

Abstract

Increasingly complex processes in industrial automation result in more re-
quirements on the collaboration between teams and companies. The need for
a unified communication process arises, as nowadays, automation engineers
working on programmable logic controllers (PLCs) can be distributed on sev-
eral buildings, countries or collaborate with engineers from various subsidiary
companies. One way of providing a unified communication process is by using
a dedicated instant messaging system (IMS). While several studies elaborate
on the controversial usage of IMSs within work, the majority agrees on the
positive effects.

The automation customers of Siemens use their enterprise industry automation
software, Totally Integrated Automation Portal (TIA Portal). Currently, the
TIA Portal does not provide a communication mechanism for collaborating
automation engineers. In practice, we have seen that this causes delays and
misconceptions due to the usage of various communication tools. Hence, this
thesis focuses on how to design and integrate an IMS into the TIA Portal to
solve those issues.

Within the scope of this thesis, three different approaches on how an IMS can be
integrated have been implemented and evaluated. Approach 1 enables instant
messaging through WebRTC. WebRTC allows peer-to-peer communication
within a browser. The signaling server required for connection establishment
is implemented in Node.js. Approach 2 is a cloud-based solution building on
Microsoft’s SignalR service. SignalR is used to add real-time web functionality
to the underlying ASP.NET Core application. Approach 3 enables instant
messaging via connected PLCs. For this purpose, the on-board functionality of
Siemens Simatic PLCs is used. Evaluation of the different approaches shows
that approach 1 is the primary choice with regards to the requirements defined
by Siemens.

Keywords: Instant Messaging, WebRTC, Signaling, Node.js, SignalR, ASP.NET
Core, PLC, Azure

Kurzfassung

Immer komplexere Prozesse in der industriellen Automatisierung führen zu
höheren Anforderungen an die Zusammenarbeit zwischen Teams und Unter-
nehmen. Der Bedarf an einem einheitlichen Kommunikationsprozess entsteht,
da Automatisierungsingenieure, die an speicherprogrammierbaren Steuerungen
arbeiten, heutzutage verteilt in verschiedenen Gebäuden und Ländern oder
mit Ingenieuren verschiedener Tochtergesellschaften zusammenarbeiten. Eine
Möglichkeit, einen einheitlichen Kommunikationsprozess bereitzustellen, be-
steht in der Verwendung eines dedizierten Instant-Messaging-Systems (IMS).
Zahlreiche Studien befassten sich bereits mit den Auswirkungen eines IMS am
Arbeitsplatz. Obwohl einige Studien die negativen Auswirkungen darstellen, ist
sich die Mehrheit der Studien über die positiven Auswirkungen einig.

Automatisierungskunden von Siemens nutzen das Engineering-Framework To-
tally Integrated Automation Portal (TIA Portal) für die digitalisierte Automati-
sierung. Derzeit bietet das TIA Portal keinen Kommunikationsmechanismus für
Automatisierungsingenieure, die zusammen an einer Automatisierungslösung
arbeiten. In der Praxis hat sich gezeigt, dass verschiedene Kommunikationsmit-
tel verwendet werden und dies zu Verzögerungen oder gar Missverständnissen
führt. Daher befasst sich diese Masterarbeit mit dem Design und der Integration
eines IMS in das TIA Portal um die zuvor erwähnten Probleme zu lösen.

Im Rahmen dieser Arbeit wurden drei verschiedene Ansätze zur Integration
eines IMS implementiert und evaluiert: Ansatz 1 ermöglicht Instant Messaging
über WebRTC. WebRTC stellt Echtzeitkommunikation innerhalb eines Brow-
sers für sogenannte Peers bereit. Der für den Verbindungsaufbau erforderliche
Signalisierungsserver ist in Node.js implementiert. Ansatz 2 ist eine Cloud-
basierte Lösung, die auf dem SignalR Dienst von Microsoft aufbaut. SignalR
wird verwendet, um der zugrunde liegenden ASP.NET Core-Anwendung Echt-
zeitkommunikation zu ermöglichen. Ansatz 3 ermöglicht Instant Messaging über
eine On-Board-Funktionalität verbundener Siemens Simatic speicherprogram-
mierbarer Steuerungen. Die Evaluierung der verschiedenen Ansätze zeigt, dass
Ansatz 1 die bevorzugte Lösung im Hinblick auf die von Siemens definierten
Anforderungen ist.

Acknowledgements

I want to thank my supervisors Georg Macher and Michael Krisper, for the
valuable and fast feedback they provided. Their ideas and input helped a lot
in implementing the different approaches used in this thesis and increasing the
quality with regards to the content.

I also want to thank several people at Siemens. I owe my thanks, Christoph
Scherr, for giving me the chance to write my thesis at Siemens, where I was
able to work on a practice-oriented problem. Thanks to my former team Istari
for their support throughout the year and their jokes that I will never finish my
thesis - yes, I finally did it. Moreover, thanks to Christian Eitner, for teaching
me the essentials of writing a thesis with his incredible patience.

I am deeply thankful for my family. They always lent me a sympathetic ear
and encouraged me to finish my studies. I could not imagine a better family.
Finally, I also want to thank the love of my life, Michi, for always backing me
up in hard times. Studying is not only fun, it also involves stress and captures
a lot of free time. You are the strong woman behind a man that everybody
aims for. I am really looking forward to start a new chapter in our lives.

Lukas Tanner

Contents
1 Introduction . 11

2 Background . 13
2.1 Fundamentals . 13

2.1.1 Cloud computing . 13
2.1.2 Web Service . 15
2.1.3 Virtualization and Containerization 17
2.1.4 Edge Computing . 20

2.2 Instant Messaging . 21
2.3 Instant Messaging Architectures 23

2.3.1 Client-Server . 23
2.3.2 Peer-to-Peer . 24
2.3.3 Serverless . 29

2.4 Security Aspects of Instant Messaging 31
2.4.1 Security Requirements of Instant Messaging 31
2.4.2 Security Threats of Instant Messaging 32

2.5 Basic Instant Messaging Protocols 35
2.5.1 XMPP . 35
2.5.2 SIP/SIMPLE . 38

2.6 Real-Time Communication . 41
2.6.1 WebRTC . 42
2.6.2 SignalR . 43

2.7 Graphical User Interface Design 44

3 Related Work on Instant Messaging 46
3.1 Positive Work-Related IM Effects 46
3.2 Negative and Controversial Work-Related IM Effects 47

4 Problem Statement . 49
4.1 Problem Description . 49
4.2 Requirements . 50

5 Related Industrial Standards . 52
5.1 Standard ISA 95 . 52
5.2 Standard ISA 88 . 53
5.3 Standard IEC 61131 . 53
5.4 Standard IEC 62264 . 53
5.5 Standard IEC 61508 . 54

6 Industrial Environment . 55

7 Approach . 57

6

7.1 Approach 1: WebRTC with Node.js Server 57
7.2 Approach 2: Cloud-based solution with SignalR service 60
7.3 Approach 3: Chat via PLC . 64

8 Evaluation . 68
8.1 Discussion of Approach 1 . 71
8.2 Discussion of Approach 2 . 71
8.3 Discussion of Approach 3 . 71
8.4 Result . 72

9 Limitations . 73
9.1 Compatibility/Technology/Dependencies 73
9.2 Scalability . 73
9.3 Usability . 74
9.4 Functionality . 74
9.5 Process/Maintenance . 74

10 Conclusion and Future Work . 75

Acronyms . 76

References . 78

7

List of Figures
1 Cloud service models . 15
2 Virtual machine system structure 17
3 Virtual machine monitor architectures 18
4 Virtualization vs. containerization 19
5 Edge/Fog computing overview 20
6 Instant messaging services . 21
7 Presence system . 22
8 Instant messaging system . 22
9 Client-server Architecture . 23
10 Replicated-server Architecture 24
11 Pure Peer-to-peer Architecture 26
12 Hybrid Peer-to-peer Architecture 27
13 Super Peer-to-Peer Architecture 27
14 Exemplary DHT lookup query 28
15 Serverless services overview . 29
16 Overview of most important FaaS providers 30
17 XMPP architecture . 35
18 Simplified SIP session establishment 39
19 SIMPLE presence information exchange 39
20 SIMPLE message exchange . 40
21 STUN and TURN server concept 43
22 Design requirements of different user experience levels 45
23 Automation pyramid . 53
24 Exemplary automation setup . 56
25 Approach 1 overview . 58
26 Approach 1 signaling . 59
27 Approach 1 GUI . 60
28 Approach 2 overview . 61
29 Approach 2 message transfer . 62
30 Approach 2 GUI . 64
31 Approach 3 overview . 65
32 Approach 3 workflow . 66
33 Approach 3 GUI . 67

8

Listings
1 WSDL 2.0 example definition 16
2 XMPP XML stream example 36
3 Exemplary JavaScript code used to connect to easyRTC server . 58
4 Exemplary SignalR Hub code 63
5 SignalR connection establishment 63

9

List of Tables
1 Functional requirements . 50
2 Non-functional requirements . 51
3 Feature Matrix . 70

10

1 Introduction

Increasingly complex processes in industrial automation result in more re-
quirements on the collaboration between teams and companies. One of such
requirements is to learn how to effectively communicate through various time
zones, locations, and cultures (Reed & Knight, 2010). The mix of different
communication technologies like phone calls, emails, forums, instant messag-
ing (IM), etc., can lead to communication bottlenecks and thus decreases the
productivity. However, it has been shown (Ou, Davison, Liang, & Zhong,
2010; Bakar & Johari, 2009) that IM is an effective communication tool and
is particularly helpful in communication of geographically separated teams
(Armoogum & Mudhoo, 2016).

The automation customers of Siemens use their enterprise industry automa-
tion software, Totally Integrated Automation Portal (TIA Portal). Currently,
the TIA Portal does not provide a communication mechanism for collaborating
automation engineers. More information about the problems that occur without
a unified communication process can be found in Chapter 4. The goal of this
thesis is to design and implement an IMS that is integrated into the TIA Portal
and thus, provides a unified communication process.

Implementing an IMS involves several decisions, such as the underlying
architecture, security requirements, protocols, or graphical user interface (GUI).
Traditional IM architectures are client-server or peer-to-peer (Barry & Tom,
2011) and use the standardized communication protocols session initiation
protocol (SIP) (Campbell, Rosenberg, Schulzrinne, Huitema, & Gurle, 2002) or
the extensible messaging and presence protocol (XMPP) (Saint-Andre, 2009).
With the rise of cloud computing, new possibilities like serverless architectures
have emerged. Serverless architecture refers to a programming model where
small code snippets are executed in the cloud without any control over the
resources on which the code runs (Baldini et al., 2017). Serverless architectures
gained increased popularity due to the recent shift of enterprise applications to
containers and micro-services (Baldini et al., 2017).

Adding real-time-communication (RTC) functionality to an application
used for IM is an essential task. Too long message delays can decrease the
acceptance of an IMS or even result in abandonment. Two important concepts
exist for enabling RTC that are used within the scope of this thesis: web
real-time communication (WebRTC) and SignalR. WebRTC is a collection
of standards and protocols for enabling audio/video calling, video chats, and
P2P chat for browser-to-browser applications without needing any third-party
software. SignalR is a framework from Microsoft targeting ASP.NET used to
integrate RTC in web applications.

11

As IM has increasingly become the target of attacks (Armoogum & Mudhoo,
2016), adequate security mechanisms must be ensured (Barry & Tom, 2011).
Unger et al. (2015) identified the following three key challenges that need to be
considered: trust establishment, conversation security, and transport privacy.
Additionally, Abu-Salma, Sasse, Bonneau, and Smith (2015) argue that for
achieving adequate security, messaging tools need a high level of usability.
However, Musiani and Ermoshina (2017) observed a trade-off between security
and usability in most of the existing IM tools.

The remainder of this work is structured as follows: Chapter 2 provides
background information on IM needed within the scope of this thesis. Work-
related IM effects are discussed in Chapter 3. Chapter 4 explains the underlying
problem statement and requirements. Chapter 5 outlines the industrial setting
with focus on important standards. Chapter 6 illustrates the environment of
the target enterprise industry automation software, the TIA Portal. In Chapter
7, the implemented approaches are presented. An evaluation of implemented
approaches is done in Chapter 8. Limitations of the approaches are discussed
in Chapter 9. Finally, Chapter 10 gives a conclusion and an outlook on possible
future work.

12

2 Background

This chapter provides an introduction to IMSs. The first section covers the
fundamental technologies used in this thesis. Afterwards, a definition of IMS
is provided. In the following sections, basic architectures, protocols, and IMS
security aspects are explained. Finally, the last sections focus on examining
real-time communication and graphical user interface (GUI) design.

2.1 Fundamentals

This section aims to explain basic technologies and mechanisms that are used
throughout this thesis. It covers cloud computing, the definition of a web
service, virtualization, containerization, and edge/fog computing.

2.1.1 Cloud computing

Over the last years, cloud computing became an vital technology trend (Furht,
2010). A definition for cloud computing is provided by the NIST institute
(Mell & Grance, 2011): “Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction.” The base concept of cloud computing is the cloud. In
general, the term cloud is used the describe the conglomeration of servers,
where processing power, storage, and information is made available for users
over the internet. Clouds can be classified into four different types:

a) Public cloud : This is the most common type of cloud computing. Cus-
tomers can access publicly available services over the internet from a
third-party service provider.

b) Private cloud : A private cloud refers to a cloud exclusively used by a
single organization or individual. On-premise is a variant where the
organization itself is responsible for the execution and management of
the services.

c) Community cloud : In a community cloud, the cloud infrastructure is
managed by a community of consumers.

d) Hybrid cloud : Is a combination of two or more distinct cloud types.

13

Benefits

In comparison to traditional computing concepts, cloud computing offers a vast
variety of new features (Wang et al., 2008; Ramadan & Kashyap, 2010):

a) Scalability : Resources and services are provided on demand. The cloud
provider can easily scale assigned resources depending on the workload.

b) Guaranteed Quality of Service (QoS): The cloud provider guarantees a
high service level towards performance and availability.

c) Mobility : Services can be used location independent.
d) Costs : Users do not need to afford and set up expensive infrastructure,

because the cloud provider already does it. Further, they only need to
pay for the needed services and storage capacity.

e) Autonomous system: Cloud computing systems are transparently man-
aged autonomous systems. In order to present a simple platform depend-
ing on the user’s requirements, data within the cloud can be reconfigured
or consolidated automatically.

Drawbacks

In contrast to the benefits, there are also several drawbacks. In essence, the
biggest concern is the loss of control and the security and privacy issues that
go hand in hand with it (Ramadan & Kashyap, 2010). Using a cloud provider
implies a complete data handover introducing the risk of unauthorized data
access. Jadeja and Modi (2012) argue that also replication time and reliability
can be an issue. A high replication time can harm data resiliency. Cloud server
downtimes contribute to reliability.

Service models

Another way to describe cloud computing is to have a look at the offered service
models. Cloud computing is composed of three service models (Mell & Grance,
2011) that are illustrated in figure 1. The on-premise approach refers to a
concept where all of the services, resources, and applications are self-managed.
The three service models are defined as:

a) Infrastructure as a service (IaaS): IaaS means that computer infras-
tructure, e.g., server, computer, disk space, network, is provided as an
outsourced service (Chang, Abu-Amara, & Sanford, 2010). Resources
can be acquired dynamically when they are needed.

b) Platform as a service (PaaS): PaaS builds on top of IaaS. Services
provided by IaaS are extended with a custom software stack for specific
applications, e.g., database or operating system (Furht, 2010).

14

Figure 1: Cloud service models adapted from Microsoft Docs (2018)

c) Software as a service (SaaS): SaaS means that whole applications are
running in a cloud infrastructure and are provided to customers (Buxmann,
Hess, & Lehmann, 2008). The SaaS provider is responsible for running
and maintaining the offered applications. Clients use different devices to
access applications. SaaS runs on top of PaaS.

Another service model referring to a new PaaS generation is function as a
service (FaaS). FaaS is used in the serverless paradigm. A detailed explanation
of serverless and FaaS is provided in Section 2.3.3. One important aspect
in terms of cloud computing are enabling technologies, building the cloud
computing fundament. Besides the basic Web 2.0 technology, other enabling
technologies are web services and virtualization (Wang et al., 2010). In the
following sections, web services, virtualization, and containerization are defined.

2.1.2 Web Service

IBM defines a web service as “self-contained, self-describing, modular applica-
tions that can be published, located, and invoked across the web. Web services
perform functions that can be anything from simple requests to complicated
business processes” (Tidwell, 2000). Web services can be categorized into state-
less and stateful services (Papazoglou & Dubray, 2004). When a service is
invoked repeatedly without the need to maintain any context or state, the
service is considered to be stateless, while services that need to preserve context
information are considered to be stateful. Cloud services are typically designed
as web services, which follow industry standards such as SOAP or REST (Furht,
2010). Web services description language (WSDL) is an XML-based interface
description language used to describe web services. It addresses the problem

15

of providing a uniform and consistent web service description. The latest
version of the standard is WSDL 2.0 and was published in 2007 (Chinnici,
Moreau, Ryman, & Weerawarana, 2007). WSDL 2.0 enables the description
separation of functionality from the concrete details, such as the location of the
offered functionality. WSDL files are used for the service description (Josuttis,
2007). They consist of used data types descriptions and three additional layers:
i) Interface layer: Describes the provided operations with input and output
parameters that use the defined data types. ii) Binding layer: Contains the
web service’s protocol and format. iii) Service layer: Uses the address or URL
of the web service the specify its location.

An exemplary WSDL 2.0 web service definition is shown in listing 1. It
contains a single interface description with one input and output parameter
and uses two defined types.

1 <description>
2 <types>
3 ...
4 <xs:element name="latestRequest" type="requestType"/>
5 <xs:complexType name="requestType">
6 <xs:sequence>
7 <xs:element name="date" type="xs:date"/>
8 </xs:sequence>
9 </xs:complexType>

10 <xs:element name="responseType" type="xs:string"/>
11 </xs:schema>
12 </types>
13 <interface name = "myInterface" >
14 <operation name="myOperation">
15 <input messageLabel="In" element="stns:requestType" />
16 <output messageLabel="Out" element="stns:responseType" />
17 </operation>
18 </interface>
19 <binding>
20 ...
21 </binding>
22 <service>
23 ...
24 </service>
25 </description>

Listing 1: WSDL 2.0 example definition

16

2.1.3 Virtualization and Containerization

Virtualization is a concept developed over the last decades and is especially
important for cloud infrastructure. Pearce, Zeadally, and Hunt (2013) describe
the essence of system virtualization as the use of a software layer encapsulating
or underlying an operating system (OS) that provides the same expected
behavior as the physical hardware. This layer is referred to as the virtual
machine monitor (VMM) or hypervisor. The main difference between a VMM
and an emulator is that all instructions are intercepted by the emulator, whereas
a VMM only intercepts sensitive instructions. All non-sensitive instructions are
executed directly on the hardware, if possible. Figure 2 shows the traditional
structure of a virtual machine (VM) system. The VMM takes complete control
of the machine hardware and creates virtual machines. The VMs behave like a
complete physical machine running its own OS.

Figure 2: Virtual machine system structure by Sugerman, Venkitachalam, and
Lim (2001).

There are two types of VMMs illustrated in figure 3. A Type-I (or classical)
VMM is installed on the hardware as the primary boot system. Execution
is done with the highest privilege level and full control over all used virtual
machines. A Type-II (or hosted) VMM has a more complex structure. The
VMM is located above or alongside a host OS and above the hardware. Drivers
from the host operating system may be shared to handle input/output (I/O).
Hardware-specific drivers are not required for VMM I/O operations, and using
a VM with an existing environment is possible. This VMM type is used by
popular products such as VMWare or Sandbox.

Virtualization offers various benefits (Menascé, 2005):

a) Security : Environments with different security requirements can be run
on different virtual machines. Different tools and the OS can be chosen

17

Figure 3: Virtual machine monitor architectures by Pearce, Zeadally, and Hunt
(2013) : Type-I on the left and Type-II on the right.

to fulfill the security requirements.

b) Reliability and Availability : Software failures affect only the virtual
machine the software is running on.

c) Cost : Several cost factors like hardware costs, space costs, software
licenses can be reduced by server consolidation.

d) Adaptability of workload variations : Changing workload intensity levels
are managed by resource shifting and priority allocations among virtual
machines.

e) Legacy applications : Legacy applications can still be run on VMs. Hence,
migration to another OS can be avoided.

Containerization

While virtualization provides many advantages, some limitations remain. The
general use case of a VM is an isolated large file stored on the host’s file system,
run by a single, large process (Pahl, 2015). The need for full OS images for each
VM together with the specific necessary binaries for the application contributes
to disk storage shortness and a slow start-up. Out of the need for producing a
more lightweight computation resource, containerization emerged. A container
is defined as a package containing all necessary business logic, middleware,
or ready-to-deploy application parts that are needed to run an application
(Pahl, 2015). Containers work in a Linux environment providing isolation and
efficient resource management. The basic principle is that containers share an
OS and optionally binaries and libraries, resulting in smaller-sized deployments
compared to hypervisor deployments (Bernstein, 2014). This enables the
storage of numerous containers on a single physical host. Figure 4 illustrates

18

the basic concept of containers compared to hypervisor-based virtualization. As
containerization works at the OS level, it provides weaker isolation compared
to virtualization. It is also limited in the number of supported guest OSs, e.g.,
Windows cannot be booted on Linux containers (Dua, Raja, & Kakadia, 2014).
From the user’s point of view, each container appears like a stand-alone OS.

Figure 4: Virtualization vs. containerization adapted from Dua, Raja, and
Kakadia (2014)

Docker is currently the most popular container solution (Pahl, 2015). Ac-
cording to Anderson (2015), Docker addresses two problem areas for developers.
Firstly, continuous integration and development: Due to the lightweight nature
of Docker containers, various production environments can easily be build and
tested on a developer machine. Docker containers provide a high portability
level, helping to solve the classic “it only works on my machine” problem. They
also lead to time reduction because the container setup is much faster than
the traditional VM setup. Secondly, capacity: VMs use a hypervisor, which
accounts for 10-15 percent of the host’s capacity. Docker containers need less
memory and are up to 26 times faster than a VM.

Docker containers are constructed using base images. Docker uses an onion
principle, meaning that each action taken within the container, e.g., installing a
library, adds a new layer to the base image. Actions can be performed manually
or using Dockerfiles (Combe, Martin, & Di Pietro, 2016). A Dockerfile is a
script containing instructions listed successively. Execution of instructions
forms a new image. An image can include only OS fundamentals or application
stack parts up to the full application stack. Further, images can be saved and
reused in other containers. Portable application containers are realized using
complete docker images, resulting in a lightweight and easily distributable
deployment.

19

2.1.4 Edge Computing

While cloud computing provides many benefits (see Section 2.1.1), problems
for latency and data-intensive applications can arise (Bilal, Khalid, Erbad, &
Khan, 2018). The distance between edge devices and the cloud data center
is usually very high. With the rising number of edge devices, high latency is
one of the biggest challenges that need to be faced by end-to-end applications.
An emerging viable solution is edge computing. Edge computing is defined as
a type of distributed computing, allowing the computation to be performed
at the edge of the network (Shi, Cao, Zhang, Li, & Xu, 2016). Edge refers
to any computing and network resource between the edge devices and the
cloud data center. The main difference to cloud computing is the location of
data processing. With the presence of edge devices, the computation load of
data centers is reduced because some request computation can be done locally
without the intervention of the cloud (Dolui & Datta, 2017). As a result,
latency is reduced, and real-time handling of a subset of requests is supported.
Fog computing also refers to extending the computation to the edge of the
network. The terms fog and edge computing are often used interchangeably,
although they are not the same. The term fog computing is created by Cisco
and was introduced in 2012 (Bonomi, Milito, Zhu, & Addepalli, 2012). In
general, fog computing is a paradigm describing how the edge computation
is carried out. It involves the addition of networking layers between the edge
devices and the cloud. In figure 5, an overview of fog computing is illustrated.
The edge layer comprises all edge devices, and computation is either directly
processed on the device or transferred to a fog node. The fog nodes contained
in the fog layer can preprocess data and transmit it to the cloud on demand
(Yi, Li, & Li, 2015).

Figure 5: Edge/Fog computing overview

20

2.2 Instant Messaging

This section gives a definition of IM and the concept of an instant messenger.
Instant messaging (IM) is defined as a type of computer-mediated commu-
nication (CMC). CMC subsumes communicative transactions using two or
more networked computers (Barry & Tom, 2011). The main difference between
other CMCs like email or social network services is that IM is intended for
immediate end-user delivery (Debbabi & Rahman, 2003). According to the
RFC2778 standard (Sugano, Day, & Rosenberg, 2000), IM comprises two basic
services: presence and instant messaging. Figure 6 depicts an overview of the
two services. The presence service is responsible for storing and distributing
presence information. Presentities provide presence information. Watchers
receive presence information via the service. The instant messaging service is
responsible for delivering instant, real-time text messages from a sender to a
particular instant inbox address.

(a) Presence service (b) Instant messaging service

Figure 6: Instant messaging services

In order to describe the general concept of an instant messenger, the
terms presence system and IMS need to be explained before. In the following
definitions, the term principal refers to real-world people or software using the
system, and a user agent is a coupling between a principal and some system
entity. A presence system comprises the presence service, a presence protocol, a
presence user agent and watcher user agent for a single principal using a single
presentity and a single watcher. Figure 7 shows a presence system. A typical
example of a presence system is a buddy-list application, where the presence of
users is exposed.

An IMS comprises the IM service, an IM protocol, a sender user agent, and
inbox user agent for a single principal using a single sender and an instant
inbox. Figure 8 shows the components of an IMS.

21

Figure 7: Presence system

Figure 8: Instant messaging system

An instant messenger can then be defined as a combination of a buddy-list
together with instant messaging capabilities provided by the IMS. Key features
provided by an instant messenger are (Debbabi & Rahman, 2003; Mannan &
van Oorschot, 2004; Garrett & Danziger, 2007):

• Sending and receiving of messages in real-time is supported.

• Either party can initiate communication.

• Different message formats (text, file, video) might be supported.

• Availability of users can be tracked via presence service.

• Message receivers are notified of incoming communication.

22

2.3 Instant Messaging Architectures

This chapter aims to give an overview of different architectures that are used
in IMSs. Traditional architectures are client-server and peer-to-peer. Another
architecture that can be used is serverless.

2.3.1 Client-Server

Client-server is a fundamental communication-model used in various application
domains (Bischofs, Hasselbring, & Warns, 2008). Porter and Gough (2007)
describe the roles in a client-server architecture as the following:

• Client: Requests specific services or resources.

• Server: Fulfills the requests.

Figure 9 shows a simple client-server system. Clients only interact with the
server and not with any other peer. If clients want to communicate with each
other, all information is routed over the server. This is often referred to as a
centralized communication form (Williams & Ly, 2004).

Figure 9: Client-server Architecture

Client-server architectures are categorized into symmetric and asymmetric
architectures (Jennings et al., 2006). In a symmetric architecture, servers
are responsible for the same functions. Hence, clients can use the servers
interchangeably. This approach offers easy management but might not scale
with large amounts of users. In order to support more massive networks, servers
can also be replicated and interconnected (Williams & Ly, 2004). Figure 10
shows two separated networks, where clients registered at the head office server
can communicate with clients registered at the branch office server.

23

Figure 10: Replicated-server Architecture

On the contrary, in asymmetric architectures, a server is only responsible for
a specific service, e.g., forwarding messages, or user discovery. This approach
provides better a scalability for growing numbers of users but requires a complex
infrastructure. According to Resig and Teredesai (2004), the formerly most
popular IMSs (ICQ, MSN Messenger, Yahoo! Instant Messenger) and various
IRC networks implemented a client-server architecture. A specific service
provider administrated the server. Clients had to register themselves at the
service provider and then use, e.g., the provider-approved client.

2.3.2 Peer-to-Peer

Peer-to-peer (P2P) is a fundamental communication-model used in various
application domains (Bischofs et al., 2008). It means that peers communicate
directly and can act as a server and client at the same time. Schollmeier (2001)
defines the primary difference to the client-server model as the concept of a
servent. Servents are entities that can act as a client or a server. Hauswirth
and Dustdar (2005) characterize P2P systems via the following properties:

• Peers can act as a client or a server (servant).

• Decentralized and self-organized system.

• No central database exists.

• Peers act autonomously.

• Peers do not have a global view of the system - they only know the peers
they are interacting with.

Formally, P2P systems are modelled as graphs (Bischofs et al., 2008). Nodes
represent peers, and connections are modelled via edges between nodes. Con-
nected peers are defined as neighbors. Peers can only exchange information
with their neighbors. The RFC standard 5694 (Camarillo, 2009) describes two
essential functions that a P2P system needs to provide:

24

a) Enrollment Function: The enrollment function is responsible for authen-
ticating and authorizing new nodes that want to join the P2P system
and for providing valid credentials.

b) Peer Discovery Function: The peer discovery function is responsible for
allowing nodes to discover peers and connect to them. Joining a P2P
system requires connection establishment to one or more peers.

Bootstrapping

The process of integrating a new node into a P2P system is referred to as
bootstrapping (Cramer, Kutzner, & Fuhrmann, 2004). Therefore, bootstrapping
aims to find a peer that is already connected to the network. Multiple discovery
approaches have been defined (Dinger & Waldhorst, 2009):

1) Bootstrap Server (or Static Overlay Node): The basic idea of a bootstrap
server is to provide addresses of already connected peers. These servers
are endowed with well-known DNS names or IP addresses. Client software
is shipped already containing the information about the active bootstrap
servers. This approach was initially used by the file-sharing network
Gnutella (Gnutella Developer Forum, 2003). In Gnutella, the bootstrap
servers were called "pong caches" and provided information about the
network topology and addresses of other peers. Pong caches returned a
list of recent participating nodes on node joining requests. The first entry
was used for establishing the connection.

2) Local Host Cache: Peers maintain a list with addresses of other peers.
Rejoining the network works by connecting to peers from the cache
without the need to contact a bootstrap server. This approach works as
long as at least one node contained in the cache is active.

3) Random Address Probing: Nodes that want to join the network use
randomly selected IP addresses and default ports to send the join request
to active peers. This approach is not suited for a cold start of the P2P
system.

4) Network Layer Mechanisms: Nodes can use, e.g., the network layer
mechanism multicast for facilitating the bootstrap process. The problem
with multicast is that multicast traffic is usually not routed beyond the
local network domain.

25

P2P architectures

P2P networks build a virtual network, called overlay network, with its own
routing mechanisms at the application level on top of the physical network
(Kamel, Scoglio, & Easton, 2007). The overlay network contains all or only a
subset of the physical nodes. Communication is carried out via TCP/IP, while
peers can communicate directly at the application layer using the logical overlay
links. Classification of P2P networks is done as unstructured or structured based
on the link structure within the overlay network (Eberspächer & Schollmeier,
2005). Unstructured P2P architectures are categorized into pure, hybrid and
super peer architectures (Jennings et al., 2006). Figure 11 shows a pure P2P
architecture. Due to the absence of a server, this model is considered to be pure.
This is often referred to as a decentralized communication form (Williams &
Ly, 2004).

Figure 11: Pure Peer-to-peer Architecture

In hybrid P2P architectures, a central server, which is responsible only for a
limited functional scope, is used. The central server is responsible for exchanging
control and presence information. Peer communication is carried out like in
the pure P2P architecture. Figure 12 shows an example of a hybrid P2P
architecture.

Super peer architectures represent a combination of centralized and decen-
tralized communication models (Bischofs et al., 2008). A super-peer is defined
as a peer that serves as a server for a group of other peers while also serving
as an equal in a network of super-peers (Yang & Garcia-Molina, 2004). A
cluster contains a super-peer with all its assigned peers. The benefits of this
approach are reduced time and bandwidth for search, load balancing, and server
independence. Figure 13 shows an example of a super P2P architecture.

26

Figure 12: Hybrid Peer-to-peer Architecture

Figure 13: Super Peer-to-Peer Architecture

Distributed Storage and Lookup

In structured P2P architectures, the overlay network is tightly controlled, and
resources are placed at specified locations (Androutsellis-Theotokis & Spinellis,
2004). A mapping between the content and location is provided via a distributed
hash table (DHT) in order to provide efficient routing. A DHT consists of a
lookup and storage protocol (Sit & Morris, 2002). The essential components of
the lookup protocol are the key and node identifier space, rules for associating
keys to specific nodes, per-node routing tables, and rules for updating the table
on topology changes. Lookup queries are routed from the starting node in a
few hops towards the target node. The routing can be done in O(log N) hops,
where N is the number of nodes, due to the small amount of node references
managed by a single node (Steinmetz & Wehrle, 2005). Further, DHTs provide

27

load-balancing because the node and data identifiers are distributed nearly
equally through the overlay network. Figure 14 depicts an exemplary lookup
query in a structured overlay network.

Figure 14: Exemplary DHT lookup query by Steinmetz and Wehrle (2005). (1)
Lookup request from node A for item D send to a random node. (2) Request
is forwarded in O(log N) hops to target node. (3) Target node sends D to A.

28

2.3.3 Serverless

With the clarification of cloud computing and the different service models (see
Section 2.1), we are now able to discuss the serverless paradigm. Serverless
refers to a new generation of PaaS (Adzic & Chatley, 2017). The service
provider is responsible for receiving and responding to client requests, task-
scheduling, operational monitoring, and capacity planning. Serverless can be a
misleading term because servers are still needed to execute functions and host
applications. van Eyk, Iosup, Seif, and Thömmes (2017) identify the following
three key properties of a serverless architecture:

a) Granular billing: Users are only charged when the application is executed.
b) No operational logic: The infrastructure provider is responsible for opera-

tional logic, such as auto-scaling or resource management.
c) Event-driven: Serverless applications respond to events, e.g., display a

new instant message.

The question now is: how does serverless fit into the above-explained service
models of cloud computing? van Eyk et al. (2017) use the perspective of who
manages the operational logic. Figure 15 shows that serverless fits in the gap
between PaaS and SaaS, while it marginally overlaps with them. They argue
that this overlapping is based on some example services that show serverless
characteristics. The main concepts of serverless are backend as a service (BaaS)
and FaaS.

Figure 15: Serverless services overview by van Eyk, Iosup, Seif, and Thömmes
(2017)

BaaS provides developers the capability of connecting their applications to
backend cloud processing and storage (Lane, 2015). Additionally, other common
features, such as user management or push notifications are supported. FaaS
focuses on the management of resources, life-cycle, and event-driven execution
of user-provided functions by the cloud service provider (van Eyk et al., 2018).

29

Developers implement small, stateless functions - the cloud provider is then
responsible for managing the operational aspects of these functions. As we
can see in figure 15, the user is still responsible for managing the operational
logic to some extent. Examples include configuration management, such as the
number of CPUs, data storage space and amount of service instances.

Figure 16 depicts the most important FaaS providers. All major cloud
providers (Amazon, Google, Microsoft, IBM) are offering FaaS. Offered services
vary in costs, supported languages, scope, security, and resources. Amazon
was the driving force of the shift to cloud computing and provided the first
serverless platform: Amazon web services (AWS) Lambda (Amazon, 2014).
Users benefit from the huge AWS ecosystem, which facilitates the use of Lambda
functions (Baldini et al., 2017). Code executed on Lambda is called Lambda
functions. Lambda functions can be triggered by different event sources such
as an HTTP request over the Amazon API gateway or mobile apps. There
exists also work in the area of open-source serverless computing. OpenLambda
is the first defined open-source serverless computing platform (Hendrickson
et al., 2016). OpenLambda aims to serve as a playground for exploring new
serverless computing techniques. It is written in the programming language
Go and operates with Docker containers.

Figure 16: Overview of most important FaaS providers adapted from Fox,
Ishakian, Muthusamy, and Slominski (2017)

Serverless architectures can be used in various application areas. According
to Fox, Ishakian, Muthusamy, and Slominski (2017), serverless is mostly suitable
in short-running, event-driven, and stateless scenarios, such as, bots or micro-
services. Serverless is limited on long-running, stateful scenarios, because of
the complexity of state maintenance.

30

2.4 Security Aspects of Instant Messaging

This chapter aims to to discuss IMS security requirements and to give an
overview of potential threats that arise on IM usage.

2.4.1 Security Requirements of Instant Messaging

In Chapter 3, we see that IMSs are widely adopted in the workplace. Before
introducing a new IMS in the workplace, the following security requirements
should be considered (Meletiadou, 2010; Unger et al., 2015):

a) Confidentiality : Only intended message recipients can read the message.
Confidentiality is usually provided by message encryption, depending
on the underlying protocol. There are two encryption schemes used,
namely, encryption in transit and end-to-end encryption (De Luca, Das,
Ortlieb, Ion, & Laurie, 2016). Encryption in transit means that messages
are sent encrypted from the sender to the server and from the server to
the recipient. The server can read the contents of the message. End-
to-end encryption provides message encryption from the sender till the
decryption on the recipient’s client without exposing the information
to the server or any other third party. The majority of modern IMSs
use encryption in transit, mainly because of the reason that end-to-end
encryption is more complicated due to its required key exchange between
the communication parties.

b) Integrity : It must be ensured that sent messages are not altered during
the transit by any third party, e.g., an attacker. Any honest party does
not accept modified messages. Message integrity is usually verified with
a cryptographic hash function.

c) Authenticity : Authentication is the process of verifying a claimed identity.
In the context of IM, users need to authenticate themselves, usually
providing a username, and password chosen on registration.

d) Privacy : Patil and Kobsa (2004) conducted a study about privacy con-
cerns in IM. They found three main privacy concerns: privacy from
non-contacts, privacy regarding availability, and privacy regarding con-
tent. An aimed feature is the ability to control presence appearance.

e) Availability : Appropriate countermeasures should be taken to avoid
unintended disconnection to an IM server or communication partner.
DOS attacks (explained in Section 2.4.2) can lead to server crashes
jeopardizing the typical IM process.

f) Accountability : The participation in a conversation cannot be denied by
any communication party towards a third party. This reduces the level

31

of privacy. The explicit missing of accountability can also be a desired
security requirement (see deniability).

g) Deniability : Avoiding deniability or ensuring non-repudiability is a com-
mon goal for secure IMS (Unger et al., 2015). For instance, Bob accuses
Alice of sending a specific message; a judge has to decide whether Bob is
right. If Bob is not able to prove that Alice sent the message, then the
action is repudiable or deniable.

h) Anonymity/Pseudonymity : Even if the IM traffic is sniffed by a third party,
in ideal circumstances, not only the message contents are unreadable, but
also the messages cannot be linked to specific users sending or receiving
them.

One important aspect that tends to be forgotten is usability. Musiani
and Ermoshina (2017) state that there exists a common trade-off between
security and usability in IMSs. They argue that most of the public messaging
tools do not implement best security practices such as end-to-end encryption.
Further, messaging tools that are considered to be secure suffer from usability
shortcomings, which may even result in accidentally exposing communication
data due to wrong usage, e.g., using too simple passwords or accidentally
leaking them. Most of the security requirements are tackled in the underlying
IM protocol. See Section 2.5 for more information.

2.4.2 Security Threats of Instant Messaging

In this section, we use the categorization of IM threats into malicious and
unintentional threats by Curry (2013). Before discussing the different threats,
we also want to explain a model of how a potential attack can be analyzed. The
cyber kill chain is a model used by digital forensic investigators and malware
analysts to work in a chained manner on an incident response (Yadav & Rao,
2015). Cyber kill chain follows the divide-and-conquer principle by breaking
an attack down into multiple layers. While an attacker needs to traverse all
layers for a successful attack, defense measures can be applied at all layers to
interrupt the cyber kill chain. According to Yadav and Rao (2015), the cyber
kill chain consists of 7 layers: 1) Reconnaissance: Information gathering about
the potential target. 2) Weaponize: Design of a backdoor and penetration plan
by using the information gathered from reconnaissance. 3) Delivery: Attack
transmission to target environment. 4) Exploitation: Trigger of an attack
on the target system. 5) Installation: Establish a beachhead at the target
system. 6) Command and Control: Remote covert instructions to compromised
machines. 7) Act on Objective: Causing data exfiltration, network spreading,
or system disruption after command execution.

32

Malicious Threats

Introducing IM in a company opens new security holes (Rittinghouse & Ran-
some, 2005). IMSs suffer from poor configuration and implementation opening
backdoors and potential weaknesses, together with the costs of hosting an
own IM infrastructure and application. Like any other internet-enabled ap-
plication, IM constitutes a potential target for malware (short for malicious
software). Malware is any type of programming intended to harm a computer
user. Common malware types are viruses, worms, trojan horses, spyware,
browser hijackers, or blended threats, which combine the characteristics of
multiple distinct malware types. In general, IM can be used by hackers for
various malicious purposes (Rittinghouse & Ransome, 2005):

a) As Carrier : Malware can be easily distributed in an IMS, because of the
robust communication channel between users and their corresponding
buddy lists. These buddy lists serve as an address book to automatically
spread worms, removing the need to find vulnerable machines.

b) As a Staging Center : As explained in Section 2.3.1, the formerly most
popular IMSs implemented a client-server architecture. Servers represent
a favorable target because hackers gaining control of such servers can
impersonate users, eavesdrop conversations, or distribute malware with
little effort.

c) As a Vehicle for General Hacking : In general, IMSs are similar to other
internet-enabled applications in that they may contain exploitable bugs.
Hackers could obtain access over user machines, using exploits for vulner-
able IM clients.

d) As a Spy : Data sent over IM can be sniffed in order to obtain confidential
or sensitive information, especially when data is sent unencrypted. Re-
sulting damage, due to unauthorized information disclosure, can exceed
damage from direct malicious attacks. There exist several impersonation
techniques. The most frequently used attack is stealing account infor-
mation. Hackers trick unsuspecting users into opening an attachment
containing a password-stealing trojan horse. On execution, the trojan
horse locates the password on the victims machine (maybe stored in the
cache or unobfuscated in the registry), and sends it back to the attacker.
People on the buddy list won’t notice any difference. A man-in-the-middle
attack can hijack IM connections. The hacker can impersonate parties
by injecting proper messages in the current chat session. Another im-
personation technique is social engineering (Curry, 2013). IM can be
used by social engineers to trick users into exposing data with the help of
psychological tricks. Therefore, context must be presented to the victim,
which appears to be normal. An exemplary scenario is using an identity
similar to a boss or colleague and provide information to, in turn, get
information.

33

e) As a Zombie Machine: Hackers may aim to use a target machine for their
own purposes besides collecting data. The victimized machines can then
be used to start, e.g., distributed denial of service (DDoS) attacks. The
main idea of DDoS is to flood a target with requests causing slowdowns
or crashes.

f) As an Anonymizer : Public IMSs allow users to choose arbitrary IDs
providing anonymity to some extent. Spoofed enterprise domain names
can be used by hackers, for example, to pretend to be an employee of the
company. Another vulnerability is SPIM (Spam through IM). SPIM is
mainly used by scammers to trick users into opening a URL or a file or
sending unwanted advertisements.

Unintentional Threats

“It’s human to make mistakes and some of us are more human than others.”,
while this quote by Ashleigh Brilliant can be considered as common sense, it
also applies to the use of IM. Incorrect use of IM can circumvent the taken
security measures and thus, lead to threats. Intellectual property leakage of
sensitive information, such as source code, insider information, or contracts,
might occur when shared via IM. While normally such transmissions can be
done safely (with encryption and authentication) over IM, incorrect use might
expose those documents to a third party. Moreover, it can also happen that a
document is unintentionally sent to the wrong person. In Chapter 3 we outline
that IMS in the workplace is also used for non-business related conversations.
This is mainly based on the informal nature of IM, together with the use of
emoticons and acronyms. If non-business related conversations take prevalence,
the risk of inappropriate advances and commentaries is rising. Additionally,
users might be distracted from frequent interruptions, which in turn might
potentially lead to errors harming the company. In general, companies using
IMSs should implement a policy outlining the inappropriate IM use.

34

2.5 Basic Instant Messaging Protocols

This chapter provides an overview of IM protocols. The open standard IM
protocols XMPP and SIP/SIMPLE are examined. The focus lies on discussing
only the principles and ideas of those protocols. A detailed discussion is out of
the scope of this thesis.

2.5.1 XMPP

The Extensible Messaging and Presence Protocol (XMPP) is a protocol initially
defined in the RFC3920 standard (Saint-Andre, 2004) and used “for streaming
XML elements in order to exchange structured information in close to real-time
between any two network endpoints”. It was formalized initially under the name
Jabber by the open-source Jabber community in 1999, aiming to provide a
secure, spam-free, open, and decentralized IMS. Most of the XMPP implemen-
tations follow a strict client/server model (Saint-Andre, 2005), requiring the
data to traverse at least one server towards its destination. Figure 17 shows
the essential XMPP components: XMPP client, XMPP server, and gateways
to foreign networks. While the server is responsible for managing connections
and routing messages, gateways are needed for connecting different networks.
TCP is used as the underlying connection protocol. Before initiating a new
session, we first need to clarify how a client is identified.

Figure 17: XMPP architecture

Every XMPP entity is identified by an address called JabberID (JID)
(Saint-Andre, Smith, & TronCon, 2009). JIDs use a syntax similar to email:
username@domain, where the domain contains an installed XMPP server, e.g.,
lukas@siemens.com. The username is unique only for a certain domain, meaning
that the same username can be used several times on different domains. XMPP
allows simultaneous usage of multiple devices. Therefore, the JID is extended
with a resource identifier, enabling exchanging messages with specific devices:
username@domain/resource. In order to prevent any message delivery issues
for multiple available devices, devices can be prioritized. If the resource part is

35

missing, the device with the highest priority receives the message first. If two
devices with the same priority are available, the device that signed on, at last,
receives the message first. The basic XMPP concept is XML streaming using
specific XML elements (so-called XML stanzas) (Saint-Andre, 2004). An XML
stream is a container used for exchanging XML elements between two entities
over a network. The number of XML elements is not restricted. XMPP uses
an opened <stream/> tag to indicate the start and its corresponding closing
tag for the end of an XML stream. An XML stanza is a unit of structured
information sent over an XML stream. It is located as a child directly under
the aforementioned stream tag. A new client-server connection results in two
opened XML streams (one from the client to the server and vice-versa). After
stream parameter negotiation, any communication party can start sending
XML stanzas. There are three core stanza types:

1) <message/>: Used to send a message from one entity to another. It
provides several attributes: type (used for example to indicate if its chat
or group chat), from and to containing the corresponding JIDs and the
basic attributes body and subject to define the payload.

2) <presence/>: Used as a general publish-subscribe mechanism to dis-
tribute presence information. Only subscribed entities receive presence
information. This enhances privacy because only selected parties can see
this information. The attributes show and status are available to indicate
presence and a user-specified status message.

3) <iq/>: Used as a general request-response mechanism similar to HTTP
requests. The type attribute is used for example, by a client to request a
resource and the server to respond with a result.

In listing 2, an exemplary XML stream snippet is illustrated. On lines
1-5, a client requests his stored contact list. The server responds with two
saved contacts (lines 7-12). After that, the presence information from a specific
contact is following (lines 14-17, “xa” means extended away). Finally, a message
is sent from one entity to another (lines 19-22).

1 <stream:stream>
2

3 <iq type="get">
4 <query xmlns="jabber:iq:roster"/>
5 </iq>
6

7 <iq type="result">
8 <query xmlns="jabber:iq:roster">
9 <item jid="markus@siemens.com"/>

10 <item jid="philipp@siemens.com"/>
11 </query>
12 </iq>
13

36

14 <presence from="markus@siemens.com">
15 <show>xa</show>
16 <status>currently in a meeting</status>
17 </presence>
18

19 <message from="lukas@siemens.com/smartphone" to="markus@siemens.com"
type="chat">

20 <body>Do you have time for a coffee break after your meeting?</body>
21 <subject>Coffee break</subject>
22 </message>
23

24 </stream:stream>

Listing 2: XMPP XML stream example

XMPP aims to provide three basic security requirements: confidentiality,
data integrity, and mutual authentication. In order to achieve this, XMPP is
built upon two other protocols: Transport Layer Security (TLS) and Simple
Authentication and Security Layer (SASL). TLS is responsible for ensuring
confidentiality and integrity of exchanged messages. Hence, TLS supports
the protection against eavesdropping, password sniffing, man-in-the-middle
attacks and stanza replays. SASL can be seen as a framework providing an
abstraction layer between certain protocols such as XMPP and mechanisms
ensuring authenticity and integrity (Melnikov & Zeilenga, 2006). Currently,
it supports the following authentication methods: “DIGEST-MD5”, “CRAM-
MD5”, "GSSAPI", “PLAIN”, “ANONYMOUS” and “SCRAM” (Saint-Andre
et al., 2009). The XMPP Standards Foundation (XSF) is responsible for
standardizing XMPP extensions. Several extensions aiming to increase security,
have been proposed or standardized over the last years:

a) Off-the-Record (OTR): The OTR protocol is a cryptographic protocol
providing end-to-end encryption for P2P instant messaging (Borisov,
Goldberg, & Brewer, 2004). OTR uses 128 bit AES symmetric-key
encryption and the SHA-1 hash function. OTR cannot be used for
multiuser chat, because a session can only be held between two parties.
In contrast to Open Pretty Good Privacy (OpenPGP), it also provides
forward secrecy.

b) OpenPGP : OpenPGP is a standardized message protocol used to sign and
encrypt data exchanged between multiple parties (Callas, Donnerhacke,
Finney, & Thayer, 1998). It is mainly used for email encryption. The cor-
responding XMPP extension XEP-0373 (XMPP Standards Foundation,
2018) specifies the foundations of end-to-end encryption and authentica-
tion with the help of OpenPGP. The problem with this extension lies
in its key management complexity, making it difficult for users to apply
properly. This extension is still under active development.

37

c) Secure/Multipurpose Internet Mail Extensions (S/MIME): S/MIME is
based on MIME, which defines the format of emails (Ramsdell & Turner,
2019). S/MIME provides authentication, privacy, integrity, and non-
repudiation. The key management involves a public key infrastructure
instead of a decentralized web of trust as in OpenPGP (Ermoshina,
Musiani, & Halpin, 2016).

2.5.2 SIP/SIMPLE

Session initiation protocol (SIP) is an application-layer protocol used for estab-
lishing sessions in networks and is defined in RFC 3261 (Rosenberg et al., 2002).
SIP aims to provide multimedia sessions (conferences) such as voice-over-IP. SIP
consists of the following network components (Cumming, 2003): a) User Agent
(UA): UA refers to a SIP endpoint. It can either act as a client or as a server.
b) Proxy: Devices that are responsible for routing data to its destination. c)
Registrar: Specialized server UA responsible for handling REGISTER requests
(explained in the next paragraph).

A SIP entity is identified by a SIP Uniform Resource Identifier (URI) using
the syntax: sip:user@ [domain|host|ip-address]. The communication between
UAs is realized using requests and responses, similar to HTTP requests. SIP
requests are distinguished based on their method. Some basic methods are
REGISTER, used for UA registration at a SIP proxy and INVITE, used for
connection establishment. Figure 18 illustrates how a connection between the
UAs Bob and Alice is established:

1) Both UAs register themselves at the registrar
2) Bob requests a new session with Alice by sending an invite request
3) The proxy forwards the request to Alice.
4) Alice accepts the new session by sending a "200 OK" response.
5) The proxy forwards the response to Bob.
6) A new session between Alice and Bob is established.

SIP for IM and presence leverage extension (SIMPLE) is an extension for
the SIP protocol to support IM and presence functionality and is defined in
RFC 3428 (Campbell et al., 2002). Therefore, new request methods were
introduced:

a) SUBSCRIBE: This method is used by a UA to subscribe to presence
information of another UA. The corresponding request contains the SIP
URI of the aimed presentity.

b) NOTIFY: Subscribed UAs receive such requests containing the presence
information of a presentity.

38

Figure 18: Simplified SIP session establishment

c) MESSAGE: The actual IM is carried out via these requests. These
requests contain the actual message content in MIME format together
with the SIP URI of the target inbox.

Figures 19 and 20 show the typical sequences of exchanging presence infor-
mation and messages.

Figure 19: SIMPLE presence information exchange

There exist two different IM modes: page and session mode (Rosenberg,
2013). The page mode sends messages without establishing a session. This
means that every message is routed independently to its destination. While
this mode is efficient for a small number of messages, it is not suitable for
conversations involving more data, because all data is sent over the SIP serves
and not directly. On the contrary, the session mode (as the name implies) es-
tablishes a session between the communication parties. The RFC standard 3261
(Rosenberg et al., 2002) describes the following security mechanisms provided
by SIP. SIP security is realized either in a hop-by-hop or end-to-end fashion.
Confidentiality, integrity, and data origin authentication is achievable by using

39

Figure 20: SIMPLE message exchange

TLS and IPSec (Geneiatakis, Kambourakis, Dagiuklas, Lambrinoudakis, &
Gritzalis, 2005). SIP Secure is a mechanism to provide end-to-end protection,
similar to HTTPS, causing the SIP URI prefix to change to sips. Similar to
XMPP, SIP also uses S/MIME to send encrypted and authenticated messages.

40

2.6 Real-Time Communication

IM, online gaming, video conferencing, and many other applications need real-
time communication (RTC). RTC refers to any kind of communication, where
users exchange information with guaranteed or predictable latency. In the
context of this thesis, IM with real-time communication is essential because
users need to be updated in nearly real-time. Other types of CMC, such as
e-mail or forum, do not represent an alternative to IM because they are not
real-time capable.

There are two real-time communication modes: half- and full-duplex. Half-
duplex means that a user cannot send and receive at the same time, whereas
messages can be send and received simultaneously in a full-duplex mode. There
exist various RTC enabling technologies. According to Liu and Sun (2012),
polling, long polling, and HTTP streaming are the main technologies enabling
real-time communication used in the past, and WebSockets is the current
state-of-the-art.

Polling

Polling describes a mechanism, where the client requests periodically data from
the server. The advantage of this approach lies in its easy implementation. The
main drawback of this approach is that the server cannot push new data to the
client on demand. This causes unnecessary network traffic, as new data might
not be available while requests are always sent.

Long-Polling

To overcome the shortcomings of polling, a new approach, called long-polling,
was introduced. The client polls new information from the server, and the
server keeps the request open until new data is available. Thus, the use of
network resources and the client-server message delivery traffic is minimized
(Loreto, Saint-Andre, Salsano, & Wilkins, 2011). Usually, after a long-polling
request has been processed, the client immediately opens a new one. Polling
and long-polling are criticized for frequent opening and closing of TCP/IP
connections.

HTTP streaming

Another approach is HTTP streaming. The difference to the approaches men-
tioned above, is that an opened HTTP connection remains open indefinitely.
A server is capable of sending information segments within the same response
without the need for connection termination. Network latency is reduced by the

41

absence of multiple connection establishment. Since connection completion sig-
naling is not done, server responses can get buffered by network intermediaries,
such as firewalls, resulting in potential data loss or errors.

WebSockets

WebSockets were designed to address the shortcomings of the described mecha-
nisms. The WebSocket protocol defines a full-duplex, real-time communication
channel over a TCP connection (Fette & Melnikov, 2011). A WebSocket channel
is established by using an HTTP request, asking the other communication party
for a connection upgrade. When the request is accepted, subsequent messages
are sent via the WebSocket protocol. Once a connection is established, the
communication parties can send data asynchronously to each other. Connection
closing is only performed, if one of the communication parties actively closes it.
Thus, network traffic and latency are significantly reduced.

2.6.1 WebRTC

Web real-time communication (WebRTC) is a collection of standards and
protocols for enabling audio/video calling, video chats, and P2P chat for
browser-to-browser applications, without needing any third-party software
(Sergiienko, 2014). WebRTC is open-source and was published by Google in
2011. It is still undergoing active development. The fundament of WebRTC
are components that can be easily accessed and used via JavaScript and
HTML5 in browsers. This removes the need for users to install or manually
configure any browser plugin. Another advantage is that needed multimedia
functions, such as codecs or stream management, are already integrated into
the browser. Connection establishment does not work without a signaling
server. Any communication mechanism, for instance, WebSockets, allowing the
exchange of session description protocol (SDP) data, can be used for signaling
(Sergiienko, 2014). SDP is used to describe multimedia sessions in terms of
session invitation, session announcement, and parameter negotiation (Levin
& Camarillo, 2006). Connection establishment is more complicated when the
communication parties are behind firewalls or use network address translation
(NAT). Two basic concepts are supporting these scenarios: session traversal
utilities for NAT (STUN) or traversal using relays around NAT (TURN). Figure
21 depicts the general idea of STUN and TURN. STUN servers aim to solve
the NAT/firewall traversal issue in order to find the other peer. After the
connection is established, data is directly transferred between the peers. On
the contrary, TURN servers are used when STUN servers are not enough to
perform successful signaling. An example will be if both peers are behind a

42

symmetric NAT. TURN servers act as some kind of re-transmitter between
peers, resulting in data traversal through the specific TURN server.

(a) STUN server (b) TURN server

Figure 21: STUN and TURN server concept adapted from Sergiienko (2014)

easyRTC

easyRTC is an open-source JavaScript library (Priologic Software Inc, 2019)
that supports building WebRTC applications. Integration into an HTML
page is done similar to any other JavaScript library. An already implemented
signaling server based on Node.js manages signaling. The signaling server
provides STUN and TURN support. In order to provide a reliable connection,
easyRTC is equipped with a fall-back strategy to WebSockets, when connection
issues occur.

2.6.2 SignalR

SignalR is a framework from Microsoft targeting ASP.NET that is used to
integrate RTC in web applications. Several Microsoft Office tools use SignalR
to enable real-time collaboration features (Aguilar, 2014). SignalR facilitates
message delivery in real-time between peers by providing an abstraction layer
hiding low-level details. Further, it supports several connection mechanisms
(WebSockets or long polling) to open a (virtual) persistent connection. One
important concept is hubs. Hubs are the API used to access the created
persistent connection. They can be seen as a two-way RPC, as hub methods
are invoked from the client and the server. Client-side code is called from a
hub by sending messages containing the corresponding method’s name and
parameters. The client then matches the name to an existing method and
executes it (if matching was successful). A client SDK, such as .NET or Java,
is used to connect to the dedicated SignalR hub. SignalR is self-hostable or
can also be used via the Azure SignalR service to obtain a managed platform.

43

2.7 Graphical User Interface Design

According to Galitz (2007), the user interface (UI) is the most important
part of a computer system because it appears to be the whole system for
users. Responses to poor UI design range from psychological responses, such as
frustration, panic or stress, to physical responses, such as only partial system
usage or even to abandonment of the whole system. To avoid such responses, it
is essential to consider the design process itself. Any UI design process should
start with an understanding of the system’s users. This is an important, yet
often underestimated task. Without the understanding of the system’s user, the
system might not meet the user requirements. So the goal is to overcome the
gap in knowledge, skills and behaviors of the system users and the developers.
Cooper, Reimann, and Cronin (2007) argue that only qualitative research
techniques can achieve this.

Qualitative research techniques include stakeholder interviews, literature
review, prototype audits, or user observation. The next step after research is
the creation of descriptive user models. These models are often referred to as
personas. Personas are a composite archetype or fictional character representing
a specific user type. Thus, personas do not only help in understanding the user’s
way of thinking, they also support in resolving the following three design issues:
the elastic user, self-referential design, and edge cases. Elastic user refers to the
phenomenon of tuning the final product based on the opinions of anybody giving
input while losing sight of the real user’s requirements. When developers use
their own mental models, goals or skills, the self-referential design issue could
arise. The final product might look perfect in the perception of the developers
but not of the customer. Personas put the main focus on the requirements
of the real users, thus they also help to avoid designing only for edge cases.
While personas represent individual human beings, a base goal in UI design is
to address the needs of different user experience levels with a single interface
(Cooper et al., 2007). User experience levels are beginners, intermediates, and
experts, while intermediates refer to the largest group of users. Over time both
the beginners and experts tend to drift towards intermediates. Beginners aim to
leave the beginner state fast to reach the expert level. While their learning curve
is steep in the beginning, it flattens down fast, resulting in the intermediate
level. Experts can forget their knowledge over time and, thus fall back into the
intermediate level. A well-designed UI needs to balance the requirements of
the different user experience levels. An intuitive and comfortable UI helps the
user to become quickly familiar with the system, increasing its overall system
acceptance. Figure 22 illustrates the different user experience levels and their
corresponding design requirements. We see that the requirements vary with
each level. Cooper et al. (2007) argues that the main goal is “to rapidly and
painlessly get beginners into intermediacy, to avoid putting obstacles in the

44

way of those intermediates who want to become experts, and most of all, to
keep perpetual intermediates happy as they stay firmly in the middle of the skill
spectrum”.

Figure 22: Design requirements of different user experience levels (Cooper,
Reimann, & Cronin, 2007).

Tremendous effort during the development process will be put on usability.
Galitz (2007) describes usability as “a quality attribute that assesses how easy
a user interface is to use.” It is one of the most important qualities of a UI.
Five components can describe usability: learnability, efficiency, memorability,
amount and severity of errors, and satisfaction (Nielsen, 2012). While this
sounds easy in theory, it is very hard to assess or measure usability in practice.
There exists the concept of usability or user testing, which is a collection of
techniques measuring usability in terms of user interaction with the system
under test (Galitz, 2007). The main idea of usability testing is the measurement
of how well-standardized tasks are resolved and which errors occur while task
solving. Representative users should be chosen for this task, e.g., a customer.
Usability professionals often track the users with audio or video recorders in
order to better retrace the user’s behavior afterward.

45

3 Related Work on Instant Messaging

There exists a significant amount of work in the area of IM. Numerous IMSs have
been implemented over the past decades. Driven by the increased popularity
of smart-phones, many mobile IM applications emerged. This caused the
discontinuation of some popular IMSs, e.g., the MSN Messenger. In this
section, the main focus is on the use and impact of IM in the workplace rather
than discussing different IMSs. The majority of studies support the presumption
that the positive work-related effects of IM outscore the drawbacks, such as
frequent interruptions or distraction. In many studies, the integration of an
IMS is considered as controversial.

3.1 Positive Work-Related IM Effects

Garrett and Danziger (2007) investigated the influence of IM on the workplace.
Results show that IM reduces interruptions and encourages communication.
They argue that this happens because “workers are using IM technology to man-
age interruptions, postponing work-related communications until they are more
relevant or less disruptive.” Additionally, IM offers an efficient communication
and information exchange mode that improves colleague intercommunication.
Wu, Liang, Chiu, and Yuan (2017) explored the impact of IM use on employee
empowerment. The study provides three main findings: 1) IM has a positive
impact on employee empowerment. 2) Employee empowerment has a positive
effect on the organizational commitment of employees. 3) IM use intensity does
not correlate with job satisfaction.

Isaacs, Walendowski, Whittaker, Schiano, and Kamm (2002) investigated
many logged IM conversations of employees. The conversations are evalu-
ated under conversational characteristics. The outcome illustrates that the
primary IM use is for complex work discussions, such as problem-solving or
social learning, rather than asking simple questions or distributing information.
Additionally, they showed that people rarely switch from IM to another medium
when the conversation gets complex. This contradicts the common perception
that IM is used for simple discussions and that the more complex discussions
are carried out in person. Dittrich and Giuffrida (2011) explored the role of IM
for a co-located software development team. Their analysis indicates that IM
fulfills a special role: it supports trust-building and social relationships of co-
workers by acting as real-time glue between different communication channels.
A study by Ou, Davison, and Leung (2014) based on 41 survey participants
from a small-sized company in Hong-Kong shows that the use of IM is highly
correlated with knowledge generation. They further argue that, because of

46

this correlation, IM, improves work performance. Salovaara and Tuunainen
(2013) conducted a case-study on a 150-person software company, where the
developers use Skype chat as their favorite knowledge sharing medium. In their
findings, they describe that IM can be a powerful knowledge sharing tool for
ephemeral project-based knowledge. Lebbon and Sigurjónsson (2016) examined
whether frequent interruptions due to IM could negatively affect performance.
They suggest that IM leads to higher productivity, even if IMSs are also used
for non-work related communication. Pi, Liu, Chen, and Li (2008) used a social
influence model to show that IMSs can improve communication efficiency and,
thus reduce communication costs in enterprise organizations. The communi-
cation satisfaction of employees also increases with the use of an IMS. Jaanu,
Paasivaara, and Lassenius (2012) conducted a study about the use of IM in
distributed software engineering projects. Media synchronicity theory was used
to prove that IM is best suited for simple discussions. Software engineers prefer
other media, e.g., teleconferencing, for complex discussions. They further argue
that for maintaining communication efficiently, a combination of IM and other
communication media is needed.

Niinimäki and Lassenius (2008) interviewed 39 software developers in their
study on the use of IM in their global software development projects. In all
successful projects, IM was used systematically. Practitioners argued that IM
helped in multitasking and maintaining communication with multiple people.
Additionally, IM offers a lower communication initiation barrier compared
to other communication media. Hönlinger (2018) presents results from a
practitioner survey with 176 responses. Respondents were asked to describe the
impact of IM in Germany on teamwork performance and knowledge sharing.
The highest ratings were given for the positive influence on knowledge sharing
and teamwork performance improvement.

Rennecker, Dennis, and Hansen (2006) conducted a study about how IM
can be used to restructure meeting boundaries in face-to-face and technology-
mediated meetings. They used Goffman’s characterization of front and back-
stage interaction practices. For this purpose, they interviewed 22 managers
and workers in U.S. based organizations. Results show that IM is used to
participate concurrently in front and several backstage interactions. They argue
that without IM, these interactions are physically impossible.

3.2 Negative and Controversial Work-Related IM Effects

Gupta, Li, and Sharda (2013) examined the consequences of IM on task
quality and duration. They suggest that with the use of IM primary task
quality is decreased. Task duration highly depends on the hierarchical level
of the message sender. Messages sent from, e.g., a supervisor, decrease task

47

duration while simultaneously decreasing task quality. Messages from other
peers increase task duration. Mansi and Levy (2013) compared the task
completion time of knowledge workers for different task complexities with
frequent IM interruptions. Results show that IM interruptions do not affect the
task completion accuracy but significantly increases the task completion time.
Li, Gupta, Luo, and Warkentin (2011) studied IM influences on multitasking
satisfaction and perceived task complexity. They suggest that satisfaction with
multitasking highly depends on the individual polychronicity. Thus, frequent
interruptions decrease the satisfaction of monochronic employees.

A study by Czerwinski, Cutrell, and Horvitz (2000b) investigates the ef-
fects of IM notifications on currently performed tasks. Results show that the
disruptiveness of IM highly depends on the point of time during task compu-
tation. Interruptions in early phases are considered to be not as harmful as
interruptions when a user is deeper engaged with a task. Further, they argue
that IM disruptiveness is low when incoming messages are highly task relevant.
Building on the previous study, Czerwinski et al. (2000a) analyzed in another
study the influence of IM on the performance of different searching task types.
They conclude that interruptions are more harmful to fast, stimulus-driven
search tasks rather than effortful semantic-based search tasks.

Ou and Davison (2010) conducted an empirical study about the impact of
IM in the workplace based on 253 survey participants in China. They describe
IM as a double-edged sword because it concurrently provides several drawbacks
and benefits. Overall, they argue that the negative effects are negligible, due
to the significant increase in communication performance. Quan-Haase (2010)
investigated the negative effects of IM within the workplace. The findings
show that IM is disruptive and can even lead to a decrease in productivity.
She further argues that with the creation of routines and self-regulation, the
negative effects can be decreased.

Rennecker and Godwin (2003) investigate the unintended consequences of
IM for worker productivity. Although IM supports certain tasks and decision
processes, the productivity suffers from unstructured IM. This origins from the
increase of communicative workloads, participation in multiple conversations,
and interruption frequency.

Fussell, Kiesler, Setlock, and Scupelli (2004) analyzed the effects of IM
on the management of multiple project trajectories. They argue, that IM
user interfaces need to support the following features for supporting project
trajectory management: i) An awareness component providing availability
information. ii) An information component providing an indication when
collaborators are working on a task. iii) A reminder component providing a
short to-do description of tasks and activities.

48

4 Problem Statement

This chapter explains the underlying problem description and the research
questions that are answered within this thesis. Further, the requirement sdefined
by Siemens for the IMS are presented.

4.1 Problem Description

Rising complexity in industrial manufacturing requires companies to develop
efficient engineering processes for accommodating individual customer requests.
Today, machine builders, plant operators, and system integrators do not need
to work co-located on the same machines and plants anymore. They even can
be distributed on different countries or different companies or subcontractors.
In the context of Siemens, their customers use the same automation software
to program on programmable logic controllers (PLCs) and access human-
machine-interfaces (HMIs) or motion control devices. Several problems arise
due to the absence of an integrated communication mechanism within the
automation software. While engineers can be from different companies, they
also might use different IMSs depending on their company policies. There
is no unified or established IM process. Usually, they need to agree upon a
common communication mechanism, however, in practice we have seen that a
conglomeration of tools like Skype, Whatsapp, Email, etc, are used. This does
not only lead to communication overhead but also can constitute a security
vulnerability if any insecure messaging tools are used. Another problem arises
from the automation process itself. For instance, if an engineer needs to
apply changes like a firmware update or alter the code that is executed on a
PLC, the necessity of notifying other engineers currently programming on the
corresponding PLC arises, as the PLC will not be accessible in that time. While
the process of downloading new content to the PLC can take several minutes,
the engineers do not know when the PLC will be available again or which
changes have been made. The information-gathering process might suffer from
misconceptions about the originator, resulting in potential misunderstandings
or data loss.

The goal of this thesis is to implement and integrate a messaging system
in the automation software aiming the resolve the aforementioned problems.
The chosen approach aims to follow the zero-configuration scheme, while
simultaneously considering the limitations and the existing framework of the
underlying automation software (described in Chapter 6). Within the scope of
this thesis, the following questions are answered:

49

1. Which start-of-the-art IMS technologies exist?
2. How to enable communication among distributed engineers to avoid

misunderstanding, confusion, and downtimes in a controllable unified
manner, using existing infrastructures?

3. Which alternative mechanisms exist that could be used for messaging? Is
it possible to communicate via connected PLCs?

4.2 Requirements

Several requirements of the IMS have been identified. They are categorized
into functional and non-functional requirements. Functional requirements are
shown in table 1, and the non-functional requirements are shown in table 2.

RQID Name Description Priority
1 Send message Functionality of sending a message. high
2 Presence list The presence status of other users

should be visible.
medium

3 History Chat messages should still be avail-
able after re-connection.

medium

4 Group Chat Functionality to chat in a group. medium
5 Notification Users should get notified on new

messages.
medium

6 Message status Indication whether a message was
send/delivered/seen.

low

7 Message timestamp Display when a message was send. low
8 Emoji support The functionality of sending a mes-

sage containing emojis.
low

Table 1: Functional requirements

50

RQID Name Description Priority
9 TIA portal integra-

tion
The IMS must be available within
the TIA portal.

high

10 Costs No additional costs for Siemens. high
11 Privacy Privacy from non-contacts, avail-

ability privacy and content privacy.
high

12 Extensibility The IMS can easily be extended
with new features

high

13 Message Confiden-
tiality

Messages should be sent encrypted. high

14 Zero-config No complex configuration is
needed.

medium

15 Availability The IMS should provide high avail-
ability.

medium

16 Maintainability The IMS should be maintainable
with low effort.

medium

17 Scalability Number of supported users. low

Table 2: Non-functional requirements

51

5 Related Industrial Standards

The target enterprise industry automation software is the Totally Integrated
Automation Portal (TIA Portal), developed by Siemens. TIA Portal focuses on
the application area of industrial factory automation. TIA Portal consists of
several tools, components, and services to integrate all levels of the automation
pyramid shown in figure 23. Thus, TIA Portal aims to support machine
builders, system integrators, or original equipment manufacturers (OEMs) in
simplification and cost savings along the value chain. There exist various norms
and standards regarding factory automation. In the following, only the most
important norms are explained.

5.1 Standard ISA 95

In general, the model used to describe industrial automation is the automation
pyramid defined in standard ISA 95 by the International Society of Automa-
tion (ISA) (ANSI/ISA-95.00.03-2005, 2005). The model aims to separate the
different manufacturing operations into different interconnected levels, while
simultaneously showing the level-specific used information, system, and time-
frame types (Åkerman, 2018). The model is depicted in figure 23. On the
bottom of the pyramid are sensors and signals which provide a fast and easy
data gathering process. They are controlled by the sensing and manipulating
level containing PLCs. Level 2 contains supervisory control and data acquisition
(SCADA) systems and HMI devices used to monitor devices of underlying levels
and their communication. Level 3 controls manufacturing operations and their
execution order by a manufacturing execution system (MES). The top-level
serves the management to facilitate planning and logistics and is often managed
in an enterprise resource planning (ERP) system. Due to the recent shift to
cloud computing and its related technologies, we can argue that another level
- the cloud level - could be introduced on top of the pyramid. With the help
of the cloud, certain automation information is made available via the cloud.
For instance, Siemens introduced an internet-of-things (IoT) operating system,
called Mindsphere, connecting products, plants, and machines to benefit from
the richness of available data.

52

Figure 23: Automation pyramid by Åkerman (2018)

5.2 Standard ISA 88

ISA 88 is a standard that defines models and terminology for describing batch
process control. The models provide a classification for machines involved in
the batch process and recipes, describing the manufacturing process to ensure
standardized batch process automation (Scholten, 2007). In practice, ISA 88
and ISA 95 are used together: ISA 88 for control automation of machines and
ISA 95 for information exchange between ERP and MES systems.

5.3 Standard IEC 61131

IEC 61131 is a standard focusing on the basics of PLCs (John & Tiegelkamp,
2009). Within IEC 61131-3, the following programming languages are defined:
instruction list (IL), ladder diagram (LD), function block diagram (FBD),
sequential function chart (SFC), and structured text (ST). TIA Portal users
can select any of them.

5.4 Standard IEC 62264

IEC 62264 is a standard based on ISA 95 and targets system integration of
enterprise control systems. IEC 62264 describes level three of the automation
pyramid shown in figure 23, by defining activities and interfaces between an
enterprise’s business system and its manufacturing system.

53

5.5 Standard IEC 61508

Another important standard is IEC 61508, which focuses on the functional
safety of electrical, electronic, and programmable electronic (E/E/PE) safety-
related systems. Bell (2006) defines functional safety as “a part of the overall
safety that depends on a system or equipment operating correctly in response
to its inputs.” IEC 61508 concerns the impact on the safety of persons or the
environment by failures of E/E/PE systems. IEC 61508 uses the safety integrity
level (SIL) to quantify the level of needed risk reduction. The qualitative risk
assessment evaluates factors, such as the seriousness of the possible harm or
injury or the probability of the occurrence of a hazardous event, to calculate the
SIL level. In order to reduce the risk of errors, the safety-related construction
principles result from the aimed SIL level. Software written in accordance with
IEC 61508 needs module tests and suggests code coverage value depending on
the SIL level. There exist several sub-standards for industry-specific variants.
For instance, IEC 62061 focuses on the safety of machinery, and IEC 61511
targets the process industry sector.

54

6 Industrial Environment

The target enterprise industry automation software is the TIA Portal, developed
by Siemens. TIA Portal is built with the .NET framework and around 1000
developers distributed on several countries and continents implemented for
over one decade on it. It is still in active development. TIA Portal targets the
Windows platform and can be installed on Windows 7, 10, and Server 2012/2016.
Due to its size, we can find various kinds of design patterns ranging from
creational, structural, behavioral to concurrency patterns. Examples include
the patterns defined by the “Gang of Four” (Gamma, Helm, Johnson, & Vlissides,
1995): command, publish-subscribe, adapter, singleton, mediator, model-view-
presenter and dependency injection patterns. The GUI is implemented by
custom controls that inherit from the standard windows form controls. The
look and feel of these controls are part of the corporate design. Currently, there
exists no state-of-the-art control for displaying web content. XML configuration
files are extensively used to access and configure standard components. For
instance, a toolbar within a view or menu entries does not need to be re-
implemented every time, they are simply configured via an XML file. Due to
the broad feature scope, the availability of shortcuts is limited. This hinders
the setting of intuitive shortcuts for new features.

TIA Portal provides access to a range of digitalized automation services,
from digital planning and integrated engineering to transparent operation. One
fundamental feature is programming on Siemens Simatic PLCs. PLCs are used
to control processes, such as a press for plastic-shaped parts or a robot-gripper.
The process occurs according to instructions of the PLC’s in-memory program.
Actuators are wired to designated outputs of a PLC, allowing the PLC to switch
on and off motors or lamps and many other actions. The standard workflow
is that clients implement their PLC program, afterwards, they compile their
changes to check for potential errors, and finally, they download their program
to the dedicated PLC.

Simatic PLCs are endowed with a so-called online-object-model, which aims
to make certain automation system information available to the outside, where
it is accessed by clients. In order to access such information the specific PLC
must be connected to the network with an interface card. The following network
types are supported by interface cards: ethernet, process field bus (Profibus),
and multi point interface (MPI). Further, the client needs to connect to the
corresponding PLC via an integrated TIA Portal mechanism.

55

Figure 24 illustrates an exemplary automation setup. Three engineers use
the TIA Portal to connect to a dedicated PLC via profinet. The PLC is also
connected to two IO devices and an HMI panel via profinet and another IO
device via Profibus. This setup can be used, for instance for monitoring diag-
nostic data: The IO devices send their diagnostic data to the PLC. Afterwards,
the data is processed, evaluated and graphically displayed on the HMI panel.

Figure 24: Exemplary automation setup

56

7 Approach

Within the scope of this thesis, three different approaches have been imple-
mented and evaluated. This chapter aims to provide an overview and expla-
nation of the different approaches. One important aspect is that the goal of
this thesis is not to develop a whole new IMS but rather to analyze possible
technologies and verify how they can be integrated into the TIA Portal.

• Approach 1 aims to enable IM by integrating a chromium browser control
and using the open WebRTC standard for real-time communication. Con-
nection establishment is carried out by a signaling server implemented in
Node.js. The main drawback of this approach is the additional NAT han-
dling needed to enable signaling in different NAT configuration scenarios.

• Approach 2 focuses on a cloud-based solution based on .NET SignalR.
The IMS is implemented as an ASP.NET Core application and runs on the
Azure cloud. Benefits are high scalability, reliability and the absence of
server maintenance due to the Azure services usage. The main drawback
of this approach are involved costs.

• Approach 3 uses PLCs to transfer messages between connected users. For
this purpose, existing TIA Portal services are used to save messages on a
PLC. Hence, no third party components are needed. The main drawback
is availability, because users need to be connected to a dedicated PLC,
which is not possible in certain scenarios.

7.1 Approach 1: WebRTC with Node.js Server

The main idea of the first approach is to use WebRTC for IM (see Section 2.6.1).
As WebRTC requires a browser, the open-source CefSharp (2019) library is
used. CefSharp provides .NET bindings for the chromium embedded framework
(CEF) via windows presentation foundation (WPF) or windows forms. In other
words, it provides a chromium browser windows forms control.

TIA Portal uses windows forms. Thus, the chromium-browser is embedded
via a control within a windows form. Using the chromium-browser increases
the total memory usage. Memory measurements show that ∼180-220MB of
additional RAM is needed, which accounts for ∼7% of the total RAM usage.
EasyRTC is used as the WebRTC toolkit. Figure 25 illustrates an overview
of the underlying architecture. Further, a clear separation of client and server
parts is visible. On the server-side, we have the EasyRTC server module.
This module already contains a signaling server and is written in Node.js. It
is connected to a MySQL database, which saves user account information.
On the client-side, we have the aforementioned integration of the CefSharp
control within the TIA Portal. The CefSharp control accesses the chat via

57

the server’s IP address. The EasyRTC client-side chat consists of an HTML
file and a JavaScript file. The HTML file defines actions, e.g., sending a chat
message, and the GUI, the JavaScript file contains the program’s logic. When
the web-page is loaded, the corresponding JavaScript file is called to connect
to the easyRTC server. Listing 3 depicts the JavaScript statements used upon
connection establishment. Further, we can see two basic listeners used to
indicate the online status of peers (RoomOccupantListener) and for receiving
new messages (PeerListener). The connect method accepts the application
name and a callback for a successful and unsuccessful connection. Displaying
new messages within a conversation uses the document object model (DOM)
to alter the underlying client-side HTML code dynamically.

1 easyrtc.setUsername(username);
2 easyrtc.setPeerListener(receiveMessage);
3 easyrtc.setRoomOccupantListener(showContacts);
4 easyrtc.connect("tia-chat", connectSuccess, connectFailure);

Listing 3: Exemplary JavaScript code used to connect to easyRTC server

Figure 25: Approach 1 overview

TIA Portal users connect to that signaling server, as described above. The
signaling server is then responsible for WebRTC connection establishment
between the peers. After signaling has been carried out, the TIA Portal users

58

communicate in a P2P manner. Within this approach, STUN/TURN is not
considered. The signaling process is depicted in figure 26.

Figure 26: Approach 1 signaling

Figure 27 shows the GUI of the IMS. In the left pane, all currently connected
users are shown. Each user has a name, a profile picture, and the text of the
last message within the conversation. Each contact has a small colored icon
showing his presence status. Currently, the presence status is not dynamically
updated and just set hard-coded for demonstration purposes. Within the right
pane, the chat history with a dedicated user is shown. The chat history is not
saved. Group conversations are not supported.

The TIA Portal is endowed with a so-called multiuser feature, which allows
up to 20 people to work collaboratively. In order to use this feature, clients
need to set up a multiuser server. TIA Portal already provides extra tools that
allow easy configuration and user management of the dedicated multiuser server.
Instead of hosting an own server for IM, the currently described approach can be
integrated into these tools. This provides the following benefits: no extra server
is needed, reusable user management, and no additional costs. The integration
into this multiuser feature constitutes a possible future enhancement.

59

Figure 27: Approach 1 GUI

7.2 Approach 2: Cloud-based solution with SignalR ser-
vice

This approach aims to provide a cloud-based solution based on .NET SignalR.
Azure was chosen as the designated cloud platform because it also provides an
integrated SignalR service. The integration into the TIA Portal is implemented
in the same way as in approach 1, which means with a CefSharp windows form
control. This results in the same additional memory consumption, meaning
∼180-220MB of additional RAM or ∼7% of the total RAM usage. Figure 28
depicts the architecture overview of approach 2. We can see a clear separa-
tion between client and cloud parts. Azure hosts the whole ASP.NET Core
web application, the SignalR service, and a database for saving user account
information. The web application is implemented as a Microsoft ASP.NET
Core web application, which uses Razor as a syntax view engine to create
dynamic web pages. The web pages are implemented in files with a “.cshtml”
suffix. Razor has its own syntax, but allows using HTML and JavaScript.
The web application is available via a public URL structured in the Azure
URL format, e.g., “https://tiachat.azurewebsites.net/”. On the client-side, the
CefSharp control accesses the web application via the URL above. Clients
have a persistent connection to the SignalR service (see Section 2.6.2 for more
information).

60

Figure 28: Approach 2 overview

The approach of hosting the whole application was chosen over using Azure
functions because of the availability of tutorials and extended information.
Azure was chosen as the target cloud because it provides easy integration of the
SignalR service. Hosting the web application, together with the database and
SignalR service, does not come for free. During implementation and testing
phase, the free Azure pricing tier F1 (Microsoft Azure, 2020) was chosen.
However, in production, this is not possible because only one hour per day
of computation time is included. In the production phase, the chat service
should be available during the whole day resulting in a more expensive price
tier. We suggest using the B1 pricing tier, which includes 24 hours computation
time per day, and costs e47 per month. A free price tier was chosen for the
SignalR service, allowing up to 20 connected clients and 20000 messages per
day. The cheapest SQL database price tier, costs e4,20 and contains one GB of
storage. In total, this solution adds up to e51,2 per month. All Azure services
are scalable, meaning that amounts of, e.g., client connections, can be easily
adapted depending on the workload or traffic of the web application.

61

The underlying IMS is implemented as a simple chat room. Within figure
29, we can see multiple connected clients and how a broadcast messaged is
transferred from one client to the others. Broadcast messages are used to notify
already connected clients about new clients and to send additional messages
to the chat room. Further, broadcast messages are relayed over the SignalR
hub. The clients are connected via WebSockets. Listing 4 shows an example
implementation of a SignalR Hub. Implementing an own Hub requires inheriting
from the Microsoft.AspNetCore.SignalR.Hub base class. The hub contains a
method used to broadcast messages to all connected clients. Listing 5 contains
the corresponding code to access the hub within the web page. The signalR
object is made accessible via the script tag in line 1. After the connection to
the hub has been established, the onConnected method is called, which triggers
a new broadcast message. We can see that the name of the hub’s method needs
to match the first parameter (case-insensitive) of the invoke method. The hub
receives the broadcast message and forwards it all clients. Clients then need to
process the incoming message.

Figure 29: Approach 2 message transfer

62

1 public class ChatHub : Hub
2 {
3 public async Task BroadcastMessage(
4 string name,
5 string message)
6 {
7 await Clients.All.SendAsync("broadcastMessage", name, message);
8 }
9 }

Listing 4: Exemplary SignalR Hub code

1 <script type="text/javascript" src="https://../signalr.min.js"></script>
2

3 var connection = new signalR.HubConnectionBuilder()
4 .withUrl(‘/chat‘)
5 .build();
6

7 function onConnected(connection) {
8 connection.invoke(’broadcastMessage’, ’_SYSTEM_’, username);
9 }

10

11 connection.start()
12 .then(function() {
13 onConnected(connection);
14 })

Listing 5: SignalR connection establishment

Figure 30 shows the GUI of the IMS. As already mentioned, the GUI looks
similar to a chatroom. Within the conversation history, we see notifications
about users that joined. Based on the concept of a chatroom, all users write their
messages to the same conversation. Further, each message has a timestamp,
username, and an icon indicating whether the current user wrote the message
or it was sent by another user. Due to time constraints, no further features
were implemented.

63

Figure 30: Approach 2 GUI

7.3 Approach 3: Chat via PLC

The idea of approach three is to use connected PLCs for IM rather than using
any 3rd party components, such as a browser control or WebRTC libraries.
Therefore, chat messages should be directly transferred via a PLC. Within
the TIA Portal there exists a framework that makes certain information of
the underlying automation system available to the outside where it is accessed
by clients. Let us refer to it as the online object model (OOM). It is used
in various application areas, such as embedded applications of CPUs, HMIs,
panels as well as in PC based applications of the engineering system. OOM
allows us to establish and manage connections between clients and servers on
application level, download, upload, access and store objects like Blocks, system
status, diagnosis buffer, and notify sets of attributes and objects cyclically or
upon change like alarms or system events. Clients use OOM’s API to access
information. This approach uses OOM to write chat messages to a specific
attribute of an online object. For this purpose, two service of OOM are used:
the object access service and attribute service. The object access service is
used to obtain the dedicated object, where the chat messages are written to
a specific attribute. The attribute service allows us to get/set variables on
an object and to get notified on attribute changes. The PLC’s online object

64

contains attributes such as the name, unique id or firmware version. This
approach reuses an existing example attribute. Various flags are defined on
attributes, such as a persistence flag indicating whether the attribute is saved
on a memory card. Any attribute having the persistence flag needs an extra
download to the PLC to apply changes. Applying a download after each new
message introduces too much overhead. Therefore, the used example attribute
is not flagged with the persistence specifier, which means that the contents
are discarded when the PLC is switched off. The content of the attribute is
saved in plaintext. Conversation history is currently limited by two megabytes
allowing a total amount of 1048576 characters because a character accounts for
two bytes in Unicode. Two megabytes was chosen because the PLC’s internal
memory is limited and not to jeopardize PLC cycle times.

Figure 31 shows an overview of approach three. Within the TIA Portal a
new windows form control has been created. This control is used to show the
chat conversation for each PLC. It can be opened via the shortcut: CTRL+3.
Within the chat control, only the chat history of currently connected PLCs is
accessible. Further, we see that only the OOM of connected PLCs is accessible.
This means that messaging via PLC_3 is only possible after a connection has
been established. Messaging via PLC_1 and PLC_2 is possible.

Figure 31: Approach 3 overview

65

Figure 32 illustrates the general workflow of this approach with two TIA
Portal users. In steps 1 and 4, the users connect to a dedicated PLC. We can
see that a publish/subscribe mechanism is used. Within steps 3 and 6, the
TIA Portal users subscribe for attribute changes. In step 7, TIA Portal user 1
writes a new message and, afterwards all connected users are notified about
the new message. This workflow bears one small problem. When a TIA Portal
user compiles and downloads the program on a PLC, other users lose their
connection to the PLC. While the whole process can take several minutes, the
users want to connect again to the PLC to participate in the chat. However,
this is only possible when the download has finished. One open problem of the
TIA Portal is that users do not get notified when re-connection is possible.

Figure 32: Approach 3 workflow

The GUI of this approach is depicted in figure 33. As already described,
it is implemented as a windows form and contains a drop-down list for PLC
selection and a text box for displaying chat messages. It is implemented as a
so-called taskcard. The taskcard concept refers to views that are available in
the right pane within every TIA Portal view. The GUI aims to provide a basic
design that conforms to the corporate look and feel of TIA Portal. We can see
that each message contains a username and a timestamp. The username refers
to the TIA Portal username that can be customized within the settings of the
TIA Portal. It is not possible to apply any formatting within the windows
text box. Another limitation that arises from the TIA Portal is that it is not

66

possible to obtain all currently connected users of a PLC. A simple notification
mechanism has been implemented that changes the background color of the
right pane if the chat is currently not opened.

Figure 33: Approach 3 GUI

67

8 Evaluation

This chapter evaluates the three different approaches that have been imple-
mented within the scope of this thesis. The result is shown in a feature matrix
in table 3 in Section 8.4. Eighteen features are used to evaluate the approaches.
This section provides a textual description of the different features together
with an explanation of why the corresponding feature is used in the evaluation:

1. Availability: Percentage of a specified time interval, where the system
was available for normal use. In general, the IMS should provide high
availability. Based on requirement 15.

• low: 0-50%
• medium: 50-90%
• high: 90-99.9%, e.g., 99.9% is guaranteed by Azure’s service level

agreement
2. Scalability: Maximal number of concurrent supported users. Within this

scenario, the IMS needs to support up to 20 concurrent users, which
might be considered as a very low number, but within this context, it is
not necessary to support a higher number of users. Based on requirement
17.

3. Extensibility: Defines the IMS’s ability to be extended with new func-
tionality and the corresponding level of effort required to implemented
the new feature. Based on requirement 12.

• low: The system is very limited and can only be extended really
hard.

• medium: New features can be implemented with mediocre effort.
• high: A variety of new features can easily be implemented.

4. Maintenance: Describes the components that need to be maintained by
the customer. The implemented IMS should be maintainable with low
effort. Based on requirement 16.

5. Additional memory requirements: Describes the amount and type of
memory needed for the IMS. A requirement for memory usage has not
been defined, but low memory usage is a common goal.

6. Cost/Month in Euro: Describes the involved costs needed for using the
IMS. No additional costs should arise for Siemens. Based on requirement
10.

7. Use of third-party components: Describes whether the IMS uses third-
party components. No dedicated requirement is defined. Third-party
components are allowed if they are open-source, but using such compo-
nents results in more maintenance effort for developers.

8. Message confidentiality: Describes whether the messages are sent en-
crypted. Based on requirement 13.

68

9. Authenticity: Defines the ability to identify a user or to verify his claimed
identity.

10. Privacy: Is a branch of data security focusing on proper data handling.
Three privacy properties regarding IMS defined by Patil and Kobsa (2004)
are used. Based on requirement 11.

• Non-Contact: Non-contacts are not able to contact a user.
• Availability: Presence status indicator to prevent frequent interrup-

tions when the user is busy.
• Content: Indicates whether messages are saved in plaintext, e.g., in

a database.

11. Setup difficulty / Installability: Describes the effort needed to set up
the IMS. The implemented IMS aims for a zero-config approach. Too
complicated installation or configuration could lead to abandonment.
Based on requirement 14.

• low: Installation is not required.
• medium: Less than 10 installation steps are needed.
• high: More than 10 installation steps are needed.

12. Additional NAT handling needed: Indicates whether additional NAT
handling is needed in order to ensure correct execution in different NAT
scenarios. As already mentioned, the IMS should not need complex
configuration. Based on requirement 14.

13. One-on-one messaging: Functionality to chat with each user individually.
This is considered as a standard IM feature. Based on requirement 1.

14. Presence list: The presence status of other users should be visible. Based
on requirement 2.

15. History persistence: Describes the IMS’s capability of persisting history
such that conversation history is available for users after re-connection.
The absence of history persistence results in loss of whole conversations.
Based on requirement 3.

16. Chat room: Functionality to chat in a group. This feature improves
collaboration because multiple automation engineers can participate in a
conversation. Based on requirement 4.

17. Notifications: Users should get notified of new messages. Without notifi-
cations, messages can simply be overseen, potentially leading to delays
and a decrease in productivity. Based on requirement 5.

18. Technology: Describes the different technologies used within the ap-
proaches. Only technologies that allow the integration of the IMS in the
TIA Portal are allowed. Based on requirement 9.

The functional requirements with a low priority (6-8) have not been included
in the implementation due to time constraints. Hence, they are also not included
in the evaluation.

69

Approach 1 Approach 2 Approach 3

Availability medium high medium

Scalability (#Users) max. 20 max. 20 max. 20

Extensibility high high low

Maintenance Server Azure Services PLC

Additional memory requirements ∼180-220MB RAM∼180-220MB RAM
2MB CPU

internal memory

Cost/Month in Euro free 51,2 free

Use of third party components yes yes no

Message confidentiality yes yes no

Authenticity yes yes no

Privacy Non-Contact,
Content

Availability Availability

Setup difficulty / Installability medium low low

Additional NAT handling needed yes no no

One-on-one messaging yes not implemented no

Presence List yes not implemented not implemented

Chat Room not implemented yes yes

History Persistence not implemented not implemented yes

Notifications not implemented not implemented yes

Technology WebRTC + Node.js
+ CefSharp

Azure Cloud with
SignalR + CefSharp

PLC properties +
TIA .Net Control

Table 3: Feature Matrix

70

8.1 Discussion of Approach 1

Approach 1 fulfills the requirements with the highest priority: 1, 9, 10, 11, 12,
and 13. The features chat room, history persistence, and notifications have not
been implemented due to time constraints. Based on the high extensibility of
this approach, such new features can easily be implemented. As this approach
is tightly coupled with the TIA portal multiuser feature, it is not available to
customers without this feature. However, the standard use case for automation
engineers working collaboratively on the same PLCs, HMIs, etc., is via the
multiuser feature. Customers need to maintain their own multiuser server
hosting the multiuser software, making it an ideal target for integrating an
IMS. This means that no additional server needs to be maintained by Siemens
or a customer. Currently, the multiuser feature supports up to 20 users. As
the signaling process runs on the same server, the approach is limited by the
amount of memory and number of accessible ports. Also, sending/receiving
times depend on the server’s network connection. The evaluation showed that
this approach is the only one needing additional NAT handling. This approach
requires a future STUN/TURN concept to be applicable in complex NAT
scenarios.

8.2 Discussion of Approach 2

Approach 2 fulfills the requirements with the highest priority: 1, 9, 11, 12,
and 13. High scalability and availability, together with low maintenance effort,
is provided through the use of the Azure cloud. However, in this scenario,
large amounts of users are not expected. The high costs resulting from the
Azure services contradict with requirement 10 and thus, make this approach
impracticable.

8.3 Discussion of Approach 3

Approach 3 fulfills the requirements with the highest priority: 1, 9, 10, and 11.
This approach is tightly coupled to PLC properties. Hence limitations, based
on the capabilities of a PLC, arise. This approach provides the benefit that
no server or cloud service is needed, resulting in no additional costs and low
maintenance effort. In order to not to jeopardize PLC cycle times, messages
are not encrypted contradicting with requirement 13. This approach provides
with history persistence (up to 2MB), a chat room and notifications a broad
feature scope, but new features, such as file transfer, cannot easily be extended,

71

contradicting with requirement 12. Another problem arises due to the PLC
download workflow. When a TIA portal user compiles and downloads the
program on a PLC, other users lose their connection to the PLC, resulting in
the unavailability of the IMS.

8.4 Result

The evaluation has shown that the primary choice is approach 1, as the
requirements with the highest priority are fulfilled. Although several functional
requirements with a lower priority have not been implemented, they can easily
be implemented due to the high extensibility of this approach. The main
counter-argument for approach 2 is the involved costs making this approach
impracticable. Approach 3 is the secondary choice. Due to the restrictions
that arise from the PLCs, messages are not send encrypted and as already
mentioned, a presence list and one-on-one messaging is not possible based on
TIA Portal limitations. Further, the workflow problem results in unavailability
of the IMS. However, it is possible to integrate both approaches into the TIA
Portal. Approach 3 would serve as a basic IMS for all TIA Portal users and
approach 1 as an extended IMS targeting only customers using the TIA Portal
Multiuser feature.

72

9 Limitations

The approaches implemented within the scope of this thesis have been explained
in Chapter 7 and evaluated in Chapter 8. This chapter explains the limitations
of the different approaches. In general, the goal was not the implementation of
a whole new IMS with a broad feature-scope, but rather to evaluate state-of-
the-art technologies and how they can be used to integrate a basic IMS into
the TIA Portal.

9.1 Compatibility/Technology/Dependencies

Protocols and components used within the different approaches have been chosen
to fulfill requirement 9 - TIA Portal integration. As the TIA Portal is based
on the .Net framework, all presented approaches provide .NET compatibility.
In the following used technologies and related dependencies of the different
approaches are explained.

• Approach 1: The opensource framework EasyRTC is used to enable
real-time communication via WebRTC. Signaling server is implemented
in Node.js. A CefSharp .Net browser control is integrated into the TIA
Portal to access the website, where the IM service runs. This approach is
tightly coupled with the TIA Portal Multiuser feature. Hence, access to
the IMS is limited to customers using this feature.

• Approach 2: This approach heavily relies on Azure and its SignalR service.
The same CefSharp browser control as in approach 1 is used for TIA
Portal integration and website access.

• Approach 3: The dependency of this approach arises through the use of
Siemens Simatic PLCs for IM. In terms of availability, users need to be
connected to a dedicated PLC, which is not possible in certain scenarios.
GUI integration is implemented via a TIA .NET control.

9.2 Scalability

As seen in Chapter 8, all three approaches do not provide scalability of up to
several thousands users. All approaches support currently up 20 users, which
might be considered as a very low number, but within this context, it is not
necessary to support a higher number of users. Approach 1 builds upon the
TIA Portal Multiuser feature, which currently supports up to 20 users. Hence,

73

the number of supported users for IM goes hand-in-hand with this limitation.
Increasing this number within the multiuser feature also increases the amount
supported IM users. The limitation of 20 users in approach 2 arises, due to the
use of Azure’s SignalR service with a free pricing tier. Switching to a higher
pricing tier increases the number of supported users, but also increases related
costs. Scalability within the second approach can be easily increased with
more money. This limitation only comes from the SignalR supported Users. In
approach 3, the number of supported users is limited to 20 to no to jeopardize
PLC cycle times. Customers using more than a single PLC, can use each PLC
for IM, allowing to increase the total number of supported users.

9.3 Usability

Based on the requirement that the IMS needs to be integrated within the TIA
Portal, usability shortcomings arise. In general, a low degree of freedom in GUI
design exists, because it must comply with the TIA Portal’s corporate look
and feel. One usability issue emerges through the limited number of available
shortcuts. Intuitive shortcuts are already reserved for other features, allowing
using only less-intuitive shortcuts, e.g., CTRL+ALT+9 for opening the IMS.

9.4 Functionality

All approaches are implemented based on the proof-of-concept paradigm, demon-
strating the feasibility of the individual approaches. This includes the absence
of implemented unit/integration/UI tests. Due to time constraints several
nice-to-have IM features, that might be expected from a state-of-the-art IMS,
e.g., file transfer or multiple group chats are not implemented.

9.5 Process/Maintenance

Opensource software used within the TIA Portal needs to run through a license
and security clearing. Only successfully cleared libraries are allowed to be
included. Currently, new TIA Portal versions come out every year. In a new
version, use of opensource software needs to be re-evaluated and potentially
updated to a new version. This means that if problems are encountered with a
specific library, customers need to wait up to one year to get a new version,
depending on the problem’s severity.

74

10 Conclusion and Future Work

Over the past decades, various IMS and their enabling technologies have been
implemented. This thesis focused on how to use those technologies to design
and integrate an IMS into the enterprise automation software TIA Portal.
The positive and negative work-related effects of IMS are pointed out within
this thesis. In the TIA Portal’s context, an integrated IMS improves the
automation process by providing a unified communication process and, thus,
decreases communication overhead arising through the use of various CMC
types. Within this thesis, three different approaches have been established.
Ideas, used technologies, architectures, protocols, and GUI designs of the
individual approaches are illustrated. The different approaches have been
evaluated via a feature matrix. The evaluation showed that approach 1 and 3
are the primary choices according to the defined requirements. Approach 2 is
not applicable due to related costs.

The main goal for the future is to integrate one of the approaches into the
TIA portal. All approaches have been implemented in a prototype-fashion. In
order to reach production-ready product quality, the following base actions
need to be taken: conduct code reviews, implement unit/integration/UI tests,
execute usability tests. For approach 1, the integration into the TIA Portal
Multiuser feature needs to be implemented. Secondly, a STUN/TURN server
concept needs to be developed to enable IM in complex NAT setups. Potential
future work for approach 3 is the retrieval and display of all currently connected
users of a PLC within the IMS. The retrieval of connected users is not yet
implemented within the TIA Portal. Further, a new OOM attribute needs to be
introduced on PLCs, because an example attribute was used, which cannot be
used in production. Finally, to provide a generic solution for Siemens Simatic
PLCs, performance tests with different PLCs need to be taken to evaluate the
IM impact.

75

Acronyms
AWS Amazon Web Services

BaaS Backend As A Service

CEF Chromium Embedded Framework

CMC Computer-mediated Communication

DDoS Distributed Denial Of Service

DHT Distributed Hash Table

DOM Document Object Model

FaaS Function As A Service

GUI Graphical User Interface

HMI Human-machine-interface

IaaS Infrastructure As A Service

IM Instant Messaging

IMS Instant Messaging System

JID JabberID

MES Manufacturing Execution System

MPI Multi Point Interface

NAT Network Address Translation

OOM Online Object Model

OpenPGP Open Pretty Good Privacy

OS Operating System

OTR Off-the-Record

P2P Peer-to-peer

PaaS Platform As A Service

PLC Programmable Logic Controller

Profibus Process Field Bus

76

REST Representational State Transfer

RTC Real-time Communication

SaaS Software As A Service

SASL Simple Authentication And Security Layer

SDP Session Description Protocol

SIL Safety Integrity Level

SIMPLE SIP For IM And Presence Leverage Extension

SIP Session Initiation Protocol

S/MIME Secure/Multipurpose Internet Mail Extensions

SOAP Simple Object Access Protocol

STUN Session Traversal Utilities For NAT

TIA Portal Totally Integrated Automation Portal

TLS Transport Layer Security

TURN Traversal Using Relays Around NAT

UA User Agent

UI User Interface

URI Uniform Resource Identifier

VM Virtual Machine

VMM Virtual Machine Monitor

WebRTC Web Real-time Communication

WPF Windows Presentation Foundation

WSDL Web Services Description Language

XMPP Extensible Messaging And Presence Protocol

77

References
Abu-Salma, R., Sasse, M. A., Bonneau, J., & Smith, M. (2015). POSTER: Secure

Chat for the Masses? User-centered Security to the Rescue. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (pp. 1623–1625). ACM. doi:10.1145/2810103.2810126

Adzic, G. & Chatley, R. (2017). Serverless computing: Economic and architec-
tural impact. In Proceedings of the 2017 11th joint meeting on foundations
of software engineering (pp. 884–889). ACM. doi:10.1145/2810103.2810126

Aguilar, J. M. (2014). SignalR programming in microsoft ASP.NET. Microsoft
Press. isbn: 978-0735683884.

Åkerman, M. (2018). Implementing shop floor IT for industry 4.0 (Doctoral
dissertation, Chalmers University of Technology). Retrieved December
1, 2019, from https://www.researchgate.net/publication/326224890_
Implementing_Shop_Floor_IT_for_Industry_40

Amazon. (2014). AWS lambda. Retrieved June 10, 2019, from https://aws.
amazon.com/lambda/

Anderson, C. (2015). Docker [Software engineering]. IEEE Software, 32 (3),
102–c3. doi:10.1109/MS.2015.62

Androutsellis-Theotokis, S. & Spinellis, D. (2004). A survey of peer-to-peer
content distribution technologies. ACM computing surveys (CSUR), 36 (4),
335–371. doi:10.1145/1041680.1041681

ANSI/ISA-95.00.03-2005. (2005). Enterprise control system integration part
3: Activity models of manufacturing operations management. Tech. Rep.
Netherlands.

Armoogum, S. & Mudhoo, S. K. (2016). A Secure Messaging and File Transfer
Application. ICCGI 2016, The Eleventh International Multi-Conference
on Computing in the Global Information Technology, 42–47.

Bakar, H. S. A. & Johari, N. A. H. (2009). Instant Messaging: The Next Best
Knowledge Sharing Tools in a Workplace After E-mail? In Proc. 2nd
IEEE Int. Conf. Computer Science and Information Technology (pp. 268–
269). doi:10.1109/ICCSIT.2009.5234577

78

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., . . . Slomin-
ski, A. (2017). Serverless Computing: Current Trends and Open Prob-
lems. In Research Advances in Cloud Computing (pp. 1–20). Springer.
doi:10.1007/978-981-10-5026-8_1

Barry, B. I. A. & Tom, F. M. (2011). Instant Messaging: Standards, Protocols,
Applications, and Research Directions. In B. Kutais (Ed.), Internet Poli-
cies & Issues (Chap. 8). Nova Science Publishers Inc. isbn: 1616687452.

Bell, R. (2006). Introduction to IEC 61508. In Proceedings of the 10th australian
workshop on safety critical systems and software-volume 55 (pp. 3–12).
Australian Computer Society, Inc. isbn: 1-920-68237-6.

Bernstein, D. (2014). Containers and cloud: From LXC to docker to kubernetes.
IEEE Cloud Computing, 1 (3), 81–84. doi:10.1109/MCC.2014.51

Bilal, K., Khalid, O., Erbad, A., & Khan, S. U. (2018). Potentials, trends, and
prospects in edge technologies: Fog, cloudlet, mobile edge, and micro
data centers. Computer Networks, 130, 94–120. doi:10.1016/j.comnet.
2017.10.002

Bischofs, L., Hasselbring, W., & Warns, T. (2008). Peer-to-Peer-Architekturen.
In Handbuch der Software Architekturen. dPunkt Verlag. isbn: 978-
3898643726.

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and
its role in the internet of things. In Proceedings of the first edition of the
MCC workshop on mobile cloud computing (pp. 13–16). ACM. doi:10.
1145/2342509.2342513

Borisov, N., Goldberg, I., & Brewer, E. (2004). Off-the-record communication, or,
why not to use PGP. In Proceedings of the 2004 acm workshop on privacy
in the electronic society (pp. 77–84). ACM. doi:10.1145/1029179.1029200

Buxmann, P., Hess, T., & Lehmann, S. (2008). Software as a service.Wirtschaftsin-
formatik, 50 (6), 500–503. doi:10.1007/s11576-008-0095-0

Callas, J., Donnerhacke, L., Finney, H., & Thayer, R. (1998). RFC 2440:
OpenPGP message format. Internet Engineering Task Force. Retrieved
from https://tools.ietf.org/html/rfc2440

79

Camarillo, G. [Gonzalo]. (2009). RFC 5694: Peer-to-peer (P2P) architecture:
Definition, taxonomies, examples, and applicability. Network Working
Group. Retrieved from https://tools.ietf.org/html/rfc5694

Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., & Gurle, D. (2002).
RFC 3428: Session initiation protocol (sip) extension for instant messaging.
Internet Engineering Task Force. Retrieved from https://tools.ietf.org/
html/rfc3428

CefSharp. (2019). CefSharp. Retrieved November 6, 2019, from https://github.
com/cefsharp/CefSharp

Chang, W. Y., Abu-Amara, H., & Sanford, J. F. (2010). Transforming enterprise
cloud services. Springer Netherlands. isbn: 9789048198467.

Chinnici, R., Moreau, J.-J., Ryman, A., & Weerawarana, S. (2007). Web services
description language (WSDL) version 2.0 part 1: Core language. W3C
recommendation, 26 (1), 19.

Combe, T., Martin, A., & Di Pietro, R. (2016). To Docker or not to Docker: A
Security Perspective. IEEE Cloud Computing, 3 (5), 54–62. doi:10.1109/
MCC.2016.100

Cooper, A., Reimann, R., & Cronin, D. (2007). About face 3: The essentials of
interaction design. John Wiley & Sons. isbn: 978-0470084113.

Cramer, C., Kutzner, K., & Fuhrmann, T. (2004). Bootstrapping locality-aware
p2p networks. In Proceedings. 2004 12th IEEE international conference
on networks (ICON 2004) (Vol. 1, pp. 357–361). IEEE. doi:10.1109/
ICON.2004.1409169

Cumming, J. (2003). SIP market overview. Tech. rep. Retrieved November 30,
2019, from http://docshare01.docshare.tips/files/25252/252522914.pdf

Curry, S. J. J. (2013). Instant-messaging security. In J. R. Vacca (Ed.), Com-
puter and information security handbook (Third Edition, pp. 727–740).
Boston: Morgan Kaufmann. isbn: 978-0-12-803843-7. doi:10.1016/B978-
0-12-803843-7.00051-X

Czerwinski, M., Cutrell, E., & Horvitz, E. (2000a). Instant messaging and
interruption: Influence of task type on performance. OZCHI 2000 Confer-
ence Proceedings. Association for Computing Machinery, Inc. Retrieved

80

from https://www.microsoft.com/en-us/research/publication/instant-
messaging-and-interruption-influence-of-task-type-on-performance/

Czerwinski, M., Cutrell, E., & Horvitz, E. (2000b). Instant messaging: Effects
of relevance and timing. In People and computers xiv: Proceedings of
hci 2000 (People and Computers XIV: Proceedings of HCI 2000, Vol. 2,
pp. 71–76). Retrieved from https://www.microsoft.com/en-us/research/
publication/instant-messaging-effects-of-relevance-and-timing/

De Luca, A., Das, S., Ortlieb, M., Ion, I., & Laurie, B. (2016). Expert and non-
expert attitudes towards (secure) instant messaging. In Twelfth symposium
on usable privacy and security (SOUPS 2016) (pp. 147–157). isbn: 978-1-
931971-31-7.

Debbabi, M. & Rahman, M. (2003). The war of presence and instant messaging:
Right protocols and APIs. In 2003 international symposium on VLSI
technology, systems and applications. proceedings of technical papers. IEEE.
doi:10.1109/ccnc.2004.1286884

Dinger, J. & Waldhorst, O. P. (2009). Decentralized bootstrapping of P2P
systems: A practical view. In International conference on research in
networking (pp. 703–715). Springer. doi:10.1007/978-3-642-01399-7_55

Dittrich, Y. & Giuffrida, R. (2011). Exploring the role of instant messaging in
a global software development project. In 2011 IEEE sixth international
conference on global software engineering (pp. 103–112). doi:10.1109/
ICGSE.2011.21

Dolui, K. & Datta, S. K. (2017). Comparison of edge computing implemen-
tations: Fog computing, cloudlet and mobile edge computing. In 2017
global internet of things summit (GIoTS) (pp. 1–6). IEEE. doi:10.1109/
GIOTS.2017.8016213

Dua, R., Raja, A. R., & Kakadia, D. (2014). Virtualization vs containerization to
support PaaS. In 2014 IEEE international conference on cloud engineering
(pp. 610–614). IEEE. doi:10.1109/IC2E.2014.41

Eberspächer, J. & Schollmeier, R. (2005). First and second generation of peer-
to-peer systems. In Peer-to-peer systems and applications (pp. 35–56).
Springer. doi:10.1007/11530657_5

81

Ermoshina, K., Musiani, F., & Halpin, H. (2016). End-to-end encrypted mes-
saging protocols: An overview. In International conference on internet
science (pp. 244–254). Springer. doi:10.1007/978-3-319-45982-0_22

Fette, I. & Melnikov, A. (2011). RFC 6455: The websocket protocol. IETF.
Retrieved from https://tools.ietf.org/html/rfc6455

Fox, G. C., Ishakian, V., Muthusamy, V., & Slominski, A. (2017). Status
of serverless computing and function-as-a-service(faas) in industry and
research. ICDCS 2017 Workshop. doi:10.13140/rg.2.2.15007.87206

Furht, B. (2010). Cloud computing fundamentals. In Handbook of cloud com-
puting (pp. 3–19). Springer. doi:10.1007/978-1-4419-6524-0

Fussell, S. R., Kiesler, S., Setlock, L. D., & Scupelli, P. (2004). Effects of
instant messaging on the management of multiple project trajectories. In
Proceedings of the SIGCHI conference on human factors in computing
systems (pp. 191–198). ACM. doi:10.1145/985692.985717

Galitz, W. O. (2007). The essential guide to user interface design: An introduc-
tion to gui design principles and techniques. John Wiley & Sons. isbn:
0470053429.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:
Elements of reusable object-oriented software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc. isbn: 0-201-63361-2.

Garrett, R. K. & Danziger, J. N. (2007). IM = interruption management? Instant
messaging and disruption in the workplace. Journal of Computer-Mediated
Communication, 13 (1), 23–42. doi:10.1111/j.1083-6101.2007.00384.x

Geneiatakis, D., Kambourakis, G., Dagiuklas, T., Lambrinoudakis, C., &
Gritzalis, S. S. (2005). SIP security mechanisms : A state-of-the-art
review. In Proceedings of the fifth international network conference 2005
(inc 2005). doi:10.1109/ICTTA.2006.1684926

Gnutella Developer Forum. (2003). Gnutella: A protocol for a revolution.
http://rfc-gnutella.sourceforge.net/.

Gupta, A., Li, H., & Sharda, R. (2013). Should I send this message? under-
standing the impact of interruptions, social hierarchy and perceived task
complexity on user performance and perceived workload. Decision Support
Systems, 55 (1), 135–145. doi:10.1016/j.dss.2012.12.035

82

Hauswirth, M. & Dustdar, S. (2005). Peer-to-peer: Grundlagen und Architektur.
Datenbank-Spektrum, 13 (2005), 5–13.

Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A. C., & Arpaci-Dusseau, R. H. (2016). Serverless computation with
openlambda. In Proceedings of the 8th usenix conference on hot topics
in cloud computing (pp. 33–39). HotCloud’16. Denver, CO: USENIX
Association. Retrieved from http://dl.acm.org/citation.cfm?id=3027041.
3027047

Hönlinger, J. (2018). The role of instant messenger as computermediated commu-
nication tool for knowledge sharing and teamwork performance (Master’s
thesis, Joenkoeping University).

Isaacs, E., Walendowski, A., Whittaker, S., Schiano, D. J., & Kamm, C. (2002).
The character, functions, and styles of instant messaging in the work-
place. In Proceedings of the 2002 ACM conference on computer supported
cooperative work (pp. 11–20). ACM. doi:10.1145/587078.587081

Jaanu, T., Paasivaara, M., & Lassenius, C. (2012). Near-synchronicity and
distance: Instant messaging as a medium for global software engineer-
ing. In 2012 IEEE seventh international conference on global software
engineering (pp. 149–153). doi:10.1109/ICGSE.2012.37

Jadeja, Y. & Modi, K. (2012). Cloud computing-concepts, architecture and
challenges. In 2012 international conference on computing, electronics
and electrical technologies (ICCEET) (pp. 877–880). IEEE. doi:10.1109/
ICCEET.2012.6203873

Jennings, R. B., Nahum, E. M., Olshefski, D. P., Saha, D., Shae, Z.-Y., & Waters,
C. (2006). A study of internet instant messaging and chat protocols. IEEE
Network, 20 (4), 16–21. doi:10.1109/MNET.2006.1668399

John, K.-H. & Tiegelkamp, M. (2009). Die Programmiersprachen der IEC 61131-
3. In SPS-Programmierung mit IEC 61131-3 (pp. 103–211). Springer.
doi:10.1007/978-3-642-00269-4_4

Josuttis, N. M. (2007). SOA in practice: The art of distributed system design.
O’Reilly Media, Inc. isbn: 0596529554.

Kamel, M., Scoglio, C., & Easton, T. (2007). Optimal topology design for overlay
networks. In Networking 2007. ad hoc and sensor networks, wireless

83

networks, next generation internet (pp. 714–725). Berlin, Heidelberg:
Springer Berlin Heidelberg. isbn: 978-3-540-72606-7.

Lane, K. (2015). Overview of the backend as a service (BaaS) space. API
Evangelist. Retrieved November 30, 2019, from https://apievangelist.
com/2013/05/03/overview-of-the-backend-as-a-service-baas-space/

Lebbon, A. R. & Sigurjónsson, J. G. (2016). Debunking the instant messaging
myth? International Journal of Information Management, 36 (3), 433–440.
doi:https://doi.org/10.1016/j.ijinfomgt.2016.02.003

Levin, O. & Camarillo, G. (2006). RFC 4574: The session description protocol
(SDP) label attribute. Network Working Group. Retrieved from https:
//tools.ietf.org/html/rfc4574

Li, H., Gupta, A., Luo, X., & Warkentin, M. (2011). Exploring the impact of
instant messaging on subjective task complexity and user satisfaction.
European Journal of Information Systems, 20 (2), 139–155. doi:10.1057/
ejis.2010.59

Liu, Q. & Sun, X. (2012). Research of web real-time communication based
on web socket. International Journal of Communications, Network and
System Sciences, 5 (12), 797. doi:10.4236/ijcns.2012.512083

Loreto, S., Saint-Andre, P., Salsano, S., & Wilkins, G. (2011). RFC 6202:
Known issues and best practices for the use of long polling and streaming
in bidirectional http. Internet Engineering Task Force, 6202 (2070-1721),
32. Retrieved from https://tools.ietf.org/html/rfc6202

Mannan, M. & van Oorschot, P. C. (2004). Secure public instant messaging: A
survey. Proceedings of Privacy, Security and Trust, 95.

Mansi, G. & Levy, Y. (2013). Do instant messaging interruptions help or
hinder knowledge workers’ task performance? International Journal of
Information Management, 33 (3), 591–596. doi:10.1016/j.ijinfomgt.2013.
01.011

Meletiadou, A. (2010). Moderne Instant-Messaging-Systeme als Plattform für
sicherheitskritische kollaborative Anwendungen (doctoralthesis, University
Coblenz).

Mell, P. & Grance, T. (2011). The NIST definition of cloud computing. Com-
munications of the ACM, 53. doi:10.6028/NIST.SP.800-145

84

Melnikov, A. & Zeilenga, K. (2006). RFC 4422: Simple authentication and
security layer (SASL). Internet Engineering Task Force, 15, 20. Retrieved
from https://tools.ietf.org/html/rfc4422

Menascé, D. A. (2005). Virtualization: Concepts, applications, and performance
modeling. In Int. CMG conference (pp. 407–414).

Microsoft Azure. (2020). Azure pricing. Retrieved January 11, 2020, from https:
//azure.microsoft.com/en-us/pricing/details/app-service/windows/

Microsoft Docs. (2018). Cloud service models. Retrieved November 9, 2019, from
https://docs.microsoft.com/en-us/learn/modules/align-requirements-
in-azure/3-service-models

Musiani, F. & Ermoshina, K. (2017). What is a Good Secure Messaging Tool?
The EFF Secure Messaging Scorecard and the Shaping of Digital (Usable)
Security. Westminster Papers in Communication and Culture, 12 (3),
51–71. doi:10.16997/wpcc.265

Nielsen, J. (2012). Usability 101: Introduction to usability. Retrieved Novem-
ber 3, 2019, from https://www.nngroup.com/articles/usability-101-
introduction-to-usability/

Niinimäki, T. & Lassenius, C. (2008). Experiences of instant messaging in
global software development projects: A multiple case study. In 2008
IEEE international conference on global software engineering (pp. 55–64).
doi:10.1109/ICGSE.2008.27

Ou, C. X. J., Davison, R. N., Liang, Y., & Zhong, X. (2010). The Significance
of Instant Messaging at Work. In Proc. Fifth Int. Conf. Internet and Web
Applications and Services (pp. 102–109). doi:10.1109/ICIW.2010.23

Ou, C. X. J. & Davison, R. M. (2010). The impact of instant messaging in the
workplace. In AMCIS 2010 Proceedings (p. 136). Retrieved November 30,
2019, from http://aisel.aisnet.org/amcis2010/136

Ou, C. X. J., Davison, R. M., & Leung, D. (2014). Instant messenger-facilitated
knowledge sharing and team performance. International Journal of Knowl-
edge Content Development & Technology, 4 (2), 5–23. doi:10.5865/IJKCT.
2014.4.2.005

Pahl, C. (2015). Containerisation and the PaaS cloud. IEEE Cloud Computing,
2, 24–31. doi:10.1109/MCC.2015.51

85

Papazoglou, M. P. & Dubray, J. J. (2004). A survey of web service technologies:
Technical report dit-04-058. University of Trento. Trento (Italy), Via
Sommarive 14.

Patil, S. & Kobsa, A. (2004). Instant messaging and privacy. In Proceedings of
HCI (Vol. 4, pp. 85–88).

Pearce, M., Zeadally, S., & Hunt, R. (2013). Virtualization: Issues, security
threats, and solutions. ACM Computing Surveys (CSUR), 45 (2), 17.
doi:10.1145/2431211.2431216

Pi, S.-M., Liu, Y.-C., Chen, T.-Y., & Li, S.-H. (2008). The influence of instant
messaging usage behavior on organizational communication satisfaction.
In Proceedings of the 41st annual hawaii international conference on
system sciences (HICSS 2008). IEEE. doi:10.1109/hicss.2008.445

Porter, T. & Gough, M. (2007). Architectures. In T. Porter & M. Gough (Eds.),
How to cheat at VoIP security (pp. 45–110). How to Cheat. Burlington:
Syngress. doi:10.1016/B978-159749169-3/50004-9

Priologic Software Inc. (2019). EasyRTC. Retrieved October 10, 2019, from
https://easyrtc.com/

Quan-Haase, A. (2010). Self-regulation in instant messaging (IM): Failures,
strategies, and negative consequences. International Journal of e-Collaboration
(IJeC), 6 (3), 22–42. doi:10.4018/978-1-61350-459-8.ch009

Ramadan, H. H. & Kashyap, D. (2010). Quality of service (QoS) in cloud
computing. International Journal of Computer Science and Information
Technologies (IJCSIT).

Ramsdell, B. & Turner, S. (2019). RFC 8551: Secure/multipurpose internet
mail extensions (S/MIME) version 4.0 message specification. Internet
Engineering Task Force. Retrieved from https://tools.ietf.org/html/
rfc8551

Reed, A. H. & Knight, L. V. (2010). Effect of a Virtual Project Team Environ-
ment on Communication-Related Project Risk. International Journal of
Project Management, 28 (5), 422–427. doi:10.1016/j.ijproman.2009.08.002

Rennecker, J., Dennis, A. R., & Hansen, S. (2006). Reconstructing the stage: The
use of instant messaging to restructure meeting boundaries. In Proceedings

86

of the 39th annual hawaii international conference on system sciences
(HICSS’06) (Vol. 1, 27a–27a). doi:10.1109/HICSS.2006.411

Rennecker, J. & Godwin, L. (2003). Theorizing the unintended consequences of
instant messaging for worker productivity. Sprouts: Working Papers on
Information Environments, Systems and Organizations, 3 (3), 137–168.
doi:10.1.1.304.9410

Resig, J. & Teredesai, A. (2004). A framework for mining instant messaging
services. In Proceedings of the 2004 Siam DM conference.

Rittinghouse, J. W. & Ransome, J. F. (2005). IM Instant Messaging Security.
Elsevier Science. doi:10.1016/B978-1-55558-338-5.X5000-0

Rosenberg, J. (2013). RFC 6914: SIMPLE made simple: An overview of the
IETF specifications for instant messaging and presence using the session
initiation protocol (SIP). Internet Engineering Task Force. Retrieved from
https://tools.ietf.org/html/rfc6914

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., . . . Schooler, E. (2002). RFC 3261: SIP: Session initiation protocol.
Internet Engineering Task Force. Retrieved from https://tools.ietf.org/
html/rfc3261

Saint-Andre, P. (2004). RFC 3920: Extensible messaging and presence protocol
(XMPP): Core. Internet Engineering Task Force. Retrieved from https:
//tools.ietf.org/html/rfc3920

Saint-Andre, P. (2005). Streaming XML with Jabber/XMPP. IEEE internet
computing, 9 (5), 82–89. doi:10.1109/MIC.2005.110

Saint-Andre, P. (2009). RFC 3921: Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence. Internet Engineering Task
Force, 23. Retrieved from https://tools.ietf.org/html/rfc3921

Saint-Andre, P., Smith, K., & TronCon, R. (2009). XMPP: The definitive
guide: Building real-time applications with jabber technologies (1st ed.)
(O. Media, Ed.). O’Reilly Media. isbn: 059652126X.

Salovaara, A. & Tuunainen, V. K. (2013). Software developers’ online chat
as an intra-firm mechanism for sharing ephemeral knowledge. In 34th
international conference on information systems (ICIS 2013).

87

Schollmeier, R. (2001). A definition of peer-to-peer networking for the classifi-
cation of peer-to-peer architectures and applications. In Proceedings first
international conference on peer-to-peer computing (pp. 101–102). IEEE.
isbn: 0-7695-1503-7.

Scholten, B. (2007). Integrating ISA-88 and ISA-95. In ISA Expo. Retrieved
November 30, 2019, from https://www.isa.org/pdfs/integrating-isa-88-
and-isa-95/

Sergiienko, A. (2014). WebRTC Blueprints. Packt Publishing Ltd. isbn: 978-
1783983100.

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3 (5), 637–646. doi:10.
1109/JIOT.2016.2579198

Sit, E. & Morris, R. (2002). Security considerations for peer-to-peer distributed
hash tables. In International workshop on peer-to-peer systems (pp. 261–
269). Springer. doi:10.1007/3-540-45748-8_25

Steinmetz, R. & Wehrle, K. (2005). Peer-to-peer systems and applications.
Lecture Notes in Computer Science. Springer Berlin Heidelberg. isbn:
9783540320470. Retrieved from https://books.google.de/books?id=
nqEMBwAAQBAJ

Sugano, H., Day, M., & Rosenberg, J. (2000). RFC 2778: A model for presence
and instant messaging. Network Working Group, (2778). doi:10.17487/
RFC2778

Sugerman, J., Venkitachalam, G., & Lim, B.-H. (2001). Virtualizing I/O devices
on VMware workstation’s hosted virtual machine monitor. In Usenix
annual technical conference, general track (pp. 1–14). isbn: 1-880446-09-
X.

Tidwell, D. (2000). Web services-the web’s next revolution. IBM developerWorks.
Retrieved December 1, 2019, from https://docplayer.net/9431715-Web-
services-the-web-s-next-revolution.html

Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., & Smith,
M. (2015). SoK: Secure Messaging. In 2015 IEEE Symposium on Security
and Privacy (pp. 232–249). IEEE. doi:10.1109/SP.2015.22

88

van Eyk, E., Iosup, A., Seif, S., & Thömmes, M. (2017). The SPEC cloud group’s
research vision on FaaS and serverless architectures. In Proceedings of
the 2nd international workshop on serverless computing (pp. 1–4). ACM.
doi:10.1145/3154847.3154848

van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uta, A., & Iosup, A. (2018).
Serverless is more: From PaaS to present cloud computing. IEEE Internet
Computing, 22 (5), 8–17. doi:10.1109/mic.2018.053681358

Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer, D., & Karl, W.
(2008). Scientific cloud computing: Early definition and experience. In
2008 10th IEEE international conference on high performance computing
and communications (pp. 825–830). Ieee. doi:10.1109/HPCC.2008.38

Wang, L., Von Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., &
Fu, C. (2010). Cloud computing: A perspective study. New Generation
Computing, 28 (2), 137–146. doi:10.1007/s00354-008-0081-5

Williams, N. & Ly, J. (2004). Securing public instant messaging (IM) at work
(tech. rep. No. 040726A). Swinburne University of Technology. Australia.

Wu, C., Liang, H., Chiu, S. M., & Yuan, C. (2017). A study of impact of instant
messaging on job performance through employee empowerment. In 2017
portland international conference on management of engineering and
technology (PICMET) (pp. 1–10). doi:10.23919/PICMET.2017.8125343

XMPP Standards Foundation. (2018). XEP-0373: OpenPGP for XMPP. Re-
trieved July 17, 2019, from https://xmpp.org/extensions/xep-0373.html

Yadav, T. & Rao, A. M. (2015). Technical aspects of cyber kill chain. In
International symposium on security in computing and communication
(pp. 438–452). Springer. doi:10.1007/978-3-319-22915-7_40

Yang, B. B. & Garcia-Molina, H. (2004). Designing a super-peer network.
In Proceedings 19th international conference on data engineering (cat.
no.03ch37405). IEEE. doi:10.1109/icde.2003.1260781

Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing: Concepts, applications
and issues. In Proceedings of the 2015 workshop on mobile big data (pp. 37–
42). ACM. doi:10.1145/2757384.2757397

89

