
Augmented Reality Construction System



ii



Abstract
Augmented reality extends the real-world environment with virtual information. In industrial

applications, technicians are able to assemble complex real-world object models with the

aid of augmented reality assisting systems where the assembly is extended with virtual

information of instruction steps. This thesis takes up this topic by picking one of the existing

methods, namely RotationNet, a multi-view convolutional neural network, in order to evaluate

its practicability in real-world usage. To classify instruction steps, RotationNet is modified to

fit to the conditions of the chosen 3D model and the used 3D model for evaluation is of high

complexity so as to evaluate the abilities and limits of RotationNet.

The practical approach starts by classifying variations of 2D images of a partly-assembled

model with RotationNet. The results of the classification are then evaluated and compared

with the performance of the human cognitive system. For this, a survey has been conducted

in which humans had to classify the instruction steps of 2D images in the same manner

as RotationNet does. The survey evaluation results show that in a clean-room setting,

RotationNet and humans are comparably alike and neither is significantly better. In a real-

world scenario RotationNet does not reach the performance of a clean-room setting. The

findings within this thesis show that the system needs further improvement, e.g, support of a

higher image resolution which is closer to state-of-the-art cameras so that RotationNet can

be used in real-world scenarios.

Parts of this thesis have been submitted to the 15th International Joint

Conference on Computer Vision, Imaging and Computer Graphics Theory

and Applications taking place on 27 - 29 February 2020.
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Kurzfassung
Augmented Reality erweitert die reale Umgebung mit virtuellen Informationen. In Indus-

trieanwendungen unterstützt Augmented Reality Menschen beim Aufbau von komplexen

realen Objekten mit virtuell angezeigten Informationen zu den einzelnen Aufbauschritten.

Für diesen möglichen Einsatz wird in dieser Masterarbeit das Multi-View Convolutional

Neural Network RotationNet für den realen Einsatz evaluiert. RotationNet wird an die

Anforderungen des verwendeten komplexen 3D Models angepasst, um die Möglichkeiten

und Herausforderungen von RotationNet festzustellen.

In der praktischen Umsetzung klassifiziert RotationNet verschiedene 2D Bilder eines teil-

weise fertig aufgebauten Modells. Die Klassifizierungsergebnisse werden evaluiert und mit

denen des kognitiven visuellen Systems des Menschen verglichen. Dazu wurde eine Studie

mit Probanden durchgeführt, die sich derselben Klassifizierungsaufgabe wie RotationNet

stellten. Die Ergebnisse zeigen, dass in einer synthetischen Umgebung RotationNet und

Probanden vergleichbar sind, sich jedoch nicht signifikant unterscheiden. In einer realen

Umgebung erreicht RotationNet die Ergebnisse von einer synthetischen Umgebung nicht.

Abschließend wird auf Optimierungen von RotationNet eingegangen, beispielsweise auf die

mögliche Unterstützung höherer Auflösung der 2D Bilder, die modernen Anforderungen

entspricht, damit diese Methode in Zukunft in einer realen Umgebung eingesetzt werden

kann.
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1. Introduction
Augmented reality for assistance systems is a promising research field in the future to assist

technicians in manufacturing and repairing processes. In the future they will be able to use a

computer-aided model organized into instruction steps to build up a model from the first step

to the completely assembled machine, prototype or product. Technicians are assisted by a

virtually augmented construction building system to display instruction steps and additional

information of the actual status of the real world model. The field of application for such a

system is very broad, from industrial production over customer services to the game industry.

For example, in industrial production a new product is modeled by the constructor on a

computer and then the model can be published to the assembly/production. Technicians

start to assemble the real object with assisted virtual instruction steps of the product. The

process is ideally dividable into different assembly steps, which can be performed by different

technicians. For small production series or prototyping of the usage of such a system is

able to increase productivity. Furthermore, existing model drawings can be transformed to

the system to support technicians to repair products which are difficult to assemble due to

their advanced and outdated age. In this case, specific knowledge of the product is needed.

It occurs in many industries that outdated plans exist offline which are not covering all

additional improvements or versions. This version differences are immediately displayable

to the user with augmented reality systems. Due to the manifold possibilities of applications

of augmented reality in the production process, more attention is drawn to the research of

such systems. Researchers are trying to develop an ideal, general method which is able to

answer all the demands with regard to all fields of application.

First this thesis gives an overview of the existing research and its development of the field. It

will then pick out the most promising method from the ModelNet benchmark in the context

of computer generated model classification in real images, which is RotationNet. For this

thesis, a LEGO TechnicTM model of an “Airport Rescue Vehicle” (no. 42068) is used to
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1. Introduction

perform experiments to demonstrate the possibility of the application of the RotationNet

method in real world usage. RotationNet will be explained in detail before reaching its

practical implementation. The experiments are focused on image classification to predict

the right instruction step in a virtual (only rendered models) and real environment (captured

images and videos by a camera). The next step is to evaluate the results of the experiments.

This is then compared with the results of a survey with humans. The comparison gives a

more detailed view of the complexity for an image classification for both, computers and

humans. The conclusion illustrates possible improvements and a future outlook.
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2. Related Work and the Current

State-of-the-Art
This Chapter gives an overview of the history and the existing methods in the research field of

computer vision emphasizing the identification of categories of objects in an image or video

which is called object recognition. This is of importance when searching for information

within an image and classifying images according to these objects. Generally, images can

be classified through their content, with or without the help of meta-data. The research

with regard to image classification spans over global feature descriptors which represent

the images as a whole and local descriptors which take the neighborhood of features into

consideration to deep learning networks which use a learning approach. The development of

research goes hand in hand with the increase of computational power of computer systems.

In the next sections, general terms concerning computational processing of images – from

image representation to image classification – will be explained. The focus lies in the

classification of instruction steps of a computer-aided design (CAD) model in the context

of deep learning networks. A database of a CAD model with instruction steps is created

for this thesis which will be explained and which refers to the image generation part. A

benchmark for image classification methods exists and the data in this benchmark is freely

accessible. A table shows the success rate of different approaches which is the basis for the

decision-making which method for this thesis will be used. The chosen method is the most

successful method by September 2019 in the ModelNet benchmark (Wu et al., 2015) and is

called RotationNet (Kanezaki et al., 2018).
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2.1. Image Semantics

2.1. Image Semantics

The underlying fact of why image processing is needed is that computers are not able to

classify image representations the same way as the human eye does. Humans perceive images

with the eye and transfer the perceptual information to the brain which then processes this

information. This is an extremely complex task:

Visual scenes tend to be very complex: a multitude of overlapping surfaces

varying in shape, color, texture, and depth relative to the observer. [...] The

cortical visual system processes information for objects first by coding visual

features, then by linking features into units, and last by interpretation of units as

objects that may be recognizable or otherwise relevant to the observer. (Johnson,

2013)

A computational system does not have the same ability as the human eye-brain connection

has. Therefore, computers have to be trained in order to get similar results in the identification

of objects. Every task of the human visual system is modeled with the aim to bring the

similar ability to the computational system. The processing works like a pipeline, similar

to the human eye as stated in the quote above. It is separated into tasks, from low-level to

high-level representation. For computational systems, low-level parts, e.g., coding of visual

features, are easier to tackle than high-level parts, like the semantic connection of real objects

with their representation.

An example of how this pipeline could look like is shown in Figure 1 with two images of

different scenes with different objects of the same object class. These objects have a specific

semantic meaning which can be further identified. For example, in the foreground of both

images two different cats are shown, one sitting in a box, the other walking on a street. The

semantics in this example can be a cat, a box and a street or a wooden shelf. The human eye

is trained to recognize these objects in the image and so the computational system has to be

trained in order to recognize the objects.

4



2.2. Image Representation

Figure 1.: Overall pipeline of the object recognition task. First an image is processed and
low-level representations are used to close the semantic gap. The returned object
category for the two example pictures is the category “cat”.

The identification of different objects and their relation to their meaning is the task of image

classification in the research field of computer vision. An algorithm represents the image

content and relates them with a semantic database. In the database, the semantic meaning of

a special representation which depends on the used algorithm of objects is stored. Various

algorithms exist to classify images or parts of images.

2.2. Image Representation

Before to start with image processing tasks, the way an image is specified has to be cleared

up. An image is the digital version 1 of a scene with different properties, e.g., size, spatial

resolution, color representation, sampling, quantization, intensity resolution and encoding.

The spatial resolution describes the size of dots per inch. In a 2D-image the x-axis refers to

the width and the y-axis to the height and is called pixel resolution. The higher the resolution

of the image, the more information which can be captured and stored is existing in this image.

1In this thesis only digital images are relevant.
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2.2. Image Representation

In low resolution images, the accuracy and detail level is worse compared to higher resolution

images. A limiting factor of high image resolutions and the generated higher size of data to

be processed is the processing time of an algorithm from the moment of image capture to the

classification output.

In the electromagnetic spectrum, light is the electromagnetic radiation in the range from

430nm to 790nm. In this certain range the human visual system is able to see colors. The

human eye is sensitive to the color format Red-Green-Blue (RGB) and this system is adopted

by computers in order to adapt to the human eye. In an image every pixel has a color

representation which is explained by a color system. The most used one in the context of

display devices 2 is the RGB color format as stated above. Nowadays, the most common

color channels R,G,B ∈ [0,255] uses 8-bit for the color depth. In certain cases, more bits per

channel are used. Another color format is the Hue-Saturation-value (HSV) representation,

which is closer to the human color system perception than the RGB color format. The Hue

H ∈ [0◦,360◦) represents the perceived color, the saturation S ∈ [0,1] is the chroma and the

value V ∈ [0,1] is the lightness. The transformation from RGB to HSV and vice versa can be

studied further detailed in (Hanbury, 2003).

Image resolution and color information are details which are stored in digital 2D-images.

These are encoded with lossy or lossless image compression methods. Different formats

and methods exist with advantages and disadvantages with regard to the file size and loss of

details during compression methods. In this thesis the trained data uses the PNGTM format

published at libpng.org.

With this image representation no local information or relation between pixels in an image is

given in order to get a low-level representation of global or local features, which are points

of interest, e.g., edges or corners. To extract such features out of an image, the image gets

filtered with a filter function h. The filtering is processed with the mathematical operation of

convolution. The discrete version of a 2D circular convolution operation is used to filter the

2In this thesis only display devices are relevant. The Cyan-Magenta-Yellow-Key/Black (CMYK) color system
is the mainly used in printing.

6
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2.2. Image Representation

image (see Equation 2.1). I(x,y) is a 2D matrix describing the original image data, which is

convoluted with h(x,y) by the convolution operator ∗. h(x,y) is a 2D filter matrix and the

result is the output image g(x,y). x and y are the indices of the image matrix position and

N,M are describing the size boundaries of the used filter.

g(x,y) = I(x,y)∗h(x,y) =
M−1

∑
m=0

N−1

∑
n=0

h(m,n) · I(x−m,y−n) (2.1)

There exist many different filters, which can be applied in this step. The filters can be used

for edge detection, smoothing, or others. An example for an edge detection filter is the

sobel filter which filters on the x- and y-axis of the image. This is a special hand-crafted

filter, which is limited only to edge detection. An improvement is to use a filter collection

with different filters to get a broader field of application. In deep learning approaches the

filter collections are learned within the method depending on the input data. This is the

transition from hand-crafted to learned filters, which is also the transition from rule-based and

traditional machine learning methods to deep learning (Alom et al., 2019). »A key difference

between traditional ML [machine learning] and DL [deep learning] is in how features are

extracted.« (Alom et al., 2019). For a detailed overview of this transition see Table 1.

Table 1.: Comparison of different feature learning approaches and the transition from rule-
based to deep learning methods. The further the transition goes the more learning
steps have past. Table taken from (Alom et al., 2019, p. 4).

Approaches Learning steps
Rule-based Input Hand-design

features
Output

Traditional
Machine
Learning

Input Hand-design
features

Mapping from
features

Output

Representation
Learning

Input Features Mapping from
features

Output

Deep Learning Input Simple features Complex
features

Mapping from
features

Output
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2.3. Image Classification

An image can be analyzed and classified accordingly. This is done in several steps from

low-level-operations to higher-level-operations. The image is filtered by its geometric forms.

In this step a histogram or other data can be generated depending on the algorithm. The goal

of image classification is to interpret the filtered data in an image with the aim to output the

related object description. As stated above, different steps are undertaken. Deep learning

methods are the most modern methods within the research field and only those are relevant

for this thesis. This is because the deep learning method RotationNet has been chosen for a

real-world application. Here, the underlying deep learning method range of Convolutional

Neural Networks is explained in order to build the foundation for understanding RotationNet

as such.

2.3.1. Deep Learning

Convolutional Neural Networks (CNN) are neural networks which are able to work with 2D-

image data and which use the advantages of convolution. The intention of neural networks is

to model the biological visual system and perception of humans and animals. The biological

ideal of neurons is used to model it into a computational representation.

2.3.1.1. Neuron

A neuron is a nerve cell in the human body (and in other animal’s bodies with nerve systems)

which builds together with a multitude of other neurons the nervous system in the body. The

nervous system is densely entangled and transports important information throughout the

body. This system is the exemplar for artificial neural networks because of its complexity in

the transport of information. In Figure 2 a representation of an artificial neuron is shown.

The model uses the input x. The system parameters are a linear combination of weighted
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2.3. Image Classification

Figure 2.: An artificial neuron model exists of [x1,x2, . . . ,xn],n ∈ N inputs and one output y.
Inside a neuron an activation function f transforms the summation of all inputs to
the output value y1.

inputs w and a bias b in Equation 2.2. This can be rewritten in a vector form as in the

Equations 2.3- 2.5. Finally, an activation function f is used to get the output value y. The

parameters which are not fixed are the weights w, which are optimized during a training

process.

z =
n

∑
i=0

xi ·wi +b, where n ∈ N (2.2)

x′ = [x1,x2, . . . ,xn,1] (2.3)

w′ = [w1,w2, . . . ,wn,wn+1], where wn+1 = b (2.4)

z = w′T · x′ (2.5)

The neurons output z is activated or rated with a following activation function f (z) in

Equation 2.6. The activation function can be a binary, linear function or a non-linear function,

e.g,

f (z) = max(0,z) (2.6)

Historically, binary activation functions like a threshold are used to decide between two

values, e.g., yes (+1) or no (-1) (McCulloch and Pitts, 1943). To model the biological system

9



2.3. Image Classification

much better non-linear activation functions are the state-of-the-art in deep learning networks.

In the context of CNNs, e.g., a rectified linear unit (see in Equation 2.6) is used for the

activation function (Fukushima, 1988). The activation functions’ parameter have the ability

to be learned (Bishop, 2006).

2.3.1.2. Neural Networks and their Layers

Several neurons can be combined and grouped in logical layers. The grouping of neu-

rons is a linear combination of many neurons. One group is called layer in a neural net-

work (Fukushima, 1988). In Figure 3 one layer has {x1,x2, . . . ,xn},n ∈ N inputs connected

with {h1,h2, . . . ,hm},m ∈ N neurons. These are connected to {y1,y2, . . . ,yk},k ∈ N outputs.

Figure 3.: A three layer neural network with input, middle and output layer. The left input
layer has n inputs, m neurons are in the middle layer and the output has k neurons.

If every input is connected with all neurons and all neurons are connected to the output, it

is called a fully-connected network. Layers between the input and output layer are called

hidden layers. The dimension of every layer and the number of layers in a neural network

10
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depends on the design of the system. The hidden layers can be seen as nontransparent boxes

with known input and output, but unknown parameters (Haykin, 2007). These parameters

can be trained (optimized) and are described by the weights w in Equation 2.2.

The using of simple non-linear activation functions f (z) per layer, assumed many layers

exists. This results in a composition of non-linear functions. In other words many simple

non-linear functions are forming a complicated function (Fukushima, 1988).

2.3.1.3. Feed-Forward Network

A feed-forward network can be seen as a left to right or top down model with stacked

layers. These layers merely have a connection to the successor but no backward or recurrent

connection (Rumelhart et al., 1986). This is a base model used by deep networks which

extends the number of layers in order to have deeper levels of layers. In Figure 4 an example

of a neural network layer with 2 hidden layers is shown. Where x ∈ RD is the input, h1 ∈ RN

max(0,W1x) max(0,W2h1) W3h2
x h1 h2 y

Figure 4.: Example of a neural network layer with 2 hidden layers. Where x is the input, h1
and h2 are the output of the hidden layers and y refers to the output.

is the first hidden layer output, h2 ∈ RM is the second hidden layer output and y ∈ RP refers

to the output. The weights W1 ∈ RNxD and W2 ∈ RMxN have also biases b1 ∈ RN and b2 ∈ RM

resp. which are not covered by the picture. h1 is the input for the second hidden layer which

indicates a "fully-connected" layer. As activation function a so-called Rectified Linear Unit

(ReLU) (see Equation 2.6) is used in the first two layers.

11
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2.3.2. Convolutional Neural Network

A CNN uses the advantages of the mathematical operation of convolution. The structure

of CNN-based methods is that many layers are stacked together in hierarchical order. The

dimensions between the layers can differ and only the output and the input layer are known.

All other layers which are situated in between are hidden layers which are not visible. The

features and the classifier are both learned in convolution neural networks. Compared to

hand-crafted machine learning approaches this is much more flexible and can be used in

a broader field of application (LeCun et al., 1998; Hinton et al., 2006). In Figure 5 the

Figure 5.: Comparison of the simple (one hidden layer) neural network structure and the deep
learning network structure. The main difference between these two is the level
of layers. Deep learning networks process and link information from a low-level
input image on a pixel basis to a higher level where edges are identified, to the
next level where edges are combined. The next level is a higher level on which
features are identified and the last layer combines the features to the output word.
This is a schematic representation and not a specific method.

structural difference of a simple and a deep learning neural network is illustrated. A CNN

has a 2D-image with a dimension of dim = Height ·Width ·Depth as input, where the Depth

is equivalent to the color channel. The hidden layers which can have different tasks are
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following after the input layer. These different tasks of the layers are, e.g.,

convolution: extracting features of an image

pooling: selecting a region and calculating, e.g., maximum or average of this region and

outputs one single value. This can be seen as down sampling of the previous layer

features

softmax: outputs a normalized probability distribution of the layer’s neurons.

The convolution layers consist of multiple non-linear filters with a small kernel size, e.g.,

kernel = 7×7, in contrast to the image size, e.g., image = 256×256. This is an optimization

to reduce the size of parameters, which is computed in every run and the computational

power or memory needed.

This optimization can be illustrated with an example: A 2D image can be considered on the

basis of pixels which makes the size of neurons in a hidden unit the same as the pixel size

and every pixel has a connection to every neuron. The result is a huge amount of parameters

to be stored and computed. However, spatial correlation is a local phenomenon. A 2D image

can as well be seen on a patch basis, where a patch of, e.g., 7×7, has a connection to every

neuron which has the size of a patch in the hidden unit. Based on the usage of patches,

edge detection, where the edges are learned from the appearance in the input image, can be

performed. This gives a higher-level representation than using raw pixels. The parameter

size can be further reduced by reusing the same parameters on different locations in an

image. Any edge can be located everywhere in an image, so it can be shared through the

system. This results in fewer parameters and the convolution is calculated with learned

kernels (LeCun et al., 1998). The content of an image can look very similar in different

locations and dependencies are local. This statistical viewpoint and the fact that filtering is

equivariant to translation brings the advantages of convolution into account. Translation

equivariance results in fewer filters because no translation replicates have to be covered and

only the orientation/frequency must be stored. This can be seen as a set of local parts (Lenc
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and Vedaldi, 2019). If there are hierarchically stacked layers of non-linear filters, a system is

called deep network.

The deep network is constructed by adding layers of a higher hierarchical order. The non-

linearity of filters gives more detailed and adequate information about the data when it

is applied to parameters with high hierarchical orders. The first layers have more basic

filters with very local information. They can be compared with an edge detection filter

engine. Each following layer has more detailed information – e.g., about the texture – in the

analyzed region. Therefore, deeper levels have more combined information about the content

representation at their disposal (Zeiler and Fergus, 2014).

A vast amount of data is needed to train a CNN. The images or training data, respectively,

must be classified manually or can be taken from existing databases for some classes. It

is of importance how granular the classes are defined and which and how many different

classes are present in an image for a productive usage of the whole system. This manual step

of preprocessing data has a strong influence on the output, thus needs to be very precise in

terms of applicability.

With the possibility of parallelization and the rising computational power of graphics process-

ing units (GPUs), the processing time of the vast amount of datasets decreases. The training

or learning and classification is split into offline and online tasks. The CNN parameters are

trained with a big dataset offline before they are used online to classify new and not yet trained

data. When the training phase is finished, a trained network is present. In the classification

process the learned data from the trained network is used to categorize the subsequent input

data and a result is returned on the output data. This means that the classification process is a

forward propagation of data which the system does not know prior to the process through the

trained network.

Forward propagation is »[...] starting at the bottom and working upwards until the states

of the output units are determined« (Rumelhart et al., 1986) (bottom refers to the input and

upwards is the direction towards the output). It stands in contrast to the back-propagation,
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which is used in the training process to learn parameters of a network (Rumelhart et al., 1986).

This is the learning process with existing data. Rumelhart explains this as follows: »The aim

is to find a set of weights that ensure for each input vector the output vector produced by the

network is the same as (or sufficiently close to) the desired output vector.« (Rumelhart et al.,

1986) »The backward pass which propagates derivatives from the top layer to the bottom one

[...]« (Rumelhart et al., 1986) computes the gradient descent of the layers with the help of

the chain-rule (top refers to the output and bottom is the previous layer). This is the learning

process with existing data of the whole network. These deep learning network methods are

the current state-of-the-art as they outperform the non-learning methods.

Therefore, the benchmark ImageNet publishes a database for image classification where

images are manually classified according to the image content. Every year challenges

are held in order to compare methods with each other on the basis of these databases in

different categories, e.g., classification, localization or identification. The measurement used

in these competitions is the error rate of the N best (maximal probability) classification

results, which is called Top-N error rate, e.g., for N = 5 the Top-5 error rate includes the

five best classification results. At the ImageNet Large Scale Visual Recognition Competition

(ILSVRC) in 2012 (Russakovsky et al., 2015) the method AlexNet (Krizhevsky et al., 2012)

was the winner with a Top-5 error rate of 16.4% on the supplied dataset (see in Figure 6).

The second best implementation was not a deep learning network and had a rate of 26.2%.

Figure 6.: A random selection of two root-to-leaf branches of the ImageNet benchmark.
Image source: (Deng et al., 2009)
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Figure 7.: The layer structure of AlexNet. The different layers have different functions.
Layer1 and Layer2 are designed with convolution (Conv.), max-pooling (MXP) and
local response normalization (LRN). Layer3, Layer4 and Layer5 are convolutions
with a following rectified linear unit (ReLU). The Layer6 and Layer7 are fully
connected (FC) layers and the last layer is a soft-max function, to categorize the
classes with a probability value. Image source: (Deng et al., 2009)

Therefore, AlexNet had a significantly low error rate compared to others in this contest.

AlexNet is designed with eight layers in total, five convolutional layers and two fully

connected layers and at least a soft-max layer. In Figure 7 a graphical representation of the

blocks of the structure of AlexNet is shown. The convolution layer is combined with a max-

pooling, which is a form of down sampling a feature-map. The value in the resulting feature

map is the maximum value of a region from the origin feature map, e.g., in a 2×2 region

with the values [1,4,2,2] the result is 4 in the resulting feature map, the dimension is reduced

by R2×2 to R1. The local response normalization is more a »brightness normalization«

(Krizhevsky et al., 2012). The fully connected layers are constructed like explained in

Section 2.3.1.2 to classify the previous layer outputs. The soft-max function calculates the

probability of every output class based on the last full connected layer.

Because AlexNet has produced such good results, nowadays many other methods are based
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on AlexNet. Since then CNNs are used in other research fields and enhanced in performance

and speed. Convolutional Neural Networks have a low error rate compared to hand-crafted

methods as can be seen in the exemplar of AlexNet. A drawback is that an enormous amount

of data has to be available before the method can be applied. AlexNet has overall 61 million

unknown parameters, which are learned (optimized) in the training process (Alom et al.,

2019). The training process is a time and computational intensive process and needs much

computational power. Here, AlexNet will not be explained in further detail because the

method used for this thesis is based on AlexNet with further improvements and enhancements.

The used method RotationNet will be explained in further detail in Chapter 3.

The main goal of all methods is the identification of objects within images. For this thesis,

a test of the RotationNet method on the assembly of a 3D model is made. The assembly

is conducted in several instruction steps. RotationNet is used to predict the subsequent

instruction step in order to serve as a virtual instruction manual for the person assembling

the model.

2.4. Image Identification

The current status of the assembly by identifying the correct instruction step number is the

main focus of attention of a method. In real-world applications, the model is a 3D object in

front of a person assembling the model. However, the computer system needs to capture this

3D data in order to further process it. The problem can be approached using 3D techniques

based on depth images and reconstruction algorithms (Häne et al., 2017), or by using

2D image-based methods. This distinction is blurred because 3D depth information can not

only be extracted from several 2D images (Hartley and Zisserman, 2004), but can also be

learned from a single 2D image (Saxena et al., 2006; Kuznietsov et al., 2017; Mahjourian

et al., 2018). If necessary, machine learning approaches can implicitly learn the depth

information and explicit handling of depth information is not required with image-based

approaches on a machine-learning basis. For this thesis, the learning from a single 2D image
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is used. However, the 3D object has to be captured in any case. Therefore, the data is

imported as explained in the next Section.

2.5. Importing Data with the LDRAW Importer

The main function for the importer is to read a 3D model, which is stored in the LEGO model

data format (LDRAW), and to output another 3D model, which is stored in Alias Wavefront

OBJ data format (OBJ). The used LDRAW format specification is in version 1.2. The Alias

Wavefront OBJ format consists of two parts: an OBJ and a material file MTL. For the output

the OBJ format is used because it is widely supported by 3D rendering programs and other

graphics software packages. The implementation is made in JAVATM as a library.

2.5.1. Format Specifications

The structure of LDRAW is similar to an offline LEGOTM instruction manual with iterative

instruction steps. It is possible, that the instruction steps are interrupted by sub-models which

must be completed before resuming to the interrupted instruction step of the main model.

The sub-modules can be seen as branches which are assembled separately of the main model

where the instruction steps start from step one. After finishing the sub-model, it is integrated

into the main model. This process is illustrated in Figure 8. In the resulting model, the

sub-part (see in Figure 9) can be visible (attached to the existing model), partly-visible or

occluded (inserted into the existing model). These sub-model steps are merged to the central

theme and no branches are existent in the digital version. The digital version stores the

necessary information for the steps in one file which can be viewed from different viewpoints

with a rendering software. LDRAW is internally organized hierarchically, recursively and

supports linking to primitive parts, groups of many parts or other LDRAW files. OBJ

does not support this structure, but named groups are specified. The instruction steps from

LDRAW are mapped one-to-one to the OBJ named groups. All other LDRAW specific
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2.5. Importing Data with the LDRAW Importer

Figure 8.: Structure of the LDRAW model with the main model (blue) and sub-models
(yellow). The sub-model branch interrupts the main model instruction step (blue;2)
and resumes with step (blue;3). The sub-model instruction steps start from one.
The OBJ merges the sub-model (yellow;3-6) instruction steps into the main model
(blue;1-2,7-8) .

linking, hierarchies and recursions are resolved to fit to the OBJ specification, excluding

unnecessary LDRAW specifications or extensions. The “Airport Rescue Vehicle” (no. 42068)

in the LDRAW format consists of 72 instruction steps. In the OBJ format, this is extended to

137 instruction steps because of the sub-steps.

2.5.2. Implementation

The first step is to read the main LDRAW file. Only the information which is needed for an

optimal output model is processed. Other information is ignored. The data is structured in

instruction steps so that in every instruction step the model can be described with primitives,

parts or other LDRAW files. There is, furthermore, the option to link to other parts from

the official database or internally in the defined parts of the file. This is handled by a hash

table to be able to resolve the links. Every primitive part or link comes with positioning,

translation, scaling or rotation data of how it should be rendered. This is solved with a

transformation matrix for all parts. All this information is converted to the internal data

structure and exported to OBJ. The color information and materials are also converted. This
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Figure 9.: Two different instruction steps with appended sub-models. The added sub-model
is highlighted in light blue. The sub-model in the left picture is not occluded by
the main part. In the right picture a partly occluded engine is appended to the main
model. The pictures are generated with LDView c© (LDVIEW.SOURCEFORGE.NET).

is stored in the extra MTL-file. The combination of the OBJ- and MTL-file can be used for

further proceedings.

2.6. Conclusion

This chapter has shown that for object detection in images, the semantic description and

the image representation must be connected. First, image classification is the method to get

the semantic prediction. Historically, hand-crafted designs for image classification were

used before the usage of CNNs became the standard. One key benefit of CNNs is a highly

non-linear deep system with the ability to train parameters on the basis of the input training

dataset. A CNN is then trained offline and the classification is taking place online. In CNNs,

a supervised learning is used to train the network. This means that the training image dataset

with the relation to the class must be known in advance. The image identification is performed

with 2D images of a 3D model. Finally, the creation of the 2D image database for this thesis is

accomplished with the LDRAW importer. The importer is the intermediate tool for converting

3D models to 2D images. This gives a thorough understanding of the theoretical foundation

for the used method. In the next chapter, RotationNet and its modifications for this thesis

will be discussed.
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3. Theoretical Background of the

Used Method

3.1. RotationNet

The method used for the practical implementation is called RotationNet (Kanezaki et al.,

2018). It is inspired by the concepts of MVCNN (Su et al., 2015), a multi-view convolutional

neural network to classify 3D objects from 2D images, and by the pose estimation technique

of “Convolutional Models for Joint Object Categorization and Pose Estimation” (Elhoseiny

et al., 2016). These two concepts are combined and extended by RotationNet: MVCNN uses

different view points and camera positions distributed over a sphere around a 3D model to

get 2D images. These images are trained with the network structure of AlexNet (Krizhevsky

et al., 2012). The MVCNN approach demands for each class that all camera positions are

available as images; i.e. for every pre-defined view point all 3D objects must be captured.

This is, however, hard to realize in a real-world scenario, where view positions are often

limited and not precise. Therefore, RotationNet removes this limitation of MVCNN by

repositioning the pooling layer and combining it with the method of (Elhoseiny et al., 2016).

They propose to use object prediction and pose estimation with one 2D image as input for

the classification process. Elhoseiny et al. (2016) evaluate and analyze five different model

configurations:

• unmodified AlexNet, as baseline model

• a parallel model, which splits the classification and pose estimation completely

• a cross-product model, which outputs the category and pose as cross-product

• a late branching model, which splits the category and pose at the last layer
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• an early branching model, which branches the layers before all fully-connected layers

and after the pool layer 5.

RotationNet finds a balance between these two methods and uses a partial set of multi-view

images, which results in a set of images where at least one image is in a set of regional,

alike viewpoints. With this combination, a partially captured 3D object can be categorized.

This is an improvement of the other methods which classifies images for real-world use

cases. The idea behind the proposal of RotationNet is to predict a class with some – not all –

viewpoints rather than using all viewpoints. This leads to better results than MVCNN. As

a consequence, RotationNet is an improvement of both approaches. As the success rate of

the classification increases with a higher number of images in one set, RotationNet uses a

compromise with a set size of 20. To estimate unknown poses of a 3D object during the

training process, an unsupervised pose estimation is used, which is influenced by (Zhou et al.,

2017). This is a “meta” task which is conducted in every training step. Another benefit is

the feasibility to predict a class with a specific set of images captured from one limited view

position region. This is important for estimating new unknown positions and simultaneously

classifying objects. To get a low error rate, this step is of significant importance.

3.1.1. Viewpoints

As mentioned above, the camera positions used in RotationNet are highly influenced by

MVCNN. Three approaches of where the view positions are located on a sphere enclosing

the 3D object are proposed: First, camera positions rotating on a fixed axis around the model.

Second, the cameras distributed on a dodecahedron. Third, camera positions rotating on a

fixed axis around the model (same procedure as for the first proposal), repeated by using a

second rotation axis. The resulting view positions are equivalent to a longitude and latitude

description as, on the hemisphere. The first and third approaches have a fixed rotation

direction and models have to be fixed in an upright position. The second approach rotates

in three possible directions and models can be placed in any position. RotationNet uses the
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second approach for its experiments on image benchmark data sets. The positioning of the

camera viewpoints is of high importance. Size and distribution of virtual cameras influence

the prediction accuracy. RotationNet uses a similar approach of MVCNN and extends it.

Therefore, different approaches exist which differ in the number and positioning of virtual

cameras. RotationNet discusses three different cases, which are similar to the MVCNN

approach. These cases are:

• in upright position and with twelve views on a fixed axis (described in Section 3.1.1.1),

• not in upright position and with 20 views on a dodecahedron (described in Sec-

tion 3.1.1.2),

• in upright position and with views spread in different circles over the sphere (described

in Section 3.1.1.3).

3.1.1.1. Circle views

In the first case the upright positioned object is viewed by NC camera positions. These

positions are distributed ideally around the object in a circle around a single fixed axis. The

distance between the camera positions is given by an angle α in 3.1.

NC =
2π

α
,NC ∈ N (3.1)

Here, the object is seen from a limited perspective which results in a loss of information of

the whole object. Top or bottom regions of a model are not captured. Therefore, some details,

which are important might not be visible in the field of view of the camera or be occluded by

other parts of the model. This information is lost for further training steps. Due to the fact

that a highly representative training data set is aspired, this limitation is not desired and not

adequate for the use case and evaluation in this thesis.
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3.1. RotationNet

3.1.1.2. Dodecahedron

In the second case, 20 camera positions are equally spaced on a unit sphere which are equally

distributed on a dodecahedron on this sphere. In Table 3.1.1.2 and in Equation 3.2 and 3.3

the coordinates and their calculation for every position is shown. This option is used for

classification experiments by RotationNet.

p =
1+
√

5
2

(3.2)

q =
1
p
=

2
1+
√

5
(3.3)

Table 2.: Coordinates for all 20 view positions on a unit sphere distributed as a dodecahedron.
The variables p and q are calculated in Equation 3.2 and Equation 3.3.

View
x y z

View
x y z

Position Position
1 -1 -1 -1 11 -q 0 p
2 -1 -1 1 12 0 p q
3 1 -1 1 13 p -q 0
4 1 -1 -1 14 0 p -q
5 -q 0 -p 15 p q 0
6 -p -q 0 16 q 0 p
7 0 -p q 17 -1 1 1
8 -p q 0 18 -1 1 -1
9 0 -p -q 19 1 1 -1

10 q 0 -p 20 1 1 1

MVCNN uses a similar version to the dodecahedron. Camera positions are generated an

icosahedra mesh, where 20 camera positions plus four rotations – with 0, 90, 180, 270 degrees

per position – results in 80 views. This approach is adapted by the method of RotationNet.

Here, the camera view direction is adjusted to the origin c = (0,0,0), where the center of the

3D model is located. These camera locations are fixed for the rendering process and every

camera has a unique number. Every 3D-model is rendered by these 20 camera positions to

create 2D images. In Figure 10 a graphical interpretation is displayed.
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3.1. RotationNet

Figure 10.: The complete model in the center is surrounded by 20 cameras distributed on a
dodecahedron. The dots are representing the positions of every camera around
the model. The red color symbolizes the view direction of every camera towards
the model.
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3.1.1.3. N-Circle views

The case of N-circle views improves the entropy of the approach described in Section 3.1.1.1

to capture non-viewed regions and a larger camera viewpoint size. The model is positioned

in an upright position. A second axis y is fixed to vary the camera positions on angle β in

Equation 3.4 of the circle z, which is generated like in Section 3.1.1.1, in Equation 3.5 to get

a spherical distribution of the viewing positions N in Equation 3.6) with a higher resolution.

Ny =
π

β
, where Ny ∈ N (3.4)

Nz =
2π

α
, where Nz ∈ N (3.5)

N = Ny ·Nz , where N ∈ N (3.6)

In Section 3.1.1.1 one axis is used as rotation axis. Here, the approach is repeated on every

part of a second rotation axis y. The rotation is made on a half sphere in the range between

−π to π .

3.1.2. Pose estimation

A drawback for RotationNet is that object poses are not well aligned in existing object

databases, like ModelNet. Therefore, to train such a network, several choices are possible.

Two possible cases are either creating a database with aligned poses or to use pose estimation

in an unsupervised manner. To resolve the issue viewpoints are estimated unsupervised

in RotationNet, so-called latent parameters are established to receive the poses. After

some training iterations the viewpoint variables are getting more precise, because they are

optimized in the training process. The way RotationNet tackles the problem is that no pose

estimation is needed beforehand, which is sensitive to noise and individual shape differences.

The sensitivity comes from the image resolution, illumination and the resulting reduction

of the parameters are erroneous (Kanezaki et al., 2018). This pose estimation is not needed
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in this case, but the complete set of options is used, because no negative side-effects of the

usage are expected.

3.1.3. Training

All pre-defined viewpoints N have a unique corresponding 2D image of a 3D model. Every

instruction step is equal to a class in the network context. One class is trained with all images,

which are referring to the given class, rendered from the pre-defined viewpoints. The class is

known during the training process. However, the viewpoint is not given and is optimized

during the training. The multi-layer network has a soft-max layer of the size of all viewpoints

and classes in the final layer. This layer is used to compute the likelihood Pxi for the views

in every class separately. RotationNet solves the optimization problem in Equation 3.7.

The goal of this is to optimize (train) the network parameters Net in consideration of the

viewpoints {vi}. The training input images xi in combination with the viewpoint position

vi from camera index i ∈ [C1,C2, . . . ,Cm] with the approximated class ŷi of the ground truth

class y gives the likelihood probability for y.

max
Net,{vi}N

i=1

N

∏
i=1

P(ŷi = y|xi,vi) (3.7)

Otherwise, an existing database like the ImageNet (Deng et al., 2009) database can be used

and fine-tuned with the new data. However, creating a new database is demanding due to the

lack of enough training data in other scenarios.

3.1.4. Prediction

RotationNet uses a set of images for classification either, sequentially or simultaneously. The

network output layer values are the probabilities for every class, including the incorrect view

and all pose estimations per class. The best view position is chosen by taking the highest
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probability value of a class without the incorrect view; i.e. inter-class probabilities are taken

into account. This means not only one specific class is used to predict the pose, but more

than one can be used for one prediction result.

The decision, which class matches best is calculated by the maximum value of the probability

product of the views and classes as shown in Equation (3.8).

{ŷ,{v̂i}M
i=1}= arg max

y,{vi}M
i=1

M

∏
i=1

pvi
i,y

pvi
i,N+1

(3.8)

pi
vi,y

is the probability for all M = 20 viewpoints vi in a class y ∈ {C1,C2, ...,CN} with

N = 137. This is normalized to the incorrect view probability pi
vi,N+1

. The product of all

view probabilities gives the prediction for the class ŷ and its viewpoint v̂i. Summarized, the

prediction of the class and pose is a probability maximization over a set of images.

3.2. Modifications

Originally, RotationNet is trained on the ImageNet Large Scale Visual Recognition Com-

petition (ILSVRC) in 2012 (Russakovsky et al., 2015) database and fine-tuned with the

ModelNet10 and ModelNet40 (Wu et al., 2015) database. Therefore, RotationNet supports

only 10 or 40 classes for the fine-tuning and prediction. This does not fit to new, created

database using the LEGO TechnicTM model mentioned before. In this thesis the proposed

method does not use the ILSRVC database nor the ModelNet database, due to the fact that

the databases have not much in common with the “Airport Rescue Vehicle”.

Before any pipeline workflow can be started a dataset of 2D images is needed. For this

2D images are rendered from a 3D model. The “Airport Rescue Vehicle” model from the

LEGO TechnicTM series is used as the reference model. The complexity of the model is

comparable with a real CAD model. Due to the fact that the CAD model in the assembly

assistance scenario is not similar to the existing dataset used by RotationNet at the ImageNet
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Large Scale Visual Recognition Competition (ILSVRC) in 2012 (Russakovsky et al., 2015),

a new database is created with the LEGO TechnicTM model mentioned before. The LDRAW

format stores the model data as instruction steps which fit to the proposed use case.

3.3. Conclusion

RotationNet is a multi-view CNN with the ability of pose estimation. The method finds a

balance between image classification and pose estimation. It mixes supervised learning for

the classes and an unsupervised learning of the camera viewpoints. The optimization of the

parameters for one specific class uses a maximization of the probability. The classification

task returns the class with the highest probability for the input data. The camera viewpoint

distribution on a dodecahedron is used for the generation of the training image dataset for the

“Airport Rescue Vehicle” (no. 42068). RotationNet is modified to fit the size of classes to

support this image dataset with 137 instruction steps (classes). The practical details of the

modified version of RotationNet are illustrated in the next Chapter.
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Modified RotationNet Method
This Chapter handles the implementation details of the whole method. The sections of

the chapter are arranged in the processing pipeline order of the whole process to learn and

predict a 3D model with instructions steps. The processing parts can be split in an offline

(see in Figure 11) and online (see in Figure 12) processing pipeline. The offline task consists

of all training relevant steps, which has to be computed only once. This training process

is time-consuming and takes several days on a high-performance computer (HPC) with

54 Intel R© Xeon R© CPU cores at 2.60GHz. This is the reason why the training process is

made with HPCs. The process is a semi-automatic workflow, some sub-steps need manual

configurations in advance in order to be able to perform further sub-steps. The prediction

task is done in the online processing pipeline. For one prediction the processing time should

ideally be in the time frame of seconds or milliseconds running on consumer devices with

limited power. Compared to the offline task, processing time and computational power vary.

Figure 11.: Pipeline overview for the offline task: RotationNet is learned with the instruction
steps on the basis of n = 2740 pre-rendered input images. Every 20 camera
positions have 137 rendered instruction steps of the model.
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Figure 12.: Pipeline overview for the online task and test sets: RotationNet predicts the
instruction step on the basis of pre-rendered trained input images.

The offline and online task run in CPU or GPU mode. This option is an advantage to get a

wider support for many consumer devices, which are not able to run in GPU mode because

of limitations of the hardware or software. In the offline task, the advantage is to be more

independent to drivers and hardware, which are changing in very short time compared to

CPUs. In other words, the life-time of the implementation without any changes is higher

with the CPU mode than with the GPU mode. GPUs hardware or software is changing in a

shorter time compared to CPUs and is more limited.

At the beginning of the offline task, the “Airport Rescue Vehicle” model has to be converted

from LDRAW format to the “Alias Wavefront OBJ” format (OBJ). The rendering process

uses the open source rendering software BlenderTM to import the OBJ file and renders a

2D image for every instruction step and every camera view. After this process, the image

database containing 2740 images is generated which is used to train RotationNet. When

the training process is finished, the trained network is built and is ready to predict classes –

instruction steps – with 2D images as input. This is the real-world application of the before

trained system. In the next section, the creation of the image database is explained in detail.
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Importer

Renderer

Image Database

RotationNet

Figure 13.: Workflow of the import of the LDRAW model for the creation of the 2D images
from different views. After the images are rendered, the resulting database is
used as input to train RotationNet.

4.1. Framework Structure

The structure and organization of the framework is further explained. This is done to ease

the search of configurations, rendered images or build files. In the GIT repository of this

thesis, neither build files are included nor the CAFFE framework (Jia et al., 2014) as runnable

configuration or an automated install script for all dependencies. In the following, the folder

structure and the description of the content are listed:

build in the build folder, all files to build the system are stored. The build folder needs to be

created on a new system. In the resources folder, a snapshot of RotationNet’s Caffe

CONFIGURATION is stored. The file name is CAFFE-ROTATIONNET2-MASTER.ZIP.

This file has to be extracted to the build folder and then compiled. Previously installed

all dependencies are mandatory (see in Section 4.3.1).

conf contains the configuration files for every training run of RotationNet. The files are

training, validation and solver files in the PROTOTXT file format.
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data contains all the generated data with a version connection: rendered 2D images are

stored with the postfix _full_test, training output of RotationNet with the postfix

_train_data_white and evaluation data for the prediction evaluation with the postfix

_npy_plots.

framework contains all script files for various evaluations, helper scripts and deploy files.

Mainly the scripts are used for the prediction part of the system (described in Sec-

tion 4.3.3).

resources in this folder all resources which are needed to get a running RotationNet envi-

ronment and the 3D model are stored. Furthermore, the script files for the rendering

process to generate an image database (described in Section 4.2) are stored in the

sub-folder 2018-04-16-batchrender. The detailed organization is described in Sec-

tion 4.2.3.

4.2. Image Database

The “Airport Rescue Vehicle” model of the LEGO TechnicTM series is used as the reference

model in this thesis. The complexity of the model is comparable with a complex model in

industrial usage. Due to intellectual property protection regulations, the LEGO TechnicTM

digital model of comparable complexity is used instead of real CAD data. The real world

model of the “Airport Rescue Vehicle” (no. 42068) consists of 1094 parts and measures 42

cm high, 45 cm long and 15 cm wide (see the fully assembled “Airport Rescue Vehicle” in

Figure 14 ).

4.2.1. The Digital Model

The corresponding digital model of the “Airport Rescue Vehicle” (no. 42068) is generated by

PHILIPPE HURBAIN. It is published under the license CCAL VERSION 2.0 at LDRAW.ORG.

33

https://ldraw.org


4.2. Image Database

Figure 14.: The real world LEGO TechnicTM “Airport Rescue Vehicle” (no. 42068) captured
with a camera. This model is not available on the market anymore.

The model can be downloaded from OMR.LDRAW.ORG. Figure 15 shows a semi-transparent

rendering of the model including its inner parts. According to the official publication website,

Figure 15.: The test set of the new assistance system is a LEGO TechnicTM model consisting
of 1094 parts that are assembled in 137 construction steps.
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the model was first published on 28.12.2017 and contains all parts and patterns but does not

contain any sticker drawings. The stickers of the real world model are omitted which does,

however, have no influence on the method as such.

The digital model is stored in the LEGO model data format (LDRAW). The LDRAW data

format stores metadata, the coordinate system, a unit factor, color information and line types.

Within the line types, all the information of the bricks for rendering are stored. The line type

contains a description of the geometric form, the coordinates and the color. One line type can

be used as a reference for other parts in a database or for named parts within a file. This gives

a throughout hierarchical and referenced linking data format organization. To correspond

with the official offline instruction book of the LEGO model the LDRAW format supports

the storage in an instruction step manner. Every instruction step includes uniquely necessary

information of this specific step. The detailed and complete LDRAW format specification

1.02 can be found at LDRAW.ORG.

4.2.2. Importer

The LDRAW IMPORTER converts a LDRAW model into an “Alias Wavefront OBJ” model

data. The detailed description of the LDRAW IMPORTER can be found in Section 2.5. In

this section, the internal organization of the LDRAW format in instruction steps is explained

in order to show the correspondence with the OBJ format named groups which are then used

for further processing the instruction steps.

4.2.3. Renderer

Once an OBJ file of the “Airport Rescue Vehicle” model exists, it can be rendered with a

rendering software. For this thesis, the free and open-source software BlenderTM is used

in the version 2.79. The OBJ file of the “Airport Rescue Vehicle” model is imported into
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BlenderTM and positioned at the origin. The named groups are imported as meshed grids

and the camera positions for the rendering process are stored in a python script named

batchrender_blend.py. This python script configures the camera position views, rendering

options and the parallelization of the rendering itself.

python run_blend1.py –N <number of processes>

run_blend1.sh

blender -b -nojoystick -noaudio
env1.blend –python batchrender_blend1.py

– <start_index_of_camera> <end_index_of_camera>

Figure 16.: Flowchart of the rendering process with BlenderTM. As input file, a previously
converted blend file with the imported “Alias Wavefront OBJ” model is used.

In Figure 16 the flowchart with all included scripts, arguments and dependencies of the

rendering process are shown. The named scripts are stored in the GIT repository in the

directory ./resources/2018-04-16-batchrender/.

4.2.3.1. Configurations

The python script batchrender_blend1.py stores the coordinates of the used camera positions

for rendering all instruction steps. This is a list of the x, y, z-coordinates of the position

of the cameras. Every x, y, z combination describes one camera. The view direction of

every camera is automatically adapted to the origin. The size of the camera positions is 20

because it is distributed over a dodecahedron on a unit sphere, which is explained in detail in

Section 3.1.1.2. To get an optimal zoom factor for the rendering, the unit circle generated

coordinates are scaled with a fixed scaling factor of 2.5. With this scaling factor, the whole

model is fully rendered without any parts missing in all instruction steps seen from all views.
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Furthermore, the space of the image is ideally positioned within the limitations of the image

size, to regard a high and confident information detail level.

4.2.3.2. Render Engine

BlenderTM supports different render engines. One of them is the CYCLES renderer CYCLES-

RENDERER.ORG which is developed by the BlenderTM project. CYCLES is configured to

use global illumination and GPU support for the rendering process. The output image is set

to a resolution of 512×512 pixels with 50 samples and a clamping of 0.01. The clamping

option influences the existence of fireflies – noise – in the rendered image. For BlenderTM,

a suggestion for eliminating fireflies is given on QUORA.COM: the aspect ratio and the

resolution is set to 1 and 100. This render process uses 8 threads and the background is set to

white. No shadows or other local illumination is added. The RGB color format is used for

the color representation.

4.2.3.3. File Name Specification

The file name of rendered 2D images follows the rules of placeholders, which are explained

in detail in Table 3.

Table 3.: The file name specification has six placeholders. Every placeholder has a specific
meaning (column two) and with this information a file can be immediately identified
by its file name. The third column gives an example of a real image file. The
placeholders are all concatenated with an underline (’_’), except for the last one
which is represented by a dot (’.’).

Placeholder Description Example
<filename> file name string render_FireCar_blend1

<step number> number from 100001 or ’ldraw’ 100001
<camera pose number> number of camera position 000

<pre-steps used> ’A’ (no pre-steps) or ’M’ (pre-steps) M
<color channel> color channel as string RGB

<file format> file format as string png
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The specification (see in Table 3) of the file parts is combined to a complete string. The

specification and an example of the complete, concatenated file name string is shown in

Table 4.

Table 4.: Specification of the complete string of a 2D image file name. The first is the
concatenated string with placeholders and the second is an example. This example
is named render_FireCar_blend1, step 1, camera position 0, with pre-steps, RGB
as color channel and the file format is png.

Specification:
<filename>_<step number>_<camera pose number>_<pre-steps used>_<color channel>

.<file format>
Example:

render_FireCar_blend1_100001_000_M_RGB.png

As <file name>, the OBJ file name of the imported model is used. The <step number> is the

instruction step number starting with 100001 or “ldraw” for the step 0. The <camera pose

number> is the index of the camera position in the list of defined cameras in the render script.

The <pre-steps used> symbolizes with the parameter A that no pre-steps are rendered and

with the parameter M that previous steps exist in the image. Finally, the <color channel>

string describes the used color channel, e.g., RGB or HSV. As file format, the png format is

always used.

4.2.3.4. Sequence

After these configurations, all camera view positions are scaled with the scaling factor of

2.5. Then, all the views are iterated. In this iteration, the camera is selected and the direction

of where it is looking is calculated. After that, every mesh group is hidden for rendering in

order to start from the first step. Two iterative sub steps are then made. First, every mesh

group is rendered without all pre-groups. This results in a 2D image which has only the

actual instruction step information stored. Second, every mesh group is rendered with all

pre-groups. This results in the iterative representation of the reassembled model. For this

thesis, the images which are rendered for the second time are used.
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4.2.3.5. Parallelization

For the rendering process some optimizations and modifications are made in the context of

parallelization. The rendering is a time-consuming process, which profits from parallelization

on a multi-CPU or HPC system. Two parallelization options are handled. The first is the

parallelization of rendering one image. The second is the parallelization of rendering several

images. This brings an advantage on big multi-CPU systems or clusters.

BlenderTM supports parallelization for the rendering of one image. In detail, the image is

partitioned. The partitions are rendered separately each in one thread and combined at the

end to get a complete image of the rendering. For this, eight threads/partitions are used.

Figure 17.: Illustration of the parallelization of rendering with BlenderTM. The main process
is started with the python call of run_blend1.py. N = 4 in this case, which is
equivalent to 4 BlenderTM processes. Internally, BlenderTM renders one image
with 8 threads. Summarized, 32 CPU cores are created to render the whole
database. The main process waits until all child processes are finished.

For the second parallelization a workaround is implemented because BlenderTM has no

option for this use-case. BlenderTM has the limitation that only one rendering per instance

is possible. A first approach is to use the python parallelization framework to start more

than one rendering process at a time, but this is not easily possible with BlenderTM. The
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second option is to start separate BlenderTM instances simultaneously, where every instance

renders a part of the camera positions. All instruction steps are sub-parts of camera positions.

This is implemented with the python script run_blend1.py and the shell script run_blend1.sh.

run_blend1.py uses the python parallelization framework and partitions the camera view list

equally. For every equal part the shell script run_blend1.sh is called up with all mandatory

arguments. Every instance runs on a specific part and in the end all 2D images are rendered

successfully.

The python script takes as argument the number of process pools (–N), which have to be

created. In every process pool one BlenderTM instance is started. The number of pools must

be a factor of the size of camera positions which results in an integer value, e.g., if the camera

position is Nview = 20, N must be an even number. If this requirement meets N pools, N

instances of BlenderTM, are started with the help of the shell script run_blend1.sh. Three

non-optional arguments are needed by the start script:

1. start index in the camera list,

2. end index in the camera list,

3. import an OBJ file or load a blend file.

4.2.3.6. Output

The first two arguments (1) and (2) as described above are representing the index of the

camera view list. The argument (3) is a boolean value which controls how the model is stored.

As the best practice, the usage of a blend file, which is the BlenderTM file format, is used for

faster proceeding. The reason for this is that the blend file is ready much faster compared to

an OBJ file. First the OBJ file must be imported to get the internal BlenderTM structure. In

comparison, in a blend file the internal mesh structure is already available. For this thesis,

the blend file was created manually.
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When the rendering is finished, Nimages = 2740 2D images are rendered from Nsteps = 137

instruction steps seen from Nviews = 20 views. These 2D images represent the image database

to train RotationNet. The HPC system, which is used for this thesis, runs two days to finish

the training of the complete image database.

4.3. RotationNet

In this section, the implementation details of RotationNet are explained. The major two parts

of RotationNet are the training process and the prediction process. RotationNet is important

for instruction step prediction and is a tool for image classification. The prediction process is

what is earlier explained as the online part of the system. Before the classification can be

run on different devices, e.g., a Microsoft HololensTM, RotationNet needs to be trained. The

training is the last step in the offline part of the system. The RotationNet implementation

published by (Kanezaki et al., 2018) is found on GITHUB.COM. This implementation uses

the CAFFE framework by (Jia et al., 2014), which is supported to run on CPU or GPU.

The clearly arranged folder structure is important for finding the right script for the specific

use-case. Furthermore, the script references to data files or config files, which are referenced

relatively to the scripts. For a working environment the structure should be left untouched.

An overview of the folders can be found in Section 4.1.

4.3.1. Prerequisites

The most important prerequisite for a running RotationNet environment is the CAFFE frame-

work. CAFFE comes with some basic and helpful scripts for converting the dataset and scripts

for analyzing the training process log files. It is written in C++ and supports a PYTHON

INTERFACE for the python version 2.7 and 3.3+ with numpy (≥ 1.7). Further prerequisites

are one “Basic Linear Algebra Subprograms” (BLAS) out of the following three implemen-
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tations: ATLAS, MKL BY INTEL R© and OPENBLAS. For this thesis, the chosen library

is OPENBLAS. Other prerequisites are protobuf, glog, gflags, hdf5, BOOST, OPENCV,

lmdb and leveldb. For this thesis, no GPU support is needed and so it is neither installed nor

configured. All the processings are running on CPU.

With these libraries installed, the CAFFE framework can be compiled. On GITHUB.COM

the complete configuration of RotationNet, which works with the CAFFE framework, is

published. Two parts have to be built: the basic framework (make) and the python interface

(make pycaffe) one after the other.

4.3.2. Training

Originally, RotationNet uses the ImageNet Large Scale Visual Recognition Competition

(ILSVRC) from 2012 (Russakovsky et al., 2015) dataset for the training and fine-tunes the

network with the database of ModelNet10 or ModelNet40. These datasets have not much in

common with the instruction step based assistance system used for this thesis. In Section 4.2,

the database created for this thesis is described. Here, the configurations of RotationNet are

modified to fit the created database.

For the configuration of training the CAFFE framework three different files are used:

1. a solver file, which refers to

2. a train file, and

3. a validation file.

All the files are text files with the file extension PROTOTXT. The solver file (1) is the main

configuration file entry to train a network with CAFFE. This file refers to the train file

(2) and the validation file (3). Furthermore, training, i.e the momentum, snapshot option,

weight decay, and validation (test iteration), test interval, parameters and snapshot options
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Listing 4.2: Configuration changes of a train file to fit to train the 2D images of the “Airport
Rescue Vehicle” model.

1
2 l a y e r s {
3 . . .
4 image_da ta_param {
5 s o u r c e : " . . / . . / d a t a / t r a i n . t x t "
6 b a t c h _ s i z e : 40
7 . . .
8 }
9 }

10
11 l a y e r s {
12 bot tom : " f c 7 "
13 . . .
14 i n n e r _ p r o d u c t _ p a r a m {
15 num_output : 2760
16 . . .
17 }
18 }
19 l a y e r s {
20 . . .
21 my_sof tmax_loss_param {
22 s t r i d e : 138
23 u s i n g _ u p r i g h t : f a l s e
24 }
25 }

are defined in this file. In Listing 4.1, a used solver file for the training task of RotationNet

for the assistance system is listed.

Listing 4.1: An example configuration of a solver file. This configuration is used for the

evaluation of the method.
1 t r a i n _ n e t : " . . / . . / con f / r o t a t i o n n e t / T r a i n i n g / r o t a t i o n n e t _ a r c s _ c a s e 2 _ t r a i n _ 0 6 1 . p r o t o t x t "

2 # t e s t _ n e t : " . . / . . / b u i l d / r o t a t i o n n e t −m a s t e r / T r a i n i n g / r o t a t i o n n e t _ a r c s _ c a s e 2 _ v a l . p r o t o t x t "

3 # t e s t _ i t e r : 40

4 # t e s t _ i n t e r v a l : 1000

5 b a s e _ l r : 0 .0005

6 l r _ p o l i c y : " s t e p "

7 gamma : 0 . 1

8 s t e p s i z e : 20000

9 d i s p l a y : 20

10 m a x _ i t e r : 40000

11 momentum : 0 . 9

12 w e i g h t _ d e c a y : 0 .0005

13 s n a p s h o t : 1000

14 s n a p s h o t _ p r e f i x : " r o t a t i o n n e t _ a r c s _ c a s e 2 _ 0 _ 6 _ 1 "

15 so lve r_mode : CPU

All configuration parameters are the same as published by RotationNet with modifications of

the train file and disabling of the validation file. The snapshot prefix has the version number

appended, i.e. _0_6_1, to the base name rotationnet_arcs_case2. The string is not fixed and

the specification is for better tracking and identification. Before the training can be started,

the train file must be modified. These modifications are listed in Listing 4.2. First of all, the
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last layer of the network, the output layer, is modified. The output parameters are changed

to 2760 for the second last layer and the stride parameter to 138 for the last soft-max-layer.

Detailed explanation of the values are described in Section 3.2. All other parameters are left

untouched, except for the optional change of the batch size parameter of the input layer.

The batch size of the input layer influences the processing time on the running system. If the

system runs on a CPU based system, the batch size should be lower than the size of CPU

cores on a system. In other words, the CPU cores limit the batch. On a GPU the memory

is limiting the batch size, due to the different structure compared to a CPU. With a batch

size too high for a specific system, the processing time increases rapidly due to scheduling

interruptions. The training process for the “Airport Rescue Vehicle” with the image database

and a batch size of 40 takes about two days running in CPU mode using a HPC with 54

Intel R© Xeon R© CPU cores at 2.60GHz.

Another important parameter of the input layer is the source option. In Listing 4.2, the source

file is ../../data/train.txt. This file has specified a mapping between the training images file

name and the class of the image. This is needed for the optimization of the parameters of

the network in the training process. In Table 5, the mapping specification and an example is

shown. It is important to use the train.txt and val.txt appropriately with the right class and

Table 5.: The internal structure of a train.txt file. There are two placeholders per line in the
file, the image path (<path>) and the corresponding training class number (<class>).
An example for one line is also given. This structure is the same as for a val.txt file.

Placeholder Description Example
<path> file name string render_FireCar_blend1_step_100001_000_M_RGB.png
<class> number of class 0

Specification of one line:
<path> <class>

Example of one line:
render_FireCar_blend1_step_100001_000_M_RGB.png 0

paths over the whole input dataset. Any misconfiguration is difficult to find which results in

a poorly and faulty trained network.
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4.3.3. Prediction

The prediction depends on and corresponds to the configurations made in the training part.

CAFFE uses another configuration file for this, the deploy file. The deploy file can be

generated out of the training file or the file from RotationNet can be modified. The last two

layers must be changed like in the training step to 2760 output parameters for the second

last layer and 138 to the stride parameter of the last layer. With these modifications to the

configuration of the CAFFE framework, predictions of images of the assistance system can

be made.

Furthermore, the output data of such a prediction of the network is further processed. For

this, RotationNet’s framework and script files are modified. In its default configuration

RotationNet uses the output data of the network and calculates the scores of all classes and

views by performing a probability maximization (see Section 3.1.3). The outcome is that

the prediction of the class and view is displayed as a string. The output of the framework is

implemented in the python script file save_scores.py. The function depends on mandatory

and optional arguments. The arguments are listed in Table 6. The source code is changed

to support a mean_file in the BINARYPROTO file format, which is the default CAFFE format

for mean files. The mean file stores the mean of all images in the training dataset. The

BINARYPROTO file is converted to the NUMPY format, which is internally used by all python

scripts. This conversion of BINARYPROTO to NUMPY is low high-performance because it is

running on the same file on every script call. Therefore, the optimization is as follows: for the

converting of the mean file the script file convert_binaryproto_to_npy.py is created, which

takes as input the BINARYPROTO file and outputs the NUMPY file. For that, the optimization

is as follows: the mean file is pre-converted with the script convert_binaryproto_to_npy.py,

which takes as input a BINARYPROTO file and outputs a NUMPY file. With this pre-step, the

NUMPY file is loaded directly in the right file format for further proceeding with python.

The output NUMPY file stores all output parameters of the prediction task of RotationNet.

The data structure for one image is the probability of every instruction step and every view
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Table 6.: Arguments in the usage of save_scores.py.
Argument Description
input_file Text file of images to predict

output_file Prediction output as npy
mean_file Mean of the training files
model_def Deploy file of the network structure

pretrained_model Trained model by RotationNet
gpu GPU or CPU mode

center_only Prediction of center crop only; not averaging prediction over crops

plus the indirect view per instruction step. If more than one image is predicted by the

network, the data structure extends to a multi-dimensional array with the dimensions of

Nimages ·Ninstructionsteps. In other words, for every input image a prediction for all instruction

steps and views, including the incorrect view per instruction step, is stored. This multi-

dimensional array is then used to calculate the probability maximization over the data.

RotationNet deploys the file classify_npyfile_case2_all_views.py for the probability maxi-

mization. The source is changed to use it directly in-line in the script run_all_tests.py. The

functionality of the prediction is the same. First, the score NPY file and the class names are

loaded. Then the scores are normalized to the incorrect view value and the incorrect view

probability is set to zero for every instruction step. After that, the probability maximization

is calculated over all images. Finally, the class with the highest probability is returned

and the accuracy is calculated. The last point is extended to get more detailed statistics of

the probability maximization. The instruction step with the highest probability is returned,

furthermore the difference to the ground truth class and the Top-5 classes with the five highest

probabilities (see in Section 5.2.4). This probability maximization is limited to the view

position distribution on a dodecahedron (described in Section 3.1.1.2). For any other position

distribution, the script file must be changed and extended.
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5. Evaluation
In this Chapter the evaluation and its corresponding results are described. The complete

pipeline (see Figure 13 in Chapter 4) of the training and classification is evaluated and the

results are shown in this chapter. Every modification affects mostly the complete workflow,

except the Importer step. As first step, the image rendering output is evaluated to get a good

image database. The trained network is tested with three different cases of images captured

from: training positions, unknown positions and real data. Finally, the accuracy rates are

compared.

5.1. Image Rendering

The first step is to evaluate the rendered 2D images before a training process of the system

makes sense to be performed. The main focus of the evaluation is on the parameters of

the rendering process, the camera positions and the parallelization. These parameters are

modified and optimized. The earliest test runs are made to optimize the scale factor and to

remove the undesired noise – the occurrence of fireflies – in the 2D images. The camera

positions are normalized to the unit sphere and the scale factor must be adjusted so that the

complete model fits into the image for every instruction step (see Section 3.1.1.2). After the

first complete run, for this thesis the processing time of rendering all 2D images was not

satisfying and so the process needs further improvement.

The camera positions in the earliest renderings were not distributed on dodecahedron as

explained in Section 3.1.1.2. Every position differ from the dodecahedron camera positions.

However, the image database of this rendered 2D images were not discarded. They are used

for the unknown positions evaluation in Section 5.2.2. In a further step, the background color

was changed from black to white to adapt to a more ideal real-life connection.
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5.1.1. Results of Rendering

The rendering process shows the occurrence of fireflies in all 2D images of a complete set of

rendered images. In this context, a complete set includes all instruction steps and all camera

views. These fireflies can be seen in Figure 18 in the center of the object. The background is

black and the used color space is RGB. Another challenge was to tackle the optimal scaling

Figure 18.: Renderings with fireflies in the middle of the images and black background. The
images are rendered to represent the instruction step 136 and 137 from the same
view position.

factor to get the same amount of important information in one image. This is a maximization

of the model to fit into the image bounds without any cropping over a complete dataset. In

Figure 19, scaling was not adequate for all views. This means that the distance between

camera and model is too short and the model is not fully rendered and subsequently cropped.

After tackling all the challenges for the Renderer part, a base database, used as training

images for further evaluations with RotationNet, exists. A sub-set of rendered images of the

database is shown in Figure 20.
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Figure 19.: The left image shows the model completely rendered into the image bounds. The
right image is cropped at the left border which results in an information loss. The
instruction step of the two images is 137 with different view positions.
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step #1 step #5 step #9 step #13 step #17

step #21 step #25 step #29 step #33 step #37

step #41 step #45 step #49 step #53 step #57

step #61 step #65 step #69 step #73 step #77

step #81 step #85 step #89 step #93 step #97

step #101 step #105 step #109 step #113 step #117

step #121 step #125 step #129 step #133 step #137

Figure 20.: The construction of the “Airport Rescue Vehicle” comprehends 137 instruction
steps. This overview shows the result after every fourth instruction step. All
views are rendered with the same camera perspective. Differences between
individual steps are not always apparent from all views.

50



5.2. Training and Classification Results

5.2. Training and Classification Results

Three different test series have been performed in order to evaluate the applicability of the

modified version of RotationNet on the “Airport Rescue Vehicle” model. The task series is

done to find out how well RotationNet performs in correctly identifying the construction

steps for the “Airport Rescue Vehicle”. The test series return a Top-1 as well as a Top-5

accuracy rate which is displayed in Table 7.

5.2.1. Training Positions

In the first test series, all the images that have already been used to train the system are reused

to test the system:

SetTest = SetTraining (5.1)

In detail, for each class (137 in total) the 20 images of pre-defined camera positions distributed

over a dodecahedron sphere (see Figure 12) are used, and the system returns the correct class

(main objective) and the correct pose (secondary objective).

5.2.2. Unknown Positions

The second test series uses the same CAD model with new camera positions. A set of 24

view positions, which are not included in the training set, are distributed equally on a sphere

as suggested in “Simple and Efficient Normal Encoding with Error Bounds” by (Schinko

et al., 2011). In other words, the test set is disjunct to the training set:

SetTraining∩SetTest =∅ (5.2)
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5.2. Training and Classification Results

5.2.3. Real Images

The final test series consists of real-life captured images. Using a video camera, a sequence

of images is captured for one instruction step and the sequential frames are used as input for

the trained network. Each image is converted to RGB color space, cropped to aspect ratio

1 : 1, and re-sampled to 256×256 pixels to meet the requirements of the system for input

images. Figure 21 shows an example frame, which has been extracted from a video at an

early stage of the assembly.

Figure 21.: The assembly of the “Airport Rescue Vehicle” has been recorded at different
stages. The extracted frame (cropped and scaled to 256×256 pixels to meet the
requirements for input images) shows the CAD model at an early stage.
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5.2. Training and Classification Results

5.2.4. Results

For every experiment, the success rates for the correctly identified construction step is referred

to as Top-1; the correct construction step within the classification set with the five highest

probabilities is referred to as Top-5. The results of the experiments are listed in Table 7.

Table 7.: Top-1 and Top-5 accuracy rates of the three test series (1) with rendered images
already used for training, (2) with newly rendered images exclusively used for
testing purposes, and (3) with real images captured using a video camera.

Test Set Top-1 Accuracy Top-5 Accuracy

Training Positions 8.03% 27.74%
(see Section 5.2.1)

Unknown Positions 4.38% 7.30%
(see Section 5.2.2)

Real Images 0.73% 0.73%
(see Section 5.2.3)

The Top-1 success rate of the test series using images already used to train the system

(described in Section 5.2.1) is 8.03%. The Top-5 success rate of this test series is 27.74%,

which is a rise compared to the Top-1 rate by a factor of 3.45. In Figure 22 the divergence

between the Top-5 error and the ground truth of the instruction steps. If the test series

comprehends newly rendered images exclusively used for testing purposes with unknown

positions (see Section 5.2.2) the success rates drop to 4.38% for Top-1 and to 7.30% for

Top-5, respectively. In the real-world scenario, the success rates drop to 0.73% in both

categories, Top-1 and Top-5. For these results, the image rendering optimizations are vital for

the test sets of training positions (unknown positions). For real images, the results are more

of a random process because one class out of 137 is predicted for different sequences. This

means that modified RotationNet has a better performance when the images have already

been trained by the system. It performs worse when the camera positions are unknown. Real

images have comparatively the lowest accuracy, both in Top-1 and Top-5 accuracy rates.

The overall result shows a fairly low accuracy rate. For this reason, a survey is additionally

performed (see Chapter 6).
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5.2. Training and Classification Results

Figure 22.: Difference between the ideal line (orange) and the Top-5 error rate of the training
positions (top plot) and the unknown positions (bottom plot). In some clusters
the Top-5 error rate is bad and far away from the ground truth instruction step.
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6. Survey
A survey is conducted on order to compare the results of RotationNet with the performance

of humans. First, the questionnaire and the derivation of the hypotheses are described and

suggested. After that, the methodology of the evaluation is clarified. Finally, the results of

the questionnaire are statistically evaluated and discussed.

6.1. Questionnaire and Derivation of Hypothesis

The main target of this survey is to evaluate if the prediction probability of RotationNet differs

from the cognitive performance of humans to predict the correct instruction steps. Since the

success rate of RotationNet to predict the correct instruction steps is without a comparable

reference, this survey has been added. The original plan was to only use RotationNet to

predict the instruction steps with an acceptable success rate. Since this was not the case,

further investigations on other influencing factors is required. It is essential to compare

the cognitive performance of humans, which is highly flexible, with RotationNet, which is

pre-trained and tested with the 3D model at hand.

6.1.1. Interpreting the Questionnaire and Hypothesis

The questionnaire deals with the question of how the performance of humans and RotationNet

differ in the prediction of instruction steps. The special recognition and analysis of the models

from different view points and small geometrical shape details is of mandatory significance.

In almost all the literature of the research field of CNNs, the comparison is made with

different benchmarks, e.g., ImageNet or ModelNet, in a virtual environment and without

a connection to a real world application. In the literature most real world applications
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6.2. Method of Evaluation

are special cases without a general evidence. Therefore, the classification success rate of

humans and RotationNet is probed to get a connection to the real world usage. The following

hypotheses are suggested:

Hypothesis 0 (H0): The prediction probability of instruction steps of the “Airport Rescue

Vehicle” (no. 42068) model does not differ between humans and RotationNet.

Hypothesis 1 (H1): The prediction probability of instruction steps of the “Airport Rescue

Vehicle” (no. 42068) model differs between humans and RotationNet.

6.2. Method of Evaluation

6.2.1. Sample Description

Altogether N = 69 attendees took part in the survey. Three test persons did not fill out the

questionnaire completely, the questionnaire was not returned or the answered numbers were

out of range of the possible answers. These participants were excluded. The adapted sample

size is N = 66. As a consequence, the return rate is r = 95.7%.

The original results of RotationNet are used as models for the survey. The survey consists

of two parts. On the one hand, there are images which have been used in the training

process. These images are all rendered in the same position. On the other hand, unknown

images – images rendered in different positions than the training images – are used as the

questionnaire.

The resulting data is evaluated with the help of python and the two python libraries numpy

and scipy. The clearance of data is made after the end of the survey where not completed

or not returned questionnaires are marked as “missing” and the values are deleted from the

dataset.
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6.2. Method of Evaluation

6.2.2. Set-up

The questionnaire includes an oral explanation, one A4 answer sheet and two A4 reference

sheets. Demographic data is not requested. The evidence of the attendance is evaluated,

which has no central importance for calculating the results. The completed survey reference

and answer sheets can be consulted in the Appendices A and B.

6.2.3. Instructions

All instructions are given orally at the beginning of the survey. The attendees gave their

consent to the note of anonymity, confidentiality and voluntariness. Relevant information

for filling out the answer sheet appropriately was given. A numerical classification of the 16

images on the answer sheet to the 40 images on the two reference sheets had to be made. The

instructor was answering the attendees any questions or ambiguities about the questionnaire

without giving any help for the numerical classification.

6.2.4. Questionnaire

All participants were asked to find the best correspondence between the 16 question images

on the answer sheet to the 40 construction images on the reference sheets. The images were

printed in high resolution and in color. The reference construction images were numbered

and ordered increasingly by the sequence of instruction steps. Furthermore, the view position

was fixed to one specific position for all reference images. The 16 images on the answer

sheet were randomly ordered and displayed in different view positions. A single choice had

to be made for each question, whereas the same answer could be given multiple times on

different questions. There has been no time limit to answer the questionnaire. The main task

was to find the best fit in the eyes of the participant in this survey.
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6.2. Method of Evaluation

6.2.5. Test design and material

This survey was executed as a paper and pencil test. It is a field study with a convenience

sampling. The survey was completed by employees and members of the Institute of Computer

Graphics and Knowledge Visualisationof Graz University of Technology (here referred to as

institute) as well as by master students and friends.

The present survey is conducted in order to deal with the comparison of the cognitive

performance of humans and of the results of the experiments of RotationNet. As a predictor,

human and machine is used.

Random mapping of the attendee to the conditions was not possible due to the research

question of human-machine. It is rather recorded what happens in reality in comparison

to the computer system. Therefore, a causal theoretical statement is only possible under

limitations. The ideal case is, however, empirical evidence to proof the causal hypothesis.

6.2.6. Survey execution

The survey took place from 05.06.2019 to 05.09.2019. The attendees were asked to participate

anonymously in the survey.

The group of master students were asked to take part in the survey during their lecture hours.

Alike, members of the “Institute of Computer Graphics and Knowledge Visualisation” and

friends were asked to participate.

The answering of the questionnaire took approximately 25 minutes on average. No attendee

had to ask any question. Due to this fact, it can be said that the instructions were clear and no

ambiguities came up.

58



6.3. Statistical Evaluation

6.3. Statistical Evaluation

6.3.1. Descriptive Statistics

The sample size of the survey is N = 66, where the attendees are master students, members

of the institute and friends. The frequency scale of the attendees is shown in Table 8.

Table 8.: Acquisition distribution of the test persons. The table shows the absolute value and
the corresponding percentage value in relation to the total value.

Test person absolute value relative value [%]
Master students 29 43.9
Institute members 12 18.2
Friends 25 37.9
Total (N) 66 100.0

The sample consists of N = 29 (43.9%) master students, N = 12 (18.2%) members of the

institute and N = 25 (37.9%) friends. The hypothesis of Section 6.1.1 is evaluated and

calculated with the method of (Oliphant, 2006). The significance value is stated as follows:

values p≤ .01 are highly significant and values p≤ .05 are significant.

6.3.2. Hypothesis Results

The hypothesis poses the question whether a significant difference between the cognitive

performance of humans and the performance of RotationNet in the prediction of instruction

steps exists. The result is that it shows no significant difference between the two. However,

with the trends a result can be interpreted as follows: the results of the experiments and the

survey are compared to each other. The results of the configurations described in Section 5.2.1

and in Section 5.2.2 are referred to as Training Positions and Unknown Positions, respectively;

the survey results are referred to as Survey.

All results are listed in Table 9. In addition to Table 9, the results are also visualized in a

Box-and-Whisker plot in Figure 23. Using real images, the modified RotationNet system
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6.3. Statistical Evaluation

Table 9.: This overview lists the results of the modified RotationNet system compared to
human persons as assessed in the survey. It shows the error distribution measured
as deviation between the correct instruction step and the estimated instruction step
by the system, resp. the guessed instruction step in the survey.

Test Set
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Training Positions 0 0 1 4 24 3.219 4.828
(test size n = 2740)

Unknown Positions 0 3 8 16 36 10.175 8.875
(test size n = 2740)

Survey 0 0 1 5 56 4.329 7.108
(test size n = 1056)

has an accuracy on the scale of a random process. Using rendered images, the accuracy

improves significantly (see Table 7).

As a consequence, only tests with rendered images are further analyzed: testing the system

with images already used during the training phase, the system achieves an error of 3.219 on

average; i.e. the prediction of the instruction step is on average 3.219 steps off. In the case of

images which are unknown to the trained system, the error rises to a difference of 10.175 steps

on average. The average human error measured by the survey is 4.329 steps; i.e. the human

performance is clearly better than the system with untrained images. With trained images,

the system is slightly better. However, the improvement is not significant: since both data

sets do not follow a normal distribution and no common distribution can be assumed either

(according to Kolmogorov–Smirnov tests), the determination of the confidence intervals of

the expected values is according to (Oliphant, 2006). The confidence intervals of the expected

errors remain disjunct up to p = 0.081 – a value usually considered to be non-significant.
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Figure 23.: The error distribution as listed in Table 9. The training, unknown positions and
the survey data with its clustered outliers, median, and quartiles are shown. The
survey has the most outliers compared to the others.
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7. Conclusion and Outlook
The aim of this thesis is to test RotationNet in a practical application in order to find out its

real-life usability. For this use-case, a database of an instruction step-based 3D CAD model

is generated and used to train the instructions using RotationNet. The goal is to predict the

current instruction step based on a simple image of the current assembly stage. As a second

means for the test, the prediction success rate of humans is tested in a survey. The combined

interpretation of machine learning results and survey results reveals limited applicability of

RotationNet for real-life purposes.

The first Chapter handles the theoretical surroundings of the research field. The relevant

information is explained which gives a deeper understanding of the whole research field

of image classification. The semantics and representation of images is described before

coming to the important part of image classification which is done in the context of deep

learning. Convolutional Neural Networks (CNN) are the state-of-the-art methods of image

classification. These are examined in detail because they are the basis of the method used

for this thesis, which is RotationNet. In the second Chapter, RotationNet is analyzed in

detail. The Chapter handles the positioning of the viewpoints, pose estimation, the training

and the prediction phase in this method. It gives an outlook on the next Chapter which

handles the modifications of this method. The next Chapter focuses on the implementation

and modification of RotationNet. The way the modified method is implemented is discussed

in this Chapter. The final two Chapters handle the evaluation of the modified method.

Evaluations is done through testing the system itself on the one hand, and comparing the

results with the human eye in a survey on the other hand. The next sections focus on the

results and possible improvements of the RotationNet method. An outlook is given for

possible future work.
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7.1. Lessons Learned

7.1. Lessons Learned

Several challenges that RotationNet faces have been identified. A vast amount of difficulties

have to do with the image resolution used. The input image resolution of RotationNet is

limited to a size of 256×256 pixels. This leads to the fact that important details are hardly

visible in many CAD renderings in this resolution. Furthermore, common cameras are

featured with a much higher resolution and their captured images have to be scaled down for

RotationNet. The down-scaling process affects the details in the target image negatively.

The viewpoints of the training data are equally spaced but the amount of the overall view-

points is not very high. Considering the fact that arbitrary viewpoints of CAD models can

be rendered with limited effort (compared to taking photographs), a higher resolution of

viewpoints on a sphere is suggested. The expectation is that the training data per class rises

and the number of unknown positions reduces. This will lead to a better recognition of

minimal details of the object model.

Another issue is the invisibility of certain assembly steps. The result of neighboring instruc-

tion steps looks almost identical when the model is near to completion. This effect occurs

when added bricks are occluded by others in the actual view. The ILSRVC image database

which is used in the original RotationNet implementation contains 40 different classes with

enough variance between the classes, e.g., car and dog. The differences between classes is

high. The image database in this thesis has more than three times of input classes (instruction

steps). This number is presumably too high for the network. Furthermore, there is not enough

variance within different steps. Some neighboring classes have little difference, because the

images for these instruction steps contain almost the identical information. This means the

differences between classes is not very high and this weakens the class prediction.

Furthermore, when applying the new system to a real-life scenario, there is always a back-

ground behind the object model. The background information includes background noise

and indirect model information such as local or global illumination and shading. The used
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7.2. Improvements and Future Work

training images, however, do not contain any background information or noise at all. Cur-

rently, it is not clear how to train a network to handle background noise without having to

manually capture many different backgrounds at unacceptably high costs.

Finally, the survey shows that it is difficult for the human eye to distinguish the instruction

steps from each other as well and to assign them to the right image. The viewpoints have a

strong influence on the detection of the right step and the low resolution makes it difficult to

identify the right images.

7.2. Improvements and Future Work

Using a higher resolution for the images is the most important step when improving Rota-

tionNet in order to get more detailed information of the model per image. This improvement

effects the granularity of details and the distinction between the instruction steps; this means

that the differences between the single instruction steps raises. In a real-world scenario

the images captured by a camera have a higher resolution and must be down-scaled. The

down-scaling algorithm has negative influences on the preservation of details and may cause

noise. To improve RotationNet, the input size and the parameters must be adapted to a higher

resolution which needs, however, higher computational power for training and prediction

task.

The resolution of the viewpoints on the sphere is equally distributed on a dodecahedron but

the amount of viewpoints is not sufficient for real-world use. A higher resolution would

lead to more training data which can be learned by the system which would result in a better

prediction. This improvement needs higher computational power only during training and

not in the prediction phase which is a benefit for the application of the system.

An overall challenge of all methods is the influence of the background on the recognition

of the model. The recognition and reduction of background information may improve the
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7.3. Outlook

prediction. At the training it is hardly possible to know in advance how the background will

look like in the productive application. The captured scene can be indoor or outdoor, with

various illumination configurations. One option may be a pre-segmentation of an image and

to pass only the extracted foreground to the prediction system. An advantage of this approach

is to leave the network input image size untouched and crop the interesting image parts to

this size. A downside is that it is difficult to find the right segment within the image.

7.3. Outlook

Augmented reality in combination with assisting systems is a promising research field which

will be developed further in the future. The current state-of-the-art is only the beginning

of the development of these systems to enhance the real-world with virtual information. It

can be applied, e.g., in the field of industrial or consumer business. This will contribute to

the industrial and consumer digitalization of processes and products. Once these systems

are well-established, instruction manuals as we know them today will be redundant and

boundaries concerning knowledge transfer can be overcome.

RotationNet is a thoroughly developed method which is working well under certain conditions.

Future work will show if it is possible to develop a method which can be applied to more

than one specific case or if its development will go into the direction of use-case-specific

designs.
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Steps 1–20

# 1 # 2 # 3 # 4

# 5 # 6 # 7 # 8

# 9 # 10 # 11 # 12

# 13 # 14 # 15 # 16

# 17 # 18 # 19 # 20
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Steps 21–40

# 21 # 22 # 23 # 24

# 25 # 26 # 27 # 28

# 29 # 30 # 31 # 32

# 33 # 34 # 35 # 36

# 37 # 38 # 39 # 40
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Questionnaire
Please assign the correct construction step to the following images:

# # # #

# # # #

# # # #

# # # #

B. Appendix

B 1
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