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Abstract

Modern graphical applications such as games, 3D guided tours or even
medical applications strive for a realistic representation of the real world.
Virtual Reality has been of interest to achieve this goal for a long time
but there are still problems to overcome. This thesis shows techniques that
enhance the visual quality of an existing rendering pipeline that tries to
eliminate the problem of latency for wireless Virtual Reality solutions. The
implementation is concentrated on providing a material system that is ver-
satile, rendering transparent surfaces and mimicking real life phenomenons
like fire and smoke with particle systems. The pipeline is able to handle
interactive frame rates for rendering different materials and several trans-
parent objects. Still, it turned out that the exact implementation of alpha
blending does not fit well with particle rendering whereas other approaches
would give better performance whilst keeping a visually pleasing effect.
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1 Introduction

This thesis concentrates on providing three techniques on improving the
visual quality of an existing rendering pipeline that tries to divide the
concept of a traditional rendering pipeline into a powerful rendering server
which sends data wireless to a head-mounted display [Mueller et al. (2018)].
The three techniques are:

• Material system: Provides an easy interface to change the look of 3D
object surfaces

• Transparency: Enables rendering of transparent objects
• Particle systems: Provide a system for dynamic effects
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2 Problem

When looking at current graphical applications such as in figure 2.1, we
encounter high fidelity visuals. Most of the time a virtual world is repre-
sented in a distinct style, often quite close to a real world representation. To
achieve this close-to-reality representation approximations and simplifica-
tions have to be used, since modern hardware is not capable of simulating
and presenting physically correct rendering in real time.

Figure 2.1: Graphical application [Unity (2015)].
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2 Problem

A lot of new technologies are currently developed to put the user deeper
into virtual worlds. One of the most popular techniques is a Virtual Reality
headset (see figure 2.2), which gives a person the impression of exploring
a virtual environment. These headsets are usually put together with two
screens and lenses, which project a left and right image onto the respective
eyes of the user. In order to achieve a good experience for users, it is neces-
sary to have a high resolution and refresh rate for each eye. Preferably these
headsets should support 4K and 120Hz for both eyes. Current hardware is
barely able to render at such numbers for only one screen, so there is still
room for improvement.

Figure 2.2: Virtual Reality headset [HTC (2016)]

The aforementioned technique is typically set up with a PC and the Virtual
Reality headset connected to the PC with cables, to handle the transferring
of the images and tracking data which is used for moving around in the
virtual world. A lot of users are not comfortable with a tethered approach
for several reasons. It is not only limiting the movement, but also increasing
the fear of stumbling over a cable. A solution to this problem is to use a
wireless headset which receives data directly from a PC or the usage of
a smart-phone (see figure 2.3) which is rendering the images itself [Steed
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and Julier (2013)]. In principle this solution is good, especially since smart-
phones are housing very high resolution screens these days, but since a full
fledged PC is not able to render at those high resolutions a smart-phone is
even less suited for that.

Figure 2.3: Phone based VR [Samsung (2015)].

To circumvent this issue the proposed solution is to render to a shading
atlas on a high performance PC first, send the data to the phone and finish
the rendering on the phone itself. With this approach you do not have the
problem of high latency and poor rendering quality [Mueller et al. (2018)].
Some further details will be supplied in section 3.1.

This thesis is going to concentrate on providing a visually pleasing envi-
ronment for the shading atlas based rendering. To accomplish this task the
three techniques described in chapter 1 will be implemented.

5



2 Problem

2.1 Material System

For simplicity of demonstration we will be using selected scenes as testing
environments. Those scenes consist of several parts of information:

• Mesh data: just plain data points in 3D space that represent the model
to be shown

• Materials: consists of textures, texture scales and property values (e.g.:
glossiness)

• Object: combines mesh data with materials and also adds other infor-
mation such as position, rotation etc.

Figure 2.4: Comparison between mesh and applied material

The goal of this task is to define materials through a configuration file and
assign them to objects in the scene. The main parts of a material instance
are:

• Main texture: Texture providing the main coloring of the object.
• Normal map: Texture providing surface details [Krishnamurthy and

Levoy (1996)].
• Detail textures: Consists of three textures that add fine details to the

object (detail texture, detail normal map, detail mask).
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2.2 Transparency Rendering

2.2 Transparency Rendering

Most parts of a scene are opaque which can be handled by rasterization
hardware easily, but there are also transparent parts such as windows, fo-
liage and see through materials. Blending is usually done with the following
formula:

Cresult = Cdestination · (1 − alphasource) + Csource · alphasource

The source alpha value alphasource is used to determine how much the source
color Csource and destination color Cdestination contribute to the result color
Cresult. Unfortunately this equation is not associative in regard to the correct
ordering when there are more than two objects blended together.

A simple solution would be to sort the 3D objects based on camera position
and rotation before rendering. This is feasible for small scenes with simple
objects but is computationally too expensive for large scenes. The aim of this
thesis is to provide a real time solution for order-independent-transparency
as described by Yang et al. (2010) which constructs linked lists per pixel
and sorts them. With this approach there is no need for upfront knowledge
about the scene.

Figure 2.5: Transparency Rendering. Model by TooManyDemons (2016)
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2 Problem

2.3 Particle Systems

Another common approach to mimic real world physical phenomenons and
artistic effects is to use a class of fuzzy objects that are simulated individually
[Reeves (1983)]. Depending on the configurability of the system a wide
variety of effects can be achieved, ranging from fire effects to magic spell
effects and even the simple animation of flowing water. The key performance
indicator besides the configurability is the number of simultaneous particles
that are rendered.

Since this thesis also concentrates on implementing transparency rendering,
particle systems will be incorporated in the same pipeline.

Figure 2.6: Particle effects.

8



3 Related Work

This thesis builds upon several concepts and methods that are used to find
a solution. The main piece of work that needs to be mentioned is Shading
Atlas Streaming (SAS) [Mueller et al. (2018)] which is used as a basis for
providing the visual enhancements. The enhancement by transparency ren-
dering is based on work by Yang et al. (2010), which describes a method of
order-independent transparency rendering by using linked lists. A different
approach to transparency rendering was proposed about ten years earlier
[Everitt (2001)] where transparency is resolved by ”peeling” layers off the
surface. The enhancement by particle systems was proposed by Reeves
(1983).

3.1 Shading Atlas Streaming

Figure 3.1: Shading Atlas Streaming Pipeline

SAS is a novel object-space solution which tries to solve the problem of
streaming VR content to an untethered headset. It can be seen in figure 3.1
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3 Related Work

that this approach splits the rendering pipeline into a server and client part.
The pipeline is executed with the following steps:

1. The current view matrix of the client is sent to the server.
2. The server receives the view matrix.
3. Using the new view matrix the following steps are done:

a) Visibility Stage: A list of primitives is constructed that were not
visible in the last frame.

b) Shading Stage: New primitives are shaded to the atlas and old
ones are updated.

c) Encoding Stage: The atlas is encoded into a MPEG frame.

4. The collected information (MPEG frames, position information etc.) is
sent to the client.

5. MPEG frames are decoded and position updates are written to a vertex
buffer.

6. The new information sits idle until the client starts a new frame.
7. The new server frame is rendered.
8. Until a new server frame arrives, existing atlas data are used to perform

framerate upsampling.

Figure 3.2: Rendered Scene with corresponding Shading Atlas.
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3.2 Transparency Rendering: Depth Peeling

3.2 Transparency Rendering: Depth Peeling

The idea behind depth peeling is to render transparent geometry in layers.
This is done by using one render pass for each depth layer that should
contribute to the final image. Each layer is stored to a viewport-sized render
texture which are combined in a final pass. Assuming that there exist two
depth units:

for (layer=0; layer<num_layers; layer++)

{

clearColor;

firstBuffer = layer % 2;

secondBuffer = (layer+1) % 2;

depth unit 0:

if(layer == 0)

disable(DEPTH_TEST);

else

enable(DEPTH_TEST);

bind(firstBuffer);

disable(DEPTH_WRITE);

depthFunc = GREATER;

depth unit 1:

bind(secondBuffer);

clearDepth();

enable(DEPTH_WRITE);

enable(DEPTH_TEST);

depthFunc = LESS;

render();

colors[layer] = colorBuffer;

}

Since it is not possible to perform two depth tests in one render pass the
paper suggests using the shadow mapping unit which can be exploited as
a second depth test. Instead of rendering from the light point of view the
camera position and angles of the scene are used. The result of the shadow
map comparison is written to the alpha channel which is then used in an
alpha test that serves as a ”depth test”.

11



3 Related Work

3.3 Transparency Rendering: Per-Pixel Linked
Lists

This paper [Yang et al. (2010)] was released about ten years after the depth
peeling approach [Everitt (2001)] and takes advantage of newer GPU hard-
ware features. The introduction of atomic operations on values and textures
enabled the implementation of per-pixel linked lists. The idea is to collect
a list of fragment candidates for each pixel in a first pass, sort and display
them in a second pass. The first pass works as follows:

entry_id = atomicAdd(atomic_id_counter, 1);

last_id = imageAtomicExchange(list_header, pixel_coord, entry_id);

linked_list[entry_id].color = color;

linked_list[entry_id].depth = depth;

linked_list[entry_id].last_id = last_id;

A unique ID is requested from the atomic ID counter and stored in the list
header. While storing the new ID, the previous ID is atomically swapped
and stored in the new list entry. The color and depth information is then
used in a second pass which is invoked using a fullscreen quad:

entry_id = imageLoad(list_header, pixel_coord);

sort(entry_id);

final_color = vec4(0, 0, 0, 1);

while(entry_id != LIST_END)

{

current_color = linked_list[entry_id].color;

final_color = mix(final_color, current_color, current_color.a);

entry_id = linked_list[entry_id].last_id;

}

return final_color;

The last written ID is loaded from the header and the corresponding list
entries are sorted based on the depth information. A final color is calculated
by traversing the list from front to back and blending the colors together.

12



3.4 Particle Systems

3.4 Particle Systems

This paper [Reeves (1983)] describes systems of particles that resemble
dynamic fuzzy objects. They differentiate from 3D models in three charac-
teristics:

• Instead of a fixed surface, models are represented by a set of simple
primitives that define their volume.

• Instead of static models, particle systems are highly dynamic.
• Instead of a deterministic model, particle systems are controlled by

random variables.

Particles are ”born” and after a defined lifetime they ”die”. Their movement
and appearance are controlled over their lifetime by random variables, but
still limited by parameters that define the overall shape of the particle
system. The paper depicts the following useful parameters for controlling
particle systems:

• Number of new particles over period of time.
• Generation shape: defines initial position of particles
• Velocity
• Size
• Color
• Transparency
• Lifetime

13





4 Method

State of the art VR systems rely on image-based rendering (IBR) techniques
to hide latency between head pose updates and the corresponding frame
being displayed on the VR device. The most prominent solution is Time
Warping [Mark, McMillan, and Bishop (1997)]. This solution extends the
rendering viewport by a small amount, renders the scene to a texture and
until the next frame is ready, performs image warping based on the most
current head pose. Although this solution is straight forward it does not
lend itself for efficient MPEG encoding due to the larger image size. It also
has some perceivable image quality issues.

4.1 Transparency Rendering

The main problem with IBR methods are disocclusion artifacts which occur
when the head pose translates in the x or y direction. In those scenarios it
can easily happen that geometry gets visible which has not been rendered
to the current texture. Implementing transparency as described in chapter
3.2 or 3.3 would not differ from a standard rendering pipeline, but the
amount of disocclusion artifacts would increase when transparent geometry
has been occluded by opaque geometry and the effect would be even more
visible.

Since SAS is an object-space oriented solution it can mitigate disocclusion
artifacts by supplying a Potentially Visible Set (PVS) which is constructed
by predicting future movements. This set is only marginally larger than
the set containing geometry that is visible in the moment when rendering
starts. The PVS is constructed during the visibility stage as described in
chapter 3.1. In order to include transparent geometry this visibility stage
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4 Method

needs to be extended. In order to correctly display transparent geometry on
the client one of the proposed solutions from chapter 3.2 or 3.3 needs to be
implemented.

4.2 Particle Systems

Most particle effects like fire and smoke rely on transparency to provide a
convincing real life effect. State of the art VR systems using IBR methods will
have the same disocclusion problems with particles similar to transparent
objects. Integrating a particle render pipeline to an IBR pipeline can be done
by using the techniques described in chapter 3.4.

In contrast, an object-based solution like SAS boasts several difficulties
when incorporating a particle pipeline. Since particles are highly dynamic
not only concerning position and rotation but also concerning texturing, a
performant way of transmitting texturing information is needed. There are
three approaches proposed to solve this problem:

• Naive approach: Texturing information for each particle is transmitted
individually and independently of texturing information of any other
particle.

• Texture merging: Particles with the same texture in the current frame
share the same texturing information which is only transmitted once.

• Per-system billboard: Each particle system is rendered to a large
billboard which is then transmitted as a whole combined with a depth
texture for resolving transparency ordering.

16



5 Solution

In order to start with the implementation of the material system the first
step is to get familiar with the programming environment and the used
Application Programming Interfaces (APIs). Graphics API Vulkan is the
most prominent to serve as an interface between the CPU and the GPU.

5.1 Graphics API: Vulkan

For the past years the main graphics API for scientific applications was
OpenGL. The use of DirectX is often not possible since it is only available
on Windows. OpenGL is relatively simple to use and allows to draw objects
with very little code. The downside is the lack of control over the hard-
ware and therefore a performance decrease [Lujan et al. (2019)]. Vulkan is
eliminating this performance decrease by enabling more control over the
hardware which helps to fine tune every detail of the rendering pipeline.

17



5 Solution

5.2 Material System

In order to provide a simple interface for defining materials the starting
point is to adapt the existing configuration system for scenes. A material
instance consists of one main texture that provides coloring of the 3D
mesh, one optional normal map texture that gives surface details and three
optional detail textures that add further details to color and surface normal
data. The mixing factor for those detail textures can be defined with a detail
mask that stores the mixing factor per pixel.

Since some of the textures are optional, the shaders need a simple way to
toggle the textures. This is implemented by using specialization constants
that provide a default value and can be changed when the shader is loaded
with Vulkan. Depending on these constants either the textures are sampled
or default values are used (e.g.: the normals loaded from the mesh).

The Blinn-Phong model [Blinn (1977)] is used as shading model which some
additional variables are defined for. These mainly consist of information
about the light (position, color, radius) but also information about the
glossiness of the material and its specular color.

For normal mapping the normals sampled from the normal map need to
be converted from tangent space to world space. By the nature of creating
normal maps most of the normals will point in the positive z-direction.
As can be seen in figure 5.1 the blue tint of the normal map indicates the
dominance of the z-direction. This works for geometry that is oriented in
such a way that the surface normal points in that direction too, but for all
other cases the sampled normals need to be adjusted to the surface normals
of the mesh. This is done by converting from the tangent space which is
local to the normal maps vectors to world space. In order to convert the
normals the TBN matrix is used [Vries (2019)]. It is constructed from the
tangent, bitangent and normal vectors of a vertex.

18



5.2 Material System

Figure 5.1: TBN Vectors [Vries (2019)]

In figure 5.1 the 3D mesh is a simple plane with N being the surface normal.
The tangent vector and bitangent vector (T and B) align with the direction
of texture coordinates which is used to compute the vectors.

This simple example has only one surface normal which means that only
one pair of tangent and bitangent needs to be computed but for a more
complex mesh tangents and bitangents are computed for each vertex and
uploaded later to the GPU where they are used in the shader to construct
the TBN matrix as follows:

vec3 N = normalize(normal_matrix * normal);

vec3 T = normalize(normal_matrix * tangent.xyz);

vec3 B = normalize(cross(N, T)) * tangent.w;

mat3 TBN = mat3(T, B, N);

The normal and tangent vectors are vertex inputs in object space and thus
need to be converted to world space with the normal_matrix. The bitangent
vector computation can be moved to the shader since all three vectors are
perpendicular to each other which is expressable with the cross product.

19



5 Solution

The final normal vector is computed as follows:

vec3 normal = texture(normal_map, texture_coordinates).rgb;

normal = normalize(normal * 2.0 - 1.0);

normal = normalize(TBN * normal);

Since all components of normal vectors need to be in the range -1.0 to 1.0
they are converted from the sampled normal of the texture which is in the
range 0.0 to 1.0.

20



5.3 Transparency Rendering

5.3 Transparency Rendering

As already mentioned in chapter 3 there are two possible solutions to order-
independent transparency. There exists a newer version of depth peeling
[Bavoil and Myers (2008)] which improves the original version by peeling
two layers in one pass. Still, per-pixel linked lists are preferred for three
reasons:

• Render passes: Depth peeling requires at least four render passes
for achieving transparency with eight layers. The construction and
resolving of linked lists can be done in only two passes for an arbitrary
number of layers.

• Memory consumption: For each depth peel one color texture with
viewport size is needed even if transparent geometry is only covering
a small part of the screen. Linked lists can be constructed with a
smaller memory footprint since only actual transparent fragments are
written to the list.

• Pipeline conformance: The linked list approach can be easily adapted
to work with Shading Atlas Streaming which will be shown in this
chapter.

5.3.1 Overview

In order to split the traditional rendering pipeline into two pipelines that
run individually on a server and a client two basic building parts are used:

• Patches: Geometry is divided into small patches of one, two or three
triangles when loading a scene. Each visible patch gets a block of the
shading atlas assigned.

• Atlas: The shading atlas is a texture that stores all the necessary
color information for all visible patches. Those patches are regularly
subdivided into square superblocks of the same size which are then
further subdivided into blocks.

21



5 Solution

Using those building blocks, the four most important stages complete the
server rendering pipeline:

• Visibility Stage: This is a simple rasterization stage that writes prim-
itive IDs to a texture. Intrinsic to this procedure depth buffering
discards invisible primitives. Each primitive ID is linked to a patch
which is then marked as visible in the current frame.

• Level Selection Stage: For each visible patch the level (size of the
block) is computed, based on the screen space size and 3D positions
of the patch are sent to the client.

• Shading Geometry Stage: This stage builds a vertex buffer for the
shading stage based on visible patches and their selected level.

• Shading Stage: Uses the afore gathered vertex information to shade
patches into the atlas.

Summing up, the server selects the visible patches, deallocates unused space
in the atlas, computes the needed space in the atlas, allocates it accordingly,
sends geometry information and finally renders color information to the
atlas.

On the client side the geometry information is gathered in a global vertex
buffer with vertex positions in world space. Each vertex has a texture
coordinate assigned which is then used in the fragment shader to sample
from the atlas texture. When the atlas is full, for each patch that was not
able to fit into the atlas, a color message is sent instead. This color is then
used for the whole patch instead of sampling from the atlas.

In order to enable transparent rendering, order independent transparency
is implemented using per-fragment linked lists. This approach collects the
colors for a given fragment in a linked list using atomic operations, sorts
the list in a second render pass based on the recorded depth information
and resolves the color for each pixel. The primary advantage is that it is not
necessary to sort geometry data before rendering, but performance can vary
based on the depth complexity. The buffer space for the linked list is a point
of consideration, too.
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5.3 Transparency Rendering

5.3.2 Implementation

The alpha channel is not handled correctly in the pipeline and ignored in
some places. For the client side to handle transparency correctly it has to be
adapted to support RGBA colors instead of only RGB.

As described in section 5.3.1, a visibility stage is used to determine which
patches need to be shaded later on. This is the first stage that needs alter-
ing since patches behind transparent patches are not set visible yet. This
functionality is achieved by keeping the existing rendering pass that records
opaque primitive IDs which is only executed for opaque materials. The
second pass runs for both transparent and opaque materials. In the fragment
shader opaque triangles are always marked visible whereas transparent
triangles are only marked visible when they are not behind opaque triangles.
The rest of the pipeline stays the same on the server side because transparent
patches are now handled the same way as opaque ones.

On the client side the atlas mapping stage is rewritten. A linked list is
created utilizing an atomic counter that creates an ID for every fragment
that corresponds to an entry in the linked list. This entry saves the color,
depth and the last entry ID. The current entry ID is saved in a texture storage
buffer. In a second resolve pass for each pixel on the rendering surface this
texture is read on the corresponding pixel. This gives the starting ID for the
pixel. Then the list for each pixel is sorted and the color is resolved by using
the following shader code:

out_color = mix(out_color, entry.color, entry.color.a);

The transparency rendering for the shading atlas renderer mainly consists
of an addition to the visibility pass and the atlas mapping stage on the
client side. Further additions consist of altering the configuration to have
an alpha mode added for materials that can either be OPAQUE, BLEND or MASK
mode. The MASK mode adds an alpha cutoff which discards fragments with
an alpha value higher than a given cutoff.
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5 Solution

5.4 Particle Systems

5.4.1 Overview

When implementing particle systems, there is the rendering side running on
the GPU that is performant and gives pleasing and correct results regarding
alpha blending. On the CPU there is the simulation side that handles
loading of configurations and simulating the properties of particles. It
delivers customizability and also such good performance compared to the
GPU side that it does not bottleneck rendering. This boils down to how
many particles can be simulated simultaneously before the CPU struggles
to deliver particles to the GPU fast enough.

Although particle systems are different to regular models it is still possible
to reuse most of the existing pipeline. The fact that one particle is treated
the same as a patch in the pipeline was key for not having to rewrite the
whole pipeline but alter few parts instead and add only one new stage.

First the rendering of the particles is done with a naive approach in mind
and later refined and improved by doing texture merging.

Naive Approach

Each particle is assigned a patch which is then used to render to the shading
atlas. Since there are thousands of particles visible in one frame this leads
to a high fill rate of the atlas and also diminishes temporal coherence quite
substantially.

Texture Merging

This approach tries to reduce rendering to the shading atlas by grouping
together particles with the same texture. A lot of effects use a texture sheet,
as seen in figure 5.2, containing several images for the different lifetime
stages of a particle. When there are several hundreds of particles alive that
use the same texture sheet the possibility that some of them are currently

24



5.4 Particle Systems

at the same lifetime stage and therefore have the same texture is very high.
Using this knowledge those particles are grouped together and only one
of them is actually rendered into the atlas. The atlas information is then
shared between all of them.

Figure 5.2: Texture Sheet [Murphy (2019)]

Instead of rendering individual particles to the atlas another solution would
be to render the particle system as a whole to the atlas and display it on
the client as a single billboard. This would require a separate depth texture
on the client to resolve alpha blending with static geometry. The benefits
would be a smaller footprint in the atlas depending on the view distance of
particle systems. This solution was rejected in favour of the current solution
due to a problem depicted in figure 5.3, where particles lie behind and in
front of a transparent cow. In this case the single depth texture is not able to
hold enough information to correctly resolve the particles.

Figure 5.3: Single Billboard Problem
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5.4.2 Configuration

In order to provide a wide variety of possibilities on how the particle systems
look and how they behave during their lifetime a lot of configuration options
are needed. The options are divided into several parts. First there is the
common part that handles more general parameters like lifetime, speed
and emission rates. Most of these values may be randomized to provide
more convincing real life effects. The second part consists of several optional
modules that are more concentrated on the behaviour during the lifetime
like velocity over lifetime or force over lifetime.

Common Values
property format description
position float3 world coordinate
rotation float3 rotation in euler angles
duration float duration of emission
looping bool emit particles indefinitely
prewarm bool starts system in a state like it already ran

for one cycle
start delay float delay emission
start lifetime float lifetime of a single particle
start speed float speed of a particle
start size float size of the rendered particle
start rotation float rotation of the particle
start color float4 color multiplied onto the sampled texture
gravity modifier float gravity multiplier
max particles int how many particles can live concurrently

in the system
rate over time float emission rate per second
texture string texture sheet file
tiles uint2 dimensions of the texture sheet
alpha from
grayscale

bool calculate alpha channel from grayscale
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Shape Module Common Values
property format description
type string type of shape
position float3 position offset
rotation float3 rotation offset
scale float3 scales size of shape
randomize
direction

float randomizes direction of emission

randomize posi-
tion

float offset position by random amount in emis-
sion direction

Specific to sphere and hemisphere
radius float radius of the emission shape
radius thickness float defines how much of the volume is used

for emission
Specific to cone

angle float angle of the cone
arc float define the portion of the radius that is used
emit from base bool define whether to emit from base or shell
length float length of the cone
radius float radius of the cone
radius thickness float defines how much of the volume is used

for emission
Specific to circle

arc float define the portion of the radius that is used
radius float radius of circle
radius thickness float defines how much of the volume is used

Specific to box
emit from string edge, shell or volume

Specific to edge
radius float length of the edge

Velocity over Lifetime Module
property format description
x, y, z float3 velocity over lifetime
speed modifier float multiplied onto velocity
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Force over Lifetime Module
property format description
x, y, z float3 force over lifetime
randomize bool define whether force should randomize

each frame or only once

Size over Lifetime Module
property format description
start float start size
end float end size

Rotation over Lifetime Module
property format description
angular velocity float rotational velocity

Color over Lifetime Module
property format description
gradient Gradient gradient over lifetime

Color over Speed Module
property format description
gradient Gradient gradient over speed
speed range float2 start and end speed
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5.4 Particle Systems

Example

The following example configuration represents a fire effect that is shown in
figure 5.4. A random rotation is applied between -15 and 15 degrees. Using
the size parameter the particles are scaled down. They are only affected by
gravity and emission happens from a single point. A gradient is applied to
blend new particles in and blend dying particles out.

Figure 5.4: Simple Fire Effect

position = { x = 0.64841 y = 0.1317 z = -10.49812 }

rotation = { x = -0.5564728 y = -0.4578413 z = -0.440519 }

start_speed = { start = 0.0 end = 0.0 }

start_size = { start = 0.26 end = 0.57 }

start_rotation = {start = -15.0 end = 15.0 }

start_color_begin = { x = 1.5 y = 1.5 z = 1.5 w = 1.0 }

start_color_end = { x = 1.5 y = 1.5 z = 1.5 w = 1.0 }

gravity_modifier = { value = -0.08 }

max_particles = 50

rate_over_time = { value = 4.0 }

texture = "media/particle_test/fire2.png"

tiles = { x = 8.0 y = 4.0 }

alpha_from_grayscale = 1
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shape = {

type = "edge"

radius = 0.01

}

color_over_lifetime = {

gradient_0 = {

fixed = 0

color0 = { x = 1.0 y = 1.0 z = 1.0 w = 0.0 }

color2 = { x = 1.0 y = 1.0 z = 1.0 w = 100.0 }

alpha0 = { x = 0.0 y = 0.0 }

alpha1 = { x = 1.0 y = 5.0 }

alpha2 = { x = 1.0 y = 80.0 }

alpha3 = { x = 0.0 y = 100.0 }

}

}

size_over_lifetime = {

start = 0.11

end = 1.5

}
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5.4 Particle Systems

5.4.3 Implementation

The implementation can be split quite clearly into the configuration loading
and simulation part on the CPU and the rendering part on the GPU.

Simulation

In order to have an efficient system for simulating and handling thousands
of particles the first thing is to implement a memory pool that allocates
particles and keeps track of their deletion.

The memory pool has three lists which are used to keep track of particle
instances, active and inactive particles. The instance list holds the actual
instances and the other two hold pointers to those instances. Whenever
a new particle is requested the inactive particles list is checked whether
there are still particles allocated but not used, otherwise a new particle
is allocated. On destruction of a particle it is released which triggers the
removal from the active particles list and the addition to the inactive list.
That way memory allocation, which is far more costly than computation
time, is reduced to a minimum and the CPU has more time for simulation.

The actual simulation is done by using several classes that build up a
hierarchy:

• Particle: The actual particle class that holds all properties that are
updated in each frame. It also provides a method to get the data which
is uploaded to the GPU.

• ParticleSystem: Holds a list of Particles that correspond to this system.
It handles emission of new particles with respect to the provided
configuration and calls the particles update method. It also serves
as an interface for the GPU representation of particle systems and
handles the loading of corresponding resources.

• ParticleManager: Holds a list of ParticleSystems and handles GPU
resources that are globally used for all particle systems.

31



5 Solution

Instancing

When rendering 3D models a vertex buffer is used that holds information
for each vertex of all triangles in the model. When dealing with particles
this can be simplified by using instanced rendering because the 3D data
is being reduced down to four 2D points that resemble a quad. Instead of
creating a vertex buffer that repeats the particle data for each point in the
quad four times two buffers are used:

• Vertex Buffer: Buffer containing six vertices that construct two triangles
for the quad.

• Instance Buffer: Buffer containing the actual particle data.

The final part is to tell the GPU to use the same instance data for each
of the four vertices and change the draw call according to the actual alive
particles of each frame. This is done by having a separate buffer that contains
information on how many vertices are drawn (in this case four) and how
many instances of this vertex data are drawn (number of particles alive in
the current frame).

Single Pixel Patches

A key building block that was used for particles are single pixel patches.
They are used for situations where no patches can be rendered to the atlas
any more due to space constraints. In this case a representing color for the
patch is sent to the client instead and used for the whole patch.

Since particles always have a color that is multiplied onto the sampled
texture the single pixel messages lend themselves to be used for this color.
The exact use varies for the two implementation approaches.

32



5.4 Particle Systems

Naive Approach

With the uploaded particle data the transparency pipeline is altered to
incorporate particles. For the naive approach the following alterations were
made:

• Visibility Stage: Add new stage that adds a visible patch for each
visible particle.

• Level Selection Stage: Add computation of screen space size of particle
patch based on instance data. Force a single pixel patch for particles
with no texture.

• Shading Stage: Addition of code for computing particle vertex posi-
tions and writing the color to the shading atlas.

The main work for this approach is to adapt the shading atlas resources
(patch data, triangle data etc.) and also adapt the stages to use the instance
data for particles instead of vertex data.
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Texture Merging

The idea for texture merging is to use a master patch for each possible
particle look and reuse this patch for all other occurrences of this look.
In order to manage those master patches an array on the GPU is used
where the atlas information and the area of the master patch is stored. In
order to get the corresponding master patch for a particle an ID is used
which is constructed from the texture sheet ID (assigned on loading of the
configuration) and the current stage in the texture sheet. The stages are then
updated as follows:

• Master Patch Selection: In order to select a master patch the particle
patch with the largest screen space area is selected in order to give the
best possible visual quality.

• Level Selection Stage: Similar to the naive approach a single pixel
patch is forced for all particles except the one that was selected as
master patch.

• Shading Geometry: Still constructs the vertex buffer for the shading
stage, but stores the correct master patch atlas information for particles.

• Shading Stage: Sends a color message for each particle containing the
particle color and also renders patches selected as master patches to
the shading atlas.

Client resolving

The atlas mapping stage on the client stays the same since particles are sent
just like normal patches, only the handling of single pixel patches changes
to always multiply the received color onto particle patches.

34



6 Evaluation

The evaluation will be split into evaluation of the performance of trans-
parency rendering and evaluation of the two particle system rendering
approaches. Each scene is traversed using a camera path. There exist four
measures that are of interest:

Pixels: Number of pixels written to the Atlas per frame.

Structural Similarity (SSIM): Visual similarity between shading atlas ren-
dering and forward rendering as introduced in Zhou Wang et al. (2004).

Frame Time: Time it takes to render one frame.

Mean Squared Layers (MSL): For each pixel the linked list entry count
is squared and added up. This value is then averaged over the number of
rendered pixels.

For transparency rendering viking village and robot lab [Unity (2018)] are
evaluated whereas viking village actually does not contain any transparent
objects. This should give a good idea about the performance hit taken by the
additional stages and computations. The performance is measured against
the master branch where transparency rendering is not implemented.

In order to evaluate the differences between naive particle rendering and
the texture merging approach some additional scenes are evaluated that
only have particle systems in it.

Testing is done on a PC with the following specification:
CPU: AMD Ryzen 3 1200 Quad-Core @ 3.10 GHz
GPU: Nvidia GeForce GTX 1060 6GB
RAM: 8 GB DDR4
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6.1 Transparency Rendering
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Figure 6.1: Robot Lab.
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Figure 6.2: Viking Village.
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It can be seen in the upper left diagram of figure 6.1 and 6.2 that the
MSL does not state clearly how many transparent layers are currently
rendered. This is because the visibility pass marks patches visible that are
only partially visible. Those patches are then rendered on the client device
where no differentiation between transparent and opaque patches is done.
Although there is often more than one opaque fragment in the linked list the
performance impact is still only seven to ten milliseconds in viking village
where no transparent geometry is rendered. The same performance impact
applies for robot lab where transparent geometry is rendered.

In viking village the amount of pixels rendered to the shading atlas and the
SSIM stay the same compared to rendering without transparency, whereas
in robot lab there are more pixels rendered when transparent geometry is
visible. The SSIM is only decreased by about 0.5% which can be explained
by the higher atlas usage.
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6.2 Particle Systems
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Figure 6.3: This test scene consists of one simple system that has a texture sheet with only
one state.
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Figure 6.4: This test scene consists of multiple simple systems that all share the same
texture.
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Figure 6.5: This test scene consists of multiple systems that are all different to each other.
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Figure 6.6: This test scene consists of several instances of multiple systems that are all
different to each other.
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Figure 6.7: This test scene consists of robot lab and two systems representing ventilation
smoke.
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Figure 6.8: This test scene consists of viking village and several systems for fire effects.
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It can be seen in figures 6.3 to 6.6 that the naive approach typically renders
between two and three million pixels to the atlas per frame whereas the
texture merging approach only renders between 10.000 and 30.000 pixels
which is about 0.33%. As can be seen in figure 6.6 the SSIM is lower for the
naive approach mainly due to the higher usage rate of the atlas. Since space
in the atlas is more congested particles are rendered with lower quality to
the atlas which also yields lower visual quality in the rendered image.

Although frame times are high in figure 6.4 and 6.6 this can be explained by
the high MSL, which indicates that for a lot of pixels a lot of layers need to
be sorted.
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6.3 Particle Frame Times

0 200 400 600 800 1,000

5

10

15

20

25

30

35

40

45

50

Frame

Ti
m

e
(m

s)

CPU GPU

Figure 6.9: Frame Time Breakdown: Viking Village
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Figure 6.10: Frame Time Breakdown: Multiple Systems

It can be seen in figure 6.9 that CPU time for updating particles has an
impact on performance since it contributes about 25% to the frame time. Still,
it can be seen in figure 6.10 that updating the particles on the CPU is not a
bottleneck for frame times but rather the rendering itself.
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7 Discussion

State of the art IBR solutions for latency hiding like Time Warping [Mark,
McMillan, and Bishop (1997)] suffer from major image quality issues during
drastic changes of the head pose. The main problem are disocclusion artifacts
which are even more visible when displaying transparent geometry. The
proposed solution minimizes those effects by using an object-space based
approach where not only currently visible geometry is considered but also
a predicted set of possibly visible geometry. This means that disocclusion
artifacts are only visible when the prediction is not quite right.

In order to provide a system that is wireless, the memory footprint of the
MPEG stream, namely the atlas, is very important. As can be seen in chapter
6 the amount of additional pixels rendered to the atlas is typically in the
range of 2-5%.

The main problem of the proposed solution is currently the rendering
of complex particle systems. Although rendering time per frame is only
increased by fifteen milliseconds for real life scenes on average, there are
still some problems when there are a lot of particles on screen or when
moving the camera into a particle system. The first problem is not only
a problem to this implementation but also a problem for state of the art
rendering engines. The second problem, however, happens due to the exact
sorting of transparent fragments. There exist some approaches that may
help to overcome this issue which will be explained in detail in the next
chapter.
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8 Outlook

As mentioned in the previous chapter there are currently some problems
when rendering complex particle systems. Instead of using the exact sorting
method of fragments there exist several approaches to approximate the
sorting of particles.

Additive Blending

Instead of having the order dependent calculation for blending fragments
together another approach is to use additive blending where fragments are
added together. This results in order independent blending and therefore
a huge performance gain by leaving out the sorting of fragments. This is
preferably for particle effects like fire since adding the particles together
gives the nice illusion of the fire emitting light. The problem with our
framework is the lack of knowledge on the client how a fragment should be
blended. This would require meta information to be sent to the client.

Bucket sorting

For particle systems it is often not required to sort the particles in perfect
order but it should rather be accurate enough to have them bucket sorted.
This approach defines a finite number of depth values where particles
are then assigned to. This leads to a speed boost since sorting time is
decreased.
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Other sorting methods

Most modern engines provide sorting criterions for particle systems other
than camera based. A nice approximation of camera sorting for some effects
is for example sorting by age. With this approach there would be the same
problem as with additive blending where we would need to know the age
of a particle on the client in order to sort it correctly.

Adaptive Transparency

Since depth peeling removes the need to sort fragments on the GPU, it would
be worthwhile to look into an adaptive approach of particle rendering that
switches between linked list rendering and depth peeling whenever there
are a lot of particles on the screen. The number of rendered layers dictates
the loss of image quality.

Vertex data

No optimizations were made regarding the transmission of vertex data
which could be a point of improvement in the future. Currently the position
and rotation of particles are transmitted by using the standard vertex data.
Since particles are always presented as billboards that may have a rotation
and scale applied, instead of sending the vertex data redundantly for each
billboard corner, the position, rotation and scale could be sent instead to
save some bandwidth.

52



Appendix

53





Bibliography

Bavoil, Louis and Kevin Myers (Jan. 2008). Order Independent Transparency
with Dual Depth Peeling (cit. on p. 21).

Blinn, James F. (July 1977). “Models of Light Reflection for Computer Syn-
thesized Pictures.” In: SIGGRAPH Comput. Graph. 11.2, pp. 192–198. issn:
0097-8930. doi: 10.1145/965141.563893 (cit. on p. 18).

Everitt, Cass (2001). Interactive Order-Independent Transparency (cit. on pp. 9,
12).

HTC (2016). HTC Vive. url: https : / / www . vive . com / media / filer _

public/vive/product-overview/vive-hardware-hmd-1.png (visited
on 07/19/2019) (cit. on p. 4).

Krishnamurthy, Venkat and Marc Levoy (1996). “Fitting Smooth Surfaces to
Dense Polygon Meshes.” In: Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’96. New York,
NY, USA: ACM, pp. 313–324. isbn: 0-89791-746-4. doi: 10.1145/237170.
237270 (cit. on p. 6).

Lujan, M. et al. (Feb. 2019). “Evaluating the Performance and Energy Effi-
ciency of OpenGL and Vulkan on a Graphics Rendering Server.” In: 2019
International Conference on Computing, Networking and Communications
(ICNC), pp. 777–781. doi: 10.1109/ICCNC.2019.8685588 (cit. on p. 17).

Mark, William R., Leonard McMillan, and Gary Bishop (1997). “Post-
rendering 3D Warping.” In: Proceedings of the 1997 Symposium on In-
teractive 3D Graphics. I3D ’97. Providence, Rhode Island, USA: ACM,
7–ff. isbn: 0-89791-884-3. doi: 10.1145/253284.253292. url: http:

//doi.acm.org/10.1145/253284.253292 (cit. on pp. 15, 49).
Mueller, Joerg H. et al. (Nov. 2018). “Shading Atlas Streaming.” In: ACM

Transactions on Graphics 37.6. doi: 10.1145/3272127.3275087 (cit. on
pp. 1, 5, 9).

55

https://doi.org/10.1145/965141.563893
https://www.vive.com/media/filer_public/vive/product-overview/vive-hardware-hmd-1.png
https://www.vive.com/media/filer_public/vive/product-overview/vive-hardware-hmd-1.png
https://doi.org/10.1145/237170.237270
https://doi.org/10.1145/237170.237270
https://doi.org/10.1109/ICCNC.2019.8685588
https://doi.org/10.1145/253284.253292
http://doi.acm.org/10.1145/253284.253292
http://doi.acm.org/10.1145/253284.253292
https://doi.org/10.1145/3272127.3275087


Bibliography

Murphy, Glenn (2019). Explosion Sheet. url: http://glennmurphy.weebly.
com/uploads/2/0/4/7/20470066/t_explosionsheet.jpg (visited on
07/19/2019) (cit. on p. 25).

Reeves, W. T. (Apr. 1983). “Particle Systems - a Technique for Modeling a
Class of Fuzzy Objects.” In: ACM Trans. Graph. 2.2, pp. 91–108. issn:
0730-0301. doi: 10.1145/357318.357320 (cit. on pp. 8, 9, 13).

Samsung (2015). Gear VR. url: https://images.samsung.com/is/image/
samsung/at-gear-vr-r322-sm-r322nzwaato-000000002-r-perspective-

white (visited on 07/19/2019) (cit. on p. 5).
Steed, A. and S. Julier (Mar. 2013). “Design and Implementation of an

immersive Virtual Reality System based on a Smartphone Platform.”
In: 2013 IEEE Symposium on 3D User Interfaces (3DUI), pp. 43–46. doi:
10.1109/3DUI.2013.6550195 (cit. on p. 4).

TooManyDemons (2016). Hologram Console. url: https://sketchfab.com/
3d- models/hologram- console- bfbbb481e98e4be38774b1d0204c192c

(visited on 07/19/2019) (cit. on p. 7).
Unity (2015). Viking Village. url: https://assetstore.unity.com/packages/

essentials/tutorial-projects/viking-village-29140 (visited on
07/19/2019) (cit. on p. 3).

Unity (2018). Robot Lab. url: https://assetstore.unity.com/packages/
essentials/tutorial-projects/robot-lab-unity-4x-7006 (visited
on 07/19/2019) (cit. on p. 35).

Vries, Joey de (2019). Tangent Space Vectors. url: https://learnopengl.
com / Advanced - Lighting / Normal - Mapping (visited on 07/19/2019).
https://twitter.com/JoeyDeVriez. (Cit. on pp. 18, 19).

Yang, Jason C. et al. (2010). “Real-Time Concurrent Linked List Construction
on the GPU.” In: Computer Graphics Forum 29.4, pp. 1297–1304. doi:
10.1111/j.1467-8659.2010.01725.x (cit. on pp. 7, 9, 12).

Zhou Wang et al. (Apr. 2004). “Image Quality Assessment: From Error
Visibility to Structural Similarity.” In: IEEE Transactions on Image Process-
ing 13.4, pp. 600–612. issn: 1057-7149. doi: 10.1109/TIP.2003.819861
(cit. on p. 35).

56

http://glennmurphy.weebly.com/uploads/2/0/4/7/20470066/t_explosionsheet.jpg
http://glennmurphy.weebly.com/uploads/2/0/4/7/20470066/t_explosionsheet.jpg
https://doi.org/10.1145/357318.357320
https://images.samsung.com/is/image/samsung/at-gear-vr-r322-sm-r322nzwaato-000000002-r-perspective-white
https://images.samsung.com/is/image/samsung/at-gear-vr-r322-sm-r322nzwaato-000000002-r-perspective-white
https://images.samsung.com/is/image/samsung/at-gear-vr-r322-sm-r322nzwaato-000000002-r-perspective-white
https://doi.org/10.1109/3DUI.2013.6550195
https://sketchfab.com/3d-models/hologram-console-bfbbb481e98e4be38774b1d0204c192c
https://sketchfab.com/3d-models/hologram-console-bfbbb481e98e4be38774b1d0204c192c
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/robot-lab-unity-4x-7006
https://assetstore.unity.com/packages/essentials/tutorial-projects/robot-lab-unity-4x-7006
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://doi.org/10.1111/j.1467-8659.2010.01725.x
https://doi.org/10.1109/TIP.2003.819861

	Abstract
	Introduction
	Problem
	Material System
	Transparency Rendering
	Particle Systems

	Related Work
	Shading Atlas Streaming
	Transparency Rendering: Depth Peeling
	Transparency Rendering: Per-Pixel Linked Lists
	Particle Systems

	Method
	Transparency Rendering
	Particle Systems

	Solution
	Graphics API: Vulkan
	Material System
	Transparency Rendering
	Overview
	Implementation

	Particle Systems
	Overview
	Configuration
	Implementation


	Evaluation
	Transparency Rendering
	Particle Systems
	Particle Frame Times

	Discussion
	Outlook
	Bibliography

