully Automatic Laboratory Vane Shear Test" der Firma *Wille Geotechnik* verwendet. Bei der Durchführung muss die Oberkante des Drehflügels bündig mit der Sedimentoberfläche sein. Die Höhe und der Durchmesser des Flügels betragen 12,7 mm. Beim Starten des Programms erfolgt die erste Scherphase. Nachdem die erste Scherphase zur Ermittlung der Scherfestigkeit τ_f beendet ist, kann die zweite Scherphase gestartet werden. Dabei wird die Restscherfestigkeit τ_r des Sediments ermittelt.

Die Sensitivität ist das Verhältnis zwischen der Scherfestigkeit und der Restscherfestigkeit:

$$S = \frac{\tau_f}{\tau_r} \tag{28}$$

S[-]Sensitivität τ_f [kN/m²]Scherfestigkeit τ_r [kN/m²]Restscherfestigkeit

Nach EN ISO 14688-2 gelten für die Sensitivität Werte < 8 als gering, 8-30 mittel und Werte > 30 als hoch. Werte > 50 sind kennzeichnend für Quicktone, die einen nahezu vollständigen Verlust der Scherfestigkeiten bei Erschütterungseinwirkungen, eine geringe Restscherfestigkeit im gestörten Zustand und ein abruptes Stabilitätsversagen bei geringer Spannungserhöhung aufweisen (Prinz & Strauß, 2011).

3.2 In situ-Versuche

Beim Aufschluss Andelsbuch/Itter wurden als in situ-Versuche eine Rammsondierung und Beprobungen mit dem TinyPerm gemacht.

3.2.1 Rammsondierung (ÖNORM EN ISO 22476-2:2012)

Rammsondierungen dienen der Erkundung von Lagerungsverhältnissen nichtbindiger Böden, zur Nachprüfung der Wirksamkeit von Verdichtungsmaßnahmen im Untergrund und in Anschüttungen sowie zur Gewinnung von Hinweisen auf die Zustandsform bindiger Böden. Außerdem können dadurch Informationen über bodenphysikalische Kennwerte zur Beurteilung der Belastbarkeit des Bodens gewonnen werden. In Verbindung mit direkten Aufschlüssen kann durch Rammsondierungen auf einfachem Weg die Aussage über die Untergrundverhältnisse verbessert werden. Die Rammsondierung zählt zu den indirekten Bodenuntersuchungen. Sie umfasst die in situ-Ermittlung des Widerstandes von Böden und weichem Fels gegenüber der dynamischen Eindringung einer Spitze. Für das Einrammen der Spitze wird ein Rammbär mit gegebener Masse und definierter Fallhöhe verwendet. Der Eindringwiderstand wird als die Schlagzahl definiert, die erforderlich ist um die Sonde bis zu einer definierten Eindringtiefe zu rammen. Die Aufzeichnungen der Schlagzahlen erfolgen kontinuierlich mit der Tiefe. Es werden vier Rammsondierungen unterschieden, die einen weiten Bereich der spitzenquerschnittsbezogenen Rammenergie je Schlag umfassen (ÖNORM EN ISO 22476-2:2012):

- Leichte Rammsondierung (DPL)
- Mittlere Rammsondierung (DPM)
- Schwere Rammsondierung (DPH)
- Superschwere Rammsondierung (DPSH)

Bei den Rammsondierungen in Andelsbuch wurde das Raupengerät *GTR 780 V* für die Sondierungen und die Rammkernziehung verwendet. Der Versuch und die Probenentnahme erfolgten ca. 2 m neben dem Aufschluss Andelsbuch/Itter (siehe Abb. 41).

Abb. 41: Raupengerät GTR 780 V (Foto R. Albrecht)

Für die Sondierung wurde die Schwere Rammsondierung (DPH) verwendet. Die Spitze der Rammsonde weist einen Winkel von 90° auf. Der Durchmesser *d* der Sondenspitze beträgt 43,7 mm, der Spitzenquerschnitt *A* hat eine Fläche von 15 cm² (siehe Abb. 42). Das Gestänge hat einen Durchmesser von 32 mm, eine Länge von 1 m und ein Gewicht von 6 kg. Laut Norm ist eine DPH bis zu 25 m zulässig. Die Gestängeverbindung erfolgt über einen Gewindestift M 20 nach DIN 158. Die Wahl vom größeren Spitzendurchmesser im Vergleich zum Gestänge soll nach Möglichkeit der Herabsetzung der Mantelreibung dienen.

Abb. 42: Sondierspitze (nach ÖNORM EN ISO 22476-2:2012)

Die Masse des Rammbären bei der Schweren Rammsondierung beträgt 50 kg, die Eintriebvorrichtung (Amboss) ohne Rammbär wiegt 18 kg (siehe Abb. 43). Die Fallhöhe ist mit 50 cm definiert. Bei der Durchführung wird die Anzahl der Schläge je 10 cm Eindringung (n_{10}) gezählt. Das Ergebnis zeigt in einem Formblatt als Abszisse die Anzahl der Schläge (n_{10}) und als Ordinate die Rammtiefe (ÖNORM B 4419 Teil 1).

Abb. 43: Rammbär auf Amboss montiert (Foto R. Albrecht)

3.2.2 TinyPerm

Das TinyPerm von *New England Research, Inc. (NER)* ist ein tragbares Gerät zur Bestimmung der Luftpermeabilität von Fels und Böden. Das TinyPerm wurde vom Institut für Erdwissenschaften der Karl-Franzens-Universität zur Verfügung gestellt. Das Gerät wird mit einem Gummiring am vorderen Teil des Geräts an den Probenkörper gedrückt und über einen Stößel wird die Luft komprimiert (siehe Abb. 44).

Abb. 44: Messung mit dem TinyPerm (Foto R. Albrecht)

Bei der Messung wird die Luft über das generierte Vakuum in das Permeameter eingezogen und ein gerätespezifischer Messwert ermittelt. Dieser Messwert kann über die Gleichung (NER)

$$K = 10 \frac{x - 12,8737}{-0,8206} \tag{29}$$

K [Darcy] Permeabilität

x [-] Gerätespezifischer Messwert

in die Permeabilität (Darcy) umgerechnet werden. Die Berechnung des Durchlässigkeitsbeiwert *k* erfolgt über die Gleichung (https://www.sedgeochem.uni-bremen.de/perm_kf.html):

$$k = \frac{K\rho g}{\eta} \tag{30}$$

k [m/s] Durchlässigkeitsbeiwert

K [Darcy] Permeabilität

 ρ [kg/m³] Dichte

g [m/s²] Erdbeschleunigung

η [kg/ms] kinematische Viskosität

Beim Aufschluss Andelsbuch/Itter wurde mit Hilfe eines Baustahlgitters ein Raster angelegt und mit dem TinyPerm beprobt (siehe Abb. 45). Pro Zelle wurden 4 Messungen durchgeführt, der Abstand zwischen den einzelnen Messungen beträgt 7,5 cm.

Abb. 45: Raster für die TinyPerm Messung (links: unterer Bereich, rechts: oberer Bereich)

4 Ergebnisse

4.1 Labor

4.1.1 Bodenphysikalische Untersuchungen

4.1.1.1 Bestimmung der Korndichte (ÖNORM EN ISO 17892-3:2015)

Die Untersuchungen des Probenmaterials aus den Stechzylindern für die Untersuchungen der Durchlässigkeiten ergaben Korndichten von 2,67 - 2,70 g/cm³. Die Korndichten der Kernbohrungen liegen bei 2,69 und 2,71 g/cm³. Die Protokolle sind im Anhang und die Ergebnisse in der folgenden Tabelle ersichtlich:

Probenbezeichnung	Tiefe [m]	Korndichte [g/cm ³]
Durchlässigkeit-7	2,25	2,67
Durchlässigkeit-6	3,10	2,68
Durchlässigkeit-5	3,27	2,69
Durchlässigkeit-4	3,47	2,70
Durchlässigkeit-3	3,62	2,69
Durchlässigkeit-2	3,82	2,70
Durchlässigkeit-1	4,24	2,69
Kernbohrung 4	8,20	2,71
Kernbohrung 1	10,20	2,69

Tab. 10: Ergebnisse der Bestimmung der Korndichte

4.1.1.2 Bestimmung des Wassergehalts (ÖNORM EN ISO 17892-1:2014)

Die Untersuchungen des Wassergehalts für die Handproben #1 - #14 ergaben Werte zwischen 3,1 % und 27,4 %. Bei den Handproben wurde jeweils eine Probe für die Ermittlung des Wassergehalts untersucht. Bei den Proben für die Ermittlung der Durchlässigkeiten war die Streuung geringer und lag zwischen 19,9 % und 26,2 %. Der Wert für den Wassergehalt der Proben für die Durchlässigkeiten ist ein Mittelwert aus jeweils 4 Proben. Die Protokolle zu den Wassergehalten sind im Anhang aufgelistet. Tabelle 11 zeigt einen Überblick der Handproben und den Mittelwerten der Proben für die Durchlässigkeiten aus den Stechzylindern. Abbildung 46 zeigt einen Box-Plot der Wassergehalte der Stechzylinderproben. Bei einem Box-Plot zeigen die "Whisker" den Minimum- und Maximum Wert an, die Enden der Boxen stehen für das 1. und das 3. Quartil und der Strich in der Box markiert den Mittelwert. Der Wassergehalt in den Rammkernen (siehe Tab. 12) liegt zwischen 19,3 % und 29,1 %.

Probenbezeichnung	Tiefe [cm]	Wassergehalt [%]
#1	110	2,0
#2	200	2,1
#3	220	26,2
DK - 7	225	19,9
#4	245	28,8
#5	255	4,1
#6	265	3,1
#7	271	5,9
#8	275	8,7
#9	290	15,2
DK - 6	310	24,3
#10	315	23,6
DK - 5	327	24,0
#11	333	27,4
DK - 4	347	21,8
#12	348	23,3
DK - 3	362	20,4
DK - 2	382	26,2
#13	390	23,8
#14	415	18,8
DK - 1	424	22,3
KB - 4	800	27,3
KB - 1	1000	28,7

 Tab. 11:
 Wassergehalte der Handproben und der Stechzylinderproben

Abb. 46: Box-Plot des Wassergehalts von jeweils 4 Stechzylinderproben

Tab. 12:	Wassergehalt der Rammkerne
----------	----------------------------

Probennummer	Tiefe [cm]	Wassergehalt [%]
1	235	29,1
2	295	25,5
3	313	28,7
4	328	22,6
5	340	19,3
6	370	25,5
7	395	24,0
8	435	21,5
9	475	24,9
10	550	27,0

4.1.1.3 Bestimmung der Dichte des Bodens (ÖNORM EN ISO 17892-2:2015)

Die Ergebnisse der Tauchwägungen von den Bodenproben für die Ermittlung der Durchlässigkeiten (siehe Tab. 13) entsprechen in den meisten Fällen den Kennwerten von stark bindigen Böden laut der Zusammenstellung in Tabelle 3 (Kap. 3.1.1.3). Einzig der Wassergehalt der Bodenprobe DK-3 liegt unter 20 %, wobei auch die Porenziffer bei dieser Probe im unteren Wertebereich liegt. Auch die Trockendichte der Probe DK-3 ist höher als 1,84 g/cm³ und entspricht somit einem schwach bindigen Boden. Die Proben DK-7, DK-6, DK-5, DK-4, DK-2 und DK-1 können als stark bindig eingestuft werden. Die Bodenprobe DK-3 liegt bei den Bodenkennwerten zwischen einem stark bindigen und schwach bindigen Boden.

Probenbeze	DK - 7	DK - 6	DK - 5	DK - 4	DK - 3	DK - 2	DK - 1	
Tiefe	[m]	225	310	327	347	362	382	424
Porenvolumen	n [%]	34	37	43	36	30	44	43
Porenziffer	e [-]	0.5	0.6	0.8	0.6	0.4	0.8	0.8
Korndichte	$\rho_{s} [g/cm^{3}]$	2.67	2.68	2.69	2.70	2.69	2.70	2.69
Wassergehalt	w [%]	20	21	28	26	17	27	28
Feuchtdichte	ρ [g/cm ³]	2.10	2.03	1.95	2.16	2.18	1.94	1.96
Trockendichte	$\rho_d [g/cm^3]$	1.76	1.68	1.53	1.72	1.87	1.51	1.53

Tab. 13:Ergebnisse der Tauchwägung

4.1.1.4 Korngrößenverteilung (ÖNORM EN ISO 17892-4:2017)

Die Korngrößenverteilungen der Bodenproben umfassen die Korngrößen Kies bis Ton. Die obersten Schichten zeigen sandige bis stark sandige Kiese bei einer Tiefe von ca. 1 bis 2 m. Darunter folgen stark sandige bis stark tonige Schluffe mit einer Mächtigkeit von ca. einem halben Meter. Von ca. 2,5 m bis ca. 3,2 m sind mehrere Schichten mit stark kiesigen Sanden abgelagert. Die Schichten ab einer Tiefe von ca. 3 m sind von tonigen bis stark tonigen Schluffen dominiert (siehe Abb. 47). Die Kernbohrung 1 und 4 haben einen etwas höheren Tonanteil als die Proben vom Aufschluss Andelsbuch/Itter. In Tabelle 14 befindet sich eine Übersicht der Korngrößenverteilungen, die Zusammenstellungen der Siebdurchgänge und die Körnungslinien befinden sich im Anhang.

Abb. 47: Grobeinteilung der Korngrößenverteilung am Aufschluss

Probe	Tiefe [m]	Ton [%]	Schluff [%]	Sand [%]	Kies [%]	Bodenart	D ₁₀ [mm]	\mathbf{D}_{60} [mm]	Cu	Cc
#1	1,10	0,4	1,5	53,0	45,1	Sa/Gr	0,291	2,488	8,55	0,70
#2	2,00	0,3	1,1	35,7	62,9	sa Gr	0,534	4,788	8,97	0,79
#3	2,20	9,5	55,5	35,0	-	<u>sa</u> cl' Si	0,002	0,055	24,9	2,90
DK-7	2,25	12,2	52,5	29,7	5,6	gr' sa cl' Si	<0,002	0,053	-	-
#4	2,45	39,9	56,7	3,4	-	sa''cl Si	<0,002	0,004	-	-
#5	2,55	1,7	3,9	46,2	48,2	si"Gr/Sa	0,253	3,112	12,3	0,81
#6	2,65	2,5	1,5	61,6	34,4	<u>g</u> r cl"Sa	0,371	1,692	4,55	0,88
#7	2,71	1,0	2,3	66,6	30,1	gr si"Sa	0,334	1,501	4,49	0,94
#8	2,75	1,6	4,3	61,2	32,9	gr si"Sa	0,295	1,638	5,56	1,08
#9	2,90	14,7	23,2	37,4	24,7	gr si cl' Sa	<0,002	1,014	-	-
DK-6	3,10	24,3	58,6	17,1	-	sa cl Si	<0,002	0,021	-	-
#10	3,15	22,6	52,8	24,6	-	sa cl Si	<0,002	0,027	-	-
DK-5	3,27	36,7	59,9	3,4	-	sa''cl Si	<0,002	0,005	-	-
#11	3,33	41,9	56,2	1,9	-	īcī Si	<0,002	0,004	-	-
DK-4	3,47	35,7	59,7	4,6	-	sa''cl Si	<0,002	0,006	-	-
#12	3,48	33,3	61,5	5,2	-	sa' cl Si	<0,002	0,002	-	-
DK-3	3,62	11,5	75,5	13,0	-	sa' cl' Si	0,002	0,029	18,3	2,96
DK-2	3,82	39,9	55,6	4,5	-	sa''cl Si	<0,002	0,005	-	-
#13	3,90	18,7	73,0	8,3	-	sa' cl Si	<0,002	0,020	-	-
#14	4,15	24,5	68,3	7,2	-	sa' cl Si	<0,002	0,014	-	-
DK-1	4,24	24,2	55,7	20,1	-	sa cl Si	<0,002	0,0254	-	-
KB 4	8,45	40,3	52,5	4,7	2,5	gr"sa''cl Si	<0,002	0,0049	-	-
KB 1	10,0	45,5	52,0	2,6	-	sa"Si/Cl	<0,002	0,0037	-	-

Tab. 14:Übersicht der Korngrößenverteilungen

4.1.1.5 Direkter Scherversuch (ÖNORM EN ISO 17892-10:2018)

Beim Aufschluss Andelsbuch/Itter wurden drei Rahmenscherversuche mit den Probenbezeichnungen DK-1, DK-2 und DK-3 durchgeführt. Nach dem Ausbau aus den Scherbüchsen war aufgrund der sehr schluffigen Proben nur ein Teil der Scherflächen ersichtlich, da die zwei Hälften nicht trennbar waren (siehe Abb. 48).

Abb. 48: Probe nach dem Ausbau aus der Scherbüchse (Foto R. Albrecht)

Die effektiven Reibungswinkel φ' der drei Versuche liegen zwischen 22,9° und 33,6°, die effektive Kohäsion *c* 'zwischen 21,1 kN/m² und 44,6 kN/m². Die Ermittlung der Restscherwinkel φ_r ergab Werte von 21,5° bis 33,4°. Folgende Tabelle zeigt eine Übersicht der Ergebnisse, die Protokolle zu den Versuchen befinden sich im Anhang:

Probe	Tiefe [m]	Reibungswinkel φ	Kohäsion c´	Restscherwinkel <i>q</i>
DK-3	3,62	33,6	44,6	33,4
DK-2	3,82	23,4	21,1	22,6
DK-1	4,24	22,9	38,4	21,5

Tab. 15: Ergebnisse der Scherversuche Andelsbuch/Itter

Ergänzend zu den Ergebnissen der Scherversuche sind in Abbildung 49 die Korngrößenverteilungen der Proben DK-1, DK-2 und DK-3 ersichtlich.

Abb. 49: Korngrößenverteilung der Proben DK-1 (oben), DK-2 (mitte) und DK-3 (unten)

Ebenfalls wurden bei den Kernbohrungen Andelsbuch/Hof zwei Scherversuche durchgeführt. KB-4 weist einen effektiven Reibungswinkel φ' von 27° auf. Da beim Erreichen des Größtwertes kein Abfall eintrat, ist die Restfestigkeit gleich der Scherfestigkeit des Bodens (ÖNORM B 4430 Teil 1). Die Probe KB-4 hat eine effektive Kohäsion c' von 7,0 kN/m².

Die KB-1 hat einen effektiven Reibungswinkel von 13,3° und einen Restscherwinkel φ_r von 9,8°. Die Kohäsion beträgt 29,3 kN/m².

Probe	cobeTiefe [m]Reibungswinkel φ'		Kohäsion c´	Restscherwinkel φ_r	
KB-4	8,45	27,0	7,0	27,0	
KB-1	10,0	13,3	29,3	9,8	

 Tab. 16:
 Ergebnisse der Scherversuche Andelsbuch/Hof

4.1.1.6 Bestimmung der Fließ- und Ausrollgrenze (ÖNORM EN ISO 17892-12:2018)

Die Ergebnisse der Untersuchungen mit dem Fallkegelverfahren (siehe Tab. 17) zeigen einen deutlichen Unterschied der Proben hinsichtlich der Plastizitätszahl I_P und der Konsistenzzahl I_C . Die Plastizitätszahl der Probe DK-7 liegt bei 2,5 im Gegensatz zu den Proben DK-2 und DK-4 mit 13,0 und 13,5.

Die Konsistenzzahl der Proben DK-2 und DK-4 liegt bei 0,5, was auf eine sehr weiche bis weiche Konsistenz der Böden hinweist. Probe DK-7 hat eine Konsistenzzahl von 1,5 und damit eine halbfeste Konsistenz. Die Aktivitätszahl I_A der Probe DK-7 liegt bei 1,4 und deutet auf einen aktiven Ton hin, die Aktivitätszahlen der Proben DK-4 und DK-2 sind < 0,75, was auf einen inaktiven Ton hindeutet.

Probe	DK-7	DK-4	DK-2
Tiefe [m]	2,25	3,47	3,82
Fließgrenze <i>w</i> _L	23,5	30,5	35,5
Ausrollgrenze <i>w</i> _P	21,0	17,0	22,5
Plastizitätszahl I _P	2,5	13,5	13,0
Konsistenzzahl I _C	1,5	0,5	0,5
Aktivitätszahl I _A	1,4	< 0,75	< 0,75

Tab. 17: Ergebnisse der Konsistenzgrenzen Andelsbuch/Itter

Die Bestimmung der Fließ- und Ausrollgrenze für die Bodenproben der Kernbohrungen Andelsbuch/Hof wurden mit dem Fließgrenzengerät nach Casagrande und dem Ausrollverfahren durchgeführt. Tabelle 18 zeigt eine Übersicht der Ergebnisse. Die Konsistenzzahl der Proben KB-4 und KB-1 liegt bei 0,5, was auf eine sehr weiche bis weiche Konsistenz der Böden hinweist. Die Plastizitätszahl I_P ist wesentlich höher als bei den Proben Andelsbuch/Itter. Die hohe Plastizitätszahl deutet auf eine größere Spanne, bei der der Boden bildsam (plastisch) bleibt. Die Aktivitätszahl von 2,2 der Probe KB-4 schließt auf einen aktiven Ton, die Aktivitätszahl der Probe KB-1 liegt unter 0,75 und zeigt einen inaktiven Ton an.

Probe	KB-4	KB-1
Tiefe [cm]	8,20	10,20
Fließgrenze w _L	39,3	39,7
Ausrollgrenze <i>w</i> _P	16,8	17,4
Plastizitätszahl I _P	22,5	22,3
Konsistenzzahl <i>I</i> _C	0,5	0,5
Aktivitätszahl IA	2,2	< 0,75

 Tab. 18:
 Ergebnisse der Konsistenzgrenzen Andelsbuch/Hof

Die Klassifizierung feinkörniger Böden oder feinkörniger Anteile in zusammengesetzten grobkörnigen Böden sollte auf der Grundlage ihrer Plastizität vorgenommen werden (ÖNORM EN 14866-2:2018).

4.1.1.7 Durchlässigkeit in der Triaxialzelle (ÖNORM EN ISO 17892-11:2018)

Die Untersuchungen zur Ermittlung der Durchlässigkeit in der Triaxialzelle wurden ausschließlich beim Aufschluss Andelsbuch/Itter (siehe Abb. 50) durchgeführt. Tabelle 19 zeigt einen Überblick der Durchlässigkeitsbeiwerte k_{10} in x-, yund z-Richtung der jeweiligen Tiefen. Für die x-Richtung wurde das geometrische Mittel der Proben a und b genommen. Die Durchlässigkeitsbeiwerte der Proben umfassen Werte zwischen 1,8E-07 und 3,4E-10. Daher können die Proben nach Tabelle 9 (Kap. 3.1.1.7) als "sehr schwach durchlässig" eingestuft werden. Allein die Probe 6a (siehe Abb. 50) ist "schwach durchlässig". Die Probenreihe 6 stammt aus einer Lage mit markanten sandigen Einschlüssen in einer tonigen Schluffmatrix. Die Ergebnisse der Untersuchungen zur Bestimmung der Durchlässigkeit mittels der Triaxialzelle befinden sich im Anhang. Bei sechs der sieben Tiefen nehmen die Durchlässigkeiten von der x- über die y- bis zur z-Richtung ab. Die Versuchsreihe DK-5 zeigt als einzige Probe die höchste Durchlässigkeit in y-Richtung (siehe Abb. 51).

Abb. 50: Stechzylinderentnahme; Probe 6a (Fotos R. Albrecht)

Tab. 19:	Ergebnisse der	Durchlässigkeiten	der Proben DK	-1 bis DK-7
	\mathcal{U}	\mathcal{U}		

Proben- bezeich- nung	Tiefe [m]	x-Richtung k ₁₀ [m/s]	y-Richtung k ₁₀ [m/s]	z-Richtung k ₁₀ [m/s]	Kornan- sprache
DK-7	2,25	1,3E-08	8,9E-09	3,9E-09	gr' sa cl' Si
DK-6	3,10	3,9E-08	6,9E-09	4,2E-09	sa cl Si
DK-5	3,27	4,9E-10	4,9E-09	3,4E-10	sa''cl Si
DK-4	3,47	2,5E-09	6,9E-10	4,9E-10	sa''cl Si
DK-3	3,62	1,8E-08	2,5E-09	1,5E-09	sa' cl' Si
DK-2	3,82	5,6E-10	4,8E-10	3,6E-10	sa''cl Si
DK-1	4,24	2,1E-08	1,2E-08	7,5E-10	sa cl Si

Abb. 51: k_{10} -Werte der Probenreihe DK-5

4.1.1.8 Oedometerversuch (ÖNORM EN ISO 17892-5:2017)

Bei der Kernbohrung 1 und der Kernbohrung 4 in Andelsbuch/Hof wurden jeweils 3 Kompressionsversuche durchgeführt. Das Ergebnis eines Oedometerversuchs ist in erster Linie die Ermittlung des Steifemodul E_s . Der Steifemodul ist eine maßgebende Größe bei der Ermittlung von Setzungen. Abbildung 52 zeigt die Kurve eines Oedometerversuchs mit der Spezifischen Setzung in Prozent auf der y-Achse und der Logarithmischen Normalspannung auf der x-Achse aufgetragen. Darunter stehen die dazugehörenden Steifemodule. Tabelle 20 zeigt einen Überblick der Ergebnisse, wobei nur die Steifemodule der Erstbelastung gezeigt werden, da diese für die Setzungsberechnungen verwendet werden. Die weiteren Ergebnisse zu den Kompressionsversuchen befinden sich im Anhang.

Abb. 52: Ergebnis des Kompressionsversuch KB1_3

Tab. 20: Steifemodule der Erstbelastung der Kompressionsversuche

Laststufen [kPa]		10-20	20-40	40-80	80-160	160-320
KB1_1	Steifemodul Es [kPa]	909	1212	1667	2222	4444
KB1_2	Steifemodul Es [kPa]	1176	1481	1905	3137	5818
KB1_3	Steifemodul Es [kPa]	1000	1333	1702	2581	4571
KB4_1	Steifemodul Es [kPa]	1667	2222	2667	3721	5926
KB4_2	Steifemodul Es [kPa]	1667	2222	2581	4848	5714
KB4_3	Steifemodul Es [kPa]	1667	2222	2500	4000	6957

Durch das bekannte Volumen des Halterings für den Oedometertest können verschiedene bodenspezifischen Kennwerte ausgerechnet werden, die in Tabelle 21 aufgelistet sind. Die Kennwerte beziehen sich auf die Probe vor dem Kompressionstest. Dabei ist ein deutlicher Unterschied der Proben aus der Kernbohrung 1 und der Kernbohrung 4 zu sehen. Bei der Konsolidierung der Proben mit 1 N/cm² war bei den Proben der Kernbohrung 1 eine Setzung von 7/100 mm, 8/100 mm und 10/100 mm zu beobachten. Die 3 Proben der Kernbohrung 4 zeigten ein Quellung von 6/100 mm, 8/100 mm und 6/100 mm, was eine Hebung von 0,3 bzw. 0,4 % im Vergleich zur Probenhöhe ausmacht.

Bodenkennwerte		KB1_1	KB1_2	KB1_3	KB4_1	KB4_2	KB4_3
Wassergehalt	w [%]	32.0	29.6	30.4	25.5	26.0	25.0
Korndichte	$\rho_s [g/cm^3]$	2.69	2.69	2.69	2.71	2.71	2.71
Porenanteil	n [-]	46.3	44.4	45.0	40.8	41.4	40.4
Porenzahl	e [-]	0.9	0.8	0.8	0.7	0.7	0.7
Sättigungszahl	S _r [-]	98.0	100.0	96.6	99.7	96.6	98.2
Dichte	ρ [g/cm ³]	1.89	1.94	1.90	2.01	1.97	2.00
Trockendichte	$\rho_d [g/cm^3]$	1.43	1.50	1.46	1.60	1.57	1.60

 Tab. 21:
 Bodenkennwerte der Proben f
 ür die Kompressionsversuche

4.1.2 Mineralogie

4.1.2.1 Gesamtmineralbestand

Die Ermittlung des Gesamtmineralbestands erfolgte für die 14 Handproben sowie für die Kernbohrungen 1 und 4 (siehe Abb. 53). Den größten Anteil der Minerale macht Kalzit, mit 40-79 % in den jeweiligen Proben, aus. Der Kalzitgehalt sinkt mit zunehmender Tiefe der Sedimente. Der Quarzgehalt der Proben liegt relativ konstant bei 18-31 %. Muskovit ist in den der Kernbohrungen mit bis zu 20 % am Gesamtmineralbestand vertreten, bei den Handproben vor allem in den tieferen Lagen. Dolomit, Chlorit sowie Kaolinit sind ebenfalls häufiger in den tieferen Schichten anzutreffen, Plagioklas vermehrt in den oberen Bereichen. Granat ist nur in der Probe #3, mit 5 % am Gesamtmineralbestand, vertreten. Das quellfähige Mineral Smektit ist gelegentlich mit 1-2 % beteiligt, Pyrit kommt in der KB4 und in den untersten zwei Handproben #13 und #14 in Spuren vor. Die quantitativen Anteile der Minerale sind im Anhang ersichtlich.

Abb. 53: Gesamtmineralbestand der Handproben und Kernbohrungen

4.1.2.2 Tonmineralanalysen

Die Tonmineralanalyse gibt den Anteil der Minerale mit einer Größe < 2 μ m an. Dabei vertreten sind mit dem größten Anteil Muskovit, Chlorit, Smektit und Kaolinit (siehe Abb. 54). Einzig bei der Handprobe #7 waren keine Tonminerale in der Probe.

Das quellfähige Tonmineral Smektit vergrößert sein Volumen bei einer physikalisch-chemischen Reaktion mit Wasser. Die Volumensvergrößerung geschieht durch Einlagerung von Wasser zusätzlich zum natürlichen Wassergehalt. Die negativen Flächenladungen der Tonminerale verursachen die Wasseraufnahme. Dabei dient das eingelagerte Wasser der Verminderung des Konzentrationsunterschieds und treibt die Tonteilchen und die Elementarschichten auseinander (Madsen & Kahr 1985).

Abb. 54: Ergebnisse der Tonmineralanalyse

4.1.3 Rammkernanalyse

4.1.3.1 Multi Sensor Core Logger (MSCL)

Die Untersuchungen der Rammkerne am MSCL erfolgte in den ersten zwei Rammkernen in 1 cm Abständen, ab dem dritten Rammkern in 0,5 cm Abständen. Abbildung 55 zeigt einen Überblick der Ergebnisse für die P-Wellen-Geschwindigkeit, die Dichte und die Magnetische Suszeptibilität.

Die Ermittlung der P-Wellen-Geschwindigkeit durch die Kerne ergab Werte zwischen 1500 bis knapp 1900 m/s. Die Aufzeichnung beginnt bei ca. 2 m ab GOK und setzt sich mit einzelnen Abschnitten, die nicht immer zusammenhängend sind, fort. Speziell an den Enden der einzelnen Kerne erfolgte keine Messungen der P-Wellen-Geschwindigkeit.

Die Ermittlung der Dichte erbrachte nach ca. 1,2 m ab GOK vernünftige Ergebnisse. Die Größenordnung der Dichte liegt zwischen 1,7 und 2,5 g/cm³, mit einem Ausreißer in 1,23 m Tiefe mit einer Dichte von 1,09 g/cm³. Die Aufzeichnung der Dichte war in den einzelnen Kernen relativ konstant, an den Enden der Kerne konnten keine Aufzeichnungen erfolgen. Die größten Unregelmäßigkeiten der Dichte kann im dritten Kern in der Tiefe von 2-3 m beobachtet werden.

Die Werte der Magnetischen Suszeptibilität liegen zwischen 2,5-15 SI x 10⁻⁵. Die Aufzeichnung der Magnetischen Suszeptibilität erfolgte kontinuierlich, wobei die Enden der Kerne jeweils auffallend niedrige Werte zeigen. Die größten Werte

wurden in den oberen 3 m erreicht. Mit der Tiefe nehmen die Frequenz und Intensität der Magnetischen Suszeptibilität ab.

Abb. 55: Graphische Darstellung der MSCL-Ergebnisse

4.1.3.2 Öffnen und Fotografieren der Rammkerne

Abbildung 56 zeigt die Fotos der geöffneten Kerne, beginnend mit 0 m an der Geländeoberkante links oben bis zu 6 m unter GOK rechts unten.

Abb. 56: Fotos der geöffneten Rammkerne 1-6 von links nach rechts (Fotos Labor für Limnogeologie, Universität Innsbruck)

Der erste Kern von 0-1 m ist bis zur Hälfte gefüllt. Aufgrund der Rammung wurde hier der locker gelagerte Mutterboden stark zusammengedrückt. Rammkern 2 zeigt den Übergang vom Mutterboden zu fluviatilen, stark sandigen Kiesen. Bei knapp 2,0 m ab GOK beginnt die erste stark sandige bis stark tonige Siltlage, die sich bis 2,4 m im dritten Rammkern vollzieht. Ab 2,4 m treten nach unten hin feinkörniger werdende, kiesige bis siltige Sande auf. Mit dem Rammkern 4 beginnt das Auftreten der Seetone. Von 4,0 m bis 4,2 m zeigt sich der tonige Silt in einer braunen Farbe, nach unten hin sind die Seetone grau. In den Seetonen sind die grobsiltigen bis feinsandigen Zwischenlagen sehr gut zu erkennen, die sich aufgrund der Rammung an den Seiten der Kerne nach unten verbogen haben.

Für eine bessere Darstellung werden die Fotos der Rammkerne 3-6 aus einer Tiefe von 2-6 m unter GOK den Ergebnissen des MSCL graphisch gegenübergestellt (siehe Abb. 57-60).

Abb. 57: Foto und MSCL Ergebnisse von Rammkern 3

Abb. 58: Foto und MSCL Ergebnisse von Rammkern 4

Abb. 59: Foto und MSCL Ergebnisse von Rammkern 5

Abb. 60: Foto und MSCL Ergebnisse von Rammkern 6

4.1.3.3 Fallkegelversuch

Für die Abschätzung der Undränierten Scherfestigkeit c_u wurden an den geöffneten Kernen 34 Fallkegelversuche durchgeführt. Tabelle 22 zeigt eine Einteilung der Festigkeit und der Konsistenz aufgrund der Undränierten Scherfestigkeit nach EN ISO 14688-2. Abbildung 61 zeigt den Verlauf der Undränierten Scherfestigkeit gegen die Tiefe. Die ermittelten Werte sind in einem Bereich von 4-37 kN/m² und zeigen einen Trend hin zu geringeren Werten mit zunehmender Tiefe.

Benennung der Festigkeit	Undränierte Scher- festigkeit cu [kPa]	Benennung der Konsistenz	
äußerst gering	ußerst gering < 10		
sehr gering	10 - 20	breiig	
gering	20 - 40		
	40 - 60		
mittel	60 - 75		
hoch	75 - 150	steif	
	150 - 200		
sehr hoch	200 - 300		
	300 - 600	halbtest	
äußerst hoch	> 600	fest	

Tab. 22:Benennung der Festigkeit und der Konsistenz aus der Undränierten
Scherfestigkeit nach DIN EN ISO 14688-2

Abb. 61: Undränierte Scherfestigkeit mittels Fallkegelversuch

4.1.3.4 Drehflügelsonde

Für die Ermittlung der Flügelscherfestigkeit s_u wurden 14 Untersuchungen an den Rammkernen vollzogen. Die zweite Messung bei 235 cm erbrachte kein Ergebnis bei der Restscherfestigkeit. Die höchsten Werte der Undränierten Scherfestigkeit liegen von 210 cm bis 310 cm. Ab 328 cm sinken die Werte wieder, steigen bei 350 cm wieder an und fallen ab 365 cm wieder kontinuiertlich ab. Die Restscherfestigkeit verhält sich ähnlich, wobei die Unterschiede bei höheren Werten der Undränierten Scherfestigkeit am größten sind. Dieser Unterschied wird als Sensitivität bezeichnet, bei der die Undränierte Scherfestigkeit durch die Restscherfestigkeit dividiert wird. Nach EN ISO 14688-2 weist die erste Messung bei 210 cm eine hohe Sensitivität, die restlichen Messungen eine geringe Sensitivität auf. Die Ergebnisse der einzelnen Messungen mit der Drehflügelsonde sind im Anhang ersichtlich. Die Ergebnisse sind in Tabelle 23 zu sehen, Abbildung 62 zeigt eine grafische Darstellung der Ergebnisse der Drehflügelsonde.

Tiefe [m]	Scherfestigkeit [kPa]	Restscherfestigkeit [kPa]	Sensitivität
2,10	18.20	0.54	33.493
2,35	16.58	-	-
3,10	27.76	8.25	3.363
3,28	15.37	3.24	4.750
3,30	10.92	1.62	6.751
3,40	11.31	2.01	5.630
3,50	16.58	4.89	3.390
3,65	18.21	3.25	5.607
3,96	12.13	1.81	6.714
4,25	8.89	1.62	5.493
4,50	6.47	0.80	8.130
4,75	6.07	0.73	8.278
5,35	5.26	0.61	8.668
5,75	6.47	0.81	8.002

 Tab. 23:
 Ergebnisse der Untersuchung mit der Drehflügelsonde

Abb. 62: Übersicht der Undränierten Scherfestigkeit, der Restscherfestigkeit und der Sensitivität aus den Versuchen mit der Drehflügelsonde

4.2 In situ-Versuche

4.2.1 Rammsondierung

Das Ergebnis der Rammsondierung zeigt die Anzahl der Schläge pro 10 cm Vordringung (n₁₀) gegenüber der Tiefe in einem Stufendiagramm (siehe Abb. 63). Rechts neben dem Stufendiagramm befinden sich die Bezeichnungen aus den Korngrößenverteilungen. Die Rammsondierung wurde bis in eine Tiefe von 15 m durchgeführt. Das Protokoll zur Rammsondierung mit den Schlagzahlen befindet sich im Anhang.

Abb. 63: Stufendiagramm der Rammsondierung

Tabelle 24 zeigt einen Überblick der empirischen Abhängigkeit zwischen dem Spitzendruck q_s in MN/m² und den Schlagzahlen n_{10} der leichten, mittleren und schweren Rammsonde (nach Placzek, 1985).

Lagerung	qs	DPH	DPM	DPL
Lagerung	[MN/m ²]	n 10	n 10	n ₁₀
Sehr Locker	< 2,0	0 – 1	0 - 4	0-6
Locker	2,0 - 5,0	1 - 4	4 – 11	6 – 10
Mitteldicht	5,0-7,5	4 - 13	11 – 26	10 - 50
Dicht	7,5 – 15	13 – 24	26-44	50 - 64
Sehr dicht	> 15	> 24	> 44	> 64
Konsistonz	qs	DPH	DPM	DPL
KUIISIStellZ	[MN/m ²]	n 10	n 10	n ₁₀
Breiig	< 2,0	0 - 2	0-3	0-3
Weich	2,0 - 5,0	2-5	3 – 8	3 – 10
Steif	5,0-8,0	5-9	8 - 14	10 - 17
Halbfest	8,0-15,0	9-17	14 - 28	17 – 37
Fest	> 15,0	> 17	> 28	> 37

Tab. 24: Empirische Abhängigkeit zwischen Spitzendruck und Schlagzahlen

Nach dieser Einteilung ist der Mutterboden bis in eine Tiefe von 1,1 m locker, der sandige Kies von 1,1 m bis 1,9 m mitteldicht gelagert. Die sandigen, tonigen Silte in der Tiefe von 1,9 m bis 2,4 m haben in den ersten 10 cm eine weiche, in den darunterliegenden 40 cm eine breiige Konsistenz. Von 2,4 m bis 2,7 m liegen mitteldichte kiesige Sande, gefolgt von locker gelagerten kiesigen, siltigen Sanden bis in eine Tiefe von 3,2 m. Ab einer Tiefe von 3,2 m treten anfangs breiige, bis zur Aufschlusstiefe von 4,3 m weiche tonige Silte auf. Die Schlagzahlen steigen bis zur Endteufe von 15 m kontinuierlich an und erreichen eine halbfeste Konsistenz. Bei 9,7 m bis 10,5 m gibt es einen sprunghaften Anstieg der Schlagzahlen von 9 auf 14.

4.2.2 TinyPerm

Die ermittelten gerätespezifischen Werte wurden mit Hilfe der von der Firma *NER* zum Gerät beigelegten Formel (siehe Abb. 64) in Permeabilität *mD* umgerechnet. Mit Hilfe der Gleichung in Kapitel 3.2.2 konnten die Permeabilität in Durchlässigkeitsbeiwerte *k* umgerechnet werden. Die ermittelten *k*-Werte reichen von 10^-2 m/s bis 10^-9 m/s, die mit Hilfe eines Box-Plot dargestellt werden (siehe Abb. 65). Die Untersuchung mit dem Gerät liefert Durchlässigkeitsbeiwerte im Bereich von 10^-3 m/s bis 10^-5 m/s für die sandigen Kiese in einer Tiefe von 1–2,1 m. Die ersten schluffigen Lagen in einer Tiefe von 2,1-2,5 m weisen Durchlässigkeiten von 10^-7 m/s bis 10^-8 m/s auf. Die ermittelten Werte in den kiesig schluffigen Sanden liegen zwischen 10^-3 m/s bis 10^-7 m/s in einer Tiefe von 2,5-3,2 m. Die siltigen bis tonigen Böden ab einer Tiefe von 3,2 m erreichen Durchlässigkeitsbeiwerte von 10^-7 m/s bis 10^-9 m/s.

Mit Hilfe der Funktion "kriging" mit dem Programm QGIS konnten die Messwerte interpoliert und dargestellt werden. Stark durchlässige Bereiche werden mit den Farben gelb und grün gekennzeichnet, weniger durchlässige Böden sind in blauer bis violetter Farbe gehalten (siehe Abb. 65).

Abb. 64: Umrechnungstabelle für gerätespezifischen TinyPerm Wert (NER)

Durchlässigkeitsbeiwerte TinyPerm und Triaxialzelle

Abb. 65: Box-Plot TinyPerm (blau), Stechzylinder (orange) und "kriging"-Darstellung mit Aufschlussfoto

5 Diskussion

Im gegenständlichen Kapitel erfolgt die Diskussion der Ergebnisse hinsichtlich Korngrößenverteilung, Wassergehalt, Dichte, Konsistenzgrenzen, Scherparameter, Steifigkeit und Durchlässigkeit. Die Grundlage der Diskussion sind die durchgeführten Labor- und in situ Versuche.

Im Allgemeinen ergeben sich bei der Auswertung der Korngrößenverteilungen kleinere Körnungen mit zunehmender Tiefe. Die untersuchten Seetone weisen einen Tongehalte von bis zu 45,5 % auf, jedoch überwiegt der Schluffgehalt in allen Fällen. Die Seetone reichen von sehr gering sandigen bis stark tonigen Schluffen, daher ist die Bezeichnung "Schluff-dominiert" treffend. Nach Blanck et al (1931) handelt es sich bei lakustrinen Tonen nicht um Tone im eigentlichen mineralogischen Sinn, sondern um Ton als Gesteinsmenge, als Pelit, als Niederschlag der Flusstrübe, als Gletschermilch und Uferabtrag. Für die geologische Rekonstruktion eines Ablagerungsgebietes deutet die Korngrößenverteilung eines Sediments auf die Strömungsverhältnisse im Gewässerabschnitt während der Ablagerung hin. Die Korngrößen Schluff und Sand in den Seetonen deuten auf eine höhere Strömungsgeschwindigkeit des Wassers hin, während die in Schwebe befindlichen Tonpartikel sich aus der Suspension absetzen können.

Der Wassergehalt der Bodenproben in den Seetonen variiert zwischen 18,8 % und 28,7 %. Um den Wassergehalt der Handproben und der Stechzylinder vom Aufschluss mit dem Wassergehalt der Rammkerne zu vergleichen, wurde bei der markanten Grenze vom braunen zum grauen Seeton (siehe Abb. 66) eine Verschiebung der Rammkerne um 17 cm vorgenommen, damit die Proben in derselben Tiefe zueinanderstehen. Der Farbwechsel könnte den Übergang von glazialen zu postglazialen Ablagerungsverhältnissen darstellen. Von 5 verglichenen Wassergehalten haben 4 davon eine absolute Abweichung von 0,8-1,7 %. Lediglich der Wassergehalt in Rammkern Nr. 4 in einer Tiefe von 395 cm (+17 cm Verschiebung = 412 cm) verglichen mit der Handprobe #14 in 415 cm Tiefe ergab eine absolute Abweichung von 5,2%. Die Bodenproben mit den höchsten Tongehalten weisen auch die höchsten Wassergehalte auf.

Abb. 66: Grenze von braunem zu grauen Seeton im Rammkern links bei 320 cm und beim Aufschluss in 337 cm Tiefe (Fotos: R. Albrecht)

Die Korndichte der Bodenproben vom Aufschluss Andelsbuch/Itter und der Kernbohrung Andelsbuch/Hof liegen zwischen 2,67-2,71 g/cm³. Tendenziell nehmen die Korndichten mit der Tiefe zu. Für einen Vergleich der Korndichten der Proben mit den spezifischen Dichten der Minerale liegen die Streuungsbreiten der spezifischen Dichten in einem zu kleinen Bereich um eine verlässliche Aussage zu machen. Die Korndichte ist für die Berechnung von Parametern wie der Porenzahl, Porenziffer oder des Sättigungsgrades erforderlich.

Die ermittelten Werte der Tauchwägungen liegen zwischen 1,94-2,18 g/cm³. Im Vergleich dazu sind die mit dem MSCL gewonnenen Werte in einem Bereich zwischen 2,12-2,30 g/cm³ und weisen in allen Fällen höhere Werte auf. Für den Vergleich wurden die Rammkerne wieder um die 17 cm verschoben. Dabei konnten 6 verschiedene Tiefen korreliert werden. Die größte Abweichung liegt bei 0,33 g/cm³ bei der Probe DK-2 und der vergleichbaren Tiefe von 365 cm im Rammkern. Die kleinste Abweichung mit 0,06 g/cm³ ist bei der Probe DK-3 mit der korrelierenden Rammkerntiefe von 330 cm zu sehen. Bei den vergleichenen Proben weist die Probe DK-2 auch den höchsten Tongehalt mit 39,9 %, wobei hingegen die Probe DK-3 den geringsten Tongehalt mit 11,5 % aufweist, was ein Indiz für die Abweichungen sein könnte. Nach DIN 1055, Teil 2 liegen die Wichten für bindige Böden mit leicht plastischen Eigenschaften zwischen 20,0 bis 21,0 kN/m³.

Vergleicht man bei der Rammkernanalyse die P-Wellen-Geschwindigkeit mit dem Dichte-Log, so sind an mehreren Stellen ähnliche Kurven zu sehen. Speziell ab der Tiefe von 3,2 m, in der die Seetone auftreten. Die magnetische Suszeptibilität hingegen korreliert weniger mit diesen Plots. Eine mögliche Korrelation wäre mit dem Gesamtmineralbestandes zu erwarten gewesen. Aufgrund des in 14 Tiefen punktuell ermittelten Gesamtmineralbestandes, lässt sich keine Korrelation mit der magnetischen Suszeptibilität herstellen, vermutlich aufgrund der geringen Magnetisierbarkeit der Sedimente, die wiederum vom Mineralbestand abhängig ist.

Die Klassifizierung feinkörniger Böden oder feinkörniger Anteile in zusammengesetzt grobkörnigen Böden sollte auf der Grundlage ihrer Plastizität vorgenommen werden (ÖNORM EN 14866-2). Für einen besseren Überblick verdeutlicht Abbildung 67 die Lage der untersuchten Bodenproben im Plastizitätsdiagramm. Die Probe DK-7 wird als leichtplastischer Schluff eingeteilt, die Proben DK-4 und DK-2 liegen im Bereich der leichtplastischen Tone. Die beiden Proben aus der Kernbohrung sind als mittelplastische Tone einzustufen. ÖNORM EN 14866-2 weist auf eine sorgfältige Überprüfung der Ergebnisse hin, sollten diese in einem Bereich über oder zur linken der U-Linie sein, was auf die hier untersuchten Bodenproben nicht zutrifft. Die Konsistenzzahl 0,5 der Proben DK-4, DK-2, KB-4 und KB-1 zeigen eine sehr weiche bis weiche Konsistenz an, DK-7 hat eine halbfeste Konsistenz. Die Plastizitätszahlen der Proben nehmen mit zunehmender Tiefe zu. Nach Kuntsche (2016) genügt bei einer geringen Plastizitätszahl eine geringe Wassermenge, um den Boden von einer halbfesten in die flüssige Konsistenz zu bringen. Durch die kleinräumigen Heterogenitäten der Durchlässigkeiten bzw. der Variabilität der Ablagerungsmaterialien besteht immer wieder Infiltration entlang von preferentiellen Fließwegen und somit auch höhere Wassergehalte innerhalb der Seetone. Der geringe Plastizitätsbereich von 1,5 und auch die Aktivitätszahl von 1,4 der Probe DK-7 deutet auf eine Bodenschicht hin, bei der besondere Vorsicht geboten ist. Umgangssprachlich werden solche Böden als "Laufletten" bezeichnet. Dies macht sich ersichtlich, wenn eine Bodenprobe in der Hand nass gemacht wird und durch kleine Erschütterungen zu verlaufen beginnt. Nach Prinz & Strauß (2011) können unterkonsolidierte Tone unter hydrostatischen Wechselbelastungen oder Erschütterungen zu einem thixotropen Gefügezusammenbruch und quasiviskosen Fließbewegungen führen.

Abb. 67: Plastizitätsdiagramm nach ÖNORM EN ISO 14688-2

Die Schlagzahlen n₁₀ der Rammsondierung in Andelsbuch ergeben in einer Tiefe von 3,2 m bis in die Aufschlusstiefe von 4,3 m nach der Einteilung von Placzek (1985) eine breiige Konsistenz. Ab der Tiefe von 4,3 m gehen die Seetone nach dieser Einteilung in eine weiche Konsistenz über. Vergleicht man die empirische Abhängigkeit der Schlagzahlen nach Placzek (1985) mit den Konsistenzen, die mit dem Fallkegelverfahren ermittelt wurden, so ergeben die aus der Rammsondierung ermittelten Werte niedrigere Konsistenzen, als die nach dem Fallkegelverfahren. Das Fallkegelverfahren ergibt sehr weich bis weiche, jedoch keine breiigen Konsistenzen. Betrachtet man das Stufendiagramm der Rammsondierung, so lässt sich eine beinahe lineare Zunahme der Schlagzahlen ab dem Auftreten der Seetone beobachten. Eine Möglichkeit für die Zunahme der Schlagzahlen könnte zum einen die stärker werdende Mantelreibung sein, zum anderen ein höherer Spitzenwiderstand aufgrund der tieferen Lagerung. Die Probe KB-4 weist einen effektiven Reibungswinkel von 13,3° und einen effektiven Restscherwinkel von 9,8°, bei einem Tongehalt von 45,5 %, auf. Die Probe DK-3 hat einen effektiven Reibungswinkel von 33,6° und einen effektiven Restscherwinkel von 33,4° bei einem Tongehalt von 11,5 %. Die Werte der restlichen 3 Scherversuche liegen zwischen 22,9-27,0° für die effektiven Reibungswinkel. Becker (2010) erhielt in zwei Untersuchungen an Seetonen effektive Reibungswinkel von 20,4° und 21,0°. Die Streuungsbreite der Reibungswinkel liegt bei ca. 20°, was auf eine große Heterogenität der Proben hinweist. Bei den Direkten Scherversuchen ergeben sich aus höher werdenden Tongehalten niedrigere Reibungswinkel und Restscherfestigkeiten hervor. Die Kohäsion der Proben streut zwischen 7,0 und 44,6 kN/m², wobei nach Blaascher (2019) bei Seetonen der Reibungswinkel nicht ausreicht um die Kohäsion bestimmen zu können. Für die Ermittlung der Kohäsion wären weitere Versuche mit der Triax-Zelle erforderlich.

Die Undränierten Scherfestigkeiten, die mit dem Fallkegel und der Drehflügelsonde ermittelt wurden, können in 8 verschiedenen Tiefen verglichen werden und liefern ähnliche Ergebnisse. Die Scherfestigkeiten der Drehflügelsonde weisen jedoch geringere Werte auf. Nach DIN EN ISO 14688-2 haben die untersuchten Seetone äußerst geringe bis geringe Festigkeiten und es liegen breiige bis weiche Konsistenzen vor.

Bei den Ergebnissen der Oedometerversuche wurden bei einer Referenzspannung p_{ref} von 100 kPa Steifemodule zwischen 2,2 und 4,8 MN/m² ermittelt. Dies entspricht nach Tomlinson (1995) einem Boden mit einer mittleren bis hohen Kompressibilität. Verglichen mit den Korngrößenverteilungen der Kernbohrungen, weisen die Oedometerversuche mit dem höheren Tongehalt der Kernbohrung 1 niedriger Steifemodule als die Oedometerversuche der Kernbohrung 4 auf. Die Quellung beim Oedometerversuch der Kernbohrung 4 (siehe Kapitel 4.1.1.8) ist möglicherweise darauf zurückzuführen, dass Smektit als einziges quellfähiges Mineral in der Probe vertreten ist. Nach Kempfert & Stadel (1997) sind bautechnisch die geringe Tragfähigkeit und die große Setzungswilligkeit dieser Böden relevant.

Für den Vergleich der Ermittlung der Durchlässigkeiten in der Triaxialzelle mit der Untersuchung mit dem TinyPerm veranschaulicht Abbildung 65 die Ergebnisse. Die Durchlässigkeitsbeiwerte, die im Labor ermittelt wurden, korrelieren relativ gut mit den berechneten Durchlässigkeitsbeiwerten der in situ-Messungen. Die Ergebnisse der TinyPerm Beprobung weisen jeweils um 1-2 Zehnerpotenzen höhere Durchlässigkeitsbeiwerte auf, als die im Labor in x-Richtung ermittelten Werte. Die Abweichungen des TinyPerm sind möglicherweise auf die oberflächennahe Beprobung zurückzuführen. Auch scheint das TinyPerm seine Grenzen in schwach durchlässigen Böden bzw. Gesteinen zu haben. Wie in der Abbildung 65 ersichtlich, können mit dem Gerät keine Werte unter ca. 10^-8 erreicht werden. Nach Filomena et al (2014) kommt es beim TinyPerm ab einer Permeabilität < 10 mD zu größeren Abweichungen, was einem berechneten Durchlässigkeitsbeiwert von 7,4E-08 entspricht. Dieser Wert deckt sich relativ gut mit den beobachteten unteren Grenzwerten in dieser Arbeit.

Die Ergebnisse der Durchlässigkeiten verglichen mit den Korngrößenverteilungen nach Hazen (1911) und Beyer (1964) brachten keine vernünftigen Ergebnisse. Zum einen konnten die d₁₀-Werte zu wenig genau ermittelt werden, da bei 5 von 7 Proben 10 % der Massen der Korngrößenverteilungen <0,002 mm war, zum anderen konnte nur bei der Probe DK-3 die Ungleichförmigkeitszahl C_U ermittelt werden. Bei dieser Probe ergab sich mit der Formel von Hazen (1911) ein Durchlässigkeitsbeiwert von 4,6E-03, wobei bei der Ermittlung der Durchlässigkeit in der Triaxialzelle ein Durchlässigkeitsbeiwert von 2,0E-08 ermittelt wurde. Bei der Formel von Hazen wird jedoch die Schüttkorndichte und nicht die Lagerungsdichte berücksichtigt.

Hydrogeologisch können die sehr schwach durchlässigen Seetone als Grundwasserstauer eingeteilt werden. Diese Böden sind gesättigt und können Einschaltungen mit Feinsand-Grobschluff im cm-dm Bereich haben. Diese Einschaltungen können jedoch für potentielle Wegigkeiten des Wassers verantwortlich sein, was wiederum großen Einfluss auf die Konsistenzgrenzen oder die Scherfestigkeit haben kann. Mit den Ermittlungen der Durchlässigkeiten in der Triaxialzelle konnten die unterschiedlichen Durchlässigkeiten ausgemacht werden. Abbildung 69 veranschaulicht den Unterschied zwischen der Probe DK-4 mit einer Siltlage und DK-2 mit einer homogenen Kornverteilung innerhalb der Probe.

Abb. 68: Vergleich der Durchlässigkeitsbeiwerte mit den Körngrößenverteilungen der Probe DK-2 und DK-4 (Fotos: R. Albrecht)

Die Probe DK-4 weist einen Tongehalt von 35,7 %, einen Schluffgehalt von 59,7 % und einem Feinsandanteil von 4,6 % auf. Bei der Probe DK-2 ist nur eine geringe Abweichung, im Vergleich zur Probe DK-4, in den Kornfraktionen mit 39,9 % Tonanteil, einem Schluffgehalt von 55,6 % und 4,5 % Feinsandanteil. Die Schlufflage wirkt sich jedoch auf den Durchlässigkeitsbeiwert in x-Richtung mit 3,3E-09 bei der Probe DK-4 und einem geringeren Durchlässigkeitsbeiwert von 5,7E-10 bei der Probe DK-2 aus. Die Durchlässigkeit in die y-Richtung ist in der Probe DK-2 jedoch nur gering weniger. Die vertikale Durchlässigkeit in z-Richtung bleibt annähernd gleich. Somit lassen sich Heterogenitäten in den sonst als "dicht" anzunehmenden Seetonen, vor allem in der horizontalen Ebene veranschaulichen.

6 Schlussfolgerung

In der gegenständlichen Arbeit wurden die Seetonen in Andelsbuch hinsichtlich ihrer bodenmechanischen und hydrogeologischen Eigenschaften charakterisiert. Diese Arbeit repräsentiert jedoch nur einen lokalen Ausschnitt in den proximalen Ablagerungen dieses ursprünglichen Eisrandstausees.

Die Untersuchungen der Durchlässigkeiten mit dem TinyPerm und mit den Laborversuchen zeigen kleinräumige Heterogenitäten in den Seetonen. Diese Heterogenitäten bedeuten jedoch Infiltration in den grobkörnigeren Feinsand- Grobschluffschichten, was zu potentiellen Änderungen der Festigkeiten und Konsistenzen der Böden und in weiterer Folge z.B. zu Instabilitäten von Böschungen in Baugruben oder Hangkriechen führen kann. Die Untersuchungen gingen jedoch aus wenigen Stichproben hervor und lassen auf lokale Heterogenitäten und teilweise auf Trends schließen. Für eine flächenhafte Interpretation wären weiterführende Untersuchungen und eine Korrelation der Ergebnisse zu unternehmen.

Die bodenmechanischen Untersuchungen charakterisieren die Seetone als leichtbis mittelplastische Tone und Schluffe, mit einer breiigen bis weichen Konsistenz. Basierend auf der in situ-Beprobung mittels Rammsonde wurde die breiige bis weiche Konsistenz bestätigt. Es wird festgehalten, dass die Interpretation der Rammsondierung eine breite geologische und geotechnische Erfahrung erfordert.

Die Oedometerversuche lassen gemäß Tomlinson (1995) auf eine mittlere bis hohe Kompressibilität schließen. Bei einer Referenzspannung von 100 kPa wurden Steifigkeiten zwischen 2,2 und 4,8 MN/m² bestimmt.

Es konnte gezeigt werden, dass mit zunehmender Tiefe und ansteigendem Feinkornanteil, die Konsistenzen, die Steifemoduli und die effektiven Reibungswinkel abnehmen.

Weiters wird betont, dass durch die Probenentnahme, den Transport und Wiedereinbau für diverse Laborversuche eine Störung auftritt, welche mit Grund für die große Streuung der Versuchsergebnisse ist.

Für vertiefende Arbeiten, bezogen auf die Entstehung der Seetone und die zeitlichen Abfolgen der Schüttungsraten würden sich weiterfolgende Untersuchungen, im speziellen mit den Daten der Auswertungen vom MSCL der Universität Innsbruck oder auch der mineralogischen Analyse der Technischen Universität Graz anbieten. Für weiterführende Versuche der geotechnischen Eigenschaften von schluff-dominierten Böden ist es sicher sinnvoll, Untersuchungen wie mit der Drucksonde, die eine möglichst ungestörte Ermittlung der Bodenkennwerte erbringt, durchzuführen. Diesbezüglich initiierte das Institut für Bodenmechanik, Grundbau und Numerische Geotechnik der TU Graz in Kooperation mit der Bundeskammer der ZiviltechnikerInnen und dem Institut für Angewandte Geowissenschaften (TU Graz) das Forschungsprojekt PITS, das sich eine verbesserte Parameterbestimmung von schluff-dominierten Böden mittels in-situ Versuchen (Drucksondierung, Flachdilatometerversuch) zum Ziel setzt.

Literaturverzeichnis

Becker, P., (2010)

Zeit- und spannungspfadabhängiges Verformungsverhalten bei Baugruben in weichen Böden – Schriftenreihe Geotechnik Heft 22, 346 Seiten, Kassel University Press, ISBN: 978-3-89958-850-7.

Blaasch, G., (2019)

Vermeidung von Schäden bei Baugruben und deren Bauten - 7. Oberösterreichischer Geotechniktag – THIS Magazin, 03/2019

Blanck, E., Hager, G., Hoffmann, R. W., Lundegardh, H., Maiwald, K., Rieser, A., Rippel, A., Steinriede, Fr., (1931)

Der Boden in Seiner Chemischen und Biologischen Beschaffenheit - Springer Berlin, Heidelberg

Blum, P., (1997)

Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores - College Station, Texas, USA.

Correns, C.W., Schott, W., (1933)

Über den Einfluss des Trocknens auf die Korngrößenverteilung von Tonen. - Kolloid-Zeitschrift 65, S. 197.

De Graaf, L.W.S., De Jong, M.G.G., Seijmonsbergen, A.C., (2007) in Friebe: Geologie der österreichischen Bundesländer Vorarlberg, Geologische Bundesanstalt, Wien. 21.

De Graaff, L.W.S., (2007)

Das Quartär in Vorarlberg: Die eiszeitlichen Prozesse und die Morphostratigraphie der letzten Talvergletscherungen – in: Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereines, Band 75, Seite 329 363, Stuttgart.

De Graaff, L.W.S., (1993)

in Friebe: Geologie der österreichischen Bundesländer Vorarlberg, Geologische Bundesanstalt, Wien. 24-32.

DIN Deutsches Institut für Normung e. V. (Hrsg.) (1997)

DIN 18122, Teil 1: (Juli 1997) Baugrund - Untersuchung von Bodenproben - Zustandsgrenzen (Konsistenzgrenzen) - Teil 1: Bestimmung der Fließ- und Ausrollgrenze. Beuth Verlag, Berlin. DIN Deutsches Institut für Normung e. V. (Hrsg.) (2010)

DIN 1055, Teil 2: (November 2010) Einwirkung auf Tragwerke - Teil 2: Bodenkenngrößen. Beuth Verlag, Berlin.

Engel, J., (2002)

Berechnungskennwerte feinkörnig-bindiger, gesättigter Böden – Näherungsverfahren. - Bautechnik, 79:3, 167-177.

Escher, H., (1970)

Die Bestimmung der klimatischen Schneegrenze in den Schweizer Alpen - Geogr. Helv., 25, 35–43, doi.org/10.5194/gh-25-35-1970.

Faraday, M. (1859)

Experimental researches in chemistry and physics. - Published by R. Taylor and W. Francis, London, UK.

Filomena, C. M., Hornung, J., and Stollhofen, H., (2014)

Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices - Solid Earth, 5, 1–11

Friebe, J. G. (2007)

Geologie der österreichischen Bundesländer Vorarlberg. - Geologische Bundesanstalt, Wien.

Gross, G., Kerschner, H., Patzelt, G., (1978)

Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten - Zeitschrift für Gletscherkunde u Glazialgeologie, Band 12, Heft 2, S. 223-251.

Hansbo, S., (1957)

A new approach to the determination of the shear strength of clay by the fall-cone test - R. Swedish Geotech. Inst. Proc. No. 14 (7 ± 47) .

Hölting, B., Coldewey, W. G., (2009)

Hydrogeologie: Einführung in die Allgemeine und Angewandte Hydrogeologie. - Spektrum Verlag. 7., neu bearbeitete und erweiterte Auflage. ISBN 978-3- 8274-1713-8.

Kempfert, H.G., Stadel, M., (1997)

Berechnungsgrundlagen für Baugruben in normalkonsolidierten weichen bindigen Böden - Bauingenieur 72, pp. 207 - 214

Kolymbas, D., (2011)

Geotechnik: Bodenmechanik, Grundbau und Tunnelbau. - Springer Verlag. 3., neu bearbeitete Auflage. ISBN 978-3-642-20481-4.

Kuntsche, K., (2016)

Geotechnik: Erkunden – Untersuchen – Berechnen – Ausführen – Messen – Spinger Verlag, ISBN: 97838480419

Lambe, T.W., Whitman, R.V., (1979) Soil Mechanics - SI Version, Wiley, New York.

Lang, H. J., Huder, J., Amann, P., Puzrin, A. (2011)

Bodenmechanik und Grundbau: Das Verhalten von Böden und Fels und die wichtigsten grundbaulichen Konzepte. - Springer Verlag. 9., bearbeitete Auflage. ISBN 978-3-642-14686-2.

Madsen, F., Kahr, G., (1985)

Quellende Gesteine als Ursache von Problemen im Untertagebau. – Schweizer Ingenieur und Architekt. Band 103, Heft 19.

ÖNORM B 4400-1:2010

ÖNORM B 4400-1 (2010-03-15), Geotechnik - Teil 1: Benennung, Beschreibung und Klassifizierung von Böden, Österreichisches Normeninstitut, Wien

ÖNORM EN ISO 14688-2:2018

ÖNORM EN ISO 14688-2 (2018-06-15), Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Böden – Teil 2: Grundlagen für Bodenklassifizierungen, Österreichisches Normeninstitut, Wien

ÖNORM EN ISO 17892-1:2014

ÖNORM EN ISO 17892-1 (2015-06-15), Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben – Teil 1. Bestimmung des Wassergehaltes, Österreichisches Normeninstitut, Wien

ÖNORM EN ISO 17892-2:2014

ÖNORM EN ISO 17892-2 (2015-06-15), Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben – Teil 2: Bestimmung der Dichte des Bodens, Österreichisches Normeninstitut, Wien

ÖNORM EN ISO 17892-3:2015

ÖNORM EN ISO 17892-3 (2015-12-15), Geotechnische Erkundung und Untersuch – Laborversuche an Bodenproben – Teil 3: Bestimmung der Korndichte, Ausgabe 2016-08-15, Österreichisches Normeninstitut, Wien
ÖNORM EN ISO 17892-4:2016

ÖNORM EN ISO 17892 (2017-05-01), Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben. Teil 4: Bestimmung der Korngrößenverteilung, Österreichisches Normeninstitut, Wien

ÖNORM EN ISO 17892-5:2017

ÖNORM EN ISO 17892 (2017-07-01), Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben. Teil 5: Oedometerversuch mit stufenweiser Belastung, Österreichisches Normeninstitut, Wien

ÖNORM EN ISO 17892-11:2018

ÖNORM EN ISO 17892 (2018-03-15), Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben. Teil 11: Bestimmung der Wasserdurchlässigkeit, Österreichisches Normeninstitut, Wien

ÖNORM EN ISO 17892-12:2018

ÖNORM EN ISO 17892 (2018-10-15), Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben. Teil 12: Bestimmung der Fließ- und Ausrollgrenzen, Österreichisches Normeninstitut, Wien

ÖNORM EN ISO 17892-18:2018

ÖNORM EN ISO 17892 (2018-03-15), Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben. Teil 10: Direkte Scherversuche, Österreichisches Normeninstitut, Wien

ÖNORM EN ISO 22476-2:2012

ÖNORM EN ISO 22476 (2012-06-15), Geotechnische Erkundung und Untersuchung – Felduntersuchungen - Teil 2: Rammsondierungen, Österreichisches Normeninstitut, Wien

Placzek, D. (1985)

Vergleichende Untersuchungen beim Einsatz statischer und dynamischer Sonden - Geotechnik 2.

Prinz, H., Strauß, R., (2011)

Ingenieurgeologie. – Springer Verlag. 5., bearbeitete und erweiterte Auflage. ISBN 978-3-8274-2472-3.

Simons, A. L., (1985)

Geomorphologische und glazialgeologische Untersuchungen in Vorarlberg, Österreich. – Schr. Vorarlb. Landesmuseum., Reihe A, Bd I, 257.

Terzaghi, K., (1925)

Erdbaumechanik. - Deuticke Verlag, Wien.

Tomlinson, M. J., Boorman, R., (1995)

Foundation design and construction – Wiley, New York

v. Klebelsberg, R. (1948)

Handbuch der Gletscherkunde und Glaziologie - 2 Bände, Springer, Wien.

Wessels, M. (1998)

Late-Glacial and Postglacial sediments in Lake Constance (Germany) and their palaeolimnological implications - In: Bäuerle, E. & Gaedke, U.: Lake Constance. Characterization of an ecosystem in transition. Arch. Hydrobiol. Suppl. 53: 411-449.

Wood, D.M., (1985)

Some fall cone tests - Geotechnique 35 (1), 64-68.

Zacher, W., (1995)

Kompilation geologische Manuskriptkarte ÖK 112 Bezau, M. 1:25000 (Nord- und Südteil), GBA Wien.

Internet:

https://www.sedgeochem.uni-bremen.de/perm_kf.html (aufgerufen am 12.09.2019)

https://izw.baw.de/publikationen/kolloquien/0/3_Heeling_Vortrag_PDF.pdf (aufgerufen am 24.09.2019)

https://www.uibk.ac.at/geologie/corescanlab/infrastructure/index.html.en#mscl (aufgerufen am 17.08.2019)

https://www.uibk.ac.at/geologie/corescanlab/ (aufgerufen am 17.08.2019)

Abbildungsverzeichnis

Abb. 1:	Geographischer Überblick mit der Gemeinde Andelsbuch in grüner
Abb. 2:	Uberblick des Untersuchungsgebiets in Andelsbuch (aus
	www.geoland.at)
Abb. 3:	Tektonische Übersicht von Vorarlberg mit dem Untersuchungsgebiet
	innerhalb der roten Umrandung (nach Friebe, 2007)
Abb. 4:	Vergletscherungsphase in Vorarlberg vor 17.000 Jahren
Abb. 5:	Rekonstruierte Höhenlagen von Ill- und Rheintalgletscher im oberen
	Würm (De Graaff, 1993)
Abb. 6:	Erkundungsdaten der Firma GEOMAC in Grün, der Vorarlberger
	Landesregierung in Orange und die Untersuchungspunkte in Rot
	(erstellt mit QGIS und WMS Daten der Vorarlb. Landesregierung)10
Abb. 7:	Geologische Karte (Zacher, 1995) unverändert (oben) und mit
	Verbreitung der der Seetone (unten) aufgrund der Erkundungsdaten
	(QGIS, WMS Daten GBA) 11
Abb. 8:	Aufschluss Andelsbuch/Itter mit Darstellung der Handproben (Fotos:
	R. Albrecht)
Abb. 9:	Stechzylinderentnahme am Aufschluss und Übersichtsplan der
	entnommenen Stechzylinder (Foto: R. Albrecht) 14
Abb. 10:	Geöffneter Bohrkern der Kernbohrung 4 (Foto: R. Albrecht) 15
Abb. 11:	Kapillarpyknometer mit Stöpsel (Foto: R. Albrecht) 17
Abb. 12:	Modell für Bodenkennwerte; n bezieht sich auf das Gesamtvolumen,
	e bezieht sich auf die Porenfreie Festmasse (nach Prinz & Strauß,
	2011)
Abb. 13:	Drahtkorb und Probenkörper nach dem Eintauchen in das heiße
	Wachs (Foto: R. Albrecht)
Abb. 14.	Siebturm und Aräometer in einem mit Suspension gefüllten Messglas
	(Foto und Abbildung: R. Albrecht)
Abb. 15:	Durchspülung durch ein Sieb mit der Maschenweite von 0,125 mm
	(Foto: R. Albrecht)
Abb. 16:	Absaugung des Wassers aus dem Auffanggefäß und Trockenlampe
	(Foto: R. Albrecht)
Abb. 17:	Mischgerät mit eingespannten Messzylindern25
Abb. 18:	Eintauchen des Aräometers in die Suspension (Foto: R. Albrecht) 26
Abb. 19:	1. und 2. Phase des Rahmenscherversuches
Abb. 20:	Mohr'scher Spannungskreis des Bruchzustandes eines Bodens mit
	Kohäsion (nach Lang et al, 2011)28
Abb. 21:	Scherbüchsen und Scherbank
Abb. 22:	Konsistenzband nach DIN 18122 30
Abb. 23:	Anmischen der Proben und Fallkegel mit Probenbehälter und Probe
	(Foto: R. Albrecht)
Abb. 24:	30°-Fallkegel mit Probenbehälter und Probe (Foto: R. Albrecht) 32

Abb. 25:	Fließgrenzengerät nach Casagrande mit Probenmaterial und F	Furche
A11 OC	(Foto: R. Albrecht)	33
Abb. 26:	Ausrolltest auf Tonplatte (Foto: R. Albrecht)	34
Abb. 27:	Abmessungen der Hohlform in mm (nach ONORM B 4411: 35	2009)
Abb. 28:	Schematischer Versuchsaufbau (nach Laborsituation TUG)	36
Abb. 29:	Probenbezeichnung mit x-, y- und z-Richtung (Foto: R. Albrec	ht) 38
Abb. 30:	Probe mit Filtersteinen und eingebaute Probe in der mit V	Vasser
	gefüllten Triaxialzelle (Fotos: R. Albrecht)	39
Abb. 31:	Ausstechring und Haltering mit Probenmaterial (Fotos R. Alb 40	precht)
Abb. 32:	Versuchsgerät für den Oedometertest (Foto R. Albrecht)	41
Abb. 33:	Linersonde und Schutzrohr (Produktbeschreibung Carl F	łamm,
	Röhrenwerk)	43
Abb. 34:	Rammkernziehung und Rammkerne (Foto R. Albrecht)	43
Abb. 35:	Multi Sensor Core Logger (Foto R. Albrecht)	44
Abb. 36:	MSCL mit abgestuftem Aluminiumzylinder in einem mit V	Vasser
	gefüllten PVC-Rohr für die Kalibration (Foto R. Albrecht)	45
Abb. 37:	Öffnen der Kerne mit Hilfe einer Schneidemaschine (Fo	oto R.
	Albrecht)	46
Abb. 38:	Foto Scanner (Foto R. Albrecht)	46
Abb. 39:	Fallkegel im Rammkern (Foto R. Albrecht)	47
Abb. 40:	Drehflügelsonde vor und beim Einführen in das Sediment (F	oto R.
	Albrecht)	48
Abb. 41:	Raupengerät GTR 780 V (Foto R. Albrecht)	50
Abb. 42:	Sondierspitze (nach ÖNORM EN ISO 22476-2:2012)	51
Abb. 43:	Rammbär auf Amboss montiert (Foto R. Albrecht)	51
Abb. 44:	Messung mit dem TinyPerm (Foto R. Albrecht)	52
Abb. 45:	Raster für die TinyPerm Messung (links: unterer Bereich, 1	rechts:
	oberer Bereich)	53
Abb. 46:	Box-Plot des Wassergehalts von jeweils 4 Stechzylinderprober	ı 56
Abb. 47:	Grobeinteilung der Korngrößenverteilung am Aufschluss	58
Abb. 48:	Probe nach dem Ausbau aus der Scherbüchse (Foto R. Albrech	ıt) 60
Abb. 49:	Korngrößenverteilung der Proben DK-1 (oben), DK-2 (mitte	e) und
	DK-3 (unten)	61
Abb. 50:	Stechzylinderentnahme; Probe 6a (Fotos R. Albrecht)	64
Abb. 51:	<i>k</i> ₁₀ -Werte der Probenreihe DK-5	65
Abb. 52:	Ergebnis des Kompressionsversuch KB1_3	66
Abb. 53:	Gesamtmineralbestand der Handproben und Kernbohrungen	68
Abb. 54:	Ergebnisse der Tonmineralanalyse	69
Abb. 55:	Graphische Darstellung der MSCL-Ergebnisse	70
Abb. 56:	Fotos der geöffneten Rammkerne 1-6 von links nach rechts	(Fotos
	Labor für Limnogeologie, Universität Innsbruck)	71
Abb. 57:	Foto und MSCL Ergebnisse von Rammkern 3	73

Abb. 58:	Foto und MSCL Ergebnisse von Rammkern 474
Abb. 59:	Foto und MSCL Ergebnisse von Rammkern 575
Abb. 60:	Foto und MSCL Ergebnisse von Rammkern 676
Abb. 61:	Undränierte Scherfestigkeit mittels Fallkegelversuch
Abb. 62:	Übersicht der Undränierten Scherfestigkeit, der Restscherfestigkeit
	und der Sensitivität aus den Versuchen mit der Drehflügelsonde 80
Abb. 63:	Stufendiagramm der Rammsondierung
Abb. 64:	Umrechnungstabelle für gerätespezifischen TinyPerm Wert (NER)83
Abb. 65:	Box-Plot TinyPerm (blau), Stechzylinder (orange) und "kriging"-
	Darstellung mit Aufschlussfoto
Abb. 66:	Grenze von braunem zu grauen Seeton im Rammkern links bei 320
	cm und beim Aufschluss in 337 cm Tiefe (Fotos: R. Albrecht) 86
Abb. 67:	Plastizitätsdiagramm nach ÖNORM EN ISO 14688-2 88
Abb. 69:	Vergleich der Durchlässigkeitsbeiwerte mit den
	Körngrößenverteilungen der Probe DK-2 und DK-4 (Fotos: R.
	Albrecht)

Anhang

Graz Graz University of Technology	INSTITUT FÜR E GEOT RECHBAUER: Tel: +43(0)316	INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR RECHBAUERSTRASE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238							
AUFTRAGGEBER:		BEZEICHNUNG:	LABORN	UMMER					
Richard Albrecht		Durchlässigkeit 1	20882						
		BODENART:	PROJEKTNUMMER:						
PROJEKT:		sa cl Si	41						
Masterarbeit		BEARBEITER:	DATUM:						
		R. Albrecht	28.08.20	19					

	KORNDICHTE ÖNORM B 4413:2010								
1	Pyknometer-Nr.	-	-	L	102	108	109		
2	Volumen Pyknometer	cm³	V _{pyk}	L	99.111	98.863	99.741		
3	Tara	g	mo	т	44.6760	44.6012	43.9857		
4	Trockenmasse Probe + Tara	g	m ₁	L	63.8312	63.9013	63.5622		
5	Trockenmasse Probe	g	m ₂	4-3	19.1552	19.3001	19.5765		
6	Masse Pyknometer + Wasser + Probe (unter Auftrieb) bei t °C	g	m ₃	L	155.5702	155.3230	155.7621		
7	Versuchstemperatur Probe + Wasser	°C	t	L	24.6	24.9	25.1		
8	Temperaturkorrektur von 20 °C zu t °C	g	Δm	т	-0.1060	-0.1140	-0.1190		
9	Masse Pyknometer + Wasser bei 20 °C	g	m4	т	143.6093	143.2869	143.5479		
10	Masse Pyknometer + Wasser bei t °C	g	m₅	8+9	143.5033	143.1729	143.4289		
11	Dichte Wasser bei t °C	g/cm³	ρ _w	т	0.9972	0.9971	0.9971		
12	Bodenvolumen	cm³	Vκ	(10+5- 6)/11	7.1083	7.1708	7.2646		
13	Korndichte	Mg/m³	ρs	5/12	2.695	2.691	2.695		
14	Mittelwert aus allen Versuchen	Mg/m³	ρ _s i. M.	-		2.69			

Unit

Γ

iversity of Technology

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU **GEOTECHNISCHES LABOR**

RECHBAUERSTRASE 12, 6010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

BEZEICHNUNG:	LABORNUMMER
Durchlässigkeit 2	20883
BODENART:	PROJEKTNUMMER:
sa'' d Si	41
BEARBEITER:	DATUM:
R. Albrecht	27.08.2019
	BEZEICHNUNG: Durchlässigkeit 2 BODENART: sa'' d Si BEARBEITER: R. Albrecht

	KORNDICHTE ÖNORM B 4413:2010								
1	Pyknometer-Nr.	-	-	L	115	119	120		
2	Volumen Pyknometer	cm³	V _{pyk}	L	99.991	100.489	100.001		
3	Tara	g	mo	Т	45.0594	44.1742	44.9861		
4	Trockenmasse Probe + Tara	g	m ₁	L	64.0517	63.2346	64.1190		
5	Trockenmasse Probe	g	m ₂	4-3	18.9923	19.0604	19.1329		
6	Masse Pyknometer + Wasser + Probe (unter Auftrieb) bei t °C	g	m ₃	L	156.7406	156.3956	156.7590		
7	Versuchstemperatur Probe + Wasser	°C	t	L	24.1	24.4	24.3		
8	Temperaturkorrektur von 20 °C zu t °C	g	Δm	Т	-0.0930	-0.1010	-0.0980		
9	Masse Pyknometer + Wasser bei 20 °C	g	m4	Т	144.8711	144.4830	144.8078		
10	Masse Pyknometer + Wasser bei t °C	g	m₅	8+9	144.7781	144.3820	144.7098		
11	Dichte Wasser bei t °C	g/cm³	Ρw	Т	0.9973	0.9972	0.9973		
12	Bodenvolumen	cm³	Vκ	(10+5- 6)/11	7.0488	7.0664	7.1032		
13	Korndichte	Mg/m³	ρs	5/12	2.694	2.697	2.694		
14	Mittelwert aus allen Versuchen	Mg/m ³	ρ _s i. M.	-		2.70			

Graz University of Technology	TUC Graze Technology International INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR RECHBAUERSTRASE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238						
AUFTRAGGEBER:		BEZEICHNUNG:	LABOR	UMMER			
Richard Albrecht		Durchlässigkeit 3	20950				
		BODENART:	PROJEK	TNUMMER:			
PROJEKT:		sa' d' Si	41				
Masterarbeit		BEARBEITER:	DATUM:	:			
		R. Albrecht	27.08.20	19			

KORNDICHTE ÖNORM B 4413:2010

1	Pyknometer-Nr.	-	-	L	102	108	109
2	Volumen Pyknometer	cm³	V _{pyk}	L	99.111	98.863	99.741
3	Tara	g	mo	Т	44.6660	44.5996	43.9924
4	Trockenmasse Probe + Tara	g	m ₁	L	63.8246	63.8897	63.5579
5	Trockenmasse Probe	g	m ₂	4-3	19.1586	19.2901	19.5655
6	Masse Pyknometer + Wasser + Probe (unter Auftrieb) bei t °C	g	m ₃	L	155.5600	155.3170	155.7550
7	Versuchstemperatur Probe + Wasser	°C	t	L	24.6	24.9	25.1
8	Temperaturkorrektur von 20 °C zu t °C	g	Δm	Т	-0.1060	-0.1140	-0.1190
9	Masse Pyknometer + Wasser bei 20 °C	g	m4	Т	143.5993	143.2853	143.5546
10	Masse Pyknometer + Wasser bei t °C	g	m₅	8+9	143.4933	143.1713	143.4356
11	Dichte Wasser bei t °C	g/cm³	ρw	Т	0.9972	0.9971	0.9971
12	Bodenvolumen	cm³	Vκ	(10+5- 6)/11	7.1119	7.1652	7.2675
13	Korndichte	Mg/m³	ρs	5/12	2.694	2.692	2.692
14	Mittelwert aus allen Versuchen	Mg/m ^s	ρ _s i. M.	-		2.69	

Г

TU

og:

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR

RECHBAUERSTRASE 12,8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

٦

AUFTRAGGEBER:	BEZEICHNUNG:	LABORNUMMER
Richard Albrecht	Durchlässigkeit 4	20951
	BODENART:	PROJEKTNUMMER:
PROJEKT:	sa'' d Si	41
Masterarbeit	BEARBEITER:	DATUM:
	R. Albrecht	20.08.2019

	KORNDICHTE ÖNORM B 4413:2010								
1	Pyknometer-Nr.	-	-	L	102	115	120		
2	Volumen Pyknometer	cm³	V _{pyk}	L	99.111	99.991	100.001		
3	Tara	g	mo	т	44.6626	45.0564	44.9844		
4	Trockenmasse Probe + Tara	g	m ₁	L	63.6715	64.2486	64.1541		
5	Trockenmasse Probe	g	m ₂	4-3	19.0089	19.1922	19.1697		
6	Masse Pyknometer + Wasser + Probe (unter Auftrieb) bei t °C	g	m ₃	L	155.4615	156.8568	156.7604		
7	Versuchstemperatur Probe + Wasser	°C	t	L	24.8	25.0	24.8		
8	Temperaturkorrektur von 20 °C zu t °C	g	∆m	т	-0.1110	-0.1160	-0.1110		
9	Masse Pyknometer + Wasser bei 20 °C	g	m4	Т	143.5959	144.8681	144.8061		
10	Masse Pyknometer + Wasser bei t °C	g	m ₅	8+9	143.4849	144.7521	144.6951		
11	Dichte Wasser bei t °C	g/cm³	ρ _w	Т	0.9971	0.9971	0.9971		
12	Bodenvolumen	cm³	Vκ	(10+5- 6)/11	7.0525	7.1083	7.1248		
13	Korndichte	Mg/m³	ρs	5/12	2.695	2.700	2.691		
14	Mittelwert aus allen Versuchen	Mg/m³	ρ _s i. M.	-		2.70			

105

Graz Graz University of Technology	INSTITUT FÜR E GEOT RECHBAUER: Tel: +43(0)316	INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR RECHBAUERSTRASE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238							
AUFTRAGGEBER:		BEZEICHNUNG:	LABORN	IUMMER					
Richard Albrecht		Durchlässigkeit 5	20952						
		BODENART:	PROJEK	TNUMMER:					
PROJEKT:		sa'' cl Si	41						
Masterarbeit		BEARBEITER:	DATUM:						
		R. Albrecht	21.08.20	19					

KORNDICHTE ÖNORM B 4413:2010										
Pyknometer-Nr.	-	-	L	108	119					
Volumen Pyknometer	cm³	V _{pyk}	L	98.863	100.489	9				
Tara	g	mo	т	44.5986	44.1727	44				

.....

1	Pyknometer-Nr.	-	-	L	108	119	118
2	Volumen Pyknometer	cm³	V _{pyk}	L	98.863	100.489	98.602
3	Tara	g	mo	Т	44.5986	44.1727	44.1369
4	Trockenmasse Probe + Tara	g	m ₁	L	63.6217	63.4330	63.4402
5	Trockenmasse Probe	g	m ₂	4-3	19.0231	19.2603	19.3033
6	Masse Pyknometer + Wasser + Probe (unter Auftrieb) bei t °C	g	m ₃	L	155.1394	156.4795	154.5851
7	Versuchstemperatur Probe + Wasser	°	t	L	24.8	24.8	24.6
8	Temperaturkorrektur von 20 °C zu t °C	g	Δm	т	-0.1110	-0.1110	-0.1060
9	Masse Pyknometer + Wasser bei 20 °C	g	m4	т	143.2843	144.4815	142.5621
10	Masse Pyknometer + Wasser bei t °C	g	m₅	8+9	143.1733	144.3705	142.4561
11	Dichte Wasser bei t °C	g/cm³	Pw	Т	0.9971	0.9971	0.9972
12	Bodenvolumen	cm³	Vκ	(10+5- 6)/11	7.0773	7.1719	7.1946
13	Korndichte	Mg/m³	ρs	5/12	2.688	2.686	2.683
14	Mittelwert aus allen Versuchen	Mg/m³	ρ _s i. M.	-		2.69	

Г

TU

og

ensity of Techn

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR

RECHBAUERSTRASE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

AUFTRAGGEBER:	BEZEICHNUNG:	LABORNUMMER
Richard Albrecht	Durchlässigkeit 6	20953
	BODENART:	PROJEKTNUMMER:
PROJEKT:	sa cl Si	41
Masterarbeit	BEARBEITER:	DATUM:
	R. Albrecht	14.08.2019

KORNDICHTE ÖNORM B 4413:2010

1	Pyknometer-Nr.	-	-	L	120	115	137
2	Volumen Pyknometer	cm³	V _{pyk}	L	100.001	99.991	99.082
3	Tara	g	mo	т	44.9872	45.0604	44.8138
4	Trockenmasse Probe + Tara	g	m ₁	L	64.0993	64.1917	63.1683
5	Trockenmasse Probe	g	m ₂	4-3	19.1121	19.1313	18.3545
6	Masse Pyknometer + Wasser + Probe (unter Auftrieb) bei t °C	g	m ₃	L	156.6862	156.7580	155.1054
7	Versuchstemperatur Probe + Wasser	°C	t	L	25.4	25.2	24.9
8	Temperaturkorrektur von 20 °C zu t °C	g	Δm	т	-0.1260	-0.1210	-0.1140
9	Masse Pyknometer + Wasser bei 20 °C	g	m4	т	144.8089	144.8721	143.7181
10	Masse Pyknometer + Wasser bei t °C	g	m ₅	8+9	144.6829	144.7511	143.6041
11	Dichte Wasser bei t °C	g/cm³	Ρw	т	0.9970	0.9970	0.9971
12	Bodenvolumen	cm³	Vκ	(10+5- 6)/11	7.1303	7.1456	6.8731
13	Korndichte	Mg/m³	ρs	5/12	2.680 2.677 2.67		2.670
14	Mittelwert aus allen Versuchen	Mg/m³	ρ _s i. M.	-		2.68	

	Tel: +43(0)316	3/873-6237 Fax: +43(0)316/873-62	38	
AUFTRAGGEBER:		BEZEICHNUNG:	LABORN	IUMMER
Richard Albrecht		Durchlässigkeit 7	20954	
		BODENART:	PROJEK	TNUMMER:
PROJEKT:		gr' sa cl' Si	41	
Masterarbeit		BEARBEITER:	DATUM:	
		R. Albrecht	13.08.20	19

	KORNDICHTE ÖNORM B 4413:2010										
1	Pyknometer-Nr.	-	-	L	119 102 1		108				
2	Volumen Pyknometer	cm³	V _{pyk}	L	100.489	99.111	98.863				
3	Tara	g	mo	Т	44.1748	44.6671	44.6003				
4	Trockenmasse Probe + Tara	g	m ₁	L	63.5906	63.8478					
5	Trockenmasse Probe	g	m ₂	4-3	19.4158	19.4571	19.2475				
6	Masse Pyknometer + Wasser + Probe (unter Auftrieb) bei t °C	g	m ₃	L	156.5405	155.6782	155.2399				
7	Versuchstemperatur Probe + Wasser	°C	t	L	25.2	24.9	24.8				
8	Temperaturkorrektur von 20 °C zu t °C	g	Δm	Т	-0.1210	-0.1140	-0.1110				
9	Masse Pyknometer + Wasser bei 20 °C	g	m4	т	144.4836	143.6004	143.2860				
10	Masse Pyknometer + Wasser bei t °C	g	m₅	8+9	144.3626	143.4864	143.1750				
11	Dichte Wasser bei t °C	g/cm³	ρw	Т	0.9970	0.9971	0.9971				
12	Bodenvolumen	cm³	Vκ	(10+5- 6)/11	7.2595	7.2864	7.2033				
13	Korndichte	Mg/m³	ρs	5/12	2.675 2.670 2.67		2.672				
14	Mittelwert aus allen Versuchen	Mg/m³	ρ _s i. M.	-		2.67					

...

az Univ

Graz

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR

RECHBAUERSTRASE 12,8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

AUFTRAGGEBER:	BEZEICHNUNG:	LABORNUMMER
Richard Albrecht	Kernbohrung 1	20742
	BODENART:	PROJEKTNUMMER:
PROJEKT:	sa'' Si/Cl	41
Masterarbeit	BEARBEITER:	DATUM:
	R. Albrecht	12.06.2019

	KORNDICHTE ÖNORM B 4413:2010										
1	Pyknometer-Nr.	-	-	L	107	127	118				
2	Volumen Pyknometer	cm³	V _{pyk}	L	100.357	100.702	98.602				
3	Tara	g	mo	Т	43.9121	43.9612	44.1442				
4	Trockenmasse Probe + Tara	g	m ₁	L	63.0515	63.0515 62.8453					
5	Trockenmasse Probe	g	m ₂	4-3	19.1394	18.8841	19.3368				
6	Masse Pyknometer + Wasser + Probe (unter Auftrieb) bei t °C	g	m ₃	L	155.9944	156.2190	154.6018				
7	Versuchstemperatur Probe + Wasser	°C	t	L	26.5	26.3	26.3				
8	Temperaturkorrektur von 20 °C zu t °C	g	Δm	Т	-0.1560	-0.1507	-0.1507				
9	Masse Pyknometer + Wasser bei 20 °C	g	m4	Т	144.0892	144.4826	142.5694				
10	Masse Pyknometer + Wasser bei t °C	g	m ₅	8+9	143.9331	144.3319	142.4187				
11	Dichte Wasser bei t °C	g/cm³	ρ _w	Т	0.9967	0.9967	0.9967				
12	Bodenvolumen	cm³	Vκ	(10+5- 6)/11	7.1017	7.0199	7.1771				
13	Korndichte	Mg/m³	ρs	5/12	2.695	2.690	2.694				
14	Mittelwert aus allen Versuchen	Mg/m³	ρ _s i. M.	-		2.69					

٦

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU **GEOTECHNISCHES LABOR** TU RECHBAUERSTRASE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238 BEZEICHNUNG: LABORNUMMER AUFTRAGGEBER: Kernbohrung 4 Richard Albrecht 20741 BODENART: PROJEKTNUMMER: gr'' sa'' cl Si PROJEKT: 41 DATUM: Masterarbeit BEARBEITER: R. Albrecht 12.06.2019

	KORNDICHTE ÖNORM B 4413:2010										
1	Pyknometer-Nr.	-	-	L	102	108	109				
2	Volumen Pyknometer	cm³	V _{pyk}	L	99.111	98.863	99.741				
3	Tara	g	mo	Т	44.6668	44.6005	43.9916				
4	Trockenmasse Probe + Tara	g	m ₁	L	64.0354	64.0354 63.1124					
5	Trockenmasse Probe	g	m ₂	4-3	19.3686	18.5119	18.8292				
6	Masse Pyknometer + Wasser + Probe (unter Auftrieb) bei t °C	g	m3	L	155.7073	154.8396	155.3036				
7	Versuchstemperatur Probe + Wasser	°C	t	L	26.3	26.2	26.2				
8	Temperaturkorrektur von 20 °C zu t °C	g	Δm	Т	-0.1507	-0.1481	-0.1481				
9	Masse Pyknometer + Wasser bei 20 °C	g	m4	Т	143.6001	143.2862	143.5538				
10	Masse Pyknometer + Wasser bei t °C	g	m₅	8+9	143.4494	143.1382	143.4057				
11	Dichte Wasser bei t °C	g/cm³	ρ _w	Т	0.9967	0.9968	0.9968				
12	Bodenvolumen	cm³	Vκ	(10+5- 6)/11	7.1339	6.8325	6.9538				
13	Korndichte	Mg/m³	ρs	5/12	2.715 2.709 2.708						
14	Mittelwert aus allen Versuchen	Mg/m³	ρ _s i. M.	-		2.71					

PROJEKT: Masterarbeit Richard Albrecht			BEZEICHNUN Handproben #*	G: 1 - #14		DATUM: 20.08.2019					
	Wassergehalt ÖNORM B 4410										
Proben	Tiefe	Probe feucht	Probe trocken	Masse	Masse	Masse	Masse	Wasser-			
Nummer		+ Behälter	+ Behälter	Behälter	Probe feucht	Probe trocken	Wasser	gehalt			
Numiner	cm	g	g	g	g	g	g	%			
#1	110	197.2	195.7	118.9	78.3	76.8	1.5	2.0			
#2	200	128.6	181.3	119.8	62.8	61.5	1.3	2.1			
#3	220	177.6	165.6	119.8	57.8	45.8	12.0	26.2			
#4	245	166.4	155.9	119.4	47.0	36.5	10.5	28.8			
#5	255	142.5	141.6	119.8	22.7	21.8	0.9	4.1			
#6	265	164.4	163.6	138.1	26.3	25.5	0.8	3.1			
#7	271	161.5	160.2	138.3	23.2	21.9	1.3	5.9			
#8	275	108.7	107.5	93.7	15.0	13.8	1.2	8.7			
#9	290	175.9	168.3	118.2	57.7	50.1	7.6	15.2			
#10	315	175.3	166.6	129.8	45.5	36.8	8.7	23.6			
#11	333	171.5	162.8	131.0	40.5	31.8	8.7	27.4			
#12	348	160.4	152.9	120.7	39.7	32.2	7.5	23.3			
#13	390	156.0	149.2	120.6	35.4	28.6	6.8	23.8			
#14	415	175.5	167.7	123.8	51.7	43.9	7.8	17.8			

PROJEKT: Masterarbeit Richard Albrecht		brecht	BEZEICHNUN Durchlässigke	IG: eiten 1 - 7		DATUM: 17.06 31.07.2019			
		Wa	sserg	ehalt	ÖNORM	B 4410			
Proben	Tiefe	Probe feucht + Behälter	trocken + Behälter	Masse Behälter	Masse Probe feucht	Probe trocken	Masse Wasser	Wasser- gehalt	
Nummer	cm	g	g	g	g	g	g	%	
1a	424	1927.1	1591.0	0.0	1927.1	1591.0	336.1	21.1	
1b	424	1913.7	1553.3	0.0	1913.7	1553.3	360.4	23.2	
1c	424	1851.1	1524.6	0.0	1851.1	1524.6	326.5	21.4	
1d	424	1918.9	1547.9	0.0	1918.9	1547.9	371.0	24.0	
2a	382	1865.8	1473.2	0.0	1865.8	1473.2	392.6	26.6	
2b	382	1869.9	1486.9	0.0	1869.9	1486.9	383.0	25.8	
2c	382	1886.3	1494.6	0.0	1886.3	1494.6	391.7	26.2	
2d	382	1869.8	1482.6	0.0	1869.8	1482.6	387.2	26.1	
3a	362	1941.4	1607.9	0.0	1941.4	1607.9	333.5	20.7	
3b	362	1855.9	1546.2	0.0	1855.9	1546.2	309.7	20.0	
3c	362	1991.0	1673.4	0.0	1991.0	1673.4	317.6	19.0	
3d	362	1848.5	1528.0	0.0	1848.5	1528.0	320.5	21.0	
4a	347	1893.2	1589.4	0.0	1893.2	1589.4	303.8	19.1	
4b	347	1876.6	1488.1	0.0	1876.6	1488.1	388.5	26.1	
4c	347	1919.5	1567.7	0.0	1919.5	1567.7	351.8	22.4	
4d	347	1886.2	1556.8	0.0	1886.2	1556.8	329.4	21.2	
5a	327	1894.2	1496.2	0.0	1894.2	1496.2	398.0	26.6	
5b	327	1872.9	1532.2	0.0	1872.9	1532.2	340.7	22.2	
5c	327	1880.7	1527.7	0.0	1880.7	1527.7	353.0	23.1	
5d	327	1891.2	1515.3	0.0	1891.2	1515.3	375.9	24.8	
6a	310	1840.3	1470.0	0.0	1840.3	1470.0	370.3	25.2	
6b	310	1847.1	1491.1	0.0	1847.1	1491.1	356.0	23.9	
6c	310	1869.4	1500.9	0.0	1869.4	1500.9	368.5	24.6	
6d	310	1849.9	1499.9	0.0	1849.9	1499.9	350.0	23.3	
7a	225	1921.5	1610.0	0.0	1921.5	1610.0	311.5	19.3	
7b	225	1924.5	1614.6	0.0	1924.5	1614.6	309.9	19.2	
7c	225	1928.4	1598.5	0.0	1928.4	1598.5	329.9	20.6	
7d	225	1900.4	1578.0	0.0	1900.4	1578.0	322.4	20.4	

PROJEKT: Masterarbeit	PROJEKT: BEZEICHNUNG: Masterarbeit Richard Albrecht Rammkerne 1 - 6			DATUM: 20.08.2019							
	Wassergehalt ÖNORM B 4410										
Proben	Tiefe	Probe feucht + Behälter	Probe trocken + Behälter	Masse Behälter	Masse Probe feucht	Masse Probe trocken	Masse Wasser	Wasser- gehalt			
Nummer	cm	g	g	g	g	g	g	%			
1	235	107.2661	96.2614	58.4832	48.7829	37.7782	11.0047	29.1			
2	295	100.1227	89.8105	49.3117	50.8110	40.4988	10.3122	25.5			
3	340	113.7253	104.0817	54.1368	59.5885	49.9449	9.6436	19.3			
4	313	93.0593	85.0964	57.3251	35.7342	27.7713	7.9629	28.7			
5	328	101.2939	93.2347	57.5306	43.7633	35.7041	8.0592	22.6			
6	370	99.2287	90.2516	55.0092	44.2195	35.2424	8.9771	25.5			
7	395	88.5289	81.4966	52.1588	36.3701	29.3378	7.0323	24.0			
8	435	78.5090	74.2029	54.1621	24.3469	20.0408	4.3061	21.5			
9	475	85.6402	78.8689	51.6679	33.9723	27.2010	6.7713	24.9			
10	550	70.5453	66.6885	52.3882	18.1571	14.3003	3.8568	27.0			

nar Univ

TU

Technology

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR

AUFTRAGGEBER:	BODE NART:		BEZEICHNUNG:	LABORNUMMER:		
Richard Albrecht	sa cl Si		Durchlässig keit 1	20882		
			TIEFE:	PROJEKTNUMMER:		
PROJEKT:	UNGESTÖRT		42.4 cm	41		
Masterarbeit	GESTÖRT		BEARBEITER:	DATUM:		
			R. Albrecht	08.08.2019		

RAUMDICHTE - PORENANTEIL - WASSERGEHALT

Zoilo	Rechen-					
Zelle	schema		beesenning.			
1	L	Masse Korb		g	105.3	
2	Т	Masse Korb unter	Wasser	g	95.2	
3	1-2	Auftrieb Korb		g	10.1	
4	L	Masse Boden feud	Masse Boden feucht + Korb			
5	L	Masse Boden feud	g	211.2		
6	5-4	Masse Wachs	g	3.3		
7	L	Masse Boden feud	g	145.0		
8	5-7	Auftrieb Boden + K	g	66.2		
9	L	Temperatur Wasse	°C	24.3		
10	Т	Korrektur für Wass	cm ^s /g	0.997		
11	т	Multiplikationsfakt	cm³/g	1.1		
12	8-3	Auftrieb Boden + V	g	56.1		
13	10*12	Volumen Wachs+	cm ³	55.93		
14	6*11	Volumen Wachs	cm ³	3.63		
15	13-14	Volumen Boden fe	cm ³	52.30		
16	4-1	Masse Boden feud	Masse Boden feucht			
17	L	Masse Boden feud	ht + Behälter	g	174.9	
18	L	Masse Boden trock	ken + Behälter	g	166.8	
19	L	Masse Behälter		g	138.0	
20	(17-18)/(18-1	9)	Wassergehalt w	%	28.1	
21		Korndichte	ρs	g/cm ³	2.69	
22	6/((1 +20)*2	Feststoffvolumen		cm ³	29.77	
23	15-22	Hohlraumvolumen	l	cm ³	22.53	
24	23/15	Porenanteil		%	43.1	
25	23/22	Porenzahl		1	0.76	
26	(20*21)/25	Sättigungsgrad		1	100.0	
27	16/15	Dichte Boden feud	ht	g/cm ³	1.96	
28	27/(1 +20)	Dichte Boden trod	ken	g/cm³	1.53	
L = Lesung	T = Tabellen	wert				

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR

RECHBAUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

AUFTRAGGEBER:	BODE NART:		BEZEICHNUNG:	LABORNUMMER:
Richard Albrecht	sa'' cl+ Si		Durchlässig keit 2	20883
			TIEFE:	PROJEKTNUMMER:
PROJEKT:	UNGESTÖRT		382 cm	41
Masterarbeit	GESTÖRT		BEARBEITER:	DATUM:
			R. Albrecht	22.08.2019
VOLUI	ASBESTI	MN	UNG durch TA	UCHWÄGUNG
DAUM				OCEDOFILIAL T
RAUMU	CHIE-PO	ж	ENANTEIL - WA	SSERGEMALI

Zeile	Rechen-				
Zelle	schema		Bezeichnung		Korb Nr.: 4
1	L	Masse Korb		g	105.3
2	Т	Masse Korb unter	Wasser	g	95.2
3	1-2	Auftrieb Korb		g	10.1
4	L	Masse Boden feud	ht + Korb	g	260.7
5	L	Masse Boden feud	Masse Boden feucht + Korb + Wachs		
6	5-4	Masse Wachs			5.9
7	L	Masse Boden feud	ht + Korb + Wachs unter Wasser	g	169.6
8	5-7	Auftrieb Boden + K	(orb + Wachs	g	97.0
9	L	Temperatur Wasse	Temperatur Wasser		
10	Т	Korrektur für Wass	Korrektur für Wasser		
11	Т	Multiplikationsfakt	cm³/g	1.1	
12	8-3	Auftrieb Boden + V	g	86.9	
13	10*12	Volumen Wachs +	cm ³	86.64	
14	6*11	Volumen Wachs	cm ³	6.49	
15	13-14	Volumen Boden fe	cm ³	80.15	
16	4-1	Masse Boden feud	Masse Boden feucht		
17	L	Masse Boden feud	ht + Behälter	g	362.0
18	L	Masse Boden trock	ken + Behälter	g	330.0
19	L	Masse Behälter		g	213.0
20	(17-18)/(18-1	9)	Wassergehalt w	%	27.4
21		Korndichte	ρs	g/cm³	2.70
22	6/((1 +20)*2	Feststoffvolumen		cm ³	45.19
23	15-22	Hohlraumvolumen	1	cm ³	34.95
24	23/15	Porenanteil		%	43.6
25	23/22	Porenzahl		1	0.77
26	(20*21)/25	Sättigungsgrad		1	95.5
27	16/15	Dichte Boden feud	ht	g/cm³	1.94
28	27/(1 +20)	Dichte Boden trock	ken	g/cm ⁵	1.52
L = Lesung	T = Tabellen	wert		•	•

plogs

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR

PROJEKT:	UNGESTÖRT	362 cm	41
Masterarbeit	GESTÖRT	BEARBEITER:	DATUM:
		 R. Albrecht	22.08.2019

Zoilo	Rechen-				
Zene	schema			Korb Nr.: 5	
1	L	Masse Korb		g	107.8
2	Т	Masse Korb unter	Wasser	g	95.6
3	1-2	Auftrieb Korb	g	12.2	
4	L	Masse Boden feud	Masse Boden feucht + Korb		
5	L	Masse Boden feud	g	399.8	
6	5-4	Masse Wachs	g	17.3	
7	L	Masse Boden feud	g	242.3	
8	5-7	Auftrieb Boden + K	g	157.5	
9	L	Temperatur Wasse	°C	19.6	
10	Т	Korrektur für Wass	cm³/g	0.997	
11	Т	Multiplikationsfakt	cm³/g	1.1	
12	8-3	Auftrieb Boden + V	g	145.3	
13	10*12	Volumen Wachs+	cm ³	144.86	
14	6*11	Volumen Wachs	cm ³	19.03	
15	13-14	Volumen Boden fe	cm ³	125.83	
16	4-1	Masse Boden feud	ht	g	274.7
17	L	Masse Boden feud	ht + Behälter	g	306.7
18	L	Masse Boden trock	ken + Behälter	g	292.9
19	L	Masse Behälter		g	210.0
20	(17-18)/(18-1	9)	Wassergehalt w	%	16.6
21		Korndichte	ρ _s	g/cm ³	2.69
22	6/((1 +20)*2	Feststoffvolumen		cm ³	87.55
23	15-22	Hohlraumvolumen	1	cm ³	38.29
24	23/15	Porenanteil		%	30.4
25	23/22	Porenzahl		1	0.44
26	(20*21)/25	Sättigungsgrad		1	102.4
27	16/15	Dichte Boden feud	ht	g/cm ³	2.18
28	27/(1 +20)	Dichte Boden trod	ken	g/cm ³	1.87
L = Lesung	T = Tabellen	wert			

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR

RECHBAUERSTRASSE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

AUFTRAGGEBER:	BODE NART:		BEZEICHNUNG:	LABORNUMMER:
Richard Albrecht	sa'' cl+ Si		Durchlässig keit 4	20951
			TIEFE:	PROJEKTNUMMER:
PROJEKT:	UNGESTÖRT		347 cm	41
Masterarbeit	GESTÖRT		BEARBEITER:	DATUM:
			R. Albrecht	22.08.2019
VOLUN	ASBESTI	MN	IUNG durch TAUCI	IWÄGUNG
RAUMD	CHTE - PC	DR	ENANTEIL - WASSE	RGEHALT

Zeile	Rechen-	Bezeichnung			
Lene	schema		bezeichnung		Korb Nr.: 1
1	L	Masse Korb		g	105.7
2	Т	Masse Korb unter	Masse Korb unter Wasser		
3	1-2	Auftrieb Korb		g	11.6
4	L	Masse Boden feud	Masse Boden feucht + Korb		
5	L	Masse Boden feud	g	339.8	
6	5-4	Masse Wachs			16.8
7	L	Masse Boden feud	g	208.6	
8	5-7	Auftrieb Boden + K	g	131.2	
9	L	Temperatur Wasse	°C	21.2	
10	Т	Korrektur für Wass	cm³/g	0.997	
11	Т	Multiplikationsfakt	cm ⁵ /g	1.1	
12	8-3	Auftrieb Boden + V	g	119.6	
13	10*12	Volumen Wachs +	Boden	cm ³	119.24
14	6*11	Volumen Wachs	cm ³	18.48	
15	13-14	Volumen Boden fe	cm ³	100.76	
16	4-1	Masse Boden feud	g	217.3	
17	L	Masse Boden feud	ht + Behälter	g	331.4
18	L	Masse Boden trock	ken + Behälter	g	305.0
19	L	Masse Behälter		g	201.8
20	(17-18)/(18-1	9)	Wassergehalt w	96	25.6
21		Korndichte	Ps	g/cm ³	2.70
22	6/((1 +20)*2	Feststoffvolumen		cm ³	64.09
23	15-22	Hohlraumvolumen		cm ³	36.67
24	23/15	Porenanteil		%	36.4
25	23/22	Porenzahl		1	0.57
26	(20*21)/25	Sättigungsgrad		1	120.7
27	16/15	Dichte Boden feud	ht	g/cm ³	2.16
28	27/(1 +20)	Dichte Boden trod	ken	g/cm ³	1.72
L = Lesung	T = Tabellen	wert		6,	

RECHBAUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

AUFTRAGGEBER:	BODE NART:		BEZEICHNUNG:	LABORNUMMER:
Richard Albrecht	sa'' cl+ Si		Durchlässig keit 5	20952
			TIEFE:	PROJEKTNUMMER:
PROJEKT:	UNGESTÖRT		327 cm	41
Masterarbeit	GESTÖRT		BEARBEITER:	DATUM:
			R. Albrecht	22.08.2019
VOLUN	ASBESTI	MN	MUNG durch TAUCH	IWÄGUNG
RAUMDI	CHTE - PO	DR	ENANTEIL - WASSE	RGEHALT

Zeile	Rechen-				
Zelle	schema		Bezeichnung		Korb Nr.: 1
1	L	Masse Korb		g	106.2
2	Т	Masse Korb unter	Wasser	g	95.0
3	1-2	Auftrieb Korb		g	11.2
4	L	Masse Boden feud	ht + Korb	g	311.6
5	L	Masse Boden feud	g	326.2	
6	5-4	Masse Wachs	g	14.6	
7	L	Masse Boden feud	g	193.5	
8	5-7	Auftrieb Boden + K	g	132.7	
9	L	Temperatur Wasse	°C	20.9	
10	Т	Korrektur für Wass	cm³/g	0.997	
11	Т	Multiplikationsfakt	cm³/g	1.1	
12	8-3	Auftrieb Boden + V	g	121.5	
13	10*12	Volumen Wachs +	cm ³	121.14	
14	6*11	Volumen Wachs	cm ³	16.06	
15	13-14	Volumen Boden fe	cm ³	105.08	
16	4-1	Masse Boden feud	g	205.4	
17	L	Masse Boden feud	ht + Behälter	g	313.5
18	L	Masse Boden trock	ken + Behälter	g	292.8
19	L	Masse Behälter		g	219.0
20	(17-18)/(18-1	9)	Wassergehalt w	%	28.0
21		Korndichte	ρs	g/cm ³	2.69
22	6/((1 +20)*2	Feststoffvolumen		cm ³	59.63
23	15-22	Hohlraumvolumen	1	cm ³	45.44
24	23/15	Porenanteil		%	43.2
25	23/22	Porenzahl		1	0.76
26	(20*21)/25	Sättigungsgrad		1	99.0
27	16/15	Dichte Boden feud	ht	g/cm³	1.95
28	27/(1 +20)	Dichte Boden trod	ken	g/cm ³	1.53
L = Lesung	T = Tabellen	wert			

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR

RECHBAUERSTRASSE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

AUFTRAGGEBER:	BODE NART:		BEZEICHNUNG:	LABORNUMMER:
Richard Albrecht	sa cl Si		Durchlässig keit 6	20953
			TIEFE:	PROJEKTNUMMER:
PROJEKT:	UNGESTÖRT		310 cm	41
Masterarbeit	GESTÖRT		BEARBEITER:	DATUM:
			R. Albrecht	28.08.2019
VOLUI	ASBESTI	MN	UNG durch TA	UCHWÄGUNG
RAUMD	ICHTE - PO	ЭR	ENANTEIL - W	ASSERGEHALT

					T	
Zeile	Rechen-		Bezeichnung			
	schema				Korb Nr.: 3	
1	L	Masse Korb		g	106.1	
2	Т	Masse Korb unter	Wasser	g	94.5	
3	1-2	Auftrieb Korb		g	11.6	
4	L	Masse Boden feud	ht + Korb	g	520.2	
5	L	Masse Boden feud	Masse Boden feucht + Korb + Wachs g			
6	5-4	Masse Wachs	Masse Wachs g			
7	L	Masse Boden feucht + Korb + Wachs unter Wasser			302.0	
8	5-7	Auftrieb Boden + K	g	239.2		
9	L	Temperatur Wasse	°C	22.7		
10	т	Korrektur für Wass	cm³/g	0.997		
11	т	Multiplikationsfakt	cm³/g	1.1		
12	8-3	Auftrieb Boden + V	g	227.6		
13	10*12	Volumen Wachs +	cm ³	226.92		
14	6*11	Volumen Wachs	cm ³	23.10		
15	13-14	Volumen Boden fe	cm ³	203.82		
16	4-1	Masse Boden feud	ht	g	414.1	
17	L	Masse Boden feud	ht + Behälter	g	585.0	
18	L	Masse Boden trock	ken + Behälter	g	513.0	
19	L	Masse Behälter		g	172.7	
20	(17-18)/(18-1	9)	Wassergehalt w	%	21.2	
21		Korndichte	ρs	g/cm ⁵	2.68	
22	6/((1 +20)*2	Feststoffvolumen		cm ³	127.53	
23	15-22	Hohlraumvolumen	1	cm ³	76.29	
24	23/15	Porenanteil		96	37.4	
25	23/22	Porenzahl		1	0.60	
26	(20*21)/25	Sättigungsgrad		1	94.8	
27	16/15	Dichte Boden feud	ht	g/cm ³	2.03	
28	27/(1 +20)	Dichte Boden trod	ken	g/cm ⁵	1.68	
L = Lesung	T = Tabellen	wert		0,		

TU

INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR

RECHBAUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

AUFTRAGGEBER: Richard Albrecht	BODE NART: gr´sa d´Si	BEZEICHNUNG: Durchlässigkeit 7 TIEEE	LABORNUMMER: 20954 PRO JEKTNI IMMER:				
PROJEKT: Mastera ibeit	UNGESTÖRT 🗆 GESTÖRT 🗆	225 cm BEARBEITER: R. Albrecht	41 DATUM: 28.08.2019				
VOLUMSBESTIMMUNG durch TAUCHWÄGUNG RAUMDICHTE - PORENANTEIL - WASSERGEHALT							

Zeile	Rechen-	D				
	schema			Korb Nr.: 4		
1	L	Masse Korb	g	105.3		
2	Т	Masse Korb unter	g	95.2		
3	1-2	Auftrieb Korb	g	10.1		
4	L	Masse Boden feud	g	469.9		
5	L	Masse Boden feud	g	484.5		
6	5-4	Masse Wachs	g	14.6		
7	L	Masse Boden feud	g	284.2		
8	5-7	Auftrieb Boden + K	g	200.3		
9	L	Temperatur Wasser		°C	22.5	
10	Т	Korrektur für Wasser		cm³/g	0.997	
11	Т	Multiplikationsfaktor für Wachs		cm³/g	1.1	
12	8-3	Auftrieb Boden + Wachs		g	190.2	
13	10*12	Volumen Wachs + Boden		cm ³	189.63	
14	6*11	Volumen Wachs		cm ³	16.06	
15	13-14	Volumen Boden feucht		cm ³	173.57	
16	4-1	Masse Boden feucht		g	364.6	
17	L	Masse Boden feucht + Behälter		g	327.2	
18	L	Masse Boden trocken + Behälter		g	296.2	
19	L	Masse Behälter		g	138.0	
20	(17-18)/(18-1	9)	Wassergehalt w	%	19.6	
21		Korndichte	ρs	g/cm³	2.67	
22	6/((1 +20)*2	Feststoffvolumen		cm ³	114.18	
23	15-22	Hohlraumvolumen		cm ⁵	59.39	
24	23/15	Porenanteil		%	34.2	
25	23/22	Porenzahl		1	0.52	
26	(20*21)/25	Sättigungsgrad		1	100.6	
27	16/15	Dichte Boden feucht		g/cm³	2.10	
28	27/(1 +20)	Dichte Boden trocken		g/cm ³	1.76	
L = Lesung T = Tabellenwert						

Graze INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR A-8010 GRAZ, RECHBAUERSTRASSE 12, AUSTRIA						c IIII		
			Tel.: +43 (0) 310	5 873-6237 Fax.: +43 (0) 316 873-6238			IBG
AUFTRAGGEBER:					B	ODENART:	LABORNU 20950	JMMER:
PROJEKT:					т	EFE:	AUFTRAG	SNR:
Masterarbeit Richard Albrecht								
BEZEICHNUNG:	BEZEICHNUNG: BEARBEITER: DATUM:							
Durchlässigkeit	Durchlässigkeit 3 R. Albrecht 09.08.19 - 14.08.19							
R/	AHMENS	СН	ERVER Büchsen	RSUCH NA größe: 100 x 100	CH ÖN(x 20 mm	ORM B 44	16	
GRÖSSTKORN: < 4	mm			Versuch 1	Ve	rsuch 2	Vers	uch 3
KONSOLIDIERUNGSE	DRUCK	σ	kN/m ^e	200		200	20	00
KONSOLIDIERUNGSZ	EIT	t,	h hhl/m²	90		90	9	0
NURMALSPANNUNG	3	σ	kN/m*	79.6		100	17	00
SCHERVEG		4	KN/III*	3.2		43	50	6,0 13
RESTSCHERFESTIGKE	T	т.	kN/m ²	49.1		78.0	14	7.3
RESTSCHERWEG		S.	mm	34,5		35.3	23	6.7
WASSERGEHALT nac	h dem Versuch	w	%	-		-		-
REIBUNGSWINKEL (d	þ')	33,6	0		PROBENZUST	AND		ungestört
KOHÄSION (c')		44,6	kN/m ²		SCHERGESCH	WINDIGKEIT	0,003	mm/min
RESTSCHERWINKEL	(φ _r)	33,4	•		RESTSCHERGE	SCHWINDIGKEIT	2,328	mm/min
240 220 200 [7]180 160 140 120 100 80 80 40 20 0		_@´ _∲-	50 80 NORMA	100 120 14	0 160 180	2 200 220 2 1	40	

ш	INSTITUT FÜR BODENMECH UND NUMERISCHE G			
Graz	GEOTECHNISCHES I A-5010 GRAZ, RECHBAUERSTRAS TEL: 443(0)316 / 813 - 8231 FAX: 44	GEOTECHNISCHES LABOR A-5010 GRAZ, RECH BAUERSTRASSE 12, AUSTRIA TEL: 142(0)316 / 573 - 6237 FAX: 143(0)316 / 573-6235		
AUFTRAGGEBER		BEZEICHNUNG:	LABORNUMMER:	
		DK-2	20883	
		TIEFE	PROJEKTNUMMER	
PROJEKT:		1		
MA Albrecht		BEARBEITER:	DATUM	
		on l	09.09.2019	

KONSISTENZGRENZEN ÖNORM B 4411:2009

KEGELFALLVERSUCH							
Behälter		209	210	211	212	208	
Eindringung	mm	14.23	18.96	22.37	27.59	26.2	
Probe feucht + Behälter	g	26.9094	29.5546	28.5453	37.4405	35.0138	
Probe trocken + Behälter	g	24.0321	25.58	24.7116	32.368	29.0086	
Masse Behälter	g	14.7601	13.6084	14.1829	21.1845	14.7900	
Masse Probe feucht	g	12.1493	15.9462	14.3624	16.258	20.2238	
Masse Probe trocken	g	9.272	11.9716	10.5287	11.1835	14.2188	
Masse Wasser	g	2.8773	3.9746	3.8337	5.0725	6.005	
Wassergehalt	%	31.0	33.2	36.4	45.4	42.2	

W _L =	35.5 %
W _p =	22.5 %
le =	13.0 %
l _e =	0.5 %

Lineare Schrumpfgrenze							
Versuchsmulde Nr.	1	2	3				
Natürlicher Wassergehalt		26.2					
Länge d. Versuchsmulde	Lo	m		140.0	140.0		
Länge der trockene Probe	L _o	nm	131.3	131.3	131.4		
Lineare Schrumpgrenze	Ls	%	6.2	6.2	6.1		
Bildsamkeitszahl	٩	%	13.2	13.2	13.1		
Ausroligrenze	Wp	%	22.3	22.3	22.4		
Konsistenzzahl	Ŀ	-	0.7	0.7	0.7		

	INSTITUT FÜR BODENMECH UND NUMERISCHE G	≷ BODENMECHANIK, GRUNDBAU UMERISCHE GEOTECHNIK				
Graz	GEOTECHNISCHES L	ABOR				
	A-8010 G RAE, RECHEAUERSTRAS TEL.: 143(0)316 / 513 - 6231 - FAX: 14	IBG				
AUFTRAGGEBER		BEZEICHNUNG:	LABORNUMMER:			
		DK-4	20951			
		TIEFE	PROJEKTNUMMER			
PROJEKT:		1				
MA Albrecht		BEARBEITER:	DATUM			
		см.	09.09.2019			

KONSISTENZGRENZEN ÖNORM B 4411:2009

KEGELFALLVERSUCH							
Behälter		201	202	203	210	211	
Eindringung	nm	12.63	17.71	21.14	23.09	24.38	
Probe feucht + Behälter	g	39.2099	31.63	38.0042	31.4270	41.0630	
Probe trocken + Behälter	g	35.482	28.8702	34.0134	28.9672	36.0631	
Masse Behälter	g	21.6346	19.5848	20.9256	21.2557	21.2494	
Masse Probe feucht	g	17.5753	12.0452	17.0786	10.1713	19.8136	
Masse Probe trocken	9	13.8274	9.2854	13.0878	7.7115	14.8137	
Masse Wasser	9	3.7479	2.7598	3.9908	2.4598	4.9999	
Wassergehalt	%	27.1	29.7	30.5	31.9	33.8	

W _L =	30.5 %
₩ _p =	17.0 %
le =	13.5 %
l _e =	0.5 %

Lineare Schrumpfgrenze						
Versuchsmulde Nr.	1	2	3			
Natürlicher Wassergehalt		22.2				
Länge d. Versuchsmulde	Lo	m		140.0	140.0	
Länge der trockene Probe	ړ.	m	131.0	131.6	131.1	
Lineare Schrumpgrenze	5	%	6.4	6.0	6.4	
Bildsamkeitszahl	و	%	13.7	12.8	13.5	
Ausroligrenze	Wp	%	16.8	17.7	17.0	
Konsistenzzahl	π.	-	0.6	0.6	0.6	

Graz.	INSTITUT FÜR BODENMECH UND NUMERISCHE G GEOTECHNISCHES I A-5010 GRAZ, RECH BAUERSTRAS TEL: 443(0)316 (1812 - 6237 FAX: 44	IBG		
AUFTRAGGEBER:		BEZEICHNUNG:	LABORNUMMER:	
		DK-7	20954	
		TIEFE	PROJEKTNUMMER	
PROJEKT:		1		
MA Albrecht		BEARBEITER:	DATUM	
		ам	09.09.2019	

KONSISTENZGRENZEN ÖNORM B 4411:2009

KEGELFALLVERSUCH							
Behälter		205	207	208	209	210	
Eindringung	mm	13.71	18.2	19.05	21.14	23.63	
Probe feucht + Behälter	g	36.7405	34.7258	34.7825	35.2093	40.3466	
Probe trocken + Behälter	g	32.589	30.8906	30.8429	31.3121	35.1702	
Masse Behälter	g	13.7367	14.0916	13.9858	14.7515	13.7370	
Masse Probe feucht	g	23.0038	20.6342	20,7967	20.4578	28.6096	
Masse Probe trocken	g	18.8523	16.799	16.8571	16.5608	21.4332	
Masse Wasser	g	4.1515	3.8352	3.9396	3.8972	5.1764	
Wassergehalt	%	22.0	22.8	23.4	23.5	24.2	

W _L =	23.5 %
W _p =	21.0 %
l= =	2.5 %
l _e =	1.5 %

						≥
Lineare Schrumpfgrenze						11 225
Versuchsmulde Nr.			1	2	3	8 22
Natürlicher Wassergehalt	w	%		19.7		⁸ ≥21.5
Länge d. Versuchsmulde	Lo	m	140.0	140.0	140.0	
Länge der trockene Probe	L _o	m	138.2	138.3	138.6	21
Lineare Schrumpgrenze	Ls	%	1.3	1.2	1.0	20.5
Bildsamkeitszahl	þ	%	2.7	2.6	2.1	
Ausroligrenze	Wp	%	20.8	20.9	21.4	20
Konsistenzzahl	Ŀ	-	1.4	1.5	1.8	

Graz University of Technology	INSTITUT FÜR BODENMECHANIK UND GRUNDBAU GEOTECHNISCHES LABOR RECHBAUERSTRASE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238							
AUFTRAGGEBER: Richard Albrecht		BEZEICHNUNG: Kembohrung 1	LABORN 20742	ABORNUMMER				
		BODENART:		TNUMMER:				
Masterarbeit		BEARBEITER:						

KONSISTENZGRENZEN

R. Albrecht

					Fli	essgrenz	e		AL	Wnat		
	Behälter	Nr.		101	101 109 110 113 122					136	148	
1	Schlag	zahl N		44	34	30	26	20				
2	m _f + m _B			10.1437	10.4563	9.0811	8.5985	9.0530	4.8549	4.7043	4.6071	1139.1
3	ma + ma		g	8.3029	8.5036	7.4924	7.1299	7.4232	4.6303	4.5298	4.4316	923.6
4	me		g	3.4256	3.4284	3.4239	3.4324	3.3907	3.4288	3.4333	3.4262	172.7
5	mw	2-3	g	1.8408	1.9527	1.5887	1.4686	1.6298	0.2246	0.1745	0.1755	215.5
6	md	3-4	g	4.8773	5.0752	4.0685	3.6975	4.0325	1.2015	1.0965	1.0054	750.9
7	w	5/6	%	37.7	38.5	39.0	39.7	40.4	18.7	15.9	17.5	28.7

Fliessgrenze	WL	%	39.7
Ausrollgrenze	Wp	%	17.4
Plastizitätszahl	l _P	%	22.4
Kors istenzzahl	le -		0.5
Liquiditätszahl	IL.		50.7

$$I_C = \frac{w_L - w_{nat.}}{I_P}$$

$$I_L = \frac{w_{nat.} - w_P}{I_P}$$

03.04.2019

Graz University of Technology	RECHBAUERS Tel: +43(0)316	CODENMECHANIK UN TECHNISCHES LAI STRASE 12, 8010 GRAZ, AUST (873-6237 Fax: +43(0)316/873-	I	
AUFTRAGGEBER:		BEZEICHNUNG:	LABORN	UMMER
Richard Albrecht		Kernbohrung 4	20741	
		BODENART:	PROJEK	TNUMMER:
PROJEKT:		gr‴ sa‴ <mark>cl</mark> Si	41	
Masterarbeit		BEARBEITER:	DAT UM:	
		R. Albrecht	03.04.20	19

KONSISTENZGRENZEN

					FI	iessgren:	ze		Au	Wnet		
	Behälter	Nr.		118	118 121 123 140 150					138	149	
1	Schlag	zahi N		40	35	31	20	15				
2	m _f + m _B			12.4532	8.6981	9.3071	9.5643	9.8617	4.707	4.4387	5.16	479.7
3	ma + ma		g	10.0335	7.2591	7.6777	7.8158	7.9791	4.5236	4.2826	4.9212	406.4
4	me		g	3.4273	3.4219	3.4332	3.4257	3.4289	3.4171	3.4119	3.4291	138.3
5	mw	2-3	g	2.4197	1.4390	1.6294	1.7485	1.8826	0.1834	0.1581	0.2388	73.3
6	md	3-4	g	6.6062	3.8372	4.2445	4.3901	4.5502	1.1085	0.8707	1.4921	268.1
7	w	5/6	%	36.6	37.5	38.4	39.8	41.4	16.6	17.9	16.0	27.3

Fliessgrenze	WL	%	39.3
Ausrollgrenze	Wp	%	16.8
Plastizitätszahl	l _P	%	22.5
Kons istenzzahl	le le		0.5
Liquiditätszahl	IL.		46.8

$$I_C = \frac{W_L - W_{nat.}}{I_C}$$

$$I_L = \frac{w_{nat.} - w_P}{I_P}$$

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12, 8010 GRAZ, AUSTRIA Tel:+43(0)316/873-6237 Fax:+43(0)316/873-6238									
	DUF	RCHLÄSSIGKEI	T IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE			
		Richard Albrech	t recht						
LABORNUMMER	208	82	DATUM: 17.06.2	2019	ZELLE: 3				
BEZEICHNUNG	1a	a	TIEFE: 424 cm						
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{r1} [g]	1927.1	m _{r2} + Tara [g]	2053.0	ρ _d [g/cm³]	1.69
Fläche A [cm²]	78.54	78.54		m _{e1} [g] T ₁ [g]	1291.0	m _{d2} +iara(g) T ₂ (g)	1749.9	n [%] e[1]	0.38
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	2.04	ρ [g/cm³]	2.18	ρ; [g/cm³]	2.71
				w ₁ [%] Sr ₁ [%]	21.1 94.6	w ₁ [%] Sr ₁ [%]	17.3 77.5		
Datum (Beginn)		[TT.MM.JJ]	18.06.2019	18.06.2019	19.06.2019	19.06.2019	20.06.2019	20.06.2019	21.06.2019
versuchsbeginn Temperatur (Beginn)	t ₁ δ ₁	[nn:mm] [°C]	24.8	20:33	22.2	25.8	22.7	18:23	22.0
Datum (Ende)		[TT.MM.JJ]	18.06.2019	19.06.2019	19.06.2019	20.06.2019	20.06.2019	21.06.2019	21.06.2019
Versuchsende Temperatur (Ende)	t ₂	[hh: mm] [°C1	20:33	09:24	16:26 25.8	09:27	18:23	08:38	20:07
Versuchsdauer	t	[s]	33480	46260	25320	61260	32160	51300	41340
Messglass (Beginn)	m,	[g]	105.8	105.1	106.1	105.4	105.1	106.1	106.3
Messglass (Ende) Wassermenge	m₂ Q	[g] [cm³]	330.2 224.4	215.5	207.7	239.5	223.3	267.9	235.8
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360
Hydraul. Gefalle Temperatur Mittelwert	۱ ۵	[1] [°C]	30 23.7	30 22.4	30 24.0	30 24.3	30 23.4	30 23.1	30 22.2
F _k Temp (α)		[1]	0.707791875	0.729433380	0.702136893	0.698140796	0.711874933	0.717653492	0.732854778
Durchlässigskeit Durchlässigskeit k	k _a	[m/s]	2.84E-08	2.0E-08	1.7E-08	1.7E-08	1.6E-08	1.3E-08	1.3E-08
	N10	[m/s]	2.0E-08	1.4E-08	1.2E-08	1.2E-08	1.1E-08	9.0E-09	9.7E-09
Versuchsbeginn)	t.	[11.MM.JJ] [hh:mm]	21.06.2019 20:07	22.06.2019 08:37	22.06.2019	23.06.2019	24.06.2019 09:38	25.06.2019	25.06.2019 09:40
Temperatur (Beginn)	δ1	[°C]	22.3	22.0	22.1	22.2	22.3	22.4	23.2
Datum (Ende)		[TT.MM.JJ]	22.06.2019	22.06.2019	23.06.2019	24.06.2019	25.06.2019	25.06.2019	25.06.2019
Temperatur (Ende)	ι ₂ δ ₂	[°C]	22.0	20:38	22.2	22.3	22.4	23.2	23.2
Versuchsdauer	t	[S]	45000	43260	52020	81180	56160	30360	32400
Messglass (Beginn) Messglass (Ende)	m, m.	[9] [0]	106.5 243.5	105.6 240.2	105.8 265.5	105.8 340.9	106.3 285.5	105.5 200.2	106.3 206.2
Wassermenge	Q	[cm ³]	137	134.6	159.7	235.1	179.2	94.7	99.9
Höhendifferenz Hydraul, Gefälle	ΔH	[cm]	360 30	360	360 30	360 30	360 30	360 30	360 30
Temperatur Mittelwert	8	[°C]	22.2	22.1	22.2	22.3	22.4	22.8	23.2
F _k Temp (α)	k	[1]	0.732854778	0.734574920	0.732854778	0.731140942	0.729433380	0.721826153	0.715168003
Durchlässigskeit k ₁₀	к _а К ₁₀	[m/s]	9.5E-09	9.7E-09	9.5E-09	9.0E-09	9.9E-09	9.6E-09	9.4E-09
Datum (Beginn)		[TT.MM.JJ]	25.06.2019	26.06.2019	27.06.2019	27.06.2019	28.06.2019	29.06.2019	30.06.2019
Versuchsbeginn	t ₁	[hh:mm]	18:40	10:10	07:14	17:33	08:55	10:38	12:01
Datum (Ende)	o1	[U] [TT.MM.JJ]	26.06.2019	27.06.2019	24.1	25 28.06.2019	29.06.2019	30.06.2019	01.07.2019
Versuchsende	t ₂	[hh:mm]	10:10	07:14	17:33	08:55	10:38	12:01	06:57
Temperatur (Ende) Versuchsdauer	δ ₂ t	[°C] [s]	23.4 55800	24.1 75840	25 37140	22 55320	22.3 92580	22.4 91380	22.4 681.60
Messglass (Beginn)	m,	[9]	105.4	105.2	105.9	106.3	105.6	106	105.7
Messglass (Ende) Wassermenge	m ₂	[g]	274.8	290.9	213.7	259.9	349.9	336.7	273.4
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360
Hydraul. Gefälle Temperatur Mittelwert	i s	[1] [°C]	30	30 23.8	30 24.6	30 23.5	30	30	30
F _k Temp (α)		[1]	0.713518493	0.706168910	0.693392270	0.710237295	0.732854778	0.729433380	0.728581943
Durchlässigskeit	k _a	[m/s]	1.29E-08	1.0E-08	1.2E-08	1.2E-08	1.1E-08	1.1E-08	1.0E-08
Durchlassigskeit k 10	к ₁₀	[m/s]	9.2E-09	7.3E-09	8.5E-09	8.4E-09	8.2E-09	7.8E-09	7.6E-09
Datum (Beginn) Versuchsbeginn	t.	[TT.MM.JJ] [bb:mm]	01.07.2019	02.07.2019					
Temperatur (Beginn)	δ1	[°C]	22.4	22.5					
Datum (Ende)		[TT.MM.JJ]	02.07.2019	02.07.2019					
versuchsende Temperatur (Ende)	t ₂ δ ₂	[hh:mm] [°C]	07:02	16:04 23.8					
Versuchsdauer	t	[s]	86700	32520					
Messglass (Beginn) Messglass (Endo)	m,	[g]	105.4	105.2					
Wassermenge	Q	[cm ^a]	274.8	185.7					
Höhendifferenz	ΔH	[cm]	360	360					
Temperatur Mittelwert	δ	[1] [°C]	22.5	23.2					
F _k Temp (α)		[1]	0.727732062	0.715994999					
Durchlässigskeit Durchlässigskeit k 10	k _a k ₁₀	[m/s] [m/s]	8.29E-09 6.0E-09	2.4E-08 1.7E-08					

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LAB OR RECHBAUERSTRASSE 12, 8010 GMZ, AUSTRIA Tel: +430()316,673-6237 Fac: +430()316,673-6238										
DURCHLASSIGKEIT IN DER TRIAXIALEN DURCHLASSIGKEITSZELLE										
AUFTRAGGEBER		Richard Albrech	ıt							
PROJEKT		MA Richard Alb	recht				1			
ABORNUMMER 20882 DATUM: 17.06.2019 ZELLE: 25										
BEZEICHNUNG	11	D	TIEFE: 424 Cm							
PROBE	EINBAU	AUSBAU	1	EIN	BAU	AUS	BAU	ERG	EBNIS	
Durchmesser D [cm]	10	10		m _{r1} [g]	1913.7	m _{r2} + Tara [g]	2092.1	ρ _d [g/cm³]	1.65	
Eläche A (cm²)	78.54	78.54		m _{d1} (g) T. (g)	1553.3	m _{d2} + Tara (g) T. føl	205.8	n [%] e [1]	0.59	
Volumen V [cm ^a]	942.48	942.48		ρ [g/cm³]	2.03	ρ [g/cm³]	2.22	ρ, [g/cm³]	2.71	
·			,	w1 [%]	23.2	w ₁ [%]	18.9			
				Sr ₁ [%]	97.6	Sr ₁ [%]	79.6	l		
Datum (Beginn)		[TT.MM.JJ]	18.06.2019	19.06.2019	20.06.2019	21.06.2019	21.06.2019	22.06.2019	22.06.2019	
Versuchsbeginn	t ₁	[hh:mm]	11:18	08:48	09:29	08:48	20:09	08:47	20:43	
Temperatur (Beginn)	δ1	[°C]	24.3	21.7	22.8	22.2	22.3	22.4	22.3	
Datum (Ende)		[TT.MM.JJ]	18.06.2019	19.06.2019	21.06.2019	21.06.2019	22.06.2019	22.06.2019	23.06.2019	
Versuchsende Temperatur (Ende)	1 ₂	[nn:mm]	20:27	16:28	08:48	20:09	08:47	20:43	11:13	
Versuchsdauer	02 t	[5]	32940	27600	83940	40860	45480	42960	522.00	
Messglass (Beginn)	m ₁	[9]	181.0	105.8	105.9	106.3	105.9	106	105.4	
Messglass (Ende)	m ₂	[9]	561.6	465.8	856.4	520.1	474.2	440.7	505.3	
Wassermenge Höhondifforonz	Q	[cm ³]	380.6	360	750.5	413.8	368.3	334.7	399.9	
Hvdraul, Gefälle	i	[1]	30	300	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	23.4	23.8	22.5	22.3	22.4	22.4	22.3	
F _k Temp (α)		[1]	0.711874933	0.705359612	0.726883733	0.731140942	0.729433380	0.729433380	0.731140942	
Durchlässigskeit Durchlässigskeit k ₁₀	к _а k ₁₀	[m/s] [m/s]	4.90E-08 3.5E-08	5.5E-08 3.9E-08	3.8E-08 2.8E-08	4.3E-08 3.1E-08	3.4E-08 2.5E-08	3.3E-08 2.4E-08	3.3E-08 2.4E-08	
Datum (Beginn)		[TT.MM.JJ]	24.06.2019	25.06.2019	25.06.2019	25.06.2019	26.06.2019	27.06.2019	27.06.2019	
Versuchsbeginn	t ₁	[hh:mm]	09:37	01:20	09:46	18:42	10:19	07:15	17:35	
Temperatur (Beginn)	δ1	[°C]	22.3	22.2	23.2	23.2	23.3	24.1	25.1	
Datum (Ende) Versuchsende	t.	[TT.MM.JJ]	25.06.2019	25.06.2019	25.06.2019	26.06.2019	27.06.2019	27.06.2019	28.06.2019	
Temperatur (Ende)	ι ₂ δη	[°C]	22.2	23.2	23.2	23.3	24.1	25.1	22.2	
Versuchsdauer	t	[s]	56580	30360	32160	56220	75360	37200	55680	
Messglass (Beginn)	m,	[9]	105.7	106.0	105.8	106.3	106.3	105.1	105.5	
Messglass (Ende)	m ₂	[g]	550.4	337.1	348.9	518.4	655.3	372.5	507.4	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	22.3	22.7	23.2	23.3	23.7	24.6	23.7	
r _k remp (α) Durchlässigskeit	k.	[1] [m/s]	0.731140942 3.34E-08	0.723505870 3.2E-08	3.2E-08	0.714342502 3.1E-08	3 1E-08	3.1E-08	0.707/918/5	
Durchlässigskeit k 10	k ₁₀	[m/s]	2.4E-08	2.3E-08	2.3E-08	2.2E-08	2.2E-08	2.1E-08	2.2E-08	
Datum (Beginn)		ITT.MM.JJI	28.06.2019	28.06.2019	30.06.2019	30.06.2019	01.07.2019	01.07.2019	02.07.2019	
Versuchsbeginn	t ₁	[hh:mm]	09:03	16:34	12:11	19:24	07:07	15:30	07:09	
Temperatur (Beginn)	δ1	[°C]	22.2	23.4	22.4	23.1	22.4	23.5	22.5	
Datum (Ende)		[TT.MM.JJ]	28.06.2019	29.06.2019	30.06.2019	01.07.2019	01.07.2019	02.07.2019	02.07.2019	
Temperatur (Ende)	1 ₂	[nn: mm]	23.4	22.3	23.1	22.4	23.5	22.5	23.8	
Versuchsdauer	t	[s]	27060	65400	25980	42180	30180	56340	32460	
Messglass (Beginn)	m,	[0]	106.9	105.3	106.1	105.7	105.6	106	105.2	
Messglass (Ende)	m ₂	[0]	306.6	601.2	302.7	420.7	347.9	556.6	360.2	
vvassermenge Höhendifferenz	Q ∆H	[cm ³]	199.7	495.9	196.6	315 360	242.3	450.6	255	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	22.8	22.9	22.8	22.8	23.0	23.0	23.2	
F _k Temp (α)	k	[1]	0.721826153	0.720988585	0.722665247	0.722665247	0.719318010	0.718484996	0.715994999	
Durchlässigskeit k	K _s	[m/s]	3.13E-08 2.3E-08	3.2E-08 2.3E-08	3.2E-08 2.3E-08	3.2E-08 2.3E-08	3.4E-08 2.5E-08	3.4E-08 2.4E-08	3.3E-08 2.4E-08	
- ···· iv	10	from all	2.02.00	allocal VV	2.02.00	2.02.00	A.O.A. 00	A	2.12.00	

Graz University of Technology	INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LAB OR RECHBAUERSTRASSE 12, 8010 GRAZ, AUSTRIA Tel: +42(0)316/873-6237 Fax: +43(0)316/873-6238									
	DUI	RCHLÄSSIGKE	IT IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE				
AUFTRAGGEBER		Richard Albrech	nt							
PROJEKT		MA Richard Alb	recht							
LABORNUMMER	208	82	DATUM: 17.06.2	2019	ZELLE: 26		ļ			
BEZEICHNUNG	1	C	TIEFE: 424 cm							
PROBE	EINBAU	AUSBAU	1	EIN	BAU	AUS	BAU	ERGI	EBNIS	
Durchmesser D [cm]	10	10		m _{r1} [g]	1851.1	m _{r2} + Tara [g]	2084.4	ρ _d [g/cm³]	1.62	
Dürchströmte Länge I (cm)	12	12		m _{d1} [g]	1524.6	m _{dz} + Tara [g]	1731.0	n [%]	0.40	
Volumen V (cm²)	78.04 942.48	78.54 942.48		11[g]	1 06	1 ₂ [g]	206.4	e[1] o [g/cm ³]	2 71	
forming formi	012.10	012.10	1	w ₁ [%]	21.4	w ₁ [%]	20.4	P3[B/cm]	2.11	
				Sr ₁ [%]	85.9	Sr ₁ [%]	81.9			
Datum (Beginn)		[TT.MM.JJ]	18.06.2019	18.06.2019	19.06.2019	19.06.2019	20.06.2019	21.06.2019	21.06.2019	
Versuchsbeginn	t ₁	[hh: mm]	11:20	20:29	09:22	16:29	09:30	08:49	20:06	
Temperatur (Beginn) Datum (Endo)	δ1	[°C]	24.4	22.5	22.1	25.8	22.8	21.9	22.2	
Versuchsende	ta	[hh:mm]	20:29	09:22	16:29	09:30	08:49	21.00.2019	08:45	
Temperatur (Ende)	δ2	[°C]	22.5	22.1	25.8	22.8	21.9	22.2	22.4	
Versuchsdauer	t	[s]	32940	46380	25620	61260	83940	40620	45540	
Messglass (Beginn)	m ₁	[9]	175.4	223.6	105.5	105.2	105.3	105.6	105.7	
Messglass (Ende) Wassermende	m ₂	[g]	3/4.5	482.4	249.1	428.1	514.9	314.1	321.2	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	23.5	22.3	24.0	24.3	22.4	22.1	22.3	
P _k renip (o.) Durchlässigskeit	k.	[1] [m/s]	2.57E-08	2.4E-08	2 4F-08	2.2E-08	2 1E-08	2.2E-08	2.0E-08	
Durchlässigskeit k 10	k ₁₀	[m/s]	1.8E-08	1.7E-08	1.7E-08	1.6E-08	1.5E-08	1.6E-08	1.5E-08	
Datum (Beginn)		[TT.MM.JJ]	22.06.2019	22.06.2019	23.06.2019	24.06.2019	25.06.2019	25.06.2019	25.06.2019	
Versuchsbeginn	t ₁	[hh:mm]	08:45	20:41	11:12	09:34	01:18	09:47	18:41	
Datum (Ende)	0 ₁		22.4	22.2	22.2	22.4	22.2	23.2	23.2	
Versuchsende	t ₂	[hh:mm]	20:41	11:12	09:34	01:18	09:47	18:41	10:17	
Temperatur (Ende)	δ2	[°C]	22.2	22.2	22.4	22.2	23.2	23.2	23.3	
Versuchsdauer	t	[s]	42960	52260	80520	56640	30540	32040	56160	
Messglass (Beginn) Messglass (Ende)	m,	[9]	106.1	106.1	105.9	105.1	106.1	105.7	106.1	
Wassermenge	Q	[g] [cm ³]	192.1	225.1	353.5	241.6	125.9	131.8	223.3	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360	
Hydraul. Gefälle Temperatur Mittelwert	i	[1]	30	30	30	30	30	30	30	
F _k Temp (α)	0	[1]	0.730286379	0.731997073	0.730286379	0.730286379	0.723505870	0.715168003	0.714342502	
Durchlässigskeit	k₀	[m/s]	1.90E-08	1.8E-08	1.9E-08	1.8E-08	1.7E-08	1.7E-08	1.7E-08	
Durchlässigskeit k ₁₀	k ₁₀	[m/s]	1.4E-08	1.3E-08	1.4E-08	1.3E-08	1.3E-08	1.2E-08	1.2E-08	
Datum (Beginn)		[TT.MM.JJ]	26.06.2019	27.06.2019	27.06.2019	28.06.2019	29.06.2019	30.06.2019	01.07.2019	
Versuchsbeginn Temperatur (Beginn)	τ ₁ δ.	[nn:mm]	10:17	07:18 23.4	17:34	09:02 23.1	10:43	23.5	07:05	
Datum (Ende)	01	[TT.MM.JJ]	27.06.2019	27.06.2019	28.06.2019	29.06.2019	30.06.2019	01.07.2019	02.07.2019	
Versuchsende	t ₂	[hh:mm]	07:18	17:34	09:02	10:43	12:09	07:05	07:08	
Temperatur (Ende)	δ2	[°C]	23.4	22.3	23.1	22.4	23.5	22.5	23.8	
Versuchsdauer Messolass (Beginn)	t m.	[S]	75660	36960	55680 106.0	92460 106 3	91560	68160 105 5	86580	
Messglass (Ende)	m ₂	[g]	401.0	247.7	314.6	469.8	455.1	357.0	449.0	
Wassermenge	Q	[cm³]	295.1	142.2	208.6	363.5	348.9	251.5	342.8	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360	
Temperatur Mittelwert	δ	[¹]	23.4	22.9	22.7	22.8	23.0	23.0	23.2	
F _k Temp (α)		[1]	0.712695971	0.720988585	0.723505870	0.722665247	0.719318010	0.718484996	0.715994999	
Durchlässigskeit	k _a	[m/s]	1.66E-08	1.6E-08	1.6E-08	1.7E-08	1.6E-08	1.6E-08	1.7E-08	
Durchlässigskeit k ₁₀	k ₁₀	[m/s]	1.2E-08	1.2E-08	1.2E-08	1.2E-08	1.2E-08	1.1E-08	1.2E-08	
Datum (Beginn)		[TT.MM.JJ]	02.07.2019							
Versuchsbeginn	t ₁	[hh:mm]	07:08							
Datum (Ende)	01	ITT.MM.JJJ	02.07.2019							
Versuchsende	t ₂	[hh:mm]	16:09							
Temperatur (Ende)	δ2	[°C]	23.8							
Versuchsdauer	t	[S]	32460							
Messglass (Beginn) Messglass (Ende)	m,	[9]	105.9							
Wassermenge	Q	[9] [cm³]	295.1							
Höhendifferenz	ΔH	[cm]	360							
Hydraul. Gefälle Tomporatur Mittalwart	i	[1]	30							
F _k Temp (α)	٥	[1]	0.715994999							
Durchlässigskeit	k _a	[m/s]	3.86E-08							
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	2.8E-08							

Graz University of Technology	AR UNEVENTIVE FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel: +43(0)316,873-4238										
	DU	RCHLÄSSIGKE	IT IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE					
AUFTRAGGEBER Richard Albrecht											
PROJEKT MA Richard Albrecht											
LABORNUMMER 20882 DATUM: 17.06.2019 ZELLE: 27											
BEZEICHNUNG 1d TIEFE: 424 cm											
PROBE EINBAU AUSBAU EINBAU EINBAU ERGEBNIS											
Durchmesser D [cm]	sser D [cm] 10 10 mr1 [g] 1918.9 mr2 + Tara [g] 2067.7 p. [g/cm ²]								1.64		
Dürchströmte Länge I [cm]	12	12		m., [g]	1547 9	m _{en} + Tara [g]	17171	n [%]	0.39		
Fläche A [cm²]	78.54	78.54		T ₄ [g]	0	T ₂ [g]	169.2	e[1]	0.65		
Volumen V [cm ²]	942.48	942.48		o [g/cm ³]	2.04	o [g/cm ³]	2 19	0. [g/cm³]	271		
			J	W. [%]	24.0	w. [%]	20.4	P318/cm J	4.1.1		
				Sr. [%]	99.9	Sr, [%]	85.1				
				1		1		J			
Datum (Beginn)		[TT.MM.JJ]	21.06.2019	22.06.2019	23.06.2019	24.06.2019	25.06.2019	25.06.2019	26.06.2019		
Versuchsbeginn	t ₁	[hh:mm]	08:50	08:38	11:11	09:31	01:16	09:47	10:16		
Temperatur (Beginn)	δ1	δ_1 [C] 22.0 22.1 22.2 22.4 22.0 23.2 23.3									
Datum (Ende)		[TT.MM.JJ]	22.06.2019	23.06.2019	24.06.2019	25.06.2019	25.06.2019	26.06.2019	27.06.2019		
Versuchsende	t,	[hh:mm]	08:38	11:11	09:31	01:16	09:47	10:16	07:19		
Temperatur (Ende)	δ2	[°C]	22.1	22.2	22.4	22	23.2	23.3	24.1		
Versuchsdauer	t	[S]	85680	95580	80400	56700	30660	88140	75780		
Messglass (Beginn)	m,	[9]	105.6	105.4	105.4	106.0	106.1	105.4	105.2		
Messglass (Ende)	m,	[g]	132.7	130.2	126.2	120.4	113.6	126.9	123.7		
Wassermenge	Q	[cm ³]	27.1	24.8	20.8	14.4	7.5	21.5	18.5		
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360		
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30		
Temperatur Mittelwert	δ	[°C]	22.1	22.2	22.3	22.2	22.6	23.3	23.7		
F _k Temp (α)		[1]	0.734574920	0.732854778	0.730286379	0.731997073	0.725191720	0.714342502	0.706979663		
Durchlässigskeit	k _a	[m/s]	1.34E-09	1.1E-09	1.1E-09	1.1E-09	1.0E-09	1.0E-09	1.0E-09		
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	9.9E-10	8.1E-10	8.0E-10	7.9E-10	7.5E-10	7.4E-10	7.3E-10		
Datum (Beginn)		[TT.MM.JJ]	27.06.2019	28.06.2019	29.06.2019	30.06.2019	01.07.2019	02.07.2019			
Versuchsbeginn	t,	[hh:mm]	07:19	09:00	10:42	12:08	07:04	07:07			
Temperatur (Beginn)	δ.	[°C]	24.1	22.0	22.3	22.4	22.4	22.5			
Datum (Ende)	-	ITT.MM.JJI	28,06,2019	29,06,2019	30,06,2019	01.07.2019	02.07.2019	02.07.2019			
Versuchsende	t ₂	[hh:mm]	09:00	10:42	12:08	07:04	07:07	16:04			
Temperatur (Ende)	δ	[°C]	22.0	22.3	22.4	22.4	22.5	23.8			
Versuchsdauer	t	[S]	92460	92520	91560	68160	86580	32220	0		
Messglass (Beginn)	m,	[9]	106.0	106.6	105.5	106.2	105.6	105.7			
Messolass (Ende)	m ₂	[a]	127.8	128.7	127.3	122.8	126.4	113.7			
Wassermenge	Q	[cm ³]	21.8	22.1	21.8	16.6	20.8	8	0		
Höhendifferenz	nz <u>AH</u> [cm] 360 360 360 360 360 360 360 360 360							360			
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30		
Temperatur Mittelwert	δ	[°C]	23.1	22.2	22.4	22.4	22.5	23.2	0.0		
F _k Temp (α)		[1]	0.717653492	0.732854778	0.729433380	0.728581943	0.727732062	0.715994999	1.359000000		
Durchlässigskeit	k _ā	[m/s]	1.00E-09	1.0E-09	1.0E-09	1.0E-09	1.0E-09	1.1E-09	#DIV/0!		
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	7.2E-10	7.4E-10	7.4E-10	7.5E-10	7.4E-10	7.5E-10	#DIV/0!		

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12, 8010 GRAZ, AUSTRIA Tel:+43(0)316/673-6237 Fax:+43(0)316/673-6238										
DURCHLÄSSIGKEIT IN DER TRIAXIALEN DURCHLÄSSIGKEITSZELLE										
AUETRAGGEBER		Richard Albrech	nt							
PROJEKT		MA Richard Alb	recht							
LABORNUMMER	208	83	DATUM: 17.06.2	019	ZELLE: 28					
BEZEICHNUNG	2	а	TIEFE: 382 cm				,			
PROBE	EINBALL	AUSBALL	ı	FIN	BAII	ΔΠ2	BAII	FRG	FRNIS	
Durchmesser D [cm]	10	10		m., [g]	1865.8	m., + Tara [g]	2044 7	o [g/cm³]	156	
Dürchströmte Länge Licm	12	12		m. [g]	1473.2	m., + Tara [g]	1663.4	n [%]	0.42	
Eläche A [cm²]	78.54	78.54		T. [g]	0	T ₂ [g]	190.2	e [1]	0.73	
Volumen V [cm ²]	942.48	942.48		o [g/cm³]	1.98	o [g/cm³]	2.17	ρ. [g/cm³]	2.71	
			,	w ₁ [%]	26.6	w ₁ [%]	22.9			
				Sr ₁ [%]	98.4	Sr ₁ [%]	84.7			
				00.00.0040	00.00.0040		05 00 00 40		07.00.0040	
Datum (Beginn)		[TT.MM.JJ]	21.06.2019	22.06.2019	23.06.2019	24.06.2019	25.06.2019	26.06.2019	27.06.2019	
Versuchsbeginn	t ₁	[hh: mm]	08:51	08:40	11:10	09:30	09:48	10:15	07:20	
Temperatur (Beginn)	δ1	[-C]	22.1	22.1	22.2	22.3	23.2	23.3	24.1	
Datum (Ende)		[TT.MM.JJ]	22.06.2019	23.06.2019	24.06.2019	25.06.2019	26.06.2019	27.06.2019	28.06.2019	
Versuchsende	t ₂	[hh: mm]	08:40	11:10	09:30	09:48	10:15	07:20	08:59	
Temperatur (Ende)	8 ₂	[-C]	22.1	22.2	22.3	23.2	23.3	24.1	22.0	
Versuchsdauer Messeless (Regine)	l m	[S]	85/40	95400	80400	8/480	88020	/5900	92340	
Messglass (Eeginn)	m,	[9]	100.2	105.1	100.0	105.3	105.9	105.7	105.2	
Wassermenge	0	[9]	124.0	121.5	14.0	120.3	120.0	110.7	120.1	
Höhendifferenz	٨H	[CIII]	360	360	360	360	14.9	360	360	
Hydraul Gefälle		[1]	30	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[⁰]	22.1	22.2	22.3	22.8	23.3	23.7	23.1	
F _k Temp (α)		[1]	0.733714058	0.732854778	0.731140942	0.722665247	0.714342502	0.706979663	0.717653492	
Durchlässigskeit	k.	[m/s]	9.06E-10	7.3E-10	7.5E-10	7.3E-10	7.2E-10	7.3E-10	6.8E-10	
Durchlässigskeit k 10	k ₁₀	[m/s]	6.6E-10	5.3E-10	5.5E-10	5.3E-10	5.1E-10	5.1E-10	4.9E-10	
Datum (Boging)		ITT MM LD	29.06.2010	20.06.2010	20.06.2010	01 07 2010	02 07 2010			
Versuchsbeginn	+	[hb:mm]	20.00.2019	10:42	12:05	07:02	07:07			
Temperatur (Reginn)	¹ 1	[111111]	22.0	22.2	22.4	22.4	22.5			
Datum (Ende)	01		20.06.2010	20.06.2010	01 07 2010	02 07 2010	02.07.2010			
Versuchsende	t.	[hh:mm]	29.00.2019	12:05	07:02	02.07.2019	16:09			
Temperatur (Ende)	*2 8-	[110]	22.3	22.00	22.4	22.5	22.9			
Versuchsdauer	02 t	[9]	92580	91440	68220	86640	32460	0	0	
Messalass (Beginn)	m.	[0]	106.3	105.9	106.4	105.4	106.0		5	
Messolass (Ende)	m.	[0]	121.6	120.8	117.3	120.2	111.5			
Wassermenge	0	[cm ³]	15.3	14.9	10.9	14.8	55	0	0	
Höhendifferenz	ΔĤ	[cm]	360	360	360	360	360	360	360	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	22.2	22.4	22.4	22.5	23.2	0.0	0.0	
F _k Temp (α)		[1]	0.732854778	0.729433380	0.728581943	0.727732062	0.715994999	1.359000000	1.359000000	
Durchlässigskeit	k₅	[m/s]	7.01E-10	6.9E-10	6.8E-10	7.2E-10	7.2E-10	#DIV/0!	#DIV/0!	
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	5.1E-10	5.0E-10	4.9E-10	5.3E-10	5.1E-10	#DIV/0!	#DIV/0!	

Т

Graz University of Technology	INSTITUT FOR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASS 12, 8010 GRZ, AUSTRIA Tel: +43(0)316.673-6237 Fax: +43(0)316.673-6238								
	DUF	RCHLÄSSIGKEI	T IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE			
AUFTRAGGEBER		Richard Albrech	t						
PROJEKT		MA Richard Alb	recht						
LABORNUMMER	208	83	DATUM: 17.06.2	019	ZELLE: 29		l		
BEZEICHNUNG	2	0	TIEFE: 382 cm						
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERGI	BNIS
Durchmesser D [cm]	10	10		m _{r1} [g]	1869.9	m _{r2} + Tara [g]	2093.4	ρ _d [g/cm³]	1.58
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1486.9	m _{dz} + Tara [g]	1725.4	n [%]	0.42
Fläche A [cm²]	78.54	78.54		T1[g]	0	T ₂ [g]	238.5	e [1]	0.72
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	1.98	ρ [g/cm³]	2.22	ρ₅ [g/cm³]	2.71
			•	W1 [%]	25.8	w ₁ [%]	21.3		
				Sr ₁ [%]	97.3	Sr ₁ [%]	80.5		
Datum (Beginn)		[TT.MM.JJ]	21.06.2019	22.06.2019	23.06.2019	24.06.2019	25.06.2019	26.06.2019	27.06.2019
Versuchsbeginn	t,	[hh:mm]	08:53	08:41	11:09	09:29	09:49	10:13	07:21
Temperatur (Beginn)	δ,	[°C]	22.3	22.4	22.2	22.3	23.2	23.3	24.1
Datum (Ende)		[TT.MM.JJ]	22.06.2019	23.06.2019	24.06.2019	25.06.2019	26.06.2019	27.06.2019	28.06.2019
Versuchsende	t,	[hh:mm]	08:41	11:09	09:29	09:49	10:13	07:21	08:58
Temperatur (Ende)	δ ₂	[0°]	22.4	22.2	22.3	23.2	23.3	24.1	22.0
Versuchsdauer	ť	[s]	85680	95280	80400	87600	87840	76080	922.20
Messglass (Beginn)	m,	[q]	105.6	105.2	105.9	105.4	171.7	105.7	105.4
Messglass (Ende)	m,	[g]	121.6	123.0	121.9	121.1	188.6	120.3	122.3
Wassermenge	Q	[cm ³]	16	17.8	16	15.7	16.9	14.6	16.9
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30
Temperatur Mittelwert	8	[°C]	22.4	22.3	22.3	22.8	23.3	23.7	23.1
F _k Temp (α)		[1]	0.729433380	0.730286379	0.731140942	0.722665247	0.714342502	0.706979663	0.717653492
Durchlässigskeit	k _ā	[m/s]	7.93E-10	7.9E-10	8.4E-10	7.6E-10	8.2E-10	8.1E-10	7.8E-10
Durchlässigskeit k ₁₀	k ₁₀	[m/s]	5.8E-10	5.8E-10	6.2E-10	5.5E-10	5.8E-10	5.8E-10	5.6E-10
Datum (Beginn)		[TT.MM.JJ]	28.06.2019	29.06.2019	30.06.2019	01.07.2019	02.07.2019		
Versuchsbeginn	t ₁	[hh: mm]	08:58	10:41	12:05	07:02	07:06		
Temperatur (Beginn)	δ1	[°C]	22.0	22.3	22.4	22.4	22.5		
Datum (Ende)		[TT.MM.JJ]	29.06.2019	30.06.2019	01.07.2019	02.07.2019	02.07.2019		
Versuchsende	t ₂	[hh: mm]	10:41	12:05	07:02	07:06	16:08		
Temperatur (Ende)	δ2	[°C]	22.3	22.4	22.4	22.5	23.8		
Versuchsdauer	t	[S]	92580	91440	68220	86640	32520	0	0
Messglass (Beginn)	m,	[g]	105.2	106.0	105.3	105.6	105.2		
Messglass (Ende)	m ₂	[g]	123.0	123.1	117.9	122.4	111.8		
Wassermenge	Q	[cm³]	17.8	17.1	12.6	16.8	6.6	0	0
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30
Temperatur Mittelwert	δ	[°C]	22.2	22.4	22.4	22.5	23.2	0.0	0.0
F _k Temp (α)		[1]	0.732854778	0.729433380	0.728581943	0.727732062	0.715994999	1.359000000	1.359000000
Durchlässigskeit	k _ö	[m/s]	8.16E-10	7.9E-10	7.8E-10	8.2E-10	8.6E-10	#DIV/0!	#DIV/0!
Durchiassigskeit k 10	К ₁₀	[m/s]	6.0E-10	5.8E-10	5.7E-10	6.0E-10	6.2E-10	#DIV/0!	#DIV/0!

Ē

Creaz University of Technology Creaz University of Technology									
	DU	RCHLÄSSIGKE	IT IN DER TRI	AXIALEN DU	JRCHLÄSSIG	GKEITSZELLE			
AUFTRAGGEBER		Richard Albrec	ht						
PROJEKT		MA Richard Alb	precht						
LABORNUMMER	20	883	DATUM: 17.06.	2019	ZELLE: 30				
BEZEICHNUNG	2	c	TIEFE: 382 cm						
									FRNIS
Durchmesser D [cm]	10	10		m., [g]	1886	m., + Tara [g]	2041 9	o [g/cm³]	1 59
Dürchströmte Länge I [cm]	12	12		m., [g]	1494.6	m.,+Tara[g]	1663.3	n [%]	0.41
Fläche A [cm²]	78.54	78.54		T ₁ [g]	(02 107	168.7	e [1]	0.71
Volumen V [cm ²]	942.48	942.48		o [g/cm³]	2.00	o [g/cm³]	2.17	ρ. [g/cm³]	2.71
				w ₁ [%]	26.2	2 w ₁ [%]	22.7		
				Sr ₁ [%]	100.2	2 Sr ₁ [%]	86.9		
Datum (Baging)			21.05.2010	00.06.0040	00.06.0040	24.06.2040	25.06.2040	26.06.2010	07.06.0040
Varsuchsbagion		[TT.WW.JJ]	21.00.2019	22.00.2019	23.00.2019	24.00.2019	20.00.2019	20.00.2019	27.00.2019
Temperatur (Reginn)	11 8.	[111111]	22.4	22.4	22.2	22.2	22.2	22.2	24.1
Datum (Ende)	01		22.4	23.06.20.19	24.06.2019	25.06.2019	26.06.2019	27.06.2019	28.06.2019
Versuchsende	ta	[hh:mm]	08:43	11:08	09:28	09:45	10:12	07:22	08:57
Temperatur (Ende)	-2 8-	I°CI	22.4	22.2	22.2	23.2	23.3	24.1	22.0
Versuchsdauer	t	[S]	85740	95100	80400	87420	8802.0	76200	92100
Messolass (Beginn)	m.	[0]	106.2	105.6	106.0	105.7	105.4	105.6	105.6
Messglass (Ende)	m	[a]	119.0	118.9	118.9	119.5	118.8	117.3	119.2
Wassermenge	Q	[cm ³]	12.8	13.3	12.9	13.8	13.4	11.7	13.6
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30
Temperatur Mittelwert	δ	[°C]	22.4	22.3	22.2	22.7	23.3	23.7	23.1
F _k Temp (α)		[1]	0.728581943	0.730286379	0.731997073	0.723505870	0.714342502	0.706979663	0.717653492
Durchlässigskeit	k _δ	[m/s]	6.34E-10	5.9E-10	6.8E-10	6.7E-10	6.5E-10	6.5E-10	6.3E-10
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	4.6E-10	4.3E-10	5.0E-10	4.8E-10	4.6E-10	4.6E-10	4.5E-10
Datum (Beginn)		[TT.MM.JJ]	28.06.2019	29.06.2019	30.06.2019	01.07.2019	02.07.2019		
Versuchsbeginn	t ₁	[hh:mm]	08:57	10:40	12:04	07:00	07:05		
Temperatur (Beginn)	δ1	[°C]	22.0	22.3	22.4	22.4	22.5		
Datum (Ende)		[TT.MM.JJ]	29.06.2019	30.06.2019	01.07.2019	02.07.2019	02.07.2019		
Versuchsende	t ₂	[hh:mm]	10:40	12:04	07:00	07:05	16:07		
Temperatur (Ende)	δ2	[°C]	22.3	22.4	22.4	22.5	23.8		
Versuchsdauer	t	[S]	92580	91440	68160	86700	32520		
Messglass (Beginn)	m,	[9]	106.1	106.0	105.7	106.0	105.5		
Messglass (Ende)	m ₂	[9]	120.3	119.6	115.6	119.5	110.6		
wassermenge Höhendifferenz	Q AH	[cm ²]	14.2	13.6	9.9	13.5	5.1		
Hydraul Gefälle	i	[1]	30	30	30	30	30		
Temperatur Mittelwert	δ	[°C]	22.2	22.4	22.4	22.5	23.2		
F _k Temp (α)		[1]	0.732854778	0.729433380	0.728581943	0.727732062	0.715994999		
Durchlässigskeit	k _ā	[m/s]	6.51E-10	6.3E-10	6.2E-10	6.6E-10	6.7E-10		
Durchlässigskeit k ₁₀	k ₁₀	[m/s]	4.8E-10	4.6E-10	4.5E-10	4.8E-10	4.8E-10		

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LAB OR RECHBAUERSTRASSE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316873-6237 Fax: +43(0)318/873-6238											
	DU	RCHLÄSSIGKE	IT IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE					
۹											
AUFTRAGGEBER		Richard Albrech	nt								
PROJEKT		MA Richard Alb	recht								
LABORNUMMER	20	383	DATUM: 17.06.2	2019	ZELLE: 31		ļ				
BEZEICHNUNG	2	d	TIEFE: 382 cm								
PROBE	EINBAU	AUSBAU	1	EIN	BAU	AUS	BAU	ERG	EBNIS		
Durchmesser D [cm]	10	10		m _{r1} [g]	1869.8	m _{rz} + Tara [g]	2024.7	ρ _d [g/cm³]	1.57		
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1482.6	m _{d2} + Tara [g]	1655.8	n [%]	0.42		
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	173.2	e [1]	0.72		
Volumen V [cm²]	942.48	942.48		ρ [g/cm³]	1.98	p [g/cm³]	2.15	ρ _s [g/cm³]	2.71		
				w ₁ [%]	26.1	w ₁ [%]	22.3				
				Sr ₁ [%]	97.9	Sr ₁ [%]	83.5	J			
Datum (Beginn)		[TT.MM.JJ]	21.06.2019	22.06.2019	23.06.2019	24.06.2019	25.06.2019	26.06.2019	27.06.2019		
Versuchsbeginn	t,	[hh:mm]	08:55	08:44	11:07	09:27	09:44	10:11	07:23		
Temperatur (Beginn)	δ1	[00]	22.4	22.4	22.2	22.2	23.3	23.3	24.1		
Datum (Ende)		[TT.MM.JJ]	22.06.2019	23.06.2019	24.06.2019	25.06.2019	26.06.2019	27.06.2019	28.06.2019		
Versuchsende	t ₂	[hh:mm]	08:44	11:07	09:27	09:44	10:11	07:23	08:56		
Temperatur (Ende)	82	1001	22.4	22.2	22.2	23.3	23.3	24.1	22.0		
Versuchsdauer	ť	[S]	85740	94980	80400	87420	88020	76320	91980		
Messglass (Beginn)	m,	[g]	106.5	105.6	106.0	105.2	105.6	106.0	106.1		
Messglass (Ende)	m,	[9]	117.9	115.9	115.5	115.3	115.6	114.9	116.3		
Wassermenge	à	[cm ³]	11.4	10.3	9.5	10.1	10	8.9	10.2		
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360		
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30		
Temperatur Mittelwert	δ	[°C]	22.4	22.3	22.2	22.8	23.3	23.7	23.1		
F _k Temp (α)		[1]	0.728581943	0.730286379	0.731997073	0.722665247	0.713518493	0.706979663	0.717653492		
Durchlässigskeit	k _a	[m/s]	5.64E-10	4.6E-10	5.0E-10	4.9E-10	4.8E-10	4.9E-10	4.7E-10		
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	4.1E-10	3.4E-10	3.7E-10	3.5E-10	3.4E-10	3.5E-10	3.4E-10		
Datum (Beginn)		[TT.MM.JJ]	28.06.2019	29.06.2019	01.07.2019	02.07.2019					
Versuchsbeginn	t ₁	[hh:mm]	08:56	10:39	06:58	07:04					
Temperatur (Beginn)	δ1	[°C]	22.0	22.3	22.4	22.5					
Datum (Ende)		[TT.MM.JJ]	29.06.2019	30.06.2019	02.07.2019	02.07.2019					
Versuchsende	t ₂	[hh:mm]	10:39	12:03	07:04	16:05					
Temperatur (Ende)	δ2	[°C]	22.3	22.4	22.5	23.8					
Versuchsdauer	t	[S]	92580	91440	86760	32460					
Messglass (Beginn)	m,	[9]	105.3	105.4	105.2	105.7					
Messglass (Ende)	m ₂	[g]	115.9	115.5	115.4	109.6					
Wassermenge	Q	[cm ³]	10.6	10.1	10.2	3.9					
Höhendifferenz	ΔH	[cm]	360	360	360	360					
Hydraul. Gefälle	i	[1]	30	30	30	30					
Temperatur Mittelwert	δ	[°C]	22.2	22.4	22.5	23.2					
F _k Temp (α)		[1]	0.732854778	0.729433380	0.727732062	0.715994999					
Durchlässigskeit	k₃	[m/s]	4.86E-10	4.7E-10	5.0E-10	5.1E-10					
Durchlässigskeit k ₁₀	k ₁₀	[m/s]	3.6E-10	3.4E-10	3.6E-10	3.7E-10					

Graz University of Technology	
-------------------------------	--

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12, 8010 0 FAZ, AUSTRIA Tel: +43(0)316.673-6237 Faz: +43(0)316.673-6238

AUFTRAGGEBER		Richard Albrech	nt						
PROJEKT		MA Richard Alb	recht						
LABORNUMMER	209	50	DATUM: 02.07.2	019	ZELLE: 24				
BEZEICHNUNG	3a	1	TIEFE: 362 cm				,		
PROBE	EINBAU	AUSBAU	1	EIN	BAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{f1} [g]	1941.4	m _{r2} + Tara [g]	2116.7	ρ _d [g/cm³]	1.71
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1607.9	m _{d2} + Tara [g]	1808.2	n [%]	0.37
Fläche A [cm²]	78.54	78.54		T1 [g]	0	T ₂ [g]	200.3	e [1]	0.59
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	2.06	ρ [g/cm³]	2.25	ρ, [g/cm³]	2.71
				w ₁ [%]	20.7	w ₁ [%]	17.1		
				Sr ₁ [%]	95.5	Sr ₁ [%]	78.6		
Datum (Beginn)		[TT.MM.JJ]	03.07.2019	04.07.2019	08.07.2019	09.07.2019	09.07.2019	10.07.2019	10.07.2019
Versuchsbeginn	t ₁	[hh:mm]	14:03	07:14	07:19	07:12	11:47	07:16	11:53
Temperatur (Beginn)	δ1	[°C]	24.7	22.3	23.2	22.6	24.1	23.7	25.1
Datum (Ende)		[TT.MM.JJ]	04.07.2019	04.07.2019	08.07.2019	09.07.2019	10.07.2019	10.07.2019	11.07.2019
Versuchsende	t ₂	[hh:mm]	07:14	13:30	12:03	11:47	07:16	11:53	07:33
Temperatur (Ende)	δ2	[°C]	22.3	22.6	24.0	24.1	23.7	25.1	23.8
Versuchsdauer	t	[S]	61860	22560	17040	16500	70140	16620	70800
Messglass (Beginn)	m,	[g]	105.7	105.2	105.1	105.3	277.3	105.9	279.0
Messglass (Ende)	m ₂	[g]	691.3	312.1	260.9	268.2	959.7	262.1	1000.9
Wassermenge	Q	[cm³]	585.6	206.9	155.8	162.9	682.4	156.2	721.9
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360
Hydraul. Getalle	1	[1]	30	30	30	30	30	30	30
E Tomp (~)	٥		23.0	22.0	23.0	23.4	23.9	24.4	24.0
F_k remp (α)	k	[1]	0.710237295	0.727732062	0.708605548	0.712095971	0.703745365	0.095760194	0.094909462
Durchlässigskeit	Ng Ir	[m/s]	4.02E-08	3.9E-08	3.9E-08	4.2E-08	4.1E-08	4.0E-08	4.3E-08
Dui chiassigskeit k 10	N10	[m/s]	2.9E-08	2.8E-08	2.7E-08	3.0E-08	2.9E-08	2.8E-08	3.0E-08
Datum (Beginn)		[TT.MM.JJ]	11.07.2019						
Versuchsbeginn	t ₁	[hh:mm]	07:33						
Temperatur (Beginn)	δ1	[°C]	23.8						
Datum (Ende)		[TT.MM.JJ]	12.07.2019						
Versuchsende	t ₂	[hh:mm]	07:05						
Temperatur (Ende)	δ2	[°C]	22.7						
Versuchsdauer	t	[s]	84720						
Messglass (Beginn)	m ₁	[9]	278.7						
Messglass (Ende)	m ₂	[9]	1093.5						
Wassermenge	Q	[cm³]	814.8						
Höhendifferenz	ΔH	[cm]	360						
Hydraul. Gefälle	1	[1]	30						
Temperatur Mittewert	δ	['0]	23.3						
F _k remp (α)		[1]	0.714342502						
Durchlässigskeit	K ₈	[m/s]	4.08E-08						
Durchiassigskeit k 10	к ₁₀	[m/s]	2.9E-08						

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fax: +43(0)316/873-6238

AUFTRAGGEBER		Richard Albrech	nt						
PROJEKT		MA Richard Alb	recht						
LABORNUMMER	209	50	DATUM: 02.07.2	019	ZELLE: 25				
BEZEICHNUNG	31)	TIEFE: 362 cm						
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{r1} [g]	1855.9	m _{rz} + Tara [g]	2036.6	ρ _d [g/cm³]	1.64
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1546.2	m _{dz} + Tara [g]	1746.6	n [%]	0.39
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	200.4	e [1]	0.65
Volumen V [cm³]	942.48	942.48	J	ρ [g/cm³]	1.97	ρ [g/cm³]	2.16	ρ _s [g/cm³]	2.71
				W1 [%]	20.0	w ₁ [%]	16.6		
				Sr ₁ [%]	83.3	Sr ₁ [%]	69.0	ļ	
Datum (Beginn)		[TT.MM.JJ]	03.07.2019	03.07.2019	04.07.2019	04.07.2019	05.07.2019	06.07.2019	08.07.2019
Versuchsbeginn	t ₁	[hh:mm]	07:58	14:04	07:15	13:32	10:10	14:48	07:18
Temperatur (Beginn)	δ1	[°C]	22.6	24.7	22.3	22.6	23.7	24.0	23.2
Datum (Ende)		[TT.MM.JJ]	03.07.2019	04.07.2019	04.07.2019	05.07.2019	06.07.2019	08.07.2019	09.07.2019
Versuchsende	t ₂	[hh:mm]	14:04	07:15	13:32	10:10	14:48	07:18	07:11
Temperatur (Ende)	8 ₂	[°C]	24.7	22.3	22.6	23.7	24.0	23.2	22.6
Versuchsdauer	t	s	21960	61860	22620	74280	103080	145800	85980
Messglass (Beginn)	m,	[g]	105.2	106.0	105.2	105.5	107.0	105.8	105.9
Messglass (Ende)	m ₂	[g]	255.6	348.6	190.8	3/8.4	469.8	634.9	429.7
Wassermenge	Q	[cm ²]	150.4	242.6	85.6	272.9	362.8	529.1	323.8
Hydraul Cafalla	<u>а</u> н і	[Cm]	300	360	300	300	360	300	300
Temperatur Mittelwert	δ	I"CI	23.7	23.5	22.5	23.2	23.9	23.6	22.9
$F_{\rm s}$ Temp (α)	•	[1]	0 707791875	0 710237295	0 727732062	0 715994999	0 704551765	0 708605548	0 720152539
Durchlässigskeit	k.	[m/s]	2 91E-08	17E-08	1.6E-08	1.6E-08	1.5E-08	1.5E-08	1.6E-08
Durchlässigskeit k 10	k _{in}	[m/s]	2 1E-08	1.2E-08	1.0E-08	1 1E-08	1 1E-08	1 1E-08	1.0E-08
	10		00.07.0040	40.07.0040	44.07.0040				1.22 00
Datum (Beginn)		[TT.MM.JJ]	09.07.2019	10.07.2019	11.07.2019				
Versuchsbeginn	ι, -	[nn:mm]	07:11	07:14	07:32				
Deture (Fede)	δ1	[-C]	22.6	23.7	23.8				
Datum (Ende)		[TT.MM.JJ]	10.07.2019	11.07.2019	12.07.2019				
Versuchsende	t ₂		07:14	07:32	07:05				
Temperatur (Ende)	°2	[-0]	23.7	23.8	22.0				
Versuchsulduer	1	[5]	86580 405 F	8/480	84/80				
Messglass (Beginn)	₁	[9]	105.5	105.9	105.8				
Messglass (Ende)	112	[9]	427.8	443.4	420.2				
Höhendifferenz	۸H	[cm]	360	360	314.4				
Hydraul, Gefälle	1	[1]	30	30	30				
Temperatur Mittelwert	8	[°C]	23.2	23.8	23.2				
F _k Temp (α)		[1]	0.715994999	0.706168910	0.715168003				
Durchlässigskeit	k _a	[m/s]	1.58E-08	1.6E-08	1.6E-08				
Durchlässigskeit k 10	k ₁₀	[m/s]	1.1E-08	1.2E-08	1.1E-08				

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel:+43Q0316873-6237 Fax: +43Q0316873-6238 Image: Comparison of the state									
	DUI	RCHLÄSSIGKE	IT IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE			
		Disk and Albertal							
		Richard Albrech	nt vra obt						
	200	950 DATUM: 02.07.2019 Zr			7ELLE: 26				
BEZEICHNUNG	20.	,50 C	TIFFE: 362 cm	.015	ZEEEE. ZO		J		
BEZERINGNO	5	6	11E1 E. 502 Cill		1				
PROBE	EINBAU	AUSBAU	1	EIN	IBAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{r1} [g]	1991.0	m _{r2} + Tara [g]	2145.0	ρ _α [g/cm³]	1.78
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1673.4	m _{d2} + Tara [g]	1846.6	n [%]	0.34
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	173.2	e [1]	0.53
Volumen V [cm ²]	942.48	942.48		ρ [g/cm³]	2.11	ρ [g/cm³]	2.28	ρ _s [g/cm ^s]	2.71
			-	w ₁ [%]	19.0	w ₁ [%]	16.2		
				Sr ₁ [%]	97.7	Sr ₁ [%]	83.2		
_								•	
Datum (Beginn)		[TT.MM.JJ]	03.07.2019	03.07.2019	04.07.2019	04.07.2019	05.07.2019	06.07.2019	08.07.2019
Versuchsbeginn	t ₁	[hh:mm]	07:59	14:04	07:17	13:33	10:09	14:47	07:16
Temperatur (Beginn)	δ1	[°C]	22.6	24.7	22.3	22.6	23.7	24.0	23.2
Datum (Ende)		[TT.MM.JJ]	03.07.2019	04.07.2019	04.07.2019	05.07.2019	06.07.2019	08.07.2019	09.07.2019
Versuchsende	t ₂	[hh:mm]	14:04	07:17	13:33	10:09	14:47	07:16	07:10
Temperatur (Ende)	δ2	[°C]	24.7	22.3	22.6	23.7	24.0	23.2	22.6
Versuchsdauer	t	[s]	21900	61980	22560	74160	103080	145740	86040
Messglass (Beginn)	m,	[9]	105.4	106.1	106.0	105.7	106.2	105.2	106.0
Messglass (Ende)	m ₂	[9]	123.9	154.2	122.8	161.6	182.9	218.7	176.5
Wassermenge	Q	[cm³]	18.5	48.1	16.8	55.9	76.7	113.5	70.5
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30
Temperatur Mittelwert	δ	[°C]	23.7	23.5	22.5	23.2	23.9	23.6	22.9
F _k Temp (α)		[1]	0.707791875	0.710237295	0.727732062	0.715994999	0.704551765	0.708605548	0.720152539
Durchlässigskeit	k _a	[m/s]	3.59E-09	3.3E-09	3.2E-09	3.2E-09	3.2E-09	3.3E-09	3.5E-09
Durchlässigskeit k ₁₀	k ₁₀	[m/s]	2.5E-09	2.3E-09	2.3E-09	2.3E-09	2.2E-09	2.3E-09	2.5E-09
Datum (Beginn)		TT.MM.JU	09.07.2019	10.07.2019	11.07.2019				
Versuchsbeginn	t.	[hh:mm]	07:10	07:13	07:31				
Temperatur (Beginn)	δ,	[°C]	22.6	23.7	23.8				
Datum (Ende)	•1	ITT.MM.LD	10.07 2019	11.07 2019	12.07 2019				
Versuchsende	t ₂	[hh:mm]	07:13	07:31	07:05				
Temperatur (Ende)	82	[°C]	23.7	23.8	22.7				
Versuchsdauer	ť	[s]	86580	87480	84840				
Messolass (Beginn)	m,	[a]	105.4	105.2	106.4				
Messolass (Ende)	m	[a]	176.2	179.3	175.6				
Wassermenge	Q	[cm ³]	70.8	74.1	69.2				
Höhendifferenz	ΔH	[cm]	360	360	360				
Hydraul. Gefälle	i	[1]	30	30	30				
Temperatur Mittelwert	δ	[°C]	23.2	23.8	23.3				
F _k Temp (α)		[1]	0.715994999	0.706168910	0.714342502				
Durchlässigskeit	k _ā	[m/s]	3.47E-09	3.6E-09	3.5E-09				
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	2.5E-09	2.5E-09	2.5E-09				

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12,0010 GRAZ, AUSTRIA Tel:+43(0)916/873-6239											
	DUI	RCHLÄSSIGKE	IT IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE					
											
AUFTRAGGEBER		Richard Albrech	nt								
PROJEKT		MA Richard Alb	recht								
LABORNUMMER	209	950	DATUM: 02.07.2	019	ZELLE: 27		J				
BEZEICHNUNG	3	d	TIEFE: 362 cm								
PROBE	EINBAU	AUSBAU	ו	EIN	BAU	AUS	BAU	ERG	EBNIS		
Durchmesser D [cm]	10	10		m _{f1} [g]	1848.5	m _{r2} + Tara [g]	2009.4	ρ _d [g/cm³]	1.62		
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1528.0	m _{d2} + Tara [g]	1720.1	n [%]	0.40		
Fläche A [cm²]	78.54	78.54		T1 [g]	0	T ₂ [g]	192.1	e [1]	0.67		
Volumen V [cm²]	942.48	942.48	J	ρ [g/cm³]	1.96	ρ [g/cm³]	2.13	ρ, [g/cm³]	2.71		
				w1 [%]	21.0	W1 [%]	16.8				
				Sr ₁ [%]	84.6	Sr ₁ [%]	67.9	J			
Datum (Beginn)		[TT.MM.JJ]	03.07.2019	03.07.2019	04.07.2019	05.07.2019	06.07.2019	08.07.2019	09.07.2019		
Versuchsbeginn	t,	[hh:mm]	08:00	14:05	07:17	10:08	14:47	07:15	07:09		
Temperatur (Beginn)	δ	[20]	22.6	24.7	22.3	23.7	24.0	23.2	22.6		
Datum (Ende)		[TT.MM.JJ]	03.07.2019	04.07.2019	05.07.2019	06.07.2019	08.07.2019	09.07.2019	10.07.2019		
Versuchsende	t,	[hh:mm]	14:05	07:17	10:08	14:47	07:15	07:09	07:12		
Temperatur (Ende)	δ2	[20]	24.7	22.3	23.7	24.0	23.2	22.6	23.7		
Versuchsdauer	ť	[S]	21900	61920	96660	103140	145680	86040	86580		
Messglass (Beginn)	m,	[9]	105.8	106.2	106.0	106.7	105.3	105.5	105.7		
Messglass (Ende)	m,	[g]	115.3	131.3	151.2	154.3	175.2	148.9	149.4		
Wassermenge	Q	[cm ³]	9.5	25.1	45.2	47.6	69.9	43.4	43.7		
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360		
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30		
Temperatur Mittelwert	8	[°C]	23.7	23.5	23.0	23.9	23.6	22.9	23.2		
F _k Temp (α)		[1]	0.707791875	0.710237295	0.718484996	0.704551765	0.708605548	0.720152539	0.715994999		
Durchlässigskeit	k _ö	[m/s]	1.84E-09	1.7E-09	2.0E-09	2.0E-09	2.0E-09	2.1E-09	2.1E-09		
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	1.3E-09	1.2E-09	1.4E-09	1.4E-09	1.4E-09	1.5E-09	1.5E-09		
Datum (Beginn)		[TT.MM.JJ]	10.07.2019	11.07.2019							
Versuchsbeginn	t ₁	[hh:mm]	07:12	07:30							
Temperatur (Beginn)	δ1	[°C]	23.7	23.8							
Datum (Ende)		[TT.MM.JJ]	11.07.2019	12.07.2019							
Versuchsende	t ₂	[hh:mm]	07:30	07:05							
Temperatur (Ende)	δ2	[°C]	23.8	22.7							
Versuchsdauer	t	[S]	87480	84900							
Messglass (Beginn)	m ₁	[9]	105.2	105.7							
Messglass (Ende)	m ₂	[9]	150.9	148.4							
Wassermenge	Q	[cm ³]	45.7	42.7							
Höhendifferenz	ΔH	[cm]	360	360							
Hydraul. Gefälle	i	[1]	30	30							
Temperatur Mittelwert	δ	[°C]	23.8	23.3							
F _k Temp (α)		[1]	0.706168910	0.714342502							
Durchlässigskeit	k₀	[m/s]	2.22E-09	2.1E-09							
Durchlässigskeit k 10	k ₁₀	[m/s]	1.6E-09	1.5E-09							

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12, 8010 GRAZ, AUSTRIA Tel: +43(0)316/873-5237 Fac: +43(0)316/873-5238									
	DUI	RCHLÄSSIGKE	IT IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE			
AUFTRAGGEBER		Richard Albrech	nt						
PROJEKT		MA Richard Alb	recht						
LABORNUMMER	209	951	DATUM: 02.07.2	2019	ZELLE: 28		ļ		
BEZEICHNUNG	4	а	TIEFE: 347 cm						
PROBE	EINBAU	AUSBAU	1	EIN	BAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{et} [g]	1893.2	m _{to} + Tara [g]	2136.4	p. [g/cm³]	1.69
Dürchströmte Länge I [cm]	12	12		m _{e1} [g]	1589.4	m _{n2} + Tara [g]	1795.8	n [%]	0.38
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	206.4	e[1]	0.61
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	2.01	ρ [g/cm³]	2.27	ρ _s [g/cm³]	2.71
			-	w1 [%]	19.1	w ₁ [%]	19.0		
				Sr ₁ [%]	85.3	Sr ₁ [%]	84.7	J	
Datum (Beginn)		TTT MM .LD	03 07 2019	04 07 2019	05 07 2019	06 07 2019	08 07 2019	09 07 2019	10.07.2019
Versuchsbeginn	t.	[hh:mm]	08:01	07:18	10:07	14:46	07:14	07:08	07:11
Temperatur (Beginn)	δ,	[00]	22.6	22.3	23.7	24.0	23.2	22.6	23.7
Datum (Ende)		[TT.MM.JJ]	04.07.2019	05.07.2019	06.07.2019	08.07.2019	09.07.2019	10.07.2019	11.07.2019
Versuchsende	t ₂	[hh:mm]	07:18	10:07	14:46	07:14	07:08	07:11	07:29
Temperatur (Ende)	82	[0°]	22.3	23.7	24.0	23.2	22.6	23.7	23.8
Versuchsdauer	ť	[s]	83820	96540	103140	145680	86040	86580	87480
Messglass (Beginn)	m,	[9]	105.6	105.3	105.7	105.1	105.8	105.3	105.7
Messglass (Ende)	m ₂	[9]	232.9	274.1	276.5	362.0	265.6	263.7	270.9
Wassermenge	Q	[cm³]	127.3	168.8	170.8	256.9	159.8	158.4	165.2
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30
Temperatur Mittelwert	δ	[°C]	22.5	23.0	23.9	23.6	22.9	23.2	23.8
F _k Temp (α)		[1]	0.727732062	0.718484996	0.704551765	0.708605548	0.720152539	0.715994999	0.706168910
Durchlässigskeit	k _s	[m/s]	6.45E-09	7.4E-09	7.0E-09	7.5E-09	7.9E-09	7.8E-09	8.0E-09
Durchlassigskeit k 10	к ₁₀	[m/s]	4.7E-09	5.3E-09	5.0E-09	5.3E-09	5.7E-09	5.6E-09	5.7E-09
Datum (Beginn)		[TT.MM.JJ]	11.07.2019						
Versuchsbeginn	t,	[hh: mm]	07:29						
Temperatur (Beginn)	δ1	[°C]	23.8						
Datum (Ende)		[TT.MM.JJ]	12.07.2019						
Versuchsende	t ₂	[hh: mm]	07:05						
Temperatur (Ende)	δ2	[°C]	22.7						
Versuchsdauer	t	[s]	84960						
Messglass (Beginn)	m,	[9]	105.3						
Messglass (Ende)	m ₂	[9]	259.2						
wassermenge Höhendifferenz	Q	[cm ³]	153.9						
Honendillerenz Hydraul, Gefälle	i	[[[]]	300						
Temperatur Mittelwert	δ	1001	23.3						
F _k Temp (α)		[1]	0.714342502						
Durchlässigskeit	k _ā	[m/s]	7.69E-09						
Durchlässigskeitk 10	k ₁₀	[m/s]	5.5E-09						

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel:+43(0)316873-6237 Fax:+43(0)216873-6238										
	DU	RCHLÄSSIGKE	IT IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE				
AUFTRAGGEBER		Richard Albrech	nt							
PROJEKT		MA Richard Alb	recht		75115 00					
LABORNUMMER	20	951	DATUM: 02.07.2	2019	ZELLE: 29		ļ			
BEZEICHNUNG	4	D	11EFE: 347 cm							
PROBE EINBAU AUSBAU EINBAU AUSBAU E								ERG	EBNIS	
Durchmesser D [cm]	10	10		m _{r1} (g)	1876.6	m _{rz} + Tara [g]	2024.6	ρ _d [g/cm³]	1.58	
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1488.1	m _{dz} + Tara [g]	1660.1	n [%]	0.42	
Fläche A [cm ²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	172.0	e [1]	0.72	
volumen v [cm ²]	942.48	942.48	J	ρ [g/cm³]	1.99	ρ [g/cm³]	2.15	ρ₅ [g/cm³]	2.71	
				W ₁ [%] Sr [94]	26.1	W ₁ [%] Sr [94]	22.0			
				Ji [/0]	98.8	Ji [/0]	63.1	J		
Datum (Beginn)		[TT.MM.JJ]	03.07.2019	04.07.2019	05.07.2019	06.07.2019	08.07.2019	09.07.2019	10.07.2019	
Versuchsbeginn	t ₁	[hh:mm]	08:02	07:19	10:07	14:45	07:14	07:07	07:10	
Temperatur (Beginn)	δ1	[°C]	22.6	22.3	23.8	24.0	23.2	22.6	23.7	
Datum (Ende)		[TT.MM.JJ]	04.07.2019	05.07.2019	06.07.2019	08.07.2019	09.07.2019	10.07.2019	11.07.2019	
Versuchsende	t ₂	[hh:mm]	07:19	10:07	14:45	07:14	07:07	07:10	07:28	
Temperatur (Ende)	δ2	[°C]	22.3	23.8	24.0	23.2	22.6	23.7	23.8	
Versuchsdauer	t	[s]	83820	96480	103080	145740	85980	86580	87480	
Messglass (Beginn)	m ₁	[9]	105.5	105.8	106.0	105.7	105.2	105.7	105.3	
Messglass (Ende)	m ₂	[9]	131.8	140.0	142.0	159.8	138.6	139.4	140.7	
Wassermenge	Q	[cm ³]	26.3	34.2	36	54.1	33.4	33.7	35.4	
Honeridiirerenz	ΔH	[CM]	360	360	360	360	360	360	360	
Temperatur Mittelwert	8	[¹]	22.5	23.1	23.9	23.6	22.9	23.2	23.8	
$F_{\rm r}$ Temp (α)	, in the second s	[1]	0.727732062	0.717653492	0.703745365	0.708605548	0.720152539	0.715994999	0.706168910	
Durchlässigskeit	k.	[m/s]	1.33E-09	1.5E-09	1.5E-09	1.6E-09	1.6E-09	17E-09	17E-09	
Durchlässigskeit k 10	k ₁₀	[m/s]	9.7E-10	1.1E-09	1.0E-09	1.1E-09	1.2E-09	1.2E-09	1.2E-09	
Datum (Beginn)		TT.MM.J.D	11.07.2019							
Versuchsbeginn	t.	[hh:mm]	07:28							
Temperatur (Beginn)	δ,	1001	23.8							
Datum (Ende)	-	ITT.MM.JJI	12.07.2019							
Versuchsende	t ₂	[hh:mm]	07:05							
Temperatur (Ende)	δ2	[°C]	22.7							
Versuchsdauer	t	[S]	85020							
Messglass (Beginn)	m,	[9]	105.2							
Messglass (Ende)	m ₂	[9]	137.9							
Wassermenge	Q	[cm ³]	32.7							
Höhendifferenz	ΔH	[cm]	360							
Hydraul, Geralle Temperatur Mittelwort	1	[1]	30							
F. Temp (α)	٥	[0]	0 714342502							
Durchlässinskeit	k.	[m/s]	1.63E-09							
Durchlässigskeit k 10	k ₁₀	[m/s]	1.2E-09							

Gra

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND	

AUFTRAGGEBER		Richard Albrech	hard Albrecht								
PROJEKT		MA Richard Alb	recht								
LABORNUMMER	20	951	DATUM: 02.07.2	019	ZELLE: 30						
BEZEICHNUNG	4	с	TIEFE: 347 cm								
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERG	EBNIS		
Durchmesser D [cm]	10	10		m _{r1} [g]	1919.5	m _{rz} + Tara [g]	2061.5	ρ _d [g/cm³]	1.66		
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1567.7	m _{d2} + Tara [g]	1725.2	n [%]	0.39		
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	157.5	e [1]	0.63		
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	2.04	ρ [g/cm³]	2.19	ρ _s [g/cm³]	2.71		
			-	w1 [%]	22.4	w1 [%]	19.5				
				Sr ₁ [%]	96.7	Sr ₁ [%]	84.0				
Datum (Beginn)		[TT.MM.JJ]	05.07.2019	06.07.2019	08.07.2019	09.07.2019	10.07.2019	11.07.2019			
Versuchsbeginn	t ₁	[hh:mm]	10:05	14:45	07:13	07:06	07:09	07:27			
Temperatur (Beginn)	δ1	[°C]	23.9	24.0	23.2	22.6	23.7	23.8			
Datum (Ende)		[TT.MM.JJ]	06.07.2019	08.07.2019	09.07.2019	10.07.2019	11.07.2019	12.07.2019			
Versuchsende	t ₂	[hh:mm]	14:45	07:13	07:06	07:09	07:27	07:05			
Temperatur (Ende)	δ2	[°C]	24.0	23.2	22.6	23.7	23.8	22.7			
Versuchsdauer	t	[S]	103200	145680	85980	86580	87480	85080			
Messglass (Beginn)	m,	[9]	107.0	105.7	105.4	105.3	105.6	105.5			
Messglass (Ende)	m ₂	[9]	129.0	137.7	125.1	125.4	126.6	124.8			
Wassermenge	Q	[cm ²]	22	32	19.7	20.1	21	19.3			
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360			
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30			
Temperatur Mittelwert	8	[°C]	24.0	23.6	22.9	23.2	23.8	23.3			
F _k Temp (α)		[1]	0.702940409	0.708605548	0.720152539	0.715994999	0.706168910	0.714342502			
Durchlässigskeit	k _a	[m/s]	9.05E-10	9.3E-10	9.7E-10	9.9E-10	1.0E-09	9.6E-10			
Durchlässigskeit k 10	k ₁₀	[m/s]	6.4E-10	6.6E-10	7.0E-10	7.1E-10	7.2E-10	6.9E-10			

k₅ k₁o	[m/s] [m/s]	9.05E-10 6.4E-10	9.3E-10 6.6E-10	9.7E-10 7.0E-10	9.9E-10 7.1E-10	1. 7.

Jniversity of Technology	

iraz

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUER STRASSE 12, 8010 GRZ, AUSTRIA Teit-räggster73 Fasc-räggster/376238

DURCHLÄSSIGKEIT IN DER TRIAXIALEN DURCHLÄSSIGKEITSZELLE

AUFTRAGGEBER		Richard Albrech	nt						
PROJEKT		MA Richard Alb	recht						
LABORNUMMER	209	51	DATUM: 02.07.2	019	ZELLE: 31				
BEZEICHNUNG	40	d	TIEFE: 347 cm						
				_					
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERGI	EBNIS
Durchmesser D [cm]	10	10		m _{r1} [g]	1886.2	m _{r2} + Tara [g]	2031.2	ρ _d [g/cm³]	1.65
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1556.8	m _{dz} + Tara [g]	1729.6	n [%]	0.39
Fläche A [cm²]	78.54	78.54		T1 [g]	0	T ₂ [g]	172.8	e [1]	0.64
Volumen V [cm³]	942.48	942.48		ρ [g/cm³]	2.00	ρ [g/cm³]	2.16	ρ, [g/cm³]	2.71
			•	w ₁ [%]	21.2	w ₁ [%]	17.4		
				Sr ₁ [%]	89.5	Sr ₁ [%]	73.8		
Datum (Beginn)		[TT.MM.JJ]	05.07.2019	06.07.2019	08.07.2019	09.07.2019	10.07.2019	11.07.2019	
Versuchsbeginn	t ₁	[hh:mm]	10:04	14:43	07:06	07:05	07:08	07:26	
Temperatur (Beginn)	δ1	[°C]	23.2	24.0	23.2	22.6	23.7	23.8	
Datum (Ende)		[TT.MM.JJ]	06.07.2019	08.07.2019	09.07.2019	10.07.2019	11.07.2019	12.07.2019	
Versuchsende	t ₂	[hh:mm]	14:43	07:06	07:05	07:08	07:26	07:05	
Temperatur (Ende)	δ2	[°C]	24.0	23.2	22.6	23.7	23.8	22.7	
Versuchsdauer	t	[S]	103140	145380	86340	86580	87480	85140	
Messglass (Beginn)	m ₁	[g]	105.6	105.5	105.9	105.4	106.0	105.3	
Messglass (Ende)	m ₂	[g]	121.4	128.4	120.3	120.0	120.9	119.0	
Wassermenge	Q	[cm ³]	15.8	22.9	14.4	14.6	14.9	13.7	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	23.6	23.6	22.9	23.2	23.8	23.3	
F _k Temp (α)		[1]	0.708605548	0.708605548	0.720152539	0.715994999	0.706168910	0.714342502	
Durchlässigskeit	k _s	[m/s]	6.50E-10	6.7E-10	7.1E-10	7.2E-10	7.2E-10	6.8E-10	
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	4.6E-10	4.7E-10	5.1E-10	5.1E-10	5.1E-10	4.9E-10	

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12, 8010 GRAZ, AUSTRIA Tel:+43(0)316/873-6237 Fax:+43(0)316/873-6238

DURCHLÄSSIGKEIT IN DER TRIAXIALEN DURCHLÄSSIGKEITSZELLE

AUETRAGGEBER		Richard Albrec	ht						
PROJEKT		MA Richard All	precht						
LABORNUMMER	20	952	952 DATUM: 31 07 3		2019 ZELLE: 24		[
BEZEICHNUNG		5a	TIEFE: 327 cm	TIEFE: 327 cm			J		
			-						
PROBE	EINBAU	AUSBAU		EIN	IBAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{r1} [g]	1894.2	m _{r2} + Tara [g]	2107.5	ρ _d [g/cm³]	1.59
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1496.2	m _{d 2} + Tara [g]	1705.8	n [%]	0.41
Fläche A [cm ²]	78.54	78.54		T1[g]	0	T ₂ [g]	209.6	e [1]	0.71
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	2.01	ρ [g/cm³]	2.24	ρ _s [g/cm ³]	2.71
			-	w ₁ [%]	26.6	w ₁ [%]	23.5		
				Sr ₁ [%]	102.0	Sr ₁ [%]	90.3		
				•				,	
Datum (Beginn)		[TT.MM.JJ]	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019		
Versuchsbeginn	t ₁	[hh:mm]	14:09	10:47	09:30	07:12	07:46		
Temperatur (Beginn)	δ1	[°C]	22.9	22.8	22.9	22.8	22.8		
Datum (Ende)		[TT.MM.JJ]	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019		
Versuchsende	t ₂	[hh:mm]	10:47	09:30	07:12	07:46	07:23		
Temperatur (Ende)	δ2	[°C]	22.8	22.9	22.8	22.8	23.0		
Versuchsdauer	t	[S]	74280	81780	78120	88440	8502.0		
Messglass (Beginn)	m,	[9]	177.4	170.4	223.6	222.5	171.8		
Messglass (Ende)	m,	[g]	188.6	184.1	236.4	237.0	185.9		
Wassermenge	Q	[cm ³]	11.2	13.7	12.8	14.5	14.1		
Höhendifferenz	ΔH	[cm]	360	360	360	360	360		
Hydraul. Gefälle	i	[1]	30	30	30	30	30		
Temperatur Mittelwert	δ	[°C]	22.9	22.9	22.9	22.8	22.9		
F _k Temp (α)		[1]	0.720988585	0.720988585	0.720988585	0.721826153	0.720152539		
Durchlässigskeit	k _s	[m/s]	6.40E-10	7.1E-10	7.0E-10	7.0E-10	7.0E-10		
Durchlässigskeit k 10	K10	[m/s]	4.6E-10	5.1E-10	5.0E-10	5.0E-10	5.1E-10		

Graz University of Technology	INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LAB OR RECHBAUHESTRASSE 12, 2010 GRAZ, AUSTRIA Tel:+43(0):16/873-6237 Fac:+43(0):16/873-6238	Ĩ

DURCHLÄSSIGKEIT IN DER TRIAXIALEN DURCHLÄSSIGKEITSZELLE

BNIS
1.63
0.40
0.67
2.71

Datum (Beginn)		[TT.MM.JJ]	02.08.2019	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019	
Versuchsbeginn	t ₁	[hh:mm]	17:15	14:11	10:58	09:31	07:13	07:47	
Temperatur (Beginn)	δ1	[°C]	23.0	22.9	22.8	22.9	22.8	22.8	
Datum (Ende)		[TT.MM.JJ]	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019	
Versuchsende	t ₂	[hh:mm]	14:11	10:58	09:31	07:13	07:47	07:24	
Temperatur (Ende)	δ2	[°C]	22.9	22.8	22.9	22.8	22.8	23.0	
Versuchsdauer	t	[S]	75360	74820	81180	78120	88440	85020	
Messglass (Beginn)	m,	[g]	105.4	222.0	218.0	179.7	218.5	223.8	
Messglass (Ende)	m ₂	[g]	117.9	233.4	231.7	192.8	230.0	236.9	
Wassermenge	Q	[cm ^a]	12.5	11.4	13.7	13.1	11.5	13.1	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	23.0	22.9	22.9	22.9	22.8	22.9	
F _k Temp (α)		[1]	0.719318010	0.720988585	0.720988585	0.720988585	0.721826153	0.720152539	
Durchlässigskeit	k _a	[m/s]	7.04E-10	6.5E-10	7.2E-10	7.1E-10	5.5E-10	6.5E-10	
Durchlässigskeit k ₁₀	k ₁₀	[m/s]	5.1E-10	4.7E-10	5.2E-10	5.1E-10	4.0E-10	4.7E-10	

Graz University of Technology

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12,8010 ORAZ, AUSTRIA Tel:+4300310673-6237 Fac: +4300310673-6238

DURCHLÄSSIGKEIT IN DER TRIAXIALEN DURCHLÄSSIGKEITSZELLE

AUFTRAGGEBER		Richard Albrec	ht						
PROJEKT		MA Richard All	brecht						
LABORNUMMER	20	952	DATUM: 31.07.2	2019	ZELLE: 26				
BEZEICHNUNG	5	jC	TIEFE: 327 cm						
			_						
PROBE	EINBAU	AUSBAU		EIN	IBAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{f1} [g]	1880.7	m _{r2} + Tara [g]	2093.1	ρ _d [g/cm³]	1.62
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1527.7	m _{dz} + Tara [g]	1746.7	n [%]	0.40
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	219.0	e [1]	0.67
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	2.00	ρ [g/cm³]	2.22	ρ _s [g/cm ^s]	2.71
			-	w1 [%]	23.1	w ₁ [%]	19.8		
				Sr ₁ [%]	93.2	Sr ₁ [%]	80.0		
									-
Datum (Beginn)		[TT.MM.JJ]	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019		
Versuchsbeginn	t ₁	[hh: mm]	14:12	10:57	09:32	07:13	07:53		
Temperatur (Beginn)	δ1	[°C]	22.9	22.8	22.9	22.8	22.8		
Datum (Ende)		[TT.MM.JJ]	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019		
Varaushaanda		[hh:mana]	10.57	00.00	07.10	07.50	07-05		

Datum (Ende)		[II.MM.JJ]	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019	
Versuchsende	t ₂	[hh:mm]	10:57	09:32	07:13	07:53	07:25	
Temperatur (Ende)	δ2	[°C]	22.8	22.9	22.8	22.8	23.0	
Versuchsdauer	t	[S]	74700	81300	78060	88800	84720	
Messglass (Beginn)	m,	[9]	105.5	173.2	178.2	175.8	177.8	
Messglass (Ende)	m ₂	[9]	223.1	317.7	305.7	318.3	313.4	
Wassermenge	Q	[cm³]	117.6	144.5	127.5	142.5	135.6	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	
Hydraul. Gefälle	i i	[1]	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	22.9	22.9	22.9	22.8	22.9	
F _k Temp (α)		[1]	0.720988585	0.720988585	0.720988585	0.721826153	0.720152539	
Durchlässigskeit	k _a	[m/s]	6.68E-09	7.5E-09	6.9E-09	6.8E-09	6.8E-09	
Durchlässigskeit k 10	k ₁₀	[m/s]	4.8E-09	5.4E-09	5.0E-09	4.9E-09	4.9E-09	

Graz University of Tochnology	
-------------------------------	--

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12, 8010 06 AZ, AUSTRIA Tel: +43(0)310673 6227 Faz: +43(0)310673 6238

AUFTRAGGEBER		Richard Albrech	nt								
PROJEKT MA Richard A		MA Richard Alb	ard Albrecht								
LABORNUMMER	20	952	DATUM: 31.07.2019 Z								
BEZEICHNUNG	6	id	TIEFE: 327 cm								
				_							
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERG	EBNIS		
Durchmesser D [cm]	10	10		m _{r1} [g]	1891.2	m _{r2} + Tara [g]	2099.2	ρ _d [g/cm³]	1.61		
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1515.3	m _{d 2} + Tara [g]	1721.1	n [%]	0.41		
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	205.8	e [1]	0.69		
Volumen V [cm³]	942.48	942.48		ρ [g/cm³]	2.01	ρ [g/cm³]	2.23	ρ _s [g/cm³]	2.71		
			-	w ₁ [%]	24.8	w ₁ [%]	22.0				
				Sr ₁ [%]	98.1	Sr ₁ [%]	86.8				
								,			
Datum (Beginn)		[TT.MM.JJ]	02.08.2019	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019			
Versuchsbeginn	t ₁	[hh:mm]	17:16	14:13	11:00	09:35	07:14	07:54			
Temperatur (Beginn)	δ1	[°C]	23.0	22.9	22.8	22.9	22.8	22.8			
Datum (Ende)		[TT.MM.JJ]	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019			
Versuchsende	t ₂	[hh:mm]	14:13	11:00	09:35	07:14	07:54	07:26			
Temperatur (Ende)	δ2	[°C]	22.9	22.8	22.9	22.8	22.8	23.0			
Versuchsdauer	t	[S]	75420	74820	81300	77940	88800	84720			
Messglass (Beginn)	m,	[g]	105.9	177.9	222.4	222.3	175.0	222.2			
Messglass (Ende)	m,	[9]	111.8	185.6	231.5	231.0	184.6	231.5			
Wassermenge	Q	[cm ³]	5.9	7.7	9.1	8.7	9.6	9.3			
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360			
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30			
Temperatur Mittelwert	δ	[°C]	23.0	22.9	22.9	22.9	22.8	22.9			
F _k Temp (α)		[1]	0.719318010	0.720988585	0.720988585	0.720988585	0.721826153	0.720152539			
Durchlässigskeit	k _s	[m/s]	3.32E-10	4.4E-10	4.8E-10	4.7E-10	4.6E-10	4.7E-10			
Durchlässigskeitk 🗤	K.o	[m/s]	2.4E-10	3 1E-10	3.4E-10	3.4E-10	3 3E-10	3.4E-10			

Graz University of Technology	University of Technology									
	DUR	CHLÄSSIGKEI	T IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE				
AUFTRAGGEBER		Richard Albrech	t							
PROJEKT		MA Richard Alb	recht	2040	75115 00					
BEZEICHNUNG	209	53 I	TIEFE: 310 cm	.2019	ZELLE: ZO		J			
PROBE Durchmesser D [cm]	EINBAU 10	AUSBAU 10		EIN me [g]	1840.3	AUS men + Tara [g]	2004.0	eKGI	1.56	
Dürchströmte Länge I [cm] 12	12		m _{d1} [g]	1470.0	m _{d2} + Tara [g]	1671.8	n [%]	0.42	
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	201.8	e [1]	0.74	
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	1.95	ρ [g/cm³]	2.13	ρ _s [g/cm³]	2.71	
				w ₁ [%] Sr ₁ [%]	25.2 92.6	W ₁ [%] Sr ₁ [%]	19.9 73.0			
Datum (Beginn)		[TT.MM.JJ]	02.08.2019	02.08.2019	05.08.2019	06.08.2019	06.08.2019	06.08.2019	06.08.2019	
Versuchsbeginn	t ₁	[hh:mm]	07:17	10:15	09:42	10:24	11:48	15:06	17:20	
Temperatur (Beginn)	δ1	[°C]	23.0	23.2	22.9	23.1	23.3	24.2	24.4	
Datum (Ende)	+	[TT.MM.JJ]	02.08.2019	02.08.2019	05.08.2019	06.08.2019	06.08.2019	06.08.2019	06.08.2019	
Temperatur (Ende)	ι ₂ δ ₂	[nit nin]	23.2	23.2	23.0	23.3	24.2	24.4	24.3	
Versuchsdauer	t	[s]	10680	9120	6480	5040	11880	8040	6000	
Messglass (Beginn)	m ₁	[9]	105.3	106.1	107.3	106.0	105.7	106.1	105.9	
Messglass (Ende)	m ₂	[g]	679.8	552.6	484.3	372.8	711.3	510.0	403.3	
Höhendifferenz	ΔH	[cm²] [cm]	360	440.5 360	3/7	266.8	360	403.9	297.4	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	23.1	23.2	23.0	23.2	23.8	24.3	24.4	
F _k Temp (α) Durchlängingkat	k	[1]	0.716823494	0.715168003	0.719318010	0.715168003	0.706168910	0.697345847	0.696552315	
Durchlässigskeit k ₁₀	к ₁₀	[m/s]	2.20E-07 1.6E-07	2.1E-07 1.5E-07	2.5E-07 1.8E-07	2.2E-07 1.6E-07	2.2E-07 1.5E-07	2.1E-07 1.5E-07	2.1E-07 1.5E-07	
Datum (Beginn)		[TT.MM.JJ]	06.08.2019	07.08.2019	07.08.2019	07.08.2019	07.08.2019	08.08.2019	08.08.2019	
Versuchsbeginn	t ₁	[hh:mm]	19:00	07:59	10:40	13:15	15:31	07:33	09:01	
Temperatur (Beginn)	δ1	[°C]	24.3	22.8	23.8	24.2	24.2	23.0	23.3	
Versuchsende	ta	[II.MM.JJ]	07.08.2019	10:40	07.08.2019	07.08.2019	07.08.2019	08.08.2019	13:48	
Temperatur (Ende)	δ ₂	[°C]	22.8	23.8	24.2	24.2	24.1	23.3	23.6	
Versuchsdauer	ť	[s]	46740	9660	9300	8160	7500	5280	17220	
Messglass (Beginn)	m ₁	[g]	106.0	106.6	106.3	105.3	105.7	106.0	105.4	
Messglass (Ende)	m ₂	[g]	412.1	686.9	648.1	577.6	541.9	499.9	708.4	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	23.6	23.3	24.0	24.2	24.2	23.2	23.5	
P _k remp (a) Durchlässigskeit	k,	[1] [m/s]	2 78E-08	2.5E-07	2.5E-07	2.5E-07	2.5E-07	3.2E-07	1.5E-07	
Durchlässigskeit k ₁₀	k ₁₀	[m/s]	2.0E-08	1.8E-07	1.7E-07	1.7E-07	1.7E-07	2.3E-07	1.1E-07	
Datum (Beginn)		[TT.MM.JJ]	08.08.2019							
Versuchsbeginn	t ₁	[hh:mm]	13:48							
Temperatur (Beginn)	δ1	[°C]	23.6							
Datum (Ende)		[TT.MM.JJ]	08.08.2019							
Temperatur (Ende)	12 82	["C]	23.4							
Versuchsdauer	t	[s]	7740							
Messglass (Beginn)	m,	[g]	105.6							
Messglass (Ende)	m ₂	[9]	673.8							
vvassermenge Höhendifferenz	Q AH	[cm ³]	568.2							
Hydraul. Gefälle	i	[1]	30							
Temperatur Mittelwert	δ	[°C]	23.5							
F _k Temp (α)		[1]	0.710237295							
Durchlassigskeit	K ₈	[m/s]	3.12E-07							
Saroniassigakeit k 10	N10	[m/s]	2.20-07							

Graz University of Technology	INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBALUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel: +43(1)316673-6237 Fac: +43(1)316673-6238										
	DUI	RCHLÄSSIGKE	IT IN DER TRIA	XIALEN DU	RCHLÄSSIG	KEITSZELLE					
L											
		Dishard Albrach									
	AUF TRAGGEDER NUTATION NUTA										
	200	11VIA RICITATU AID	DATUM: 31 7 06	2019	7FI1F-29						
LADONNOMMER 2000 DATOM. 01.00.2010 ZELEL. 20											
DEZER.TINUNG 00 HEFE: 310 CM											
PROBE EINBAU AUSBAU EINBAU AUSBAU ERGEBNIS											
Durchmesser D [cm]	10	10		m _{r1} [g]	1847.1	m _{r2} + Tara [g]	2034.0	ρ _d [g/cm³]	1.58		
Dürchströmte Länge I [cm]	12	12		m _{e1} [g]	1491.1	m _{d2} + Tara [g]	1707.8	n [%]	0.42		
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	216.7	e [1]	0.71		
Volumen V [cm ³]	942.48	942.48		p [g/cm³]	1.96	p [g/cm³]	2.16	ρ _s [g/cm³]	2.71		
			•	w ₁ [%]	23.9	w ₁ [%]	19.1				
				Sr ₁ [%]	90.8	Sr ₁ [%]	72.6				
Datum (Beginn)		[TT.MM.JJ]	02.08.2019	02.08.2019	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019		
Versuchsbeginn	t ₁	[hh:mm]	07:18	12:49	14:16	11:03	09:36	07:16	07:59		
Temperatur (Beginn)	δ1	[°C]	23.0	23.2	22.9	22.8	22.9	22.8	22.8		
Datum (Ende)		[TT.MM.JJ]	02.08.2019	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019		
Versuchsende	t ₂	[hh: mm]	12:49	14:16	11:03	09:36	07:16	07:59	07:34		
Temperatur (Ende)	δ2	[°C]	23.2	22.9	22.8	22.9	22.8	22.8	23.0		
Versuchsdauer	t	[s]	19860	91620	74820	81180	78000	88980	84900		
Messglass (Beginn)	m,	[9]	105.9	105.4	105.6	105.4	105.7	105.3	105.2		
Messglass (Ende)	m ₂	[9]	159.9	369.4	297.6	296.2	285.4	307.0	298.1		
Wassermenge	Q	[cm ³]	54	264	192	190.8	179.7	201.7	192.9		
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360		
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30		
Temperatur Mittelwert	δ	[°C]	23.1	23.1	22.9	22.9	22.9	22.8	22.9		
F _k Temp (α)		[1]	0.716823494	0.717653492	0.720988585	0.720988585	0.720988585	0.721826153	0.720152539		
Durchlässigskeit	k _δ	[m/s]	1.15E-08	1.2E-08	1.1E-08	1.0E-08	9.8E-09	9.6E-09	9.6E-09		
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	8.3E-09	8.8E-09	7.9E-09	7.2E-09	7.0E-09	6.9E-09	6.9E-09		
Datum (Beginn)		ITT MM .LII	08 08 2019								
Versuchsbeginn	t.	[hh:mm]	07:34								
Temperatur (Beginn)	*1 8.	I°C1	23.0								
Datum (Ende)	01 01		00 08 2010								
Versuchsende	t.	[hh:mm]	07:02								
Temperatur (Ende)	52 8-	[100]	22.8								
Versuchsdauer	02 t	[9]	84480								
Masselass (Baginn)	, m.	[0]	106.1								
Maccolaes (Enda)	m.	[9]	206.3								
Wassermenne	0	[9]	100.2								
Höhendifferenz	ΔH	[cm]	360								
Hydraul, Gefälle	i	[1]	30								
Temperatur Mittelwert	8	I°C1	22.9								
F, Temp (α)		[1]	0.720152539								
Durchlässigskeit	k.	[m/s]	9.56E-09								
Durchlässigskeit k 10	k ₁₀	[m/s]	6.9E-09								

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12,6010 GRAZ, AUSTRIA Tel:+43(0)316/673-8237 Fac:+43(0)316/673-8238

DURCHLÄSSIGKEIT IN DER TRIAXIALEN DURCHLÄSSIGKEITSZELLE

AUFTRAGGEBER		Richard Albrech	ht					-	
PROJEKT		MA Richard Alt	precht						
LABORNUMMER	20!	953	DATUM: 31.7.06	.2019	ZELLE: 30				
BEZEICHNUNG	6	C	TIEFE: 310 cm				·		
		_							
PROBE	EINBAU	AUSBAU	EINBAU		BAU	AUS	BAU	AU ERGE	
Durchmesser D [cm]	10	10		m _{f1} [g]	1869.4	m _{r2} + Tara [g]	2039.7	ρ _d [g/cm³]	1.59
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1500.9	m _{d2} + Tara [g]	1705.7	n [%]	0.41
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T₂[g]	204.8	e [1]	0.70
Volumen V [cm³]	942.48	942.48		ρ [g/cm³]	1.98	ρ [g/cm³]	2.16	ρ, [g/cm³]	2.71
			-	w ₁ [%]	24.6	w1 [%]	19.6		
				Sr ₁ [%]	94.8	Sr ₁ [%]	75.6	1	
Datum (Beginn)		[TT.MM.JJ]	02.08.2019	06.08.2019	06.08.2019	07.08.2019	07.08.2019	08.08.2019	08.08.2019
Versuchsbeginn	t ₁	[hh:mm]	07:19	07:17	19:03	08:00	19:00	07:35	15:58
Temperatur (Beginn)	δ1	[°C]	23.0	22.8	24.3	22.8	24.1	23.0	23.4
Datum (Ende)		[TT.MM.JJ]	02.08.2019	06.08.2019	07.08.2019	07.08.2019	08.08.2019	08.08.2019	09.08.2019
Versuchsende	t ₂	[hh:mm]	12:51	19:03	08:00	19:00	07:35	15:58	07:04
Temperatur (Ende)	δ2	[°C]	23.2	24.3	22.8	24.1	23.0	23.4	22.8
Versuchsdauer	ť	[S]	19920	42360	46620	39600	45300	30180	54360
Messglass (Beginn)	m ₁	[g]	105.3	105.4	105.3	106.1	105.7	106.7	105.3
Messglass (Ende)	m ₂	[9]	283.9	455.2	561.4	457.8	565.8	396.7	681.0
Wassermenge	Q	[cm ³]	178.6	349.8	456.1	351.7	460.1	290	575.7
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30
Temperatur Mittelwert	δ	[°C]	23.1	23.6	23.6	23.5	23.6	23.2	23.1
F _k Temp (α)		[1]	0.716823494	0.709420686	0.709420686	0.711055375	0.709420686	0.715168003	0.716823494
Durchlässigskeit	k _ē	[m/s]	3.81E-08	3.5E-08	4.2E-08	3.8E-08	4.3E-08	4.1E-08	4.5E-08
Durchlässigskeit k 🗤	K	[m/s]	2.7E-08	2.5E-08	2.9E-08	2.7E-08	3.1E-08	2.9E-08	3.2E-08

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel: +43(0)316/873-6237 Fac: +43(0)316/873-6238

F										
AUFTRAGGEBER		Richard Albrech	nt							
PROJEKT		MA Richard Alb	recht							
LABORNUMMER	209	53	DATUM: 31.7.06	.2019	ZELLE: 31		J			
BEZEICHNUNG	6	d	TIEFE: 310 cm							
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERG	ERGEBNIS	
Durchmesser D [cm]	10	10		m _{r1} [g]	1849.9	m _{r2} + Tara [g]	2024.4	ρ _d [g/cm³]	1.59	
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1499.9	m _{dz} + Tara [g]	1713.7	n [%]	0.41	
Fläche A [cm²]	78.54	78.54		T1 [g]	0	T ₂ [g]	213.8	e [1]	0.70	
Volumen V [cm³]	942.48	942.48		ρ [g/cm³]	1.96	ρ [g/cm³]	2.15	ρ _s [g/cm³]	2.71	
			•	w ₁ [%]	23.3	w1 [%]	18.1			
				Sr ₁ [%]	90.0	Sr ₁ [%]	69.9			
								•		
Datum (Beginn)		[TT.MM.JJ]	02.08.2019	02.08.2019	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019	
Versuchsbeginn	t ₁	[hh:mm]	07:20	12:52	14:18	11:03	09:37	07:18	08:00	
Temperatur (Beginn)	δ1	[°C]	23.0	23.2	22.9	22.8	22.9	22.8	22.8	
Datum (Ende)		[TT.MM.JJ]	02.08.2019	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019	
Versuchsende	t ₂	[hh: mm]	12:52	14:18	11:03	09:37	07:18	08:00	07:36	
Temperatur (Ende)	δ2	[°C]	23.2	22.9	22.8	22.9	22.8	22.8	23.0	
Versuchsdauer	t	[S]	19920	91560	74700	81240	78060	88920	84960	
Messglass (Beginn)	m,	[g]	105.6	106.4	105.8	106.1	105.5	105.5	106.0	
Messglass (Ende)	m ₂	[g]	131.5	212.8	181.7	199.4	208.2	219.3	222.4	
Wassermenge	Q	[cm ³]	25.9	106.4	75.9	93.3	102.7	113.8	116.4	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	360	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	23.1	23.1	22.9	22.9	22.9	22.8	22.9	
F _k Temp (α)		[1]	0.716823494	0.717653492	0.720988585	0.720988585	0.720988585	0.721826153	0.720152539	
Durchlässigskeit	k _a	[m/s]	5.52E-09	4.9E-09	4.3E-09	4.9E-09	5.6E-09	5.4E-09	5.8E-09	
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	4.0E-09	3.5E-09	3.1E-09	3.5E-09	4.0E-09	3.9E-09	4.2E-09	

Graz University of Tochnology	INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel:+43(0)316/873-f237 Farc:+43(0)316/873-f238									
DURCHLÄSSIGKEIT IN DER TRIAXIALEN DURCHLÄSSIGKEITSZELLE										
AUFTRAGGEBER		Richard Albrech	t							
PROJEKT		MA Richard Alb	recht							
LABORNUMMER 20954 DATUM: 31.7.06.2019 ZELLE: 16										
BEZEICHNUNG 7a TIEFE: 225 cm										

PROBE	EINBAU	AUSBAU
Durchmesser D [cm]	10	10
Dürchströmte Länge I [cm]	12	12
Fläche A [cm²]	78.54	78.54
Volumen V [cm ³]	942.48	942.48

Datum (Beginn)		[TT.MM.JJ]	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019	
Versuchsbeginn	t ₁	[hh:mm]	14:20	11:04	09:38	07:19	07:55	07:28	
Temperatur (Beginn)	δ1	[°C]	22.9	22.8	22.9	22.8	22.8	23	
Datum (Ende)		[TT.MM.JJ]	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019	09.08.2019	
Versuchsende	t ₂	[hh:mm]	11:04	09:38	07:19	07:55	07:28	07:07	
Temperatur (Ende)	δ2	[°C]	22.8	22.9	22.8	22.8	23.0	22.8	
Versuchsdauer	t	[S]	74640	81240	78060	88560	84780	85140	
Messglass (Beginn)	m ₁	[9]	106.2	105.2	105.9	105.3	105.5	105.3	
Messglass (Ende)	m ₂	[g]	408.5	436.2	434.8	481.3	474.9	478.2	
Wassermenge	Q	[cm³]	302.3	331	328.9	376	369.4	372.9	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	
Hydraul. Gefälle	i i	[1]	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	22.9	22.9	22.9	22.8	22.9	22.9	
F _k Temp (α)		[1]	0.720988585	0.720988585	0.720988585	0.721826153	0.720152539	0.720152539	
Durchlässigskeit	k₅	[m/s]	1.72E-08	1.7E-08	1.8E-08	1.8E-08	1.8E-08	1.9E-08	
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	1.2E-08	1.2E-08	1.3E-08	1.3E-08	1.3E-08	1.3E-08	

Graz University of Technology	INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12,8010 GRAZ, AUSTRIA Tel:+43(0)316/673-6237 Fac:+43(0)316/673-6238
	DURCHLÄSSIGKEIT IN DER TRIAXIALEN DURCHLÄSSIGKEITSZELLE

AUFTRAGGEBER		Richard Albrech	nt						
PROJEKI		MA Richard Alb	recht	0040	75115 47				
LABORNUMMER	20	154	DATUM: 31.7.06	DATUM: 31.7.06.2019 Z			ļ		
BEZEICHNUNG	7	b	TIEFE: 225 cm						
			•						
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{r1} [g]	1924.5	m _{r2} + Tara [g]	2115.7	ρ _d [g/cm³]	1.71
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1614.6	m _{dz} + Tara [g]	1820.4	n [%]	0.37
Fläche A [cm²]	78.54	78.54		T1 [g]	0	T ₂ [g]	205.8	e [1]	0.58
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	2.04	ρ [g/cm³]	2.24	ρ _s [g/cm³]	2.71
			-	w1 [%]	19.2	w ₁ [%]	16.2		
				Sr ₁ [%]	89.4	Sr ₁ [%]	75.5		
								•	
Datum (Beginn)		[TT.MM.JJ]	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019	
Versuchsbeginn	t ₁	[hh: mm]	14:21	11:05	09:39	07:20	07:56	07:28	
Temperatur (Beginn)	δ1	[°C]	22.9	22.8	22.9	22.8	22.8	23	
Datum (Ende)		[TT.MM.JJ]	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019	09.08.2019	
Versuchsende	t ₂	[hh: mm]	11:05	09:39	07:20	07:56	07:28	07:08	
Temperatur (Ende)	δ2	[°C]	22.8	22.9	22.8	22.8	23.0	22.8	
Versuchsdauer	t	[S]	74640	81240	78060	88560	84720	85200	
Messglass (Beginn)	m,	[g]	105.7	105.3	106.0	106.2	105.9	105.6	
Messglass (Ende)	m,	[g]	430.7	457.3	444.7	485.7	472.6	470.3	
Wassermenge	Q	[cm ³]	325	352	338.7	379.5	366.7	364.7	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	22.9	22.9	22.9	22.8	22.9	22.9	
F _k Temp (α)		[1]	0.720988585	0.720988585	0.720988585	0.721826153	0.720152539	0.720152539	
Durchlässigskeit	k _s	[m/s]	1.85E-08	1.8E-08	1.8E-08	1.8E-08	1.8E-08	1.8E-08	
Durchlässigskeitk ₁₀	k ₁₀	[m/s]	1.3E-08	1.3E-08	1.3E-08	1.3E-08	1.3E-08	1.3E-08	

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHWAUERSTRASS 12, 900 G AZ, AUSTRIA Tel: +43(0)316/673-6237 Fax: +43(0)316/673-6238

DURCHLÄSSIGKEIT IN DER TRIAXIALEN DURCHLÄSSIGKEITSZELLE

		10: 1 AU							
AUFIRAGGEBER		Richard Albrech	nt						
PROJEKI		MA Richard Alb	orecht						
LABORNUMMER	209	154	DATUM: 31.7.06	.2019	ZELLE: 18		ļ		
BEZEICHNUNG	7	c	TIEFE: 225 cm						
			•						
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{f1} [g]	1928.4	m _{r2} + Tara [g]	2131.8	ρ _d [g/cm³]	1.70
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1598.5	m _{dz} + Tara [g]	1817.5	n [%]	0.37
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	219.0	e [1]	0.60
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	2.05	ρ [g/cm³]	2.26	ρ _s [g/cm³]	2.71
			-	w1 [%]	20.6	w1 [%]	17.3		
				Sr ₁ [%]	93.6	Sr ₁ [%]	78.4		
								•	
Datum (Beginn)		[TT.MM.JJ]	03.08.2019	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019	
Versuchsbeginn	t1	[hh:mm]	14:22	11:06	09:40	07:21	07:56	07:29	
Temperatur (Beginn)	δ1	[°C]	22.9	22.8	22.9	22.8	22.8	23	
Datum (Ende)		[TT.MM.JJ]	04.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019	09.08.2019	
Versuchsende	t ₂	[hh: mm]	11:06	09:40	07:21	07:56	07:29	07:09	
Temperatur (Ende)	δ2	[°C]	22.8	22.9	22.8	22.8	23.0	22.8	
Versuchsdauer	t	[S]	74640	81240	78060	88500	84780	85200	
Messglass (Beginn)	m,	[9]	105.2	105.4	105.2	105.7	105.4	106.0	
Messglass (Ende)	m ₂	[9]	321.8	342.0	335.7	366.5	355.9	354.9	
Wassermenge	Q	[cm ³]	216.6	236.6	230.5	260.8	250.5	248.9	
Höhendifferenz	ΔH	[cm]	360	360	360	360	360	360	
Hydraul. Gefälle	i	[1]	30	30	30	30	30	30	
Temperatur Mittelwert	δ	[°C]	22.9	22.9	22.9	22.8	22.9	22.9	
F _k Temp (α)		[1]	0.720988585	0.720988585	0.720988585	0.721826153	0.720152539	0.720152539	
Durchlässigskeit	k _a	[m/s]	1.23E-08	1.2E-08	1.3E-08	1.3E-08	1.3E-08	1.2E-08	
Durchlässigskeit k 10	k ₁₀	[m/s]	8.9E-09	8.9E-09	9.0E-09	9.0E-09	9.0E-09	8.9E-09	

INSTITUT FÜR BODENMECHANIK, GRUNDBAU UND NUMERISCHE GEOTECHNIK GEOTECHNISCHES LABOR RECHBAUERSTRASSE 12, 8010 GRZ, AUSTRIA Tel:+432(0)316873-6238

		Disk and Albertal							
AUFIRAGGEBER		Richard Albrech	nt						
PROJEKI		MA Richard Alb	recht		. <u> </u>				
LABORNUMMER	20	354	DATUM: 31.7.06	.2019	ZELLE: 19		J		
BEZEICHNUNG	7	d	TIEFE: 225 cm						
			-						
PROBE	EINBAU	AUSBAU		EIN	BAU	AUS	BAU	ERG	EBNIS
Durchmesser D [cm]	10	10		m _{f1} [g]	1900.4	m _{r2} + Tara [g]	2083.8	ρ _d [g/cm³]	1.67
Dürchströmte Länge I [cm]	12	12		m _{d1} [g]	1578.0	m _{d2} + Tara [g]	1787.4	n [%]	0.38
Fläche A [cm²]	78.54	78.54		T ₁ [g]	0	T ₂ [g]	209.4	e [1]	0.62
Volumen V [cm ³]	942.48	942.48		ρ [g/cm³]	2.02	ρ [g/cm³]	2.21	ρ _s [g/cm ³]	2.71
			•	W1 [%]	20.4	W1 [%]	16.6		
				Sr, [%]	89.5	Sr ₁ [%]	72.6		
								,	
Datum (Beginn)		[TT.MM.JJ]	03.08.2019	05.08.2019	06.08.2019	07.08.2019	08.08.2019		
Versuchsbeginn	t ₁	[hh:mm]	14:22	11:29	07:22	07:57	07:30		
Temperatur (Beginn)	δ1	[°C]	22.9	23	22.8	22.8	23.0		
Datum (Ende)		[TT.MM.JJ]	04.08.2019	06.08.2019	07.08.2019	08.08.2019	09.08.2019		
Versuchsende	t ₂	[hh:mm]	11:06	07:22	07:57	07:30	07:09		
Temperatur (Ende)	82	[00]	22.8	22.8	22.8	23.0	22.8		
Versuchsdauer	t	[s]	74640	71580	88500	84780	85140		
Messglass (Beginn)	m,	[g]	106.9	105.8	105.3	105.5	105.3		
Messglass (Ende)	m,	[9]	239.5	188.3	218.6	214.8	214.7		
Wassermenge	à	[cm ³]	132.6	82.5	113.3	109.3	109.4		
Höhendifferenz	ΔH	[cm]	360	360	360	360	360		
Hydraul. Gefälle	i	[1]	30	30	30	30	30		
Temperatur Mittelwert	δ	[°C]	22.9	22.9	22.8	22.9	22.9		
F _k Temp (α)		[1]	0.720988585	0.720152539	0.721826153	0.720152539	0.720152539		
Durchlässigskeit	k,	[m/s]	7.54E-09	4.9E-09	5.4E-09	5.5E-09	5.5E-09		
Durchlässigskeit k 🗤	k ₁₀	[m/s]	5.4E-09	3.5E-09	3.9E-09	3.9E-09	3.9E-09		

Laststu f	en [kPa]	10-20	20-40	40-80	80-160	160-320	320-640
Steifemodul E _s	Erstbelastung	909	1212	1667	2222	4444	
[kPa]	Zweitbelastung			10000	9412	8889	12075

Projekt: Masterart	oeit Richa	rd Albrec	ht	ungestö	rt x	Tiefe: 10).00 - 10.4	45 m		Bearbeit	er:	
Bezeichnung:	KB 1_1			gestört		Datum:	5.04 9.0	04.2019		R. Albred	ht	
Uhrzeit	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h
Spannung (kPa)	10	20	40	80	160	320	80	40	80	160	320	640
Start (mm)	20.00	19.04	18.82	18.49	18.01	17.29	16.57	16.83	16.98	16.90	16.73	16.37
Setzung (mm)	0.96	1.18	1.51	1.99	2.71	3.43	3.17	3.02	3.10	3.27	3.63	4.16
Rel. Höhe (mm)	19.04	18.82	18.49	18.01	17.29	16.57	16.83	16.98	16.90	16.73	16.37	15.84
Spezifische												
Setzung (%)	4.8	5.9	7.55	9.95	13.55	17.15	15.85	15.1	15.5	16.35	18.15	20.8
∆ Spez. Setzung (%)		1.1	1.65	2.4	3.6	3.6	-1.3	-0.75	0.4	0.85	1.8	2.65
Laststufen (kPa)		10-20	20-40	40-80	80-160	160-320	Erstbe-	Zw eitbe-	40-80	80-160	160-320	320-640
Steifem od ul E _s (k	Pa)	909	1212	1667	2222	4444	lastung	lastung	10000	9412	8889	12075

Laststu fe	en [kPa]	10-20	20-40	40-80	80-160	160-320	320-640
Steifemodul E _s	Erstbelastung	1176	1481	1905	3137	5818	
[kPa]	Zweitbelastung			16000	16000	6154	9143

Projekt: Masterar	beit Richa	rd Albrec	ht	ungestö	rt x	Tiefe: 10.00 - 10.45 m				Bearbeiter:			
Bezeichnung:	KB 1_2			gestört		Datum:	5.04 9.0	04.2019		R. Albred	ht		
Uhrzeit	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	
Spannung (kPa)	10	20	40	80	160	320	80	40	80	160	320	640	
Start (mm)	20.00	19.29	19.12	18.85	18.43	17.92	17.37	17.52	17.63	17.58	17.48	16.96	
Setzung (mm)	0.71	0.88	1.15	1.57	2.08	2.63	2.48	2.37	2.42	2.52	3.04	3.74	
Rel. Höhe (mm)	19.29	19.12	18.85	18.43	17.92	17.37	17.52	17.63	17.58	17.48	16.96	16.26	
Spezifische													
Setzung (%)	3.55	4.4	5.75	7.85	10.4	13.15	12.4	11.85	12.1	12.6	15.2	18.7	
∆ Spez. Setzung (%)		0.85	1.35	2.1	2.55	2.75	-0.75	-0.55	0.25	0.5	2.6	3.5	
Laststufen (kPa)		10-20	20-40	40-80	80-160	160-320	Erstbe-	Zweitbe-	40-80	80-160	160-320	320-640	
Steifemodul E _s (k	Pa)	1176	1481	1905	3137	5818	lastung	lastung	16000	16000	6154	9143	

Laststu fe	en [kPa]	10-20	20-40	40-80	80-160	160-320	320-640
Steifemodul E _s	Erstbelastung	1000	1333	1702	2581	4571	
[kPa]	Zweitbelastung			11429	11429	8649	8533

Projekt: Masterart	oeit Richa	rd Albrec	ht	ungestö	rt x	Tiefe: 10	0.00 - 10.4	45 m		Bearbeit	er:	
Bezeichnung:	KB 1_3			gestört		Datum:	5.04 9.0	04.2019		R. Albred	ht	
Uhrzeit	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h
Spannung (kPa)	10	20	40	80	160	320	80	40	80	160	320	640
Start (mm)	20.00	19.23	19.03	18.73	18.26	17.64	16.94	17.06	17.29	17.22	17.08	16.71
Setzung (mm)	0.77	0.97	1.27	1.74	2.36	3.06	2.94	2.71	2.78	2.92	3.29	4.04
Rel. Höhe (mm)	19.23	19.03	18.73	18.26	17.64	16.94	17.06	17.29	17.22	17.08	16.71	15.96
Spezifische												
Setzung (%)	3.85	4.85	6.35	8.7	11.8	15.3	14.7	13.55	13.9	14.6	16.45	20.2
∆ Spez. Setzung (%)		1	1.5	2.35	3.1	3.5	-0.6	-1.15	0.35	0.7	1.85	3.75
Laststufen (kPa)		10-20	20-40	40-80	80-160	160-320	Erstbe-	Zweitbe-	40-80	80-160	160-320	320-640
Steifem od ul E _s (k	Pa)	1000	1333	1702	2581	4571	lastung	lastung	11429	11429	8649	8533

Laststu fe	10-20	20-40	40-80	80-160	160-320	320-640	
Steifemodul E _s	Erstbelastung	1667	2222	2667	3721	5926	
[kPa]	Zweitbelastung			13333	16000	5517	9143

Projekt: Masterart	oeit Richa	rd Albrec	ht	ungestö	rt x	Tiefe: 10	0.00 - 10.4	45 m		Bearbeit	er:	
Bezeichnung:	KB 4_1			gestört		Datum:	5.04 9.0	04.2019		R. Albred	cht	
Uhrzeit	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h
Spannung (kPa)	10	20	40	80	160	320	80	40	80	160	320	640
Start (mm)	20.00	19.45	19.33	19.15	18.85	18.42	17.88	18.05	18.14	18.08	17.98	17.40
Setzung (mm)	0.55	0.67	0.85	1.15	1.58	2.12	1.95	1.86	1.92	2.02	2.60	3.30
Rel. Höhe (mm)	19.45	19.33	19.15	18.85	18.42	17.88	18.05	18.14	18.08	17.98	17.40	16.70
Spezifische												
Setzung (%)	2.75	3.35	4.25	5.75	7.9	10.6	9.75	9.3	9.6	10.1	13	16.5
∆ Spez. Setzung (%)		0.6	0.9	1.5	2.15	2.7	-0.85	-0.45	0.3	0.5	2.9	3.5
Laststufen (kPa)		10-20	20-40	40-80	80-160	160-320	Erstbe-	Zweitbe-	40-80	80-160	160-320	320-640
Steifem od ul E _s (k	Pa)	1667	2222	2667	3721	5926	lastung	lastung	13333	16000	5517	9143

Laststu f	10-20	20-40	40-80	80-160	160-320	320-640	
Steifemodul E _s	Erstbelastung	1667	2222	2581	4848	5714	
[kPa]	Zweitbelastung			16000	17778	16842	11228

Projekt: Masterart	oeit Richa	rd Albrec	ht	ungestö	rt x	Tiefe: 10).00 - 10.4	45 m		Bearbeit	er:	
Bezeichnung:	KB 4_2			gestört		Datum:	5.04 9.0	04.2019		R. Albred	ht	
Uhrzeit	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h
Spannung (kPa)	10	20	40	80	160	320	80	40	80	160	320	640
Start (mm)	20.00	19.38	19.26	19.08	18.77	18.44	17.88	18.03	18.11	18.06	17.97	17.78
Setzung (mm)	0.62	0.74	0.92	1.23	1.56	2.12	1.97	1.89	1.94	2.03	2.22	2.79
Rel. Höhe (mm)	19.38	19.26	19.08	18.77	18.44	17.88	18.03	18.11	18.06	17.97	17.78	17.21
Spezifische												
Setzung (%)	3.1	3.7	4.6	6.15	7.8	10.6	9.85	9.45	9.7	10.15	11.1	13.95
∆ Spez. Setzung (%)		0.6	0.9	1.55	1.65	2.8	-0.75	-0.4	0.25	0.45	0.95	2.85
Laststufen (kPa)		10-20	20-40	40-80	80-160	160-320	Erstbe-	Zw eitbe-	40-80	80-160	160-320	320-640
Steifemodul E _s (k	Pa)	1667	2222	2581	4848	5714	lastung	lastung	16000	17778	16842	11228

Laststu f	10-20	20-40	40-80	80-160	160-320	320-640	
Steifemodul E _s	Erstbelastung	1667	2222	2500	4000	6957	
[kPa]	Zweitbelastung			26667	20000	17778	11429

Projekt: Masterart	beit Richa	rd Albrec	ht	ungestö	rt x	Tiefe: 10).00 - 10.4	45 m		Bearbeiter:			
Bezeichnung:	KB 4_3			gestört		Datum:	5.04 9.0	04.2019		R. Albred	ht		
Uhrzeit	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	19.00 h	7.00 h	13.00 h	
Spannung (kPa)	10	20	40	80	160	320	80	40	80	160	320	640	
Start (mm)	20.00	19.33	19.21	19.03	18.71	18.31	17.85	17.98	18.05	18.02	17.94	17.76	
Setzung (mm)	0.67	0.79	0.97	1.29	1.69	2.15	2.02	1.95	1.98	2.06	2.24	2.80	
Rel. Höhe (mm)	19.33	19.21	19.03	18.71	18.31	17.85	17.98	18.05	18.02	17.94	17.76	17.20	
Spezifische													
Setzung (%)	3.35	3.95	4.85	6.45	8.45	10.75	10.1	9.75	9.9	10.3	11.2	14	
∆ Spez. Setzung (%)		0.6	0.9	1.6	2	2.3	-0.65	-0.35	0.15	0.4	0.9	2.8	
Laststufen (kPa)		10-20	20-40	40-80	80-160	160-320	Erstbe-	Zweitbe-	40-80	80-160	160-320	320-640	
Steifem od ul E _s (k	Pa)	1667	2222	2500	4000	6957	lastung	lastung	26667	20000	17778	11429	

PROB		GESAMTMINERALBESTAND											TONMINERALBESTAND							
			Verte	eilung	der ₩	linera	lbesta	ndte	eile ir				Mineralverteilung in der Fraktion < 2μm (%)							
Lab-Nr. (intern)	Labor Nr.	Lfd. Nr.	Methode	Quarz	Muskovit	Chlorit	Plagioklas	Kalzit	Dolomit	Pyrit	Granat	Kaolinit	Smektit	Summe	Mrskorit	Clorit	Snettt	, Kaonitt	Fraktion ≺2µm	Smektit eff
12770	20881	#1	RDA	22	Sp.	Sp.	5	62	11			Sp.	Sp.	100	66	Sp.	13	21	0.4	Sp.
12771	20881	#2	RDA	20	Sp.	1		79				Sp.	Sp.	100	39	7	30	24	0.3	Sp.
12772	20881	#3	RDA	19	3	1	8	62			5		2	100	68	15	17		9.5	2
12773	20881	#4	RDA	22	6	Sp.	10	62						100	79	21			39.9	
12774	20881	#5	RDA	18	Sp.	Sp.	5	77					Sp.	100	68	6	26		1.7	Sp.
12775	20881	#6	RDA	25	2	Sp.		71	1				1	100	75	Sp.	25		2.5	1
12776	20881	#7	RDA	23			2	75						100					1	
12777	20881	#8	RDA	25	2	Sp.		73					Sp.	100	77	Sp.	23		1.6	Sp.
12778	20881	#9	RDA	31	4	Sp.		63				2		100	66	20		14	14.7	
12779	20881	#10	RDA	28	12	Sp.		58	2					100	100	Sp.			22.6	
12780	20881	#11	RDA	23	16	1		55				5		100	71	18		11	41.9	
12781	20881	#12	RDA	24	11	2		43	14			6		100	59	22		19	33.3	
12782	20881	#13	RDA	30	2	Sp.	4	47	12	Sp.		4	1	100	53	21	7	19	18.7	1
12783	20881	#14	RDA	29	9	2	3	41	12	Sp.		4		100	69	15		16	24.5	
12784	20741	KB4	RDA	23	20	3		41	7	Sp.		5	1	100	62	22	3	13	40.3	1
12785	20742	KB1	RDA	24	17	7		40	11			1		100	68	29		3	45.4	

			undrained shear	d shear strength c _u : fall-cone						
Lake Core Section Length Sed Length water depth	Rininue RIN17-03 800mm 700mm			c _u =m*g*k/d²	m - cone weight g - earth acceleration d - penetration of the cone (mm) k - cone factor k (30° cor	ne)				
General comment					k (60° cor	ne)				
xz plane opened.						—				
depth (cm)	d=falling cone depth (mm)	c_u from cone (kPa) WOOD 1985; 30° cone	~ time after core splitting (h) p	Pore water GeoChem inluence?						
210 220 231 235 284 288 310 320 328 330 340 350 360 370 380 390 410	6.66 5.95 5.78 5.39 5.57 6.33 4.34 4.31 6.20 7.09 5.95 5.46 8.03 7.70 6.24 7.94 7.95	15.00 18.80 19.92 22.90 21.45 16.61 35.33 35.82 17.31 13.24 18.80 22.32 10.32 11.22 17.09 10.55 10.53								

calculation of the undrained	I shear strength / Berechnu	ung der undraini	erten Scherfestig	keit c _u (Automated Wille	Vane Shear)
Cruise:	SO 251 Leg B				
Lat:	Kumano slope core same lo	cation as GeoB 21			
Lon:					
Core:	GeoB 21866-2				
			and a firmer	lama	
vane muger	sman [mm]		medium	Targe	
Flügelhöhe, height	12.7		18.99	25.4	
Flügeldurchmesser, diameter	12.7		12.7	12.7	
	vane constant /Flügelkons	tanto K:			
vane /Flügel small	fully inside sediment /voll ei	ngetaucht	2.66E±05	K=3/(7*ni*(D^2/4)*H))	[m ³]
vane /Flügel medium	fully inside sediment /voll ei	ngetaucht	1 78E+05	K=3/(7*pi*(D*2/4)*H))	[m]
vane /Flügel large	fully inside sediment /voll ei	ngetaucht	1.33E+05	$K=3/(7*pi*(D^2/4)*H))$	[m ³]
Blum, P. (1997). "Physical prope	erties handbook: a guide to the http://www-odp.tamu.edu/p	shipboard measur publications/tnotes	ement of physical pro tn26/INDEX.HTM>.	c _u =T/K operties of deep-sea cores." 9. Strength: 1-10.	ODP Tech. Note, 26 [(
segments	core depth [cm]	T [Nm] PEAK	T [Nm] RE SIDUAL	c _u [kPa] peak	c, [kPa] residual
	210				
	210	0.068325	0.00204	18.20	0.54
	235	0.068325	0.00204	18.20 16.58	0.54
	235 310	0.068325 0.062252 0.104196	0.00204	18.20 16.58 27.76	0.54 0.00 8.25
	235 310 328	0.068325 0.062252 0.104196 0.057696	0.00204 0.030983 0.012146	18.20 16.58 27.76 15.37	0.54 0.00 8.25 3.24
	235 310 328 330	0.068325 0.062252 0.104196 0.057696 0.040994	0.00204 0.030983 0.012146 0.006072	18.20 16.58 27.76 15.37 10.92	0.54 0.00 8.25 3.24 1.62
	235 310 328 330 340	0.068325 0.062252 0.104196 0.057696 0.040994 0.042465	0.00204 0.030983 0.012146 0.006072 0.007543	18.20 16.58 27.76 15.37 10.92 11.31	0.54 0.00 8.25 3.24 1.62 2.01
	235 310 328 330 340 350	0.068325 0.062252 0.104196 0.057696 0.040994 0.042465 0.062252	0.00204 0.030983 0.012146 0.006072 0.007543 0.018362	18.20 16.58 27.76 15.37 10.92 11.31 16.58	0.54 0.00 8.25 3.24 1.62 2.01 4.89
	210 235 310 328 330 340 350 365	0.068325 0.062252 0.104196 0.057696 0.040994 0.042465 0.062252 0.068372	0.00204 0.030983 0.012146 0.006072 0.007543 0.018362 0.012193	18.20 16.58 27.76 15.37 10.92 11.31 16.58 18.21	0.54 0.00 8.25 3.24 1.62 2.01 4.89 3.25
	235 310 328 330 340 350 365 396	0.068325 0.062252 0.104196 0.057696 0.040994 0.042465 0.062252 0.068372 0.045549	0.00204 0.030983 0.012146 0.006072 0.007543 0.018362 0.012193 0.006784	18.20 16.58 27.76 15.37 10.92 11.31 16.58 18.21 12.13	0.54 0.00 8.25 3.24 1.62 2.01 4.89 3.25 1.81
	210 235 310 328 330 340 350 365 396 425	0.068325 0.062252 0.104196 0.057696 0.040994 0.042465 0.062252 0.068372 0.045549 0.033356	0.00204 0.030983 0.012146 0.006072 0.007543 0.018362 0.012193 0.006784 0.006073	18.20 16.58 27.76 15.37 10.92 11.31 16.58 18.21 12.13 8.89	0.54 0.00 8.25 3.24 1.62 2.01 4.89 3.25 1.81 1.62
	210 235 310 328 330 340 350 365 396 425 450	0.068325 0.062252 0.104196 0.057696 0.040994 0.042465 0.062252 0.068372 0.045549 0.03356 0.024293	0.00204 0.030983 0.012146 0.006072 0.007543 0.018362 0.012193 0.00674 0.006073 0.006988	18.20 16.58 27.76 15.37 10.92 11.31 16.58 18.21 12.13 8.89 6.47	0.54 0.00 8.25 3.24 1.62 2.01 4.89 3.25 1.81 1.62 0.80
	210 235 310 328 330 340 350 365 396 425 450 475	0.068325 0.062252 0.104196 0.057696 0.040994 0.042465 0.062252 0.068372 0.045549 0.03356 0.022774	0.00204 0.030983 0.012146 0.00607543 0.018362 0.012193 0.006784 0.006073 0.002988 0.002751	18.20 16.58 27.76 15.37 10.92 11.31 16.58 18.21 12.13 8.89 6.47 6.07	0.54 0.00 8.25 3.24 1.62 2.01 4.89 3.25 1.81 1.62 0.80 0.73
	210 235 310 328 330 340 350 365 396 425 450 475 535	0.068325 0.062252 0.104196 0.057696 0.040994 0.042465 0.062252 0.068372 0.045549 0.033356 0.024293 0.022774 0.019738	0.00204 0.030983 0.012146 0.006072 0.007543 0.018362 0.012193 0.006784 0.006073 0.002988 0.002277	18.20 16.58 27.76 15.37 10.92 11.31 16.58 18.21 12.13 8.89 6.47 6.07 5.26	0.54 0.00 8.25 3.24 1.62 2.01 4.89 3.25 1.81 1.62 0.80 0.73 0.61

				_						_	_		-		
Bohrunternehmung:					Auftrag	geber:			Bau	worhat	en:		Aufschluss:		
GEO	MAC				R. Albre	echt			<i>#</i> Un	defined	ł		SRS1		
Melis	au 807	7			Leberna	u 77			Mas	terarbe	eit Rich	ard Albrect	t		
6863	5 Egg				6883 A	u							Fink Ingo Andelsbuch		
Geröte	ührer; R	Abrecht			Geotechn.	Bearb.: R.	Albrecht		Datur	n: 06.06.2	2019		Wa8stab: 1:100		
Zeichn	er: R.	Abrecht													
RAMMS					NDIE	RUN	IG M näß Ö	it de Önor	ER S M B 4	CHW 4419,	/ERE Teil 1	N RAMI	MSONDE		
Kote 6 Koordi	30K: hoten:⇒	(=		y=	Tiefe von : GOK					Typ bis : 15.00			SRS 15		
Spitzer	querschrift	∺: 15 .	0 cm2		Wasse des	Fallgewie	:hts	50頃	Gesti	Cestängedurchmesser : 32.0 mm			Geräteget : meschinelle Kelle		
					Falhöne : 50 cm				Gesti	ingeabsch	nitte :	1.0 m			
Tiefe			And	zah de	r Schläge	pro 10 d	cm Vord	ningung (? ₁₀)				Bemerkungen ;		
m	1	0 2	0 3	0	40 50 60 70 80					90					
	Ł		İ		İ			İ							
1.00	<mark>ر</mark>														
2.00	ſ														
3.00	<mark>ک</mark>														
100	ſ														
1.00	2														
5.00	<u>Ļ</u>														
6.00	[
7.00	Ę														
8.00	ļ														
0.00															
9.00															
10.00		<u>-</u>													
11.00															
12.00		_													
13.00		<u> </u>													
14.00		ł													
15.00	15.00														

Beprobun	a TinvPer	m	Aufschlu	ss Andelst	Datum:29	$-31.05.20^{\circ}$		
Tiefe [cm]	60.0 cm	52.5 cm	45 cm	37.5 cm	30 cm	22.5 cm	15 cm	7.5 cm
90.0	8.94	8.67	8.44	8.20	8.83	8.85	8.50	8.12
97.5	8.42	8.51	8.14	8.45	8.35	8.33	8.65	8.03
105.0	8.05	8.24	8.42	7.96	8.51	8.34	7.71	8.02
112.5	8.26	8.54	8.72	8.35	8.84	8.05	8.52	8.66
120.0	8.27	9.22	8.58	8.49	8.68	8.47	8.47	8.69
127.5	8.15	9.11	9.16	8.20	8.91	8.66	8.57	8.54
135.0	8.69	8.90	8.42	8.65	9.01	9.06	8.58	8.44
142.5	8.83	8.53	8.89	9.25	8.24	9.19	8.69	8.39
150.0	8.94	9.38	9.40	9.14	9.31	9.12	9.51	9.50
157.5	8.38	7.94	8.34	7.85	8.25	7.88	8.15	8.68
165.0	8.77	8.54	8.72	8.66	8.71	8.79	8.53	8.81
172.5	8.78	9.12	8.65	9.08	8.62	8.76	9.18	9.11
180.0	8.07	8.17	8.12	7.96	8.22	8.18	7.94	8.04
187.5	8.72	8.65	8.89	8.13	8.27	8.74	9.00	7.79
195.0	7.96	8.05	7.89	7.66	8.13	8.27	7.51	7.81
202.5	8.17	8.22	8.13	7.89	8.05	8.10	7.69	8.32
210.0	9.05	8.69	9.17	8.66	8.85	8.18	9.27	8.26
217.5	9.72	9.66	9.82	9.67	9.78	9.68	9.87	9.65
225.0	12.05	11.75	11.89	12.02	12.18	12.21	12.45	12.32
232.5	12.17	12.23	11.98	11.87	12.15	12.31	11.96	11.52
240.0	11.43	11.31	11.28	11.33	11.39	11.32	11.48	11.27
247.5	11.70	11.89	12.66	11.62	12.02	11.57	11.73	11.35
255.0	9.16	8.46	8.33	8.72	8.08	8.08	8.04	8.28
262.5	8.22	8.66	8.34	9.22	8.42	8.34	8.32	7.90
270.0	8.63	8.79	8.93	8.50	9.59	8.60	9.72	9.27
277.5	8.33	8.40	7.94	8.79	8.60	8.10	8.16	8.49
285.0	10.07	10.85	9.07	9.65	9.99	9.96	11.13	10.49
292.5	9.23	8.00	8.04	7.91	8.62	9.06	9.12	8.72
300.0	9.96	10.12	10.47	10.33	10.07	9.94	10.23	10.76
307.5	10.72	11.31	11.36	10.89	11.02	10.73	11.36	10.59
315.0	11.02	9.61	10.88	9.76	11.27	11.21	9.65	9.77
322.5	11.82	11.67	11.46	11.81	11.57	11.42	11.51	11.94
330.0	12.34	10.00	12.32	12.38	12.28	12.39	12.41	12.27
337.0	12.22	12.35	12.48	12.45	12.07	12.33	10.00	12.22
343.0	11 70	11.01	12.63	11 50	11.32	11.78	12.00	11.60
302.0	11.70	11.00	11.03	1.55	10.00	11.02	11.74	11.00
300.0 207.5	11.06	12.32	12.13	11.62	12.30	12.13	12.00	11.62
275.0	12.46	11.40	11.30	11.02	11.00	11.00	11.72	12.05
373.0 392.5	12.40	1.20	12.59	1.75	12 55	12.26	12.13	12.00
390.0	12 37	12.42	12.55	12.28	12.55	12.00	12 58	12.00
397.5	11.50	12.42	12.00	12.56	12.00	14.71	12.50	12.40
405.0	11.00	16.77	11.94	12.00	11.69	11.83	12.50	12.00
412.5	11.1 6	11.89	12.22	12.54	11.37	11 71	12.00	12.93
420.0	12,08	11.50	11.88	11.76	12.75	12.01	11.53	12.30
427.5	12.53	12.54	12.02	9.58	9.50	9.55	9.07	11.28