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Abstract

Annually european research teams are dispatched to spend the winter at the Antarctic research
station ’Concordia’ to perform scientific experiments. Due to the extreme isolation there is an
analogy to Mars missions and is therefore of interest for psychological monitoring. For that
reason voice recordings of the scientists have been conducted at regular dinner meetings using
two microphone arrays.

The recorded speech signals are typically superimposed by interfering speech, environmental
noise or also room reverberation. The goal within this thesis lies in implementing an algorithm
that extracts each speech signal from the sound mixture and computes one single track for each
target speaker, so that linguists can further analyze each person individually in its psychological
behaviour. Therefore beamforming, sound source localization and noise-reduction techniques
are investigated in theory and in simulations before applying them to the real-world data.

The challenge was that only limited knowledge about the environment was available, as no
access was given to the research station and the microphone arrays have been installed on site
by the researchers, who were led by instructions remotely. This means the two arrays had to
be post-calibrated, but also the sound velocity was unknown. Furthermore also ground truth or
clean recordings of the speakers were not given. Despite being unaware of the surrounding, in
the end an algorithm has been developed within this thesis that produces useful results.

Zusammenfassung

Jährlich werden europäische Forschungsteams entsandt, um den Winter in der antarktischen
Forschungsstation ’Concordia’ zu verbringen und wissenschaftliche Experimente durchzuführen.
Aufgrund der extremen Isolation gibt es eine Analogie zu Mars-Missionen und ist daher für
die psychologische Überwachung von Interesse. Aus diesem Grund wurden bei regelmäßigen
Dinner-Meetings mit zwei Mikrofon-Arrays Sprachaufnahmen der Wissenschaftler durchgeführt.

Die aufgezeichneten Sprachsignale werden typischerweise durch störende Sprachsignale, Umge-
bungsgeräusche oder auch Raumhall überlagert. Das Ziel dieser Arbeit besteht darin, einen
Algorithmus zu implementieren, der jedes Sprachsignal aus dem Klanggemisch extrahiert und
für jeden Zielsprecher eine einzelne Spur berechnet, so dass Linguisten jede Person individuell auf
ihr psychologisches Verhalten hin analysieren können. Daher werden Techniken wie Beamform-
ing, Schallquellenlokalisierung und Rauschunterdrückung in der Theorie und in Simulationen
untersucht, bevor sie auf die realen Daten angewendet werden.

Die Herausforderung bestand darin, dass nur begrenzte Kenntnisse über die Umgebung zur
Verfügung standen, da die Forschungsstation nicht zugänglich war und die Mikrofon-Arrays
vor Ort von den Forschern installiert wurden, die durch Anweisungen aus der Ferne geleitet
wurden. Das bedeutet, dass die beiden Arrays nachträglich kalibriert werden mussten, aber
auch die Schallgeschwindigkeit war unbekannt. Weiterhin waren auch Grundwahrheiten oder
Nahaufnahmen der Sprecher nicht gegeben. Obwohl die Umgebung nicht bekannt ist, wurde im
Rahmen dieser Arbeit ein Algorithmus entwickelt, der nützliche Ergebnisse liefert.
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1
Introduction

1.1 Background

The main goal of this master’s thesis is to perform multichannel source separation and apply
speech signal enhancement techniques on real-world data, by using state-of-the-art algorithms.
On the way to this achievement, these methods have been investigated in theory and simulations.

The real-world data mentioned above comprises over 30 hours of 32-channel audio data, which
has been recorded at the antarctic research station Station Dome Concordia [2], illustrated
in figure 1.1 (a). The main research fields at the Concordia research station are focused on
glaciology and astronomy. Besides the scientists are isolated from the rest of the world for several
months, which implies psychological and physiological stress. This makes it also interesting for
sociological monitoring because of its analogy to space-missions.

(a) The building from outside (b) The dinner room

Figure 1.1: Pictures of the research station

In cooperation with the SPSC Lab, the scientists at the research station agreed on having their
dinner talks recorded, transcribed and analyzed. The recordings have been conducted for several
weeks in 10-minute-long sessions at regular meetings, where most of the researchers gathered to
eat in the dinner room, which is shown in figure 1.1 (b).

The microphones have been installed on circular frames in the dinner room on the ceiling above
the dinner table, depicted in figure 1.2. The design of the microphone arrays and all of the
preparation for the recording was done in advance. This thesis was launched when all of the
recorded data was already available at the SPSC laboratory. The main focus was to compute
enhanced, separate speech tracks for each speaker at the table, so that the processed audio data
can be further transcribed and analyzed by linguists.

January 19, 2020 – 7 –



1 Introduction

The big challenges in this task were that no geometrical measurements could be done on site.
This means that the positions of the speakers, the positions of the microphones but also the
distance between the microphone arrays and their orientation were unknown. As a further hand-
icap the room temperature also could not be measured, which has an influence on the speed of
sound and as a result also on the sound wave propagation.

Furthermore ground truth is not available, which means that it is unknown which persons are
talking on the recorded tracks and when they are talking. Also clean speech recordings of the
scientists were not available, which would make utilization of machine learning algorithms pos-
sible. As a further thought experiment video material would have been nice to have to verify
the position changes of the speakers.

But at least little information was available, which included a rough sketch with the top view
of the dinner room, the common seat locations of each speaker and four clap signals with the
corresponding clap positions. All of those positions were marked on the sketch approximately,
but the exact coordinates were not given.

Figure 1.2: Microphone arrays mounted above the dinner table

Besides just processing the real-world data, a very important aspect in this thesis will be to
show differences or problems that arise when comparing the real-world results with simulated
experiments.

1.2 Cocktail Party Problem

The problem that is tried to tackle within this thesis is the so-called ”Cocktail party problem”.
Usually this scenario is described as the natural ability of the human auditory system to in-
telligently detect, select and perceive relevant acoustic information at simultaneous presence of
several sound sources e.g. human talkers. That’s where the name ”Cocktail party problem”
comes from.
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1.3 Array Signal Processing and Source Separation

The effect arises from binaural mechanisms, which means hearing with both ears is required to
localize sound. Interchannel differences in level and phase are substantial to directional hearing.
Our auditory system is thus able to extract signals of interest from a mixture of interfering
signals or noise.

Figure 1.3 illustrates a typical cocktail party scenario [3]. All sources (target, interferer, noise)
possibly radiate acoustic waves directly or reflectively onto a microphone array placed at a spe-
cific location inside a reverberated enclosure.

Based on the position information of the array and the desired target, digital filters hm process
the microphone array signals xm and produce a single output track containing the desired data,
where m is the running index of the considered microphones.

x1(n)

h1

y(n)

h2 hM

x2(n) xM(n)

Σ

Microphone
Array
Signal
Processing

Reverberated 
Enclosure

Noise
 source

Interfering
 source

Target
 source

Reflections

Microphones

Direct
path

Figure 1.3: Cocktail party effect

1.3 Array Signal Processing and Source Separation

However, if microphones are used to record such a situation, those recordings would not repro-
duce a clear, perceptive image of the situation, because they lack of room depth and positioning
information. Source separation in general is the task to teach computers on how to process
recorded data to achieve signal enhancement with respect to a specific target.
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1 Introduction

These technologies are used in countless devices to improve speech signal quality such as smart-
phones, hearing aids, robots, automatic speech recognition (ASR), cars and surveillance. Nev-
ertheless those mechanisms are used not only for audio signals, but also to improve signals in
other disciplines like ultrasound, radar or sonar.

It has been observed, that the signal improvement increases with the number of sensors/micro-
phones within the system. In literature it is differentiated between single-channel and multi-
channel signal enhancement. This thesis focuses on multichannel enhancement for speech signals.

1.4 Structure of this Thesis

In the beginning of the thesis the mathematical and physical foundations will be established.
Subsequently beamforming (BF) will be introduced in theory as a spatial filtering method by
showing different approaches. Afterwards the time-frequency masking (TFM) will be discussed
as a post-filtering step to beamforming. The following chapter will be on sound source localiza-
tion (SSL), which gives us the ability to control the beamformer more precisely. A simplified
version of the algorithm, that will be developed within this thesis, is illustrated in figure 1.4.

x1(n)

Beamformer y(n)

Sound
Source

Localization r(n)

x2(n)

xM(n)

v(n)

Post-Filter

Figure 1.4: Simplified Algorithm

where xm(n) are the multichannel microphone signals, r(n) is the position of the detected source,
v(n) are estimated noise signals, which allow us to finally produce the enhanced, separated speech
signal y(n).

After having discussed all of the algorithms in theory, the beamforming and time-frequency
masking algorithms will then be investigated in noise simulations and speech simulations. Af-
terwards also the real-world data will be processed using the considered algorithms and com-
parisons to the simulated scenarios will be drawn. At last final conclusions and an outlook will
be given.
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2
Array Processing Fundamentals

This chapter should give an overview of the fundamental theory in the acoustic domain and how
the sensor signals can be combined based upon spatial information. These basics are crucial for
multichannel array signal processing.

2.1 Math Notation Style

The used variables within this thesis are notated in the following manner:

• Scalar symbols are emphasized, e.g.: scalar s
• Vector symbols are underlined, e.g.: vector v
• Matrices are bold, e.g.: Matrix M

2.2 Coordinate System Definition

The coordinate system concerning this thesis is defined as follows.

y

x

z r
θ

φ

Figure 2.1: Coordinate system

The source point r in cartesian space is defined as r =
[
x y z

]ᵀ
.
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2 Array Processing Fundamentals

The conversion from spherical to cartesian coordinates can be done asxy
z

 = |r| ·

sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

 (2.1)

where |r| is the absolute distance from the origin to the reference point, ϕ is the azimuth angle,
θ is the elevation angle. The opposite conversion from cartesian to spherical coordinates is done
as

|r| =
√
x2 + y2 + z2 (2.2)

Further the elevation angle θ and the azimuth angle ϕ can be computed as

θ = arccos
z√

x2 + y2 + z2
(2.3)

ϕ = atan2(y, x) (2.4)

2.3 Acoustic Wave Propagation

Microphone arrays pick up acoustic waves emitted by sound sources. Two different models of
acoustic wave propagation are considered, namely the plane wave and spherical wave propa-
gation model. Both models have to be considered because of spatial relationships between the
transmitters and receivers within an acoustic field. When a source is at sufficient distance and
further the array’s aperture is relatively small (so that the curvature of the originating sound
wave can be neglected), in the majority of beamforming literature there is talk of far-field beam-
forming and the incoming sound waves are approximated as plane waves. On the contrary if the
source is located closely to a relatively large array the beamforming community speaks about
near-field beamforming (here the curvature of the sound wave can’t be neglected). However
these attributes insufficiently describe far-field or near-field acoustics, therefore in this thesis
these assumptions will be explicitly called plane waves and spherical waves.

(a) Planar wave (b) Radial wave

Figure 2.2: Comparison of wave propagation models (taken from [1])

The two mentioned wave propagation models are illustrated in figure 2.2. Planar waves are
characterized by parallel wave fronts that move in perpendicular direction. In spherical waves
the direction of the wave front’s propagation is radial.
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2.4 Time Difference of Arrival

The equation for a monochromatic plane wave is given as [4]

x(t, r) = A · ej(ωt−kr) (2.5)

where A is the wave amplitude, ω (= 2πf) is the radial frequency, r is the distance between
source/sink and the wavenumber vector k:

k =
2π

λ

sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

 (2.6)

describes the speed and direction of the propagating wave. The wavelength λ is given as λ = c
f ,

where c is the speed of sound in air, which can be computed from the ambient temperature
c = (331.5 + 0.6 ϑ

◦C )ms , where ϑ is the ambient temperature in degree Celsius. With the defi-
nition of the azimuth angle ϕ and the elevation angle θ the direction of arrival (DOA) is fully
determined, which describes the direction of the incoming sound wave.

If the curvature of a spherical sound wave has to be considered, the monochromatic solution is
given as

x(t, r) =
A

4πr
ej(ωt−kr) (2.7)

2.4 Time Difference of Arrival

The time difference of arrival (TDOA) is best described as relative time lag between sensor
signals originating from a signal source. The phenomenon is best shown by a plane wave arriving
at a uniform linear array (ULA) with two microphones in figure 2.3 [5].

y1(k)

φ

y2(k)
d

s(k)

Plan
e w

av
efr

ont

d co
s(φ

)

x1(k)x2(k)φ

Figure 2.3: Simple ULA with an impinging plane sound wave

The single-source signal s(k) convolved with a particular acoustic MIMO impulse response re-
sults in the plane wave signal xm(k). The final microphone signal ym(k) also includes transfer
function and directional characteristics of the microphone.

January 19, 2020 – 13 –



2 Array Processing Fundamentals

For the simplified case of a ULA the TDOA between sensors 1 and 2 is then computed as

τ12 =
d · cos (ϕ)

c
(2.8)

In contrast to the TDOA the time of arrival (TOA) describes the absolute elapsed time between
the onset of a sound wave and the microphone(s) picking up the propagated signal.
The TDOA is especially relevant to estimate the direction of arrival by just looking at the TDOA
between several microphone signals. This task is called the time delay estimation problem
(TDE). As this aspect is crucial for (automatized) sound source localization (SSL) it will be
discussed more in detail in chapter 5.

2.5 Spatial Aliasing

When designing a sensor array the so-called spatial aliasing has to be considered. Similarly to the
sampling theorem in signal theory, design errors in spatial sampling can lead to spatial images (or
grating lobes) and therefore unwanted directional characteristics. The spatial sampling theorem
can be determined as

d <
λ

2
(2.9)

where d is the distance between the sensors in meters and λ is the observed wavelength (λ = c
f ).

To avoid spatial aliasing for a specific frequency f the microphone distance d should be kept
below λ

2 (= c
2 f ). In other words for optimal operation at higher frequencies the array should

have a smaller sensor spacing. On the other hand to guarantee spatial selectivity also for lower
frequencies large sensor spacing is required, which always results in a tradeoff between both
requirements.

2.6 Uniform Circular Array

The geometry of the sound field that is picked up by a microphone array is depending on the
geometry of the used microphone array itself and also the directional characteristics of the
microphones. A radial pattern with equal sensitivity in all horizontal directions is given by a
circular array as it is proposed in this work. Although also other geometrical forms of arrays
are possible, the circular array shape will be used for this thesis.

y

x

z

m = 0

m = 1

m = 2
m = ...

φmr

Figure 2.4: Uniform circular array
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2.7 Plane and Spherical Waves

The steering vector determines the direction of the incoming wave and can be generally ex-
pressed, without assuming a specific wave propagation model, via the according time-shift con-
stants τm where m = 0, 1, 2, ..., M − 1 as depicted in figure 2.4.

dm(f) = e−j2πfτm =


e−j2πfτ0

e−j2πfτ1

...

e−j2πfτM−1

 (2.10)

The steering vector gives us the ability to compute the so-called beamforming weights, which
further allows us to focus a sensor array to a desired direction. This will be on topic in chapter
3. The computation of the time-shift constants will be specified more in detail in the following
sections.

2.7 Plane and Spherical Waves

In array processing a rule-of-thumb has been established [4], which determines if a source is at
sufficient distance, so that the arriving sound wave can be approximated as plane wave. We
estimate that distance r as shown below.

r >
2L2

λ
(2.11)

where L is the maximum dimension of the array that picks up the incoming sound wave and r
is the absolute distance from the emitting sound source to the sound receiver.

In speech signal processing we are dealing with a limited bandwidth of interest up to around
12kHz and therefore those presumptions can already be included into the array design consid-
erations, beside the relevant source distance. But this also means that not only the distance
between source and sensor has to be considered for the wave propagation model but also the size
of the sensor aperture is relevant. This will be considered later when the specific array geometry
is discussed in section 6.1.

January 19, 2020 – 15 –



2 Array Processing Fundamentals

2.7.1 Uniform Circular Array Receiving Plane Waves

According to [6] the steering vector for an uniform circular array under plane wave assumption
is defined as

dm(f, ϕs, θs) = e−j2πf
r
c
sin (θs) cos (ϕs−ϕm) =


e−j2πf

r
c
sin (θs) cos (ϕs−ϕ0)

e−j2πf
r
c
sin (θs) cos (ϕs−ϕ1)

...

e−j2πf
r
c
sin (θs) cos (ϕs−ϕM−1)

 (2.12)

where m is the microphone index, ϕs is the azimuth angle of the incoming plane wave source,
θs is the elevation angle of the incoming plane wave source and ϕm is the azimuth angle of that
particular microphone.

y

x

z

Incident 
plane 
wave

φm

φs

θs

Figure 2.5: Circular array receiving plane waves

If a sensor array is steered towards a specific source assuming plane waves, each sensor signal
can be interpreted as virtually shifted onto a straight line in the array’s origin, perpendicular to
the direction of arrival.
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2.7 Plane and Spherical Waves

2.7.2 Uniform Circular Array Receiving Spherical Waves

If the sound source is assumed to propagate spherical waves, the steering vector is specified as

dm(f, lm, αm) = αm e−j2πf
lm
c =


α0 e−j2πf

l0
c

α1 e−j2πf
l1
c

...

αM−1 e−j2πf
lM−1
c

 (2.13)

where lm is the euclidean distance from the source position vector rs to the m-th microphone
position vector rm and αm is the according attenuation factor.

lm = ||rs − rm|| =
√

(xs − xm)2 + (ys − ym)2 + (zs − zm)2 (2.14)

y

x

z

Sound source

Euclidean
distances

Figure 2.6: Circular array receiving spherical waves

If a sensor array is steered towards a specific source assuming spherical waves, each sensor signal
can be imagined as shifted into the spot right where the sound source is sitting. Of course the
position of the sound source has to be known. At a later point in this thesis it has been shown,
that also a rough estimate of the source position produces meaningful results.
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2 Array Processing Fundamentals

2.7.3 Combined Array

So far the steering vector models for a single array have been described under the assumption
of a plane waves and spherical waves. On the other hand the sensor setup has been introduced
as dual array configuration in chapter 1. There is definitely a benefit in improving the signal
quality by using a bigger amount of microphones. Still the question is, how the models previ-
ously introduced could be applied to the dual array configuration.

Imagine both arrays receiving plane waves from an arbitrarily located sound source. The two
steering vectors d1s(f, ϕ1s, θ1s) and d2s(f, ϕ2s, θ2s) for both arrays can be computed once both
DOAs are known (assuming all other variables in the formula are given) and the beamforming
result will be two separate signals, one for each array, which need further processing. Neither
cross-correlation based time-shifts nor estimated-distance-based time-shifts have been proven
as a suitable method to combine the two array outputs under plane wave assumption into one
single output.

y

x

z

Figure 2.7: Spherical waves striking the dual array

The second method shown in figure 2.7 assumes the spherical wave propagation model, which
requires a defined source position to compute the euclidean distances and the attenuation gains.
This sounds like an obstacle at first, but in this thesis it has been experimentally found in sub-
jective listening tests, that an estimated position given by a sound source localization algorithm
(see chapter 5) in combination with the spherical wave propagation model delivers superior re-
sults compared to the plane wave approach as the interfering noise level and reverberation is
reduced and therefore the signal-to-noise-ratio (SNR) is improved.

By knowing the source location estimate the euclidean distances lm to all microphones and thus
the steering vector for the dual array ds(f, lm, αm) can be computed. The attenuation gains are
taken care of by using spatial weights (according to the inverse distance law) which is described
in section 3.3. Using the estimated source position also the steering vector estimate can be
formulated.

d̂m(f, l̂m, α̂m) = α̂m e−j2πf
l̂m
c =


α̂0 e−j2πf

l̂0
c

α̂1 e−j2πf
l̂1
c

...

α̂M−1 e−j2πf
l̂M−1
c

 (2.15)
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2.8 Noise Field Statistics

2.8 Noise Field Statistics

Before statements about the performance of beamforming algorithms are made, the statistics of
the noise field surrounding the sensor array must be taken into account. The noise field can be
described generally by looking at the coherence of the noise signals ΓVnVm .

ΓVnVm(ejω) =
ΦVnVm(ejω)√

ΦVnVn(ejω)ΦVmVm(ejω)
(2.16)

where ΦVnVm is the cross power spectral density (CPSD) of the noise signals vn and vm and n,
m are the associated microphone indices. The noise field across all sensor signals can be further
described with the coherence matrix ΓVV.

ΓVV =


1 ΓV0V1 ΓV0V2 · · · ΓV0VN−1

ΓV1V0 1 ΓV1V2 · · · ΓV1VN−1

...
...

...
. . .

...
ΓVN−1V0 ΓVN−1V1 ΓVN−1V2 · · · 1

 (2.17)

However the noise coherence model can be viewed as theoretical as in practice it is complicated
to estimate noise signals. Starting from this observation, other defined noise fields with more
practical meaning have been established (which are not signal-dependent anymore, but position-
dependent instead). Those will be discussed at a later point, when arriving at the Superdirective
MVDR beamformer in section 3.5.
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3
Beamforming

This chapter introduces widely used beamforming algorithms which combine sensor data and
positioning information to produce enhanced output. For our task we are interested in separat-
ing speech signals, hence beamforming helps us to focus the array on a desired target location,
which also means suppressing interfering signals from other directions and therefore improving
the signal-to-noise-ratio.

Beamforming algorithms are divided in data-independent and data-dependent beamformers.
The delay-and-sum beamformer, a representative of the signal-independent algorithm class, uses
spatial information to steer the sensor array towards a specified target.

The second class of algorithms further applies information based on sensor positions (Superdi-
rective MVDR) or signal statistics (Classic MVDR). Further the Generalized Sidelobe Canceller
uses an adaptive filtering approach and therefore also belongs to the class of data-dependent
beamformers.

3.1 Beampattern

The directional power characteristics of a sensor array can be computed by evaluating H for all
possible angles, which results in the beampattern [7].

H(ejω, ϕ0, θ0, ϕ, θ) = 10 · log10
{
|wH(ejω, ϕ0, θ0) d(ejω, ϕ, θ)|2

}
(3.1)

where w is the beamformer filter-weight vector that is computed with respect to the target
direction at azimuth angle ϕ0 and elevation angle θ0. The steering vector d will be iterated over
all desired azimuth angles ϕ and elevation angles θ. Examples for beampatterns will be shown
in figure 3.4.

A balloon plot can be achieved if all possible azimuth angles ϕ and all elevation angles θ will be
evaluated for one single frequency. Examples will be shown in section 3.2, where the delay-and-
sum beamformer will be discussed.

3.2 Delay-and-sum Beamformer

The delay-and-sum beamformer (D&S-BF) is the most fundamental beamforming concept which
is also known as classic beamformer or conventional beamformer [4]. The idea is to time-align
all given sensor signals according to the desired steering direction and to sum the time-aligend
signals and compute the mean afterwards. The output of the D&S-BF is computed as follows

yi(n) =
1

M

M∑
m=1

xm(n− τmi) (3.2)
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3.2 Delay-and-sum Beamformer

where yi(n) is the delay-and-sum beamformer output steered to the desired source i with carte-
sian coordinates r, M is the total number of used microphone channels, m is the running
microphone index, xm is the considered microphone signal, n is the sample index and τmi is the
TDOA of the considered microphone (in samples) with respect to steering direction belonging
to the desired target i.

The block diagram of the D&S-BF is illustrated in figure 3.1

x1(n) τ1

x2(n)

xM(n)

y(n)τ2

τM

Σ

Figure 3.1: Delay-and-sum beamformer

In practice the delay-and-sum beamforming can be done in time-domain by performing discrete
shifts on the data-vectors according to the TDOA. For higher accuracy oversampling or fractional
delays can be applied. The other method is done by taking the input signals via Fourier transform
(e.g. FFT) into frequency-domain and by applying a complex signal multiplication with the
steering vector to achieve the time-shift operation.

Yi(k, f) =
1

M

M∑
m=1

Xm(k, f) ·W ∗m(k, f) where Wm(k, f) = e−j·2πf ·τmi (3.3)

where Yi(k, f) is the output in frequency-domain at frame k and discrete frequency bin f . The
time-domain D&S-BF output yi can be computed by taking the inverse Fourier transform of Yi.

Using equation 3.1 the wideband-beampattern will be evaluated and plotted in figure 3.4 (a).
The circular array (specified in section 6.1) is steered towards 0° azimuth and -45° elevation.
The beampattern can also be shown in a 3-dimensional balloon plot by stepwise evaluating the
monochromatic beampattern at specific azimuth and elevation angles. The black line in figure
3.2 marks the steering direction. The lengths of the lobes denote the directional sensitivity,
whereas the z-axis is coded in color for a better visualization.

(a) 500 Hz (b) 1000 Hz (c) 2000 Hz (d) 4000 Hz

Figure 3.2: Balloon plots for delay-and-sum beamformer
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3 Beamforming

3.3 Spatial windowing

The plain delay-and-sum beamformer performs spatial filtering by shifting the signals according
to the direction the array is steered to. Before going deeper into more advanced spectral weight-
ing techniques, there is also another method called spatial windowing, which allows putting
emphasis on specific microphone gains [8].

Usually this is done by multiplying classic windowing functions (such as Hanning window, Kaiser
window, Dolph-Chebyshev window,etc.) directly onto the microphone tracks, so that micro-
phones close to the desired target remain having higher gain values and the microphones at
greater distance are attenuated. One has to keep in mind, that this technique also reduces the
beamformer output gain in general.

Spatial windowing is interesting, especially because it affects the microphone array’s beam-
pattern by a tradeoff between main lobe width and side lobe suppression. The reason the
parametrizable Kaiser window is very popularly used for this method is, because that tradeoff
can be easily controlled.

3.4 Classic MVDR Beamformer

The target of the minimum variance distortionless response (MVDR) beamformer is to minimize
the variance of the output while keeping the signal for a desired direction distortionless [9]. The
solution can be found in optimizing the criterion:

min
w

wH Rvv w subject to: dH w = 1 (3.4)

where w is the beamformer weights vector, Rvv is the spatial correlation matrix of the noise
signals and d is the steering vector. By using Lagrange multipliers the solution is given without
proof as:

wmvdr =
Rvv

−1 d

dH Rvv
−1 d

(3.5)

In literature the terms MVDR and MPDR (minimum power distortionless response) are often
mixed up. The key difference is, that the MPDR beamformer uses the spatial correlation matrix
Rxx which is computed directly from the input signals x(n). However the MVDR beamformer is
preferred over the MPDR beamformer as the MPDR beamformer is sensitive to steering vector
errors much more.

To compute the spatial correlation matrix Rvv additional processing is needed to compute the
noise signals v(n) first, e.g. by invoking the spectral subtraction [10]. In the upcoming section
3.4.1 the details, how the spatial correlation matrix is composed, will be discussed. Generally
the noise correlation matrix R̂vv is estimated as

R̂vv = E
[
v vᵀ

]
(3.6)

The correlation matrix of highly correlated signals often require regularization to put out mean-
ingful computations, which is why techniques such as Diagonal Loading are used. In practice
also the theoretical MVDR beamformer suffers from sensor mismatch and array imperfections.
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3.4 Classic MVDR Beamformer

3.4.1 Estimating the Spatial Correlation Matrix

One of the challenging tasks concerning the MVDR beamformer is to estimate the noise signal.
In simulated environments the noise signal is mostly accessible, which does not apply to real
environments. Therefore in this thesis the delay-and-sum beamformer is invoked to acquire the
noise signal via spectral subtraction. The algorithm is depicted in figure 3.3.
For MPDR beamformers the PSD matrix Φ̂XX is initially computed as follows.

Φ̂XX(f) = E
[
X(f) Xᵀ(f)

]
(3.7)

where X is the multichannel signal input block transformed into a frequency domain vector.
It is very common to use Welch’s method [11] to compute smoothed PSD matrices for each
timeframe introducing the forgetting factor λ.

Φ̂XX(f) = λ Φ̂XX−1(f) + (1− λ) X(f) Xᵀ(f) (3.8)

After the PSD matrix has been computed, Φ̂ is then substituted with R from equation 3.5 to
compute the beamformer weights wmpdr.

x1(n) τ1

x2(n)

xM(n)

y(n)τ2

τM

Σ

Spectral
Subtraction

-

v1(n)

v2(n)

vM(n)

Figure 3.3: Estimating the noise signal

If MVDR beamformers are used instead of MPDR beamformers, the noise PSD can be achieved
in a similar way, by first pre-processing the input signals e.g. with the spectral subtraction
algorithm shown in figure 3.3 to obtain the noise signals v(n).

Φ̂VV(f) = E
[
V (f) V ᵀ(f)

]
(3.9)

Φ̂VV(f) = λ Φ̂VV−1(f) + (1− λ) V (f) V ᵀ(f) (3.10)

By analogy to the MPDR beamformer, to achieve the MVDR beamformer weights wmvdr the
PSD matrix Φ̂VV is substituted with Rvv from equation 3.5.
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3 Beamforming

However the correlation matrices that are usually dealt with in such tasks are prone to ill-
conditioning due to highly correlating signals. This further leads to numerical inaccuracy when
computing the inverse of ill-conditioned matrices. To work around such phenomenons several
strategies have been introduced of which two are mentioned next.

3.4.2 Diagonal Loading

The diagonal loading method [12] is the most simple approach, where a small proportion of the
identity matrix I is added to the correlation matrix R̂ that needs to be processed. The scaling
factor γ controls the amount of the identity matrix I that is added.

wDL =
R̂−1DL d

dH R̂−1DL d
with R̂DL = R̂ + γI (3.11)

By increasing γ also the robustness of the algorithm increases and the solution approaches the
delay-and-sum beamformer.

3.4.3 Variable Loading

Another variant is the variable loading technique [13], where the regularization is scaled dynam-
ically with the input signal by adding a small proportion of the correlation matrix inverse onto
the correlation matrix itself.

wV L =
R̂−1VL d

dH R̂−1VL d
with R̂VL = R̂ + δ R̂−1 (3.12)

3.5 Superdirective MVDR beamformer

The first approach to make the MVDR beamformer more applicable to real-time environments
is called the superdirective MVDR beamformer (SD-BF) [7]. Using a correlation matrix, that is
built from noise field statistics instead of instantaneous signal statistics, makes the beamformer
signal-independent but position-dependent instead. Within this workaround the estimated, spa-
tial correlation matrix R̂vv is substituted by a theoretically defined noise field coherence Γvv.

wsd =
Γvv

−1d

dHΓvv
−1d

(3.13)

The noise field coherence Γvv has already been introduced in section 2.8. Whereas the simple
D&S-BF is unable to attenuate low frequency signals from non-target directions, the SD-BF
performs better to do so.

Diffuse Noise Field

The coherence function ΓVnVm of a diffuse noise field can be computed as

ΓVnVm
∣∣
diffuse

= sinc
{2πf lnm

c

}
(3.14)

where lnm is the distance between the according sensor positions.
In figure 3.4 the spectral beampatterns of different noise fields are compared, where especially
at low frequencies the differences become significant. As before the array is steered towards 0°

azimuth and -45° elevation.
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3.6 Generalized Sidelobe Canceller

(a) D&S-BF (b) SD-BF: Diffuse noise

Figure 3.4: Theoretical wideband beampatterns

3.6 Generalized Sidelobe Canceller

The generalized sidelobe canceller (GSC) [14] is an adaptive beamforming method, which sep-
arates the signal enhancement task in two processing paths. The GSC has been invented by
Lloyd J. Griffiths and Charles W. Jim and is therefore also known as Griffiths Jim beamformer.

x1(n) τ1

x2(n)

xM(n)

yFBF(n)τ2

τM

Σ

Blocking
Matrix

WBM

z1(n)

Σ

Σ yGSC(n)

a1

a2

aM-1

-

z2(n)

zM-1(n)

Figure 3.5: The Generalized Sidelobe Canceller

The upper branch of the GSC (in figure 3.5) is a fixed beamformer (FBF), that enhances the
signal in one single, desired target direction. A very popular choice for the FBF is the simple
delay-and-sum beamformer. The adaptive beamformer is implemented in the lower path, which
consists of a blocking matrix (BM) and the adaptive input canceller (AIC). The blocking matrix
takes the pre-steered signals and ensures that the desired signal is eliminated at the blocking
matrix output. The adaptive input canceller contains a set of filters, that adaptively optimizes
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3 Beamforming

the GSC output power in a minimum mean-square error sense.

The adaptive filters are often implemented as (normalized) least-mean-squares (NLMS/LMS)
filters. The GSC in general can be implemented in time-domain or in frequency-domain, while
having convergence advantages in frequency-domain.

Several extensions have been introduced to make the GSC more robust to steering direction
errors, such as adaptive filters in the blocking matrix. The signal matrix Z(n) at the blocking
matrix output can be computed as

Z(n) = WBM X(n− τm) (3.15)

where X(n− τm) are the pre-steered signals and WBM are the fixed weights of the [M − 1×M ]
blocking matrix. Several techniques exist for the blocking matrix design, where the classic
blocking matrix of the inventors Griffiths and Jim is composed as shown below.

WBM =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
. . .

...
0 0 0 · · · 1 −1

 (3.16)

The multiplication of the input signal with the blocking matrix above can be interpreted as
subtracting adjacent channels. The resulting M-1 audio channels mostly contain noise signals.
With the help of the adaptive filters in the lower path the output of the GSC is computed as

yGSC(n) = yFBF (n)−
M−1∑
m=1

am
ᵀ(n) zm(n) (3.17)

where yGSC(n) is the output of the generalized sidelobe canceller, yFBF (n) is the output of the
fixed beamformer, m is the running microphone index, M is the total number of microphones,
wm(n) are the adaptive filter weight vectors, zm(n) are the blocking matrix output vectors.
According to the NLMS update rule, the filter weights are updated each cycle.

am(n+ 1) = β am(n) + µ yGSC(n)
zm(n)

||zm(n)||2
(3.18)

where β is the forgetting factor of the old filter weights, µ is the step-size of the adaptive filter
[15]. Since the outputs of the blocking matrix optimally just contain noise and interference
signals, the finding of the unconstrained adaptive filter weights ultimately also minimizes the
output power in yGSC .
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4
Time-Frequency Masking

With the renaissance of deep neural networks (DNN) time-frequency masking (TFM) has become
a crucial part of speech separation. While being used as training targets in DNNs, in acoustic
beamforming time-frequency masks are used as a post-processing step to further improve a
beamformed signal with the help of simultaneous interfering signals. In the next sections several
methods will be shown [16].

4.1 Theoretical Ideal Mask

The ideal mask shows the general formulation of the problem. By assuming additive noise, the
signal model is considered to be:

Y (k, f) = X(k, f) + V (k, f) (4.1)

where X is the source signal, V the additive noise signal, Y the resulting output signal, k the
block index and f the frequency bin index. Further the Mask M is introduced to filter the
noise-inflicted signal Y , which results in the estimate X̂ of the source signal X as follows

X̂(k, f) = M(k, f) · |Y (k, f)|ejθY (k,f) (4.2)

Time-
Frequency

 
Mask

M

y(n)Σx(n)

v(n)

x(n)^

Figure 4.1: Ideal mask application

The block diagram in figure 4.1 illustrates how the time-frequency masking is used to enhance
a signal. The time-frequency mask block also includes the forth- and back-transformation be-
tween time- and frequency-domain. However it is still not clear how the filter mask M can be
determined or how the inaccessible noise signal v(n) can be estimated, which will be discussed
in the next sections.
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4.2 Ideal Binary Mask

The most basic idea that is presented is the theoretical ideal binary mask (IBM), where the
spectral power ratio SPR is introduced [17]. Frequency bins of the target signal that are more
dominant than the interfering frequency bins shall be preserved, while weaker bins are blocked:

SPR(k, f) =
|Y (k, f)|2

|V (k, f)|2
(4.3)

After computing the spectral power ratio the decision criterion γ is introduced, which determines
a hard boundary where frequency bins are kept or tossed away.

MIBM (k, f) =

{
1 if SPR(k, f) > γ

0 otherwise

In conclusion this means the IBM frequency bin is assigned to one, if the target power is rela-
tively larger than the noise power. Due to its data-dependent nature, the threshold parameter γ
has to be found experimentally. By choosing γ a hard threshold region around the γ parameter
is produced, which can be softened by applying e.g. a sigmoid function. The softening of the
threshold area reduces the output signal suffering from musical noise.

It has been found that the ideal binary mask is able to produce separated signals, that improve
the speech intelligibility dramatically and therefore also improve the overall performance of
automatic-speech-recognition units, while having weak performance in perceived quality [18],
due to the introduction of musical artifacts (”burbling”).

4.3 Ideal Ratio Mask

It has been shown that the ideal ratio mask (IRM) [18] produces a better trade-off between
separation and intelligibility results than the ideal binary mask, while also keeping the musical
noise low.

MIRM (k, f) =

(
|Y (k, f)|2

|Y (k, f)|2 + |V (k, f)|2

) 1
β

(4.4)

where β can be interpreted as a tunable separation level parameter. Small β values will improve
the separation, while worsening the quality. High β values decrease the separation, while keeping
the quality. For β = 2 the formula is equivalent to the square-root Wiener filter in frequency-
domain, which is considered to be the optimal estimator of the power spectrum. The common
Wiener filter is defined as

HWiener(k, f) =
|Y (k, f)|2

|Y (k, f)|2 + |V (k, f)|2
(4.5)

4.4 Extension To The Multichannel Case

In the multichannel case [17] it is considered that several targets are going to be separated in a
parallel fashion, as figure 4.2 suggests. To do so the partial time-frequency masks Mij have to
be applied right after beamforming.
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Figure 4.2: Using time-frequency masking within a beamforming application

The approach will be sketched in detail on the IRM example, based on equation 4.4. The
target signal Y and the noisy signal V from the original formula will be substituted with the
beamformed signals Yi and Yj , where i is the index for the current target source, while j being
the indices for all the other interfering sources.

M IRM
ij (k, f) =

(
|Yi(k, f)|2

|Yi(k, f)|2 + |Yj(k, f)|2

) 1
β

(4.6)

Once all the partial masks Mij for one desired target i have been computed, the full mask Mi

can be calculated as a product of all the partial masks.

Mi(k, f) =
J∏

j=1,j 6=i
Mij(k, f) (4.7)

As a final step the full mask Mi is applied to the associated beamformed output signal Yi to
receive the time-frequency masked output Yi, while keeping the unaltered phase of the original
beamformed signal.

Zi(k, f) = Mi(k, f) · |Yi(k, f)|ejθYi(k,f) (4.8)
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5
Sound Source Localization

Sound source localization (SSL) is the task to detect and find a single or even multiple sound
sources in a defined search space, by utilizing multiple, simultaneous sensor signals originat-
ing from a primarily known, spatially distributed array geometry. SSL crucially improves the
performance of beamforming algorithms.

5.1 Overview

As presented in [19] three main categories of sound source localization techniques have arisen,
each with their individual benefits or drawbacks. Those techniques use ...
(a) ... the maximization of a beamformer’s steered response power (SRP)
(b) ... high-resolution spectral estimation methods such as MUSIC, ESPRIT
(c) ... time-difference-of-arrival (TDOA) methods.
In practice each method also comprises the other methods partially, so the boundaries between
those three methods are loose.

In method (a) the source location is estimated by filtering, weighting and finally summing the
signals from multiple microphones. The result can be considered as the maximum beamformer
output with respect to the considered TDOA. On the contrary in method (b) signal statistics are
considered by using spatio-spectral correlation matrices. Within method (c) the source locations
are computed from a set of delay estimates regarding considered microphone combinations. In
the first step pairwise TDOAs between sets of microphones are computed. In the second step,
from the time delay estimates (TDE) hyperbolic curves and their intersections are computed,
where the sound source may be present.

5.2 Cross-Correlation

The correlation function is a signal-statistics-based measure to determine the similarity between
two signals x1(k) and x2(k). The auto-correlation function is a special case of the correlation
function, which involves just one signal x(k) and can be formulated as

rxx(p) = E
[
x(k) x(k + p)

]
(5.1)

where k is the time index of the signal and p is the time shift index. For p = 0 the auto-
correlation function rxx(p) reaches its maximum value, which is also equivalent to the signal
power of signal x(k). Similarly for two sensor signals x1(k) and x2(k) the cross-correlation is
computed:

r12(p) = E
[
x1(k) x2(k + p)

]
(5.2)
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5.3 Time Delay Estimation Using Cross-Correlation

By finding the maximum of the cross-correlation function at sample offset p, the time-shift τ̂12
between the two sensor signals x1(k) and x2(k) can be estimated:

τ̂12 = max
p

r12(p) (5.3)

Conveniently the cross-correlation can be computed via the frequency domain, starting by slicing
the signal into signal blocks:

xn(t+ k) = {xn(t), xn(t+ 1), ..., xn(t+K − 1)} for t = 0, 1, ... and n = 1, 2 (5.4)

where t is the absolute time index, k is the running block index and K is the total size of
the signal block. The frequency spectrum Xn(ω) of the signal block xn(t + k) is computed by
invoking the Fourier transform.

Xn(ω) =

K−1∑
k=0

xn(t+ k) e−jωk = FT
{
xn(t+ k)

}
(5.5)

The cross-correlation is then obtained by multiplying the frequency-domain signals and taking
the inverse Fourier transform:

r̂12(p) =
1

K

K−1∑
k=0

X1(ω) X∗2 (ω) ejωk = FT−1
{
X1(ω) X∗2 (ω)

}
(5.6)

Finally the time delay estimate between the two sensor signals can be found as before in searching
the maximum of the cross-correlation function:

τ̂12 = max
p

r12(p) (5.7)

5.4 Generalized Cross-Correlation

The generalized cross-correlation (GCC) is a modification to the framework presented in section
5.3 by applying frequency-dependent weights, which potentially improves the TDE performance.
The GCC method is popular and was presented in [20]. For the sake of completeness the steps
from section 5.2 are repeated and the modifications are mentioned.

xn(t+ k) = {xn(t), xn(t+ 1), ..., xn(t+K − 1)} for t = 0, 1, ... and n = 1, 2 (5.8)

Xn(ω) =

K−1∑
k=0

xn(t+ k) e−jωk = FT
{
xn(t+ k)

}
(5.9)

The desired weighting function Ψ(ω) will be multiplied with the cross-spectrum.

r̂GCC12 =
1

K

K−1∑
k=0

Ψ(ω) X1(ω) X∗2 (ω) ejωk = FT−1
{

Ψ(ω) X1(ω) X∗2 (ω)
}

(5.10)
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As before the time-lag will be found in maximizing the cross-correlation function.

τ̂GCC12 = max
p

rGCC12 (p) (5.11)

5.5 GCC-PHAT

Once room reverberation rises up to a certain level the cross-correlation TDE starts to de-
grade significantly in their performance. Therefore several robust weighting methods have been
proposed in [19, 21] such as the Phase transform (PHAT), the Smoothed coherence transform
(SCOT), the ’Eckart’ weighting function and the Maximum likelihood (ML) weighting method.
Each of them features individual properties e.g. improving the TDE performance against addi-
tive noise (uncorrelated) or multipath effects (highly correlated signals).

Ψ12(ω) =
1

|X1(ω) X∗2 (ω)|
(5.12)

The PHAT weighting equalizes the emphasis of each cross-spectrum component, by normalizing
the signal spectral density with the spectrum magnitude. In case of the GCC-PHAT this causes
a spectral whitening on the input signals, which leads to a sharpening effect on the peak in the
cross correlation function. Subsequently the maximum detection and thus finding the correct
time-lag will be easier.

5.6 Steered Response Power

The steered response power (SRP) is described as the output power of a beamformer. For
simplicity the steered response power P (r) will be introduced in time-domain using the simple
delay-and-sum beamformer.

P (r) =
∣∣∣ M∑
m=1

xm(n− τm(r))
∣∣∣2 (5.13)

where n is the time index, m is the microphone index, xm are the according input signals, τm
is the associated TDOA and r is the defined location, where the SRP value P (r) is going to be
determined.

5.7 SRP-PHAT

The SRP-PHAT algorithm combines the steered response power concept and the PHAT weight-
ing and is therefore applied in frequency-domain. Previously only the two-channel case has been
discussed, whereas in the multichannel case the PHAT weighting is computed in the following
way.

Ψkl(ω) =
1

|Xk(ω) X∗l (ω)|
(5.14)

To compute the steered response power, a particular set of TDOAs associated with the micro-
phone indices k and l is needed.

τkl = ∆k −∆l (5.15)
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where τkl is the TDOA between the microphones k and l and ∆k respectively ∆l are the absolute
TOAs. As an example the discrete time TOA for the k-th sensor is computed from the euclidean
norm as

∆k =
fs

c

∣∣∣∣∣∣r − rk∣∣∣∣∣∣ (5.16)

where r is the candidate position of the source, rk is the position of the k-th sensor, fs is the
sampling rate and c is the speed of sound. ∆k is computed by analogy.

P (τkl) =
M∑
k=1

M∑
l=1

∫ +∞

−∞
Ψkl(ω) Xk(ω) X∗l (ω) ejω(τkl) dω (5.17)

The desired source position r̂s can be estimated by evaluating the SRP-PHAT values P for the
considered TDOAs τkl and finding the maximum.

r̂s = max
τkl

P (τkl) (5.18)

The algorithm is illustrated as a block diagram in figure 5.1. From the blocks it can be seen that
the number of computations depend on the size of the search space and the number of candidate
points we want to evaluate.
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location

Loop until all candidate 
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SRP-
PHAT

Position

GCC-
PHAT

Figure 5.1: SRP-PHAT algorithm

To find the maximum SRP-PHAT within the defined search space efficiently, further processing
is needed, which will be discussed in the following sections.

5.8 Maximum Optimization Techniques

Once the SRP-PHAT values for all considered positions have been calculated the maximum
needs to be found as equation 5.7 suggests. As already mentioned the source location can also
be estimated in a reverberated environment. However the search space consists of many local
maxima which subsequently possibly require optimization techniques to accelerate the search
process. Three methods are presented to generate appropriate candidate positions for the SRP-
PHAT computation.

January 19, 2020 – 33 –



5 Sound Source Localization

5.8.1 Full-Grid Search

As the name implies, within the full-grid search the candidate points are positioned in an
equidistant manner. Of course the distance in between candidate points should match the
dimension of the search space at some degree, e.g. 1cm segments inside a 1m3 search cube.
Clearly the full-grid search is computationally intensive which leads to another method that is
presented hereinafter.

5.8.2 Coarse-to-Fine Region Contraction

A very intuitive and effective optimization to the full-grid search and is called Coarse-to-Fine
Region Contraction (CFRC), which was presented in [22]. The idea is to initially divide the
search volume V0 in search regions with coarser segments compared to the full-grid search.
After evaluating the generated candidate positions J0, a subset of the best candidates N0 (with
the highest SRP-PHAT values) is picked, which spans a new, smaller search sub-volume Vi+1

inside the initial search volume. Hence the name contraction. This is repeated until an exit
criterion is met, e.g. if the number of evaluations φ is exceeded or if the new sub-volume is
smaller than the initially specified minimum volume Vmin. The algorithm overview is illustrated
in table 5.1.

1. Initialize i = 0, φ, Vmin, V0, J0, N0

2. Compute SRP-PHAT P (τkl) for all Ji
3. Find best points Ni in all Ji
4. Generate new sub-volume Vi+1 that encloses all Ni

5. Loop 2. to 4. until i = φ or Vi+1 < Vmin
6. Return best candidate in Ni with highest SRP-PHAT

Table 5.1: CFRC algorithm pseudo code

As this algorithm is not self-adapting, all parameters have to be tested and adjusted as required
to the considered problem.

5.8.3 Performance

As experiments in [22] have shown, both CFRC and Stochastic Region Contraction (SRC) (which
uses randomized candidate positions) potentially decrease the computational complexity of find-
ing the maximum in SRP-PHAT to only a few percent compared to a full-grid search by keeping
the accuracy. This is especially useful for real-time applications.

CFRC is less costly in noisy cases, whereas SRC performs faster in cases with higher SNR. The
explanation is that higher noise also causes more local maxima. The deterministic approach
from CFRC is then potentially more accurate.

The stochastic method from SRC is said to have higher probability to hit the true location
when fewer local maxima are inside the search volume, which is the case for high SNR samples.
The algorithm in general is designed for localization of single sound sources. In this thesis this
concept has been extended to a multi-target case, by simply splitting the whole environment
into separate search volumes for each target source.
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6
Experiments on Simulated Data

6.1 Investigated Array

After the preceding discussions concerning sensor arrays and propagation models in chapter 2,
a defined array geometry has been considered throughout this thesis. The device is depicted in
figure 6.1.

φm

r
lm

Figure 6.1: Device under test

The tested array consists of 16 equidistantly distributed microphones, which means the azimuth
spacing is ϕm = 360◦

16 = 22.5◦. The radius of the mounting ring is r = 0.275 m and the eu-
clidean minimum distance between two adjacent microphones is lm = 0.1073 m. So far the
single array (16 channels) has been investigated theoretically in chapter 3, e.g. in beampatterns
or balloon plots. The dual array configuration (32 channels) has been used in simulation ex-
periments (in chapter 6, e.g. simulated beampatterns, simulated speech evaluation) and also
for the real recordings (see chapter 7) where both exemplars are mounted on the ceiling at a
horizontal (estimated) distance of 2 meters (measured from the array centers). As the array has
been designed before this thesis’ kickoff, there is still need for verification concerning the wave
propagation model. The rule-of-thumb mentioned in section 2.7 can also be interpreted as a
transition area between the spherical wave propagation model and the plane wave propagation
model.

rspherical <
2L2

λ
< rplane (6.1)

Both variants single array (16 microphones) and dual array (32 microphones) will be considered
to determine the appropriate wave propagation models according to the rule-of-thumb estimate.
The maximum sensor distance for single array usage is Lsingle = 0.55 m. On the other hand
the maximum sensor distance for dual array usage is Ldual = 2.55 m (Ldual will be estimated
initially in section 7.2, but is here already used for comparative reasons). In table 6.1 the formula
2L2

λ = 2L2·f
c will be evaluated for both array configurations single/dual at particular frequencies.
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rsingle =
2 · L2

single · f
c

where Lsingle = 0.55m (6.2)

rdual =
2 · L2

dual · f
c

where Ldual = 2.55m (6.3)

Frequency rsingle rdual

125 Hz 0.22 m 4.74 m

250 Hz 0.44 m 9.48 m

500 Hz 0.88 m 14.22 m

1000 Hz 1.76 m 18.96 m

2000 Hz 3.52 m 23.70 m

4000 Hz 7.10 m 28.44 m

Table 6.1: Transition boundaries between spherical and plane wave propagation

The values for rsingle and rdual in table 6.1 illustrate the suggested transition boundaries between
the spherical and the plane wave propagation model for both array configurations at several,
interesting frequencies. Below any specific rsingle or rdual from table 6.1 spherical waves shall be
considered, above any specific rsingle or rdual plane wave assumption is valid according to the
rule-of-thumb.

The transition boundaries for the single array are located mostly at rather small distances,
which means the single array should be most likely receiving plane waves. For the dual array
configuration the opposite can be assumed, so that the transition boundaries are at sufficient
distance and the array most likely receives spherical waves.

It should also become clear, that the considered propagation model is of course determined by
the application and its frequency range (e.g. speech). However from table 6.1 it can be also
seen that no clear decision criterion can be concluded, whether if the single array data shall be
computed considering the spherical wave or the plane wave model, because most of the distances
are relevant for the real experiments. With the dual array configuration for the lower frequencies
both propagation models could be taken into consideration, for the higher frequencies spherical
waves can be assumed.

In listening tests with single array configuration (16 channels) and the real recordings it has
been found, that the computed outputs, using both propagation models, subjectively do not
differ. In single array simulations (beampatterns, simulated speech experiments) the differences
between both propagation models achieved just marginal differences.
In the dual array case (32 channels) the spherical wave assumption has been found to be the
superior method (described more in detail in section 2.7.3).
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6.2 Room Simulation

To determine the characteristics of the aforementioned signal enhancement strategies, several
experiments have been conducted. Therefore the Roomsimove Toolbox (embedded within the
Multichannel BSS Locate Toolbox ) [23, 24] has been used to generate simulated microphone
signals in a shoebox-like room environment. The toolbox is supplied with the room geometry,
each wall’s absorption coefficients, the positions of the microphones and the position(s) of the
sound source(s). The sources are assigned to the desired input signals (e.g. WAV files). From
the geometry data the multipath impulse responses are computed and used as filters for the
input signals.
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Figure 6.2: Room simulation

The simulated room geometry (illustrated in figure 6.2) has been adapted to match the rever-
beration time (RT60) from the real recordings that are discussed in the upcoming chapter 7.
The RT60 is the time constant where 60 dB of the supplied energy has been decayed. Usually
short impulses such as claps, pistol shots, sine sweeps or pseudo-random noise signals are used
to measure the reverberation time because of their dense signal energy. For this application the
four calibration claps (from the real recordings mentioned before) have been determined to have
a RT60 between 200 and 250 milliseconds. Therefore the simulated room volume V has been
specified as 8m x 6m x 3.2m (length x width x height) and the absorption coefficients for all
surfaces S have been set to α = 0.65. Using the Sabine formula this results in a reverberation
time of 200 milliseconds.

RT60 =
24 · ln(10)

c

V

S · α
(6.4)

The toolbox finally generates the simulated audio tracks for the specified microphone array ge-
ometry. For the current chapter two circular arrays with 16 omnidirectional microphones each
and radius r = 0.275m have been simulated. The distance between both array centers will be
estimated in chapter 7, but is already used for the simulations in this chapter and specified as
d = 2.0m.

The upcoming experiments can be separated into two parts:
◦ In section 6.3 the dual array is simulated to be exposed to a circulating noise sound source
and the directional sensitivity (beampattern) of the investigated algorithms is analyzed.
◦ In section 6.4 the dual array is steered towards a varying number of simulated speech sources
and the perceived quality will be observed.
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The implementation details for the investigated algorithms can be found in section 7.5. Except
for experiments 6.3.3 and 6.4.6 the separation parameter β is fixed to 3.0, as it has shown to
produce a suitable enhancement of separation, while keeping the quality degradation of the
target signal moderate. Changes to that parameter consequently result in a tradeoff between
interference reduction and quality loss.

6.3 Beampatterns - Moving Noise Source in a Simulated Room

For this experiment one sound source (S1) has been specified to emit a zero-mean, Gaussian-
distributed signal with variance σ2 = 0.05. The noise source (S1) starts at an elevation angle
of -45° (measured from the dual array’s center horizontal plane) and at a constant euclidean
distance of 2.775 meters to circulate. The source moves virtually at a speed of 1° of azimuth
angle per second, rotating in a circular shape around both arrays resulting in a 360 second long
audio signal. The arrays are steered towards 180° azimuth and -45° elevation.

The 32 microphone signal tracks are then processed by a particular signal beamforming method
(and optional post-filter) and the normalized output will be plotted in two variants:
◦ Via Short Time Fourier Transform the signal is transformed frame-by-frame into frequency
domain to display the spectral content over time (resp. azimuth) in a spectrogram.
◦ When the noise source is located exactly in steering direction, the respective STFT snapshots
are time-averaged and plotted in logarithmic power scale [25].

The beampattern experiments within this chapter are divided into three parts:

◦ Section (6.3.1) Beamformers only, Steering direction 180◦.
◦ Section (6.3.2) Beamformers only, Steering direction 270◦.
◦ Section (6.3.3) Beamformers + TFM and variable β, Steering direction 180◦.

In the experiments in sections 6.3.1 and 6.3.2 the beampatterns for plain beamforming tech-
niques (that have been discussed in chapter 3) will be computed. This will allow us to make
statements about the directional characteristics of each method.

In section 6.3.3 the simple delay-and-sum beamformer will be revisited and extended by the
ideal ratio mask presented in 4.3 and its application in 4.4. The steering direction will be used
as the target signal and a fixed number of interfering directions will be specified as noise signals.
This means that the array is steered towards each specified direction sequentially and all of those
resulting beamformed tracks will be combined within the time-frequency masking algorithm to
produce a single output. After beamforming the ideal ratio mask serves to remove noisy content
from the target signal. The impact of using several interfering signals and a variable separation
parameter β will be shown in this experiment. This allows us to control the intensity of separa-
tion from the target signal versus the interferer signals.
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6.3.1 Beampattern, Steering Direction at 180◦
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Figure 6.3: Room simulation using a rotating noise source, Steering direction at 180◦

In the first experiment we investigate the presented beamformer characteristics, when the array
is steered to the front-end at 180◦ (in analogy to endfire operation for ULAs). The green triangle
(S1) in figure 6.3 marks the steering direction and the black circle shows the movement route of
the noise source around the dual array.

Parameters:

- Steering direction: ϕ = 180◦, θ = −45◦

- Source position: ϕ = [0◦ ... 360◦], θ = −45◦

(a) Beampattern (b) PSD esimate at 180◦

Figure 6.4: Closest microphone signal, Steering direction at 180◦
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(a) Beampattern (b) PSD esimate at 180◦

Figure 6.5: D&S-BF output, Steering direction at 180◦

(a) Beampattern (b) PSD esimate at 180◦

Figure 6.6: SD-BF output, Steering direction at 180◦

(a) Beampattern (b) PSD esimate at 180◦

Figure 6.7: GSC output, Steering direction at 180◦
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(a) Beampattern (b) PSD esimate at 180◦

Figure 6.8: MPDR-DL output, Steering direction at 180◦

(a) Beampattern (b) PSD esimate at 180◦

Figure 6.9: MPDR-VL output, Steering direction at 180◦

(a) Beampattern (b) PSD esimate at 180◦

Figure 6.10: MVDR-DL output, Steering direction at 180◦
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(a) Beampattern (b) PSD esimate at 180◦

Figure 6.11: MVDR-VL output, Steering direction at 180◦

◦ The SD-BF is very capable of suppressing low-frequent side lobes, but has worse performance
in suppressing higher-frequent side lobes (compared to e.g. D&S-BF).

◦ At lower frequencies the GSC performs similar to the D&S-BF, but maintains a better side
lobe suppression up to higher frequencies. Interestingly the GSC has a slight high frequency
roll-off at steering direction, which is contradictory in comparison to listening tests of processed
speech signals.

◦ The MPDR beamformers have an extremely narrow main lobe, which is very difficult to use in
real applications. However in practice the MPDR signal output is afflicted with heavy distortion
and therefore does not produce a very meaningful output. Hence both MPDR variants will be
skipped in further experiments.

◦ The MVDR beamformers in general succeed much more in suppressing side lobes compared to
all the other techniques. The signal in steering direction also shows distinct resonances, where
the D&S-BF, SD-BF and the GSC signals are rather flat in comparison. The MVDR-VL pro-
duces a more pronounced main lobe compared to the MVDR-DL method.

◦ The beampatterns illustrate significant differences between the presented beamforming tech-
niques in terms of main lobe width and side lobe suppression. These insights may already affect
the choice for a specific beamforming method, but as we will see in other experiments at a later
point, there are other qualities that will have to be considered.
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6.3.2 Beampattern, Steering Direction at 270◦
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Figure 6.12: Room simulation using a rotating noise source, Steering direction at 270◦

In the second experiment the beamformer characteristics are investigated, when the array is
steered to the broad-end at 270◦ (in analogy to broadside operation for ULAs). Again the green
triangle (S1) in figure 6.3 marks the steering direction and the black circle shows the movement
route of the noise source around the dual array.

Parameters:

- Steering direction: ϕ = 270◦, θ = −45◦

- Source position: ϕ = [0◦ ... 360◦], θ = −45◦

(a) Beampattern (b) PSD esimate at 270◦

Figure 6.13: Closest microphone signal, Steering direction at 270◦
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(a) Beampattern (b) PSD esimate at 270◦

Figure 6.14: D&S-BF output, Steering direction at 270◦

(a) Beampattern (b) PSD esimate at 270◦

Figure 6.15: SD-BF output, Steering direction at 270◦

(a) Beampattern (b) PSD esimate at 270◦

Figure 6.16: GSC output, Steering direction at 270◦
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(a) Beampattern (b) PSD esimate at 270◦

Figure 6.17: MVDR-DL output, Steering direction at 270◦

(a) Beampattern (b) PSD esimate at 270◦

Figure 6.18: MVDR-VL output, Steering direction at 270◦

◦ The SD-BF has similar qualities as in the former experiment (low frequency suppression) but
here also has smaller side lobe levels in higher frequency regions than the D&S-BF.

◦ The GSC again performs similar to the D&S-BF at low frequencies, has a better side lobe
suppression at higher frequencies and again a subtle high frequency roll-off in steering direction.

◦ The MVDR beamformers again have a much higher side lobe suppression. The 1st side lobe
is still recognizable, but the 2nd side lobe is almost gone. MVDR-VL and MVDR-VL produce
a rather similar output here.

◦ In general the main lobe in this experiment is more narrow compared to the first experiment,
but also the 1st and the 2nd side lobe may be considered as contributing to the target direction.
The signals in the steering direction show more resonances than in the first experiment.
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6.3.3 Beampatterns - D&S-BF + TFM, Varying Separation Parameter β
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Figure 6.19: Room simulation using a rotating noise source, Steering direction at 180◦

To make the impact of the separation parameter visible, in the third experiment a delay-and-
sum beamformer has been used in combination with time-frequency masking (ideal ratio mask)
with eight, equiangular target directions (one desired target + seven interfering targets) and
a varying separation parameter β. In figure 6.19 the interfering directions are marked as pink
crosses, the desired target is shown as black cross (S1). In section 6.4.6 a similar setup with
speech signals will be considered in terms of subjective quality evaluation.

Parameters:

- Steering direction: ϕ = 180◦, θ = −45◦

- Source position: ϕ = [0◦ ... 360◦], θ = −45◦

- Interfering direction #1: ϕ = 0◦, θ = −45◦

- Interfering direction #2: ϕ = 45◦, θ = −45◦

- Interfering direction #3: ϕ = 90◦, θ = −45◦

- Interfering direction #4: ϕ = 135◦, θ = −45◦

- Interfering direction #5: ϕ = 225◦, θ = −45◦

- Interfering direction #6: ϕ = 270◦, θ = −45◦

- Interfering direction #7: ϕ = 315◦, θ = −45◦

- Used TF-Mask: Ideal Ratio Mask

- Varying separation parameter β = { 4.0, 2.0, 3.0, 1.0, 0.5 }
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(a) Beampattern (b) PSD esimate at 180◦

Figure 6.20: D&S-BF + TFM, β = 4.0, Steering direction at 180◦

(a) Beampattern (b) PSD esimate at 180◦

Figure 6.21: D&S-BF + TFM, β = 3.0, Steering direction at 180◦

(a) Beampattern (b) PSD esimate at 180◦

Figure 6.22: D&S-BF + TFM, β = 2.0, Steering direction at 180◦
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(a) Beampattern (b) PSD esimate at 180◦

Figure 6.23: D&S-BF + TFM, β = 1.0, Steering direction at 180◦

(a) Beampattern (b) PSD esimate at 180◦

Figure 6.24: D&S-BF + TFM, β = 0.5, Steering direction at 180◦

◦ For the 8-target case the notches can be seen in the beampattern at 0°, 45°, 90°, 135°, 225°, 270°

and 315°. By choosing smaller β, the notches are getting deeper. The side lobe level in general
is also drastically reduced by decreasing β, which subsequently leads to an SNR improvement.

◦We can conclude that by increasing the amount of interfering targets, the main lobe in steering
direction becomes more and more prominent compared to the side lobes, which also leads to
SNR improvement. This approach could be relevant to shape the beam in applications, where
only the desired target location is given. By specifying several arbitrary interfering directions
(e.g. at equidistant angles as in the experiment) all of the directions other than the desired
direction are forced to be suppressed.

◦ The signal in steering direction starts to dissolve for low separation parameters, which results
in degradation of the desired signal. One has to keep in mind that despite the enormous potential
of time-frequency masking, the desired signal also suffers from coloration and introduction of
artifacts for lower separation parameters, which will be also shown in subjective experiments in
section 6.4.6.
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6.4 Signal Enhancement - Static Speech Sources in a Simulated
Room

The second part of the simulation experiments focuses on the subjective quality features pro-
duced by the signal enhancement algorithms that have been discussed so far. As described in
section 6.3 the same room simulation environment has been used, but the used source(s) have
been changed. For the following experiments no random-generated signals have been used, but
instead speech recordings, that are provided free of charge by the Centre for Speech Technology
Research (University of Edinburgh). The speaker recordings consist of native english speech
with various accents and is named CSTR VCTK Corpus [26].

Further the sound sources are not moving (as in the former beampattern experiments) but at
fixed positions instead. The number of present talkers starts with one talker and will be raised
up to three talkers. The speakers S1 to S3 are alternating gender: male, female, male. The
composition of the simultaneous talkers is not intended to represent real conversations with
normal speech pauses. Instead each speaker is talking constantly. Random utterances for each
speaker are appended to form 40 seconds of contextless sentences. The signal amplitudes of all
speakers are normalized to have the same RMS value over the whole time period.

Similarly to section 6.3.3 the impact of the separation parameter will be investigated more in
detail for the 3-speaker case in section 6.4.6.

Time-alignment of the compared signals is crucial to the evaluation outcome, therefore all signals
are time-aligned based on cross-correlation in advance.

6.4.1 Evaluation Framework

Figure 6.25 illustrates the block diagram of the evaluation algorithm. According to the geomet-
rical information of each speaker and the microphone positions the MIMO impulse responses are
computed to simulate room-like reverberation. The clean speech signals sj(n) (where j is the
speaker index) are then filtered with the room impulses to generate the simulated microphone
tracks xm(n) (where m is the microphone index). The microphone that is nearest to the desired
target is labelled as Closest microphone signal and the associated audio track will be considered
as the reference input signal.

xm(n)

Enhancement 
Algorithm

y(n)MIMO
Room

Impulse
Response

Matrix

Virtual acoustic 
domain

sj(n)

(Closest mic signal)

Reverberated, 
noisy signal

Enhanced 
signal

Target source signal and 
interfering source signals

Figure 6.25: Evaluation Block Diagram

All microphone signals xm(n) will be processed by the enhancement algorithm under investiga-
tion to produce the enhanced output signal y(n), considered as reference output signal.
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6.4.2 Perceptual Evaluation Methods for Audio Source Separation

In this section the metrics of the Perceptual Evaluation Methods for Audio Source Separation
(PEASS) project [27, 28] will be presented very briefly. Many other popular evaluation algo-
rithms have been considered for this thesis at first, but in the end the PEASS method was the
only one to remain due to reasons of clarity, comprehensibility and because of its compact way
to represent the most important aspects of the processed speech signal.

In contrast to all other assessment methods the PEASS toolkit does not only expect the clean
source signal and the enhanced signal but further also the interfering signals are needed as in-
puts, which allows to give more elaborate prediction about the perceived quality. The required
inputs can be recognized in the tapped signal paths in figure 6.25.

The PEASS algorithm is separated into three stages:

◦ In the first step the estimation error is decomposed and expressed as energy ratios: Source to
distortion ratio (SDR), Source image to spatial distortion ratio (ISR), Source to interference
ratio (SIR) and Source to artifacts ratio (SAR).

◦ In the second stage an auditory model (PEMO-Q [29]) will be applied on the decomposed
signals to compute the PEMO-Q quality features: qoverall, qtarget, qinterf , and qartif .

◦ In the final step the PEMO-Q features are mapped non-linearly by a feedfoward neural net-
work, which is trained on subjective opinion scores to finally produce the PEASS metrics: overall
perceptual score (OPS), target-related perceptual score (TPS), interference-related perceptual
score (IPS) and artifacts-related perceptual score (APS).

In this thesis only the last four scores will be considered. High TPS values indicate how well the
desired signal has been preserved, whereas high IPS values imply good suppression of interfering
signals and high APS values denote a small amount of artifacts getting introduced. The OPS
value illustrates the total signal quality, but is actually not the mean value of the preceding
scores. For all of the 4 values it is valid to say: the higher the number, the better the quality.
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6.4.3 Speech Simulation for 1 Speaker, Steering direction at 180◦
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Figure 6.26: Room simulation using 1 Speaker, Steering direction at 180◦

Parameters:

- Steering direction: ϕ = 180◦, θ = −45◦

- Source position (S1): ϕ = 180◦, θ = −45◦

O
P
S

T
P
S

I
P
S

A
P
S

D&S-BF 68.82 96.22 71.30 73.56

GSC 74.64 94.66 68.89 65.25

SD-BF 79.67 95.06 78.99 76.10

MVDR-DL 66.41 90.88 61.26 60.33

MVDR-VL 59.59 84.46 60.68 53.58

Table 6.2: PEASS metrics for 1 Speaker,
Steering direction at 180◦ 0 10 20 30 40 50 60 70 80 90 100

OPS

MVDR-VL

MVDR-DL

SD-BF

GSC

D&S-BF

Figure 6.27: Overall perceptual score for 1 Speaker,
Steering direction at 180◦

The most significant feature of the close microphone signal is the room reverberation of the
speech signal, which will be processed by the beamformers at different qualities. The D&S-BF
sounds a bit dull, whereas the GSC adds more brightness, but both sounding the most neutral
and having similar performance at reverberation suppression. The SD-BF is the only method
to suppress the room reverberation at lower frequencies, but already produces a totally different
tone color compared to the clean speech signal. Both MVDR beamformers have worse perfor-
mance in reverberation suppression and very extreme tonal, slightly distorted characteristics.
Beyond that the MVDR-DL sounds very boomy and the MVDR-VL sounds piercingly bright.
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6.4.4 Speech Simulation for 1 Speaker, Steering direction at 270◦
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Figure 6.28: Room simulation using 1 Speaker, Steering direction at 270◦

Parameters:

- Steering direction: ϕ = 270◦, θ = −45◦

- Source position (S1): ϕ = 270◦, θ = −45◦

O
P
S

T
P
S

I
P
S

A
P
S

D&S-BF 58.31 97.87 64.19 67.77

GSC 67.98 94.21 62.61 62.32

SD-BF 62.79 97.87 69.77 70.95

MVDR-DL 65.19 93.68 59.99 60.46

MVDR-VL 64.16 90.88 59.78 58.49

Table 6.3: PEASS metrics for 1 Speaker,
Steering direction at 270◦
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OPS

MVDR-VL

MVDR-DL

SD-BF

GSC

D&S-BF

Figure 6.29: Overall perceptual score for 1 Speaker,
Steering direction at 270◦

It is noticeable that all beamformers produce a much more balanced sound in the 180◦-task,
whereas in the 270◦-task they all sound much thinner. For this case the D&S-BF and the SD-BF
sound very similar and the GSC is the only method to suppress low-frequent interference. Both
MVDR beamformers sound similar to the former task which is interestingly also captured by
the PEASS measurements.
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6.4.5 Speech Simulation for 3 Speakers, Steering direction at 180◦
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Figure 6.30: Room simulation using 3 Speakers, Steering direction at 180◦

Parameters:

- Steering direction: ϕ = 180◦, θ = −45◦

- Interfering direction #1: ϕ = 60◦, θ = −45◦

- Interfering direction #2: ϕ = 300◦, θ = −45◦

- Source position (S1): ϕ = 180◦, θ = −45◦

- Source position (S2): ϕ = 60◦, θ = −45◦

- Source position (S3): ϕ = 300◦, θ = −45◦

- Used TF-Mask: Ideal Ratio Mask, Separation parameter β = 3.0

O
P
S

T
P
S

I
P
S

A
P
S

D&S-BF 24.36 55.74 28.90 68.75

D&S-BF + TFM 35.12 58.38 46.02 62.67

GSC 32.74 59.24 39.12 62.56

GSC + TFM 41.74 62.56 54.36 57.53

SD-BF 26.99 59.69 39.57 70.19

SD-BF + TFM 39.69 63.48 54.82 63.83

MVDR-DL 46.54 66.61 66.40 51.19

MVDR-DL + TFM 41.95 53.29 71.60 45.92

MVDR-VL 40.44 61.54 63.22 49.21

MVDR-VL + TFM 41.21 60.27 70.93 44.24

Table 6.4: PEASS metrics for 3 Speakers, Steering
direction at 180◦
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OPS

MVDR-VL + TFM

MVDR-VL

MVDR-DL + TFM

MVDR-DL

SD-BF + TFM

SD-BF

GSC + TFM

GSC

D&S-BF + TFM

D&S-BF

Figure 6.31: Overall perceptual score for 3 Speak-
ers, Steering direction at 180◦

By listening at the close mic recording it is hard to tell which of the talkers actually is the target
speaker, because of the heavy crosstalk. This 3 speaker task is already technically very chal-
lenging, but still each improvement step presented here enhances the target speaker substantially.

The GSC in this case shows again a very similar quality as the D&S-BF, but keeps a better intelli-
gibility in the target direction due to more pronounced higher frequencies and is therefore more
advantageous to time-frequency masking. Again the SD-BF shows its quality at suppressing
low-frequent interference. All of the afore-mentioned beamformers profit from time-frequency
masking. The MVDR beamformers produce quite an amount of artifacts and are therefore not
very suitable for time-frequency masking.
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6.4.6 Speech Simulation for 3 Speakers and variable β, Steering direction at 180◦
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Figure 6.32: Room simulation for 3 Speakers and variable β, Steering direction at 180◦

Parameters:

- Steering direction: ϕ = 180◦, θ = −45◦
- Interfering direction #1: ϕ = 0◦, θ = −45◦
- Interfering direction #2: ϕ = 45◦, θ = −45◦
- Interfering direction #3: ϕ = 90◦, θ = −45◦
- Interfering direction #4: ϕ = 135◦, θ = −45◦
- Interfering direction #5: ϕ = 225◦, θ = −45◦
- Interfering direction #6: ϕ = 270◦, θ = −45◦
- Interfering direction #7: ϕ = 315◦, θ = −45◦
- Source position (S1): ϕ = 180◦, θ = −45◦
- Source position (S2): ϕ = 60◦, θ = −45◦
- Source position (S3): ϕ = 300◦, θ = −45◦
- Used TF-Mask: Ideal Ratio Mask

- Varying separation parameter β = { 4.0, 3.0, 2.0, 1.0, 0.5 }

O
P
S

T
P
S

I
P
S

A
P
S

D&S-BF 24.36 55.74 28.90 68.75

D&S-BF + TFM, β = 4.0 36.77 60.45 46.56 60.65

D&S-BF + TFM, β = 3.0 38.63 61.37 49.68 59.52

D&S-BF + TFM, β = 2.0 41.85 62.07 55.89 57.14

D&S-BF + TFM, β = 1.0 44.08 62.06 62.29 53.47

D&S-BF + TFM, β = 0.5 41.84 58.68 66.63 48.44

Table 6.5: PEASS metrics for 3 Speakers and vari-
able β, Steering direction at 180◦
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D&S-BF + TFM,  = 0.5

D&S-BF + TFM,  = 1.0

D&S-BF + TFM,  = 2.0

D&S-BF + TFM,  = 3.0

D&S-BF + TFM,  = 4.0

D&S-BF

Figure 6.33: Overall perceptual score for 3 Speakers
and variable β, Steering direction at
180◦

By decreasing the separation parameter the target signal starts to stick out of the mixture more
and more. Beginning from β = 4.0 up to β = 1.0 the separation and also the intelligibility
improves drastically. Around β = 2.0 the target signal is starting to get narrow-band. At
β = 1.0 and below the separation still increases, but the degradation of the target signal quality
is also significantly perceivable.
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The evaluation experiments from the last sections have shown that all measurements deteriorate
significantly if the number of interfering speakers is increased, which of course was expected but
is now captured in terms of numbers.

Characteristics that really stick out when listening at all the samples computed by the presented
algorithms are: the quality and intelligibility of the target source and the perturbation by in-
terfering signals and/or artifacts.

Concerning the subjective sound quality MVDR beamformers have shown to produce very col-
ored output, e.g. the MVDR-DL sounds damped and inarticulate, whereas the MVDR-VL
sounds exorbitant bright and thus more intelligible. D&S beamformers have a more neutral
character and both SD-BF and GSC lie somewhere in between neutral and bright. Generally
the sound quality of D&S-BF, GSC and SD-BF are comparable to each other, where as the
MVDR beamformers play in their own class due to their extremely colored tone.

Interference suppression is superiorly executed by MVDR beamformers. The side effect is, that
the remaining interfering components are distorted and afflicted with artifacts. The other beam-
formers are not capable of performing such impressive interference suppression, but at the other
hand maintaining only a small amount of interference distortion. If time-frequency-masking is
considered, small separation parameter values also cause the artifact perturbation to increase.

After all this insights the algorithms have been considered for the usage with real-world data
instead of simulations, which will be discussed in chapter 7. The conditions for that case will be
slightly different compared to the simulated case, but nevertheless the past experiments deliver
a good basis to score the given speech enhancement algorithms.
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7
Experiments on Real-World Data

7.1 Description of the Scenario at Concordia Station

One of the biggest challenges in this thesis was to investigate the surrounding environment of
the given speaker scenario to perform the best possible speech separation. Prior knowledge was
limited to the array geometry of one array (two identical exemplars were used), a rough sketch
of the situation without any distance measurements and recordings of claps to post-calibrate
the microphones (including rough clap positions on the sketch). Accurate knowledge of the
microphone positions is crucial for the signal improvement. From that point the best fitting
algorithms to localize and separate the talkers had to be found, to process approximately 30
hours of audio recordings. Further it also had to be considered, that in the future the separated
speech tracks will be manually transcribed instead of running them directly into an automatic-
speech-recognition engine.

The plots in figure 7.1 illustrate the directions of the claps, which were identified by the SRP-
PHAT algorithm after calibrating the arrays. These are not the true positions but instead just
the estimates for the direction of arrival in cartesian coordinates, which is sufficient.
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Figure 7.1: Estimated clap directions

To illustrate the situation, the pictures in figure 7.1 already show the microphone position con-
figuration that was used in the end, but still it has not been discussed in detail how they were
obtained: The array geometry of each specific array is known, but neither the absolute mounting
positions nor relative distances between both arrays or other positions were known.
Beyond that the microphone signals were provided as 32 tracks sampled at 48kHz. It was not
clear at first how these 32 tracks belonged to the microphone positions, if they were enumer-
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7.1 Description of the Scenario at Concordia Station

ated after their geometrical positions at all, clockwise or counter-clockwise, which of the tracks
belonged to the blue array (left), which of them belonged to the red array (right), etc.

So the first idea was to look at the TDOAs of the calibration claps to see how the signals fit
to the microphone positions. Of course it was assumed, that the clap positions were sketched
correctly and the timings of the microphone signals are synchronized.

The plots in figure 7.2 show the microphone signals of clap #1. By looking at the TDOA the
orientation of the microphone signals can be roughly assumed and also the signal amplitudes give
information about the distance from the microphone array to the clap position. The enumeration
of the microphone tracks can be clearly assigned to both arrays: Tracks 1-16 belong to the red
array, whereas tracks 17-32 belong to the blue array. For a better overview the signals in figure
7.2 have been grouped into quartets.
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Figure 7.2: Clap #1 arriving at both arrays

This procedure has been repeated for the remaining 3 recorded claps. After looking at all of
the 4 claps’ TDOAs, the orientation of both arrays showed a much clearer but still incomplete
picture. The following image 7.3 illustrates the state of knowledge at this point.
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Figure 7.3: Array without calibration
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Some of the microphone positions are already indicated in figure 7.3 but at this point it is still
unknown if there is an azimuth offset in the mounting of the arrays and the distance between
both arrays is also unknown.

7.2 Microphone Calibration

Existing strategies for microphone calibration often require the knowledge of accurate calibra-
tion source positions or the sound velocity to minimize distance errors based on triangulation
(such as [30]). As all of that prior knowledge was not given a different approach has been cho-
sen: The distance between the arrays and each azimuth offset was found by doing a brute force
parameter search, which means evaluating the SRP-PHAT scores among meaningful parame-
ters. Height differences or angular elevation differences between both arrays have been neglected.

Further also the room temperature was unknown and thus the actual speed of sound could not
be computed. But still an assumption had to be made, so the room temperature was supposed
to be fixed at 20°C. The brute force method’s pseudo code, to estimate the best parameters for
one clap, consists of nested for-loops (one loop for each parameter) and looks as follows:

for ϕoffset:blue = −45◦ : 1◦ : +45◦ do
{

for ϕoffset:red = −45◦ : 1◦ : +45◦ do
{

for distance = 1.00m : 0.05m : 1.80m do
{

Compute the position at SRP-PHAT maximum

}
end for

}
end for

}
end for

The algorithm above has been performed for all of the 4 clap samples. The search volumes re-
quired for the SRP-PHAT computations have been roughly fitted to the guessed clap positions.
For each clap the position estimates have been ranked by their SRP-PHAT value. The best
compromise parameters among all 4 claps have been chosen as the final calibrated configuration
and have been used for all further computations.

The optimal parameters have been found as: azimuth offset of the blue array ϕoffset:blue = −9◦,
azimuth offset of the red array ϕoffset:red = −6◦, distance between both arrays (inner spacing)
d = 1.45m, which means 2.00m distance between both array centers.

The sketch from before has been updated with the acquired parameters and the expected mi-
crophone locations in figure 7.4. The negative sign of the azimuth offset in the figure has been
dropped, by turning the array into the direction opposite to the default convention. The dotted
lines in figure 7.4 should indicate the slanted rotational alignment of both arrays.
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Figure 7.4: Array with calibration

7.3 Array Steering Improvement

The SRP-PHAT algorithm has not only been used to perform the post-calibration for the micro-
phone array positions. It also turned out that the steering vector robustness and therefore also
the separated signal quality can be drastically improved, if the speakers are tracked permanently
using the SRP-PHAT algorithm. Figure 7.5 illustrates the estimated directions of the target
speakers.
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Figure 7.5: Estimated speaker directions

The pink triangles in figure 7.5 show the estimated, average direction of each target speaker.
Those position estimates have been semi-manually found by observing the SRP-PHAT positions
for a few minutes of audio material. Some of the speakers were not able to be located at first,
because they were not present at the dinner table at the observation time. But the picture
could be completed by looking at the other positions, that already have been found in advance.
The grey constraint boxes around the estimated positions mark the SRP-PHAT search space,
where the candidate points for each target are generated. In other words this means that the
arrays are always steered within the boundaries of the grey boxes, independent if that specific
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speaker’s mouth is actually located within the box or the target speaker is talking at all. The
algorithm has not been extended by a voice detection mechanism and therefore does not make
a difference if a speaker is talking inside a grey box or not. Keep in mind, that the grey boxes
do not represent the actual positions of each speaker, but instead the constraint for the target
directions. It also has been noticed, that the the direction estimates on the lower side of the
table are arranged in a more dispersed way compared to other speakers. A possible explanation
for causing a different localization behaviour could be that the persons are located at a bigger
distance or also interfering signals might be a factor. Nevertheless in listening tests it has been
concluded, that the given SRP-PHAT direction estimates provided a good target signal quality.
Further the algorithm is not trained on specific talkers, which means the algorithm also does
not differentiate if a speaker is possibly located at another seat or somewhere else. Simply put,
each grey box represents one audio-track that is computed for each speaker in the end.

7.4 Separation Algorithm Choice Discussion

In section 2.7.3 it has already been discussed how the spherical wave propagation model will
be combined for the dual array configuration. Based on the ’Combined array’ approach the
steering vectors will be computed for the system illustrated in figure 7.6.
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Figure 7.6: The final system consists of SRP-PHAT, GSC and IRM algorithms
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The knowledge achieved from the evaluation measurements in chapter 6 can be roughly trans-
ferred to the real-world data case with one big exception: The MVDR and the SD-BF do not
perform as good as the simulation results may imply. The sound quality of those beamformers
combined with time-frequency masking is inferior compared to the GSC and even the D&S-BF
(both combined with TFM of course) for the real-world data case.

The MVDR beamformers have shown to successfully reject interfering signals, but besides also
introduce artifacts, which makes them perform worse in combination with time-frequency mask-
ing. The SD-BF shows nice suppression of low frequency interference signals, but besides also
produces inferior output combined with time-frequency masking.

One possible explanation is, as those beamformers depend on signal statistics (MVDR noise
correlation matrix) or position data (SD-BF noise field coherence matrix), they are more vul-
nerable to errors for those parameters. Although the calibration and also the array steering
has been optimized with the SRP-PHAT algorithm, the used parameters possibly do not really
match the true positions.

Another conclusion is, that the time-frequency masking based on beamformed signals with
intense tone coloration or affliction with artifacts produces inferior TFM-outputs, whereas time-
frequency masking based on beamformed signals with neutral tone characteristics and moderate
introduction of artifacts produces superior TFM-outputs.

However the adaptive approach of the GSC clearly outperforms the sound quality given by
the D&S-BF, SD-BF and the MVDR beamformers in the real-world data task at 24kHz and
therefore has been finally chosen to process the full dataset of 30 hours audio material. The
complete system that was used in the end is depicted in figure 7.6.

7.5 Implementation Details

In this section the implementation details of the algorithm are described, that have been finally
used for the separation task at the Concordia research station. The descriptions refer to the
block diagram in figure 7.6. The parameters have been found empirically by means of objective
measures or subjective listening tests.

The 32-channel audio has been provided at 48kHz sampling rate. Due to memory overruns of
the local workstations at the SPSC laboratory, the sampling rate of all audio data has been
decreased. 16kHz was considered at first, which also implicated signal degradation at higher
frequencies. Therefore 24kHz was the preferred sampling rate. The microphone signals are seg-
mented in an overlap-and-add block processing framework with a window size of 4096 samples,
Hann window function and an overlap factor of 50%.

Due to the block processing technique the SRP-PHAT computes position updates for the tar-
gets approximately every 85 milliseconds. The coordinate estimates obtained by the SRP-PHAT
are typically very jumpy during non-speech sequences and stabilize when the target speaker is
talking. As the beamformed signals interact with each other in the time-frequency masking, the
jumpiness of the acoustic tracking had to be reduced. Therefore the coordinate estimates have
been smoothed by a small moving average buffer with only 4 stored, previous positions. This
buffer size reduced the jumpiness of the estimated positions sufficiently during sequences, where
no target-speech is active. Bigger buffers cause the tracking speed to slow down for sequences
where the target is active and therefore also causes the audio quality of the target signal to suffer.
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In figure 7.5 the search cubes for each speaker already have been illustrated. Each of these cubes
has been specified with a side length of 25cm, which ensures that neighbouring cubes do not
overlap.

The coarse-to-fine-region-contraction algorithm then computes 125 equally distributed candi-
date points inside the initial search cube and evaluates the SRP-PHAT for those positions. The
5 best candidates will be kept and enclosed by a new search cube for the next iteration. The
iterative shrinking will be quit, if the new search cube is smaller than 1 ∗ 10−4m3 (e.g. a cube
with 5 cm side length) and the position with the maximum SRP-PHAT will be returned.

The parameters of the beamformers evaluated in chapters 6 and 7 are listed in this paragraph.
Both the MPDR and the MVDR beamformer have been implemented with diagonal loading
(MPDR-DL and MVDR-DL) at a diagonal loading level γ = 1 · 10−3. The second loading
technique that has been implemented with the MPDR and MVDR beamformers was the vari-
able loading (MPDR-VL and MVDR-VL) with variable loading level δ = 1 · 10−3. The PSD
smoothing factor was chosen as λ = 0.95. Beyond that also the FFT block size has to be
fine-tuned for the MVDR beamformers in dependence of the TDOAs, e.g. 25 milliseconds has
been found as a good value. The superdirective MVDR beamformers (SD-BF) also have been
implemented with diagonal loading at a diagonal loading level γ = 1 · 10−3. As the diffuse noise
field coherence matrix of the SD-BF does not vary (the microphone positions do not change over
time), the variable loading approach would not make sense for the SD-BF. The parameters of
the Generalized Sidelobe Canceller (GSC) were forgetting factor β = 0.9, step-size µ = 0.01 and
filter length N = 80. These parameters provide stability according to [15] and also cause subtle
intelligibility benefits compared to the D&S-BF (especially at 24kHz sampling rate or higher)
and is therefore preferable to time-frequency masking. From the experiments it has been found
that bigger step-sizes cause the speech signals to distort and pump, whereas smaller forgetting
factors tend do produce boomy sounds.

The time-relations (TDOA, reverberation) between the beamformed signals have a big influence
on the time-frequency masking, therefore also the parameters have to be fitted to the considered
problem. It has been found that an increased overlapping factor of 75% or above (for the block
processing of the time frequency masking) produces smoother output and is therefore preferable.
Further smoothing can be already achieved if zero-padding is used at the FFT size is doubled.
The separation parameter that has been finally used with the ideal ratio mask (IRM) is β = 3.0,
if not declared otherwise for some experiments in section 6.3.3 and 6.4.6.

– 62 – January 19, 2020



7.6 Visualizations of the Separated Real-World Data

7.6 Visualizations of the Separated Real-World Data

Besides subjective listening tests, objective assessment of the processed, real-world data is diffi-
cult, which justifies the experiments in chapter 6. In this section audio snippets of the computed
samples will be plotted in time-domain and time-frequency-domain. In figure 7.7 the enumera-
tion associated with the targets around the dinner table is listed.

S1

S2
S3

S4S5S6
S7

S8
S9

S10
S11S12S13

Figure 7.7: Speaker enumeration

From figure 7.8 to 7.11 the speech separation is shown step by step in a 10-second-long recording.
At that moment all speakers except for S8, S9, S10 and S11 are present at the dinner table.
Around the timestamp at 4 seconds to 9 seconds the desired target in this example (S2) is
making a statement, while the interfering speech signals are at very high amplitudes.

January 19, 2020 – 63 –



7 Experiments on Real-World Data

0 1 2 3 4 5 6 7 8 9

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de
 [1

]

(a) Time-domain waveform

1 2 3 4 5 6 7 8 9

Time [s]

0

2000

4000

6000

8000

10000

12000

F
re

qu
en

cy
 [H

z]

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

S
ig

na
l P

ow
er

 [d
B

]

(b) Spectrogram

Figure 7.8: Closest microphone signal

By just listening at the closest microphone signal (depicted in figure 7.8) it is hard to tell which
one of the speakers is the target source, because of the high interfering speech signal levels
(especially for the nearby seatmates of the target S2).

The output of the GSC (depicted in figure 7.9) shows the capability of using several microphones.
The signal of the target S2 starts to stick out of the mixture.
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(b) Spectrogram

Figure 7.9: GSC output
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(b) Spectrogram

Figure 7.10: GSC output and IRM with β = 3.0

Figure 7.10 shows the output of the setup, that was finally used. All of the 13 GSC outputs
have been combined with the IRM to produce a signal, where the target is still intelligibly
recognizable and clearly separated from the interfering speech.

In figure 7.11 we go a step further to simply show, how the output is influenced, if a smaller
separation parameter β would be used. The interfering speech disappears in an indistinctive
noise floor so that the target speech is emphasized even more. But we also can see the negative
aspect of time-frequency masking, when we look at the high frequency content of the target
speech, where the target signal suffers from intelligibility loss. As the computed speech data
will be listened by linguists in the end, we have decided for β = 3.0 (depicted in figure 7.10),
accepting possible higher interference in favour of a better target intelligibility.
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(b) Spectrogram

Figure 7.11: GSC output and IRM with β = 1.0
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8
Conclusions and Outlook

In this thesis several beamforming methods have been investigated and their advantages and
drawbacks have been discussed. Further also the benefit of using a sound source localization
algorithm has been experienced when the beamformers are used on a real-world dataset, not
only for microphone post-calibration but also for making the steering vector estimation more
robust. As a completing step the time-frequency masking has been pointed out as a powerful
method to reduce interfering signals.

At the bottom line the separated speech audio, that has been computed with the system illus-
trated in figure 7.6, produces useful results and the improvement compared to using one single
microphone has been shown. Each intermediate step to enhance the result is worthwhile.

In practice also the computational complexity of the considered algorithms comes into play. The
computation period for the whole dataset (approximately 30 hours of audio) took around two
and a half months, where six PC workstations simultaneously processed the whole dataset. De-
pending on the algorithm complexity the choice of the used algorithms can drastically influence
the computation period. Of course this also has an impact on the obtained signal quality and
should be therefore well-matched with the intended application (e.g. real-time implementation
vs. offline processing).

The performance of beamforming algorithms improves significantly with prior knowledge. Con-
cerning this project that desired prior knowledge was strictly limited in advance, because the
access to the research station was not given and the scientists on site did not have the expertise
concerning that topic to supply more information. Nevertheless a more accurate sketch with
geometrical dimensions would have already helped a lot (e.g. to limit the parameter set for
calibration in advance). As all those array processing algorithms depend on spatial positions,
any kind of prior knowledge included is helpful to improve the results.

However array processing is an intensively researched field and there are a number of possibilities
to extend the presented algorithms. There will always be room left for improvement, that is
mostly limited by the available data, processing power and/or prior knowledge.

Some possible improvements that came up while conducting this thesis are specified below:

◦ Putting more focus on array calibration and considering a bigger set of possible parameters
could eliminate gain, phase and positioning errors and therefore improve the overall beamform-
ing performance, especially for the SD-BF and MVDR-based beamformers.

◦ Even though no true geometrical dimensions were given, the direction estimates of the SRP-
PHAT algorithm have been trusted, because it has turned out to improve the separated signals.
The SRP-PHAT could be reinvestigated in combination with room simulations to make a state-
ment about its estimation errors. In such a simulation setup also other localization algorithms
could be considered for comparison.
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A
List of Abbreviations

ABF ... Adaptive Beamformer
ASR ... Automatic Speech Recognition
BM ... Blocking Matrix
CFRC ... Coarse-to-Fine Region Contraction
DOA ... Direction of Arrival
D&S-BF ... Delay-and-Sum Beamformer
FBF ... Fixed Beamformer
FFT ... Fast Fourier Transform
GCC ... Generalized Cross-Correlation
GJBF ... Griffiths Jim Beamformer
GSC ... Generalized Sidelobe Canceller
LMS ... Least Mean Squares
MPDR ... Minimum Power Distortionless Response
MVDR ... Minimum Variance Distortionless Response
NLMS ... Normalized Least Mean Squares
PEASS ... Perceptual Evaluation Methods for Audio Source Separation
PHAT ... Phase Transform
PSD ... Power Spectral Density
SD-BF ... Superdirective Beamformer
SNR ... Signal-to-Noise Ratio
SRC ... Stochastic Region Contraction
SRP ... Steered Response Power
SSL ... Sound Source Localization
STFT ... Short Time Fourier Transform
TDE ... Time Delay Estimation
TDOA ... Time Difference of Arrival
TOA ... Time of Arrival
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B
List of Symbols

Below the symbols are specified that are valid throughout the whole thesis. In cases where
definition conflicts would occur (e.g. cartesian coordinates x, y, z vs. block diagram signals
x, y, z), the symbols are defined locally at each section.

APS ... Artifacts-related perceptual score (PEASS)

c ... Speed of sound

d ... Steering vector

fs ... Sampling rate

I ... Identity matrix

IPS ... Interference-related perceptual score (PEASS)

k ... Wavenumber vector

OPS ... Overall perceptual score (PEASS)

rxx ... Auto-correlation function

rxy ... Cross-correlation function

Rvv ... Noise signal correlation matrix

Rxx ... Input signal correlation matrix

SNR ... Signal-to-noise ratio

TPS ... Target-related perceptual score (PEASS)

w ... Beamforming weights

ΓVV ... Noise field coherence matrix

ΦVV ... Noise signal PSD correlation matrix

ΦXX ... Input signal PSD correlation matrix

ϕ ... Azimuth angle

Ψ ... PHAT weighting function

θ ... Elevation angle

τ ... Time-shift variable

ω ... Radial frequency
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