
Markus Bernhard Schütz, BSc

Development of a learning diary for a
MOOC platform

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Priv.-Doz. Dipl.-Ing. Dr.techn. Martin Ebner

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, November 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

The term ”learning diary” refers to a pedagogical tool, that is used by
people who are in a learning progress to improve and keep track of their
learning progress and learning process. This master thesis provides a de-
tailed explanation of the mobile implementation of a learning diary for a
MOOC platform. MOOC describes ”Massive Open Online Course”, which
is a course for people who want to learn online. The applications for An-
droid and iOS devices, which are the outcome of this master thesis, aim
for the goal to keep an overview of all courses and events of students and
help them increase their learning progress with the aid of gamification.
Gamification describes a process which implements gaming-elements in
non-gaming-contexts. The hypothesis given is ”A mobile learning diary
application for a MOOC platform can improve the learning progress of
students of the MOOC platform”. For the development of the applications,
detailed research about learning diaries, gamification and similar appli-
cations is necessary. Furthermore, a prototype is created, which defines
ideas, features and design, to ensure correct usability and user experience
for the users of the mobile applications. The result of this master thesis is
two applications, which are evaluated with the aid of a survey. This survey
is answered by users of the application. A detailed evaluation proves the
hypothesis as correct.

v

Kurzfassung

Der Begriff ”Lerntagebuch” beschreibt ein pädagogisches Werkzeug welches
von Personen genutzt wird, die sich in einem Lernprozess befinden. Es soll
dabei helfen, den Lernprozess und den Lernfortschritt zu verbessern. Diese
Masterthesis bietet eine detaillierte Beschreibung über die Umsetzung eines
Lerntagebuchs für eine MOOC Plattform. MOOC bedeutet ”Massive Open
Online Course” und ist ein Kurs für Personen, welche sich online weiter-
bilden möchten. Die Applikationen für Android und iOS Geräte, welche
aus dieser Masterthesis hervorgehen, haben das Ziel einen Überblick über
Kurse und Termine für die StudentInnen der Plattform zu behalten und
ihnen dabei zu helfen, den Lernfortschritt mit Gamification zu verbessern.
Gamification beschreibt einen Prozess der Spielelemente in einem nicht-
spielerischem Kontext implementiert. Die Hypothese dieser Masterarbeit
lautet ”Eine mobile Lerntagebuch-Applikation für eine MOOC Plattform
verbessert den Lernfortschritt der Studenten der MOOC Plattform”. Diese
Masterthesis evaluiert mit Hilfe der beiden Applikationen, ob diese Hy-
pothese sich als wahr beweist. Für die Umsetzung der Applikationen ist eine
detaillierte Recherche über Lerntagebücher, Gamification und ähnlichen
Applikation notwendig. Des Weiteren wird ein Prototyp erstellt, welcher
über Ideen, Features und Design entscheidet und dafür sorgt, dass eine
korrekte Usability und User Experience für die Nutzer der Applikationen
sichergestellt wird. Das Ergebnis dieser Masterthesis sind zwei Applika-
tionen die mit Hilfe einer Umfrage evaluatiert werden. Die Umfrage wird
von Nutzern der Applikationen beantwortet. Eine detaillierte Evaluierung
beweist, dass die Hypothese korrekt ist.

vii

Contents

Abstract v

Kurzfassung vi

1. Introduction 1
1.1. Goals & Objectives . 2

1.2. Methodology & Structure . 3

2. State of the art 5
2.1. Learning diaries . 5

2.2. Gamification . 7

2.3. Similar applications . 12

2.3.1. Milk . 12

2.3.2. Seesaw . 13

3. The prototype 19
3.1. Idea . 19

3.1.1. Colouring of courses and events 21

3.1.2. Notifications . 21

3.1.3. Creating events and learn goals 22

3.1.4. Creating notes . 24

3.1.5. Filtering events and automatic scrolling 25

3.2. Gamification . 26

3.3. Mockup . 28

4. Developing the applications 43
4.1. Strategy . 44

4.2. Android . 46

4.2.1. Project setup and libraries 46

ix

Contents

4.2.2. Implementing the Android version 50

4.3. iOS . 75

4.3.1. Project setup and libraries 75

4.3.2. Implementing the iOS version 76

5. Proof of concept 99
5.1. Prototype vs. application . 99

5.2. Survey & Evaluation . 108

5.2.1. The survey . 109

5.2.2. The evaluation . 114

6. Conclusion 125
6.1. Lessons learned . 125

6.2. Limitations & future work . 128

6.3. Summary & Outlook . 131

Appendix 133

A. Survey of applications 135

Bibliography 141

x

List of Figures

2.1. Screenshot of Milk showing targets and assessments 14

2.2. Screenshot of Seesaw . 17

3.1. Design of listing events and learn goals to the user 29

3.2. Design of creating an event (a), a learn goal (b) or a note (c) . 31

3.3. Design of listing subscribed courses to the user 34

3.4. Design of listing events, learn goals and notes of a specific
course to the user . 35

3.5. Design of listing received notifications to the user 37

3.6. Design of the Profile screen including gamification 39

3.7. Design of listing progress of subscribed courses to the user . 41

4.1. Login screen of Android application 51

4.2. List of events and learn goals in Android application 58

4.3. Detail view event - Android application 60

4.4. Creating event, learn goal and note - Android application . . 64

4.5. List of subscribed courses in Android application 65

4.6. List of events of specific subscribed course - Android application 68

4.7. List of received notifications in Android application 70

4.8. Profile including gamification - Android application 72

4.9. Colouring - screen of Android application 74

4.10. Login screen of iOS application 78

4.11. List of events and learn goals in iOS application 82

4.12. Detail view event - iOS application 85

4.13. Creating event, learn goal and note - iOS application 87

4.14. List of subscribed courses in iOS application 89

4.15. List of events of specific subscribed course - iOS application . 92

4.16. List of received notifications in iOS application 94

4.17. Profile including gamification - iOS application 96

xi

List of Figures

4.18. Colouring - screen of iOS application 98

5.1. Pie chart of answers for ”Do you like the design/appearance
of the app?” . 116

5.2. Pie chart of answers for ”Do or did you have problems con-
trolling the app?” . 117

5.3. Pie chart of answers for ”Do you think the navigation of the
app is confusing?” . 117

5.4. Pie chart of answers for ”Do you use the app at least once a
week in addition to an iMooX-Course?” 118

5.5. Pie chart of answers for ”After playing the tutorial, did you
have the feeling you understand the app?” 119

5.6. Pie chart of answers for ”After playing the tutorial, did you
have the feeling that you can control the app without any
problems?” . 120

5.7. Pie chart of answers for ”Does the app help you to keep an
overview of your courses and events?” 121

5.8. Pie chart of answers for ”Does the app increase your learning
progress?” . 122

xii

Listings

4.1. Gradle for module app . 48

4.2. Object Realm Level in Android 53

4.3. Object Realm Level in iOS . 79

xiii

1. Introduction

This master thesis confronts itself with the task of improving the learning
progress of users in an established MOOC platform. The MOOC platform
is already implemented as a web application and already has a community.
For increasing the learning progress, this master thesis targets a mobile
application, available for the two most used operating systems Android
and iOS on mobile devices1. This mobile application should represent a
learning diary that is combined with gamification. There exists a broad
field of researches, studies and books that dedicate to the proof of concept
of learning diaries. Cazan (2012, p. 413) describes learning journals as a
”self-guided way of writing that allows for elaboration and reflection on learning
content”. It is also explained, that the task of self-regulated learning is related
to improving metacognition, strategic action and the motivation to learn.
Clipa, Ignat, and Stanciu (2012) explain that learning diaries have a great
influence on the development of metacognitive strategies. Learning how
to learn is a main part of the academic background because it trains the
learning process of students. Both mention, that a learning diary improves
metacognition, which is the engagement with thoughts, opinions, mindset,
attention and creativity. (Metakognition 2019)

As mentioned, this master thesis combines a learning diary with gamifi-
cation. Nicholson (2015, p. 1) clarifies that ”meaningful gamification is the
use of gameful and playful layers to help a user find personal connection that
motivate engagement with a specific context for long-term change”. Seaborn and
Fels (2015) mentions, that gamification is an approach for motivating users
and rising engagement and enjoyment to non-gaming, computer-oriented
environments. Nicholson (2015) and Seaborn and Fels (2015) mention, that

1Market share of mobile operating systems worldwide 2012-2019 2019.

1

1. Introduction

gamification is used to raise the motivation to succeed and proof in a non-
game context area.

Using the researches regarding learning diaries and gamification executed
during this master thesis and respecting them in an application for Android
and iOS, it should be clarified that the hypothesis ”A learning diary for a
MOOC platform increases the learning progress of students” proves correct
and to which extent it proves correct.

1.1. Goals & Objectives

According to chapter 1, this section describes the goals and objectives of this
master thesis. Furthermore, it briefly describes why the goals and objectives
are defined.

• Gain knowledge of learning diaries, gamification and similar appli-
cations. This objective is set to respect researched information that
already had been done when creating the prototype and the applica-
tions. It is necessary to avoid mistakes and to provide a meaningful
application to the user.

• Design a prototype. Designing a prototype is necessary before devel-
oping the applications to define the ideas, design and features of the
applications.

• Develop an application for Android devices. Android devices are
the most used mobile devices2.Therefore it is reasonable to provide
an application to target students that are used to Android operating
systems.

• Develop an application for iOS devices. Devices that make use of
the iOS operating systems are the second most used ones. To target
the other main community, besides the users of Android devices, it is
necessary to provide an application for iOS devices.

2Market share of mobile operating systems worldwide 2012-2019 2019.

2

1.2. Methodology & Structure

• Improve overall learning progress of users. The hypothesis of this
master thesis claims, that the learning progress of users of the MOOC
platform improves when implementing a learning diary application
in addition to the MOOC platform. Therefore, it is necessary for the
applications that they target this main goal.

1.2. Methodology & Structure

The main structure of this master thesis consists of five chapters. The five
chapters are about state of the art, the prototype, development of the ap-
plication, proof of concept and a conclusion including an outlook and facts
about future work. Each of these chapters builds on the previous one. This
means the outcome and research done in state of the art is the input for
the part of the prototype. The output of the prototype is needed for the
development of the application. The chapter of proof of concept is based
on the application. The conclusion itself is based upon all other chapters
because it sums up the whole master thesis.

The first chapter is about the background of this master thesis. The topics
discussed in this chapter are about learning diaries, gamification and similar
application. In the section for learning diaries, a basic understanding of
learning diaries is provided. It describes how a learning diary works and
which goal it aims for. The section for gamification also provides a basic
understanding of the topic. It describes gamification in a way that is useful
for this thesis and what to watch out for. The section for similar applications
lists applications that provide a type of learning diary. This is necessary to
get an overview of what already exists in the context of mobile learning
diary applications.

The second chapter is about the prototype. It is built based on the infor-
mation gained in the first chapter. The process of the prototype contains
the idea of the application as well as a design and mockup. In the section
for the idea, all necessary information about the application is provided. It

3

1. Introduction

defines what the goal is and what the application should aim for. Further-
more, it defines the features that the applications should be capable of. The
design and mockup was created during the prototype process. It provides a
detailed design of how the application should look and how the features
should be implemented. The outcome of the prototype is important for the
third chapter.

The third chapter is about the implementation of applications for Android
and iOS. The versions for Android and iOS are separated. Each version
is explained in detail. Every necessary feature is described. For every fea-
ture, all necessary Views, ViewModels, Models and further resources are
explained. Each implementation is provided in a way, that a person who
has experience in developing applications for Android and iOS can rebuild
the applications. The applications are the outcome of this chapter. Based on
these applications, the survey and evaluation follows, which is described in
the fourth chapter.

The fourth chapter is about the proof of concept. It defines whether the
features described during the prototype process have been implemented
in the applications and to which extent they have been implemented. Fur-
thermore, the chapter contains the survey that was provided to the users
of the applications and its evaluation. The survey consisted of ten different
questions which lead to the possibility to prove the hypothesis of this master
thesis. The questions were about the design, navigation, controls and overall
usability of the applications. Furthermore, it clarifies the question, whether
the learning progress of the users has increased using the applications.
Overall, this chapter reviews whether the concept is converted successfully.

The fifth and last chapter summarises the master thesis. Besides summaris-
ing the master thesis, it also describes what should be implemented in the
applications in future work. A list of lessons learned is provided to prevent
future work from blocking because of the same problems that came up
during this master thesis. Finally, an outlook about the potential of the
applications is provided.

4

2. State of the art

This chapter explains the research which is necessary for the further un-
derstanding of this master thesis and the basic idea for the applications
which are the outcome of this master thesis. First, an analysis of learning
diaries is given. After that, gamification is described in general and for the
non-gaming-context education. After that, a list of applications that include
a learning diary is provided.

2.1. Learning diaries

A learning diary is a pedagogical tool. It is used by people, who are in a
learning process, to improve and keep track of their learning process and
progress. The learning behaviour is documented in the learning diary for a
certain time. The goal of a learning diary is to deal with the subject matter
and improve the understanding of it1.

A learning diary forces students to deal with the subject matter and review
the learning process. For that, the students write down which important
things they have learned and what was clear and what they did not un-
derstand. Therefore, the learning diary is a tool for the post-processing of
some lessons. The strong-text view is based on the assumption, that the
major part of our memory can only be accessed through verbalisation and
textualisation. Therefore, an open writing in the learning diary should be
possible to give the student the possibility to write down their memory and
consolidate the things they have learned. The writing-as-problem-solving-
view stands in contrast to this approach. In this approach, the writing is
considered as a problem-solving process, where students create a dialectical

1Lerntagebuch 2017.

5

2. State of the art

movement between a rhetorical and a semantic problem. This means, that
the students who align with this approach write down a high-quality text
to retain their memory. An example of this is the consideration of a specific
topic or a scientific article. (Spiel et al., 2010)

Even though it is not clearly specified what a learning diary deals with and
that it does not matter whether it is written by hand or digital, there are still
some basic conditions that have to be fulfilled to make it a learning diary.
The following points describe these basic conditions:

• Learning diaries are written. With the writing of the own learning
process, underlying thinking processes become externalised and expli-
cated. (Petko, 2013)

• Learning diaries are continuous. As described earlier in this section,
the writing of a learning diary targets progressive documentation
about results, misunderstandings and knowledge of learned subjects.
Students improve during writing the learning diary. So the goal is
not to finish a learning diary, but to learn during writing the learning
diary. (Petko, 2013)

• Learning diaries are personal. As part of the personal learning envi-
ronment, learning diaries are the responsibility of the student. Entries
in learning diaries are personal and a special permission for others
is required to view the learning diary. Entries and the learning diary
itself have to be protected from public access. In formal learning set-
tings, this principle can be handled differently. A complete orifice of
the learning diary involves the danger of not documenting unfinished
processes, but only presentable intermediate steps. This means, if oth-
ers get involved in the learning diary and can see the content, the
writer of the learning diary inclines to write down finished learning
processes and progress instead of writing down the current mood
about the learned subject in their own words. (Petko, 2013)

• Learning diaries are connected to learning contexts. Learning diaries
can be deployed in different learning contexts and depending on which
learning context the learning diary is connected to, the character of the
learning diary changes. In informal settings, the writing of a learning

6

2.2. Gamification

diary is usually a voluntary and self-responsible part of the own
learning strategy. In formal learning contexts, the writing of a learning
diary can be recommended or obligatory, for example as a part of a
learning exercise or as a part of a learning proof. Learning diaries
can exclusively be written for own reflection or for other receivers
like other students or teaching staff. With this approach, teaching staff
can get information about the learning progress, learning difficulties,
plans and the thoughts of the student. (Petko, 2013)

• Writing a learning diary does not automatically lead to reflection or
metacognition. The quality of learning diaries can differ. Deciding
aids to guarantee the conducive quality can be hints, examples from
other learning diaries or recursive feedback about the learning diary.
Usually, these types of aids only are available in formal contexts
of education. To avoid a contradiction to the personal character of
learning diaries, agreements about the handling of these aids have to
be made. Ideally, the aids must not replace the self-controlling of the
students but can be a supplement. (Petko, 2013)

2.2. Gamification

This chapter describes what the term gamification means, how it developed
and how it applies to a non-game context like learning. Gamification is an
approach for motivating users and increasing engagement and enjoyment of
non-gaming, computer-oriented environments. The typical people playing
games are 30 years old, 45% of them are female and are playing games like
puzzle solving, board or casual games. (Seaborn and Fels, 2015) Further-
more, Burke (2014, p. 6) describes the term gamification as ”the use of game
mechanics and experience design to digitally engage and motivate people to achieve
their goals”. Burke (2014, p. 6) breaks down this definition as follows:

• ”Game mechanics describes the key elements that are common to many games,
such as points, badges, and leaderboards.”

• ”Experience design describes the journey players take with elements such as
gameplay, play space, and storyline.”

7

2. State of the art

• ”Gamification is a method to digitally engage rather than personally en-
gage, meaning that players interact with computers, smartphones, wearable
monitors, or other digital devices.”

• The goal of gamification is to motivate people to change behaviours or develop
skills, or to drive innovation.”

• ”Gamification focuses on enabling players to achieve their goals—and as a
consequence, the organisation achieves its goals.”

Söbke and Zander (2018) describe the implementation of a quiz-app in a
course at university. The study shows, that the implementation of a quiz-app
in a didactic context was successful. Based on the high values for general
motivation, the deployment consisted of learning exercises, which were
approached with a high learning motivation. The scale of the motivation
was confirmed with the actual learning effort of the students. Therefore, the
combination of a didactic context with the gamification in form of a quiz-
app can be seen as successful, because the game mechanics of the quiz-app
lead to a high amusement. Nevertheless, in the study, Söbke and Zander
mention, that there is a need for optimisation which targets the questions in
the areas of knowledge as well as the regularisation of the competition of
single applicants. Furthermore, there is a need for an explanation whether
the didactic context can be applied to different specialised fields and how
students react if the didactic context keeps recurring in different areas. The
study of the quiz-app is described as a showcase of successful conjunction
between a didactic context and gamification to improve motivation. (Söbke
and Zander, 2018)

Hsin-Yuan and Dilip (2013) described in a survey, that while the concept of
gamification is rather simple, gamifying a concept is not. To overcome the
difficulty of applying gamification to an educational context and raise the
motivation of students to gain knowledge, they mention five steps. These
five steps help to create a concept of gamification and to understand how to
apply it to the educational context.

• ”Understanding the Target Audience and the Context”. The first step to
gain knowledge about how gamification is applied to an educational
context optimally is to understand the target group. This is a key factor

8

2.2. Gamification

in realising an education program that is about to use gamification. A
good understanding of who the student is, is necessary. Factors like
age, learning abilities and skills are necessary to know. Furthermore,
the context of where the gamification should be applied can lead to
more details about the students. For example, if a course at a uni-
versity starts right after lunch, students lack focus. Also, the type of
educational context is important to know when applying gamification.
In this step, it should be clarified whether the learning program takes
place in groups, what the size of the group is or whether every stu-
dent solves problems on their own. Besides, it is important to know
whether the course takes place in a classroom, in an office, at home, etc.
Hsin-Yuan and Dilip (2013) also mention the ”Common Pain Points
in Education”. These points include ”Focus”, ”Motivation”, ”Skills”,
”Pride”, ”Physical, mental and emotional factors” and ”Learning envi-
ronment & nature of the course”. These five points should be respected
in the first step of understanding the target group and the context.
(Hsin-Yuan and Dilip, 2013, p. 7-8)

• ”Defining learning Objectives”. This is the second step that needs at-
tention to accomplish the goal of gamification in education. This step
describes, that the instructor needs to be clear about what she/he
wants to accomplish by completing an educational program. The gam-
ification in education has to come with an objective that the student
should achieve at the end of the learning program. This leads to gen-
eral instruction goals, which for example can be an assignment, a
test, a quiz, an exam or a project. Specific learning goals lead to the
fact that the student understands a concept that allows her/him to
perform a task after training or completing a learning program. The
last possible objective includes behavioural goals which lead to the
state that the student has to concentrate in class, complete assignments
faster or minimise distractions. In sum, the instructor of an educa-
tional learning program has to be clear about the objectives she/he
wants the student to achieve during a learning program that includes
gamification. (Hsin-Yuan and Dilip, 2013, p. 9)

• ”Structuring the Experience”. This step includes the approach of struc-
turing the learning program and breaking it down to smaller tasks.

9

2. State of the art

This can lead to the implementation of stages and milestones. Mile-
stones are a handy tool that make it possible to define a learning
task. Each milestone can include a part of the learning program. The
milestones can build upon each other and this leads to the fact, that
a student has to accomplish one milestone to be able to get to the
next one. Furthermore, implementing milestones has the advantage
that the students can accomplish one task after another, instead of
seeing only the end of the project. This makes the goal of the learning
program seem more achievable. Furthermore, the advantage of the
instructor is, that she/he can measure the progress of the students.
If students lack motivation or are not able to accomplish a task or a
milestone,the instructor can react to it and change the conditions for
the milestone or break it down to smaller milestones. Furthermore,
the instructors can interact with the students to understand where the
problems are and how she/he can assist the students in accomplishing
the milestones and reaching the overall goal. (Hsin-Yuan and Dilip,
2013, p. 9-11)

• ”Identifying Resources”. This step defines the resources needed to im-
plement gamification in education. After the learning objectives and
milestones have been defined, an instructor can identify which tasks
and milestones can be gamified. Furthermore, this step defines how
the milestones can be gamified. There are five steps that an instructor
should focus on. The first is about a tracking mechanism. This defines
whether it is necessary to track the progress of students and which
tool can be used to measure the student’s progress. In combination
with this step comes the next step, the currency. This defines the unit
of measurement. Some units of measurement can be points, credits, a
leaderboard, etc. For example, when implementing milestones, a good
measure unit would be time. This means students have to accomplish
a milestone before a certain date. The next step is level. This defines,
after which amount of currency the student is allowed to move for-
ward within the learning program. With the example of time: If a user
has accomplished a milestone, she/he is allowed to move forward
to the next milestone. This is a type of ”leveling up”. The next step
defines rules for the gamification. The rules describe what a student
can or cannot do during the learning task and to achieve milestones.

10

2.2. Gamification

This introduces fairness and equality for all students. For example:
When defining a quiz as a milestone, the student has to reach at least
80% to accomplish the milestone. The fifth and last step includes feed-
back. This defines how the instructor and students can get feedback
about the learning progress. This also includes the quality of the tasks
completed. (Hsin-Yuan and Dilip, 2013, p. 11-13)

• ”Applying Gamification Elements”. This is the fifth and final step that an
instructor needs to focus on to successfully implement gamification
in education. This step defines what elements of gamification should
be applied to the milestones and the learning task. In general, two
types of game mechanics can be applied: Self-elements and Social-
elements. Self-elements can be points, levels, time restrictions and
everything where students are competing with themselves and can
achieve progress ”against themselves”. Social-elements define game
mechanics that include interaction with other students. This can in-
clude group games or a leaderboard where every student can achieve
points and compete against other students. That way, the students can
check their progress compared to other students. The game element
chosen can lead to different reactions from the students. The instructor
has to be aware of all the four steps mentioned earlier to make the
right choice for a game element. If the steps are not applied correctly,
this can, for example, lead to the fact that some students lack the skill
to accomplish a game element and therefore are not able to proceed in
the learning task. This can lead to frustration and leads to a lack of
motivation, which is exactly the opposite of what gamification should
lead to. Furthermore, the game elements should be applied in a way
that they are equal for all participants. An example of that is a leader-
board. A leaderboard is used during a milestone. This milestone, for
example, includes programming software. When uploading software
to a verification system that tests the software, the student gets points
for the number of tests the software passes. The leaderboard is re-
freshed in a certain time interval and the student can see where she/he
stands compared to other students. This leaderboard and verification
system has to be accessible at any time. For example, if the verification
system is only accessible in the evening it can be a drawback for some
students because maybe some of them are working in the evening.

11

2. State of the art

This has to be respected in terms of equality. (Hsin-Yuan and Dilip,
2013, p. 13-14)

2.3. Similar applications

This chapter provides a list of applications that represent or include learning
diaries. Some aspects of the applications can be applied to the context of
this master thesis. The applications show how a learning diary in a digital
environment can be implemented and how it will lead to success.

2.3.1. Milk

Milk is described as an interactive learning kit and a student work diary
app. The producers promise an increase of student engagement, parental
support, reducing administration and workloads for teachers, improving
school communications and learner-centered interaction. The application
is available on Android and iOS and is also web-based, which means that
students do not need a smartphone or a tablet to join the school community.
Milk reduces the administration required by teachers. Furthermore, students
receive a push notification whenever a teacher sends out homework or
messages. In combination, a teacher can verify whether a student has read
the message or the homework task. Teachers can also receive feedback via
the application. Students can rate homework and tasks, so the teacher can
adapt to the feedback. Students may think that the given homework was
too difficult or not appropriate. The teacher can adapt to the feedback and
change the homework according to the feedback given by the students.
Milk enables teachers, parents and students to see the students’ progress.
Schools and teachers can provide accessible feedback on the progress of the
students to the parents. This leads to the advantage, that parents can adapt
to the students’ progress in school more often instead of going to a parents’
evening once in a while. This improves the indirect communication between
school and parents. The messaging system of Milk is based on groups and
individuals. Teachers can create groups. An example of a group is a class. If
a teacher wants to send a message to this certain class, the teacher writes

12

2.3. Similar applications

a message to the group which represents this class. Furthermore, imagine
there is a class with boys and girls in it. The sports teachers may just want
to access the boys for instruction since the gym class may be separated by
gender. This way, the sports teacher can send a message only to the males
in the class and this avoids female students from receiving unnecessary
information. As mentioned earlier in this section, Milk is also web-based.
This means, that teachers cannot only access the application with their
smartphone, but also with their laptops. This makes it possible for the
teachers to work at home and send out homework at any time. This leads to
the fact, that students can receive push notifications on their smartphones
at an inappropriate time. For this issue, Milk makes it possible for schools
to define restrictions for push notifications and the application itself. For
example, the school can define that push notifications can only be received
within certain time slot, like from 08:00 until 16:00. According to a study, the
homework submissions went up by 44% and punctuality increased by 87%.
To sum it up, Milk provides the possibility to track the progress of students.
This progress can be viewed by the teachers and parents if allowed by the
school. This makes it possible for the teachers and parents to react and adapt
to the students’ progress. Since students can give feedback about homework,
the teacher cannot only react to the progress of the students but also the
direct feedback. With push notifications, students can automatically receive
new messages in an instant. The features lead to an overall improvement of
homework, presence and punctuality. (Dowling-Feet, 2015) Figure 2.1 shows
a screenshot of a part of the application Milk.

2.3.2. Seesaw

Seesaw is a program which is available for smartphones as mobile applica-
tions or as a web application. It is a tool that is used by schools and teachers
to make it possible for students to create and reflect on learning progress.
This means, that Seesaw is able to track down the learning progress of
students and that teachers are able to define at which education level the
students are. Students can use photos, videos, drawings, text, PDFs and links
to provide further details about their educational level. Furthermore, Seesaw
enables students to share and collaborate. Due to this feature, teachers can

13

2. State of the art

Figure 2.1.: Screenshot of Milk showing targets and assessments (Dowling-Fleet, 2015)

14

2.3. Similar applications

enable whether students have access to the learning progress, drawings,
texts, PDFs, links, photos and videos of other students. This application
also includes the parents of students. This makes it possible for parents to
be up-to-date about the progress of their children. Parents have the possi-
bility to stay in contact with teachers, so parents and teachers can provide
a customised learning program for the students. Apart from the possibil-
ity to communicate directly, Seesaw also provides communication within
the application. Teachers are able to provide encouragement, criticism and
suggestions for improvement to motivate the students. It is also possible
for parents to comment on the learning progress and digitised documents
within the application. The application can be used for assignments and
assessments as well. Teachers have the possibility to push assignments
to students via Seesaw. The students then complete the assignments and
push them back via the application. This way the teacher can give feedback
directly after evaluating the assessment. Homework, assignments and as-
sessments can be completely processed via the application. (Seesaw 2019)
Seesaw provides a study about the efficacy of Seesaw for schools, the digital
portfolio and the parent communication platform on their website. The key
areas examined by the study are ”student academic performance and devel-
opment of 21st Century skills”, ”parent engagement and involvement”, ”the
extent to which Seesaw for schools contributed to overall school objectives”
and ”administrator satisfaction”. The study is supported by a survey carried
out during the evaluation process of the study. 400 administrators using
Seesaw for their schools were surveyed. Possible answers to the survey were
”Agree” and ”Disagree”. The following data was collected by the study and
includes the survey and the given feedback. (Seesaw, 2016)

• ”I have a better understanding of where students are academically because of
Seesaw.” Administrators agreed: 92%. Administrators disagreed or did
not give feedback: 8%. (Seesaw, 2016)

• ”Seesaw for Schools effectively demonstrates our students’ progress over
time.” Administrators agreed: 89%. Administrators disagreed or did
not give feedback: 11%. (Seesaw, 2016)

• ”Seesaw supports developing 21st Century skills, like collaboration, creative
and critical thinking, and digital literacy at my school.” Administrators

15

2. State of the art

agreed: 95%. Administrators disagreed or did not give feedback: 5%.
(Seesaw, 2016)

• ”Seesaw helps us use technology resources effectively at our school.” Ad-
ministrators agreed: 97%. Administrators disagreed or did not give
feedback: 3%. (Seesaw, 2016)

• ”Seesaw for Schools helps us develop a better relationship between our school
and parent community.” Administrators agreed: 97%. Administrators
disagreed or did not give feedback: 3%. (Seesaw, 2016)

• ”I have seen an increase in parent involvement since using Seesaw for Schools
and can use Seesaw data to track parent engagement.” Administrators
agreed: 91%. Administrators disagreed or did not give feedback: 9%.
(Seesaw, 2016)

• ”It’s easier for my teachers to communicate with parents using Seesaw than
other methods we’ve tried.” Administrators agreed: 88%. Administrators
disagreed or did not give feedback: 12%. (Seesaw, 2016)

Figure 2.2 shows a screenshot of the Seesaw application. It provides a gen-
eral overview of the application and its features.

Seesaw and Milk are applications that include a learning diary for students.
Seesaw and Milk demonstrate, how a learning diary should be implemented.
Furthermore, the surveys based upon the applications give proof of the suc-
cess. This shows, that a learning diary as a mobile application can perform
and that the applications of this master thesis can lead to success and the
improvement of the learning progress of the students. Milk and Seesaw are
showcases to refer to when creating the prototype which is described in
chapter 3.

16

2.3. Similar applications

Figure 2.2.: Screenshot of Seesaw (What is Seesaw? 2019)

17

3. The prototype

This chapter explains the ideas which came up during the design and
prototype process and how the prototype developed to the final result over
time. In this context, a prototype means the creation of a detailed conception
of how the application will look and work. The prototype is a mockup1

which provides all screens of the application and links the screens. This is
useful to provide a real showcase.

3.1. Idea

The idea was to provide an application in Android and iOS to assist the
students of a MOOC platform. The application should be able to keep track
of all courses the student is assigned to. Furthermore, it should provide the
possibility to check upcoming events of the courses and remind whether
one event is about to take place. Courses can be of different kinds and in
different languages. There are courses which can be done at any time. On
the other hand, there are courses on the MOOC platform which can only be
done in a certain time span. Therefore some events can be done at any time
and other events have a specific date where they have to be finished. This is
a fact which had to be considered during the prototype process. Another
part which had to be considered during the prototype process was the
navigation of the app. The goal in terms of navigation is to provide the user
an easy-to-use application that is based on the platform-specific operating
system. This means, that the navigation behaviour of the application does

1”In manufacturing and design, a mockup, or mock-up, is a scale or full-size model of
a design or device, used for teaching, demonstration, design evaluation, promotion, and
other purposes. A mockup is a prototype if it provides at least part of the functionality of a
system and enables testing of a design.” Mockup (2019)

19

3. The prototype

not clash with the standard navigation of the operating systems Android
and iOS. The first idea was to provide a so-called ”hamburger menu”. A
hamburger menu is a navigation type, where three lines, aligned vertically,
are based on the top of the screen. If a user clicks on these three lines, a
navigation menu pops up, where the user can choose where she/he wants
to navigate to. The problem is, that iOS does not provide a native hamburger
menu. This clashed with the fact, that the application should align with
the behaviour of the operating systems. This means, if the iOS application
would have had a custom-build hamburger menu, the navigation would
not align with the navigation the user is used to on an iOS device. The
next and final idea of navigation was to build a tab-based app. This means,
the navigation menu is visible all the time and not hidden behind an icon
like with the hamburger menu, which is saving the user one click to reach
the navigation. A tab-based application uses a navigation menu, which is
positioned at the bottom of the screen. There are some icons, in case of this
application four icons, which are placed next to each other in a horizontal
alignment. The icons are described with a short description. In the case
of this app, the descriptions are ”Events”, ”Courses”, ”Notification” and
”Profile”. The idea of why these four parts were chosen for the navigation is
explained in the section 3.3.

After the main idea and the navigation was settled, there were some further
features to ensure a satisfying user experience:

• Colouring of courses and events
• Notifications
• Creating events
• Creating learn goals
• Creating notes
• Filtering events

The following sections will describe these features in detail and why they are
helpful for the user and can support her/him increasing her/his learning
process.

20

3.1. Idea

3.1.1. Colouring of courses and events

The idea of the feature is that students of the MOOC platform should be
able to differentiate between different courses and events at first sight. This
means that the border, the icon and the progress view in the items in a list
view, seen in section 3.3, are drawn in a colour the user chooses. The user
can define a colour for a course in the ”Profile” section of the app. If the
user clicks on ”Color” in the ”Profile” section, all her/his courses are listed.
The user can choose a course from this list and can define a colour for this
specific course. All the events, learn goals, notes and the course itself are
then painted in this colour in the app. The idea for this feature was the
following: If one user is only assigned to a few courses, this feature may not
be necessary. If a user is assigned to some courses, this may come in handy.
The reason for that is that for example in the section ”Events”, where all
events for all courses are listed, a big number of events may pile up. When
the user is defining colours for her/his courses, the user then can differ
which event belongs to which course at first sight. To make sure the user
does not forget which colour is assigned to which course, the courses in
the section ”Courses” are also painted in this colour. Besides this type of
colouring, there is one more feature that uses colouring. When a user opens
the application and checks the section for ”Events”, all events are listed,
no matter whether future, present or past ones. The events are listed with
their due date. To provide the user the possibility to check whether events
are past the current date without checking the due date, past events are
coloured in light grey. The user can check at first sight, whether the due
date of the event is already past and whether she/he has completed the
task for this event.

3.1.2. Notifications

The idea of this feature is, that students of the MOOC platform receive
notifications, if they have set a ”reminder date” to an event or a learn
goal or if a new course is upcoming. The user has the possibility to set
”reminder dates” for events and learn goals. If a user chooses an event, the
application navigates to a detailed view of the event. The user then can set

21

3. The prototype

a ”reminder date” for this specific event on this detailed view. When the
date is about to come, the user gets a push notification to her/his device,
so the user can make sure that she/he does not forget to complete the task
of this event. This feature is possible with events that are received from the
backend of the MOOC platform or with events and learn goals created by
the user her-/himself. If a user decides not to complete the task on the day
she/he is reminded, the user can set a new ”reminder date” for this event.
It is not possible to set a ”reminder date” for notes. Notes only provide
the possibility to store text, ideas, hyperlinks, etc. and should only provide
information. Furthermore, the application also notifies a user if a new course
of the MOOC platform is about to start. This makes sure, that the user does
not miss any chance to assign to a new course which she/he is interested
in. The user does not have to check the website of the MOOC platform
for new courses. The user can rely on the application to remind her/him
that a new course is about to start. If a user gets notified and opens the
app, the section for ”Notification” in the bottom navigation bar is badged.
This means, that there is a small red circle with an exclamation mark at the
top of the ”Notification” icon which indicates that there are new unseen
notifications. If the user checks the ”Notification” section, she/he can see
all notifications she/he has received, including reminder notifications and
notifications for new courses. Each of these notifications has its own specific
text and icon, which can be seen in section 3.3. If the user clicks on one
notification in the list, she/he either navigates to the detail view of the
event, the detail view of the learn goal or the URL of the new course. If
a user navigates away from the ”Notification” section, the badge which
indicates new notifications is deleted, because the user has seen all new
notifications. This makes sure that the badge only appears when there are
unseen notifications.

3.1.3. Creating events and learn goals

The idea of this feature is, that students of the MOOC platform can create
their own events and learn goals for their courses. For a self-created event
or a learn goal, the user has to provide some information about it. The
minimum information about the event/learn goal includes a title for the

22

3.1. Idea

event/learn goal, a due date where the event/learn goal should be finished
and the course the event/learn goal belongs to. In terms of the MOOC
platform, it makes sense to link an event to a course because the MOOC
platform works in the way that a course has at least one event and an event
belongs exactly to one course. The MOOC platform itself does not include
learn goals. learn goals are only available inside the application. The idea
behind the learn goal is, that the user can set milestones. An event should
be used for tasks.

To demonstrate the difference between an event and a learn goal: The
event should be used, when a user is planning to do something. For exam-
ple, the user is programming an app. Someday, she/he wants to design the
login screen. On another day, she/he wants to program the logic of the login
screen. On another day, she/he wants to program the communication of
the application with a database. Before doing these three tasks, the user can
set a learn goal. In this example, it may be called ”Login Screen finished”.
After the user has finished all three tasks, she/he may set the learn goal to
”done”, so the user knows she/he has completed the tasks, the learn goal
and can receive experience points for it. Experience points are explained in
section section 3.2.

In the application itself, the self-created event/learn goal acts like the
events which are received from the backend of the MOOC platform. The
only difference is, that the user can delete her/his self created events/learn
goals. This is not possible for the events coming from the MOOC platform.
The user can provide additional information to the self-created event/learn
goal. This additional information includes a description for the event/learn
goal, a time when it should be finished and a ”reminder date”, explained in
subsection 3.1.2. Besides creating events/learn goals to increase and keep
track of the learning progress, it has another side effect. This side effect
includes gamification. When a user finishes an event, she/he gets experience
points that reflect the progress of a user. A detailed explanation about the
idea of gamification in this application is given in section 3.2

23

3. The prototype

3.1.4. Creating notes

The idea of this feature is, that users, besides creating events and learn goals,
can create notes within the application. Notes are intended for writing down
and saving thoughts, links, ideas and suchlike. Notes are not available on
the MOOC platform. This means, that the notes are not received from a
backend but can only be created within the application. To create a note,
the user, as with events and learn goals, has to provide some information.
Besides events and learn goals, where the user has to provide information
such as title, due date and course (for more see subsection 3.1.3, she/he
only has to provide a title and a course it is assigned to. The first thought
was, that a user can assign notes only to events, but this leaves the user
inflexible with information. For example, the user wants to provide a note
which is helpful for every event in a course. So the user has to add this note
to every event or learn goal in the course. This is inefficient. The solution
was, that the user can provide notes, not for specific events, but the overall
course. If a user wants to remember himself that a note is only important for
one event, she/he can define that in the description of the note. For notes,
the user can only provide the information for a title, a description and a
course it is assigned to. Title and course are obligatory. In this application
and the way it is built, it does not make sense to set a reminder date, a time
or a due date for notes. As explained before in this section, the feature of
creating a note should only be used for saving thoughts and information.
Notes should assist the events and learn goals within a course. Therefore it
makes no sense to set a due date for a note. There is no time limit for a note.
Furthermore, it does not make sense to provide a reminder date. A user
should not get reminded for a note, only for events and learn goals within a
course and new courses that are available on the MOOC platform. If a user
has the opinion that a note is not current, no longer relevant or creating it
was a mistake, the user can delete the note from the course. Additionally,
because a note is only assigned to a course, it should not be visible in the
detailed view of an event or a learn goal. The note is only visible if a user
chooses a course in the related section ”Courses” within the application. In
the detailed view of the course, the user can check all the events, learn goals
and notes related to the selected course. For detailed visualisation check the
section 3.3

24

3.1. Idea

3.1.5. Filtering events and automatic scrolling

The idea of this feature is, that users can filter their events according to
three different types. If a user starts the application, she/he lands on the
start page of the navigation menu which is the section for ”Events”. This
section contains all self-created events and learn goals and those which
are received from the MOOC platform. If a user is assigned to a number
of courses, this view can be confusing. To assist the user in keeping an
overview of the (current) events, the idea of the following feature came
up during the prototype process. The user should have the possibility to
choose between three different types of events. The first type is ”uncom-
pleted” events, which include all events and learn goals, no matter whether
self-created or not, that have not been fulfilled or completed by the user yet.
The second type is ”completed” events, which includes all events and learn
goals, no matter whether self created or not, that have already been fulfilled
or completed by the user. The third type is ”all” events, which include all
events and learn goals, no matter whether self-created or not, that exist for
all courses. Additional to this feature, the first event that comes into sight if
the user starts the application and lands on the section for ”Events” is the
event or learn goal, which is nearest to the current date, ignoring past events.

For example, the user starts the application on the 1st of March 2019.
If an event or learn goal exists with a due date of the 1st of March 2019, the
application should automatically scroll to this event. If no event or learn
goal exists where the due date is the current date, the application should
automatically scroll to the event which is the nearest in the future. This
means, if the user starts the application on the 1st of March 2019 and two
events exist, which have the due dates of 4th of March 2019 and 28th of
February 2019, the application automatically scrolls to the event with the
due date of 4th of March 2019.

This feature should help the user to quickly check her/his upcoming events
and learn goals and not have to scroll down to find the most current one.
In general, these two features combined should help the user to keep an
overview of the events and not have to spend time on finding the events
she/he is searching for. With the ability of the application to scroll down to

25

3. The prototype

the most current events and the ability to filter the events by ”uncompleted”,
”completed” and ”all”, the application should provide the experience of
keeping an overview of events and learn goals for the user and speed up
the finding process.

3.2. Gamification

Besides the fact that the application should be able to keep an overview
of all events and courses and provide the features of creating events, learn
goals (see subsection 3.1.3) and notes (see subsection 3.1.4), colouring of
events, learn goals and courses (see subsection 3.1.1), notifications (see
subsection 3.1.2) and filter events (see subsection 3.1.5), there was the task
during the prototype process to provide a concept of gamification2. The
user should be rewarded for completing events and learn goals.

The first idea to fulfill this requirement was to bring in avatars. The user
should receive some type of currency, like coins or experience points, for
every event or learn goal completed. With this currency, the user should
be able to purchase clothes, appearance styles and accessories for her/his
avatar. The idea was, that the user can set the primary basic points of his
avatar, like skin colour, gender, clothes, hair and face at the first start of
the application. Over time, the user can improve her/his avatar by pur-
chasing new stuff for her/his avatar with the app-specific currency. This
type of gamification should motivate the user to keep on learning and
complete learn goals and tasks in events, so the user can improve her/his
avatar. Furthermore, the application should provide the possibility to export
the avatar as a picture, so the user can share it within the forum of the
MOOC platform or share it with whoever she/he wants to. After thinking
of how this type of gamification can be implemented and discussion with
heuristic experts, it came up that it would not suit the application and the
MOOC platform. Therefore, there was the requirement to come up with
an alternative idea of how gamification can be solved within this application.

2”Gamification is the application of game-design elements and game principles in
non-game contexts.” Gamification (2019)

26

3.2. Gamification

The next idea to fulfill this requirement was to bring in a reward sys-
tem with experience points and levels. This means, for every task completed
by the user, the user should receive some amount of experience points. If
a user reaches a certain amount of experience points, the user increases
her/his level. The number of levels should be infinite. Besides the fact that
every user should have ”learning levels”, there somehow should be a visual
reward for the user. Just showing the experience points and the level is not
enough. Therefore, the idea arose to bring in a replacement for the avatar.
The solution was to define images for every level. Of course, it is not possible
to define images for an infinite amount of levels, but a certain amount of
levels. If a user exceeds this certain amount of levels, the image for every
level earned stays the same. The first idea was to bring in images like cats,
dogs and so on. The second idea was to bring in some designed image
with the level of a user on the picture and a different icon and background
colour. Still, providing the visualisation of the experience points, the current
level and the corresponding image for the current level of the user is not
enough to fit the gamification requirements of the application. Therefore,
an individual text for every level up to a certain amount of levels should
be provided. An example text for a level to get a feeling of how this text
should look: ”Level 1. You’re just getting started.” or ”Level 12: You’re the
master of learning.”

To improve the user experience with gamification within the application, a
start screen depending on the current level of the user should be included.
This means, if the user starts the app, the application shows a screen with
an image covering the whole screen. The image depends on the current level
of the user. As with the showcase of the experience points, the level, the text
for the level and the corresponding image in the section for ”Profile”, the
image for the start screen shows the current level of the user, the icon and
the text for the current level. This should motivate the user right from the
start. If a level changes, the user automatically sees her/his progress at the
start of the application and within the application itself in the section for
”Profile”.

To sum up the idea of gamification regarding this app: The application
implements a system of gamification that includes experience points and

27

3. The prototype

levels. To reach a higher level, the user has to earn experience points by
completing events and learn goals. To encourage the user to increase the
level, the application provides individual visualisation for each level in the
form of a image and a text that should motivate the user. The visualisation
of the current level of the user is shown in two parts within the application.
The first part is in the section ”Profile”. The second part is on the start page
of the application.

3.3. Mockup

This section points out the mockup which was generated based on the
ideas explained in section 3.1 and in section 3.2. A mockup in the area of
software engineering/development, is defined as a prototype that shows
the end-user or a client the user interface without building the software
or features of the software3. In the case of this app, the mockup includes
all screen designs based on the ideas generated earlier in the prototype
process and some vestigial functionality. The functionality is the linking
between the screens of the application. The goal was that the user of the
mockup gets a feeling of how the application will work like by clicking at
specific icons on the screen leading to different screens. One basic example
of this functionality would be the basic navigation described in section 3.1.
If someone uses the mockup, she/he can click on the icons/elements of
the tabbed navigation, placed at the bottom of the screen, to get a feeling
of how the main navigation in the application will work. The mockup just
shows a basic concept of the app. The application was changed later on
in the developing process, due to technical difficulties in implementation
or the chance to improve usability and the user experience. The concept
of the application described in this chapter does not completely reflect the
final result gained in the developing process, described in chapter 4. The
mockup created during the prototype process was discussed with heuristic
experts. It was a process which developed a result by receiving feedback
and implementing ideas gained by the heuristic experts.

3Mockup 2019.

28

3.3. Mockup

The figure 3.1 shows the main screen containing the main navigation. The
main navigation is located at the bottom of the screen. The bottom naviga-
tion contains four sections. The first section from left to right is ”Events”,
which is shown in the 3.1. The second section is ”Courses”, which contains a
list of all courses the user is assigned to. The third section is ”Notifications”,
which contains a list of all notifications the user has received. The fourth
and last section is ”Profile”. This section contains the visualisation of gam-
ification described in section 3.2, the feature to colour courses, described
in subsection 3.1.1, and some links to the MOOC platform. Furthermore,
figure 3.1 shows how events will be displayed to the user. This can be seen

Figure 3.1.: Design of listing events and learn goals to the user

above the bottom navigation in the Figure 3.1. An event holds information
for a title, a description, a time and a due date. The due date is displayed
on the left side of the item. The day of the due date is shown as a number

29

3. The prototype

and larger than the rest of the text of the item. This is due to the fact, that
the user should be able to focus on the due dates of the events to keep an
overview of upcoming events. The month of the due date is shown below
the day, written in written form. To the right of the due date, at the top
of the item, there is the title for the event. Below the title, there is the part
for the time. The time section describes the time when the event has to be
finished on the due date given. Below the time section, there is the section
for the description. The description contains further information about the
event, for example, what the event is about and what the focus is on. On
the right side of the item, there is an icon. This icon, in 3.1 shown as an
arrow, is a placeholder for different icons. This icon describes the type of
item. There are three different types, as described in section 3.1. The event,
the learn goal and the note. Each type has a different icon. This should help
the user to identify which type of event an item is in the list view. To help
the user identify which events belong to which courses at first sight, there is
the feature to colour courses and events, described in subsection 3.1.1. The
colouring is visualised with the items listed in figure 3.1. On the left side of
the item, there is a rectangle. This rectangle will be painted in the colour
the user chooses for the course of the event in the ”Profile”-section of the
navigation.

In figure 3.1, above the list view for the events, there is another type of
navigation bar. This navigation bar includes the items, from left to right,
”Kommend” (English: ”Future”), ”Vergangen” (English: ”Past”) and ”Alle”
(English: ”All”). This navigation bar provides the feature of filtering events,
explained in subsection 3.1.5. The left item ”Kommend” in the bar, which is
the standard item chosen, will list only events to the user, which are current
or about to come. If the user clicks the item ”Vergangen” in the middle of
the bar, the application will list only events that have already happened.
The right item ”Alle” will list all events to the user.

In the right top corner of the screen, there is a plus-sign. This plus-sign
indicates the possibility to create events, learn goals and notes, described
in subsection 3.1.3 and subsection 3.1.4. If a user clicks on this plus-sign,
she/he will be redirected to another screen. This screen will be the one to
create a new event, learn goal or note. Figure 3.2 shows all three possible
screens. Figure 3.2 shows, how the screen of creating an event, a learn goal
or a note should look like. At the top of the screen, there is a navigation bar

30

3.3. Mockup

(a) Create event (b) Create learn goal (c) Create note

Figure 3.2.: Design of creating an event (a), a learn goal (b) or a note (c)

31

3. The prototype

that contains the title of the screen. In this case, the title is ”Hinzufügen”
(English: ”Add”). The navigation bar also contains a ”back-button”. If the
user clicks on it, she/he is redirected to the screen where he/she opened
the ”creation screen” from. Below the navigation bar, there are three radio-
buttons4, which are aligned horizontally. The default radio button chosen
is the one for creating an event. If a user chooses to create a learn goal
or a note, the screen changes depending on the chosen type. In all three
different types, there is one information that is obligatory for all of them.
The obligatory information which has to be provided by the user is a title
for the event, learn goal or note. Furthermore, they all share a coloured
rectangle. The colour of this rectangle changes, depending on the type of
event chosen. It is used for visualisation. events and learn goals share the
same information which have to or can be provided. The only difference
between these two is the way how it is handled within the app. A detailed
explanation is given in subsection 3.1.3. The following explanation is given
for the screens shown in figure 3.2a and 3.2b, because they share the same
information. The screen shown in figure 3.2c is explained afterwards. In
figure 3.2a and 3.2b, below the section for radio buttons, there is the section
to provide information for an event or a learn goal. It looks similar to the
items in the list view, shown in figure 3.1, to help the user understand how
it is visualised after creating it. Going from left to right within this section,
the first item within there is a rectangle, which has already been explained
above. After that, there follows the due date. The due date is indicated with
a day and a month. Below the month, there is an icon that represents a
calendar. If a user clicks on this calendar, a date picker is shown and the user
can choose a date for the event. To the right of the due date, there are five
text areas aligned vertically. The one at the top is obligatory and the user has
to provide a title for the event there. The second one, from top to bottom, is
the part for the time. This part is optional. If a user clicks on the icon which
represents a clock, she/he can choose a time when the event or learn goal
has to be done on the given due date. The third one in this section is the
part of the description. This part is also optional. The user can provide some
information there, which may sum up the task(s) to do within this event.
The fourth and last one in this section is the part of the course. This part

4”A radio button or option button is a graphical control element that allows the user to
choose only one of a predefined set of mutually exclusive options.” Radio button (2019)

32

3.3. Mockup

is obligatory. If the user clicks in this text area, she/he can choose from all
courses she/he is assigned to. This assigns the event created to the chosen
course. Further details are given in subsection 3.1.3. Below the section for
the information of the event, two more sections allow the application to
notify the user for this event. The first of these two sections was an idea
for a feature that was abandoned due to complexity. The idea was, that the
user can tell the application to create the same event for an interval. For
example, the user could have told the application to create the event all
seven days until the 31st of December 2019. After thinking through how this
feature could be implemented, it was abandoned because there was a limit
regarding the hours invested in this master thesis. The second of these two
sections represents the ”reminder date”, explained in subsection 3.1.2. If a
user turns on the switch5, which is one the left side of the section, she/he
can set a ”reminder date” for this event. This means, that the user gets
notified about this event on the date she/he is setting there. If the user clicks
on the icon on the right of the section, which represents a calendar, she/he
can use the appearing date-picker to choose a date. The screen shown in
figure 3.2c indicates the screen for creating a note. The user has to provide
the information for title and a course, like with creating an event or a learn
goal. The part for the course is missing in the figure. Furthermore, the user
can describe the note, which should contain information and details about
the note. The creation process of a note is explained in subsection 3.1.4.
At the bottom of the screen, there is a button with the text ”SPEICHERN”
(English: ”SAVE”) in it. If a user clicks this button, the application should
check whether all necessary information is provided, depending on the type
of event chosen. If there is some information missing, the user should get
informed about the missing parts. If the necessary information is provided,
the event, learn goal or note is saved.

Looking at figure 3.1, the next section in the bottom navigation is the section
for ”Courses”. Figure 3.3 shows this section. At the top of the screen, there
is the title bar, which contains the title for the screen. The title says ”Meine
Kurse” (English: ”My courses”). The screen contains a list view with items.
These items represent the courses the user is assigned to. One item contains
four elements. The first element, which is one the left of an item, is an

5”A Switch is a two-state toggle switch widget that can select between two options.”
Switch (2019)

33

3. The prototype

Figure 3.3.: Design of listing subscribed courses to the user

34

3.3. Mockup

image. This image is the picture for the course, which is also provided on
the MOOC platform. To the right of the picture, in black font, there is the
title of the course. In the case of 3.3, the title of the first item is ”Learning
to Code: Programmieren mit Pocket Code”. Below the title, there is the
part for the description. This description contains further information about
what the course is about. At the right of the item, there is an icon. This icon
indicates, if a user clicks on this icon, she/he will be redirected to a new
screen.

The screen the user is directed to, is shown in figure 3.4. The three screens
shown in this figure, provide all events, learn goals and notes which belong
to the chosen course. So this is, next to filtering described in subsection 3.1.5,
one more way to filter the events, learn goals and notes. The following

(a) Events (b) Learn goals (c) Notes

Figure 3.4.: Design of listing events, learn goals and notes of a specific course to the user

explanation describes the elements in the screens shown in figure 3.4 from
bottom to top. The bottom navigation bar shown in the figure is different
from the bottom navigation bar shown in figure 3.1. There are three elements
in this navigation bar. From left to right, there are the icons for events, learn

35

3. The prototype

goals and notes. When directed to this screen, the default section chosen
is the one for Events. This means, that only the Events for this course are
listed to the user. If the user clicks on the section for ”Learn Goals”, only
the learn goals for the selected course are listed to the user. If the user
clicks on the section for ”Notes”, only the notes for the selected course are
listed to the user. This behaviour should help the user to navigate through
the events, learn goals and notes and differ from each type. Looking at
figure 3.4a, above the bottom navigation bar there is a list view. This list
view contains all events for the selected course. The items look the same as
shown in figure 3.1 and they also provide the same information as given
in the explanation for the figure. If a user clicks on an event item, the user
is directed to the detail screen of the event. Above the list view, there is
another tab bar, which works the same as described in the explanation for
figure 3.1. The screen shown in 3.4b works the same, only that the events are
replaced by learn goals. The difference in the screen for the notes, shown in
figure 3.4c, is that the tab bar for ”Kommend”, ”Vergangen” and ”Alle” is
missing. This is due to the fact, that there are no notes which have a due
date. Further explanation to notes is given in subsection 3.1.4. At the top, in
all three figures shown in figure 3.4, there is a top navigation bar. This top
navigation bar contains two icons and a title. The title contains the title of
the selected course. The icon on the right represents the ”back-button”. If a
user clicks it, she/he is redirected to the screen where all courses are listed.
The icon on the left represents a ”plus-sign”. If a user clicks it, she/he is
lead to the screen where she/he can create an event, like shown in figure
3.2, described in subsection 3.1.3 and subsection 3.1.4. The only difference is,
that if a user clicks the icon on this screen and not on the screen shown in
3.1, that some information in the creation screen will automatically be filled
out for the user. This depends on the section the user has chosen in the
bottom navigation bar shown in figure 3.4. If a user has chosen the section
for ”Events”, the application will automatically choose the radio button
for ”Event”. This will lead to the screen shown in figure 3.2a. If a user has
chosen the section for ”Learn Goals”, the application will automatically
choose the radio button for ”Learn Goal”. This will lead to the screen shown
in figure 3.2b. If a user has chosen the section for ”Notes”, the application
will automatically choose the radio button for ”Note”. This will lead to the
screen shown in figure 3.2c. Furthermore, the application will automatically
choose the course the event or learn goal is assigned to, depending on the

36

3.3. Mockup

course the user chose in the section for ”Courses”, shown in figure 3.3. The
rest of the creation process will work as described in the explanation for
figure 3.2.

Figure 3.5 shows the screen for the section ”Notifications” within the main
bottom navigation bar. The section for ”Notifications” will list all notifica-
tions which have been pushed to the user. This section includes notifications
for reminding the user about events, learn goals or new courses. The items

Figure 3.5.: Design of listing received notifications to the user

in the list view shown in figure 3.5 include three elements. At the left of an
item is an icon. It describes the type of notification, so the user can differ
between the notifications at first sight. There are three different possible
icons. The first item from top to bottom represents a notification for an event.
The second item represents the notification for a learn goal. The third item
represents the notification for a new course on the MOOC platform. On the

37

3. The prototype

right side of the icon, there is a text. It describes the type of notification. On
the right side of the item, there is an ”x”-icon. This represents the possibility
to delete the notifications if not needed anymore. The feature of deleting
notifications has been abandoned in the developing process. Further expla-
nation is given in the chapter for the developing process. If a user clicks on
a notification, she/he is redirected to a different screen. To which screen the
user is redirected to depends on the type of notification. If a user clicks on
a notification which is a reminder for an event or a learn goal, the user is
directed to the detail view screen of the event or the learn goal. If a user
clicks a notification which reminds for a new course available on the MOOC
platform, the user is redirected to the browser of the device which opens
the URL for the course on the MOOC platform. Further explanation is given
in subsection 3.1.2.

The figure 3.6 shows the last screen of the main navigation. It shows the
section for ”Profile”. Some of the elements included in the section have
changed during the developing process. This screen was primarily designed
to show how the screen will look like. It shows the possibility, that multiple
items can fit there if they will not fit somewhere else in the app. At the top
of the screen in figure 3.6, there is the part for the gamification described in
section 3.2. At the top of this part, the current level of the user is displayed.
In this case, it is ”Level 1”. Below the level, there is a text depending on
the current level of the user. In this case, it says ”Du bist ein Anfänger”
(English: ”You are a rookie.”). It is a text that should motivate the user and
changes every time the user reaches a new level. Below the text for the level,
there is a progress bar. This progress bar indicates the experience points
needed to reach the next level. As explained in section 3.2, the user can
achieve experience points by completing events and learn goals created by
the user. In this case, the progress bar shows ”350/1000 XP”. ”XP” stands
for ”experience points”. So in this case, the user has to achieve 650 more
experience points to reach level two. On the right side of this part, there is
a placeholder for an image in the form of an ”abstract human”. Already
explained in section 3.2, every level has, besides the text, its image.

Below the part for gamification, five items can be used for further informa-
tion. The first item says ”Fortschritte” (English: Progress). If a user clicks
on this item, she/he will be redirected to the screen shown in 3.7. Below
the item for progress, there are four more items. The items contain the texts

38

3.3. Mockup

Figure 3.6.: Design of the Profile screen including gamification

39

3. The prototype

”Alle Kurse” (English: ”All courses”), ”Für einen Kurs anmelden” (English:
”Subscribe to a course”), ”Von einem Kurs abmelden” (English: ”Unsub-
scribe from a course”) and ”iMooX.at”. These items hold information for a
URL. If a user clicks on one of these items, she/he will be redirected to a
website in the browser of the device, depending on which item she/he has
clicked.

The figure 3.7 describes a screen within the application that has been
abandoned during the developing process. It was designed to show the
user the progress of all of his courses and the average progress of all others
subscribed to this course. If a user wants to have further information about
the course and its events, she/he can click the item for the course and will
be redirected to a screen, which looks similar to the screen shown in figure
3.7. In the following screen, the application lists all events to the user which
are related to this course. The application then shows the progress of the
user of this event and the average progress of all others who are dealing
with this event. The screen in figure 3.7 was abandoned due to the fact,
that it was possible to provide this information without using an additional
screen. How the visualisation of the progress of courses and events was
implemented is described in the chapter for developing app.

The screens and figures described in section 3.3 are the basic concept which
has been used during the developing process. Due to technical difficulties in
developing or because there are ways to solve features that fit better in this
type of app, some screens and features have changed during the developing
process. The application described in this section is not the final result. It is
a basic concept to start developing with. The mockup, features and ideas
were approved by heuristic experts. As defined in a discussion with those
experts, the mockup and the features gained during the prototype process
are the basic fundamental of the application.

40

3.3. Mockup

Figure 3.7.: Design of listing progress of subscribed courses to the user

41

4. Developing the applications

After finishing the mockup and the prototype process, the developing of the
application followed. The application was developed based on the mockup,
which was approved by heuristic experts. The process of developing the
application was the most expensive one in terms of time. The task was
to develop an application for two operating systems. One application for
Android and one application for iOS. The features and the look-a-like of
both apps, described in chapter 3, should stay the same, without losing
the user experience of the operating systems. This means, if the operating
systems provides build-in behaviour for a certain kind of feature, it should
be used instead of forcing the application to behave differently. This guar-
antees the user the feeling that the application was developed only for this
operating system. Furthermore, it helps the user navigating through the
application and understand it. The apps were developed in succession, not
simultaneously.

This was due to the following fact: If one feature changes during the devel-
oping process, the developer (in this case the writer of this master thesis),
did not have to change the feature in both apps at the same time, but only
in the first application. If the features of the first application were set, the
developer built the succeeding application in the same way.

The operating system to build the first application for was Android. This was
due to the fact, that the developer had more experience in building Android
applications than building applications for iOS. The developer finished the
application for Android first to be sure, that the second application on iOS
will look and work the same way, respecting the features of the operating
system.

The goal was to provide a full-functional application for both operating
systems which was ready to publish in the application Store and Google Play

43

4. Developing the applications

Store. The task was to implement only features which have been discussed
in section 3.1. Some more features would help to increase the value of the
app, but could not have been implemented during this master thesis, due
to technical difficulties or the amount of time that the features would need.
The applications build during this master thesis are build on core features
to help the user to keep an overview of her/his events, learn goals, notes
and courses of the MOOC platform and increase the learning progress.

The explanation following in this chapter describes the way how the apps
are built. Even though every aspect, feature and screen is described, to
understand the following, a basic knowledge of Android and iOS application
development is required. Special implementation and libraries chosen from
the developer are explained more detailed, but to re-create this application
with the explanation given in this master thesis, a basic knowledge and/or
further research is required.

4.1. Strategy

This section describes the strategy followed for both types of applications,
Android and iOS. The first question that arose was how the applications
should be developed. For this, the provided IDEs1 Android Studio for the
Android version and XCode for the iOS version were used. There exist
different models of how an application could be built. In this case, the
developer chose to use MVVM(Model View ViewModel)2. MVVM is a
blueprint of how a project should be set up. MVVM is used to separate the
logic of the user interface and the view of the user interface. The Model
holds all information for a class and defines the attributes. The ViewModel
contains the logic for the user interface and the communication between the
logic and the view. This communication could happen with data binding.
The logic would be for example a button. If a user clicks a button in the view,

1”An integrated development environment (IDE) is a software application that provides
comprehensive facilities to computer programmers for software development.” Integrated
development environment (2019)

2”MVVM facilitates a separation of development of the graphical user interface – be it
via a markup language or GUI code – from development of the business logic or back-end
logic (the data model).” Model–view–viewmodel (2019)

44

4.1. Strategy

the ViewModel will handle what happens after a user clicks on this button.
The view contains all elements displayed to the user. Explicit explanation is
following in section 4.2 and section 4.3.

Furthermore, there is the fact that the application is communicating with
an external database. This is a fact to respect during creating a strategy. In
the way the application was supposed to look like, the developer chose to
use libraries to assist the communication between the application and the
external database. The logic of communication is also happening within a
ViewModel. If a user lands on a screen, the ViewModel for this screen loads
the needed information of the external database with a request. Due to
security issues that could arise when the application communicates with the
external database of the MOOC-platform, the developing team decided to
only communicate with requests with the method GET. So the application
was not able to store any information in the external database. This leads to
another fact that should be respected: The application has to store further
information on the device of the user.

There are different possibilities to store information on the device of the
user. This also depends on the device and the operating system. In this
case, the developer chose to use a library that is working on both platforms,
Android and iOS. The library is called Realm. It is used to store information
in a local database of the device. Further explanation for this library and
how to use it is given in subsection 4.2.1 and subsection 4.2.2.

The Login-Screen was also a feature to think about how to solve it. The
external database needs an authentication from the application side to
respond with corresponding data. Due to security issues, it was not possible
to build a native login screen. This is because there is no possibility to
communicate in a bidirectional way like explained before. The application
cannot proceed with any request except requests with a method of GET.
Also, due to security, it was not possible to send an e-mail address and
password to the server. So the decision was to use the already existing login
view of the MOOC-website itself. How this problem was solved is described
in subsection 4.2.2 and subsection 4.3.2.

Seen in the figures in section 3.3, the application includes icons which will
represent actions within the application. The first thought was to create
icons that are used in Android and iOS. This, however, would collide with

45

4. Developing the applications

the fact that the applications should focus on user experience. Therefore,
the developer decided to save time by not creating custom icons and use
icons that users already know from other apps. The icons within the app,
no matter whether Android or iOS, are all from Material Design (2019).

4.2. Android

This section describes the development of the Android version. It provides
a detailed explanation of how each screen, the navigation, data storage and
API communication was implemented. The first to follow is a list of which
libraries are used in the application and an explanation of what they are
used for. The section for libraries also includes the project setup and what to
concentrate on in the setup. Examples of applications of different libraries
are given in the subsequent subsection 4.2.2.

4.2.1. Project setup and libraries

This section provides an overview of how the Android project was set up
and which libraries were used to provide an application like explained in
chapter 3. The first to choose was an IDE. The IDE chosen to develop in was
Android Studio. This IDE provides all functionalities needed to create the
application wanted. After creating the project, using Gradle (version 2.3)
and Java as the programming language, the first thing to think about was,
which Android versions the application should be built for. After research
what Android operating systems are used primarily, the development team
decided to build the application for the target SDK3

26. SDK version 26

corresponds to the operating system Android 8.0 Oreo4. The minimum
SDK version required to use this application is set to 22. SDK version 22

corresponds to Android 5.1 Lollipop5.

3”A software development kit (SDK) is a collection of software development tools in
one installable package.” Software development kit (2019)

4Migrating to Android 8.0 2019.
5Android 5.1 APIs 2019.

46

4.2. Android

The application itself contains three folders. The folders are called ”man-
ifests”, ”java” and ”res” and are automatically created when creating a
new project in Android Studio. Under the folder ”java”, the application
was set up due to the restrictions of MVVM. The following folders were
created: ”api”, ”models”, ”services”, ”utils” ”viewmodels” and ”views”. The
”api”-folder contains all the logic needed for the communication with the
server and database of the MOOC-platform. The ”models”-folder contains
all models and objects used in this application. The ”services”-folder con-
tains the logic and classes needed for the notification because these features
are solved with a service. Further explanation is given in subsection 4.2.2.
The ”utils”-folder contains all constants and a class called ”HelperUtil”,
which contains functions that are needed overall in the whole project. The
”viewmodels”-folder contains all ViewModels which are needed for the logic
of the views. The ”views”-folder includes all Fragments6 and Activities7 that
are needed for setting up the views, which are designed in the ”res”-folder.
For further explanation and overview of how an Android Studio-project is
structured, see Projects overview (2019).

After making the basic setup, the libraries used were about to be chosen.
One library used mainly is called ”Retrofit”. Retrofit turns a HTTP API into
a Java interface. The declaration needs a method (GET, POST, DELETE, etc.),
a URL and a function name. Furthermore, it is possible to define parameters
for queries, bodies or dynamic URL adjustment8. The retrofit version used
is 2.3.0. Detailed explanation of how Retrofit was used in this application is
explained in subsection 4.2.2.

Another mainly used library in this application is Realm. The feature used
by Realm is Realm Database. Realm Database makes it possible to store,
update, delete and read whole objects to and from a database. This makes
it possible for the developer not to worry about setting up databases and
tables to store information. The developer has the opportunity to extend

6”A Fragment represents a behaviour or a portion of user interface in a FragmentActiv-
ity. You can combine multiple fragments in a single activity to build a multi-pane UI and
reuse a fragment in multiple activities.”Fragments (2019)

7”An activity is a single, focused thing that the user can do. Almost all activities interact
with the user, so the Activity class takes care of creating a window for you in which you
can place your UI with setContentView(View).”Activity (2019)

8Retrofit 2019.

47

4. Developing the applications

an Object as an Object of Realm. This makes it possible to store the whole
object to a database. So for example, a user gets to the login screen and
has to provide the information for an email address and password. If a
user fills out the email and password and clicks a button ”Log in”, the
developer can store the information in an Object with the attributes ”email”
and ”password”. Afterwards , it is possible to save this object in the Realm
Database. Even further, the developer can define primary keys and ignore
some attributes of the object, if there exist objects that should not be saved
to the Realm Database9. A detailed example and how Realm works within
this application is given in subsection 4.2.2.

Following the explanation given in section 3.3, the screens within the figures
were described as list views containing items. To provide the possibility
of using a list view in Android, the library included in this project was
Recycler-View-v7. Respecting the MVVM-model described in section 4.1,
the library makes it possible to include a Recycler-View in the view. The
ViewModel defines which items the Recycler-View is containing. To describe
how an item in the Recycler-View looks like, another XML-file is needed
which describes the layout. Which XML-file is used for the items in the
Recycler-View is described in the Recycler-View. Furthermore, each item in
a Recycler-View is held by a separate ViewModel which defines the logic
for the item. Further explanation of how this was solved in detail is given in
subsection 4.2.2.

The listing 4.1 contains the whole Gradle file for the application module.
Due to security and safety, lines 8, 11, 12, 18 and 25 are modified to protect
the application and the backend of the MOOC-platform from attacks. This
is the basic setup on which the application was built on.

1 apply plugin: ’com.android.application ’
2 apply plugin: ’realm -android ’
3

4 android {
5 compileSdkVersion 26
6 buildToolsVersion "25.0.3"
7 defaultConfig {
8 applicationId "xx.tugraz.xxxxxx"
9 minSdkVersion 22

10 targetSdkVersion 26
11 versionCode x

9Realm Database 2019.

48

4.2. Android

12 versionName "x.x"
13 testInstrumentationRunner "android.support.test.runner.

AndroidJUnitRunner"
14 }
15 buildTypes {
16 debug {
17 debuggable true
18 buildConfigField "String", "API_HOST", ’"sample -url.at"’
19 buildConfigField "String", "API_MOCK_CONFIG", ’""’
20 signingConfig signingConfigs.debug
21 applicationIdSuffix ". debug"
22 }
23 release {
24 minifyEnabled true
25 buildConfigField "String", "API_HOST", ’"sample -url.at"’
26 buildConfigField "String", "API_MOCK_CONFIG", ’""’
27 proguardFiles getDefaultProguardFile(’proguard -android.txt ’), ’

proguard -rules.pro ’
28 }
29 }
30

31 dataBinding {
32 enabled = true
33 }
34 }
35

36 dependencies {
37 compile fileTree(include: [’*.jar ’], dir: ’libs ’)
38 androidTestCompile(’com.android.support.test.espresso:espresso -core

:2.2.2’, {
39 exclude group: ’com.android.support ’, module: ’support -annotations ’
40 })
41 androidTestCompile ’com.android.support:support -annotations :26.1.0 ’
42 androidTestCompile ’com.android.support.test:runner :0.5’
43 androidTestCompile ’com.android.support.test:rules :0.5’
44 compile ’com.android.support:appcompat -v7:26.1.0 ’
45 compile ’com.android.support:design :26.1.0 ’
46 compile ’com.squareup.retrofit2:retrofit :2.3.0 ’
47 compile ’com.squareup.retrofit2:converter -gson :2.3.0 ’
48 compile ’com.squareup.okhttp3:logging -interceptor :3.8.1 ’
49 compile ’com.android.support.constraint:constraint -layout :1.0.1 ’
50 compile ’com.android.support:support -v4:26.1.0 ’
51 compile ’com.android.support:recyclerview -v7:26.1.0 ’
52 testCompile ’junit:junit :4.12 ’
53 }

Listing 4.1: Gradle for module app

49

4. Developing the applications

4.2.2. Implementing the Android version

The application developed in Android is created in Android-Studio10. It
is based on Gradle and the language chosen is Java. As described in sub-
section 4.2.1, some external libraries are used which are not automatically
provided by the Android SDK. These libraries are explained during this
chapter.

Login

To use this application a user has to be registered at the MOOC-platform.
The login screen is not built natively. The login screen uses a WebView,
which is supported and provided by the Android SDK. An activity is re-
sponsible for creating the login screen. The corresponding XML-file to the
activity contains the WebView. The activity accesses the WebView during
onCreate from the XML-file and loads the login web page of the MOOC
platform. The application has to know whether a user has logged in suc-
cessfully. To check whether the application has signed in successfully, the
WebView uses a WebViewClient. This WebViewClient contains functions
which make it possible to do actions when a certain event arises. In the
WebViewClient used in this activity, only two functions are needed. The
method onPageStarted when the WebView is about to load a URL and
onPageFinished when the WebView web page loaded. When a user types in
her/his login credentials, email and password, and hits the login button on
the web page, there are two possible outcomes. The first outcome is, that
the user has used wrong credentials, which is leading to the fact that the
user is not directed to another web page but stays on the already loaded
web page. The web page informs the user with an error message, that
she/he has used wrong credentials. The second outcome is that the user
has provided valid credentials. This case leads to a new web page. This web
page contains the access token of the user in its HTML-code. To extract the
access token, the WebViewClient used for the WebView is necessary. In the

10”Android Studio is the official integrated development environment (IDE) for Google’s
Android operating system, built on JetBrains’ IntelliJ IDEA software and designed specifi-
cally for Android development.”Android Studio (2019)

50

4.2. Android

function onPageFinished, the WebViewClient uses JavaScript to extract the
access token which is contained in the HTML-code of the new loaded web
page. Afterwards , the access token is stored in the SharedPreferences. This
access token is needed for the API-requests following in the application. If
the application starts a request, it has to add the access token to the request
to gain a valid response from the server. The Figure 4.1 shows the screen of
the login in Android.

Figure 4.1.: Login screen of Android application

51

4. Developing the applications

Bottom Navigation

The Bottom Navigation is an Activity and it is supported by Android SDK
and Android Studio. With a right-click on a folder, click on ”New”, click on
”Activity” and click on ”Bottom Navigation Activity”, Android Studio cre-
ates an Activity with the corresponding XML-file. After modification of the
XML-file, it includes a ConstraintLayout as the root layout. This Constraint-
Layout contains another XML-file and the BottomNavigationView. The other
XML-file contains an AppBarLayout and a Toolbar, which is responsible for
the top navigation bar. Furthermore, it contains a FrameLayout, which is
responsible for loading the Fragments which represent the screens within
the Bottom Navigation. The BottomNavigationView uses another XML-file
for the menu-attribute. This menu-XML-file includes the menu-tag which
contains several item-tags, including an id, an icon and a title. These items
represent the clickable icons and texts which are visible in the Bottom Navi-
gation Bar. In this app, the Bottom Navigation Bar contains four different
items. One for ”Events”, one for ”Courses”, one for ”Notifications” and
one for ”Profile”. The texts used for titles are stored in the strings-file. The
icons used for the Bottom Navigation Bar were used from the web page
Material Design (2019). Further explanation of what the items in the Bottom
Navigation stand for is given in section 3.3. The Activity used for the Bottom
Navigation is the main part of the application. It controls the behaviour of
the navigation and sets up basic information needed within the application.
The first information stored in the SharedPreferences is the installation
date of the application. When the user starts the application for the first
time, this information is stored. The installation date is necessary for the
application review. After a certain number of days, the application asks the
user whether she/he wants to review this application for the master thesis.
This feature is excluded from the application after the finalisation of this
master thesis. Furthermore, the activity is setting up the Bottom Navigation
Bar and sets the title for the top navigation bar. After that, the Activity loads
the first Fragment which is visible to the user and corresponds to the first
item in the Bottom Navigation Bar. The first Fragment is the one responsible
for showing all events to the user. A detailed explanation of this screen is
given in ??. After loading the first Fragment, the activity initialises the level
of the user if it does not already exist. As explained in section 3.2, the user

52

4.2. Android

is rewarded for completing events and learn goals. The handling of the level
is only happening within the application and is not stored in some external
database. The level is stored in a local database of the device using Realm.
The basic idea of Realm has already been described in subsection 4.2.1 and
section 4.1. The Activity calls a function initailizeRealmLevelIfNotThere.
This function creates an object Login. This object Login contains the at-
tributes id, level, xp and xp next level. The Object Login is extending the
class RealmObject, which is necessary to store the whole Object in the Realm
Database. The id-attribute is declared as the PrimaryKey of the database
entity. The attribute level contains the current level of the user. The attribute
xp contains the current amount of experience points the user has. The
xp next level contains the number of experience points that are needed to
reach the next level. The level of the user is initialised with the following
parameters: 1 for id, 1 for level, 0 for xp and 10 for xp next level. After
that, the Object is stored in the Realm database. To read the Object from
the database, the application reads the first Object of type Login from the
Realm Database. Since there is and will only be one Object of type Login in
the Realm Database, this is enough. The code shown in list 4.2 shows the
whole Object Realm Level which is used to store the information for the
level of the user in the Realm Database. It also includes the functions used
to store and read Objects from the Realm Database.

1 public class Realm_Level extends RealmObject {
2

3 @PrimaryKey
4 private int id;
5 private int level;
6 private int xp;
7 private int xp_next_level;
8

9 public Realm_Level () {
10 }
11

12 public Realm_Level(int id, int level , int xp, int xp_next_level) {
13 this.id = id;
14 this.level = level;
15 this.xp = xp;
16 this.xp_next_level = xp_next_level;
17 }
18

19 public int getId () { return id; }
20

21 public void setId(int id) { this.id = id; }
22

23 public int getLevel () { return level; }
24

25 public void setLevel(int level) { this.level = level; }

53

4. Developing the applications

26

27 public int getXp () { return xp; }
28

29 public void setXp(int xp) { this.xp = xp; }
30

31 public int getXp_next_level () { return xp_next_level; }
32

33 public void setXp_next_level(int xp_next_level) { this.xp_next_level =
xp_next_level; }

34

35 public static void initializeRealmLevelIfNotThere ()
36 {
37 Realm realm = Realm.getDefaultInstance ();
38 Realm_Level level = realm.where(Realm_Level.class).findFirst ();
39 if(level == null)
40 {
41 Realm_Level realm_level = new Realm_Level (1, 1, 0, Constants.

MAX_XP);
42 realm.beginTransaction ();
43 realm.copyToRealm(realm_level);
44 realm.commitTransaction ();
45 }
46 }
47

48 public static void copyOrUpdateLevelToRealm(Realm_Level level) {
49 if (level != null) {
50 Realm realm = Realm.getDefaultInstance ();
51 realm.beginTransaction ();
52 realm.copyToRealmOrUpdate(level);
53 realm.commitTransaction ();
54 }
55 }
56

57 public static Realm_Level getRealmLevel ()
58 {
59 Realm realm = Realm.getDefaultInstance ();
60 Realm_Level results = realm.where(Realm_Level.class).findFirst ();
61 if(results != null)
62 return realm.copyFromRealm(results);
63

64 return null;
65 }
66 }

Listing 4.2: Object Realm Level in Android

After initialising the Level for the user, the Activity starts an AlarmManager
with a daily interval, starting at 10am, and a Service. This Service called
NotificationBackgroundService is used for the notification-feature within
the application. The functionality of the notification-feature is explained
in section 4.2.2. In the function onResume in the Activity, the installation
date of the application is checked. As described earlier, the installation date
is saved at the first time the user starts the application and is stored in

54

4.2. Android

SharedPreferences. The reason why the Activity checks the installation date
in the onResume-function is, that this function will be called every time
the user ”opens” the Activity. So every time the user starts the app, the
installation date is checked. If the installation date is more than some days
ago, an AlertDialog is shown to the user, which asks the user for a feedback
of the application for the master thesis. Furthermore, the Activity for the
Bottom Navigation contains functions which handle the navigation of the
Fragments. The functions are needed to tell the application what to do when
a certain item in the Bottom Navigation Bar is clicked. The Activity sets the
title of the Top Navigation Bar according to the item clicked in the Bottom
Navigation Bar and it also checks for new and old notifications. If there are
new or old notifications, the Activity sets the badging of the notification-
item in the Bottom Navigation Bar, like described in section 3.3. Further
explanation is given in section 4.2.2. The Activity also contains the logic for
what happens if a user wants to create a new event and what happens if a
user clicks on an item in the Profile-section. Detailed explanation is given in
section 4.2.2 and section 4.2.2.

List events

The first Fragment that the BottomNavigationActivity loads is the Event-
Fragment, which is responsible for displaying all the events of all subscribed
courses to the user. As described in section 3.3, the application uses a list
view that shows items. Furthermore, at the top of the screen, there is a
”Plus”-sign which leads to the screen for creating an event if clicked. If a
user clicks on an item in the list view, she/he is redirected to the detailed
view of the Event, which is described in section 4.2.2. The Fragment makes
use of data binding. This means, the data of the EventsViewModel, which
is responsible for the data and logic of the View, must not be assigned
explicitly to the list view of the View. This means, if the data changes
in the EventsViewModel, the list view in the View automatically updates
according to the new data. The Fragment makes use of Androids Recy-
clerView.The View of the Fragment contains the RecyclerView. Furthermore,
it contains three texts at the top which are aligned horizontally. The texts
say ”Outstanding”, ”Completed” and ”All”. This changed since the process
of chapter 3 and section 3.3. During the prototype process these three texts

55

4. Developing the applications

were ”Future”, ”Past” and ”All”. Due to the fact that there would be units
for ”Future” and ”Past”, the events would split up, no matter whether
they were finished or not. That is why this filtering of events changed to
”Outstanding”, ”Completed” and ”All”. By default, the ”Outstanding”-unit
is chosen. If this one is chosen, the application shows all events to the user
which are not finished, no matter whether they are in the past, present or
future. The ”Completed”-raster shows all events that are already finished,
no matter whether they are in the past, present or future. The ”All”-raster
shows all Events, no matter whether they are in the past, present, future,
completed or not completed. Furthermore, the View of the Fragment con-
tains a ProgressBar which indicates when the application is loading data
and a TextView which shows an error message to the user if something went
wrong during the loading process of data. To make the items look like in the
section 3.3, another XML-file is needed. This XML-file defines the look-a-like
of the items within the RecyclerView. There are some things that changed
during the development process compared to the designs in section 3.3. As
Figure 4.2 shows, there exist progress bars within the items. These indicate
the progress of the user within this Event. So if a user finished one task out
of two in this Event, she/he has a progress of 50 %. Furthermore, the date
visualisation is extended by the year the event is happening. In section 3.3
this was limited to only the day and the month of the Event. The items also
contain a text which displays the title of the course the event is assigned
to, so the user automatically sees, which course the event belongs to. The
EventFragment is responsible for setting up the data binding between the
RecyclerView and the EventsViewModel using a RecyclerViewAdapter. In
the function onResume of the Fragment, the Fragment uses the ViewModel
to load the data from the API. The rest of the logic is handled by the View-
Model. If the data is loaded successfully, the ViewModel adds the received
data from the API and the events and learn goals created by the user to
three different ArrayLists and sorts them by the due date. The events and
learn goals created by the user are received from the Realm Database. The
three ArrayLists contain events for all three different types ”Outstanding”,
”Completed” and ”All”. So one ArrayList contains all events which are
”Outstanding” and not completed by the user. One ArrayList contains all
events which are ”Completed”. The last ArrayList contains all Events, no
matter whether completed or not. Furthermore, there is an ObservableAr-
rayList which is connected to the RecyclerView of the Fragment. So, if this

56

4.2. Android

ObservableArrayList is changed, the View is adapted according to the data.
If the screen is loaded, the default type chosen is ”Oustanding”. So, the
ViewModel assigns the data of the ArrayList containing all uncompleted
events to the ObservableArrayList which is connected to the RecyclerView.
If a user clicks on the different units ”Oustanding”, ”Completed” and ”All”,
the ViewModel changes the data of the ObservableArrayList according to
the type chosen. When changed, the RecyclerView is adapted. The items
of the RecyclerView itself are also connected to another ViewModel, which
defines what data to display in an item and what to hide. For example, if
no due date is set for an Event, the ViewModel responsible for the item
hides the part for the date within the item. Furthermore, the ViewModel of
the RecyclerView contains the logic, that the RecyclerView is automatically
scrolling to the event which is the nearest to the current date. This feature is
useful, since the user does not have to scroll down until she/he finds the
event which is the next to come. The application does it for the user. If no
data is provided, this can happen if the request to the server fails or there
are no events due to the fact that the user is not assigned to any Courses, the
RecyclerView is hidden and an error message is displayed via a TextView.
The screen of the Fragment and how it finally looks like can be seen in
Figure 4.2. On the screen itself, there is a ”+”-sign which leads to the screen
where a user can create an Event, a learn goal or a note. This is described in
section 4.2.2. If a user clicks on an item within the RecyclerView, the user is
redirected to a detailed view of the event or learn goal. This screen will be
described in the following section 4.2.2.

Detail View - Event

The detail view screen of an event exists to provide additional information
of the event and to provide further action for the user to interact with an
Event. One action is to set a ”reminder-date”. Another action depends on
the origin of the event or learn goal. If an event is received from the MOOC-
platform itself, the user has the possibility to click a button at the bottom
of the screen which leads the user to the event at the MOOC-platform in
the browser of the device. If the event or learn goal is created by the user
within the application and is therefore not originally received by the MOOC-
platform, the user has the possibility to delete the event or learn goal with a

57

4. Developing the applications

Figure 4.2.: List of events and learn goals in Android application

58

4.2. Android

button at the bottom of the screen. The screen itself is build on an Activity,
a Fragment and a ViewModel. The Activity is needed, because there is no
Bottom Navigation needed at this screen. Therefore a new Activity is started,
because the navigation of the application changes within this screen. The
Activity calls a Fragment which contains part of the logic and holds the View.
The Fragment sends a request to the Realm Database to receive the requested
event providing a primary key. Furthermore, the Fragment contains the
logic for a DatePickerDialog. This DatePickerDialog provides the possibility
that the user can pick a date from a calendar, which is common on Android
devices. The DatePickerDialog is opened if a user clicks on the icon for the
”reminder-date” or the TextView for the ”reminder-date”. The user does not
have the possibility to write a date directly to the according TextView. This
prevents the user from providing an invalid date. The rest of the logic is
handled by the ViewModel. The Fragment forwards the event received from
the Realm Database to the ViewModel. The ViewModel then provides the
necessary information for the View. The View itself is build like the items in
the RecyclerView explained in section 4.2.2. If a user wants to change the
”reminder-date”, she/he clicks on the according section on the screen and
provides a date. After that, the user can save the event and therefore save
the ”reminder-date”, so she/he gets notified about this event on this date.
If the saving-process is successful, the user automatically gets redirected
to the previous screen. If the saving-process failed, the user gets informed
about the error. The saving-process is handled by the ViewModel. If the user
clicks on the button at the bottom of the screen which was described before
in this section, two different actions can happen. The first action is, that
the user will be redirected to the link of the event on the MOOC-platform.
The second action is, that the user is able to delete the Event. What action
happens depends on the origin of the Event. This data is provided by the
Fragment which loads the event from the Realm Database and therefore
knows the information whether it is created by the user or is received from
the backend of the MOOC-platform. Also, in comparison to the items in the
RecyclerView described in section 4.2.2, this detailed view contains more
information. The description is fully written out on this screen. So if a user
sees a part of the description of the event in the RecyclerView and wants to
read the full description, she/he can click on the event and will see the detail
view of the Event, which contains the full description. Figure 4.3 shows
the screen described in this section. At the top right corner, the described

59

4. Developing the applications

Figure 4.3.: Detail view event - Android application

60

4.2. Android

”Save”-action is shown. Below the section which is describing the event
itself is the section for setting the ”reminder-date”. In the figure it is called
”Remember me on”. At the bottom of the screen the button is located. It
changes depending on the origin of the Event. It either contains the text ”GO
TO EVENT” or ”DELETE”. The ”DELETE” action is only provided if the
event or learn goal is created by the user. How a user can create an Event, a
learn goal or a note is described in the following section section 4.2.2 Create
Event.

Create Event

A user has two possibilities to reach the screen for creating an event within
the application. As described in section 3.3, one way to reach the screen
is by clicking the ”+”-sign on the main screen which is responsible for
showing all events and learn goals. Another way is to click the ”+”-sign
which is shown in the screen which is responsible for showing all events,
learn goals and notes related to a course, which the user can choose on
the screen responsible for showing all courses. The screen for showing all
courses is described in section 4.2.2. The screen responsible for showing
all events and learn goals for a course is described in section 4.2.2. The
creation screen makes it possible to create an event, a learn goal or a note.
Further detail about what the creation screen is doing exactly and how
it is supposed to work is given in section 3.3. If a user clicks one of the
”+”-signs, the application is starting a new activity. The reason for that is
the same like with in section 4.2.2. At this screen there is no need for a
Bottom Navigation, since there should happen no navigation except from
navigating back to the previous screen. When the Activity is started, it
runs the according Fragment for showing the creation screen with the
SupportFragmentManager. Furthermore, this Activity sets up the logic for
two buttons which are lying in the top navigation bar. One button is for
navigating to the previous screen and the other button is for saving a new
event, learn goal or note with the information given by the user. This button
is indicated by the text ”SAVE”. The logic for saving an event, learn goal
or note is provided in the Fragment started by the Activity. The Fragment
itself inflates the according View with data binding. Therefore it creates
a ViewModel and defines it as the ViewModel responsible for the logic

61

4. Developing the applications

for the inflated View. The next part is to receive some information from
the Activity. The Activity can hold information about the creation process,
depending on what the previous screen was. If a user starts the creation
process from the main screen, which is responsible for showing all events
and learn goals, no information is provided. If a user starts the creation
process from the detailed view of a course, the Activity holds information
about the course identifier, the course title and the type (event, learn goal or
note). Depending on that information, the Fragment sets up the screen. If a
course identifier and a course title is available, the Fragment automatically
fills out the part for the course the user has provided. Every event, learn
goal and note has to be assigned to a course. Furthermore, the Fragment sets
the type automatically if information is provided. So, if the Activity holds
the information that the user wants to create a learn goal, the Fragment
automatically sets the type to learn goal. This becomes clear in Figure 4.4.
Besides setting up the View by information given by the Activity, the
Fragment also sets up the logic for DatePickerDialogs, a TimePickerDialog,
the radio buttons responsible for the type, the switch responsible for the
”reminder-date” and an AlertDialog which is used for choosing a course.
One DatePickerDialog triggers if a user clicks on the section for the due
date of the event. If a user has chosen a date from the DatePickerDialog, the
information is stored to the ViewModel. The ViewModel then automatically
sends the information to the View and the date is shown formatted to the
user. The other DatePickerDialog is triggered if a user clicks on the section
for ”reminder-date”. To reach this section, the user has to turn on the Switch
which is responsible for showing the ”reminder-date”. The behaviour of
this DatePickerDialog is the same like with the one described before. The
TimerPickerDialog is opened if a user clicks on the TextView for the time
of the event or learn goal. If a user has chosen a time, the information is
send to the ViewModel which redirects the information to the View, so the
formatted time is shown to the user. The radio buttons shown in Figure 4.4
are custom-build. The screen changes depending on which type the user has
chosen. If no information about the type is given by the Activity, the default
value when starting the screen is ”Event”. If ”Event” is chosen, the screen
is like shown in Figure 4.4. If the user chooses ”Learn Goal”, the screen is
changing. The Fragment changes the title in the top navigation bar from
”Creating Event” to ”Creating Learn Goal” to show the user she/he is about
to create a learn goal. If a user chooses to create a note, the screen changes

62

4.2. Android

even more. As described in section 3.3, there exists information that is not
needed for a note. One example for that is the due date which is needed for
events and learn goals. Therefore, the ViewModel hides all sections except
the sections for title, description and course. The screen always shows the
user which information is needed to create a event, learn goal or note. Which
information is required depends on the type the user has chosen. If a user
has finally provided all necessary information, clicks the ”SAVE”-button in
the top navigation bar and the saving process is successful, the user receives
a feedback from the application that she/he has created an event, a learn
goal or a note successfully and is redirected to the previous screen. If the
saving process was not successful, the user is informed about the error. If a
user has not provided all necessary information to create an event, a learn
goal or a note but clicks on the ”SAVE”-button, the ViewModel informs the
user about what information is missing.

Courses

The screen for listing the courses is part of the main navigation. It shows
all courses to the user that she/he has subscribed to. The screen itself uses
a Fragment. This Fragment contains the logic for the data binding of the
View and the ViewModel. The View makes use of a RecyclerView to dis-
play all courses. Therefore, the screen needs a RecyclerViewAdapter and
an ItemViewModel which tells the RecyclerView how the items should be
displayed. The ViewModel contains the logic for requesting the courses at
the backend of the MOOC platform. When receiving the response, the View-
Model sorts the courses by their title and displays it in the RecyclerView
with an ObservableArrayList. Furthermore, the ViewModel loads all courses
from the Realm Database if there exist any. If so, the ViewModel compares
the identifiers of the courses received by the backend and the courses re-
ceived by the Realm Database. This way the ViewModel can tell if the
user has assigned any colour to the course. If the identifiers match and
the course from the Realm Database contains information about the colour,
the ViewModel assigns it to the corresponding Object in the ObservableAr-
rayList. Details about how colouring works is defined in section section 4.2.2.
whether the user is not assigned to any courses, the View shows an error
message to the user which is containing a corresponding text. The logic

63

4. Developing the applications

Figure 4.4.: Creating event, learn goal and note - Android application

64

4.2. Android

whether the error message is visible or not is handled via the data binding
between the View and the ViewModel. The logic of what happens when a
user clicks on an item in the RecyclerView is defined in the Fragment of
the screen. If a user clicks on a item, she/he is redirected to a screen which
is responsible for displaying a detailed view of the course. This screen is
described in section section 4.2.2.

Figure 4.5.: List of subscribed courses in Android application

65

4. Developing the applications

Detail View - Course

The detail view of the courses screen is similar to the screen which is
responsible for displaying all the events to the user. The difference is, that
it only shows the events, learn goals and notes for the corresponding
course the user has chosen. If a user clicks on a Course, described in
section section 4.2.2, she/he gets redirected to the detail view screen. The
difference to the other screens is, in this case the detail view is held by
a different Activity. This is due to the fact, that this screen has it’s own
Bottom Navigation. The Bottom Navigation holds three different items.
The Activity is a container for loading a Fragment which takes care of
displaying the events, courses and notes to the user. If a user clicks on one
of the three tabs in the Bottom Navigation, the Fragment loads different
items into the RecyclerView. The Fragment of this screen makes use of a
RecyclerView. The corresponding View to the Fragment contains it. The
ViewModel attached to the View holds one ObservableArrayList which
defines the items that are displayed in the RecyclerView. The ViewModel
changes this ObservableArrayList depending on what the user has chosen.
In fact there are seven different possibilities the user can choose. One tab of
the Bottom Navigation is responsible for telling the ViewModel to use the
events as the items to display. If chosen, the user has further possibilities,
like with the screen described in section section 4.2.2, to choose between
”Done”, ”Outstanding” and ”All” events. If a user chooses ”Done” while the
tab for the events is chosen, the ViewModel only loads the events into the
RecyclerView which are related to the chosen course and are already finished
by the user. Further description is already given in section section 4.2.2.
The same applies to learn goals. In sum these are six different possibilities
of what the screen can load. The seventh possibility is described by the
tab for notes. As already described in section 3.3, notes cannot have a due
date and they cannot be set as ”Done”. Notes only contain information
which can be created by the user for a course. Therefore, it makes no sense
to give the user the possibility to choose between ”Done”, ”Outstanding”
and ”All” notes. The top tab bar, shown in Figure 4.6, is not necessary if
the user has chosen to display all notes. When the Fragment is loaded, the
ViewModel loads all the events, learn goals and notes which are related to
the chosen course from the Realm Database. After that, the ViewModel sorts

66

4.2. Android

them by their due date, except the notes, and stores them in seven different
ArrayLists, depending on what type they are. For example, one item is a
learn goal and it is already done. Therefore the ViewModel saves it in the
ArrayList which is responsible for holding all learn goals that are already
finished by the user. If a user then chooses the tab learn goals in the Bottom
Navigation and chooses ”Done” in the Top Bar, this ArrayList is loaded into
the ObservableArrayList which loads the items into the RecyclerView. If a
user clicks on one of the items, no matter whether event, learn goal or note,
she/he gets redirected to the screen which is responsible for displaying
the detail view of an event, described in section section 4.2.2. The Bottom
Navigation used is from the standard library provided by AndroidStudio.
The top bar is custom-build. If a user has no events, learn goals or notes,
a corresponding message is displayed to the user about the situation. An
example of how the whole screen can look like is given in Figure 4.6.

Notification

This section includes explanations about two different features. One feature
is about the screen of displaying notifications to the user. The other feature
is about how the user gets notified about certain events. The user can receive
three different types of notifications on her/his device. As described in
section section 4.2.2 and in section section 4.2.2, the user can set a due date
to events and learn goals. If the due date of an event or learn goal is reached,
the user receives a corresponding notification and gets remembered that
there is a due date set. The third type is that a user gets informed about new
available courses on the MOOC platform. If there is a new course starting
soon at the MOOC platform, the user gets informed about it. To make the
notification work, the application uses a BroadcastReceiver and a Service.
The BroadcastReceiver tells the application when to start the mentioned
Service. In the case of the Android application, this happens every day
at a specific time. The Service is responsible for sending the notification
to the user. Every day at a specific time this Service gets invoked. It then
checks whether the user has set any due dates for the current date. If so,
the Service sends out notifications for all events and learn goals which due
date is the current date. Also, the Service starts a request to the backend
of the MOOC platform to check whether there are new available courses.

67

4. Developing the applications

Figure 4.6.: List of events of specific subscribed course - Android application

68

4.2. Android

If there are any notifications send to the user, the Service stores a custom
Object to the Realm Database. This Object contains information about which
event, learn goal or new available course the user has been informed. This is
needed since the user should not get informed twice about the same event,
learn goal or new available course. Storing the notifications also makes it
possible for the user to check her/his notifications within the application.

The user can reach the screen, which is responsible for displaying the no-
tifications to the user via the main Bottom Navigation. This screen works
like most of the other screens. It makes use of a Fragment, a ViewModel, an
ItemViewModel and a RecyclerView. The ViewModel is connected to the
View, which is holding the RecyclerView, via data binding. It tells the Recy-
clerView to show which items. The ItemViewModel is connected to the View
which tells the RecyclerView how the items should look like. In this case, the
item contains an ImageView and a TextView. The ImageView displays the
icon depending on the type of the notification. As explained before in this
section, there exist three different types of notifications. When the Fragment
is started by the main Activity, the Fragment tells the ViewModel to load
all notifications stored in the Realm Database. The ViewModel receives the
notifications by the Realm Database and sorts them by the date they have
been sent to the user and loads them into the RecyclerView. This way, the
user can always check her/his newest notifications. If a user clicks on one
of the notification items, she/he is either redirected to the detail view of
the event or learn goal or is redirected to the new available course in the
browser of the device. This should help the user not to forget about events or
learn goals which are about to end. Furthermore, this feature is supported
by a type of badge. When the user opens the application, the main Activity
checks whether there have been any new notifications since the user has
viewed the notification screen the last time. If so, the Main Activity enables
the badging for the notification icon in the main Bottom Navigation. This
means, the tab item of notifications in the Bottom Navigation is coloured in
red to signal that there a new notifications. If the user opens the notification
screen, the Fragment responsible for displaying the notifications removes
the badging from the Bottom Navigation tab item to signal that the user has
viewed all notifications. An example of how the screen looks like is given in
Figure 4.7.

69

4. Developing the applications

Figure 4.7.: List of received notifications in Android application

70

4.2. Android

Profile

The profile is another main section of the main Bottom Navigation. It is the
last item from left to right. The screen makes use of a Fragment, a View and
a ViewModel. On this screen, there is no need for a RecyclerView. At the
top of the screen is the part for the gamification described in section 3.2.
The part contains an ImageView, a ProgressBar and two TextViews. The
ImageView contains the image corresponding to the Level of the user. The
two TextViews also adapt to the level of the user. The ProgressBar tells
the user how many experience points she/he has earned and how many
she/he needs to reach the next level. As described in section 3.2, a user
can earn experience points by finishing events and learn goals. The needed
information about the level is loaded by the ViewModel. When the Fragment
is started, it tells the ViewModel to request the needed information at the
backend of the MOOC platform. When finished, the ViewModel loads the
information for the described Views. The View and the ViewModel are
connected with data binding. Beneath the part for the level, the section
contains further information and links. Each part is defined by a TextView
and an ImageView showing an arrow. The following explanation describes
the different parts from top to bottom. The first item is ”All courses”. If a
user clicks on this item, the browser of the device opens a URL that leads
the user to all courses that are available at the MOOC platform. The next
item ”iMoox.at” also leads to the browser opening the URL of the MOOC
platform. The following item is named ”Colors”. This specific feature is
described in the section section 4.2.2. This item leads to the screen which is
responsible for colouring the courses and events, described in section 3.3.
The next item shows ”Play Tutorial”. If a user clicks on this item, she/he is
starting the tutorial for the application. The tutorial feature consists of four
Activities. Each Activity holds information and details about how to use
the application and the features. In the tutorial, the user can navigate back
and forth between the different screens. The tutorial is also started when
the user opens the application for the first time. The next item is called
”Master Thesis Feedback”. Since the applications for Android and iOS were
developed as part of this master thesis, the users can give feedback. The
feedback of the application is discussed in chapter 5. After the part for the
feedback, there follow items for the imprint and data privacy. If a user clicks

71

4. Developing the applications

on one of these, she/he is opening an URL in the browser of the device
leading to the imprint or data privacy of the application and the MOOC
platform. The last item in the list is responsible for signing out the user. If
the user clicks on this item, the application deletes the token used for the
authorisation in the backend of the MOOC platform and gets redirected to
the login screen. The profile screen is shown in Figure 4.8.

Figure 4.8.: Profile including gamification - Android application

72

4.2. Android

Coloring

As described in section 3.3, the feature of colouring is used to colour the
events, learn goals, notes and courses within the application. It should help
the user to differentiate between the courses and which event, learn goal
or note belongs to which course. The user can choose a colour on her/his
own. This should help the user remember which colour is assigned to which
course. The feature colouring makes use of two Activities and one Fragment.
The first Activity starts the Fragment. The Fragment holds the ViewModel
and the View. The View and the ViewModel are connected with data bind-
ing. The View contains a RecyclerView. When the Fragment is started,
the ViewModel loads all courses the user is assigned to from the Realm
Database. After loading the courses from the database, the ViewModel
sorts the courses by their title and stores them in an ObservableArrayList
which is connected to the RecyclerView. If a user clicks on one item of the
RecyclerView and therefore chooses a course, she/he is redirected to the
next Activity. This Activity is responsible for displaying seven colours to
the user. The colours are displayed in a GridLayout with two columns. Each
section of the GridLayout contains a RelativeLayout, which background is
the colour displayed to the user. This RelativeLayout contains an ImageView.
The ImageView shows a tick. By default, the visibility of all ImageViews
is set to invisible. When a user clicks on one item of the GridLayout, the
ImageView of the section she/he clicked on becomes visible and all other Im-
ageViews are set to invisible. Therefore the user always sees which colour is
currently active. In the toolbar at the top of the screen, there is a button that
is saying ”SAVE”. If one colour is active and the user clicks this button, the
Activity stores the colour code to the course Object in the Realm Database
and the user is redirected to the previous screen, which shows all courses to
the user. The user then can choose another course and pick a colour for this
course and so on. Currently, the number of colours is limited to seven. The
colours are defined by designers of the MOOC platform and match certain
requirements in recognisability and discriminability. The screen which is
responsible for displaying all colours to the user is shown in Figure 4.9.

73

4. Developing the applications

Figure 4.9.: Colouring - screen of Android application

74

4.3. iOS

4.3. iOS

This section describes the development of the iOS version. It provides a
detailed explanation of how each screen, the navigation, data storage and
API communication was implemented. The first to follow is a list of which
libraries are used in the application and an explanation of what they are
used for. The section for libraries also includes the project setup and what to
concentrate on in the setup. Examples of applications of different libraries
are given in the subsequent subsection 4.3.1. The following sections refers
to an ”app” or an ”application”. It means only the application for the iOS
version.

4.3.1. Project setup and libraries

This section provides an overview of how the iOS project was set up and
which libraries were used to provide an application like explained in chap-
ter 3. The IDE chosen was Xcode. This IDE provides all functionalities
needed to create the application wanted. The application is programmed
in Swift. After research what iOS operating systems and versions are used
primarily, the development team decided to build the application for the
deployment target of version 10.011. Furthermore, the application allows a
device orientation in portrait mode and both landscape modes. The structure
of the iOS project is the same as the structure of the Android version. After
creating a new project with Xcode, the folders ”Api”, ”Models”, ”Views”,
”ViewModels”, ”Util” and ”Resources” were created. The ”Api”-Folder
contains all the logic needed for the communication with the server and
database of the MOOC platform. The ”Models”-folder contains all models
and objects used in this application. The ”Views” folder contains all Cells
needed for TableViews and ViewControllers. The ”ViewModels” folder con-
tains all ViewModels which control the logic of the application. The folder
”Util” contains all classes and structs that contain generic functions and con-
stants used across the whole application. The ”Resources” folder contains
the Assets file, which holds all used icons and the Localizable-Strings files
which are used for multilingual support.

11Share of Apple devices by iOS version worldwide from 2016 to 2018 2018.

75

4. Developing the applications

After making the basic setup, the libraries used were about to be chosen. One
library used mainly is called Alamofire. Alamofire is an HTTP networking
library. It makes it possible to start a request with a given URL and define
the type of Object that is returned. The Object is automatically mapped
from the JSON contained in the response of the backend.

Another mainly used library is Realm. Due to the different programming
languages, the way of storing and retrieving data from the Realm Database
in iOS is different from Android, but the core functionality is the same.
For further detail about what Realm is about, check out subsection 4.2.1.
An example of how to retrieve and store data in Realm in iOS is given in
subsection 4.3.2.

4.3.2. Implementing the iOS version

The application developed in iOS is created in Xcode. The programming
language chosen is Swift. As described in subsection 4.3.1, some external
libraries are used which are not automatically provided by Xcode. These
libraries are explained during this chapter.

Login

To use this application a user has to be registered at the MOOC platform.
The login screen is not built natively. The login screen uses a WKWebView.
For creating the Login screen, a ViewController is needed. This ViewCon-
troller initialises a WKWebView in its loadView method. Furthermore, the
ViewController extends the needed protocols WKUiDelegate and WKNavi-
gationDelegate. In the loadView method of the ViewController, these proto-
cols get assigned to the WKWebView. After the View of the ViewController
was built, a loading symbol is created to show the user that the page is
loading. After that, the WKWebView starts a request and loads the login
URL of the MOOC-platform. This happens in the viewDidLoad method
of the ViewController. After the page was loaded, the application has to
know whether a user has logged in successfully. To check whether the
user has signed in successfully, functions from the WKNavigationDelegate

76

4.3. iOS

protocol are needed. After the user has provided the credentials, e-mail and
password, on the login page and clicks on the login button, there are two
possible ways to follow. The first one is that the login process fails. The
reason for that could be that the credentials were wrong. If such happens,
the user gets noticed by the login page itself. The second way is that the
credentials were valid. If so, the user gets redirected to a page where the
authorisation token is located inside the HTML of the new page. The au-
thorisation token is necessary to request data from the MOOC platform
backend later on in the application. So in the delegate function of WKNavi-
gationDelegate which gets triggered if a page was loaded successfully, the
ViewController checks whether the loaded page is the page which contains
the authorisation token. This happens with a URL check. If the URL is the
right one, the ViewController parses the HTML-code of the page to retrieve
the authorisation token. If the authorisation token was retrieved correctly,
the ViewController saves the authorisation token for further use and loads a
new ViewController. The new ViewController is responsible for displaying
the start screen to the user. This is the first time the authorisation token
is needed. The ViewController requests the level of the user. The level is
described in section 3.2. The backend responds with an image which is
displayed to the user. After a certain time, the main Navigation Controller
gets loaded which is described in the following section 4.3.2.

Bottom Navigation

The Bottom Navigation in the iOS version of the application is achieved by
using a UINavigationController. This UINavigationController is responsible
for showing the top bar of the screen which is including a back button, icons
and the title of the screen that is visible. The UINavigationController also
includes a UITabBarController. This UITabBarController is responsible for
showing the four different items at the bottom of the screen. The four differ-
ent items are ”Events, ”Courses”, ”Notifications” and ”Profile”. The icons
used for the Bottom Navigation were retrieved from the web page Material
Design (2019). The items used in the Bottom Navigation Bar are described
in detail in this chapter. The UITabBarController includes functions that
help to show different items on different screens when navigating through
the application. One example would be a function which is responsible for

77

4. Developing the applications

Figure 4.10.: Login screen of iOS application

78

4.3. iOS

showing the ”Plus-Sign” which is used for creating events. Furthermore,
the UITabBarController is responsible for initialising the level. Why and
how the level is used is described in section 3.2 and section 4.2.2. The
UITabBarController calls a function initializeRealmLevelIfNotThere which
is a static function in the Object RealmLevel. The Object is built the same
as in Android. The function checks whether there is already a level stored
in the Realm Database. If there is no Object stored in the Realm Database,
this means the level has not been initialised so far and gets created and
stored by the Object. The code shown in listing 4.3 shows the whole Object
RealmLevel which is used to store the information for the level of the user
in the Realm Database in Swift. It also includes the functions used to store
and read Objects from the Realm Database.

1 class Realm_Level: Object {
2

3 dynamic var id: Int = 0
4 dynamic var level: Int = 0
5 dynamic var xp: Int = 0
6 dynamic var xp_next_level: Int = 0
7

8 override static func primaryKey () -> String? {
9 return "id"

10 }
11

12

13 convenience init(id: Int , level: Int , xp: Int , xp_next_level: Int) {
14 self.init()
15 self.id = id
16 self.level = level
17 self.xp = xp
18 self.xp_next_level = xp_next_level
19 }
20

21 static func initializeRealmLevelIfNotThere () {
22 let database = try! Realm ()
23 let level = database.object(ofType: Realm_Level.self , forPrimaryKey:

1)
24 if level == nil {
25 try! database.write {
26 let rl = Realm_Level(id: 1, level: 1, xp: 0, xp_next_level:

Constants.MAX_XP)
27 database.add(rl, update: true)
28 }
29 }
30 }
31

32 static func copyOrUpdateLevelToRealm(level: Realm_Level ?) {
33 if let l = level {
34 let database = try! Realm ()
35 try! database.write {
36 database.add(l, update: true)
37 }

79

4. Developing the applications

38 }
39

40 }
41

42 static func readLevelFromRealm () -> Realm_Level? {
43 let database = try! Realm ()
44 return database.object(ofType: Realm_Level.self , forPrimaryKey: 1)
45 }
46

47 }

Listing 4.3: Object Realm Level in iOS

The UITabBarController also controls the badging of the navigation tab
item in the Bottom Navigation Bar. It reads from the Realm Database and
checks whether the user has received new notifications. If so, the UITab-
BarController is badging the navigation item in the Bottom Navigation Bar.
Further description about the notification feature is given in section 4.3.2.
After the UITabBarController was loaded, this Controller loads the first
UIViewController which is appearing in the Bottom Navigation Bar. This
UIViewController is responsible for showing the events to the user. This
UIViewController is used to make the basic setup for the application. As
with the Android Version, this UIViewController stores the date of the first
use of the application. The date is stored in UserDefaults. Each time this
UIViewController gets invoked, it loads and checks the installation date of
the application from the UserDefaults and checks whether it has been ten
days since the application was first used. If so, the UIViewController creates
an UIAlertController which asks the user to give feedback to this application
for the master thesis. This feature is removed after the finalisation of this
master thesis. Also, if the application is used the first time, this UIViewCon-
troller loads the tutorial, which is controlled by another UIViewController.
Further description of this UIViewController is given in section 4.3.2. In
general, if a user clicks on an item in the Bottom Navigation Bar, a new
UIViewController is started corresponding to the item clicked. Compared
to the Android version, where the functionality of the Bottom Navigation
is controlled in the code in the Activity, the logic of what happens in the
UITabBarController is controlled in the Storyboards of the application.

80

4.3. iOS

List Events

The first UIViewController loaded by the UITabBarController is the one
that is responsible for displaying the events to the user. ?? shows the screen.
On the top of the screen is the top navigation bar. It shows the title of the
screen and a ”Plus”-Sign. If a user clicks on this icon, she/he gets redirected
to the screen which is responsible for creating a new event, learn goal or
note. This is described in section 4.3.2. Beneath the top bar, there is a UISeg-
mentedControl. This UISegmentedControl is used to switch between the
different types of events and learn goals. On this screen, the user can decide
between outstanding, completed and all events. The logic for the UISeg-
mentedControl is located in the UIViewController. The UIViewController
holds a list which is connected to the UITableView. Depending on what
element of the UISegmentedControl the user chooses, the UIViewController
is changing the content of the list which is connected to the UITableView. If
a user clicks on the element ”Oustanding”, the UIViewController replaces
the list with the corresponding list from the ViewModel. The ViewModel
is responsible for loading the events and learn goals. The ViewModel is
receiving the events from the backend of the MOOC platform and the local
Realm Database. After the ViewModel has received all the necessary data,
it is sorting the events and learn goals. Depending on which type they
are (outstanding or completed) the ViewModel is assigning the events to
different lists. The UITableView makes use of several methods. One method
used is the method which tells the UITableView how each element looks
like. Therefore, the method defines a UITableViewCell which is defined in
the Storyboard. The UITableViewCell is configured by an ItemViewModel.
The method provides a parameter cellForRowAt. This defines which row
the TableView is currently defining. With this value, the method takes the
element from the list connected to the UITableView which index is equal
to the value and creates an ItemViewModel. This ItemViewModel works
similar to the ItemViewModels used in Android. It provides functions to
receive the information needed like the title, description, due date or time of
the event. With this ItemViewModel, the UITableView method can define the
UITableViewCell. The UITableViewCell uses the ItemViewModel to retrieve
information and forward it to the View. This way, the iOS version is mock-
ing the data binding behaviour of the Android version and this approach

81

4. Developing the applications

is used among the whole iOS application. Another method used for the
UITableView tells the UIViewController what happens if a user clicks on an
item in the UITableView. The method provides the value didSelectRowAt.
With this value, the method receives the chosen event from the list connected
to the UITableView. The method then pushes a new UIViewController to
the NavigationController, which leads the user to a new screen. This new
screen is responsible for showing a detail view of the event or learn goal.
This screen is described in Figure 4.15.

Figure 4.11.: List of events and learn goals in iOS application

82

4.3. iOS

Detail View - Event

If a user clicks on an item described in section 4.3.2, she/he is redirected
to a new screen. This new screen contains a detailed overview of the event,
learn goal or note. In terms of the application, this screen is realised by
two UIViewControllers. One UIViewController controls the logic if the
item is an event or learn goal and the other UIViewController is opened
if the item is a note. If the item chosen is of type event or learn goal, the
detail view looks different than if a note is chosen. In the viewDidLoad
method of the UIViewController, the logic checks whether the event or
learn goal chosen is created from the user or not. Depending on that, the
UIViewController loads the event or learn goal from the Realm Database.
After that, a ViewModel is created with the loaded event or learn goal.
The ViewModel supports the UIViewController and contains functions that
the UIViewController calls to fill the element in the View. For example,
the ViewModel provides functions to receive the course title of the event
or the colour if predefined by the user. The UIVIewController contains a
connection to all Labels and Views in the Storyboard. The UIViewController
adds a UITapGestureRecognizer to the label and image for the reminder
date. If a user clicks on the label or the image, she/he is redirected to a new
UIViewController. This UIViewController provides only one functionality. It
makes it possible to choose a date. If a user has chosen a date, the application
loads the previous screen again and stores the date chosen. Furthermore,
the detail view screen provides the possibility for the user to trigger a
Switch when the event or learn goal is completed. If a user has created an
event or a learn goal and then completes it, she/he is getting experience
points for the gamification part which is described in section 3.2. At the
bottom of the screen, the UIViewController holds a button that is changing
depending on the origin of the event or learn goal. If the event or learn
goal is received by the backend of the MOOC platform, the button says
”Go to Event”. If a user clicks on it, the UIViewController opens the URL
of the event via UIApplication. If it is not received from the backend of the
MOOC platform it must have been created by the user. If so, the button says
”Delete”. If a user then clicks on the button, the UIVIewController loads an
UIAlertController which asks the user for confirmation of the deletion. If the
user hits cancel on the UIAlertController, the UIAlertController is closed and

83

4. Developing the applications

nothing happens. If the user clicks ”OK”, the event or learn goal is deleted
and the user is lead to the previous screen. The UIViewConroller also adds
a button to the top of the screen which says ”Save”. If a user has changed
some data of the event or Learn Goal, she/he has to click this button to store
the information. If a user clicks the button, the UIViewController checks for
the changes the user has made and stores the adjusted event or learn goal
in the Realm database.

The other UIViewController which is responsible for displaying a detail view
for notes is a light version of the already explained UIViewConroller. In this
UIViewController there is no need for dates, time and other information like
explained in section 3.3. A note contains a title, a description and a course
that it is assigned to. The UIViewController just loads the corresponding
note from the Realm database. In this case it makes no sense to analyse
where the note is coming from since a note can only be created by a user
within the application. After it is loaded, a ViewModel is created with the
given note. With the support of the ViewModel the Labels and Views are
adjusted. On this screen there is no need for a ”Save”-button at the top of the
screen, because the user cannot change the note or any information. At the
bottom of the screen there is a button which says ”Delete”. If a user clicks
on it, the UIViewController loads a UIAlertController and asks the user for
confirmation of deletion. If the user clicks ”OK” the note is deleted. If the
user clicks ”Cancel” the UIAlertController is closed an nothing happens. To
make it possible to delete a note, event or Learn Goal, the user first has to
create one. This creation process is described in the following section 4.3.2.
The Figure 4.12 shows how the screen described in the current section looks
like in the iOS version of the application.

Create Event

As described in section 3.3, the user is able to create events, learn goals
and notes within the application. By clicking the ”plus”-sign at top right
corner of the screen, the user gets redirected to the screen where she/he
can create an event, learn goal or note. At the top of the screen, there is a
UISegmentedControl. With this UISegmentedControl, the user can choose
whether she/he wants to create an event, a learn goal or a note. The different

84

4.3. iOS

Figure 4.12.: Detail view event - iOS application

85

4. Developing the applications

UIViews defined in the Storyboard are connected the an UIViewController.
This UIViewController, in combination with a ViewModel, holds the logic
for the control of the screen. Depending on what the user chooses in the
UISegmentedControl, the UIViewController changes the title of the screen.
Furthermore, since for a note there is no need for information like due
date, time and the reminder feature, the corresponding elements get hidden
if the user chooses to create a note. To retrieve information for the title
and the description of the event, the application makes use of UITextFields.
If a user taps on the UITextField responsible for choosing a course, the
UIViewController triggers a function that builds an UIAlertController. This
UIAlertController contains all courses that the user has subscribed to. To
create an event or a learn Goal, the user has to choose one course she/he
wants the event or learn goal to be assigned to. For choosing a time or a
due date, the screen makes use of two more UIViewControllers. If a user
clicks on the UITextField of the time, the UIViewController opens a new
UIViewController which contains a UIDatePicker to choose a time. If a user
has chosen the time and hits the UIButton, which is at the bottom of the
screen, the UIViewController gives the chosen time to the UIViewController
responsible for creating events. Then the UIViewController gets popped.
The same process triggers if a user clicks on the UITextField responsible
for displaying the date, only that the loaded UIViewController holds a
UIDatePicker configured to choose a date. At the bottom of the form the
user can trigger a switch, whether she/he wants to get reminded for the
created event or learn goal. If the user toggles the UISwitch to true, another
UITextField appears on the screen. If a user clicks on the UITextField, she/he
gets redirected to the UIViewController responsible for picking a date. The
UIViewController used for creating an event adds one UIBarButtonItem
to the top navigation bar. This UIBarButtonItem says ”Save”. If the user
clicks on it, the UIViewController checks whether the input values are valid,
stores the event, learn goal or note in the Realm Database and informs
the user about the successful storage. If the input values are not valid, the
UIViewController loads a UIAlertController which informs the user about
the invalid parameters. Figure 4.13 shows a part of the screen which is
responsible for creating an event, learn goal or note.

86

4.3. iOS

Figure 4.13.: Creating event, learn goal and note - iOS application

87

4. Developing the applications

Courses

This screen is responsible for showing all courses to the user she/he has
subscribed to. It is part of the main navigation UIViewController. The
screen itself makes use of an UIViewController which contains the UITable-
ViewDataSource and UITableViewDelegate. The UITableView defined in
the Storyboard is connected to the UIViewController. At the start of the
UIViewController, the corresponding ViewModel gets initialised and the
UITableView gets configured. The setup of this UIViewController is the
same as the UIViewController described in section 4.3.2. When the UIView-
Controller is started, the initialised ViewModel shows the loading animation
and loads all courses from the backend of the MOOC platform. After suc-
cessfully retrieving the response, the ViewModel compares the courses in
the Realm Database with the courses received from the backend. It then
compares both lists with each other and checks whether there is a colour
set by the user. If so, the course is adapted accordingly and gets added
to the list which is connected to the UITableView. The ViewModel also
contains a function getItemViewModel(forRow: Int). With this function,
the UITableView can create the needed ItemViewModel for the course it
is currently adding to the screen. The ItemViewModel is needed to define
the UITableViewCell. The ItemViewModel contains functions that define
title, border colour, icon colour, description and progress of a course. These
information are displayed to the user. If a user clicks on one of the courses
in the UITableView, she/he is redirected to the screen described in ??. The
Storyboard also contains a UIView which holds an UILabel. Both are con-
nected to the UIViewController. These Views are used to display a message
to the user if she/he is not subscribed to any courses. The principle of the
UIViewController, the ViewModel and the ItemViewModel is the same as
within section 4.3.2. The Figure 4.14 shows an example of how the screen
may look like during the usage of the application.

Detail View - Course

If a user clicks on an item in the list view described in section 4.3.2 she/he
gets redirected to the screen which is responsible for displaying all events,
learn goals and notes related to the chosen course. This screen consists

88

4.3. iOS

Figure 4.14.: List of subscribed courses in iOS application

89

4. Developing the applications

of four Controllers. The first Controller is a UITabBarController, which is
responsible for the navigation within this feature. This UITabBarController
holds three items, which all lead to the other three UIViewControllers. In
the logic of the UITabBarController, some details for the selected course are
set. For each of the three possible UIViewControllers the user can choose,
the UITabBarControllers sets the title of the course and the identifier of the
course, so the UIViewControllers can load the corresponding events, learn
goals and notes. By default, the UIViewController responsible for showing
the corresponding events of the course is selected and shown to the user.
The UIViewController contains a UISegmentedControl, an UITableView
and an UILabel responsible for showing an error message if now events
are available for the selected course. The UISegmentedControl works the
same as the one in section 4.3.2. Depending on which item (”Outstanding”,
”Done”, ”All”) the user chooses from the UISegmentedControl, the corre-
sponding ViewModel loads the related events from the Realm Database and
sets the result to the list connected to the UITableView. For example, if a user
chooses the item ”Done” from the UISegmentedControl, the ViewModel
loads all events from the Realm Database which are connected to the course
and which are already completed. The same procedure holds for the items
”Outstanding” and ”All”. If a user touches an item in the UITableView,
which shows all events to the user with it’s own UITableViewCell, she/he
gets redirected to the screen described in section 4.3.2. The UITableViewCell
is the same like the one described in section 4.3.2. The UITableViewCell gets
filled with data by an ItemViewModel which gets created by the ViewModel
of the UIViewController. So when the UITableView is loaded, it iterates over
the whole list which is connected to it. For each item in the list, the UIView-
Controller creates an ItemViewModel with the help of the ViewModel. This
ItemViewModel holds functions which can fill the UITableViewCell. With
this procedure, every UITableViewCell gets filled with the information of
an ItemViewModel. The UIViewController responsible for displaying the
learn goals to the user works nearly the same like the UIViewController
responsible for the events. The difference is, that it does not load the corre-
sponding events, but the corresponding learn goals of the chosen course.
The third and last UIViewController making this feature complete is the one
responsible for displaying all notes to the user. This UIViewController does
not need an UISegmentedControl, since it is not possible for notes to be
”Completed” or ”Oustanding”. Besides the missing UISegmentedControl,

90

4.3. iOS

this UIViewController also follows the same approach like the UIViewCon-
trollers already described, except that it does only load the notes from the
Realm Database once, since the list cannot change during runtime of the
application. The features described in this section also provide one further
functionality. The UITabBarController creates an UIBarButtonItem with the
barButtonSystemItem ”.add” and defines it as a rightBarButtonItem in the
navigationItem. If a user clicks on this UIBarButtonItem, the UITabBarCon-
troller loads the screen described in section 4.3.2. The difference here is, that
the UITabBarController sets information about which type of event the user
wants to create. Depending on which UIViewController is currently loaded
in the UITabBarController, the UITabBarController gives the information
to the UIViewController responsible for creating new events, learn goals
and notes. This way, the UIViewController already chooses the correct type
and automatically fills out the course the UITabBarController was loaded
for. For example, if a user has chosen the UIViewController responsible for
displaying all notes to the user and touches the UIBarButtonItem, the screen
loaded also has chosen the type ”Note” and automatically filled out the
course for the user. For further description see section 4.3.2. The Figure 4.15

shows the screen described in this section.

Notification

This application makes use of notifications in two ways. The first way
is to notify the user with push notifications about some event or learn
goal. The other one is to display all notifications to the user within the
application itself, so the user can always view her/his notifications. The
push notification is triggered within the AppDelegate.swift. First, it loads
all events and learn goals from the Realm Database which have the current
date as due date. For each loaded event and learn goal, the background
fetch checks whether the user has already been notified regarding this event
or learn goal. This prevents the user from getting notified about the same
event and learn goal multiple times. If the user has already been notified,
the for loop skips an iteration. If the user has not been notified about this
specific event or learn goal, the title and the description for the notification
is set, respecting the language of the device. After that, a notification is
pushed to the user device, notifying her/him about the event or learn goal.

91

4. Developing the applications

Figure 4.15.: List of events of specific subscribed course - iOS application

92

4.3. iOS

Furthermore, a new RealmObject holding information about the event or
learn goal is created. This RealmObject is stored to the Realm Database,
so the application can later on show the user the notification and inform
her/him about new notifications. After the notifications for the events and
learn goals has been sent out, the background fetch starts an API request.
This request checks, whether there are any new courses that the user should
be notified about. If the request is successful and there are new courses
the user should be informed about, the background fetch iterates over
all the courses. Same as with the events and learn goals, the background
fetch checks whether the user has already been notified about the new
course. If not, the background fetch again builds a notification with a title
and a description and pushes it to user. Again, a RealmObject with the
information of the new course is stored to the Realm Database. If the user
opens the application, the main UITabBarController checks whether there
were any new notifications since the user last opened the UIViewController
responsible for showing the notifications. This is checked with the help of the
Realm Database. If there are any new notifications, the UITabBarController
sets a badgeValue to the notification UITabBarItem. If a user opens the
UIViewController for the notifications, the UIViewController removes this
badgeValue from the UITabBarItem. Furthermore, this UIViewController
contains the logic for displaying the notifications which have been stored in
the Realm Database by the background fetch. The UIViewController contains
a UITableView. The corresponding ViewModel loads all notifications from
the Realm Database and stores the resulting items in the list which is
connected to the UITableView. This UITableView builds the items with the
help of a UITableViewCell and an ItemViewModel created by the ViewModel.
The exact procedure has already been described in section 4.3.2. Depending
on whether the user has been notified about an event, a learn goal or a new
course, the icon and the text displayed in the UITableViewCell changes. The
Figure 4.16 shows the screen which displays all notifications to the user.

Profile

The section for the profile is part of the main UITabBarController. This
UIViewController does not contain a UITableView like the other UIView-
Controllers, but it also makes use of a ViewModel. This ViewModel is

93

4. Developing the applications

Figure 4.16.: List of received notifications in iOS application

94

4.3. iOS

responsible for handling the gamification part of this screen, which is settled
at the top of the screen. First, the ViewModel loads the current level of
the user from the Realm Database. The user gains experience points for
raising the level by finishing events and learn goals. When the level is read
from the Realm Database, an API request is started. This request contains
the current level of the user. The response contains information about the
icon and the text that is displayed to the user. When the request finished
successfully, the information gets delivered to the View. The View loads the
icon, level, corresponding text and experience points from the ViewModel.
The section below the part for the gamification contains eight UIViews. Each
of these UIViews is connected to the UIViewController and holds a Tap
Gesture Recognizer. The UIViews for ”All Courses”, ”iMoox.at”, ”Master
Thesis Feedback”, ”Imprint” and ”Data Privacy” all open the browser of the
device and load a corresponding URL. The UIView for ”Colors” loads the
screen which is responsible for the feature of colouring the courses, events
and learn goals. This feature is described in section 3.3 and Figure 4.18.
The UIView for ”Play Tutorial” starts the tutorial of the application. The
UIView for ”Sign Out” stores the value nil for the authorisation token
in the UserDefaults and loads the login screen described in section 4.3.2.
Figure 4.17 shows the screen of the profile section and all its elements.

Coloring

If a user touches the UIView for ”Colors” in the profile section described
in section 4.3.2, she/he is able to use the feature for colouring the courses,
events, learn goals and notes described in section 3.3. This feature consists
of two UIViewControllers and one UITableViewCell. If a user clicks on
the section described before, she/he gets redirected to a screen which
lists all courses the user has subscribed to. The corresponding ViewModel
starts a request when the UIViewController is loaded. The response of
the request contains all courses the user is assigned to. With the help
of the ViewModel, the UITableView, settled in the UIViewController, is
able to create an ItemViewModel. This ItemViewModel is used by the
UITableViewCell to receive the information needed to display the courses
to the user. In this case, the UITableViewCell contains an UILabel and
an UIImageView. The UILabel contains the name of the course and the

95

4. Developing the applications

Figure 4.17.: Profile including gamification - iOS application

96

4.3. iOS

UIImageView is an arrow which indicates that a click on the item leads
to the next step. Furthermore, the UIViewController contains an UIView
that contains an UILabel which displays an error message to the user in
the case that the request started by the ViewModel fails or the returned list
of courses is empty. If a user clicks on an item in the UITableView, she/he
gets redirected to the UIViewController which makes it possible for the
user to choose an UIColor for the selected course. The UIViewController
contains seven different UIViews. Each one of the UIViews contains a
background colour and an UIImageView. The background colour shows the
UIColor the user can choose. The UIImageView shows a tick to indicate
the user which UIColor she/he has currently chosen. Each UIView has a
Tap Gesture Recognizer on it. For example, if the user clicks on the second
UIView, the UIViewController disables all ticks and enables the tick for the
UIView the user has touched. Furthermore, the UIViewController adds a
UIBarButtonItem to the navigationItem which says ”Save”. If a user has
finished the selection process, she/he can touch the UIBarButtonItem to
save the UIColor as Hex-Code to the chosen course in the Realm Database.
This way, the UIColor is stored within the RealmObject and the application
can later on set the UIColor for the course, events, learn goals and notes.
After the successful data storage process the user is redirected to the screen
before, which is the UIViewController responsible for listing all courses the
user has subscribed to. The user can then carry on to assign UIColors to
more courses or navigate through the application. The Figure 4.18 shows
the screen of the application where the user can choose the colours for the
courses.

97

4. Developing the applications

Figure 4.18.: Colouring - screen of iOS application

98

5. Proof of concept

This chapter provides a summary of the ideas and features targeted at the
phase of the prototype. The original ideas are defined in the chapter 3.
Based on the ideas gathered before the development of the application,
this chapter defines which goals have been fulfilled, which goals have
been partly fulfilled and which goals have not been realised. Furthermore,
this chapter provides a summary of the survey which has been generated
and given out to the users of the application to give feedback about the
application. This survey indicates whether the application and its features
have been successfully implemented, partly successfully implemented or
poorly implemented.

5.1. Prototype vs. application

This section provides a detailed comparison between the prototype designed
before the development of the application and the application itself. At first,
all features from the prototype process are listed in a table and whether they
have been implemented, partially implemented or not been implemented in
the application. After that a description for each feature listed in the table
and why it has been successfully or only partly implemented follows. The
next part of this section describes each feature. It describes how the feature
was supposed to work and how it is implemented in each version, Android
and iOS, of the application. Features in the application may differ from
the prototype and this section describes why it was decided to change the
feature.

99

5. Proof of concept

Feature Android iOS
Offline usage poorly poorly
Coloring of courses yes yes
Coloring of events yes yes
Coloring of learn goals yes yes
Coloring of notes yes yes
Complete self created events yes yes
Complete self created learn goals yes yes
Create events partly partly
Create learn goals partly partly
Create notes partly partly
Detail view of courses yes yes
Detail view of events yes yes
Detail view of learn goals yes yes
Detail view of notes yes yes
Filtering events partly partly
Filtering learn goals partly partly
Gamification yes yes
Learning progress partly partly
List courses yes yes
List events from MOOC platform yes yes
List self created events yes yes
List notifications yes yes
Login partly partly
Multilingual partly partly
Push notifications partly partly
Type icons yes yes

Table 5.1.: Comparison of features described during the prototype process and features
implemented in the application

100

5.1. Prototype vs. application

Offline usage

Offline usage was a part of the discussion during the prototype process.
It was planned to store information in a local database on the device, but
not to which extent. It should be possible to use the application offline.
This feature has not been sufficiently implemented. This is due to the fact,
that for the optimal usage of the application, a stable internet connection
is needed. Even though the data is stored locally, an adjustment with the
external database of the MOOC platform is needed to update the events,
courses and progress. The external database of the MOOC platform controls
these elements. This part has been implemented sufficiently but needs
improvement. What is possible, is that the user can see her/his events,
learn goals, courses and notes if she/he has used the application once and
retrieved information successfully, but the data is then out-dated.

Coloring of events, learn Goals, notes and courses

During the prototype process, the colouring of events, learn goals, notes
and courses was described as a feature that helps the user to interact with
the application and differ between the courses. This feature should make
the application more readable. This feature is located in the profile screen
of the prototype mockup. This feature has been successfully implemented
and the feature works as it was supposed to.

Complete self-created events and learn goals

This feature was described during the prototype process as the possibility
of finishing self-created events or learn goals. If a user has finished a self-
created event or learn goal, she/he should be able to complete the task
within the application and receive experience points for it. Experience points
are described in section 3.2. This feature has been successfully implemented
in the applications for Android and iOS and is located in the detail view of
self-created events or learn goals.

101

5. Proof of concept

Create events, learn goals and notes

As defined in subsection 3.1.3, besides the events retrieved from the MOOC
platform, the user should be able to create events, learn goals and notes if
needed. In the Table 5.1, these three types are defined as partly implemented.
This is due to the fact, that the design was changed during the development
process. During the prototype process, the creation screen was designed
to match the design of events that are displayed to the user on the events
screen, described in section 3.3. Originally it was thought that the user has a
feeling of how the event, learn goal or note will look in the application after
creating it. This has changed due to the fact of bad user experience since
giving input data needs more space than displaying information. Therefore
this screen has changed to a form. Due to this fact, this feature is described
as partly successfully implemented. The key feature is still available, but the
design of the creation process has changed.

Detail view of courses

The detail view of courses is accessible from the screen showing a list of all
subscribed courses. By tapping on a course in the list, the user is redirected
to a screen where she/he can see all events and learn goals that are related
to the subscribed course. The feature includes an own and independent
Bottom Navigation. The tabs describe ”Events”, ”Learn Goals” and ”Notes”,
so the user can differ between every type. Furthermore, events and learn
goals can be filtered in more detail. As described in the previous section,
filtering changed during the development process. This feature is described
as successfully implemented in the Table 5.1, since it works a intended.
Furthermore, the user can be redirected to the screen where she/he can
create an event, learn goal or note. Depending on which course the user
has chosen, the application automatically fills out the creation screen, as
described in section 4.3.2 and section 4.2.2. This feature works as described
in the prototype process.

102

5.1. Prototype vs. application

Detail view of events, learn goals and notes

During the prototype process, a feature was defined that should display
a detailed view about the event, learn goal or note, no matter whether
self-created or retrieved by the MOOC platform. The detail view of events
should also include the feature to determine a reminder date. On this
screen, the user should have the possibility to set a date with the help
of an operating system specific date picker. Furthermore, in the case of
self-created events or learn goals, the user should have the possibility to
mark them as completed if necessary. Notes differ from events and learn
goals. In this case, the user cannot set a reminder date or mark them as
completed. The detail view of notes is defined with a title and a description.
In the case of self-created events, learn goals or notes, the user also can
delete them if necessary. This feature has been implemented successfully in
the application and is therefore marked so in the Table 5.1.

Filtering events and learn goals

The idea during the prototype process was, that the user should have the
possibility to filter the events and learn goals in the list views. This should
help the user to intentionally navigate through the application and find the
events/learn goals she/he is looking for. In Table 5.1 this feature is marked
as partially implemented in the applications for Android and iOS. This is
due to the fact, that the feature changed during the development process
and was supplemented by another feature. In the prototype process, the
possibilities for filtering events were limited to ”Upcoming”, ”Past” and
”All”. During the development process, these filter elements were changed
to ”Completed”, ”Outstanding” and ”All”. This leaves the user with the
possibility to filter for tasks that she/he has not finished, more comfortably.
The supplementing feature is that the user is still able to indicate which due
date of events or learn goals is in the past. This is done by a grey overlay in
both versions of the application. Even though it improves the feature itself,
it is marked as partly implemented for both versions, since it differs from
the idea which was defined during the prototype process.

103

5. Proof of concept

Gamification

During the prototype process, gamification was one of the main aspects
of the application and needed more attention than other features. There
have been many ideas about how to solve this problem. One described
idea in chapter 3 was, that the application makes use of avatars combined
with experience points the user can gather. Because creating and drawing
avatars does not suit this application, the prototype process decided that
for this master thesis, it is satisfactory that the application uses levels
and experience points. Depending on the current level of the user, the
application retrieves dynamic information about the level from the backend
of the MOOC platform, like an individual text that describes the level and
an image that is shown to the user. This was the accepted idea during the
prototype process and this idea has been successfully implemented in both
applications for Android and iOS.

Learning progress

The learning progress feature defined during the prototype process differs
from the feature implemented in the applications for Android and iOS.
Originally, it was defined as a feature that is located in the profile screen of
the application. There, the user should receive a list of all events, learn goals
and courses and see her/his progress and the progress of others. During the
development process, this screen was removed and the feature was moved
somewhere else. The feature is still in the applications, but it is located
directly within the events, learn goals and courses. With this change of
the feature, one screen was removed and now the user has the possibility
to see the courses, events and learn goals with their progress and other
details. This feature is marked as partly successfully implemented since
it differs from the idea given during the prototype process. The key idea
of the feature still exists in the applications and the user can view her/his
progress.

104

5.1. Prototype vs. application

List courses

In the prototype process, listing courses is one of the main screens in the
main navigation. It is one of the four tabs in the Bottom Navigation. This
screen should list all courses the user has subscribed to, providing the title
of the course, a description and a image. If no image is available, a standard
image should be displayed. This feature is provided, so the user can see
which courses she/he is assigned to with one click. Furthermore, the user
should have the possibility to touch one of the courses and be redirected
to a screen which provides all events, learn goals and notes related to
this course. This is described later in this chapter. This feature has been
successfully implemented in the application for Android and iOS and works
as intended.

List events from MOOC platform

During the prototype process, listing events was defined as the possibility
for the user to check all events that are available at the MOOC platform.
A user, who has subscribed to courses, has events that take place during
a course. These events should be listed to the user. This feature has been
successfully implemented in the Android and iOS version of the application.
Furthermore, during the process of developing the applications, the feature
was introduced to enable the user to see which events’ due dates are already
past and which are present or in the future, at first sight. This feature was
implemented afterwards. In addition to that, both applications in Android
and iOS, provide the feature, enabling the application to automatically scroll
to the event which is the nearest to the current date. This is also a feature
that was not mentioned in the prototype process but came up during the
development process. In respect to the explanation given in section 4.3.2
and section 4.2.2, this feature is defined as successfully implemented and
compared to the prototype, it comes with two additional defined features.

105

5. Proof of concept

List self-created events and learn goals

Besides the listing of events available at the MOOC platform, the user
should be able to see self-created events and learn goals. These self-created
events and learn goals should be combined with the events retrieved from
the MOOC platform. They should act in the same way as events from the
MOOC platform, except for the possibility that the user can also create
a learn goal and can complete the event or learn goal by her/his own
manually. This idea was planned during the prototype process and has been
successfully implemented in the applications for Android and iOS.

List notifications

As described in the section for section 5.1, listing notifications is the second
part of the notifications feature. In the prototype process, it is defined as the
listing of all notifications that have been pushed to the user. This feature
should help the user not to miss any notifications and to review them
again. It is also defined as one of the main screens of the navigation and is
located as a tabbed item in the Bottom Navigation. This feature has been
successfully implemented, including the dynamically created text and icon
depending on the type of the push notification, and therefore is marked as
successfully implemented in Android and iOS in the Table 5.1.

Login

During the prototype process, the login was defined as a native screen
where a user can log in to the application or register. The login is necessary
to receive an authorisation token which is needed to successfully receive
information about the courses the user has subscribed to. In Table 5.1,
this feature is marked as partly implemented in Android and iOS. It is
marked as partly implemented because the login screen is native, but is
located inside a WebView, which is not optimal. This is because the complex
authorisation process of the MOOC platform and building an own native
login process for the application would have caused security issues. That
is why the application does not have a login process and login screen

106

5.1. Prototype vs. application

but uses the login and registration process of the MOOC platform itself
with the aid of a WebView. Even though it is not optimal, the login and
registration process works and the user can retrieve an authorisation token
to successfully interact with the application. This feature is therefore defined
as partly successfully implemented.

Multilingual

During the prototype process, it was considered that the application has to
be multilingual to satisfy the requirements of the users. Therefore it was
planned during the prototype process to provide applications that offer the
languages English and German. Both applications, Android and iOS, make
use of both languages as planned, but there is room for improvement. To
satisfy more needs of the users and to adapt to the native languages of the
users, further translations of the applications are required. This feature is
marked as partly successfully implemented because it implements the idea
of the prototype but still needs improvement.

Push notifications

In chapter 3, notifications have two different meanings. On the one hand,
push notifications are described. These push notifications get sent to the
user when something new is happening. The other type is the screen of no-
tifications. This screen lists all push notifications the user has received. This
section describes the part for the push notifications. The push notifications
are marked as partly implemented in Android and iOS in Table 5.1. During
the prototype process, the push notifications were planned to take place as
soon as something new happens. In this case, the notifications should be
sent to the user as soon as a reminder date for an event or a learn goal arises
or a new course has been provided by the MOOC platform. In both cases, it
was not possible to implement it in a way that real-time push notifications
are possible. Since this was not possible, the feature was changed. Push
notifications are sent once a day in both versions, Android and iOS. The
application retrieves the data once a day, analyses it and according to the
data reacts with push notifications to it if needed. The feature is not fully

107

5. Proof of concept

working as intended. Therefore this feature is defined as partly successfully
implemented.

Type icons

The prototype process has shown that it is hard for the user to determine
whether an item is an event, a learn goal or a note if no additional informa-
tion is provided. Therefore, during the prototype process, the idea was born
to differ the types of items with the aid of icons. Each type, event, learn goal
and note, no matter whether self-created or not, has it’s own icon to show
which type the item is off. Furthermore, courses also have own icons. This
is useful when the user is heading to the screen which lists notifications. At
this screen, the user can differ whether a notification was about an event,
a learn goal or a course. This feature has successfully been implemented
in both versions of Android and iOS. Furthermore, both versions share the
same set of icons.

In sum, 25 features are listed in Table 5.1. It is debatable whether there
are more features implemented, but these are the core features to make
the applications useful. These core features were designed in the prototype
process and this chapter declares to which rate these features have been
implemented in the applications for Android and iOS. 16 features are
defined as successfully implemented. Eight features are defined as partly
implemented. One feature, the offline usage of the application, is defined as
poorly implemented and needs improvement. In general, the application
satisfies the needs given in the prototype process and therefore one part for
the proof of the concept is given. The second part of this chapter provides a
survey and the final evaluation whether the concept has proven successful.

5.2. Survey & Evaluation

This section provides a survey which was provided to the users of the
application and the evaluation of the answers given from the users. It
finishes the first part of the proof of concept of this chapter. The first part of

108

5.2. Survey & Evaluation

this chapter defines the idea of the prototype as successfully implemented.
This section evaluates whether the ideas given in the prototype and the
implementation in the applications have lead to the intended goal. The
goal of the application is to give users an overview of their courses and
events and improve their learning progress. This section gives answers to the
question, whether the design and the implementation is satisfying the users.
Furthermore, it defines the final question whether the users could/can
improve their learning progress with the aid of the mobile applications.

5.2.1. The survey

The survey started on the 5th of October 2018 and ended on the 17th of
October 2019. The survey was distributed to the users via the applications,
the forum of the MOOC platform and in MOOC on the platform. This
section provides the questions asked during the survey and the meaning
behind the answers. Furthermore, it describes why the questions were asked
and why they were asked this way. The survey was provided to the users
with the aid of Google forms. The survey created there is available in the
applications. In the section for the profile, there is a subsection for ”Master
Thesis Feedback”. If users click on this section, they will be redirected to the
survey. Furthermore, people are notified ten days after the first installation
of the application. The notification includes a hint, that the applications
were part of a Master thesis and the users can answer a survey to prove the
concept of this application. In sum, the survey contains ten questions. Eight
of these questions are single choice questions with four possible answers
and are obligatory. Two of the ten questions can be filled out optionally.
This means, that the users can provide any feedback in these questions. It
is not defined whether the users use the application on an Android or iOS
device since the core functionality and the design does not differ. In the
following, all questions and possible answers are explained in detail.

Question #1: Do you like the design/appearance of the app?

This question is asked to clarify whether the design of the application is
pleasing the users. The design is one main part of this application. With

109

5. Proof of concept

this question, users can define whether they like the way that events, learn
goals and notes are displayed, whether the colour scheme is appealing,
whether everything is readable, whether the icons are obvious and whether
they like how information is displayed to them. The possible answers for
users to give ranges from #1 to #4. #1 is defined as ”No, I don’t like it at
all”. #4 is defined as ”Yes, I like it”. So if a user does not think that the
design/appearance of the application is appealing, she/he must pick the an-
swer #1. If a user somewhat likes the design/appearance of the application,
she/he must pick the answer #2. If a user likes the design/appearance of
the application, she/he must pick the answer #3. If a user is fully convinced
by the design/appearance of the application, she/he must pick the answer
#4.

Question #2: Do or did you have problems controlling the app?

This question is asked to clarify whether users have or had general problems
controlling the application. This question is not meant to define whether
the users are pleased with the navigation controls of the application. For
this definition, question #3 is asked. This question defines whether the users
know how to reach the detail view of events or they know how to create
an event, learn goal or note. In general, it should define whether the users
know where to find which feature and whether they know all features by
clicking once through the whole application. The possible answers for users
to give range from #1 to #4. Answer #1 is defined as ”Yes, I had many
problems”. Answer #4 is defined as ”No, no problem at all”. So if a user
had or has many problems when controlling the application, she/he must
pock the answer #1. If a user had or has some problems when controlling
the application, she/he must pick the answer #2. If a user had or has minor
problems when controlling the application, she/he must pick the answer #3.
If a user had or has no problems when controlling the application, she/he
must pick the answer #4.

110

5.2. Survey & Evaluation

Question #3: Do you think the navigation of the app is confusing?

This question is asked to clarify whether users have problems when navi-
gating through the application. In contrast to the question #2, this question
does not define whether users have problems controlling the application.
This question defines whether users think that they understand how the
Bottom Navigation works, how navigating back works or whether they
understand what happens when they click on an item in a list. The possible
answers for users to give range from #1 to #4. Answer #1 is defined as ”Yes,
I don’t know how to handle it”. Answer #4 is defined as ”No, the app is
self-explaining”. So if a user does not understand how the navigation in
the application works, she/he must pick the answer #1. If a user somehow
understands how the navigation in the application works, she/he must
pick the answer #2. If a user has minor problems with the navigation in the
application, she/he must pick the answer #3. If a user has no problems with
the navigation in the application, she/he must pick the answer #4.

Question #4: Do you use the app at least once a week in addition to an
iMooX-Course?

This question is asked to clarify whether users think that this application is
useful to use it in addition to the existing MOOC platform. Furthermore,
it defines, how often the users are using the application in addition to a
subscribed course of the MOOC platform. This question does not define
how often the users use the application in general since it explicitly says ”in
addition to an iMooX-Course”. The possible answers for users to give range
from #1 to #4. Answer #1 is defined as ”No, never”. Answer #4 is defined
as ”Yes, always”. So if a user does not regularly use the application within
a week in addition to a course at the MOOC platform, she/he must pick
the answer #1. If a user sometimes regularly uses the application within a
week in addition to a course at the MOOC platform, she/he must pick the
answer #2. If a user often regularly uses the application within a week in
addition to a course at the MOOC platform, she/he must pick the answer
#3. If a user always regularly uses the application within a week in addition
to a course at the MOOC platform, she/he must pick the answer #4.

111

5. Proof of concept

Question #5: After playing the tutorial, did you have the feeling you
understand the app?

At the first opening of the application, the user can play a tutorial. The
user also can play the tutorial as often as she/he wants with the designated
section within the profile screen of the application. This question defines
whether users had the feeling they understand the purpose of the application
and what it was designed for after they have clicked through the tutorial.
The possible answers for users to give range from #1 to #4. Answer #1

is defined as ”No, I didn’t have a clue”. Answer #4 is defined as ”Yes, I
understood it immediately”. So if a user had many problems to understand
what the purpose of the application is, she/he has to pick answer #1. If a
user had some problems to understand what the purpose of the application
is, she/he has to pick answer #2. If a user had minor problems to understand
what the purpose of the application is, she/he hast to pick answer #3. If a
user had no problems understanding what the purpose of the application
is, she/he hast to pick answer #4.

Question #6: After playing the tutorial, did you have the feeling that
you can control the app without any problems?

As described in question #5, the user can play a tutorial within the applica-
tion. This question is an addition to question #2. Besides the explanation
given in question #2, this question defines whether the users had problems
controlling the application after playing the tutorial. The possible answers
for users to give range from #1 to #4. Answer #1 is defined as ”No, I still
had many problems”. Answer #4 is defined as ”Yes, no problems at all”. So
if a user had or has many problems when controlling the application after
playing the tutorial, she/he must pick the answer #1. If a user had or has
some problems when controlling the application after playing the tutorial,
she/he must pick the answer #2. If a user had or has minor problems when
controlling the application after playing the tutorial, she/he must pick the
answer #3. If a user had or has no problems when controlling the application
after playing the tutorial, she/he must pick the answer #4.

112

5.2. Survey & Evaluation

Question #7: Does the app help you to keep an overview of your
courses and events (Termine)?

This question is asked to clarify is users think the application is a useful
addition to the MOOC platform to keep an overview of their courses and
events. Furthermore, it should describe whether users think it is handy
how the courses and events are listed within the application and whether
the possibility of filtering is useful. The possible answers for users to give
range from #1 to #4. Answer #1 is defined as ”No, I can’t keep an overview”.
Answer #4 is defined as ”Yes, I have the perfect overview”. So if a user
has no appropriate overview of her/his courses and events at all, she/he
has to pick the answer #1. If a user has a little appropriate overview of
her/his courses and Events, she/he has to pick the answer #2. If a user has
an appropriate overview of her/his courses and Events, she/he has to pick
the answer #3. If a user has an optimal overview of her/his courses and
Events, she/he has to pick the answer #4.

Question #8: Does the app increase your learning progress?

This question is one of the most important indicators to verify whether the
application is successful. This question is asked to clarify whether users
think that using the application helped them increase their learning progress
regarding the events and courses of the MOOC platform. One of the main
goals of this application was to indicate whether an application in addition
to the MOOC platform can raise the learning progress of the users of the
MOOC platform. The other questions are asked to clarify whether the basic
requirements for positive feedback to this question are given and that a
positive user experience (design, controls, navigation) is provided. The
possible answers for users to give range from #1 to #4. Answer #1 is defined
as ”No, my learning progress didn’t increase at all”. Answer #4 is defined
as ”Yes, my learning progress increased”. So if a user had no increase in
learning progress at all regarding the MOOC Courses, she/he has to pick
answer #1. If a user had a little increase in learning progress regarding the
MOOC Courses, she/he has to pick answer #2. If a user had some increase
in learning progress regarding the MOOC Courses, she/he has to pick

113

5. Proof of concept

answer #3. If a user had a significant increase in learning progress regarding
the MOOC Courses, she/he has to pick answer #4.

Question #9: What did you like best about the app? (Optional)

This question is the first of two questions where users can give feedback
with free text and it is optional. This question is asked to clarify whether
any features stand out and what features the users like the most.

Question #10: What did you like least about the app? (Optional)

This question is the second of two questions where users can give feedback
with free text and it is optional. This question is asked to clarify whether
any features were missing and what features the users liked the least.
This section sums up the questions of the survey and explains it. Eight of
ten questions were single choice and mandatory. Two of the ten questions
were free to answer and optional. In general, these questions clarify whether
acceptable usability, design, navigation and controls of the application is
given. Furthermore, question #8 ”Does the app increase your learning
progress?” defines whether the application was a success and therefore
proves the concept.

5.2.2. The evaluation

This section describes the evaluation of the survey provided and explained
in subsection 5.2.1. The methodology followed is the detailed explanation
of the answers given for each question. The answers for the free to answer
questions are interpreted independently. Furthermore, after the analysis of
the survey, an overall status of the application is given and whether the
proof of concept is positive. In sum, 30 users of the applications in Android
and iOS took part in the survey. 30 users answered the first eight questions,
which were single choice questions and an answer was mandatory. The
ninth and tenth question were both optional and therefore not all users
have given feedback for these questions. For single choice questions, a total

114

5.2. Survey & Evaluation

of four possible answers was provided to the user. One of the answers is
negative, one of the answers is rather negative, one of the answers is rather
positive and one of the answers is positive. For the sake of simplicity and to
evaluate whether a question was answered positively or negatively, the two
answers rated as negative are joined together and the two answers rated as
positive are joined together. A question is marked with positive feedback if
two out of three users have given a positive answer. So, if more than 66,6%
of the users have provided positive feedback to one specific question, it is a
positive indicator for the proof of concept. The questions are not explained
in this section. For a detailed explanation about the questions and the survey
look up subsection 5.2.1.

Question #1: Do you like the design/appearance of the app?

This question has the possible range of answers from #1 ”No, I don’t like it at
all” til #4 ”Yes, I totally like it”. No user (0%) has answered this question with
answer #1 (negative). Four users (∼13,3%) have answered this question with
answer #2 (rather negative). 12 users (40%) have answered this question with
answer #3 (rather positive). 14 users (∼46,7%) have answered this question
with answer #4 (positive). This means, that four users (∼13,3%) have given
negative feedback regarding this question. 26 users (∼86,7%) have given
positive feedback regarding this question. This leads to the result, that more
than 66,6% of the users are satisfied with the design/appearance of the
application. Therefore, this indicator for the proof of concept is positive. A
visualised version of the given answers is delivered in Figure 5.1

Question #2: Do or did you have problems controlling the app?

This question has the possible range of answers from #1 ”Yes, I had many
problems” til #4 ”No, no problems at all”. One user (∼3,3%) has answered
this question with answer #1 (negative). Four users (∼13,3%) have answered
this question with answer #2 (rather negative). Eight users (∼26,7%) have
answered this question with answer #3 (rather positive). 17 users (∼56,7%)
have answered this question with answer #4 (positive). This means, that
five users (∼16,6%) have given negative feedback regarding this question.

115

5. Proof of concept

#4

46.7%

#3

40%
#2

13.3%

Figure 5.1.: Pie chart of answers for ”Do you like the design/appearance of the app?” #1:
”No, I don’t like it at all”, #4: ”Yes, I totally like it”

25 users (∼83,4%) have given positive feedback regarding this question.
This leads to the result, that more than 66,6% of the users are satisfied with
the controls of the application. Therefore, this indicator for the proof of
concept is positive. A visualised version of the given answers is delivered in
Figure 5.2

Question #3: Do you think the navigation of the app is confusing?

This question has the possible range of answers from #1 ”Yes, I don’t know
how to handle it” til #4 ”No, the app is self-explaining”. No user (0%)
has answered this question with answer #1 (negative). Three users (∼10%)
have answered this question with answer #2 (rather negative). 14 users
(∼46,7%) have answered this question with answer #3 (rather positive). 13

users (∼43,3%) have answered this question with answer #4 (positive). This
means, that three users (∼10%) have given negative feedback regarding
this question. 27 users (∼90%) have given positive feedback regarding this
question. This leads to the result, that more than 66,6% of the users are
satisfied with the navigation of the application. Therefore, this indicator for

116

5.2. Survey & Evaluation

#4

56.7%

#3

26.7%
#2

13.3%
#1

3.3%

Figure 5.2.: Pie chart of answers for ”Do or did you have problems controlling the app?”
#1: ”Yes, I had many problems”, #4: ”No, no problems at all”

the proof of concept is positive. A visualised version of the given answers is
delivered in Figure 5.3.

#4

43.3%

#3

46.7%
#2

10%

Figure 5.3.: Pie chart of answers for ”Do you think the navigation of the app is confusing?”
#1: ”Yes, I don’t know how to handle it”, #4: ”No, the app is self-explaining”

117

5. Proof of concept

Question #4: Do you use the app at least once a week in addition to an
iMooX-Course?

This question has the possible range of answers from #1 ”No, never” til #4

”Yes, always”. Two users (∼6,7%) have answered this question with answer
#1 (negative). 14 users (∼46,7%) have answered this question with answer
#2 (rather negative). Seven users (∼23,3%) have answered this question
with answer #3 (rather positive). Seven users (∼23,3%) have answered this
question with answer #4 (positive). This means, that 16 users (∼53,4%) have
given negative feedback regarding this question. 14 users (∼46,6%) have
given positive feedback regarding this question. This leads to the result, that
about 53,3% of the users are not using the application at least once a week
in addition to an iMooX-course. Therefore, this indicator for the proof of
concept is negative. A visualised version of the given answers is delivered
in Figure 5.4.

#4

23.3%

#3

23.3%

#2

46.7% #1

6.7%

Figure 5.4.: Pie chart of answers for ”Do you use the app at least once a week in addition
to an iMooX-Course?” #1: ”No, never”, #4: ”Yes, always”

118

5.2. Survey & Evaluation

Question #5: After playing the tutorial, did you have the feeling you
understand the app?

This question has the possible range of answers from #1 ”No, I didn’t
have a clue” til #4 ”Yes, I understood it immediately”. One user (∼3,3%)
has answered this question with answer #1 (negative). Two users (∼6,7%)
have answered this question with answer #2 (rather negative). 13 users
(∼43,3%) have answered this question with answer #3 (rather positive). 14

users (∼46,7%) have answered this question with answer #4 (positive). This
means, that three users (∼10%) have given negative feedback regarding
this question. 27 users (∼90%) have given positive feedback regarding this
question. This leads to the result, that more than 66,6% of the users were
able to understand the application after playing the tutorial. Therefore, this
indicator for the proof of concept is positive. A visualised version of the
given answers is delivered in Figure 5.5.

#4

46.7%

#3

43.3%
#2

6.7% #1

3.3%

Figure 5.5.: Pie chart of answers for ”After playing the tutorial, did you have the feeling
you understand the app?” #1: ”No, I didn’t have a clue”, #4: ”Yes, I understood
it immediately”

119

5. Proof of concept

Question #6: After playing the tutorial, did you have the feeling that
you can control the app without any problems?

This question has the possible range of answers from #1 ”No, I didn’t have a
clue” til #4 ”Yes, I understood it immediately”. No user (0%) has answered
this question with answer #1 (negative). Two users (∼6,7%) have answered
this question with answer #2 (rather negative). 13 users (∼43,3%) have
answered this question with answer #3 (rather positive). 15 users (50%)
have answered this question with answer #4 (positive). This means, that
two users (∼6,7%) have given negative feedback regarding this question. 27

users (∼93,3%) have given positive feedback regarding this question. This
leads to the result, that more than 66,6% of the users were able to control
the application after playing the tutorial. Therefore, this indicator for the
proof of concept is positive. A visualised version of the given answers is
delivered in Figure 5.6.

#4

50%

#3

43.3% #2

6.7%

Figure 5.6.: Pie chart of answers for ”After playing the tutorial, did you have the feeling
that you can control the app without any problems?” #1: ”No, I still had many
problems”, #4: ”Yes, no problems at all”

120

5.2. Survey & Evaluation

Question #7: Does the app help you to keep an overview of your
courses and events (Termine)?

This question has the possible range of answers from #1 ”No, I didn’t
have a clue” til #4 ”Yes, I understood it immediately”. One user (∼3,3%)
has answered this question with answer #1 (negative). five users (∼16,7%)
have answered this question with answer #2 (rather negative). Eleven users
(∼36,7%) have answered this question with answer #3 (rather positive).
13 users (∼43,3%) have answered this question with answer #4 (positive).
This means, that six users (∼20%) have given negative feedback regarding
this question. 24 users (∼80%) have given positive feedback regarding this
question. This leads to the result, that more than 66,6% of the users can
keep an overview of their courses and notes with the aid of the application.
Therefore, this indicator for the proof of concept is positive. A visualised
version of the given answers is delivered in Figure 5.7.

#4

43.3%

#3

36.7%

#2

16.7%
#1

3.3%

Figure 5.7.: Pie chart of answers for ”Does the app help you to keep an overview of your
courses and events (Termine)?” #1: ”No, I can’t keep an overview”, #4: ”Yes, I
have the perfect overview”

121

5. Proof of concept

Question #8: Does the app increase your learning progress?

This question has the possible range of answers from #1 ”No, I didn’t
have a clue” til #4 ”Yes, I understood it immediately”. Four users (∼13,3%)
have answered this question with answer #1 (negative). Five users (∼16,7%)
have answered this question with answer #2 (rather negative). Nine users
(∼30%) have answered this question with answer #3 (rather positive). 12

users (∼40%) have answered this question with answer #4 (positive). This
means, that nine users (∼30%) have given negative feedback regarding
this question. 21 users (∼70%) have given positive feedback regarding this
question. This leads to the result, that more than 66,6% of the users have
increased their learning progress with the aid of the application. Therefore,
this indicator for the proof of concept is positive. A visualised version of
the given answers is delivered in Figure 5.8.

#4

40%

#3

30%

#2

16.7%
#1

13.3%

Figure 5.8.: Pie chart of answers for ”Does the app increase your learning progress?”
#1: ”(No, my learning progress didn’t increase at all”, #4: ”Yes, my learning
progress increased”

122

5.2. Survey & Evaluation

Question #9: What did you like best about the app? (Optional)

With this optional question, users could give positive feedback regarding the
mobile application. Due to the fact, that not all 30 participants have answered
this question and that it is not possible to find a meaningful indicator for
the proof of concept, this question is without evaluation. In total, six users
(∼19,8%) have provided feedback to this question. The following lines are
adopted without modification.

• Overwiew

• The overview over the courses and timetables

• That I did not have to go through the online forms everytime

• The overview of all courses, the progress.

• The design of the application is very nice looking.

• The possibility to set a reminder.

Question #10: What did you like least about the app? (Optional)

With this optional question, users could give negative feedback regarding
the mobile application. Due to the fact, that not all 30 participants have
answered this question and that it is not possible to find a meaningful
indicator for the proof of concept, this question is without evaluation. In
total, five users (∼16,5%) have provided feedback to this question. The
following lines are adopted without modification.

• The fact that I can‘t control my courses (participation)

• I’m taking courses that are finished and it’s complicated to use the app to
reach ’completed’ lessons

• The application takes a long time to load, the courses appear timely.

• It would be nice to register for courses in the app.

123

5. Proof of concept

• No course registration.

Seven out of eight questions collected positive feedback. This means, that
87,5% of the indicators have a positive evaluation. Because only one question
has not been answered positively (∼53,3% negative answers), the proof of
concept is considered as positive. Therefore, the application works and
the users are satisfied with the results of the prototype and development
process. Furthermore, the most important indicator, the learning progress,
was also positive. ∼70% of the users have increased their learning progress
with the aid of the application. The following hypothesis proves right: Using
the application in addition to the MOOC platform leads to an increase in
the learning progress with seven out of ten users.

124

6. Conclusion

This chapter reprocesses the prototype, the development of the application,
the evaluation of the application and the thesis itself. During the prototype
process and the development process, problems occurred that lead to a
temporal blocker and needed more implementation time than expected.
These problems are described in the section for lessons learned. These
lessons learned should help future work to avoid mistakes that already
have been made. In the section 6.2, current limitations for the application
and the thesis are listed. Afterwards , features are explained that could
lead to an improvement of the user experience if these limitations are
eliminated. Finally, a summarising about the thesis and an outlook about
further research is provided.

6.1. Lessons learned

During the whole process from creating a prototype up to publishing the
applications, problems occurred that could have been avoided. Therefore,
this section provides a listing of problems that occurred during this thesis,
why they were a problem and how successors can prevent these problems
from happening.

The prototype

During the definition of the prototype, some problems occurred. The prob-
lems that happened during the process were not critical, but another ap-
proach could have saved time. The first mistake that happened was, that the
Mockup was created before all ideas and use cases have been written down.

125

6. Conclusion

There was an initial kick-off meeting about the main idea and the features
that should get implemented, but the mistake was, that it was not thought
through how the features get implemented. Before creating the mockup,
there existed a set of features, but there were no use cases written down
how the features should get implemented. Some of these use cases could
have been:

• As a user, I want to see a list with all events and learn goals.

• As a user, I want the application to automatically scroll to the most
current event or learn goal.

• As a user, I want to have a profile section where I have the option for
colouring my courses, events, learn goals and notes.

• As a user, I want to create events.

• As a user, I want to create learn goals.

• As a user, I want to create notes.

• As a user, I want to define which type of event I create.

• As a user, I want to have a screen that displays all events, learn goals
and notes related to one specific course.

• As a user, I want the application to automatically select the type and
fill out the course when creating an event, a learn goal or a note when
heading from the detail view of a course.

These are only a few of many use cases that could have been written down
for the prototype process. Furthermore, several use cases could have been
assigned to one feature to have an overview. One feature is completed,
if all of these use cases are considered. Collecting use cases would have
saved time. The way it was, not all parties involved were fully clear about
the features and what they should do. Therefore the mockup was created
multiple times until the final mockup was settled. Another aspect in terms
ofthe mockup is to use a tool that allows you to modify one mockup all
the time. Some of the tools for creating a mockup are pay-to-use. For this

126

6.1. Lessons learned

thesis, a tool was used that was free. Therefore, after creating a mockup,
there were limitations in editing the mockup. The lesson learned is, when
creating a prototype, the idea should be defined, the features should get
defined, use cases should get defined and a tool should be used where the
mockup can be edited after the creation.

Application - Android & iOS

The problem that occurred during the implementation of the Android ver-
sion is regarding the structure of the project. Before starting to implement
any code, a structure should be defined. A rule for coding. If no structure
is applied, the project gets messed up and looking for code gets difficult.
A clear structure where ViewModels, ItemViewModels, Views, Fragments,
Activities, ViewControllers, Images and Helper Functions belong to is ad-
visable. Therefore, before even writing any code, a structure with the help
of packages/folders within the project is helpful. Furthermore, a mockup
about the behaviour of the application could help to avoid spending unnec-
essary time about thinking where to put what. This could be a handwritten
paper. The first step could be drawing each screen. The next step would be
defining which type of screen it will be, for example, a Fragment, Activity,
UIViewController, UITableViewController, etc. The third step would be to
define which screen holds which ViewModel and/or ItemViewModel and
which logic is located in the ViewModel or in the Views. Models can also be
applied and defined. With this approach, during the development process,
the developer does not have to think through the process and how to handle
what. Also, the contradictions between code and Views can be avoided.
With the help of writing down the structure, the developer can check which
function is needed where and how to generalise functions if needed. For
example, it is necessary for a screen to show an alert to the user. Therefore,
the developer can plan a Helper Function that can be accessed from any
class and shows an alert to the user. The developer can economise and
centralise the code. It is not necessary to draw each screen in detail since
the look-a-like of the different screens has already been defined during the
prototype process. In this part of development, it is just about the logic of
all elements. This approach was not used during the development of the

127

6. Conclusion

applications in this thesis and therefore more time was needed to arrange
the project and the code.

Survey & Evaluation

The problem of the enforcement of the survey was the lack of participation.
Only 30 users have given feedback to the master thesis, even though the URL
to the survey was provided in the application and the users get notifications
after ten days after the installation of the application. Enough time was
spent on the survey to define which questions are asked and how they can
lead to an evaluation of the hypothesis that a learning diary in addition
to a MOOC platform can increase the learning progress. The problem
was the propagation and that the users did not earn anything for giving
feedback. An approach would be, to leave it as it is but to reward users
for taking the survey. For example, a user can immediately achieve the
next level by completing the survey. This could lead to the fact that users
are more motivated for giving feedback since they can earn something
from it. Another approach would be to implement the feedback within the
application itself and not in an external tool. This way, the application could
force the users to give feedback, otherwise, they could not further use the
application. This would be a suboptimal approach, since forcing users to
give feedback and blocking the application from work is not in the interest
of the user. It is still possible to use this idea and bring it to the application
by not forcing the user to make a feedback. Another idea would be to use
the native implemented survey and reward the users and to see how other
users have voted for all the questions. This could arise the curiosity for
doing the survey. For this approach, an external centralised database is
necessary to store the data given for each survey. To sum up this section,
spending time on the survey is essential.

6.2. Limitations & future work

This section describes the limitations that were given for the applications.
Furthermore, this section describes what would be meaningful next steps

128

6.2. Limitations & future work

to accomplish when improving the applications. The main restriction/lim-
itation is the lack of backend. The applications itself only works with
GET-Requests. This means, that only information can get retrieved from the
backend of the MOOC platform. Due to security issues and lack of resources,
it was not possible to arrange the backend in a way that the application can
store information. When accomplishing this limitation, some improvements
to the application are possible.

Courses

The first feature that should get implemented in further work is the ability
for users to register for courses and manage them within the application.
When doing the survey, users have mentioned that they miss the ability for
course registration. For this to accomplish, a POST API call is needed, so the
application can send the required information to the backend and register
the user for a course. Furthermore, it should be able for users to unsubscribe
from a course if necessary. This feature could also be accomplished with a
different POST API call.

Gamification

The aspect of gamification could be improved in three ways. The first one
would be to store the information, which currently are only stored locally, in
a centralised external database. This would lead to the advantage, that users
are device-independent. Right now, the user could use two different devices
with the same credentials and the level and experience points would be
different on both devices. This is suboptimal. When storing the information
in a centralised external database, the level and experience points would
be the same for all devices the user is using. Furthermore, when deleting
the application, this would not lead to a loss of the gamification progress.
The second aspect to improve would be the gamification itself. As described
in section 3.2, there was the idea to provide the user with the possibility
to design an avatar her-/himself. With the increase of the level, the user
would have more possibilities to design her/his avatar. The third way of
improving the gamification is in addition to the other two. With an external

129

6. Conclusion

database, the application could provide a leaderboard. In this leaderboard,
the users could see the rankings, levels, experience points and avatar of all
other users. The advantage created is that users have a comparison to other
users and the motivation to improve the level could increase.

Login

As described in chapter 4, in both versions, Android and iOS, the login
screen is handled with a Web View. The applications use Web Views because
there could arise security issues when a user is logging in from an external
platform other than the MOOC platform. This is a limitation to target, since
providing a Web View could lead to a bad performance in the applications.
A native built login screen would be faster than loading the login screen
in a WebView. Furthermore, the design could be optimised and adapted to
the needs of a mobile application on a smartphone. For this to happen, the
application needs an API endpoint that can handle user registration/login
and responses with an authorisation token.

Offline usage

As mentioned in chapter 5, offline usage is one feature of the application
which was not implemented to sufficiency. When using the application
offline, the application is not used to full potential. For implementing
offline usage, a structure and an approach should be defined. Every time
the application gets started and a stable internet connection is given, the
application should retrieve all information of the courses and events from
the MOOC platform and store them locally, so the user can use the courses
and events when the application has no internet connection.

Forum

One idea that has not been mentioned yet in this thesis is the feature of a
forum. The forum could be implemented in two ways. The first one would
be to use the forum that is already present at the MOOC platform with a

130

6.3. Summary & Outlook

Web View. Even though this would be a faster solution than the second one,
this would lead to a performance reduction. The second way would be to
implement the forum with a backend and build it natively in the applica-
tion. This means, that the application would need API calls for retrieving,
posting and updating posts within the forum. This way, the users also could
access the forum within the application and do not have to move to the web
application of the MOOC platform.

To sum up this section, the main limitation is that it is currently not possible
for the application to post data to a backend. Fixing this limitation would
lead to a variety of potential useful features like course registration, course
management and improvement of gamification. Furthermore, the applica-
tion is currently working as an addition to the MOOC platform. To provide
the optimal user experience, the applications should not be an addition to
the MOOC platform but work as a self-responsible platform. This means,
the optimum would be that the applications provide the same core features
as the MOOC platform does.

6.3. Summary & Outlook

Learning diaries, also known as learning journals, can be established in
different types and forms. They appear in written and digital forms and
their usage and advantages are discussed in papers and researches. As
described in section 2.1, a learning diary is a tool that helps students to
improve the learning process and learning progress. In section 2.3, some
applications are listed that already successfully provide the feature of a
learning diary. Gamification is a word that is quite common in the digital
industry, even though it does not have to be connected to educational
areas. As described in section 2.2, gamification is the application of game
elements to non-game contexts. The prototype described in chapter 3 tried
do break down a possible learning diary related to a MOOC platform
to its necessary core features. Ideas and how the design of the features
could look like are explained. The development of the application described

131

6. Conclusion

in chapter 4 explains both versions in a way, that developer with know-
how in mobile application development could rebuild both applications.
It also described how features have been implemented for both operating
systems, even though they were consciously built similar. The evaluation
provided in chapter 5 shows, that the hypothesis of this master thesis proves
right. The outlook for this application is promising. One main feature for
improving the outlook of this application and the master thesis itself is
gamification. In this master thesis, to use the word gamification is correct,
since a learning diary is a non-game context. Applying gamification to it
results in a non-game context educational area in combination with gaming-
elements. This is a combination that holds potential. The learning diary itself
can still be improved as discussed in section 6.2. Applying these features
would improve the overall user experience of the application and respect
the feedback that was given by the users described in subsection 5.2.2.
Especially the part of gamification can be improved immensely. Due to
the resources given by a master thesis, it was not able to maximise the
potential of gamification in this context. Applying more game-like elements
like avatars, currencies and awards would result in a push of motivation of
the users. Furthermore, implementing an overall leaderboard could result
in a competition that pushes the users even further to accomplish their
tasks in time. Improving the design, controls, navigation and gamification
of the application would result in more sufficiency of the users. This could
result in the main thing this master thesis is all about: The learning progress.
The learning progress was the main reason for this master thesis. Even
though the results are satisfying, the application still can be improved. The
goal is to make more students use the application. More students would
result in more competition with a leaderboard. This could result in an
improvement of the learning progress. The design, navigation, controls and
the gamification itself are elements that are necessary to increase the overall
learning progress of the users. The outlook for further work would be the
well thought out enhancement of each of these elements. In general, this
master thesis proved its hypothesis and the applications which resulted
from the prototype are established in Apples App Store and Google Play
Store. The applications and the background itself hold potential for the
future. Respecting the features provided and the suggestions for further
work could lead to an improvement in the overall application experience
and the learning progress of the users of the MOOC platform.

132

Appendix

133

Appendix A.

Survey of applications

135

Do you like the design/appearance of the app?
Do or did you have problem

s controlling the app?
U

ser 1
3

4 (N
o, no problem

s at all)
U

ser 2
4 (Y

es, I totally like it)
4 (N

o, no problem
s at all)

U
ser 3

4 (Y
es, I totally like it)

4 (N
o, no problem

s at all)
U

ser 4
4 (Y

es, I totally like it)
4 (N

o, no problem
s at all)

U
ser 5

3
3

U
ser 6

4 (Y
es, I totally like it)

4 (N
o, no problem

s at all)
U

ser 7
3

2
U

ser 8
4 (Y

es, I totally like it)
4 (N

o, no problem
s at all)

U
ser 9

2
3

U
ser 10

4 (Y
es, I totally like it)

4 (N
o, no problem

s at all)
U

ser 11
4 (Y

es, I totally like it)
4 (N

o, no problem
s at all)

U
ser 12

4 (Y
es, I totally like it)

4 (N
o, no problem

s at all)
U

ser 13
3

4 (N
o, no problem

s at all)
U

ser 14
2

2
U

ser 15
4 (Y

es, I totally like it)
1 (Y

es, I had m
any problem

s)
U

ser 16
3

3
U

ser 17
3

4 (N
o, no problem

s at all)
U

ser 18
4 (Y

es, I totally like it)
3

U
ser 19

4 (Y
es, I totally like it)

4 (N
o, no problem

s at all)
U

ser 20
3

3
U

ser 21
2

3
U

ser 22
3

2
U

ser 23
3

3
U

ser 24
2

3
U

ser 25
3

2
U

ser 26
3

4 (N
o, no problem

s at all)
U

ser 27
3

4 (N
o, no problem

s at all)
U

ser 28
4 (Y

es, I totally like it)
4 (N

o, no problem
s at all)

U
ser 29

4 (Y
es, I totally like it)

4 (N
o, no problem

s at all)
U

ser 30
4 (Y

es, I totally like it)
4 (N

o, no problem
s at all)

Do you think the navigation of the app is confusing?
Do you use the app at least once a w

eek in addition to an iM
ooX-Course?

U
ser 1

3
4 (Y

es, alw
ays)

U
ser 2

4 (N
o, the app is self-explaining)

2
U

ser 3
4 (N

o, the app is self-explaining)
2

U
ser 4

4 (N
o, the app is self-explaining)

4 (Y
es, alw

ays)
U

ser 5
4 (N

o, the app is self-explaining)
2

U
ser 6

4 (N
o, the app is self-explaining)

2
U

ser 7
3

2
U

ser 8
4 (N

o, the app is self-explaining)
3

U
ser 9

2
1 (N

o, never)
U

ser 10
3

3
U

ser 11
3

3
U

ser 12
3

3
U

ser 13
3

4 (Y
es, alw

ays)
U

ser 14
4 (N

o, the app is self-explaining)
4 (Y

es, alw
ays)

U
ser 15

3
2

U
ser 16

2
1 (N

o, never)
U

ser 17
3

4 (Y
es, alw

ays)
U

ser 18
3

3
U

ser 19
4 (N

o, the app is self-explaining)
2

U
ser 20

4 (N
o, the app is self-explaining)

2
U

ser 21
3

2
U

ser 22
3

3
U

ser 23
3

2
U

ser 24
3

2
U

ser 25
2

2
U

ser 26
4 (N

o, the app is self-explaining)
2

U
ser 27

3
4 (Y

es, alw
ays)

U
ser 28

4 (N
o, the app is self-explaining)

2
U

ser 29
4 (N

o, the app is self-explaining)
4 (Y

es, alw
ays)

U
ser 30

4 (N
o, the app is self-explaining)

3

After playing the tutorial, did you have the feeling you understand the app?
After playing the tutorial, did you have the feeling that you can
control the app w

ithout problem
s?

U
ser 1

4 (Y
es, I understood it im

m
ediately)

4 (Y
es, no problem

s at all)
U

ser 2
4 (Y

es, I understood it im
m

ediately)
3

U
ser 3

4 (Y
es, I understood it im

m
ediately)

3
U

ser 4
3

4 (Y
es, no problem

s at all)
U

ser 5
3

3
U

ser 6
1 (N

o, I didn't have a clue)
2

U
ser 7

3
4 (Y

es, no problem
s at all)

U
ser 8

4 (Y
es, I understood it im

m
ediately)

4 (Y
es, no problem

s at all)
U

ser 9
2

3
U

ser 10
3

2
U

ser 11
3

3
U

ser 12
3

3
U

ser 13
3

3
U

ser 14
3

3
U

ser 15
3

4 (Y
es, no problem

s at all)
U

ser 16
4 (Y

es, I understood it im
m

ediately)
4 (Y

es, no problem
s at all)

U
ser 17

4 (Y
es, I understood it im

m
ediately)

4 (Y
es, no problem

s at all)
U

ser 18
4 (Y

es, I understood it im
m

ediately)
4 (Y

es, no problem
s at all)

U
ser 19

4 (Y
es, I understood it im

m
ediately)

4 (Y
es, no problem

s at all)
U

ser 20
4 (Y

es, I understood it im
m

ediately)
4 (Y

es, no problem
s at all)

U
ser 21

3
3

U
ser 22

3
3

U
ser 23

3
3

U
ser 24

2
3

U
ser 25

3
3

U
ser 26

4 (Y
es, I understood it im

m
ediately)

4 (Y
es, no problem

s at all)
U

ser 27
4 (Y

es, I understood it im
m

ediately)
4 (Y

es, no problem
s at all)

U
ser 28

4 (Y
es, I understood it im

m
ediately)

4 (Y
es, no problem

s at all)
U

ser 29
4 (Y

es, I understood it im
m

ediately)
4 (Y

es, no problem
s at all)

U
ser 30

4 (Y
es, I understood it im

m
ediately)

4 (Y
es, no problem

s at all)

Does the app help you to keep an overview
 of your courses and events (Term

ine) ?
Does the app increase your learning progress?

U
ser 1

4 (Y
es, I have the perfect overview

)
1 (N

o, m
y learning progress didn't increase at all)

U
ser 2

3
4 (Y

es, m
y learning progress increased)

U
ser 3

3
4 (Y

es, m
y learning progress increased)

U
ser 4

3
4 (Y

es, m
y learning progress increased)

U
ser 5

4 (Y
es, I have the perfect overview

)
3

U
ser 6

2
3

U
ser 7

4 (Y
es, I have the perfect overview

)
4 (Y

es, m
y learning progress increased)

U
ser 8

4 (Y
es, I have the perfect overview

)
3

U
ser 9

1 (N
o, I can't keep an overview

)
1 (N

o, m
y learning progress didn't increase at all)

U
ser 10

2
2

U
ser 11

4 (Y
es, I have the perfect overview

)
4 (Y

es, m
y learning progress increased)

U
ser 12

4 (Y
es, I have the perfect overview

)
4 (Y

es, m
y learning progress increased)

U
ser 13

4 (Y
es, I have the perfect overview

)
3

U
ser 14

4 (Y
es, I have the perfect overview

)
2

U
ser 15

2
4 (Y

es, m
y learning progress increased)

U
ser 16

4 (Y
es, I have the perfect overview

)
3

U
ser 17

3
4 (Y

es, m
y learning progress increased)

U
ser 18

3
3

U
ser 19

4 (Y
es, I have the perfect overview

)
4 (Y

es, m
y learning progress increased)

U
ser 20

3
1 (N

o, m
y learning progress didn't increase at all)

U
ser 21

3
2

U
ser 22

3
3

U
ser 23

2
2

U
ser 24

3
1 (N

o, m
y learning progress didn't increase at all)

U
ser 25

2
3

U
ser 26

3
3

U
ser 27

3
2

U
ser 28

4 (Y
es, I have the perfect overview

)
4 (Y

es, m
y learning progress increased)

U
ser 29

4 (Y
es, I have the perfect overview

)
4 (Y

es, m
y learning progress increased)

U
ser 30

4 (Y
es, I have the perfect overview

)
4 (Y

es, m
y learning progress increased)

W
hat did you like best about the app?

W
hat did you like least about the app?

U
ser 8

O
verw

iew
-

U
ser 14

The overview
 over the courses and tim

etables
The fact that I can‘t control m

y courses (participation)
U

ser 15
That I did not have to go through the online form

s everytim
e

I'm
 taking courses that are finished and it's com

plicated to use
the app to reach 'com

pleted' lessons
U

ser 26
The overview

 of all courses, the progress.
The application takes a long tim

e to load, the courses appear tim
ely.

U
ser 29

The design of the application is very nice looking.
It w

ould be nice to register for courses in the app.
U

ser 30
The possibility to set a rem

inder.
N

o course registration.

Bibliography

Activity (2019). url: https://developer.android.com/reference/android/
app/Activity (visited on 04/15/2019) (cit. on p. 47).

Android 5.1 APIs (2019). url: https://developer.android.com/about/
versions/android-5.1 (visited on 04/15/2019) (cit. on p. 46).

Android Studio (2019). url: https://en.wikipedia.org/wiki/Android_
Studio (visited on 04/25/2019) (cit. on p. 50).

Burke, Brian (2014). Gamify - How Gamification Motivates People to do Extraor-
dinary Things. Gartner, Inc (cit. on p. 7).

Cazan, Ana-Maria (2012). “Enhancing self regulated learning by learning
journals.” In: Procedia - Social and Behavioral Sciences 33. PSIWORLD 2011,
pp. 413–417. issn: 1877-0428. doi: https://doi.org/10.1016/j.sbspro.
2012.01.154. url: http://www.sciencedirect.com/science/article/
pii/S1877042812001620 (cit. on p. 1).

Clipa, Otilia, Aurora-Adina Ignat, and Mihai Stanciu (2012). “Learning diary
as a tool for metacognitive strategies development.” In: Procedia - Social
and Behavioral Sciences 33. PSIWORLD 2011, pp. 905–909. issn: 1877-0428.
doi: https://doi.org/10.1016/j.sbspro.2012.01.253. url: http:
//www.sciencedirect.com/science/article/pii/S1877042812002613

(cit. on p. 1).
Dowling-Feet, Michael (2015). My Interactive Learning kit ”MILK”, the stu-

dent work diary app. url: https://www.rm.com/blog/2015/june/my-
interactive- learning- kit- milk- the- student- work- diary- app

(visited on 09/29/2019) (cit. on p. 13).
Dowling-Fleet, Michael (2015). My Interactive Learning Kit “MILK”, the student

work diary app. url: http://rmunify.j2bloggy.com/RM-Unify-Blog/my-
interactive- learning- kit- milk- the- student- work- diary- app/

(visited on 11/19/2019) (cit. on p. 14).
Fragments (2019). url: https://developer.android.com/guide/components/

fragments (visited on 04/15/2019) (cit. on p. 47).

141

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/about/versions/android-5.1
https://developer.android.com/about/versions/android-5.1
https://en.wikipedia.org/wiki/Android_Studio
https://en.wikipedia.org/wiki/Android_Studio
https://doi.org/https://doi.org/10.1016/j.sbspro.2012.01.154
https://doi.org/https://doi.org/10.1016/j.sbspro.2012.01.154
http://www.sciencedirect.com/science/article/pii/S1877042812001620
http://www.sciencedirect.com/science/article/pii/S1877042812001620
https://doi.org/https://doi.org/10.1016/j.sbspro.2012.01.253
http://www.sciencedirect.com/science/article/pii/S1877042812002613
http://www.sciencedirect.com/science/article/pii/S1877042812002613
https://www.rm.com/blog/2015/june/my-interactive-learning-kit-milk-the-student-work-diary-app
https://www.rm.com/blog/2015/june/my-interactive-learning-kit-milk-the-student-work-diary-app
http://rmunify.j2bloggy.com/RM-Unify-Blog/my-interactive-learning-kit-milk-the-student-work-diary-app/
http://rmunify.j2bloggy.com/RM-Unify-Blog/my-interactive-learning-kit-milk-the-student-work-diary-app/
https://developer.android.com/guide/components/fragments
https://developer.android.com/guide/components/fragments

Bibliography

Gamification (2019). url: https://en.wikipedia.org/wiki/Gamification
(visited on 04/02/2019) (cit. on p. 26).

Hsin-Yuan, Huang Wendy and Soman Dilip (2013). “Gamification of Educa-
tion.” In: Roman School of Management, University of Toronto (cit. on
pp. 8–12).

Integrated development environment (2019). url: https://en.wikipedia.org/
wiki/Integrated_development_environment (visited on 11/16/2019)
(cit. on p. 44).

Lerntagebuch (2017). url: https://de.wikipedia.org/wiki/Lerntagebuch
(visited on 03/07/2019) (cit. on p. 5).

Market share of mobile operating systems worldwide 2012-2019 (2019). url:
https://www.statista.com/statistics/272698/global- market-

share-held-by-mobile-operating-systems-since-2009/ (visited on
10/02/2019) (cit. on pp. 1, 2).

Material Design (2019). url: https://material.io (visited on 04/15/2019)
(cit. on pp. 46, 52, 77).

Metakognition (2019). url: https://de.wikipedia.org/wiki/Metakognition
(visited on 10/15/2019) (cit. on p. 1).

Migrating to Android 8.0 (2019). url: https://developer.android.com/
about/versions/oreo/android-8.0-migration (visited on 04/15/2019)
(cit. on p. 46).

Mockup (2019). url: https://en.wikipedia.org/wiki/Mockup (visited on
11/17/2019) (cit. on pp. 19, 28).

Model–view–viewmodel (2019). url: https://en.wikipedia.org/wiki/
Model%E2%80%93view%E2%80%93viewmodel (visited on 11/17/2019) (cit.
on p. 44).

Nicholson, Scott (2015). “A RECIPE for Meaningful Gamification.” In: Gami-
fication in Education and Business. Ed. by Torsten Reiners and Lincoln C.
Wood. Cham: Springer International Publishing, pp. 1–20. doi: 10.1007/
978-3-319-10208-5_1. url: https://doi.org/10.1007/978-3-319-
10208-5_1 (cit. on p. 1).

Petko, Dominik (2013). “Lerntagebuch schreiben mit Weblogs. Didaktische
Grundlagen und technische Entwicklungen am Beispiel von lerntage-
buch.ch.” In: E-Portfolio an der Schnittstelle von Studium und Beruf. 48046

Münster: Waxmann Verlag GmbH, pp. 206–214. isbn: 978-3-8309-2818-8
(cit. on pp. 6, 7).

142

https://en.wikipedia.org/wiki/Gamification
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://de.wikipedia.org/wiki/Lerntagebuch
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://material.io
https://de.wikipedia.org/wiki/Metakognition
https://developer.android.com/about/versions/oreo/android-8.0-migration
https://developer.android.com/about/versions/oreo/android-8.0-migration
https://en.wikipedia.org/wiki/Mockup
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://doi.org/10.1007/978-3-319-10208-5_1
https://doi.org/10.1007/978-3-319-10208-5_1
https://doi.org/10.1007/978-3-319-10208-5_1
https://doi.org/10.1007/978-3-319-10208-5_1

Bibliography

Projects overview (2019). url: https://developer.android.com/studio/
projects (visited on 04/15/2019) (cit. on p. 47).

Radio button (2019). url: https://en.wikipedia.org/wiki/Radio_button
(visited on 04/08/2019) (cit. on p. 32).

Realm Database (2019). url: https://realm.io/products/realm-database
(visited on 04/15/2019) (cit. on p. 48).

Retrofit (2019). url: https://square.github.io/retrofit/ (visited on
04/15/2019) (cit. on p. 47).

Seaborn, Katie and Deborah I. Fels (2015). “Gamification in theory and
action: A survey.” In: International Journal of Human-Computer Studies 74,
pp. 14–31. issn: 1071-5819. doi: https://doi.org/10.1016/j.ijhcs.
2014.09.006. url: http://www.sciencedirect.com/science/article/
pii/S1071581914001256 (cit. on pp. 1, 7).

Seesaw (2016). “Seesaw for Schools efficacy study.” In: Seesaw Learning, Inc.
url: https://help.seesaw.me/hc/en-us/articles/115005752703-
Seesaw-For-Schools-efficacy-study (visited on 11/19/2019) (cit. on
pp. 15, 16).

Seesaw (2019). url: https://web.seesaw.me (visited on 10/05/2019) (cit. on
p. 15).

Share of Apple devices by iOS version worldwide from 2016 to 2018 (2018). url:
https://www.statista.com/statistics/565270/apple-devices-ios-

version-share-worldwide/ (visited on 07/08/2019) (cit. on p. 75).
Söbke, Heinrich and Steffi Zander (2018). “Motivationsdesign durch Ver-

schränkung von Gamifikation und didaktischem Kontext.” In: DeLFI
2018 - Die 16. E-Learning Fachtagung Informatik. Ed. by Detlef Krömker
and Ulrik Schroeder. Bonn: Gesellschaft für Informatik e.V., pp. 141–152

(cit. on p. 8).
Software development kit (2019). url: https://en.wikipedia.org/wiki/

Software_development_kit (visited on 11/16/2019) (cit. on p. 46).
Spiel, Christiane et al. (2010). Das Lerntagebuch in der Hochschullehre: Ein

hochschuldidaktischer Ansatz zur Förderung selbstgesteuerten Lernens. Hogrefe
Verlag GmbH Co. KG. isbn: 978-3-8017-2081-0 (cit. on p. 6).

Switch (2019). url: https://developer.android.com/reference/android/
widget/Switch (visited on 04/08/2019) (cit. on p. 33).

What is Seesaw? (2019). url: https://help.seesaw.me/hc/en-us/articles/
115003713306-What-is-Seesaw- (visited on 11/19/2019) (cit. on p. 17).

143

https://developer.android.com/studio/projects
https://developer.android.com/studio/projects
https://en.wikipedia.org/wiki/Radio_button
https://realm.io/products/realm-database
https://square.github.io/retrofit/
https://doi.org/https://doi.org/10.1016/j.ijhcs.2014.09.006
https://doi.org/https://doi.org/10.1016/j.ijhcs.2014.09.006
http://www.sciencedirect.com/science/article/pii/S1071581914001256
http://www.sciencedirect.com/science/article/pii/S1071581914001256
https://help.seesaw.me/hc/en-us/articles/115005752703-Seesaw-For-Schools-efficacy-study
https://help.seesaw.me/hc/en-us/articles/115005752703-Seesaw-For-Schools-efficacy-study
https://web.seesaw.me
https://www.statista.com/statistics/565270/apple-devices-ios-version-share-worldwide/
https://www.statista.com/statistics/565270/apple-devices-ios-version-share-worldwide/
https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Software_development_kit
https://developer.android.com/reference/android/widget/Switch
https://developer.android.com/reference/android/widget/Switch
https://help.seesaw.me/hc/en-us/articles/115003713306-What-is-Seesaw-
https://help.seesaw.me/hc/en-us/articles/115003713306-What-is-Seesaw-

	Abstract
	Kurzfassung
	Introduction
	Goals & Objectives
	Methodology & Structure

	State of the art
	Learning diaries
	Gamification
	Similar applications
	Milk
	Seesaw

	The prototype
	Idea
	Colouring of courses and events
	Notifications
	Creating events and learn goals
	Creating notes
	Filtering events and automatic scrolling

	Gamification
	Mockup

	Developing the applications
	Strategy
	Android
	Project setup and libraries
	Implementing the Android version

	iOS
	Project setup and libraries
	Implementing the iOS version

	Proof of concept
	Prototype vs. application
	Survey & Evaluation
	The survey
	The evaluation

	Conclusion
	Lessons learned
	Limitations & future work
	Summary & Outlook

	Appendix
	Survey of applications
	Bibliography

