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Abstract
A brain-computer interface (BCI) provides a direct connection between a brain
and a computer. As a result, BCI allows user to control a computer and con-
nected devices without muscle activity. A standard method to create a BCI is to
use event-related potentials (ERP). Since the initial publication of an ERP-based
BCI, it has evolved significantly in many areas. Currently on its way out of
the laboratories to the end users, user-centered design (UCD) principles are
becoming increasingly important. The central aim of this thesis is to develop an
ERP-based BCI based on the findings of 30 years of research, while considering
UCD principles. User requirements from previous publications such as ease of
use, functionality, robustness, and wearing comfort should be incorporated.
In the first step, an ERP-based BCI with a universal interface to EEG acquisition
devices was implemented, i.e., with little effort, many different acquisition
devices can be used, and only a single graphical user interface is needed to start
the EEG acquisition, the automatic calibration, or a free spelling mode.
In the second step, interfaces to control other applications were implemented
and evaluated among a group of ten healthy and three disabled users according
to UCD criteria. Users were able to spell and control applications effectively
and efficiently. The satisfaction with the system was high. However, users also
suggested considerable number recommendations for further improvements.
Consequently, to satisfactorily control applications, a novel method for an asyn-
chronous ERP-based BCI was developed and successfully tested. In addition,
different EEG acquisition systems were evaluated and their suitability for build-
ing an ERP-based BCI was shown.
Finally, a novel method for users’ self-expression was integrated by connecting
a music composing software to the BCI. This system, known as Brain Composer,
was evaluated among a group of seventeen musical users and one professional
composer. The main result was that all the users enjoyed composing a provided
melody as well as a melody they have in their mind.

In conclusion, an easy to use and set up as well as functional and universal BCI
was developed and evaluated. In addition, different EEG acquisition systems
were evaluated, and more comfortable alternatives to the gel-based standard
were presented. The BCI developed within this thesis, therefore, contributes to
bringing the ERP-based BCI out of the laboratories to the end users.
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Kurzfassung
Eine Gehirn-Computer Schnittstelle (engl. brain-computer interface; BCI) stellt
eine direkte Verbindung zwischen dem Gehirn und einem Computer her, um
ihn und angeschlossene Geräte ohne Muskelaktivität zu steuern. Eine gängige
Methode zur Erzeugung eines BCIs ist die Verwendung von ereigniskorrelierten
Potenzialen (engl. event-related potentials; ERP). Seit der ersten Veröffentlichung
eines ERP basierenden BCIs hat sich diese Art von BCI auf vielen Gebieten
weiterentwickelt. Auf dem Weg aus den Labors zu den Endanwendern ist die
nutzerorientierte Gestaltung (engl. user-centered design; UCD) sehr wichtig.
Im Rahmen dieser Dissertation wurde ein ERP basierendes BCI entwickelt,
das auf den Ergebnissen von 30 Jahren Forschung aufbaut. UCD Vorgaben
wurden soweit wie möglich berücksichtigt. In aktuellen Publikationen sind
folgende Benutzeranforderungen an ein BCI genannt: Das System soll einfach
zu bedienen, funktional, robust und komfortabel sein.
Als Basis wurde ein ERP basierendes BCI implementiert, das eine universelle
Schnittstelle zu EEG Verstärkern hat, d.h. mit wenig Aufwand können ver-
schiedene EEG Verstärker verwendet werden. Weiters gibt es nur eine einzige
grafische Benutzeroberfläche, um den EEG Verstärker, die automatische Kalib-
rierung oder den Buchstabiermodus zu starten.
In einem zweiten Schritt wurden weitere Schnittstellen zur Steuerung anderer
Anwendungen implementiert und an einer Gruppe von zehn gesunden und
drei motorisch eingeschränkten Nutzern nach UCD Kriterien evaluiert. Die
Studienteilnehmer waren in der Lage effektiv und effizient zu buchstabieren
und Anwendungen zu kontrollieren. Die Zufriedenheit mit dem System war
hoch, es wurden jedoch auch einige Verbesserungsvorschläge abgegeben.
Um Anwendungen zufriedenstellend zu steuern, wurde eine neuartige Methode
für ein asynchrones ERP basierendes BCI entwickelt und erfolgreich getestet.
Ebenfalls wurden verschiedene EEG Verstärkersysteme evaluiert und ihre un-
terschiedlichen Verwendungszwecke hinsichtlich eines ERP basierenden BCIs
gezeigt.
Schließlich wurde das BCI mit einer Musikkompositionssoftware verbunden.
Dieses System namens Brain Composer wurde mit einer Gruppe von 17 Musik-
ern und einem professionellen Komponisten evaluiert. Alle Benutzer des Sys-
tems waren in der Lage sowohl vorgegebene als auch frei komponierte Musik
zu erzeugen.
Zusammenfassend kann gesagt werden, dass ein BCI entwickelt und evaluiert
wurde, das einfach zu bedienen und einzurichten, funktional und universell ist.
Das im Rahmen dieser Arbeit entwickelte BCI trägt dazu bei das ERP basierende
BCI aus den Labors in Richtung Endanwender zu bringen.
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1. Introduction

1.1. The Brain-Computer Interface

A brain-computer interface (BCI) is a communication system that does not
require any natural neuromuscular central nervous system (CNS) output [1].
Measured patterns of the brain activity are translated into control signals in
real-time (”online”). Therefore, a BCI establishes a direct connection between
the human brain and a computer [1–4]. According to the BNCI Horizon 2020
roadmap [5], a BCI can be used in five application scenarios: (i) To provide a
communication channel for people suffering from severe neurological disease
or injury and without their motor functions. Subsequently, the BCI replaces the
natural CNS output. (ii) The natural CNS output can be restored, for example,
with BCI-controlled functional electrical stimulation of muscles in a paralyzed
person. (iii) Natural CNS output can be enhanced, for example, by passively
monitoring the brain activity and informing the user about abnormal behavior.
(iv) To improve the motor output of the CNS during rehabilitation, e.g., after
a stroke. (v) As a research tool to study CNS functions during basic studies. In
this thesis, the BCI is used to replace the only limited functioning natural CNS
output.
Typically, a BCI works as a closed loop system. Signals from the brain are
acquired and processed (amplified, digitized, filtered). Eventually, features are
extracted, classified, and translated into commands for the previously men-
tioned BCI application scenarios, see Figure 1.1. In the following sections, the
four stages of BCIs are explained in detail.

1.1.1. Acquisition of Brain Signals

Different methods exist for recording the brain activity. Based on the invasive-
ness of the recording, these methods can be split into two different groups:
non-invasive and invasive methods, see Figure 1.2. The most common and oldest
method to record brain activity non-invasively is to use the electroencephalo-
gram (EEG) measured on the scalp. Other existing non-invasive methods with
minor importance for BCIs are magnetoencephalography (MEG) [7, 8], func-
tional magnetic resonance imaging (fMRI) [9, 10], and functional near infrared
spectroscopy (fNIRS) [11, 12].
A surgical intervention enables measuring the brain activity invasively. To
record the electrocorticogram (ECoG), electrodes are implanted on the surface
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1. Introduction

Figure 1.1.: Closed feedback loop of a brain-computer interface. Signals from the user’s brain
are acquired, processed, and translated into a control signal. This control signal can
be used for, e.g., control an application. Finally, the effect of the control signal is fed
back to the user. Photographs are taken from [6].
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1. Introduction

of the brain [13, 14]. The location can be epidural (between the skull and the
dura mater) or subdural (between the dura mater and the arachnoid mater). An
even more invasive method is to implant intracortical microelectrodes, where
microelectrodes are inserted into the cortex to measure spiking activity [15, 16]
or low field potentials (LFPs) [17]. Advantages of invasive methods are poten-
tially better quality of signal as well as the higher spatial resolution compared
to non-invasively measured signals, see Figure 1.2. On the other hand, invasive
electrodes bear the risk of short durability and bacterial infections [17].

Figure 1.2.: Brain signal measurement methods in relation to spatial and temporal resolution.
Please note that this figure is an illustration for relative comparison only. Non-
invasive methods are shown in blue, and invasive methods are shown in red. The
values for the spatial and temporal resolution are taken from [18].

All the introduced BCIs in this thesis are based on recording the EEG. This is
because measuring the EEG is relatively inexpensive, portable, and convenient
compared to the other presented non-invasive methods [19]. The flow of electric
currents during synaptic excitations of the dendrites in the neurons incites the
signal measured with the EEG electrodes [20]. Through volume conduction,
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1. Introduction

this imbalance of ions is represented as a voltage potential on the skull. The
cranial bone is a substantially poor conductor and attenuates the potential
from the brain [21, 22]. Therefore, thousands to millions of neurons have to fire
synchronously to get a useable EEG signal, i.e., a signal above the noise level.
The first recording of human EEG was documented by the German scientist
Hans Berger in 1924. He put steel needles into the subcutaneous tissue of
the scalp and used galvanometers to visualize and interpret the recorded
signals [23]. Later, vacuum tubes were used and currently, transistor technology
is standard for amplifying the very small signals. These new technologies
significantly improved the quality and the interpretability of the recorded
signals. Silver/silver chloride (Ag/AgCl) electrodes, nowadays standard, were
also introduced by Berger in the early 1930s [24]. The first documented EEG-
based BCI was presented by Jacques Vidal in the 1970s [25, 26]. This first BCI
approach enabled the user to control a computer by focusing attention on visual
stimuli.

1.1.2. Brain Signals, Feature Extraction, and Classification

Time-domain, frequency-domain, or both features may be extracted depending
on the neuroelectrical phenomenon used to operate the BCI. Four different
phenomena are mainly used. In the following, a brief overview of three BCI
methods that are not directly in the scope of this thesis will be provided fol-
lowed by sections about event-related potential based BCIs and hybrid BCIs.

Slow cortical potentials (SCPs) are slow potential shifts in the EEG that can
be voluntarily induced by the user [27–29]. These potentials are the re-
sponse to imagination (e.g., imaginary movement) or cognitive tasks (e.g.,
waiting for a go cue). Compared to a baseline condition from the begin-
ning of each trial, the SCP can be negative, providing basis for association
with increased neuronal activation or positive, representing a decreased
cortical activation. As the name implies, SCP-based BCIs work slowly and
additionally require long training by the user with moderate accuracy,
(around 70–85% control [30]). However, it has been demonstrated that
severely disabled locked-in patients were able to communicate with an
SCP-based BCI [30, 31].
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1. Introduction

Event-related de-/synchronization (ERD/S) -based BCIs are another approach
that also does not require external stimulation. Originally, this kind of
BCI utilized movement-evoked EEG patterns. A voluntary movement
execution or imagination induced a relative power increase (ERS) or de-
crease (ERD) compared to a reference period in the ongoing human EEG.
Nowadays, this method is also referred as sensorimotor rhythm (SMR)-
based BCI. However, other tasks such as mental arithmetic, word associ-
ation, spatial navigation, geometric figure rotation, or auditory imagery
induce these phenomena [32–35]. ERD/S-based BCIs are used for commu-
nication [36–38], control of neuroprostheses [39–42] or wheelchairs [43, 44],
and as a tool for stroke rehabilitation [45–48].
The so-called BCI illiteracy or BCI inefficiency [49] is high. The meaning
of these two phrases is that up to 30% of the people are unable to control
a BCI with this method, cf. [50]. According to a study by Guger et al. [51],
only 54 of 100 tested people achieved sufficient ERD/S-based BCI control
with an accuracy above 70%.

Steady-state evoked potential (SSEP) -based BCIs take advantage of the fact
that frequently presented external stimuli evoke oscillatory potential fluc-
tuations in the EEG. Typically, the driving stimulation and the SSEP have
the same frequency. Depending on the stimuli presentation, the SSEP
can be divided into steady-state visual evoked potential (SSVEP) [52],
steady-state somatosensory evoked potential (SSSEP) [53], and steady-
state auditory evoked potential (SSAEP) [54]. For review, see [55].
An SSEP-based BCI can be implemented by simultaneously presenting
stimuli with varying frequencies to the user. The user has to focus on a
desired stimulus to select it as the target. The stimulation frequency of the
target is dominantly represented within the EEG and can be used to select
the its represented functionality. The targets can be flickering virtual but-
tons (SSVEP-based BCI), modulated tone streams (SSAEP-based BCI), or
repetitive tactile stimuli applied to different body parts (SSSEP-based BCI).
Applications of SSVEP-based BCIs are, e.g.: two-dimensional control of a
virtual car [56] or a cursor [57], environmental control [58], spelling [59],
and prosthesis or orthosis control [60, 61].
Examples for SSAEP-based BCIs are [62–64] and for SSSEP-based BCIs
are [53, 65].
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1. Introduction

1.1.3. BCIs Based on Event-Related Potentials

Event-related potentials (ERPs) are deflections of the EEG, which occur time-
locked to an event. This event can be a sensory stimulus or a motor act [66]. In
general, ERPs induced by a sensory stimulus show a high level of activation
just after the stimulus, whereas ERPs induced by a motor act show such high
level of activation before and during the motor actions [67]. This second type of
ERPs belong to the group of movement-related cortical potentials (MRCPs). A
prominent part of the MRCP is the Bereitschaftspotential, which is a slow rising
negativity with its negative peak just before the movement onset [68]. Recently,
scientists have aimed to use these potentials for rehabilitation and controlling
(neuro)prosthesis [69–72]. The focus of the following explanations is on ERPs
induced by a sensory stimulus. This method was used for the implemented and
investigated BCIs of this thesis.
Depending on the latency between the stimulus and the deflection, ERPs can
have different names. They are named after the direction of the deflection, either
a ”P” for a positive or an ”N” for a negative deflection, followed by the time in
milliseconds they occur on average after the stimulus. Sometimes, the zeros are
omitted, and the number indicates the ordinal position in the waveform [73].
Very prominent ERPs are the N2(00), P3(00), or N400. A cascade of ERPs are
elicited by focusing attention on rare target stimuli in a stream of target and
non-target stimuli, see Figure 1.3. The number of irrelevant (non-target) stimuli
should be at least four times higher to evoke pronounced ERPs. This method is
called the ”oddball paradigm” [74, 75].
The fact that the ERPs in an oddball paradigm are time-locked can be used to
determine the causative stimulus in a stream of stimuli. Therefore, it is possible
to determine the stimulus on which the user concentrates from a set of stimuli.
This kind of BCI is also often referred to as P300 or P300-based BCI, since it
mainly relies on a positive deflection of the EEG approximately 300 milliseconds
after the target stimulus. In the year 1988, Farwell and Donchin published the
first version of an ERP- or P300-based BCI [76]. Given that some of the methods
and techniques they used are still the same, the main ideas of their publication
are described below, supplemented by the state of the art of ERP-based BCIs.
The original P300-based BCI of Farwell and Donchin was designed to commu-
nicate by spelling Latin letters and numbers. These items were the elements of
a visually displayed matrix, see Figure 1.4. Different methods exist to realize
an oddball paradigm with this matrix. One method is to randomly highlight
single characters [77, 78], see Figure 1.4 red diamond. Users are introduced to

6



1. Introduction

Figure 1.3.: Plot of the averaged EEG signals after target (blue curve) and non-target (red curve)
stimuli at electrode position Cz.

focus visual attention on a specific character (target) and count the number of
target intensifications mentally, while ignoring the highlighting flashes of the
other characters. Target stimuli will elicit distinct ERPs in the recorded EEG,
and with the knowledge of the stimulus timing, the desired characters can be
determined. Highlighting every single character is time-consuming. Therefore,
groups of characters are normally highlighted at the same time. One prevalent
method is to highlight rows and columns of the matrix randomly, see Figure 1.4
yellow rectangles. The row and column containing the target elicit distinct ERPs
and the intersection of the detected row and column yields the target element,
see Figure 1.5 for demonstration. In addition, other methods exist to highlight
the elements of the matrix in a different way [79, 80], see Figure 1.4 blue circles.
These methods target to avoid ”adjacency-distraction errors”, i.e., the user being
distracted by the intensification of an adjacent element, and this erroneously
evokes ERPs. Also, the problem of flashing the target twice in a row could be
avoided with these methods. An additional aim of the Jin et al. approach is to
fasten the BCI by simultaneously highlighting the optimal number of matrix
elements [80].
All the ERP-based BCIs in this thesis are based on the row/column method.

7



1. Introduction

Figure 1.4.: Example for a visually displayed matrix that can be used to build an ERP-based
BCI. Highlighting methods are: Single character (red diamond), multiple, random
characters (blue circles), and row and column highlighting (yellow rectangles).

8



1. Introduction

Figure 1.5.: Demonstration of the row/column paradigm. Users focus their visual attention
on the letter ”U” and count the number of target character highlighting flashes.
Top and bottom matrices in the middle of the figure show a target highlighting;
the central matrix a non-target highlighting. The EEG signal of the target row and
column differs significantly from the non-target signal–indicated by the blue and
red arrows. The intersection of the target row and column is the desired character,
in this example ”U”.
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1. Introduction

Therefore, features of this method are described in detail in the following para-
graphs.
Not only approaches to optimize the pattern of stimulation exist, but also
the kind of intensification was investigated. Kaufmann et al. reported in [81]
changing the intensification from simple contrast changes to overlays of famous
faces boosts the speed and accuracy of ERP-based BCIs significantly. Recog-
nizing familiar faces evoke additional ERPs (N170, N400f – ’f’ for face) and
they are responsible for this boost. Other scientists use emoticons [82], move
characters [83], or change the emotion of the shown face [84] as overlays.
Typically, it is necessary to calibrate the ERP-based BCI prior to using it. A
few approaches exist to avoid this step with the help of unsupervised learning
algorithms [85, 86]. However, copy-spelling 5–10 characters with 20–30 intensifi-
cation per character is sufficient to calibrate a classifier. The time required for
the calibration is three to thirteen minutes. During this time, users have to spell
predefined characters of the stimulation matrix. The EEG of the calibration is
recorded and used to calculate a personalized classifier. In general, the feature
extraction and classification of ERP-based BCIs work as follows: Depending on
the sampling frequency, the EEG signal is downsampled to reduce the number
of features. Subsequently, the EEG signal of every electrode is divided into
epochs of approximately 800 ms post stimulus. Epochs, which belong to the
same stimulus and electrode are averaged to improve the signal-to-noise ratio.
Finally, the averaged epochs of all electrodes are concatenated to receive a single
feature vector that is classified. More complex feature extraction methods (e.g.,
xDAWN [87]) have been proposed and evaluated in the literature.
Using stepwise linear discriminant analysis (SWLDA)-based classifiers for ERP-
based BCIs was found superior for a long time [76, 88, 89]. However, recently,
it was reported that for a low number of training samples a shrinkage regu-
larized linear discriminant analysis (sLDA)-based classifier outperforms the
SWLDA-based classifier and at worst, the sLDA-based works as well as the
SWLDA-based classifier [90, 91].
Different methods exist to determine the number of stimulation sequences used
for the free-spelling mode. Since the row/column paradigm is used for the
implemented ERP-based BCIs in this thesis, methods for this paradigm are
described in the following. Initially, a fixed number of stimulation sequences
are used, e.g., fifteen sequences. Second, the number of stimulations for the
free-spelling mode is calculated from the data of the calibration. Performing a
cross-validation allows determining the optimal number of stimulations as a
trade-off between speed and accuracy. Third, algorithms (e.g., [83, 92–96]) that
define different thresholds or rules to perform an ”early” or ”dynamic stop-
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ping”, i.e., if the threshold is reached or the rule is true, the stimulation stops
and the classification result is presented to the user. Schreuder et al. performed
comparative analysis of the different methods in [97].
ERP-based BCIs have been intensively used for spelling applications for both
healthy and severely disabled users [78, 98–100]. In addition to pure communi-
cation applications, the control of various other applications has been reported.
The scope of these applications includes environmental control [101, 102], paint-
ing application [103, 104], web browsing [105, 106], wheelchair control [107–109],
and music player control [110] among others.

All the above described ERP-based BCIs work in the visual modality. When
people are unable to perceive visual stimulation or for settings, where visual
stimulation is not viable, other sensory inputs can be used to realize an ERP-
based BCI. Using auditory or tactile stimuli is a common alternative. Like the
visual ERP-based BCIs they also use the oddball paradigm to evoke ERPs.
Examples for auditory ERP-based BCIs are [111–116] and for tactile are [117–
119]. However, a comparative study [117] between the different ERP-based BCI
methods revealed a strong superiority of the visual modality regarding the
achieved classification accuracies.

1.1.4. Hybrid BCIs

A hybrid BCI is the advantageous combination of different approaches within
one BCI system [120–122]. According to Pfurtscheller et al. [122], a BCI is called
hybrid BCI if: (i) Different types of brain signals are combined (e.g., EEG and
fNIRS [123]); (ii) One type of brain signal is used for various mental tasks,
like ERPs and SSVEP [124]); (iii) A brain signal is combined with external or
physiological signals (e.g., eye tracker [125] or electromyogram (EMG) [126]).
The input signals can either be processed in parallel [127] or serially [128], i.e.,
one input triggers the processing of the second one.
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1. Introduction

Figure 1.6.: User-centered design activities adapted to BCI-controlled applications. Adapted
from [129, 130].

1.2. User-centered Design in BCI Research

Human- or user-centered design (UCD) in general is an approach for the real-
ization of usability and usefulness of systems by focusing on the users’ needs
and requirements. Human factors and usability knowledge and techniques shall
be taken into account. The aim is to enhance effectiveness and efficiency, user
satisfaction, accessibility and sustainability, and to avoid any possible adverse ef-
fects of use on humans [129]. This design approach was standardized in the ISO
9241-210 (Ergonomics of human-system interaction-Part 210: Human-centred
design for interactive systems) [129].
Since the BCI technology is now on the way out of the laboratories to the
end users, it is substantial to consider this design approach. The ISO 9241-210
defines six principles and four activities of the user-centered design and devel-
opment process. The principles include properties such as user involvement,
explicit understanding of the user, tasks and environment, while the process
remains iterative. The four activities specify the iterative development process,
see Figure 1.6 yellow boxes. When producing a design solution, three aspects of
usability are especially important: user satisfaction (emotional and aesthetic),
effectiveness, and efficiency. The overall evaluation of the designed system is
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based on evaluating these aspects. Therefore, they must be assessed appropri-
ately.
Kübler et al. described in [130] the UCD of the Brain Painting [103] application.
Brain Painting is a fully BCI-controlled painting application. In [130] evaluation
metrics and BCI-specific activities, see Figure 1.6 green boxes, for the UCD of
BCIs are presented. Previously mentioned usability aspects for BCI systems are
defined as follows: Effectiveness corresponds to the accuracy achieved by the
user when using a BCI-controlled application. It relates successful selections to
the total number of attempted selections. Efficiency relates the costs, i.e., effort
and time invested by the user, to the effectiveness. The information transfer rate
(ITR) [131] is often used as an objective measure of efficiency. It is calculated
from the available number of possible selections, the time needed for a single
selection and the accuracy [132]. It is expressed in bits per minute. The problem
of the original ITR definition by Wolpaw et al. [132] is that it is based on two
occasionally invalid assumptions. These two assumptions are that all possi-
ble selections are equally probable and systems are memoryless [133]. Other
definitions aim to minimize the negative effects of these two assumptions [79,
133–135]. In addition, the Utility Metric was introduced setting the ITR to 0 bits
per minute when the accuracy is below the chance level [136]. The reason is that
for accuracies below the chance level, no useful communication is possible.
The workload as a measure of efficiency can be assessed with the national
aeronautics and space administration - task load index (NASA-TLX) [137, 138].
With the NASA-TLX, it is also possible to assess the overall workload experience
during a task and to identify the main sources of workload in six dimensions:
mental demand, physical demand, temporal demand, performance, effort, and
frustration. In a two-step procedure, the workload is determined. First, all six
dimensions need to be rated on twenty step bipolar scales with scores from 0 to
100. Second, a weight for every dimension must be determined with pairwise
comparisons. Finally, the global workload score is calculated from the weighted
scores of the dimensions. A high score indicates a high workload.
Several measures can be used to assess the satisfaction with the device. The
methods range from simple visual analog scales (VASs) to complex question-
naires. Typically, simple VASs are used to easily and quickly assess the overall
satisfaction. Therefore, users are asked to report their overall satisfaction by
indicating a position along a continuous line between two endpoints. This VAS
ranges from 0 (not satisfied at all) on the left endpoint to 10 (absolutely satisfied)
on the right endpoint. The assessment can be carried out after every BCI session,
whereas complex questionnaires are intended to assess more facets of satis-
faction after an entire session of BCI system uses. An example for a complex
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questionnaire is the quebec evaluation of satisfaction with assistive technology
(QUEST 2.0) [139]. This is a tool to quantify satisfaction with general aspects
of an assistive technology product. This questionnaire covers twelve different
aspects. Users are asked to rate the items on a Likert-type scale from 1 (not
satisfied at all) to 5 (very satisfied). Whenever users are not ”very satisfied” they
are asked to comment the reasons. The total satisfaction score is the arithmetic
mean across all items. In addition, users are asked to indicate the three most
important items.
Some items of the original questionnaire are irrelevant for assessing BCI appli-
cations. Therefore, Zickler et al. [106] suggested, and this is absolutely in the
sense of the creators of the questionnaire [139], to change some of the items
to make the questionnaire more suitable for evaluation of BCI controlled as-
sistive technology. They replaced the items ”durability”, ”service delivery”,
”repairs/servicing”, and ”follow-up service” with ”reliability”, ”speed”, ”learn-
ability”, and ”aesthetic design”. This BCI adapted QUEST 2.0 is referred to as
extended QUEST 2.0 (eQUEST 2.0) [106].

One possibility to evaluate the user experience of BCI systems is the user
experience questionnaire (UEQ) [140]. This tool has been used to assess user
experience for many software products (e.g., [141, 142]) and was also used in a
recent BCI study [143]. The UEQ consists of 26 bipolar items rated on a 7-point
semantic differential scale. Single items are transformed to the range from
−3 to +3 and assigned to six subscales: attractiveness, perspicuity, efficiency,
dependability, stimulation, and novelty. The average values of each subscale can
be further grouped into three categories: attractiveness, use quality, and design
quality. Attractiveness describes a person’s general attitude towards a product.
Use quality reflects practical quality aspects and is the average of the subscales
efficiency, perspicuity, and dependability. Design quality represents hedonic
quality aspects and is the average of the subscales novelty and stimulation. Re-
sults are interpreted so that values below −0.8 represent a negative impression,
values between −0.8 and +0.8 a neutral impression, and above +0.8 a positive
impression.
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1.3. Limitations of Previous Work

Since the initial publication of a working P300- or ERP-BCI [76], scientists
have focused on many different aspects of improving that kind of BCI. The
optimization of aspects such as signal processing and classification, for reviews
see [144, 145], and stimulus presentation, e.g., [79, 81, 135, 146, 147], was already
mentioned in Section 1.1.3. However, according to [148] assistive device users
wish for an easy-to-use, functional, and robust system. Taking into account
known publications, the main focus of research was on improving the speed
and accuracy of ERP-BCI systems. Ease of use and functionality have not been
taken into account so far.

Another study [106] investigated the satisfaction of BCI end users. End users
were very dissatisfied with the EEG acquisition hardware. They criticized the
comfort, the time-consuming setup, and the aesthetic design of the system [106].
So far, EEG acquisition hardware has only been evaluated regarding efficiency
and effectiveness, e.g., [149, 150]. Investigating all aspects of usability, see Section
1.2, of different EEG hardware is a blind spot in research.

Having complex BCI-controlled applications such as a web browser or me-
dia player require other control concepts than a simple BCI-controlled speller.
Reading content, listening to music, or watching videos require asynchronous
control, i.e., the users decide whether they want to select something with the
BCI. Typically, ERP-BCIs work in synchronous mode, i.e., after every stimu-
lation sequence, something is selected, intentionally or not. Approaches for
asynchronous ERP-BCIs exist [101, 151–153], but the achieved accuracies are
not convincing regarding reliability and accuracy.

1.4. Aims of this Thesis

To overcome these limitations, the primary aim of this thesis is to develop and
evaluate an ERP-based BCI system for communication and control based on the
requirements found by [106, 148] incorporating all recently published improve-
ments. The main requirements are to be easy to use, functional and robust,
comfortable, and universal. Universal, in terms of working with different EEG
acquisition systems, and the possibility to control different applications with
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the ERP-based BCI.

Easy-to-use system for the users and the caregivers should be developed. Since
severely disabled users are normally dependent on the help of caregivers,
the system must be easy to use for both. Typically, caregivers are not
experts on technically complex systems. Therefore, the caregivers’ user
interface must be intuitively and clearly designed. In addition, EEG hard-
ware must be easy to use even for non-experts.

Functional and robust algorithms for signal processing and EEG classification
are necessary to meet the expectations of the potential users. These two
terms also imply that the software works stably and provides easy access
to desired functions. End users also mentioned speed as a major as-
pect [106]. Another crucial factor is finding a compromise between speed
and reliability. Therefore, it applies that the speed of selections should
be increased as long as the reliability, synonymous with accuracy, is not
significantly decreased.

Comfortable EEG hardware is mandatory. This includes the cap, wiring, and
the cleaning of the EEG hardware. The cap should be as inconspicuous as
possible. The use of electrode gel makes it necessary to clean the hairs and
the equipment after each BCI use and this cannot be in the users’ interest.
Moreover, wireless solutions should be considered to avoid distracting
and annoying wires. Therefore, possible alternatives to gel-based, wired
EEG acquisition system must be found and evaluated.

Universal interfaces to EEG acquisition systems and applications should be
provided. Since different EEG acquisition system should be evaluated to
find a comfortable and reliable system, an interface to different acquisition
devices should be integrated allowing easy switching between the systems.
On the other hand, application interfaces must provide the possibility to
control other applications such as a web browser or a music player with
the developed ERP-based BCI.

Since one aim of this thesis is to provide an interface to applications such as a
web browser or music player, derived additional aim is to provide asynchronous
BCI control. Therefore, methods have to be found to decide whether a user
wants to use the ERP-based BCI intentionally or the BCI classifies random
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signals and selects items unintentionally.

In order to meet the requirements in the best possible way, it is necessary to
apply UCD principles [129, 130]. The feedback of users during different stages
of the development process is useful to improve the future versions of the
system. Here, the aim of this thesis is to improve the BCI system based on
comprehensive and meaningful evaluation data. This is guaranteed by using
different questionnaires and other evaluation metrics. As a consequence, useful
improvements shall be determined or derived out of these results. Finally, the
improvements must be iteratively incorporated.
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1.5. Organization of this Thesis

Chapter 1, Introduction, gives an overview of the most important types of BCIs
and signal processing techniques, reviews the state of the art, and indicates lim-
itations of relevant previous work in the field of ERP-based BCIs. User-centered
design is becoming increasingly important in this area and will be introduced
accordingly. Finally, this chapter points out overall and specific objectives of
this thesis.

Chapter 2, Methods and Results, summarizes the aim, methods, main results,
and significance of the core papers for this thesis.

Chapter 3, Discussion, Conclusion, and Prospects, explains how the findings
reported in the core papers contribute to accomplishing the aim of the thesis.
This section further relates the outcome of the studies to other work in literature
and discusses possible limitations of this work. Finally, the main achievements of
this thesis are summarized, and possible future research directions are pointed
out.
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2.1. Development and Implementation of a
Universal ERP-based BCI system

A. Pinegger, S.C. Wriessnegger, and G.R. Müller-Putz. Introduction of a Univer-
sal P300 Brain-Computer Interface Communication System. Biomedical Engineer-
ing/Biomedizinische Technik, 58 (Suppl. 1), 2013. Doi: 10.1515/bmt-2013-4445. [154]

The first version of a universal and practical ERP-based BCI communication
system was developed. We defined interfaces between the different parts of the
system, see Figure 2.1.
The SignalServer application [155], see Figure 2.1 (a), was chosen for signal
acquisition. By using the SignalServer software, it is easily possible to con-
nect different EEG acquisition devices to the developed ERP-based BCI. The
data from the SignalServer is sent via a TCP/IP network connection to Mat-
lab/Simulink, see Figure 2.1 (b). A Simulink model records and processes the
EEG data and also communicates via a TCP/IP network connection with a
graphical user interface (GUI), see Figure 2.1 (c) and Figure 2.2.
The GUI is an application written in C++. Additionally, other applications, such
as a web browser or media player, can be controlled with this system. Images of
famous faces are used to highlight elements of the stimulation matrix instead of
just changing the contrast. Using famous faces has the advantage that additional
ERPs are elicit and can be additionally used for classification [81]. SWLDA is
used for EEG classification [89]. The developed system is straightforward to
use and set up. Therefore, the entire system can be controlled via the GUI,
see Figure 2.2. The signal acquisition, the Simulink model as well as a signal
viewer can be started with simple mouse clicks inside the GUI. Moreover, the
calibration of the system is performed with a single mouse click. After the data
acquisition of the calibration, an algorithm automatically calculates the best
number of stimulation sequences, and the free-spelling can start immediately.

Contribution to this thesis: This conference submission describes for the first
time the developed universal ERP-based BCI system with its principal functions
and signal paths. The system was implemented by incorporating state-of-the-art
findings of recent publications.
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Figure 2.1.: Design sketch of the universal ERP-based BCI communication system. EEG can be
recorded with varying amplifier systems. Data of the amplifiers is sent to Matlab
using the SignalServer software. In Matlab, data is filtered, downsampled, averaged,
and classified. A graphical user interface (GUI) shows the stimulation to the user
and sends the actual stimulation to the Matlab part. The classification result is sent
back to the GUI and presented to the user.
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Figure 2.2.: Screenshot of (a) the user menu and (b) the user interface. The different areas are
(1) the menu, (2) the stimulation matrix, (3) the text field, and (4) the status bar.
Normally, the face of Albert Einstein showing his tongue is used which is not shown
in this figure due to print license.

2.2. Brain-controlled Applications Using Dynamic
Stimulation Matrices

S. Halder, A. Pinegger, I. Käthner, S.C. Wriessnegger, J. Faller, J. Antunes, G.R.
Müller-Putz, and A. Kübler. Brain-controlled applications using dynamic P300
speller matrices. Artificial Intelligence in Medicine, 63(1): pp. 7–17, 2015. Doi:
10.1016/j.artmed.2014.12.001. [156]

In order to control other applications with the universal ERP-based BCI con-
troller, described in the last section, different content must be selectable. We
decided to implement this feature in two different ways. To control a web
browser, it actively sends codes for selectable items, e.g., links, text fields, and
buttons, to the BCI controller, see Figure 2.3 left. The number of items is not
constant, since it depends on the selectable items displayed on the web page.
Consequently, the number of elements of the stimulation matrix is also not
constant and dynamically adapted to the number of received elements. The
size of the display limits the space for the matrix. Therefore, we set the number
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of rows to six and also limited the maximum number of columns to fourteen.
If the number of selectable items of a web page is higher than the maximum
number of items that can be displayed, the user can scroll to select an unmarked
element, since only the visible elements are sent to the BCI controller.
The second application which is controllable with the ERP-based BCI is a media
player. To control this application, a 3 × 6 matrix with dedicated elements is
used, see Figure 2.3 right. Both applications are connected to the ERP-based
BCI via a TCP/IP network connection. A study with ten healthy participants
as well as three participants with motor disabilities was performed. The aim
was to generate the operating principal and to evaluate the system. First, the
participants had to calibrate the system by copy-spelling the word ”BRAIN”.
The second task was to spell the words ”SONNE” (Engl. ”SUN”) and ”BLUME”
(Engl. ”FLOWER”).
The third task was to navigate through the media player (min. 10 selections).
The fourth task was a web browsing task: The participants had to look for
the word ”BCI” in Google and select and read the Wikipedia article about
BCI (min. 12 selections). The last task was to copy-spell two words (”TRAUM”,
Engl. ”DREAM” and ”KRAFT”, Engl. ”STRENGTH”). The averaged signals
of the target and non-target epochs are shown in Figure 2.4. Nine out of the
ten healthy participants achieved control accuracies above 70%, and one of the
disabled participants achieved accuracy above 75%.

Contribution to this thesis: We introduced the connection of the developed
ERP-based BCI controller, see Section 2.1, to two different applications, namely
a web browser and a media player. The control methods and the protocols of the
connections were presented. The size of the stimulation matrix is automatically
adapted to the used application. Finally, the initial study showed that both
healthy and disabled people are able to control these applications with high
accuracies.
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Figure 2.3.: Top: Sketch of the bidirectional communication between browser and brain-
computer interface (BCI). First, the BCI establishes a connection to the browser.
After loading a new page or selecting a new element on the current page, the
browser sends the list of appropriate commands to the BCI. The BCI, in turn, dis-
plays a stimulation matrix with these commands to the user.
Bottom: Sketch of the bidirectional communication between the media player and
the BCI. The BCI sends the selected commands to the player. The player reacts
accordingly and sends status updates or error messages back to the BCI.
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Figure 2.4.: Averaged ERPs of the calibration run. The grand average signal of all healthy
participants (top left) and individually for each of the three end users is shown.
Signals were recorded from electrode Pz. The continuous lines show the target
response and the dashed lines the non-target response.
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2.2.1. Write, Read and Answer Emails with a Dry ’n’ Wireless
BCI System

A. Pinegger, L. Deckert, S. Halder, N. Barry, J. Faller, I. Käthner, Ch. Hintermüller,
S.C. Wriessnegger, A. Kübler, and G.R. Müller-Putz. Write, read and answer
emails with a dry ’n’ wireless brain-computer interface system. Proceedings of
the 36th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2014, pp. 1286–1289. Doi: 10.1109/EMBC.2014.6943833.
[157]

With this study, the question was answered whether the developed ERP-based
BCI controller enables users to write and read emails in a comfortable way. We
connected a dry electrode-based wireless EEG amplifier to our controller and
asked ten participants to write, read, and answer emails using the web browser
introduced in Section 2.2, see Figure 2.5.
A minimum of 52 selections were necessary to complete the task. Usability was

Figure 2.5.: (A) Screen displaying the GUI for feedback and stimulation. (B) Sketch of the
experimental design. (C) Screen displaying the webmail client.

evaluated regarding effectiveness, efficiency, and satisfaction. Satisfaction was
assessed using a VAS, the eQUEST 2.0, and a self-compiled usability question-
naire. Accuracies were high for nine out of ten participants, see Figure 2.6. One
participant could not finish the task because the accuracy stayed below 70%,
see ”S2” in Figure 2.6. The average time needed to complete the task was 58
minutes. Satisfaction, in general, was high. However, the participants criticized
the aesthetic design and comfort of the EEG amplifier as well as the effectiveness
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of the system.

Figure 2.6.: Comparison of accuracies from different participants over number of selections. The
minimal number of selections was 52.

Contribution to this thesis: Results of this study indicate that users can ef-
fectively read and write emails with the developed ERP-based BCI. However,
apart from the high, general satisfaction ratings, the used dry electrodes for
EEG acquisition were described as uncomfortable by eight out of the ten study
participants.
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2.3. Asynchronous Visual ERP-based BCI
Approaches

A. Pinegger, J. Faller, S. Halder, S.C. Wriessnegger, and G.R. Müller-Putz. Control
or non-control state: that is the question! An asynchronous visual P300-based
BCI approach. Journal of Neural Engineering, 12(1). 2015. Doi: 10.1088/1741-
2560/12/1/014001. [158]

The main disadvantage of current ERP-based BCIs is that they normally work
synchronously, i.e., after every stimulation sequence something is selected,
intentionally or not. This behavior is not a fundamental problem when an ERP-
based BCI is simply used as a spelling device. However, when the BCI is used
as a web browser or media player controller, it needs to work asynchronously.
In this paper, we present two different ways and the hybridization of both
as control state detectors. One technique takes advantage of the fact that the
stimulation with a defined frequency is represented as SSVEP in the EEG,
see Figure 2.7. Consequently, the SSVEP is only detectable when the user is
looking at the stimulation screen. However, it is also detectable when the user
has the stimulation screen in his field of view, e.g., when the user wants to
read something close to the stimulation matrix. The second technique utilizes
features of the classifier output. The idea is that the distance between the two
classes (target–non-target) is larger when the user wants to select something.
However, artifacts in the EEG can easily transform this detection method of the
control state unreliable. Hence, we hybridized the two methods to combine the
advantages of both techniques. We tested the capabilities of these three methods
for state detection in different control scenarios on offline data from 21 healthy
volunteers, see Figure 2.8. With the hybridization of the methods, we achieved
an average correct state detection accuracy of over 95%.

Contribution to this thesis: We introduced and evaluated a new method to
make a visual ERP-based BCI work asynchronously. The developed hybrid
method is the most effective approach, and we could show that a correct state
detection accuracy of more than 95% is feasible.
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Figure 2.7.: Comparison of the spatial and temporal averaged signal of an ERP-based spelling
trial (blue line) and a non-control trial (red line). On the left, the time-domain and on
the right, the frequency domain plot of the signal. The black dashed lines represent
the same signals after 12 Hz low pass filtering.

Figure 2.8.: Graphical comparison of different state detection errors per method and participant.
The data was sorted with decreasing number of errors from left to right. The total
number of trials per participant was 50.
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2.3.1. Automatic Pause Detection During BCI Web Browsing

A. Pinegger, L. Deckert, S. Halder, J. Faller, I. Käthner, S.C. Wriessnegger, A.
Kübler, and G.R. Müller-Putz. Automatic pause detection during P300 web
browsing. Proceedings of the 6th International Brain-Computer Interface Conference,
2014. Doi: 10.3217/978-3-85125-378-8-76. [159]

Analyzing the data of the study presented in Section 2.2.1 inspired us to test a
further, new state detection approach. We hypothesized that during the control
trials, the user produces fewer artifacts in the EEG than during non-control trials.
There are two reasons for this hypothesis: First, we used a dry electrode-based
system prone to movement artifacts and second, by observations made during
the study, we determined that the users move more when they do not want to
spell with the BCI. This knowledge can be used to detect non-control periods
during BCI spelling or control tasks. We used the offline data of the mentioned
study to test this approach. An inverse filter was trained on the calibration data
of each participant. This filter was used to classify the trials of the email writing
and reading tasks. Results indicated the possibility of detecting the correct state
in eight out of the ten users with 100% accuracy. Furthermore, misclassifications
due to movement artifacts could be effectively suppressed.

Contribution to this thesis: We introduced and tested a further method to
make a visual ERP-based BCI work asynchronously. The used setup allows
detection of non-control states with an accuracy of up to 100%.
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2.4. Evaluation of Different EEG Acquisition
Systems Concerning their Suitability for
Building a BCI

A. Pinegger, S.C. Wriessnegger, J. Faller, and G.R. Müller-Putz. Evaluation of
different EEG acquisition systems concerning their suitability for building a
brain-computer interface: Case Studies. Frontiers in Neuroscience, 10, 2016. doi:
10.3389/fnins.2016.00441. [160]

As indicated in the last section, different EEG amplifier systems have different
characteristics. Therefore, the system fitting best for the usability requirements
for building an ERP-based BCI needs to be examined. We tested and evaluated
three different biosignal acquisition systems. The systems had dry , gel-, and
tap water-based electrodes, see Figure 2.9. One of them also had a wireless data
transmission. First, we tested the short circuit noise as a technical feature of

Figure 2.9.: From left to right: the g.LADYbird hydrogel-based electrode (Guger Technologies
OG, Graz, Austria), the tap water-based electrode of the Mobita system (Twente Med-
ical Systems International B.V., Oldenzaal, the Netherlands), and the dry electrode
of the g.Sahara system (Guger Technologies OG, Graz, Austria).

each system, see Figure 2.10. Second, usability characteristics such as accuracy
and comfort of the system were evaluated in a study with nine participants.
The spelling and control tasks were identical with the tasks already introduced
in Section 2.2. Moreover, the users had to answer various questionnaires to
evaluate satisfaction and comfort.
Results were that small, but important differences between the systems are de-
tectable, see Figures 2.10 and 2.11. These differences deliver arguments to define
special areas of application for each system. The gel electrode-based system
has the advantage that the signal quality is high and stable, and as a result, the
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Figure 2.10.: Comparison of the short circuit noise measurement results. A raw signal plot (left),
histogram (middle), and amplitude spectrum (right) after 0.1–40 Hz band-pass
filtering is shown. A yellow line indicates the RMS of the signals in the left plots.

efficiency and effectiveness are also high. One disadvantage may be that hair
must be cleaned after the use because of the gel. The tap water electrode-based
system delivers a comparable signal quality without the problem of cleaning the
hair after every use. However, it is tricky to set up the system when the user has
long hair, because the hairs under each electrode have to be pushed to the side
to achieve a high signal quality. The signal quality of the dry electrode-based
system is worse than the others with all its consequences. However, the setup is
the easiest because the user has to wear only the electrode cap, and cleaning
the hair is not necessary.

Contribution to this thesis: The question we wanted to answer here was
whether an EEG acquisition system exists that perfectly suits for building
an ERP-based BCI. We evaluated technical as well as UCD characteristics. The
result and consequently the answer to the initial question is that none of the
tested systems, in general, suit perfectly. According to usability requirements,
every tested system has weaknesses. As a consequence, further research and
development in user-friendly EEG acquisition hardware is necessary.
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Figure 2.11.: Boxplots of the averaged accuracies per task and system. The central mark (dashed
line) of each box is the median, the edges of the box are the 25th and 75th
percentiles; the whiskers extend to the most extreme data points (1.5× interquartile
range). Outliers are marked with red crosses.

2.5. Composing only by Thought: Novel Application
of the ERP-based BCI

A. Pinegger, H. Hiebel, S. Wriessnegger, and G. Müller-Putz. Composing only by
thought: Novel application of the P300 brain-computer interface. Public Library
of Science (PLoS) One, 12(9), 2017. Doi: 10.1371/journal.pone.0181584. [161]

Various applications are controllable via an ERP-based BCI. So far, users can
control a media player, a web browser, and a spelling application with the
implemented BCI. Here, we introduce the control of a music composing soft-
ware. This is an application which was not controllable via a BCI before, and in
addition to the already existing Brain Painting [103, 104, 162] application, this
is a further method for users to express themselves creatively. We adapted our
ERP-based BCI controller in a way that the elements shown inside the matrix
are easily and flexible exchangeable by the operator. Therefore, we implemented
a javascript object notation (JSON) interface so that the controller can read the
content of the stimulation matrix out of a JSON file. Controlling such a complex
application makes it necessary to add additional parameters to each element
of the stimulation matrix. We added a parameter to mark whether the element
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is a jump element, i.e., when the user selects this element the matrix changes
to a different matrix by ”jumping” to a different matrix object inside the JSON
file. Furthermore, what is shown inside the matrix and what is sent to the
application can be defined separately for each element. Finally, an element can
stay selected until the user selects it again. With these additional features, it
is possible to control applications by sending keyboard shortcuts. We decided
to use MuseScore (https://musescore.org) as composing software because this
application is fully controllable via keyboard shortcuts. In Figure 2.12, the stim-
ulation matrix for composing and the corresponding MuseScore functionality
are shown.
We performed a study with seventeen musical participants and one professional

Figure 2.12.: Sketch of the stimulation matrix and the corresponding commands in MuseScore.
Red elements inside the red rectangle change the note length; elements inside the
yellow rectangles provide extra features per note such as dot or slur; the pitch is
selected with the elements in the blue rectangle; finally to play the composition,
the elements in the green rectangle can be used.

composer to evaluate our implemented ERP-based music composing system –
we called it Brain Composer. The participants had to fulfill four different tasks
using the Brain Composer system, see Figure 2.13. Once they completed all
tasks, additional UCD aspects were evaluated using questionnaires and VASs.
The results of the effectiveness and efficiency assessment showed that fourteen
participants were able to copy-compose the presented melody within the given
time frame and only two of the eighteen participants were more than ten selec-
tions away from finishing when the task was aborted. All participants used the
opportunity to compose their own melody with the Brain Composer. Thirteen
participants composed the maximum length of 30 minutes.
Results of the workload evaluation with the NASA-TLX indicate a moderate
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Figure 2.13.: Every row shows one task the participants had to fulfill. Task 1 was to copy-spell
”musik” and ”liszt” with the ERP-based BCI. The second row shows the first six
bars of the well-known French Canadian children’s song Alouette. Task 2 was to
manually copy-compose the melody of Alouette. Task 3 was to copy-compose the
melody of Alouette with the ERP-based BCI. Finally, task 4 was to compose free
for 30 minutes.
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workload. Even more importantly, however, satisfaction needed to be evalu-
ated. All non-professional participants enjoyed using of the Brain Composer
system, felt good control, and were satisfied with the system, see Figure 2.14.
The professional composer was not as satisfied as the other participants. He
argued that the method of making selections restricts his composing process.
According to the UEQ, the participants had a positive impression of all the
asked items, except for efficiency, which was rated as neutral. The participants
also had the opportunity to provide direct written feedback. Many participants
suggested a ”pause” button to have flexible time between selections. Some
of the reported problems and suggestions to improve the system are already
solved and integrated into the upcoming version of the MuseScore software, as
initial tests with the new version indicate.

Figure 2.14.: Boxplots of the non-professional participants’ VAS scores. The professional com-
poser’s scores are shown as green asterisks.

Contribution to this thesis: We introduced and evaluated a new application
that is fully controllable with the ERP-based BCI. This so-called Brain Composer
enables users to compose music with different instruments via BCI. Therefore,
we fundamentally changed the source code of the ERP-based BCI controller.
Now, the content of the matrix can be easily changed, and single items are
more powerful than before. In addition, a dynamic stopping algorithm [97] was
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integrated, which increased the speed of the ERP-based BCI. Furthermore, the
classification method was changed. Now the sLDA [90] was used for classifica-
tion instead of the SWLDA. We showed that users are able to copy-compose
a given melody very quickly and composing a new melody is easy and amus-
ing.

2.6. A Generic ERP Classifier Approach

A. Pinegger and G.R. Müller-Putz. No training, same performance!? - A generic
P300 classifier approach. Proceedings of the 7th International BCI Conference, 2017.
Doi: 10.3217/978-3-85125-533-1-77. [163]

Thinking about the timing and the stability of ERPs leads us to our next work.
Should not it be possible to calculate a working generic classifier out of the
calibration data from recent studies? We used the data of the Brain Composer
study, see Section 2.5, to train a generic classifier and tested it with the data of
the EEG acquisition devices study, see Section 2.4. A graphical comparison of
parts of the results can be seen in Figure 2.15.
In brief, the simulated results were comparable, whereby at a lower number
of flashing sequences, the personalized classifier outperformed the generic
classifier.

Contribution to this thesis: This work was the proof of the idea that a generic
classifier made out of a big user dataset works comparable to a personalized
classifier, calibrated on the data of a single user. This work provides many
further opportunities for future research in this field.
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Figure 2.15.: Comparison of the results achieved using the generic and the personalized classifier.
Gray and green areas indicate the confidence intervals for proportions. The red
dashed line indicates the minimal level of sufficient accuracy according to recent
publications.
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The central aim of this thesis was to implement and evaluate an easy-to-use,
visual ERP-based BCI using UCD principles. Therefore, a BCI was designed
based on the outcome of recent research. This ERP-based BCI can control
various applications not only for communication (speller), but also for fun
and social interaction (media player and web browser), as well as creative
self-expression (Brain Composer). Suitable EEG acquisition systems and asyn-
chronous control methods were investigated to make the developed ERP-based
BCI system more comfortable and user-friendly. In the following, the achieve-
ments of this thesis towards building a practical and user-friendly ERP-based
BCI system are discussed.

3.1. Towards a Practical ERP-based BCI

The first paper regarding a working, visual ERP-based BCI was published more
than thirty years ago [76]. Since then, significant amount of research in this field
has been conducted. However, only beginnings to make the visual ERP-based
BCI have become a practical, universal, and easy-to-use assistive device, which
can be used outside the laboratories are recognizable [102, 106, 164]. To the
knowledge of the author, only one commercial visual ERP-based BCI is available
by the company g.tec (Guger Technologies OG, Graz, Austria)
In the first publication (Pinegger et al. [154]), an innovative visual ERP-based BCI
system was introduced. The SignalServer software is used for signal acquisition.
This software has been developed during the EC FP7 project TOBI (2008–2013)
as a universal interface for signal acquisition [155]. A major advantage of this
software is its ability to connect different signal acquisition devices to the BCI
only by changing the configuration. Meanwhile, other implementations exist
also targeting the abstraction of the interface between the signal acquisition on
hardware level and signal distribution on software level, e.g., the Lab Streaming
Layer framework (https://github.com/sccn/labstreaminglayer).
The core unit of the BCI was split into two parts: The GUI which displays the
stimulation matrix and handles the manual user inputs, and a Simulink model,
which performs the signal processing and classification. A visual ERP-based
BCI requires an exact timing of the stimulation events [73]. The graphical repre-
sentation capabilities of Matlab/Simulink are limited and an accurate timing
could not be guaranteed. Therefore, a design decision was to implement the
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GUI using the QT framework and C++ code. Additionally, designing and im-
plementing the user interface to start, calibrate, and use the BCI as well as select
an application to be controlled was also simpler and more appealing using
the mentioned framework. Another design decision was that the whole signal
acquisition and processing should run in the background and not be visible to
the user. This means that the operator controls the whole system via clickable
menu items of the GUI. The operator is also able to check the EEG signals by
clicking a menu item and without manually starting another application.
The famous faces paradigm was chosen to highlight the rows and columns of
the stimulation matrix. According to [81], this paradigm guarantees a higher
spelling speed and accuracy compared to simple contrast changes as stimulation
event. An additional benefit of using famous faces is that it is also more attrac-
tive and by changing the picture of the face, less monotonous. Signal processing
and classification were performed according to the findings of Krusienski et
al. [89]. In [89], different classifiers are compared for their suitability classifying
ERPs. The main result was that the SWLDA classifier suites the most. Therefore,
we decided to use an SWLDA classifier in this first version of the BCI.
The calibration of the BCI was performed automatically, cf. [164]. Automati-
cally, in the meaning of that the operator manually starts the calibration, the
calibration procedure takes places including classifier calculation without any
further manual inputs, and finally, the system generates feedback whether
the calibration was successful. In this case, it was successful, the user could
immediately start with the free spelling. This initial version of the system was a
simple visual ERP-based speller.
However, users do not only want to spell letters [148], they also want to control
other applications with an ERP-based BCI. Therefore, methods were developed
to control other applications with this BCI (Halder and Pinegger et al. [156],
Pinegger et al. [157]). Interfaces to a web browser and a media player were
defined and implemented. The web browser has an active interface, i.e., the
browser sends the elements of the stimulation matrix actively to the ERP-based
BCI controller and the size of the matrix changes accordingly. Compared to
previously developed visual ERP-based BCI controlled web browser approaches
[105, 165, 166], this implementation differs in two points: (i) The developed
system automatically switches between control and spelling matrices, and (ii)
the size of the matrix is automatically adapted to the number of visible links
inside the browser window. These two features allow fast and convenient web
browsing. The implemented system still requires two screens, but an intuitive
control would be displaying the stimuli directly on the screen overlaying the
links of the website. This implementation already exists [106], but it has the
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shortcoming of being able to be used only with specially prepared websites due
to the clustering of the links. Consequently, the stimuli of different links may be
challenging to fixate individually.
The interface to the media player is passive, which means that the size and the
elements of the stimulation matrix are fixed. This interface enables the user to
control a fancy, freely available media player. All prior approaches consisted
of custom-made media players which had the focus on functionality rather
than an appealing GUI [110, 167, 168]. The results of the in [156] performed
study confirmed that the users, even one out of three disabled users, can control
various applications with high accuracies. The accuracies were all above the – in
the literature – suggested minimum level of sufficient control of 70% [169].

In addition to evaluating the system in means of accuracy and information
transfer rate, we also assessed the usability of the system with questionnaires.
Users were, in general, satisfied with the system, but rated the speed and com-
fort low. Moreover, the synchronous mode of the system, i.e., the system selects
an item of the matrix even when the user wants to make a pause, was criticized.
The latter problem is discussed in more detail within the next section.
Speed and comfort of a BCI are, among others, correlated with the used EEG
acquisition system. In Pinegger et al. [160], three different biosignal acquisition
systems were investigated regarding their suitability of building an ERP-based
BCI. Similar to the [156] objective, e.g., accuracy, and subjective, e.g., the sat-
isfaction of the user, parameters were determined to evaluate the systems.
Additionally, a technical parameter, namely the short circuit noise, as an addi-
tional signal quality parameter was measured. To our knowledge, this was the
first time that EEG acquisition systems were evaluated regarding all usability
aspects. Previous publications in this area have mainly focused on the achieved
accuracy and used it as a benchmark for systems [149, 150, 170]. Our results
indicate that more comfortable systems (in terms of hair treatment after the
usage) have the problem of obtaining a good signal quality. This is due to
the gap between the electrode and the skull surface, which can be perfectly
bridged with conductive gel. However, when using a small water-soaked cotton
piece or gold alloy pins, such as the tested tap water electrode-based and dry
electrode-based systems, this conductive connection works only under perfect
conditions satisfactorily. The knowledge of the way of creating perfect con-
ditions enables the user to obtain a comfortable and efficient ERP-based BCI
without the necessity of gel. This study indicates the way of treating these more
comfortable systems to achieve a sufficient signal quality. However, in contrast
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to the reported results in Zander et al. [149] and Guger et al. [150], we achieved
significantly lower accuracies of the dry electrode-based system compared to the
”wet” systems. One reason might be that our participants used the system over a
longer period than the participants of [149, 150]. It seems that the signal quality
of the ”dry” system is not as stable over time as the ones using ”wet” electrodes.
The reported decreasing comfort over time for the dry electrode-based system
might distract the participants and is probably also a reason for the achieved
lower accuracies of this system.

In Pinegger et al. [161] healthy participants control a music composing software
using the previously introduced and evaluated ERP-based BCI [154, 156]. A
music composing software is a very complex application with a wealth of input
options. We decided to use a composing software that can be controlled entirely
by keyboard shortcuts. Consequently, the developed ERP-based BCI controller
was modified in a way that it could send keystroke codes to a defined applica-
tion. Additionally, a dynamic stopping algorithm was implemented allowing
the ERP-based BCI to be faster. Many different dynamic stopping algorithms
have been implemented so far. For review, see [97]. For this thesis, a simple but
robust dynamic stopping algorithm was used: After every sequence, the data is
classified, and three identical classifications of the same element in a row result
in the selected element, cf. [96]. The classification method was also changed.
According to the suggestions of [90], an sLDA classifier was used instead of
the previously used SWLDA classifier. However, the performance of the sLDA
classifier could not be compared with earlier studies, due to the also newly
used dynamic stopping method.
This system, the so-called Brain Composer, was evaluated among eighteen
participants. In addition to regular musical participants, one professional com-
poser took part. The participants were asked to use the Brain Composer for
copy-composing a given melody as well as for free-composing a melody they
had in mind. As in [156, 160], usability parameters were assessed. The results
indicate that the participants enjoyed using the Brain Composer. Thanks to
the dynamic stopping method, selections are possible within twelve seconds.
This algorithm makes the system significantly faster than previous versions of
the introduced ERP-based BCI. Results from the questionnaires and the VASs
indicate that the participants, in general, were highly satisfied with the system.
However, the professional composer was not satisfied. He reported two reasons.
First, when he heard about the study, he had a different composing method
in his mind. He thought that he would have to think of notes and the system
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would detect the correct note. Second, normally he uses a musical keyboard in
combination with a composing software to compose, and the way he had to
compose with the Brain Composer restricted his creative process.

Finally, a generalized classifier approach was tested in Pinegger et al. [163].
Calibration data of the Brain Composer study [161] was used to calculate a gen-
eral classifier. This classifier was evaluated offline performing cross-validation
on the same data (leave-one-participant-out method) and with an offline re-
classification of the data of a previous study [160]. Results indicated that the
calculated classifier can be used instead of a personally calibrated classifier.
Sufficient accuracies were also reported by other scientists when using a generic
classifier approach [85, 86]. However, our main result indicated that comparable
accuracies can only be achieved with a higher number of flashing sequences.
Therefore, this general classifier suits perfectly as a basis for online adaption
during the ERP-based BCI controller usage.

3.1.1. The Asynchronous ERP-based BCI Controller

Compared to using an ERP-based BCI for continuous spelling, controlling a web
browser or media player is significantly more challenging. The user often has to
wait until the content is loaded or wants to read or watch something and the
ERP-based BCI controller should pause in the meantime. This functionality was
not intended in the implementation of simple ERP-based spelling BCIs of the
past, e.g., [88, 171, 172]. A few seconds after the last selection, the stimulation
starts again and a new selection is eventually made, intentionally or not. This
problem can be neglected when the user wants to spell letters because superflu-
ous letters can be deleted afterwards. However, when the user wants to watch
a movie or read the content of a web page, this behavior is a serious problem.
Therefore, two different states were defined [151]: (i) The control state, i.e., the
user wishes to actively use the ERP-based BCI, and (ii) the non-control state,
i.e., the user wants to put the ERP-based BCI into standby mode to watch, for
example, a movie. In Pinegger et al. [158] a novel method to detect the control
state was developed. This is a hybrid method utilizing two different parameters
of the ERP-based BCI. On one side, the distances of the classifier outputs and
on the other side, frequency components of the EEG, which are evoked by
the stimulation frequency. The combination of these two parameters delivers
an accurate indicator of whether the user is in control or non-control state. A
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direct comparison of the results from this study and the studies performed by
different other groups [101, 151–153] is difficult due to varying classification
approaches, stimulation modalities, and especially, performance evaluations.
However, comparable existing methods [173, 174] show lower accuracies than
the suggested hybrid approach without using another BCI methodology as in
[124].
The second method utilizes a weakness of a specific EEG acquisition device
to decide between control and non-control state in Pinegger et al. [159]. Dry
electrode-based EEG acquisition devices are normally prone to movement arti-
facts, which evoke high amplitudes inside the EEG. Using an inverse filter [175]
created out of the almost artifact free calibration data allows detecting artifacts
during the online control task. The hypothesis behind this is that a user in con-
trol state produces fewer artifacts than a user in the non-control state. This work
indicated that this method works accurately as state detector (accuracies be-
tween 83.64% and 100%), and additionally misclassifications based on artifacts
can be avoided.

3.2. Limitations and Outlook

The results of this thesis are mainly based on testing and evaluating the de-
veloped ERP-based BCI with healthy individuals. However, according to the
BNCI Horizon 2020 roadmap [5], BCIs are mainly tools for disabled people and
the results do not readily apply to disabled people. The results of the three
disabled users who used the developed system in Halder and Pinegger et al.
[156] were inconclusive. One had excellent control, one moderate, and for one
disabled user the system did not work. However, many studies exist, showing
that ERP-based BCIs can be used satisfactorily by disabled people, e.g., [98–100].
Moreover, it is quite easy to change the settings of the developed system and
customize it to the user. With the GUI the inter stimulus interval (ISI), the
stimulus interval (SI), the length of the break after every spelled symbol, the
stimulus picture, as well as other calibration settings can be adapted to the
users’ needs.

An important feature of a state-of-the-art BCI systems is the ability to be con-
trolled asynchronously. In this thesis, two methods for asynchronous control
are introduced [158, 159]. However, these methods were evaluated based on
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offline data. No online study has been performed to evaluate the findings of
these two publications. The users of the Brain Composer study [161] asked for
such an asynchronous mode. Therefore, the next step should be to integrate the
asynchronous methods into the well-working Brain Composer.

Speed is still the parameter that makes the visual ERP-based BCI uncompetitive
compared to hands-free control methods like eye-tracking. However, the results
of recent publications indicate that speed boosts for ERP-based BCIs are possi-
ble [176–179]. In particular, Townsend and Platsko [178] introduced a method
to significantly speed up visual ERP-based BCIs. They report that the users of
their BCI can select on average 17.5 elements per minute from an 8 × 9 matrix.
Compared to the word copy-spelling results of the Brain Composer study [161]
in this thesis, this is more than three times faster without taking the slightly
bigger matrix into account. The high spelling rates are almost comparable
to the reported spelling rates (18.7 selections per minute) of an eye-tracking
system [180]. The latest publication in that area from Nagel and Spüler [179]
introduced an asynchronous working BCI based on visual evoked potentials.
They reported that participants wrote on average 16.1 correct case-sensitive
letters per minute.

A vision for the future of BCIs is that they may be used by healthy people
as well. The introduced training-free approach [163] in combination with an
asynchronous control method, e.g. the introduced approaches [158, 159], point
a way in this direction. Moreover, in the year 2013, the introduced system was
part of an art project [181] in Graz, Austria. Within the scope of the ”Steirischer
Herbst” the life and environment of patients in vegetative state and people
living with a mental or physical impairment were shown. There, inter alia, the
possible applications of ERP-based BCIs in this field were demonstrated. At
the same time, many visitors – mainly artists – were enthusiastic about the BCI
technology and its possible application in art projects. Furthermore, the German
artist Adi Hoesle [182] uses the BCI-based Brain Painting system [103, 183] to
create pictures.
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3.3. Conclusion

Within this thesis, significant steps towards an easy to set up and operate,
functional, and robust visual ERP-based BCI controller were made. Developing a
single application, which allows the operator to start the signal acquisition, check
the signals, start the automatic calibration of the classifier, and finally enables
the user to spell letters or control other applications are significant achievements.
Evaluating biosignal acquisition systems regarding their suitability building an
ERP-based BCI and developing a new asynchronous method for visual ERP-
based BCI control further contribute to the main aim of this thesis of bringing
the ERP-based BCI out of the laboratories to the end users.
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[49] A. Kübler, B. Blankertz, K. R. Müller, and C. Neuper. “A Model of BCI-
Control.” In: Proceedings of the 5th International Brain-Computer Interface
Conference 2011. 2011, pp. 100–103. doi: 10.3217/978-3-85125-140-1
(cit. on p. 5).

[50] T. Dickhaus, C. Sannelli, K.-R. Müller, G. Curio, and B. Blankertz. “Pre-
dicting BCI performance to study BCI illiteracy.” In: BMC Neuroscience
10.Suppl 1 (2009), P84. doi: 10.1186/1471-2202-10-s1-p84 (cit. on p. 5).

[51] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller.
“How many people are able to operate an EEG-based brain-computer
interface (BCI)?” In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering 11 (2003), pp. 145–147. doi: 10.1109/TNSRE.2003.814481
(cit. on p. 5).

[52] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones. “Brain-
computer interfaces based on the steady-state visual-evoked response.”
In: IEEE Transactions on Rehabilitation Engineering 8 (2000), pp. 211–214.
doi: 10.1109/86.847819 (cit. on p. 5).

[53] G. R. Müller-Putz, R. Scherer, C. Neuper, and G. Pfurtscheller. “Steady-
state somatosensory evoked potentials: suitable brain signals for brain-
computer interfaces?” In: IEEE Transactions on Neural Systems and Rehabili-
tation Engineering 14 (2006), pp. 30–37. doi: 10.1109/TNSRE.2005.863842
(cit. on p. 5).

[54] T. Picton, M. John, D. Purcell, and G. Plourde. “Human auditory steady-
state responses: The effects of recording technique and state of arousal.”
In: Anesthesia and Analgesia 97.5 (Nov. 2003), pp. 1396–1402. doi: 10.1213/
01.ANE.0000082994.22466.DD (cit. on p. 5).

[55] B. Z. Allison, J. Faller, and C. Neuper. “BCIs That Use Steady-State
Visual Evoked Potentials or Slow Cortical Potentials.” In: Brain-Computer
Interfaces Principles and Practice. Jan. 2012, pp. 242–249. doi: 10.1093/
acprof:oso/9780195388855.003.0014 (cit. on p. 5).

51

https://doi.org/10.1038/s41467-018-04673-z
https://doi.org/10.3217/978-3-85125-140-1
https://doi.org/10.1186/1471-2202-10-s1-p84
https://doi.org/10.1109/TNSRE.2003.814481
https://doi.org/10.1109/86.847819
https://doi.org/10.1109/TNSRE.2005.863842
https://doi.org/10.1213/01.ANE.0000082994.22466.DD
https://doi.org/10.1213/01.ANE.0000082994.22466.DD
https://doi.org/10.1093/acprof:oso/9780195388855.003.0014
https://doi.org/10.1093/acprof:oso/9780195388855.003.0014


Bibliography

[56] P. Martinez, H. Bakardjian, and A. Cichocki. “Fully Online Multicom-
mand Brain-Computer Interface with Visual Neurofeedback Using SSVEP
Paradigm.” In: Computational Intelligence and Neuroscience 2007 (2007),
pp. 1–9. doi: 10.1155/2007/94561 (cit. on p. 5).

[57] M. Cheng and S. Gao. “An EEG-based cursor control system.” In: Pro-
ceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineer-
ing in Medicine and Biology 21st Annual Conference and the 1999 Annual
Fall Meeting of the Biomedical Engineering Society. IEEE, Oct. 1999. doi:
10.1109/iembs.1999.802747 (cit. on p. 5).

[58] X. Gao, D. Xu, M. Cheng, and S. Gao. “A BCI-based environmental con-
troller for the motion-disabled.” In: IEEE Transactions on Neural Systems
and Rehabilitation Engineering 11 (2003), pp. 137–140. doi: 10.1109/TNSRE.
2003.814449 (cit. on p. 5).

[59] X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.-P. Jung, and S. Gao. “High-
speed spelling with a noninvasive brain-computer interface.” In: Proceed-
ings of the National Academy of Sciences 112.44 (Oct. 2015). doi: 10.1073/
pnas.1508080112 (cit. on p. 5).

[60] G. R. Müller-Putz and G. Pfurtscheller. “Control of an electrical pros-
thesis with an SSVEP-based BCI.” In: IEEE Transactions on Biomedical
Engineering 55 (2008), pp. 361–364. doi: 10.1109/TBME.2007.897815
(cit. on p. 5).

[61] R. Ortner, B. Z. Allison, G. Korisek, H. Gaggl, and G. Pfurtscheller. “An
SSVEP BCI to control a hand orthosis for persons with tetraplegia.” In:
IEEE Transactions on Neural Systems Rehabilitation Engineering 19.1 (Feb.
2011), pp. 1–5. doi: 10.1109/TNSRE.2010.2076364 (cit. on p. 5).

[62] H. Higashi, T. M. Rutkowski, Y. Washizawa, A. Cichocki, and T. Tanaka.
“EEG auditory steady state responses classification for the novel BCI.”
In: 2011 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE, Aug. 2011. doi: 10.1109/iembs.2011.6091133
(cit. on p. 5).

[63] D.-W. Kim, H.-J. Hwang, J.-H. Lim, Y.-H. Lee, K.-Y. Jung, and C.-H. Im.
“Classification of selective attention to auditory stimuli: Toward vision-
free brain-computer interfacing.” In: Journal of Neuroscience Methods 197.1
(Apr. 2011), pp. 180–185. doi: 10.1016/j.jneumeth.2011.02.007 (cit. on
p. 5).

52

https://doi.org/10.1155/2007/94561
https://doi.org/10.1109/iembs.1999.802747
https://doi.org/10.1109/TNSRE.2003.814449
https://doi.org/10.1109/TNSRE.2003.814449
https://doi.org/10.1073/pnas.1508080112
https://doi.org/10.1073/pnas.1508080112
https://doi.org/10.1109/TBME.2007.897815
https://doi.org/10.1109/TNSRE.2010.2076364
https://doi.org/10.1109/iembs.2011.6091133
https://doi.org/10.1016/j.jneumeth.2011.02.007


Bibliography

[64] M.-A. Lopez, H. Pomares, F. Pelayo, J. Urquiza, and J. Perez. “Evidences
of cognitive effects over auditory steady-state responses by means of
artificial neural networks and its use in brain-computer interfaces.” In:
Neurocomputing 72 (2009), pp. 3617–3623. doi: 10.1016/j.neucom.2009.
04.021 (cit. on p. 5).

[65] C. Pokorny, C. Breitwieser, C. Neuper, and G. Müller-Putz. “Towards
a Single-Switch BCI Based on Steady-State Somatosensory Evoked Po-
tentials.” In: Proceedings of the 5th International Brain-Computer Interface
Conference 2011. 2011, pp. 200–204. doi: 10.3217/978-3-85125-140-1
(cit. on p. 5).

[66] M. Rugg. “Event-related/Evoked Potentials.” In: International Encyclope-
dia of the Social & Behavioral Sciences. Elsevier, 2001, pp. 4962–4966. doi:
10.1016/b0-08-043076-7/03410-0 (cit. on p. 6).

[67] J. D. Kropotov. “Event-Related Potentials.” In: Functional Neuromarkers for
Psychiatry. Elsevier, 2016, pp. 59–78. doi: 10.1016/b978-0-12-410513-
3.00006-1 (cit. on p. 6).

[68] H. Shibasaki and M. Hallett. “What is the Bereitschaftspotential?” In:
Clinical Neurophysiology 117.11 (Nov. 2006), pp. 2341–2356. doi: 10.1016/
j.clinph.2006.04.025 (cit. on p. 6).

[69] M. Jochumsen, I. K. Niazi, N. Mrachacz-Kersting, D. Farina, and K.
Dremstrup. “Detection and classification of movement-related cortical
potentials associated with task force and speed.” In: Journal of Neural
Engineering 10.5, 056015 (Aug. 2013). doi: 10.1088/1741-2560/10/5/
056015 (cit. on p. 6).

[70] M. Jochumsen, I. K. Niazi, K. Dremstrup, and E. N. Kamavuako. “De-
tecting and classifying three different hand movement types through
electroencephalography recordings for neurorehabilitation.” In: Medical
& Biological Engineering & Computing 54.10 (Dec. 2015), pp. 1491–1501.
doi: 10.1007/s11517-015-1421-5 (cit. on p. 6).

[71] P. Ofner, A. Schwarz, J. Pereira, and G. R. Müller-Putz. “Upper limb
movements can be decoded from the time-domain of low-frequency
EEG.” In: PLoS ONE 12.8, e0182578 (Aug. 2017). doi: 10.1371/journal.
pone.0182578 (cit. on p. 6).

53

https://doi.org/10.1016/j.neucom.2009.04.021
https://doi.org/10.1016/j.neucom.2009.04.021
https://doi.org/10.3217/978-3-85125-140-1
https://doi.org/10.1016/b0-08-043076-7/03410-0
https://doi.org/10.1016/b978-0-12-410513-3.00006-1
https://doi.org/10.1016/b978-0-12-410513-3.00006-1
https://doi.org/10.1016/j.clinph.2006.04.025
https://doi.org/10.1016/j.clinph.2006.04.025
https://doi.org/10.1088/1741-2560/10/5/056015
https://doi.org/10.1088/1741-2560/10/5/056015
https://doi.org/10.1007/s11517-015-1421-5
https://doi.org/10.1371/journal.pone.0182578
https://doi.org/10.1371/journal.pone.0182578


Bibliography

[72] A. Schwarz, P. Ofner, J. Pereira, A. I. Sburlea, and G. R. Müller-Putz.
“Decoding natural reach-and-grasp actions from human EEG.” In: Journal
of Neural Engineering 15.1, 016005 (Dec. 2017). doi: 10.1088/1741-2552/
aa8911 (cit. on p. 6).

[73] S. J. Luck. An Introduction to the Event-Related Potential Technique. The MIT
Press, 2005. isbn: 9780262122771 (cit. on pp. 6, 38).

[74] N. K. Squires, K. C. Squires, and S. A. Hillyard. “Two varieties of long-
latency positive waves evoked by unpredictable auditory stimuli in
man.” In: Electroencephalography and Clinical Neurophysiology 38.4 (Apr.
1975), pp. 387–401. doi: 10.1016/0013-4694(75)90263-1 (cit. on p. 6).

[75] J. Polich. “Updating P300: an integrative theory of P3a and P3b.” In:
Clinical Neurophysiology 118.10 (2007), pp. 2128–2148. doi: 10.1016/j.
clinph.2007.04.019 (cit. on p. 6).

[76] L. A. Farwell and E. Donchin. “Talking off the top of your head: toward
a mental prosthesis utilizing event-related brain potentials.” In: Electroen-
cephalography and Clinical Neurophysiology 70 (1988), pp. 510–523. doi:
10.1016/0013-4694(88)90149-6 (cit. on pp. 6, 10, 15, 38).

[77] C. Guan, M. Thulasidas, and J. Wu. “High performance p300 speller for
brain-computer interface.” In: IEEE International Workshop on Biomedical
Circuits and Systems. IEEE, 2004. doi: 10.1109/biocas.2004.1454155
(cit. on p. 6).

[78] C. Guger, S. Daban, et al. “How many people are able to control a P300-
based brain-computer interface (BCI)?” In: Neuroscience Letters 462 (2009),
pp. 94–98. doi: 10.1016/j.neulet.2009.06.045 (cit. on pp. 6, 11).

[79] G. Townsend, B. K. LaPallo, et al. “A novel P300-based brain-computer
interface stimulus presentation paradigm: moving beyond rows and
columns.” In: Clinical Neurophysiology 121.7 (2010), pp. 1109–1120. doi:
10.1016/j.clinph.2010.01.030 (cit. on pp. 7, 13, 15).

[80] J. Jin, B. Allison, et al. “Optimized stimulus presentation patterns for an
event-related potential EEG-based brain-computer interface.” In: Medical
and Biological Engineering and Computing 49.2 (2011), pp. 181–191. doi:
10.1007/s11517-010-0689-8 (cit. on p. 7).

[81] T. Kaufmann, S. M. Schulz, C. Grünzinger, and A. Kübler. “Flashing
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[179] S. Nagel and M. Spüler. “Asynchronous non-invasive high-speed BCI
speller with robust non-control state detection.” In: Scientific Reports 9.1
(June 2019). doi: 10.1038/s41598-019-44645-x (cit. on p. 44).

[180] P. Stawicki, F. Gembler, A. Rezeika, and I. Volosyak. “A Novel Hy-
brid Mental Spelling Application Based on Eye Tracking and SSVEP-
Based BCI.” In: Brain Sciences 7.12 (Apr. 2017), p. 35. doi: 10.3390/
brainsci7040035 (cit. on p. 44).
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INTERFACE COMMUNICATION SYSTEM
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Abstract: We developed a new P300-based BCI communi-
cation system. The design is tripartite: One part operates
as a universal data acquisition unit, which allows to easily
use different data acquisition devices. The second part is
a rapid prototyping platform based on Matlab/Simulink R©

for data processing, which can be modified in an easy way.
The last part is a graphical user interface, which also acts
as main controller. Every single part is state-of-the-art de-
signed and implemented. Connected together they are a
very powerful tool not only for scientists and research is-
sues, but also for non-expert users.

Keywords: P300, BCI, user-centered-design, famous faces

Introduction

A brain-computer interface (BCI) is an interface that con-
nects a human brain directly with a computer. It recognizes
mentally induced changes of brain signals, in our case the
electroencephalogram (EEG) and forms a control signal.
There are different kinds of brain activity patterns which
can be used for a BCI. One of them, the P300 phenomenon,
is an event-related potential (ERP), triggered by unex-
pected, rare, or particularly informative stimuli. It is
described as a positive peak visible in the EEG approxi-
mately 300 ms after the stimuli.
Donchin and colleagues presented in [1] the first P300-
based BCI, also called P300 speller, which permits to spell
words. A 6 × 6 matrix filled with letters and symbols
is presented to the user, and entire columns or rows are
flashed one after the other in random order. When the
column/row containing the desired letter is flashed, a P300
is elicited.
If the stimulus is more complex than just a flash, other
ERPs are generated too. Kaufmann and colleges showed
in [2] that the use of famous face images as stimuli cause
two further negative deflections, the N170 and N400f, and
that these can be additionally used for classification. This
modification improves the classification rates significantly.

In this work we present our newly developed universal
P300-famous faces speller, see Fig.1, based on the ideas of
Donchin and Kaufmann. With this BCI the user is able to
spell, to control a multimedia player, or to browse the Inter-
net.

Figure 1: Design sketch of the universal P300 BCI commu-
nication system.

Methods

Data acquisition:
For data acquisition the TOBI SignalServer software [3] is
used, see Fig. 1a). The big advantage of this software is that
it can handle many different data acquisition devices [4].
Paradigm:
The paradigm is inspired by the work of Donchin [1] which
has been described before. The only differences are (i) the
matrix has a fixed size of 6 × 6 just during the calibration
and can have an n × 6 (with n = 6...14) size afterwards,
and (ii) the intensification of the rows /columns is done with
famous faces instead of flashing them.
Data processing:
Matlab/Simulink R© (The MathWorks, USA) is used for data
processing, see Fig. 1b). The processing itself is mainly
based on results found in [5] with some deviations.
For each channel, 800 ms segments of data following each
intensification are extracted. Afterwards a baseline correc-
tion with 200 ms pre-stimulus data is performed. The seg-
ments are then moving average filtered and decimated by
equivalent values. The resulting data segments are con-
catenated by channel for each intensification (highlighting
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Figure 2: Screen-shot of a) the user menu and b) the P300
user interface. The different areas are (1) the menu, (2) the
P300 matrix, (3) the text field, and (4) the status bar. Nor-
mally famous faces are used which are not shown in this
figure due to print license.

of a row or column), creating a single feature vector. For
each stimulus one feature vector per sequence (all rows and
columns highlighted once) is generated and averaged over
all sequences (maximum 15 per selection).
In training mode this is done for ten letters and afterwards a
classifier is trained using stepwise linear discriminant anal-
ysis (SWLDA) [6]. To get the best trade-off between speed
and accuracy the lowest number of sequences is calculated
with a leave-one-out cross-validation (LOOCV) and succes-
sive adding of sequences to the test set. However, the prac-
tically best number of sequences is determined afterwards
as described in [7].
In spelling mode the calculated classifier and the deter-
mined best number of sequences will automatically be used.

Results
We developed a P300 BCI system which is based on three
main components: The TOBI SignalServer for data acqui-
sition and distribution, a Matlab/Simulink R© model for data
processing and an in C++ implemented graphical user inter-
face and paradigm control, see Fig. 2. Within the applica-
tion it is possible to start and stop the data acquisition soft-
ware (SignalServer). Once the Matlab/Simulink R© model is
running in the background the training or spelling session
can be started just by one click. Also the image (preferred
famous face) for highlighting can be selected freely just by
three mouse clicks.
The communication with Matlab/Simulink R© is done via a
network (TCP/IP) connection. Two further TCP/IP connec-
tions to control other applications are already implemented:
One to control a web browser and one to control a multime-
dia player. To fulfill the needs of these two applications the
size of the matrix adapts automatically, as described before.

Discussion
This work introduces a state-of-the-art P300 BCI system
based on famous faces. It was designed and developed
for the EC founded project BackHome (www.backhome-

fp7.eu). It should be easy and intuitive in use with si-
multaneous consideration of the latest research results. To
achieve this, it combines the universal data acquisition in-
terface idea from [4] with the improvements of Kaufmann
and colleges [2] and [7] showing letters highlight as famous
faces and a user-centered, easy-to-use graphical user inter-
face design. Regarding the data processing part the design
is focused on best on-line performance as it is described in
[5] and [7].
From a scientific perspective the use of Matlab/Simulink R©

as data processing and partly control software allows scien-
tific users to easily implement and test new algorithms or
paradigm control structures to address research questions.
The two implemented interfaces to external applica-
tions (multimedia player and web browser),which are still
under development, round off the universal applicability of
this system.
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Objectives:  Access  to  the  world  wide  web  and  multimedia  content  is  an  important  aspect  of  life. We present
a  web  browser  and  a multimedia  user  interface  adapted  for control  with  a brain-computer  interface  (BCI)
which  can  be used  by  severely  motor  impaired  persons.
Methods:  The  web  browser  dynamically  determines  the  most  efficient  P300  BCI  matrix  size to  select  the
links  on  the  current  website.  This  enables  control  of  the  web  browser  with  fewer  commands  and smaller
matrices.  The multimedia  player  was  based  on an  existing  software.  Both  applications  were  evaluated
with  a  sample  of  ten  healthy  participants  and  three  end-users.  All participants  used  a visual  P300  BCI
with  face-stimuli  for  control.
Results:  The  healthy  participants  completed  the  multimedia  player  task with  90%  accuracy  and  the web
browsing  task  with  85%  accuracy.  The  end-users  completed  the  tasks  with  62%  and  58%  accuracy.  All
healthy  participants  and  two  out  of  three  end-users  reported  that  they  felt to be  in control  of  the  system.
Conclusions:  In  this  study  we  presented  a multimedia  application  and  an efficient  web  browser  imple-
mented  for control  with  a BCI.
Significance:  Both  applications  provide  access  to important  areas  of modern  information  retrieval  and
entertainment.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The idea that brain signals can be used to control external
devices or computers was proposed in [1]. As most brain-computer
interface (BCI) systems today, the design was based on fluctua-
tions of electrical potential recorded using electroencephalogram
(EEG) [2]. Various phenomena can be used to control BCIs such
as slow cortical potentials (SCPs), the sensorimotor-rhythm (SMR)
and event-related potentials (ERPs) [3–5]. Many applications have
been developed for BCIs. For instance the SMR  can be used to con-
trol prosthetic devices for rehabilitative or restorative purposes [6].
BCIs used for communication are continuously being adapted to
improve usability and communication speed for people with motor
or even visual impairments by using different stimulation tech-
niques or improving the software used for communication [7–11].
Additionally, new insights contribute to the models behind BCI
control and how usage and training can be improved [12–16].

∗ Corresponding author. Tel.: +49 931 31 89338; fax: +49 931 31 87059.
E-mail address: sebastian.halder@uni-wuerzburg.de (S. Halder).

1 These authors contributed equally.

Ultimately, much of the research conducted with BCIs is focused
on providing communication methods for people with severe
motor impairments preventing the use of assistive devices that
require control of muscles [17]. Much of this research has focused
on the BCI paradigm that uses visually elicited P300 ERPs [5]. In
this paradigm the possible commands (usually letters for commu-
nication) are displayed in a matrix on a screen in front of the user.
The rows and columns are then highlighted using an unpredictable
sequence. When the user focuses on an element of the matrix a
P300 and other ERPs components are elicited whenever this row
or column is highlighted. This response can be detected online and
is used for selection. Several repetitions are needed to achieve a
sufficient signal to noise ratio. Highlighting was up until recently
performed by increasing the brightness of the row or column but
it has now been shown that stimuli such as faces are much more
efficient at eliciting ERPs due to their higher psychological salience
[18]. The pattern with which the stimulation is performed can also
be improved by lifting the row and column restriction [19] or using
different colours for stimulation [20].

Various neurodegenerative diseases and injuries can lead to
degrees of motor impairment at which the use of a BCI can provide
an improvement in quality of life by restoring communication.

http://dx.doi.org/10.1016/j.artmed.2014.12.001
0933-3657/© 2014 Elsevier B.V. All rights reserved.
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These degrees of impairment are termed the locked-in state (LIS),
in which only rudimentary muscle control (over e.g. the eye mus-
cles) remains, and the complete locked-in state (CLIS) in which
no control and thus no communication or control possibilities
remain [21]. People with such severe disabilities would benefit
from improvement in areas of manipulation, communication, com-
puter access/entertainment, and environmental control [22,23].
BCIs have been proposed for many of these areas. Mostly SMR
based BCIs have been used to control robotic arms or neuroprosthe-
ses [24–27]. Communication applications have been implemented
using visual and auditory ERPs and motor potentials [28–32]. For
a review see [33]. In the area of entertainment BCIs can provide
methods of artistic expression and gaming [34–38]. Finally, BCIs
can also be adapted to control smart homes [39,40].

In this paper we focused on a particular aspect of modern com-
munication, namely the use of information technology such as web
browsing [41]. The first BCI controlled web browsers were oper-
ated using SCPs. Initial versions of this browser were restricted to
fixed links that were selected from a list but the browser was later
extended to enable free navigation [42,43]. Besides needing a sub-
stantial amount of training SCP BCIs can be used for binary choices
only. Thus with many links on the website a large number of selec-
tions is needed for a single link. Due to the higher efficiency of
selecting one of multiple commands a P300 controlled web  browser
was created [44]. Each link on a webpage was assigned a letter
(termed a “hint”) or several letters (if more than 26 links were on
the page). This resulted in the requirement of very large matrices
(8 rows and columns) and thus increased selection times (because
each row and column needed to be flashed). Additionally, when
filling out forms or writing text in general the matrix needed to be
changed by the user requiring an additional selection. An alterna-
tive implementation of a P300 web browser displayed the flashes
directly over the link on the web page [45]. This reduces the neces-
sity of shifting the gaze from the screen displaying the matrix to the
screen displaying the browser. Displaying the stimuli on the links
does not resolve the need for an additional matrix for text entry
and also introduces other visibility issues if links cluster together.
It is also more complicated to use alternative visual stimuli such
as faces. An alternative utilises a P300 BCI controlled mouse that
automatically snaps to possible selections on websites [46].

In addition to accessing information it can be desirable to be
able to manage and view local media files such as videos and pho-
tographs using multimedia applications. Control of media players is
often mentioned or used with small samples in BCI studies [47–49].
But an extensive evaluation of a media player system is missing
from the literature. Displaying photographs, watching movies and
listening to music is an important part of modern entertainment
and general media consumption.

In this publication it was our goal to address the shortcoming
of current P300 BCI browsers of displaying superfluous elements in
the P300 matrix used for control. We  thus implemented a dynamic
protocol that generated the P300 matrix from the relevant elements
on the website online. Thus only the options needed by the user
were included in the P300 matrix. In this paper we present the eval-
uation of the dynamic matrix generation with healthy participants
and participants with motor disabilities. In addition to information
retrieval, we wanted to enable users to independently consume
media content. Thus, we also integrated control of a multimedia
software.

2. Methods

We  evaluated the new BCI web browser and media player with
ten healthy participants and three persons with motor disabilities
in terms of efficiency, effectiveness and satisfaction [37]. The BCI

system was based on the design presented in [50]. Stimulation was
performed using the famous faces paradigm described by [18].

2.1. Participants

The healthy participants were university students (N = 10, 5
female, mean age 23.8 years). They were compensated for their
participation with D 8 per hour. Three users with motor impair-
ments participated. User A was  female, 57 years old and diagnosed
with cerebral palsy (tetraplegia, speech disturbance, ALS functional
rating scale revised (ALS FRS-R) 24, no BCI experience). User B was
male, 48 years old and diagnosed with cerebral aneurysm (hemiple-
gia right, no speech, ALS FRS-R 21, BCI experience). Finally, User C
was also 48 years old, male and diagnosed with stroke (tetraplegia,
speech disturbance, ALS FRS-R 30, BCI experience).

2.2. Data acquisition

Stimulation was performed with an external 22 in. TFT dis-
play. The data was recorded using a g.USBamp amplifier set to
a sampling rate of 256 Hz and g.Gamma active electrodes. The
amplifier filtered the raw data with a 0.1–60 Hz bandpass and
a 50 Hz notch filter. Recording and stimulation was  performed
using the TOBI SignalServer software [51] in combination with
Matlab and C++ software written specifically for the BackHome
project (http://www.backhome-fp7.eu). The reference electrode
was attached to the right earlobe, ground was positioned at FPz.
The following six positions were recorded: Fz, Cz, Pz, Po7, Oz, Po8.
We used a Hewlett-Packard ProBook 6460b with a dual-core CPU,
4 GB of RAM and a 64-bit Windows 7 for recording, running the
BCI system and displaying the two applications (web browser and
multimedia player).

2.3. Signal processing

Signal processing was performed with Matlab. Epochs consist-
ing of 204 post-stimulus samples (approx. 800 ms) which were
baseline corrected with the average amplitude of 51 pre-stimulus
samples (approx. 200 ms)  were used for classification. The channel
by sample matrix of each epoch was  smoothed along the temporal
dimension with a moving average filter with a width of 17 sam-
ples, and decimated by a factor of 12 prior to averaging and feature
selection. Data segments were concatenated by channel, creating
a single feature vector of length 102. We trained a stepwise lin-
ear discriminant analysis (SWLDA) classifier on the features of five
copy-spelled letters. Considering the used stimulation matrix size
(6 × 6) 10 target and 50 non-target feature vectors were available.
The entry criteria for the SWLDA was  p < 0.1 and the removal crite-
ria was  p > 0.15 with 100 as maximum number of features. We
determined the number of sequences based on leave-one-letter-
out cross-validation of the training data. A graphical visualisation
of how SWLDA functions can be found in [32].

2.4. Web  browser design

The new web  browser supports bidirectional communication
with the BCI and was  developed using the Qt software frame-
work. To minimise matrix size the browser determines the minimal
amount of commands needed on the current website. For example
if only a small number of links is visible (e.g. on the websites of some
search engines) only a small number of hints can be selected using
the P300 matrix (see Fig. 1 for an example). Or if a text entry field
is selected, the alphabet and numerals are displayed. Conversely, if
a site with a large number of links is opened, matrices with up to
84 (14 × 6) elements can be displayed. A minimum of eight com-
mands (plus one “pause command”) was reserved for navigation
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Fig. 1. User interfaces of the web browser (A) and one of the possible matrix configurations (B).

and other purposes. Thus each matrix had a minimum of nine ele-
ments. It is difficult to estimate what the average matrix size is
when surfing the web. Using the settings for the BCI described in
Section 2.7 a selection with a matrix with 64 elements would need
26 s, a selection with 36 elements 20 s. This is a reduction in selec-
tion time of 25%. Additionally, changing the matrix manually for
text entry becomes unnecessary because the browser automati-
cally recognises text fields. See Fig. 2 for a visualisation of this
concept.

2.5. Dynamic matrix design

The principle of dynamic P300 matrices is illustrated in Fig. 2.
After the BCI and web  browser are started the start web page is
loaded, in this case a search engine. The web page has seven links
(only six are visible). These seven links are assigned the letters A to
G. In addition the navigation commands HOME, FORWARD, BACK,
PAGE UP, PAGE DOWN, PAGE LEFT, PAGE RIGHT and ENTER are
added to the matrix. Finally, a PAUSE button is offered to the user.

Fig. 2. Bidirectional communication between browser and brain-computer interface (BCI). The BCI sends the selected commands to the browser. The browser reacts accord-
ingly  and after loading the new page or selecting a new element on the current page sends the list of appropriate commands back to the BCI. The BCI in turn displays a
matrix  with these commands to the user. Each matrix includes the letters or combinations of letters necessary for hint selection and some additional commands useful for
the  current element. These can be commands such as “FORWARD”, “BACKWARD” or “PAUSE”.
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Fig. 3. User interface of the Xbox media center application (A) and the corresponding P300 matrix of the brain-computer interface system (B).

This results in a matrix with six rows and three columns. When
the user opens a new web page the list of links is updated. In the
example the new page has eleven links. With the eight navigation
commands and the pause command this results in twenty com-
mands and thus requires five rows and four columns. This regularly
updated matrix we refer to as dynamic matrix in this paper.

2.6. Multimedia player

Many different multimedia players are available on the Internet.
However, only few are suitable for our purpose and just one exactly
meets our requirements: the Xbox media center (XBMC) is a free
and open source media player application, which is designed to be
controlled with a remote control or game controller. It fulfils our
two main requirements: controllable with (1) few commands and
(2) via a network connection.

A comparatively small P300 matrix (3 × 6 elements) is sufficient
to control the application. Available commands are: UP, DOWN,
LEFT, RIGHT, OK, VOLUME+, VOLUME-, MUTE, BACK, PLAY/PAUSE,
STOP, FAST FORWARD, REWIND, LAST, NEXT, and a PAUSE/RUN
toggle element. The PAUSE/RUN element serves as a break button.
If this element is selected once, no command will be sent to the
XBMC until the same element has been selected again. Fig. 3 shows
the two corresponding user interfaces.

The built-in raw TCP socket based interface together with a
JSON-RPC protocol is used to communicate with the BCI system,
see Fig. 4. The JSON-RPC is a very simple protocol, defining only a
handful of data types and commands.

2.7. Procedure

Each participant performed a calibration session consisting of
selecting five symbols. The data from this session was then used to
train the classifier described in Section 2.3.

Calibration was performed with fifteen flashes per row and col-
umn. Each flash had a duration of 60 ms  and the time between
flashes was set to 125 ms.  The word used for calibration was
“BRAIN”. A 6 × 6 letter matrix was used for calibration. After the cal-
ibration the optimal number of flashes for feedback was calculated
(number of flashes to achieve one hundred percent plus two; mini-
mum eight). The pause between selections was set to two  seconds.
Assuming the user’s calibration data resulted in an optimal num-
ber of flashes of eight, one selection would need 20 s. The user then
performed two copy spelling runs with these settings. The words

used for copy spelling were “SONNE” (engl. “SUN”) and “BLUME”
(engl. “FLOWER”). This first copy spelling task we  will refer to as
“spelling task one”. Then a task involving the multimedia player and
afterwards a task with the web browser had to be completed. The
multimedia task needed a minimum of ten selections with a 3 × 6
matrix. The task was to navigate to a particular folder with pictures
and to start a slideshow. Specifically, the required selections were:
LEFT, OK, OK, RIGHT, OK, RIGHT, RIGHT, PAUSE, RUN, BACKWARD.
The web  browsing task needed a minimum of twelve selections
with matrix sizes between 3 × 6 and 14 × 6. The goal of the task
was to search for the word “BCI” and then open the correspond-
ing Wikipedia article. In the optimal case, starting with the page
of a popular web  search engine, the following selections had to be
made: A, B, C, I, ENTER, PG DOWN, PAUSE, RUN, choose the hint cor-
responding to the Wikipedia article, PAUSE, RUN, PG DOWN. The
minimum instead of the actual numbers is given because the user
was asked to correct mistakes and thus the actual number of selec-
tions was unknown before the completion of the task. The session
closed with spelling two words of five letters each. The words used
for this copy spelling task were “TRAUM” (engl. “DREAM”) and
“KRAFT” (engl. “STRENGTH”). This second copy spelling task we
will refer to as “spelling task two”. We  performed two  copy-spelling
tasks to investigate for possible fatigue effects.

2.8. Offline analysis

The data was  segmented around the stimulus markers indi-
cating target and non-target flashes of the matrix. ERP segments
(0–800 ms)  were extracted from the raw data using EEGLAB and
the BIOSIG toolbox [52,53]. All amplitudes and latencies were
calculated using the target–non-target difference. We defined the
P300 as the maximum amplitude between 200 and 700 ms  on Pz,
the vertex positive potential (VPP) as the maximum amplitude
between 130 and 250 ms  on Fz, the N170 as the minimum ampli-
tude between 130 and 200 ms  on Pz, the N400f as the minimum
between 300 and 400 ms  on Pz (all relative to stimulus presentation
stimulation) and extracted amplitude and time point relative to
the preceding stimulus of this maximum for each participant from
the screening data. VPP, N170 and N400f are face specific ERP com-
ponents [18,54,55]. Before segmentation the data was bandpass
filtered between 0.1 and 30 Hz. A trial-wise baseline correction
was performed by subtracting the mean of the 200 ms before each
stimulus from the 800 ms  following each stimulus. Amplitude
and latency values, for healthy participants and end-users, were
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Fig. 4. Bidirectional communication between Xbox media center (XBMC) application and brain-computer interface (BCI). The BCI sends the selected commands to the XBMC.
The  XBMC reacts accordingly and sends status updates or error messages back to the BCI.

calculated using data from electrode Pz. Latencies were calculated
in relation to the occurrence of target flashes of either a row or a
column. All calculations were performed under Matlab R2012a on
a personal computer running a 64-bit Linux operating system.

2.9. Evaluation metrics

After completing the BCI tasks all participants (healthy
participants and end-users) completed several questionnaires. Sat-
isfaction was evaluated using a visual-analogue scale (VAS), the
extended version of the Quebec Evaluation of Satisfaction with
Assistive Technology (QUEST) version 2.0 (see [45,56] for extended
version) and a custom usability questionnaire. The extended QUEST
does not contain four of the twelve initial items (durability, service
delivery, repairs/servicing, follow-up services) which are replaced
with (reliability, speed, learnability, aesthetic design). All of these
items can be rated from 1 (not satisfied at all) to 5 (very satisfied)
by the users. The custom questionnaire was used to assess aspects
of system design (quality of the interface: symbols, feedback, sim-
plicity of use) that are important for user satisfaction with yes/no
questions.

The spelling tasks were evaluated on basis of the selection accu-
racy and information transfer rate (ITR) [57], the former termed
effectiveness and the latter efficiency. Web  browsing and multi-
media player tasks were evaluated on basis of the percent correct
selections of all selections. The total number of selections varied
between participants due to the necessity to correct mistakes.

3. Results

3.1. Physiological data

The P300 of the control participants had a mean peak amplitude of 8.7 �V (SD 4.7,
range 3.5–20.9). Peak latencies of the P300 were at 493 ms  (SD 99, range 308–601).

End-user A had a P300 amplitude of 3.1 �V, end-user B of 4.5 �V and end-user C
of  8 �V. The corresponding peak latencies were at 597 ms,  585 ms  and 570 ms. See
Fig. 5 for a visualisation of the ERPs.

A  comparison of P300, VPP, N170 and N400f amplitudes and latencies can be
found in Table 1.

3.2. Effectiveness and efficiency

After calibrating the classifier the metric described in Section 2 resulted in an
average of 9.5 repetitions for the healthy participants (SD 2.4, range 8–15) and 12
repetitions for end-user A, 12 for end-user B and 9 for end-user C. The healthy partic-
ipants completed the spelling task one with an average of 94% (SD 10, range 80–100)
and the spelling task two with an average of 87% (SD 20, range 40–100; the difference
was not significant, t9 = 1.35, p = 0.21). The motor impaired participants achieved an
accuracy of 20% (end-user A), 80% (end-user B) and 90% (end-user C) before the
internet task. The average for spelling the two words after the internet tasks cannot
be  compared to this because end-user A did not complete the second two  words.
The  other two participants achieved 80% (end-user B) and 100% (end-user C).

During the multimedia player task the users had to select a sequence of ten com-
mands that required mistakes to be corrected. Thus we counted the total number of
correct commands (including correctly selected revisions of mistakes). On average
90% (SD 20, range 33–100) of all selections by the control group were correct. The
end-users made 27% (end-user A), 60% (end-user B) and 100% (end-user C) correct
selections.

The web  browsing task consisted of a sequence of twelve commands. This
resulted in an average accuracy of 85% (SD 22, range 27–100). The end-users made
57% (end-user A), 44% (end-user B) and 75% (end-user C) correct selections.
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Fig. 5. Averaged event-related potentials (ERPs) of the screening session (the word ‘BRAIN’). Shown averaged across all healthy participants (top left) and individually for
each  of the three end-users. All ERPs shown above were recorded from electrode Pz. The continuous lines show the target response, the dashed lines the non-target response.

Table 1
Overview of amplitude and latency for P300, vertex positive potential (VPP), N170 and N400f averaged across all for the healthy participants and individually for the end-users.
All  values were calculated using target–non-target differences.

User P300 VPP N170 N400f

Amplitude (�V) Latency (ms) Amplitude (�V) Latency (ms) Amplitude (�V) Latency (ms) Amplitude (�V) Latency (ms)

Healthy 8.7 493 3.9 202 −1.5 159 0.2 329
A  3.1 597 2.7 251 1.9 169 −2.5 316
B  4.5 585 1.4 236 −1.5 161 0.7 382
C  8 570 3 243 −2 134 −1.7 316

Table 2
Performance of the healthy participants. For each user the number of iterations determined from the calibration data is given in the second column. For each of the three
tasks  the accuracy in percent (acc.) and the number of correct selections is given. For the two tasks involving the multimedia player and web  browser we  additionally give
the  total number of commands because this varied from participant to participant.

Healthy participants Num. iterations Spelling Multimedia player Web  browser

One acc. Two acc. Num. correct Num. commands acc. Num. correct Num. commands acc.

1 8 100 100 10 10 100 13 13 100
2  11 100 80 10 10 100 13 16 81
3  8 100 100 10 11 91 12 13 92
4  8 100 100 10 10 100 12 13 92
5  8 80 40 5 15 33 4 15 27
6  9 100 80 11 12 92 13 13 100
7  15 100 100 10 10 100 12 12 100
8  12 80 70 11 12 92 12 15 80
9  8 100 100 10 10 100 12 12 100
10  8 80 100 10 11 91 13 17 76

Average 10 94 87 10 11 90 12 14 85
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Table  3
Performance of the participants with motor impairments. For each user the number of iterations determined from the calibration data is given in the second column. For
each  of the three tasks the accuracy in percent (acc.) and the number of correct selections is given. For the two tasks involving the multimedia player and web  browser we
additionally give the total number of commands because this varied from participant to participant.

End-user Num. iterations Spelling Multimedia player Web  browser

One acc. Two acc. Num. correct Num. commands acc. Num. correct Num. commands acc.

A 12 20 – 4 15 27 8 14 57
B  12 80 80 9 15 60 8 18 44
C  9 90 100 10 10 100 12 16 75

Average 11 63 90 8 13 62 9 16 59

All tasks were performed equally well by the control participants. An analysis
of  variance (ANOVA) on all four tasks (spelling task one, spelling task two, multime-
dia  player, web browser) also revealed no main effect of task on spelling accuracy
(F3,36 = 0.44, p = 0.73). See Tables 2 and 3 for an overview.

ITRs for the copy spelling task (based on the mean values in Table 2) one was
11.8 bits/min for the healthy users and 5.3 bits/min for the end-users. This decreased
to  10.3 bits/min in the copy spelling task two. The values of the end-users were not
comparable because one end-user did not complete the copy spelling task two.

3.3. Satisfaction

Overall device satisfaction (VAS scores) and results of the extended QUEST 2.0
and the usability questionnaire concerning the system design are listed in Table 4.
For  healthy participants, the item that received the lowest score in the extended
QUEST 2.0 was  “speed” (3.67). It is the only item that received an average score
below 4 (quite satisfied). The items that were rated as most important by the study
participants were “ease of use” (n = 8), “effectiveness” (n = 5) and “speed” (n = 4).
Participants negatively remarked on the necessity of gel, the “clinical design of the
cap”, the many cables that “restrict movements of the head”, the low speed and
suggested that the cap “should be made less eye-catching”. Using the system design
questionnaire, one user suggested that it would be better if the users could decide
when to choose the next symbol in order to feel less pressured.

For potential end-users, the items of the extended QUEST 2.0 with the lowest
average scores were “speed” (2.33), “effectiveness” (2.66) and “ease of use” (3). The
items that were rated as most important by the potential end-users were “effective-
ness” (3), “reliability” (3) and “learnability” (2). The potential end-users remarked
that selection speed could be “quicker” and the wearing comfort of the cap better.
Under “Suggestions to improve the system” in the system design questionnaire, end-
user  A asked for more functions and in particular an application that would allow
her to paint, end-user B suggested wireless transmission of the signals from the cap
to  the computer and would like to use no or a less conspicuous cap and end-user C
only noted that the system was already “pretty simple to control”.

4. Discussion

We  presented the evaluation of a visual P300 BCI system using
face stimuli that provides control over a web browser and multi-
media player interface. The web browser has a unique new feature
in the sense that it sends the minimal number of symbols needed
for control of the current page to the BCI. This reduces the time
needed to make a single selection.

4.1. Effectiveness and efficiency

The data of the healthy participants was used to determine if any
differences in accuracy could be found between the different tasks.
Even though the means were slightly lower for the application tasks
(multimedia, web browser) there was no statistical difference to the
spelling tasks. Similar observations have been made in other pub-
lications that compared spelling with more complex applications
that have higher attentional demands. Mugler et al. [44] stated that
participants with the ability to control a P300 speller also obtained
control over the web browser. In [36] accuracies when controlling
a painting application were initially lower. The accuracy was iden-
tical after switching from a coloured version of the painting matrix
to a black and white version. Also in samples consisting of end-
users similar levels of performance were found between speller
and application [37].

The healthy participants achieved ITRs of 11.78 bits/min in the
first spelling condition. This is comparable to other studies with
similar stimulus repetition rates [58–60]. The ITRs of the end-users
is below what has been demonstrated in other publications, with
classical and face stimuli [18,29] but similar to other studies also
investigating the control over a complex application [37].

Albeit not significant there were trends in the data showing a
decrease in performance towards the end of the session. In part this
may  be attributed to increasing task complexity (speller, multime-
dia player, web  browser). Most likely fatigue also contributes due
to the decrease in performance since the spelling task two  accu-
racy (87%) is lower than the spelling task one accuracy (94%). This
difference however, was also not significant.

4.2. End-user performance

On average the performance of the end-users participating in
this study was lower than that of the healthy participants. The low-
est performance was achieved by end-user A. The performance of
end-users B and C was comparable to that of the healthy partici-
pants. When considering only the performance when controlling
the web browser it was  clearly lower, however. This could in part
be due to the smaller sample, since several healthy participants
also exhibited decreased performance when controlling the web
browser. Part of this decrease in performance may  be due to the
complexity of the browsing tasks which involves switching atten-
tion between screens. The same classifier was used throughout the
experiment and the spelling task and multimedia player task cov-
ered a large range of matrix sizes, making it improbable that the
decrease in performance was  due to either large or small matrices.
In future studies it may  be worth allocating more time or even addi-
tional sessions for evaluation of the web  browsers to give end-users
more time to adapt to the interface.

Generally reasons for performance variations are vast and have
been subject to a number of studies themselves [13,61–64]. That
a single reason for low performance will be found is improbable.
Besides training a viable approach to increase performance is to
apply one of the aforementioned methods to determine if another
BCI paradigm is more suitable for a particular end-user. Using hier-
archical menus most applications designed for P300 BCIs can also
be controlled with SMRs [65]. Visually evoked potential (VEP) based
BCIs allow retaining the matrix based control scheme [66].

4.3. Possible influences of matrix size on classification
performance

P300 amplitude can be influenced by various factors such as
stimulus modality and intensity or how easily target and non-target
can be discriminated. Another factor is the so called target-to-target
interval (TTI) which depends on the target probability, the number
of non-targets preceding each target and the inter-stimulus inter-
val [67]. In the context of a P300 BCI the TTI is influenced strongly
by the matrix size. A reduction in matrix sizes increases target
probability (number of targets is constant whereas the number of
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non-targets is reduced) and decreases the number of non-targets
preceding each target. Due to the fact that matrix sizes vary con-
siderably in our study between applications and also dynamically
within applications this should be discussed. Studies investigating
this issue in the context of P300 BCIs have found there to be reduc-
tions in P300 amplitude when 4 × 4 matrices (7.7 �V) were used as
opposed to 12 × 12 matrices (9.2 �V, see [68]). This study did not
show whether this influenced classification performance, however.
In a later study 6 × 6 matrices were compared with 3 × 3 matri-
ces [69]. And contrary to what should be expected based on the
reduction in amplitude caused by the smaller matrices, selection
accuracies were improved in case of the smaller matrices. This may
be partially due to the increased probability to select the target by
chance. The authors concluded that it is feasible to present matrices
with different sizes to the user depending on the function that is
being used or the application that is being controlled. Considering
the fact that the smallest matrices used in our experiment (e.g. 6 × 3
for controlling the multimedia player) differed substantially from
the largest matrix (e.g. 14 × 6 as the largest size when controlling
the internet browser) and that we found no significant difference
in performance between the applications we  believe that matrix
size has little influence on classification performance. In fact con-
trary to the hypothesis that decreased matrix size would lead to
decreased P300 amplitude and thus accuracy, classification perfor-
mance is higher when controlling the multimedia player compared
to the web browser. Thus, we  conclude the influence of matrix size
to be negligible. The reason for this may  be due to the moving
average window and subsampling that is applied before classifi-
cation, which decreases the differences between the ERPs elicited
by different matrix sizes.

The reduced ERP amplitudes caused by smaller matrices may
have no effect if conservative values are used for the number of
stimulus repetitions. An effect on performance may become visible
if speed is optimised to a minimum number of repetitions e.g. by
using dynamic stopping methods [10].

4.4. Evaluation

The high average accuracy achieved by the healthy participants
is also reflected in a high overall satisfaction with the device as
indicated by the mean VAS score of 8.53 and total scores of the
extended QUEST 2.0, which indicate that participants were “very
satisfied” with the BCI system. Of the three end-users, however,
only end-user C rated overall satisfaction with the system as high
and the QUEST 2.0 scores indicated that he was quite satisfied with
the device. The QUEST 2.0 scores of end-users A and B indicated that
they were only “more or less satisfied” and their overall satisfac-
tion with the BCI was  low. These users also achieved substantially
lower selection accuracies than end-user C. Nevertheless, all users
regarded the system as either “ok” or “easy” to operate and intu-
itive to use and only end-user A did not feel in control while using
the system.

The aspects of the BCI systems that received the lowest scores
by the potential end-users in the QUEST 2.0 were “effectiveness”,
“ease of use” and “speed”. These were the exact items that were
rated as most important by the healthy participants. However, of
these items, only “effectiveness” was  also rated as most important
by the potential end-users. The other two items that were rated as
most important were “reliability” and “learnability”. These results
demonstrate that for end-users it is more important to have a sys-
tem that they can reliably control than to have a system that is
easy to use and quick, but not reliable. The evaluation results reveal
two main factors to improve the system and ultimately usability of
the BCI system. It needs to work effectively (high selection accura-
cies) and also reliably, not only for healthy participants, but also for
potential end-users. A less conspicuous electrode cap (or another
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inconspicuous fixation of electrodes) and wireless transmission of
the EEG signals would increase the likelihood that the BCI system
can be used as assistive technology in daily life.

In most studies concerned with the evaluation of BCIs, only
objective metrics, such as accuracy and information transfer rates
were assessed to estimate the effectiveness and efficiency of the
BCI system, thereby neglecting the user. Now that BCIs are on the
verge of being used as assistive technology in a home environment,
a user centred approach gains importance. Therefore, a framework
for evaluation was introduced by [45] that takes into account the
opinions of the user in the evaluation of effectiveness, efficiency
and satisfaction with the BCI. It has since proven useful in several
studies to reveal areas in need of further improvement [37,38,70].
In these studies, as in our study, low speed and the conspicuous
electrode cap and necessity of gel were identified as obstacles to
the use in daily life. This study shows that satisfaction with the BCI,
although largely influenced by the level of control achieved with
the BCI, depends on a variety of factors that can only be identified
with a user centred approach. Therefore, the opinions of end-users
must be considered in the evaluation process to ensure that BCIs
meet end-users’ needs.

4.5. Comparison to other web browsers

Several different BCI browser implementations exist [43–46,71].
The first characteristic that distinguishes the different implemen-
tations are the control signals they are designed for. Most current
implementations are designed to be used with a visual P300 BCI.
P300 BCIs have inherent advantages over other BCI control sig-
nals, e.g. that they require no training (only calibration) and offer
a large number of possible selections. Other signals such as SCPs
require large amounts of training and allow for binary choices
only [42,43]. One of the main disadvantages of visual P300 BCIs
is their reliance on gaze control. When controlling a web  browser
this is alleviated by the fact that gaze control is needed to view
websites in general. Thus, the visual P300, in particular after consid-
ering recent improvements to the paradigm (see [18]), remains
the most suitable BCI control signal for web browsing. Consider-
ing only P300 BCI web browsers three different designs have been
established. The first using hints for each link as initially shown
in [44]. This is the design the browser that was presented in this
paper built upon. Compared to this design the browser presented
in this paper features automatic switching of the matrix and a
minimisation of the rows and columns presented in each matrix.
Both features decrease the number of selections but also the time
needed per selection. For example [44] used an 8 × 8 matrix. With
the stimulation parameters used in this paper (185 ms  stimulus
duration plus inter stimulus interval (ISI), ten repetitions per stim-
ulus, two second pause between selections) 1.90 selections/min
can be performed and an 8 × 8 matrix. A 6 × 6 matrix allows for
2.48 selections/min. The example showing a search engine in Fig. 2
only requires a 6 × 3 matrix which almost doubles the speed of the
system to 3.22 selections per minute. Additionally, if the number of
links in the browser exceeds the number of letters in the alphabet
two letters are required to code the links. In [44] this still required
two selections, with the browser described in this paper only one
selection is required because the matrix is created with two  letter
entries. The second type of browser also uses a conventional P300
matrix on a separate screen or region of the screen but no hints.
Thus, the user sequentially navigates from link to link always using
the same matrix [46,71]. In this design many selections may  be
needed until the desired link is reached. Also the browser has to
incorporate a mechanism for text entry. Thus, many of the tasks
that would require many selections with this type of browser (e.g.
navigating through the six links in the search engine example) can
be performed with one selection in the design we propose. Finally,

there are browser designs that are based on displaying the stimuli
directly on the links of the website [45]. This design has many
advantages. For example only one screen is required. Additionally,
the method of control is very intuitive (“look at the link that you
want to open”). The disadvantages of this system are that links tend
to cluster on websites (e.g. on navigation bars). These may  be diffi-
cult to fixate individually. Generally, control over the arrangement
of the BCI matrix is lost. Also, state-of-the-art stimuli such as faces
are difficult to utilise since the stimuli are by nature smaller in this
design. Many of these disadvantages may  be alleviated by redesign-
ing the browser itself to allow for larger stimuli by preventing link
clustering. Then displaying the BCI stimuli on top of the web  brows-
ing window would be the preferential method. Another approach
to making the link selection process more intuitive is to display the
stimuli on the margin around the websites and associating them
with links by thin lines. The visual stimuli in P300 BCI can even be
moving during the selection process, as shown in [72]. This implies
that there are few restrictions in the spatial arrangement of the
stimuli.

4.6. Comparison of multimedia software

Wei  et al. [48] turned a multimedia player on and off by detec-
ting alpha waves in the EEG. Lei et al. [49] demonstrated control of
a multimedia player based on a steady state visually evoked poten-
tial (SSVEP)-based BCI. The control possibilities with both of these
initial approaches were rather limited, though. The work of [47]
on the other hand allowed for slightly more elaborate control. The
system in [47] is also more similar to our approach as it also uses a
visual P300 BCI. Unfortunately, Teo et al. [47] do not report any
results concerning the accuracy, ITR, or number of flashing ele-
ments in their paper. However, one main difference is obvious:
They used a single screen to show the P300 stimulation as well as
the multimedia player user interface in contrast to our dual-screen
approach. A single screen approach has the advantage that the user
does not have to move her/his head between the control and the
media player screen. On the other hand, the size of the pictures and
videos is very small using only one screen to show both. We  believe
the best solution would be to integrate the P300 control elements
into the multimedia player user interface which we are currently
developing.

5. Conclusion

In this paper we  presented the evaluation of two  BCI applica-
tions: a web browser and a multimedia player. Both applications
can reduce or prevent the social exclusion of end-users. Our results
indicate that the simplicity and efficiency due to the use of dynamic
matrices of both applications make them possible candidates for
independent home use. Together with other important develop-
ments such as easy-to-use electrodes, wireless amplifiers [73] and
remote support of BCI systems the presented applications will
provide further momentum to moving BCIs from the laboratory
to end-users’ homes.
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Josef Faller1,2, Ivo Käthner3, Christoph Hintermüller4, Selina C. Wriessnegger1,2,
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Abstract— Brain-computer interface (BCI) users can control
very complex applications such as multimedia players or even
web browsers. Therefore, different biosignal acquisition systems
are available to noninvasively measure the electrical activity of
the brain, the electroencephalogram (EEG). To make BCIs more
practical, hardware and software are nowadays designed more
user centered and user friendly. In this paper we evaluated one
of the latest innovations in the area of BCI: A wireless EEG
amplifier with dry electrode technology combined with a web
browser which enables BCI users to use standard webmail.
With this system ten volunteers performed a daily life task:
Write, read and answer an email. Experimental results of this
study demonstrate the power of the introduced BCI system.

I. INTRODUCTION

First experiments to measure the electrical activity of
the human brain were started in the year 1924 by Hans
Berger. In the year 1929 he reported the measurement of
the electroencephalogram (EEG) from several patients [1].
However, he had great problems to visualize the signals
because of primitive electrodes and signal plotting devices.
More than 40 years later the idea emerged to use the EEG
to control computers [2], nowadays well known as brain-
computer interface (BCI). Unfortunately, the signal acqui-
sition and the performance of the used computers were
still a bottleneck. It took another 15 years to develop a
practically usable BCI [3]. With this approach it was possible
to spell words just by concentrating on randomly highlighted
elements of a letter matrix. A prominent positive potential in
the EEG approximately 250-500 ms post target stimulus [4]
is the main control signal for this so-called P300-based BCI.
Such a system enables healthy as well as users with motor
impairment to communicate [5], [6], [7], [8], [9], [10]. Many
software improvements have been introduced concerning: the
signal processing (e.g., different classification methods [11],
[12]) and the paradigm presentation (e.g., checkerboard flash-
ing pattern [13], binomial flashing pattern [14], and famous
faces highlighting [15]). On the signal acquisition side there
was an evolution from passive gel-based electrodes, i.e., they
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Fig. 1. A participant wearing the g.Nautilus system with dry electrodes.
A close-up of the 7mm dry electrode is shown in the yellow circle.

require the application of abrasive, conductive gel between
electrode and skin, to active gel-based electrodes, without
the necessity to abrade the skin because the signal is pre-
amplified at the electrode. Finally, in the last years dry
electrodes were developed [16], [17].
Within the project BackHome we tested and evaluated one
of the latest hardware developments. Namely the g.Nautilus,
a wireless EEG signal amplifier with dry electrodes from
Guger Technologies OG, Graz, Austria (http://www.gtec.at).
Participants had to write, read and answer emails using a
very popular webmail client with this device.

II. MATERIALS AND METHODS

A. Participants

Ten volunteers (3 female; mean age 23.9 ± 1.2 years)
participated in this study. All stated that they have no history
of neurological or psychiatric disorders. The study protocol
was approved by the ethics committee of the Medical Univer-
sity of Graz and the subjects gave written, informed consent
before the experiment. Eight of the participants had no prior
experience with BCIs.

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 1286



Fig. 2. (A) Screen displaying the user interface for feedback and P300 stimulation. (B) Sketch of the experimental design. The angle between the
participant, the laptop, and the monitor was 30.3

o. (C) Screen for the web browser.

B. Data Acquisition

The g.Nautilus biosignal amplifier uses the ZigBee wire-
less technology to transmit the EEG signals with 24 bit res-
olution. Thirty-four electrodes, a reference channel, ground
and 32 electrodes at pre-configured positions, are connected
to the amplifier, see Fig. 1. Dry electrodes with two different
pin lengths (7 and 16 mm) are available to adapt them to dif-
ferent hair lengths and shapes of users’ heads. The operator
has to find the optimal type of electrodes for each participant
to get the best signal quality. The signal of each EEG channel
is highly oversampled in order to keep the signal to noise
ratio (SNR) high at the offered sampling rates of 250 Hz and
500 Hz.
In the presented study the signals from Fz, Cz, Pz, PO7,
PO8, and Oz were sampled at 250 Hz and bandpass filtered
between 0.5 and 30 Hz.
The whole g.Nautilus system consists of a headset with
dry EEG electrodes (Fig. 1 yellow circle), a medium size
EEG cap, and a base station for connecting it to the
host computer. The device is charged with a Qi charg-
ing station. Qi is a wireless power transmission stan-
dard (http://www.wirelesspowerconsortium.com). This has
the advantage that the device just has to be placed on the
power transmission pad without the need to connect any
wires.

C. Experimental Design

The participants were seated in a comfortable chair ap-
proximately 65 cm away from two computer screens (39.5 cm
and 43 cm diameter), see Fig. 2 (B). One screen was centered
in front of the participants. At this screen a P300 matrix
was displayed to control a web browser (see Halder et al.,
under review), which was shown on a second screen placed
right beside the first one, see Fig. 2 (A) and (C). The web
browser automatically detects all possible links, buttons, and
text fields of the currently shown website and marks them
with letters. These letters were sent to the BCI for selection

with a P300 spelling device. By sending back the desired
element to the web browser the corresponding link, button, or
text field was selected. In case the element was a text field the
matrix automatically changed to a matrix with letters from
the Latin alphabet, text manipulation, and control entries.
The P300 user interface and the signal processing in Mat-
lab (MathWorks, Natick, USA) were presented in [18]. Ele-
ments of the matrix were highlighted with famous faces [15].
The aforementioned best electrode length selection was done
by visual inspection of the measured EEG.
Calibration was performed with fifteen highlightings per row
and column. Each flash had a duration of 50 ms and the
time between flashes was set to 175 ms. The participants
were asked to copy-spell ten letters. After the last letter the
optimal number of sequences (each row and column flashed
once) for feedback was calculated (number of sequences to
achieve one hundred percent accuracy plus two; minimum
eight, maximum fifteen sequences).
The task for the participants was to write an email to a
given address and to reply to an automatically generated
email from that address afterwards. First, they had to choose
an address and spell “EINKAUFEN” (engl. “SHOPPING”)
into the subject field. Then, write “GEH BITTE HEUTE
EINKAUFEN.” (engl. “PLEASE GO SHOPPING TODAY.”)
into the message field and finally, send the message. At
the end of this first part they had to select a “PAUSE”
element to pause the system and wait for the reply. If the
user selected this element, no further selections were sent to
the web browser until the same element was selected again.
The text of the answer mail was “MILCH AUCH?” (engl.
“MILK TOO?”). After reading the mail the participants had
to leave the pause mode and answer the new mail with the
word “JA” (engl. “YES”).
The whole email task needed a minimum of 52 selections and
was aborted if the goal was not reached within 78 selections.
The minimum instead of the actual number is given because
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Fig. 3. Comparison of spelling accuracies from different participants over number of selections. The minimal number of selections was 52.

the user was asked to correct mistakes and thus the actual
number of selections was unknown before the completion of
the task.

D. Evaluation Metrics

After completing the BCI tasks all participants were
asked to complete several questionnaires. Satisfaction was
evaluated using a visual analog scale (VAS). The extended
Quebec Evaluation of Satisfaction with Assistive Technol-
ogy (eQUEST) version 2.0 [19] and a custom usability ques-
tionnaire were used to evaluate the usability of the soft- and
hardware.

III. RESULTS

Different electrode pin lengths were used for the partici-
pants. Only the six used electrodes of all 32 were adapted
to the participants needs. Two participants needed just short
electrodes, five only long electrodes, and three needed a
mixture of both electrode types. The time between the
instruction of the participant and the start of the calibration
was on average 14 (SD 5) minutes.

A. Efficiency and Effectiveness

After calibrating the classifier the number of highlighting
sequences for the online session was calculated for every
participant. The participants needed on average 12 (SD 3,
range 8–15) highlighting sequences.
A comparison of the accuracies after a certain number of
selections is shown in Fig. 3. Nine participants completed
the online task within the maximum allowed value of 78
selections. They had an average accuracy of 92.1% (SD
4.8). The time to complete the task including pauses varied
between 38 minutes (S6) and 79 minutes (S1) with an average
time of 58 (SD 16) minutes to complete the task. The

accuracy of the participant S2 who did not complete the
task was 66.7% after 95 minutes. Five participants started
the online session with one or two errors. However, later on
four of them (S1, S4, S5, S6) had very few errors. Only the
accuracy of participant S2, who did not complete the task,
stayed continuously below 70%, see Fig. 3. The participant
with the longest period without making any error was S3
with 45 correct selections in a row from the beginning.
The average accuracy of all participants was 89.5% (SD 9.2).

B. Satisfaction

Overall device satisfaction (VAS score) was 7.5 (SD 2.3;
not at all satisfied: 0, absolutely satisfied: 10).
The items which received scores below 4 (quite satisfied)
in the eQuest were “aesthetic design” (3.4), “comfort” (3.8),
and “effectiveness” (3.9). Highest rated items were the “ad-
justment of the hardware” (5.0) and the “reliability” (5.0).
The items that were rated as most important by the study
participants were “effectiveness” (n=5), “comfort” (n=5), and
“learnability” (n=5). Most participants negatively remarked
that the electrodes hurt after a while and criticized the low
speed of the system.
Using the system design questionnaire, three users remarked
that their eyes hurt after a while.

IV. DISCUSSION

In this study, the performance of a new wireless EEG
amplifier system with dry electrodes was evaluated and tested
with an actual web browsing task.
The reached accuracies of the participants who completed
the online task were between 84.9 % and 96.5 %. This
performance is comparably high. Only one participant (S2)
did not finish the task within 78 selections. A possible reason
could be that the used short electrodes did not fit well
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enough which resulted in the signal to noise ratio being
too low. Another interesting issue to be noted was that one
participant (S8) paused the system and had to go urgently to
the restroom after 47 selections. Afterwards the user selected
the pause-leave element and finished the task with only one
error. This would absolutely be impossible with a wired EEG
amplifier system.
The needed highlighting sequences calculated after the cal-
ibration were nearly evenly distributed over the possible
range (8–15). This result indicates that there is space to
further improve the signal processing pipeline to better fit
the requirements of a wireless dry electrode system. Orig-
inally, the software was designed for EEG amplifiers with
active gel-based electrodes and was just slightly adapted.
Other filter parameters and classification methods [12] could
result in a decrease of needed highlighting sequences and
consequently a reduction of needed time to spell a symbol.
According to the VAS the participants were very satisfied
with the system. Only two participants rated the system
below 7 and one of them did not finish the task.
The evaluation of the eQUEST showed that the users find
the headset very conspicuous and they criticize the aesthetic
design. Another low rated point in the eQUEST was the
comfort of the headset. Nearly all the participants remarked
that they felt the pressure of the dry electrode pins after a
while and they had pressure marks on the forehead after the
measurement. Another low rated point was the effectiveness.
However, healthy people tend to compare assistive device
systems with their normal communication and control de-
vices. Compared to these systems the speed of current BCIs
will always be low. All participants rated the “adjustment of
the hardware” with the highest possible value. Compared to
passive systems with abrasive electrode gel the development
of dry electrodes is a huge improvement. However, there are
still problems to be solved. It would be almost impossible
to use such a system in a room where people are moving
around, the induced artifacts would be dominant and would
cover the EEG.
The participants rated “effectiveness” and “comfort” among
the three most important as well as unsatisfied items. Con-
sequently, the further development of the system should go
in that direction.
In conclusion, this study shows that the introduced wireless
EEG amplifier system with dry electrodes in combination
with the BCI system and the BCI web browser works
with very high accuracy. Despite the moderate speed of
the system, the healthy users reported a very high overall
satisfaction.
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A. Kübler, “A brain-computer interface as input channel for a stan-
dard assistive technology software,” Clinical EEG and Neuroscience,
vol. 42, no. 4, pp. 236–244, 2011.

1289



Note

Control or non-control state: that is the
question! An asynchronous visual P300-
based BCI approach

Andreas Pinegger1, Josef Faller1, Sebastian Halder2,3,
Selina C Wriessnegger1 and Gernot R Müller-Putz1

1 Institute for Knowledge Discovery, Graz University of Technology, BioMedTech-Graz, Graz, Austria
2 Institute of Psychology, University of Würzburg, Marcusstr 9-11, D-97070 Würzburg, Germany
3 Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of
National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan

E-mail: gernot.mueller@tugraz.at

Received 24 June 2014, revised 22 December 2014
Accepted for publication 22 December 2014
Published 14 January 2015

Abstract
Objective. Brain–computer interfaces (BCI) based on event-related potentials (ERP) were proven
to be a reliable synchronous communication method. For everyday life situations, however, this
synchronous mode is impractical because the system will deliver a selection even if the user is
not paying attention to the stimulation. So far, research into attention-aware visual ERP–BCIs
(i.e., asynchronous ERP–BCIs) has led to variable success. In this study, we investigate new
approaches for detection of user engagement. Approach. Classifier output and frequency-domain
features of electroencephalogram signals as well as the hybridization of them were used to detect
the userʼs state. We tested their capabilities for state detection in different control scenarios on
offline data from 21 healthy volunteers. Main results. The hybridization of classifier output and
frequency-domain features outperformed the results of the single methods, and allowed building
an asynchronous P300-based BCI with an average correct state detection accuracy of more than
95%. Significance. Our results show that all introduced approaches for state detection in an
asynchronous P300-based BCI can effectively avoid involuntary selections, and that the hybrid
method is the most effective approach.

Keywords: brain–computer interface, BCI, P300, asynchronous, control state

(Some figures may appear in colour only in the online journal)

1. Introduction

The human electroencephalogram (EEG) consists of various
components, oscillatory as well as event-related potentials
(ERP). ERPs are a result of external stimulation. They are the
response to stimuli, which can be given via any sensory
perception. The P300 potential is a prominent positive ERP in
the EEG approximately 250–500 ms post stimulus [1]. It is
elicited in a so-called ‘oddball’ paradigm: many stimuli are
given to users but just some of them are relevant (target sti-
muli)—users have to focus their attention on them—and

many others are irrelevant (non-target stimuli) [2]. Using
visually evoked signals for brain–computer interface (BCI)
based communication was first suggested by Farwell and
Donchin in 1988 [3].

A traditional application for a P300-based BCI is the so-
called P300 speller. Letters, numbers, and/or symbols are
presented to users within a visual P300 speller on a computer
screen. These characters will be highlighted randomly and
users have to mentally count the highlighting of the character
they intend to select, while ignoring all the other flashing
items. After a number of sequences (all characters flashed
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once) a classification algorithm detects the P300 in the
recorded EEG and determines the intended character. This
system enables healthy as well as motor impaired users to
communicate [4–9]. Many improvements have been intro-
duced since 1988 concerning: the data acquisition (e.g., dry
electrodes [10, 11]), the signal processing (e.g., different
classification methods [12, 13]), and the paradigm presenta-
tion (e.g., checkerboard flashing pattern [14], binomial flash-
ing pattern [15], and famous faces highlighting [16]).

It has been proven that a P300-speller works very well
with tasks which need input periodically (e.g., to spell char-
acters and sentences). Consequently, the user has to be con-
stantly engaged in the task. Whereas performing tasks which
need aperiodic or asynchronous input (e.g., to control a web
browser or a multimedia player) is not possible in a practical
way. In that case, it is substantial that users have time to read
or look at the content.

Zhang et al [17] proposed a first approach for an asyn-
chronous P300-based BCI using statistical and probabilistic
methods to model the userʼs mental state in control and non-
control condition. Some following approaches were based on
statistical P300 amplitude features as well [18–20]. Others
used a steady-state visually evoked potentials (SSVEP)
paradigm together with a standard P300 paradigm to run the
system asynchronously [21], or the band power of the EEG as
additional source of information [22].

In this work, we investigated different methods for
control and non-control state detection. Similarly to Zhang
et al in [17], we call a P300 selection task a control task and
all other tasks non-control tasks.

Our first method is based on statistical analysis of the
classifier output (see [17–20]). This method takes advantage
of the fact that if the user is not concentrating on a specific
symbol of the matrix the output of the classifier is statistically
significantly different than when she/he is engaged with the
flashing matrix.

Our second method is based on the hypothesis that when
a person is looking at the flashing matrix the flashing fre-
quency is represented more or less pronounced in the aver-
aged signal from the occipital electrodes. The shape of this

signal is comparable to an SSVEP signal without focusing on
a defined target. Using this frequency-domain feature of the
EEG for correct state detection is a completely novel
approach and our second method.

Our third method is based on the hypothesis that com-
bining these aforementioned two independent detection
methods (classifier output—and frequency analysis) increases
the correct state detection accuracy.

2. Methods

2.1. Participants

Twenty-one healthy volunteers (eight female, mean age
25.8 ± 3.9, range 21–34 years) participated in this study. All
participants stated that they have no history of neurological or
psychiatric disorders. The study protocol was approved by the
ethics committee of the Medical University of Graz and the
participants gave informed written consent before the
experiment. Twelve participants had no prior experience with
P300-based BCIs.

2.2. Data acquisition

We recorded EEG from 40 scalp locations using active Ag/
AgCl electrodes (g.LADYbirds by Guger Technologies OEG,
Graz, Austria). The locations of the electrodes were based on
the extended international 10–20 system for electrode place-
ment. Only eight EEG channels (Fz, Cz, Pz, PO3, POz, PO4,
O1, Oz, O2) were used in this study and the other electrodes
retained for future analyses. The channels were referenced to
the left earlobe and grounded at position FPz. In addition to
the EEG, we also recorded three orthogonal EOG channels,
ECG, and EMG (tibialis anterior of both legs). We recorded
all signals with a sampling rate of 256 Hz with three syn-
chronized amplifiers (g.USBamps by Guger Technologies
OEG, Graz, Austria). The amplifiers filtered the raw data with
a 0.5–100 Hz bandpass and a 50 Hz notch filter.

Figure 1. (a) Monitor displaying the user interface for feedback and P300 stimulation. (b) Sketch of the experimental design. The angle
between the participant, the a-, and the c monitor was °20.1 . (c) During the video tasks a video was shown on this monitor otherwise the
screen was black.
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2.3. Experimental design

The participants were seated in a comfortable chair 1 m away
from two computer screens (43 and 37 cm diameter), see
figure 1. One screen was centered in front of the participants.
At this screen a 6 × 6 P300 matrix was presented containing
the letters of the Latin alphabet and numbers from 0–9. The
screen also contained areas where instructions were shown
and feedback was given, see figure 1(a). Additionally, there
was a row with six elements arranged below the P300 matrix.
These elements were selected with a sensorimotor rhythm
(SMR)-based BCI [23, 24]. The second screen was placed
right beside the first one. During defined tasks a video was
shown on this monitor otherwise the screen was black, see
figure 1(c).

One P300 selection sequence comprised 12 flashes (one
for each row and column) of 50 ms duration and a 125 ms
inter-stimulus interval. The highlighting (flashing) was rea-
lized by showing the face of the scientist Albert Einstein as
Kaufmann et al proposed in [16]. A trial consisted of 15
sequences followed by an 8 s break. Furthermore, a trial was
either a control trial (i.e., the user had to focus on an specific
item of the matrix) or a non-control trial (i.e., the users should
ignore the flashing of the matrix).

In the calibration phase the participants had to spell ten
predefined symbols (red marked letters in figure 1(a)) to train
the P300 classifier. During the online session the participants
had to perform 35 runs:

(i) Five control runs: spelling five words with four letters
each (5 control runs × 4 trials (letters) = 20 control
trials).

(ii) Twenty-five non-control runs:
(a) Selecting elements of the aforementioned SMR row

(20 non-control runs × 1 trial = 20 non-control
trials).

(b) Watching a video on the second screen (5 non-
control runs × 2 trials = 10 non-control trials).

(iii) Five rest runs: looking at the frozen screen (no changes)
for 1 min.

Figure 2 illustrates the scheme for the online session. In
total the participants had to perform 50 trials (20 control trials
and 30 non-control trials). During the non-control trials the
matrix was flashing without presenting the classification
result. However, the participants were instructed to ignore the
highlighting of the P300 matrix and to concentrate just on the
elements below the matrix, or the video. An SMR selection
run lasted as long as one letter selection trial (approximately
44 s) and a video-watching run lasted as long as two letter
selection trials (approximately 88 s).

2.4. P300 classification

We used stepwise linear discriminant analysis (SWLDA) for
classification of the P300 related tasks. This method, an
extension of Fisherʼs linear discriminant analysis, is an
established classification method for visual P300 BCIs
[8, 9, 12]. The chosen epoch length was 204 samples or
approximately 800 ms long. The channel by sample matrix of
each trial was smoothed with a moving average filter with a
width of 17 samples, and then decimated by a factor of 12
prior to averaging and feature selection.

For online classification the SWLDA classifier model
was separately applied on all rows and columns. The row and
the column which yielded the highest LDA distances were
selected by the classifier.

2.5. Control state detection

2.5.1. LDA distance method (LDM). For this method the
output of the described P300 SWLDA classifier was used to
distinguish between control and non-control state. The difference
between the mean d̄all and the sum of the maximum values for
rows drow and columns dcol of the classifier output was

Figure 2. Online session scheme. Different runs consisted of different numbers of trials. One trial (control as well as non-control) always
consisted of 15 flashing sequences.
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calculated for every trial i:

= + −d d d d[max ( ) max ( )] ¯ . (1)i row col all

Results from the P300 speller training −d t
1 10 were used to get the

threshold d0 for the detection by averaging the ten results from
the training d̄ t minus their standard deviation multiplied with a
factor kL:

= − …⎡⎣ ⎤⎦d d k d d d¯ · stdev (2)t
L

t t t
0 1 2 10

kL was set to a value between 0 and 2 with a leave-one-
participant-out cross-validation (LOPOCV) of the online data.
The factor was set to the value which resulted in the lowest error
rate in total.

To detect whether the participant was focusing on the
flashing matrix the actual calculated LDA max–mean distance
difference di was compared with the threshold. Results higher
than or equal to the threshold were classified as control state
related:

=
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<

= …

⎧⎨⎩

s

d d

d d
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1, 2, 50. (3)
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i

,(LDM)

0

0

2.5.2. Spectral analysis method (SAM). The SSVEP
phenomenon, that was described in the introduction, was used
to distinguish between control and non-control state. The used
stimulus interval of 175ms is reflected in an EEG frequency of
5.71 Hz. However, to see this phenomenon a spatial and
temporal averaging of the parietal-occipital (PO3, POz, PO4,
O1, Oz, and O2) EEG signals is necessary. The temporal
averaging was performed by calculating the mean of 1 s long
post stimulus (i.e., highlighting of a row/column) epochs per

trial. The epoch length was set to 1 s to receive a frequency
resolution of 1 Hz. Figure 3 demonstrates the difference between
the resulting signals when the user either was performing a P300
selection task (control task) or was watching a video (non-
control task) while the matrix was flashing.

An FFT was performed on this averaged signal and the
magnitudes of the first harmonic (5 and 6 Hz), the second
harmonic (10 and 11 Hz), and the third harmonic (15 and
16 Hz) were calculated. The magnitudes were added up to
receive one value for every trial:

∑= +
=

+( )m m m . (4)i

n

n n

1

3

(5· )Hz (5· 1)Hz

Different methods were tested to calculate (4) including
normalization by the total frequency spectrum and by defined
frequencies. However, the suggested method worked best for
all participants and trials.

The threshold for the detection was calculated with the
ten magnitudes, which were calculated with (4) from the P300
training. The mean of these ten magnitudes m̄ t minus their
standard deviation multiplied with a factor kS represented the
threshold for the online-data detection algorithm:

= − …⎡⎣ ⎤⎦m m k m m m¯ · stdev . (5)t
S

t t t
0 1 2 10

Similarly to the LDM, kS was set to a value between 0 and 2
with an LOPOCV of the online data.

During the online phase the calculated magnitude mi of
one trial was compared with the threshold m0 to detect
whether the participant was focusing on the flashing matrix:

=
⩾
<

= …

⎧⎨⎩s
m m

m m

i

control state if ,
non-control state if ,

1, 2, 50. (6)

i
i

i
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0
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Figure 3. Comparison of the spatial (six channels) and temporal (1 s post stimulus) averaged signal of a P300 spelling trial (blue line) and a
video-watching trial (red line) of participant 1. On the left the time-domain plot. The black dashed lines represent the same signals after 12 Hz
low pass filtering. On the right the frequency domain plot of the signal.
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2.5.3. Hybrid analysis method (HAM). This method is a
combination of the LDM and the SAM. We divided the actual
LDA distance (di) and spectral analysis result (mi) by their
thresholds (d0, m0) and weighted them with wL and wS, with

+ =w w 1L S . The sum of these results was calculated and
values higher than or equal to 1 were classified as control state
belonging:
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Weights (wL, wS) for the LDA distance result and the spectral
analysis result were determined by simulating different
weight combinations and performing a nested cross-
validation.

2.6. Data analysis

To determine kL, kS, wL, and wS normal and nested LOPOCVs
of the online data were used. The inter participant cross-
validation was chosen to demonstrate how well the approa-
ches generalize. Only 40 trials (20 control and 20 non-control
trials) out of the 50 were used to perform the LOPOCVs to
have equally sized class sets. However, we used all available
50 trials to determine the performance of the different
methods.

Due to the facts that we had unbalanced trials per class
and in total 50 trials per participant the practical chance level
for correct state detections had to be calculated [25]. The
conservatively calculated chance level for our study was

=p68%( 0.01).
Statistically significant differences between the methods

were investigated with Bonferroni corrected paired Wilcoxon
signed-rank tests. Due to the Bonferroni correction the sig-
nificance criterion α was set at 0.0167 (0.05 3).

3. Results

The results of the three state detection methods were calcu-
lated offline after all measurements have been completed. The
standard error of the mean is given in parenthesis after every
accuracy result.

3.1. Spelling accuracy

After the training session the 21 participants showed a mean
P300 spelling accuracy of 94.3%(2.1), range: 70–100%. In
the online session each participant spelled 20 letters with a
mean accuracy of 96.2% (1.6), range: 70–100%.

3.2. Detection methods evaluation

An overview of the calculated results is shown in table 1. A
graphical overview of all false detections per participant can
be seen in figure 4. In figure 4 the number of errors decrease
from left to right. Detailed results for every participant are
shown in table 2.

3.2.1. LDA distance method. The determined factors kL for
every participant after the LOPOCV are presented in figure 5
with blue plus signs.

The mean correct detection accuracy for control states
was 96.7%(0.9) and for non-control states was 92.5% (2.4).

3.2.2. Spectral analysis method. Red asterisks in figure 5
present the participant specific parameters kS.

Control states were detected correctly with an accuracy
of 88.3%(1.8) and non-control states with an accuracy of
73,7%(5.1). This method showed a significantly lower
performance for the control tasks
( = − = =Z p r2.98, 0.003, 0.46) as well as for the non-
control tasks ( = − = =Z p r3.18, 0.002, 0.49) compared
with the LDM.

3.2.3. Hybrid analysis method. Best weights (wL, wS) for the
combination of the LDM and the SAM results were found by
simulating different rates with a nested LOPOCV to avoid
over-fitting. The values for wL are plotted as green crosses and
the values for wS as cyan dots in figure 5.

The hybrid method yielded a mean correct control state
detection accuracy of 99.0% (0.4) and a mean correct non-
control state detection accuracy of 93.2% (2.2).

The control state detection accuracy of this hybrid
method was significantly better than the LDM
( = − = =Z p r2.64, 0.008, 0.41) and the SAM
( = − < =Z p r3.75, 0.001, 0.58). Between the non-control
state detection accuracy of this method and the LDM was a
slight difference of +0.7% in accuracy. However, the HAM
was significantly better than the SAM
( = − < =Z p r3.51, 0.001, 0.54). The overall correct
detection accuracy (4th column in table 1) of the hybrid
method was significantly better than the LDM
( = − = =Z p r2.69, 0.007, 0.42) and the SAM
( = − < =Z p r3.98, 0.001, 0.61).

Table 1. Comparison between the different methods and their correct
detection rates (TPR…true positive rate, TNR…true negative rate)
and accuracy. The standard error of the mean is given in parenthesis.

Control runs Non-control runs All runs
Method TPR(%) TNR(%) Accuracy(%)

LDMa 96.7 (0.9) 92.5 (2.4) 94.2 (1.4)
SAMb 88.3 (1.8) 73.7 (5.1) 79.5 (2.8)
HAMc 99.0 (0.4) 93.2 (2.2) 95.5 (1.2)

a

LDM = LDA distance method.
b

SAM = spectral analysis method.
c

HAM = hybridization of LDM and SAM.
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4. Discussion

In this study, we provide evidence that the P300 flashing
frequency in the EEG detection is a powerful userʼs state
detection method and that the hybridization of this method

with the LDM outperforms the results of the single
methods.

4.1. Effectiveness

All applied methods were very effective in detecting the
correct userʼs state. Our hybrid approach was the most
effective, see table 1. With this approach 17 out of 21 parti-
cipants reached a correct control state detection rate of 100%
and no participant had a lower rate than 95% (see table 2, 2nd
column). For 16 participants the non-control states were
detected correctly with equal or more than 90% accuracy (see
table 2, 3rd and 4th column). Taking into account the prob-
ability that some of the participants may have looked at the
flashing matrix, when they should perform another task, this
was a quite high result. We showed that for 11 participants the
hybrid method was the best method to detect their correct
state and for further seven participants it worked as well as
one of the other methods. Additionally, all the results of the
hybrid method (excluding participant 8) were between
80–100% and thus far above the practical chance level of
68% [25].

4.2. Robustness

To demonstrate the generality of our methods we used
LOPOCV to determine the classification parameters
(k k w w, , ,L S L S) for every participant. It is obvious that these
parameters were determined as person unspecific as possible.
Additionally, figure 5 indicates that the parameter values do
not vary much between the participants. As a result the mean
values of those parameters can be used as a start configuration
for further online usage. Then a new user has to perform only
a normal P300 BCI calibration to use the introduced control
state detection method without the necessity of any additional
calibration.

Based on the findings of Zickler et al in [26] it can be
argued that the calculated P300 classifier and state detection

Figure 4. Graphical comparison of different state detection errors per method and participant. The data was sorted with decreasing number of
errors from left to right.

Table 2. Comparison of the (non-)control state detection rates of all
methods (L…LDA distance method, S…spectral analysis method,
H…hybrid analysis method) and participants.

Word task SMR task Video task

Participant
L/S/

H(TPRa (%))
L/S/

H(TNRb (%))
L/S/

H(TNRb (%))

1 100/ 80/100 85/95/90 100/100/100
2 100/ 95/100 95/ 40/ 95 100/ 90/100
3 100/ 90/100 100/ 30/ 95 100/ 60/100
4 90/ 85/ 95 100/ 90/100 100/ 90/100
5 100/ 85/100 80/ 85/ 90 90/ 80/ 80
6 100/ 95/100 85/ 90/ 85 50/ 90/ 80
7 100/ 90/100 80/ 30/ 85 80/ 50/ 80
8 90/100/100 75/ 50/ 75 30/ 50/ 30
9 90/100/100 100/ 15/100 100/ 60/100
10 95/ 95/100 95/ 30/ 90 90/ 50/100
11 100/ 85/100 100/100/100 100/100/100
12 95/ 95/100 100/ 85/100 100/ 80/100
13 100/ 85/100 100/ 95/100 100/ 90/100
14 100/ 90/100 100/100/100 100/100/100
15 100/ 80/100 90/ 50/ 80 70/ 80/ 80
16 90/ 85/ 95 100/100/100 100/100/100
17 95/ 75/100 100/ 80/100 80/ 90/ 80
18 95/ 75/ 95 100/ 90/100 100/ 90/100
19 100/100/100 95/ 70/ 95 100/100/100
20 90/ 90/ 95 100/ 80/100 100/ 70/100
21 100/ 80/100 90/ 70/ 90 100/ 70/100

Mean 96.7/88.3/99.0 93.8/70.2/93.8 90.0/80.5/91.9
SEMc 0.9/ 1.8/ 0.4 1.8/ 6.0/ 1.7 4.1/ 3.9/ 3.6

a

True positive rate.
b

True negative rate.
c

Standard error of the mean.
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thresholds should work for several sessions with acceptable
(>80%) accuracies.

4.3. Limitations

The introduced SAM is limited in its effectiveness by the
fact that it requires sufficient gaze control. Otherwise, the
SAM as well as the hybrid method will not work properly.
However, the LDM with its acceptable accuracies should
work even for users with insufficient gaze control (see,
[19]). Furthermore, the SAM could work as a simple eyes
open detector: the flashing frequency will not be detectable
in the EEG, if the eyes are closed. Consequently the method
can be used for example to call a carer or to switch off
the BCI.

4.4. Comparison to other approaches

A direct comparison of the results from this study and the
studies performed by different groups [17–21] mentioned in
the introduction is difficult due to different classification
approaches, stimulation modalities, and especially perfor-
mance evaluations. However, Liu et al investigated in
[22, 27] comparable features (classifier output and frequency
domain) and the hybridization of them. In contrast to our
approach, they use the band power of dedicated EEG fre-
quency bands instead of the magnitude of the stimulation
frequency to distinguish between control and non-control
state. In [27] they performed a comparable experiment and
reported a mean area under the receiver operating character-
istic curve (AUC) value of 0.86 (SD: 0.06) (hybrid method
and control versus all non-control trials). If we use the same
calculation method our hybrid method would reach a mean
AUC value of 0.95 (SD: 0.06).

Another interesting approach already mentioned by
Zhang et al in [17] is to add a ‘PAUSE/RUN’ element into
the matrix. If the user selects this element, the system
switches into pause mode and no other selections except

this element will be possible. Consequently, the system
stays in this mode until the same element is selected again.
Two selections are necessary to go manually into pause
mode and leave the pause mode. The time the participants
would need to perform these two selections with our system
is 100 s. However, the probability that the pause mode is
left by chance is N1 with N being the number of matrix
elements. The probability for our spelling system with
N = 36 that the system will stay in pause mode is 97.2%.
This value is just slightly higher than our non-control state
detection value of 93.2%. Furthermore, a disadvantage of
this method is that two selections are necessary to switch on
and off the pause mode even if the user just wants e.g., to
read one or two sentences of a homepage.

A useful combination of the idea from Zhang et al and
our approach would be to switch into the suggested pause
mode after a variable number (e.g., two in a row) non-control
state detections by our system. To leave the pause mode the
user would have to select the ‘RUN’ element twice in a row.
This double selection decreases the probability that the non-
control state is left by chance from p = 0.03 to <p 0.001.
Then the short time non-control state detection would be
realized by our system and the long time pause by the
approach from Zhang et al. Due to the fact that our state
detection system creates about four wrong state detections
(mainly non-control, cf table 2) per hour this proposed
combination would considerably improve the usability of the
system.

Comparable functionality could also be realized with a
simple assistive device (e.g., a switch). This device could
be used to switch on and off the P300 BCI. However,
this approach requires that the user has sufficient motor
control of at least the neck muscles to use the assistive device.
Additionally, if the user doze off without switching off the
P300 BCI, selections would be made unintentionally. Our
suggested system would prevent such unintended selections.

Figure 5. Graphical representation of the values kL, kS, wL, and wS from equations (2), (5), and (7) determined with LOPOCVs. The dotted
lines represent the respective mean values.
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5. Conclusion

In this study, we investigated the possibility of making a
P300-based BCI system asynchronous. Our results showed
that it is possible to detect the state of a P300-based BCI user
with very high (⩾90%) accuracy for 19 out of 21 participants
during different tasks. This work might be the basis for
complex BCI controlled applications (e.g., web browser,
multimedia player), for whom an asynchronous P300 control
modality is indispensable.
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Abstract

Brain-computer interfaces (BCI) have been investigated for more than 40 years. P300-
based BCIs can nowadays control very complex applications such as spelling applications
and even web browsers. To do this in a practical way, it is essential to have the possibility
to pause the command selection of the BCI. We implemented and evaluated an automatic
pause detection system for P300-based BCIs based on artifact detection with an inverse
filtering method. Experimental results of an offline study (9 healthy participants) demon-
strate the feasibility of the proposed approach and its high performance.

1 Introduction

The electroencephalogram (EEG) can be used to establish a noninvasive communication/control
channel between the human brain and a computer, a so-called brain-computer interface (BCI).
A very prominent BCI application is the P300 speller [1]. This system enables healthy as well
as severely impaired users to communicate [2, 4]. However, a standard P300 speller is designed
to work in synchronous mode, i.e., after defined stimulation sequences one item of all selectable
items will be selected. This is not an issue as long as the user just wants to write a text without
making a pause. However, if the user wants to make a pause during spelling a text or because
she/he wants to look at the content of a web page it becomes a substantial problem. A very
simple approach to avoid unintended selections is to include a pause element into the spelling
matrix. This approach has two main disadvantages: First, you have to select two correct ele-
ments to go into and leave the pause mode and second, there is a certain probability that the
pause-end element is selected by chance.
In this study, we introduce an automatic pause detection method on the basis of artifact de-
tection with inverse filtering. Originally, the inverse filtering method was introduced in [5] to
detect muscle and movement artifacts in the EEG of a sensorimotor rhythm (SMR)-based BCI.
The main idea behind our approach is that a user produces more EEG artifacts during a
pause than when she/he is actively engaged with the BCI. We use this difference to distinguish
between the pause and the control state, i.e., when the user wants to select something.

2 Methods

2.1 Participants, Data Acquisition, and Experimental Design

Ten volunteers participated in this study. All participants stated that they have no history of
neurological or psychiatric disorders. Due to a technical problem the data of one participant
was not useable for this study. The final sample comprised 9 participants (3 female; mean age

1
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Figure 1: (A) Laptop displaying the user interface for feedback and P300 stimulation.
(B) Sketch of the experimental design. The angle between the participant, the laptop, and
the monitor was 30.3o. (C) Monitor for the web browser.

23.9 ± 1.3 years).
EEG was acquired with a wireless EEG amplifier with dry electrodes (g.Nautilus, Guger Tech-
nologies OG, Graz, Austria). Signals from Fz, Cz, Pz, PO7, PO8, and Oz were used in this
study with a sampling rate of 250 Hz. The channels were referenced to the right mastoid and
grounded at the left mastoid. The raw signal of the Wi-Fi headset was filtered with a 0.5–30 Hz
bandpass.
The participants were seated in a comfortable chair approximately 65 cm away from two
screens (39.5 cm and 43 cm diameter), see Figure 1 (B). One screen was centered in front of the
participants. At this screen a P300 matrix was displayed to control a special web browser (see
Halder et al., in preparation), which was shown on a second screen placed right beside the first
one, see Figure 1 (A) and (C).
The P300 user interface and signal processing in Matlab (MathWorks, Natick, USA) was pre-
sented in [3].
Calibration was performed with fifteen highlightings per row and column and ten letters as de-
scribed in [3]. The online task for the participants was to write an email to a given address and
reply to an automatically generated email. The whole task needed a minimum of 52 selections
and was aborted if the goal was not reached within 78 regular selections.

2.2 Manual Pause

A “PAUSE/RUN” element was selectable with the matrix. If the user selected this element, no
further selections were sent to the web browser until the same element was selected again. The
participants had to select the “PAUSE/RUN” element in the study when they were waiting for
the reply of the first email and they could select it whenever they needed a pause.

2.3 Automatic Pause Detection

The automatic pause detection was performed on the offline data by detecting artifacts in the
EEG during the flashing time periods. The principle of inverse filtering was applied to detect the
artifacts, cf. [5]. For this method autoregressive filter model parameters have to be estimated
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out of clean (i.e., artifact free) EEG data. Our assumption was that the participants generated
few artifacts during the P300 calibration period. Consequently, we used the data of the P300
calibration to estimate autoregressive filter model parameters (model order p = 10) by using
the Burg method.
The created filter model was applied inversely to the EEG data of every online task selection.
An artifact detection threshold was set to three times the standard deviation of values calculated
with this inverse filter from the calibration EEG data. If in more than 1 percent of the online
task data artifacts were detected, the selection was marked as pause state related.

3 Results

The participants needed on average 11.8 (SD 2.9) highlighting sequences to select a command.
Eight participants completed the task within the maximum allowed value of 78 selections. Only
participant S7 did not complete the task. They had an average selection accuracy of 88.7% (SD
9.4) and needed an average time of 63.1 (SD 16.4) minutes including pauses to complete the
whole task.

3.1 Manual Pause

Two selections were necessary to go manually into pause mode and leave the pause mode.
The time the participants needed to perform these two selections was between 58 and 100
seconds depending on the number of highlighting sequences and the actual number of rows and
columns. Seven participants had no problem to switch between pause and control mode. Two
participants (S6, S7) needed more than one attempt to leave the pause mode. The probability
that the pause mode was left by chance was 1/N with N being the actual number of matrix
elements. This occurred once (S7) in this study.

3.2 Automatic Pause Detection

Participant All Pause Detection Cohen’s
Selectionsa TP TN FP FN TPR TNR κ

S1 61 5 ( 6) 52 4 (3) 0 100.0% 92.9% 0.68
S2 62 7 ( 7) 46 9 (9) 0 100.0% 83.6% 0.54
S3 61 3 ( 5) 56 2 (0) 0 100.0% 96.6% 0.73
S4 66 2 ( 2) 63 1 (1) 0 100.0% 98.4% 0.79
S5 93 26 (29) 63 4 (1) 0 100.0% 94.0% 0.90
S6 101 8 ( 9) 92 1 (0) 0 100.0% 98.9% 0.94
S7 94 9 (12) 74 6 (3) 5 64.3% 92.5% 0.55
S8 73 10 (12) 60 3 (1) 0 100.0% 95.2% 0.85
S9 64 6 ( 6) 64 0 (0) 0 100.0% 100.0% 1.00

a incl. selections during pause.

Table 1: Automatic pause state detection results. The true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) detections as well as the true positive rate (TPR)
and the true negative rate (TNR) are presented for every subject. Values in parentheses indicate
prevented wrong item selections during the control state. Cohen’s Kappa was calculated to give
a measure of agreement.
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In Table 1 the offline simulation results of the automatic pause detection are shown. The
number of selections of some participants was higher than 78 because selections during the
pause were also counted for evaluation. The sensitivity (TPR) of the automatic pause detection
was 100 % for eight participants and 64.3 % for one participant. Consequently, the overall mean
TPR was 96.0% (SD: 11.9). The specificity (TNR) was between 83.6 % and 100% with a mean
of 94.7 % (SD: 4.9). At eight participants no false negative (FN) detections were made, see 6th

column in Table 1. This is very important because false negative detections would result in
unintended, random selections. The measured Cohen’s Kappas for our results were between
0.54 and 1.00, indicating moderate to strong agreement.

4 Discussion

In this study we provide evidence that our suggested automatic pause detection method works
comparable to the manual pause selection method without its disadvantages.
The introduced automatic pause detection method detected the pause state with 100% accu-
racy at eight participants and the control state with an accuracy between 83.64% and 100%.
Unintended selections in the pause state are almost non-existent and the number of prevented
selections in the control state is low and acceptable. Considering the prevented wrong selections
during the voluntary control periods by the automatic pause detection the number of wrong
classifications would be even lower (numbers in parentheses beside the TPs and FPs in Table 1).
In conclusion, this study shows that detecting artifacts in a P300-based BCI can be used as a
very reliable and effective automatic P300 pause state detection method.
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One important aspect in non-invasive brain–computer interface (BCI) research is

to acquire the electroencephalogram (EEG) in a proper way. From an end-user

perspective, it means with maximum comfort and without any extra inconveniences

(e.g., washing the hair), whereas from a technical perspective, the signal quality has

to be optimal to make the BCI work effectively and efficiently. In this work, we

evaluated three different commercially available EEG acquisition systems that differ in

the type of electrodes (gel-, water-, and dry-based), the amplifier technique, and the data

transmission method. Every systemwas tested regarding three different aspects, namely,

technical, BCI effectiveness and efficiency (P300 communication and control), and user

satisfaction (comfort). We found that water-based system had the lowest short circuit

noise level, the hydrogel-based system had the highest P300 spelling accuracies, and

the dry electrode-based system caused the least inconveniences. Therefore, building a

reliable BCI is possible with all the evaluated systems, and it is on the user to decide

which system meets the given requirements best.

Keywords: brain–computer interface, practical electrodes, dry electrodes, water-based electrodes, gel electrodes,

P300, electrode test

1. INTRODUCTION

Measuring electrical activity of the human brain and utilizing this data to bypass the traditional
motor output pathways of the nervous system is one of the main purposes of brain–
computer interface (BCI) systems. One way to collect these signals non-invasively is by using
electroencephalography (EEG). Nowadays, two main factors that impede the widespread use of
BCIs for healthy as well as for severely impaired people are the BCI control method (i.e., how
measurable brain signals are generated) and the EEG signal acquisition system (i.e., the used
hardware) to measure the signals.

We consider three control methods based on different brain signals: (i) neural oscillations, (ii)
event-related potentials (ERP), and (iii) steady-state evoked potentials (SSEP).

A typical BCI based on neural oscillations, for example, utilizes the fact that defined frequency
components of the EEG signal create a typical pattern briefly before, during, and after movement
execution and less pronounced atmovement imagination (e.g., Pfurtscheller et al., 2000; Faller et al.,
2014; Schwarz et al., 2015). Tasks that also show detectable oscillations are word association, mental
subtraction, mental rotation, auditory imagery, or spatial navigation (Friedrich et al., 2013). This
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phenomenon can be used to create a so-called self-paced BCI (i.e.,
no external trigger is needed). However, the illiteracy rate and
also the effort on training the system are very high (cf. Blankertz
et al., 2010).

The other two BCI control methods need stimulation to evoke
a defined pattern in the EEG. A very prominent representative of
this group relies on the P300 EEG-wave complex. This positive
amplitude approx. 250–500ms after an event can be elicited by
an odd-ball paradigm (Pritchard, 1981; Polich, 2007). Due to
the fact that the difference between the P300 amplitude and the
spontaneous EEG is small, the stimulation has to be repeated,
and the signals averaged until the signal to noise ratio (SNR) is
high enough for classification. One of the first implemented BCIs
(Farwell and Donchin, 1988) was based on this method. Many
studies were conducted to show that P300-based BCIs enable
healthy as well as motor impaired users to communicate or to
control their environment (Donchin et al., 2000; Piccione et al.,
2006; Hoffmann et al., 2008; Nijboer et al., 2008; Kaufmann et al.,
2013; Pokorny et al., 2013).

SSEP-based BCIs, as another type, also require stimulation.
The stimuli are periodically presented at a repetition rate higher
than approx. 6Hz. SSEP BCIs are based on the fact that
the stimulation rate is represented as SSEP (i.e., a periodically
repeated pattern) in the EEG when the user shifts their
attention to these stimuli. Stimuli can be visual (SSVEP, Bagolini
et al., 1988; Müller-Putz et al., 2005; Vialatte et al., 2009),
auditory (Stapells et al., 1984; Picton et al., 2003; Lopez et al.,
2009), or somatosensory (Müller-Putz et al., 2001, 2006; Pokorny
et al., 2011).

The second important part of each BCI is how brain signals
are measured. At the very beginning, in 1924, scientists inserted
steal needles into the subcutaneous tissue of the scalp and
had galvanometers to visualize and interpret the recorded
signals (Berger, 1929). The quality and the interpretability of
the signals improved with the usage of vacuum tubes, and
later, transistor technology was used to amplify the very small
signals. Silver chloride (AgCl) covered electrodes, which are
standard nowadays, were introduced by Berger in 1931 (Collura,
1993). Today, Bergers’ method would not be called non-invasive
but it is called minimal invasive EEG acquisition, because
he penetrated the skin of the scalp. More invasive brain
signal acquisition techniques are the electrocorticogram (ECoG),
subdurally/epidurally measured on the brain surface (Leuthardt
et al., 2004), and multi/single unit activity derived with needle
electrodes directly from the cortex (Hochberg et al., 2006).
However, these methods are more common in clinical settings
and not yet envisaged for everyday use in practical BCI systems.

One major issue concerning the EEG measurement is noise.
According to Bressler and Ding (2006), the following sources
of noise in brain activity recordings exist: (1) potentials from
the brain (cephalic noise), (2) potentials from the head muscles
and skin, eyes, and tongue (extracephalic cranial noise), (3)
potentials from parts of the body other than the head, such
as the heart (extracranial physiological noise), (4) random
microscopic fluctuations at the electrodes (thermal noise), (5)
noise from movement of the person or animal (movement
artifact), (6) fluctuations introduced by electronic recording

components (electronic noise), (7) radiated contamination from
other electrical equipment (environmental noise), and even (8)
fluctuations due to imprecision in the discrete digitization of the
continuously varying voltage from the electrode for storage in a
digital computer (quantization noise) (Bressler and Ding, 2006).
According to points 4–8, the recorded amount of noise strongly
depends on the characteristics of the EEG acquisition system
being used.

To measure EEG, a way has to be found to bridge the gap
between the electrode and skin surface. Currently, there are three
common types of electrodes that differ based on whether the
conductive connection is established based on gel, water, or no
additional conductive substance (“dry”).

The gel-based type can be subdivided based on the usage
of abrasive gel and hydrogel, respectively. Abrasive gel is
mainly used in combination with passive electrodes (i.e., no
amplification happens directly at the electrode). In contrast, the
hydrogel is mainly used for active electrodes (i.e., the signal is pre-
amplified directly at the electrode). The main difference between
these two types of gels is that with the abrasive gel, the topmost
layer of the skin, consisting of dead cells, is removed in a time-
consuming procedure to decrease the impedance. This can lead
to skin irritation, infection, or inflammation. For both types of
gel-based electrodes, gel has to be filled between the electrode and
the scalp, which then typically makes it necessary for the user to
wash their hair, after the measurement. Water-based electrodes
use a water or saline solution soaked felt or fabric to connect the
metal part of the electrode with the skin. Using tap water-soaked
fabric to connect the two surfaces is a new and practical method.
This type of electrodes should deliver a very good signal quality,
and no hair wash is needed after the measurement (Volosyak
et al., 2010).

Dry electrodes, work without any conductive substance. Pins
made of metal alloy or conductive rubber are pressed directly
onto the skin, and rely on small amounts of existing perspiration
to get connected to the skin. Several studies were conducted
highlighting the advantages of different dry electrode-based
systems (e.g., Zander et al., 2011; Guger et al., 2012; Mota et al.,
2013). However, experience shows that one main disadvantage of
this type of electrodes is their sensitivity to movement artifacts.

Several papers deal with user-centered BCI approaches
(e.g., Zickler et al., 2011; Kübler et al., 2014; Scherer et al.,
2015). Concerning data acquisition, these papers find similar
results: Users want to have an easy to handle data acquisition
system, which should not require the subject to wash their
hair after acquisition. At the same time, the signal quality
should allow for BCI accuracies comparable to gel-based
systems. The dry electrode-based systems can only fulfill the
first part as the BCI accuracies of gel-based systems are not
fully achieved yet. For example, Zander et al. (2011) reported
a mean BCI classification accuracy of 94.0% for gel-based
and 90.7% for dry electrode-based systems, respectively, and
Guger et al. (2012) reported a mean P300 BCI accuracy of
91.0% for gel-based and 90.4% for dry based-electrode systems,
respectively.

Existing literature only compared one new EEG acquisition
system (i.e., the dry electrode-based or the tap water-based
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electrode system) with one gel-based system, aiming to show that
the new system works comparably well (cf. Volosyak et al., 2010;
Zander et al., 2011; Guger et al., 2012; Mota et al., 2013).

The aim of this study is to evaluate three different EEG
acquisition systems with regard to their suitability for building a
BCI, meeting technical requirements and requirements for user-
centered design specifications. Therefore, we tested and evaluated
a hydrogel-based, a tap water-based, and a dry electrode-based
systems with their corresponding amplifiers under controlled
conditions. Technical tests and real BCI tasks with healthy
volunteers were performed. Subsequently, we compared our
findings with the findings of existing literature.

2. MATERIALS AND METHODS

2.1. Systems and Data Acquisition Methods
Three different EEG acquisition systems were tested. The
systems differ in electrode design, amplifier technique, and data
transmission (see Table 1).

2.1.1. The Hydrogel-Based Electrode System
We tested the g.GAMMAsys from g.tec (Guger Technologies
OG, Graz, Austria) in combination with active, hydrogel-based,
silver/silver chloride (Ag/AgCl) electrodes (g.LadyBirds) (see
Figure 1). The system allows the acquisition of up to 64 biosignals
such as EEG, electrooculogram (EOG), electromyogram (EMG),
and electrocardiogram (ECG) simultaneously in combination
with up to four g.USBamps to amplify and transmit the signals
via universal serial bus (USB) to a personal computer (PC) or
laptop. Main technical specifications are listed in Table 1. In

TABLE 1 | Comparison of the used EEG amplifier systems.

g.GAMMAsys Mobita g.Sahara

Electrode technique Hydrogel-based Tap water-based Dry

ADC resolution 24 bit 24 bit 24 bit

Voltage input range ± 250.0mV ± 204.8mV ±250.0mV

Notch filter 50 and 60Hz n/a (active cable

shielding)

50 and 60Hz

Sampling frequencies 64−38400Hz 250–2000Hz 64–38 400Hz

Data transmission technique USB WiFi (802.11b/g) USB

addition, different filter settings are available. After every usage,
the electrodes as well as the cap have to be washed under running
water using a brush.

2.1.2. The Water-Based Electrode System
The Mobita is a wireless system of the company TMSi (Twente
Medical Systems International B.V., Oldenzaal, the Netherlands).
It acquires a maximum of 32 channels of EEG plus three channels
for the built-in accelerometer. We tested its capability to measure
EEG with passive, water-based electrodes (see Figure 1). The
special characteristics of these water-based electrodes are rolled-
in, tap water-soaked cotton pieces attached to small AgCl pellets
as electrodes. These cotton pieces are disposable. Therefore,
for regular cleaning, it is sufficient to dry the cap and the
wristband. Another main feature is the actively shielded cable
connection between the electrodes and the amplifier. This active
shielding should strongly reduce the mains interference and
cable movement artifacts. These techniques should provide high
signal quality without the necessity of washing the hair after the
measurement.

Technical specifications are listed in Table 1. The channel
bandwidth is limited between direct current (DC) and
0.2× sampling frequency (i.e., the average number of samples
obtained in 1 s). The system uses the WLAN IEEE standard
802.11 b/g to transmit the amplified signals wirelessly to a PC
or laptop.

2.1.3. The Dry Electrode-Based System
The g.Sahara is also produced by g.tec (Guger Technologies
OG, Graz, Austria). The acquisition of the EEG with up to 16
dry electrodes in combination with the g.USBamp (also from
g.tec) is possible. The electrodes consist of 8 pins made of a
special gold alloy (see Figure 1). Two different pin lengths (7 and
16mm) and three different cap sizes are available to adapt the
system to different hair lengths and shapes of users’ heads. The
operator has to find the optimal type of electrodes and cap size
for each participant to get the best signal quality. Disposable
Ag/AgCl mastoid electrodes are used for reference and ground.
The other electrodes have to be cleaned with a smooth cotton
cloth and alcohol (70%). Since we used the g.USBamp to amplify
the signals, the same technical amplifier specifications for the
g.GAMMAsys are valid.

FIGURE 1 | From left to right: the g.LADYbird hydrogel-based electrode, the tap water-based electrode of the Mobita system, and the dry electrode of

the g.Sahara system.
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2.2. Technical Test
The short circuit noise of the EEG acquisition systems (electrodes
and amplifier) was determined by acquiring the signal of the
electrodes that were attached to a polished copper plate (10 ×

10 cm) (see Figure 2). The copper plate was polished with
an abrasive cleaner and residues were removed with ethyl
alcohol shortly before each measurement. The measurement was
conducted at normal room temperature (approx. 21◦C). Since the
electrode systems were purchased nearly at the same time, the
influence of aging should be the same for all electrodes.

Sampling frequencies (fs) were 500Hz for the tap water-based
system and 512Hz for the hydrogel-based and dry electrode-
based systems. Signal processing was performed with Matlab
(2014b, The MathWorks, Natick, USA). The data of the different
electrode systems was streamed to Matlab with the TOBI
SignalServer software (Breitwieser et al., 2012). Signal filters were
disabled as far as possible to get the full spectrum of the signal.
As recommended by the manufacturer, proper grounding was
performed for the dry electrode-based system.

Twelve minutes of short circuit noise was recorded with
all systems. The first and the last minute were excluded from
analysis to avoid any movement artifacts from the operator.
Consequently, 10 min of noise were available from all systems
for analysis.

The noise was evaluated for a frequency range of 0.1–40Hz,
which is typical for BCI systems. Therefore, the signals were 8th
order band-pass filtered (Butterworth) between 0.1 and 40Hz.
The histogram and the amplitude spectrum were calculated
with Matlab to compare the different systems. In addition, the
root mean square (RMS) was calculated and smoothed with a
Gaussian filter (3-dB bandwidth-symbol time = 0.1 s, periods to
the filters peak= 4, oversampling factor= 250/256).

2.3. User-Centered Test
BCI effectiveness and efficiency were evaluated with P300
communication and control tasks. Participants had to spell
several words and then had to control a multimedia player and a
web browser with a P300 BCI. Afterwards, the participants were
asked to complete several questionnaires.

It was not possible to randomize the sequence of the tests,
because the EEG acquisition systems were not available at the
same time. Therefore, the participants tested the dry system
first, then the gel-based system, and finally the tap water-based
system. However, between the user-centered tests of the different
EEG acquisition systems were always more than 1 month, and
therefore, one can assume that adaptation or learning effects did
not occur.

2.3.1. Participants
Eight healthy volunteers (1 female, mean age 25± 2.3, range 22–
30 years) participated in this study. All participants stated that
they had no history of neurological or psychiatric disorders. The
study protocol was approved by the ethics committee of the
Medical University of Graz, and the participants gave informed
written consent before the experiment. Out of the eight study
participants, seven performed the user-centered test per EEG
aquisition system.

2.3.2. Signal Acquisition and Processing
Six channels per system were recorded at a sampling rate of
250Hz (tap water-based system) and 256Hz (hydrogel-based and
dry system), respectively. The locations of the electrodes (Fz, Cz,
Pz, PO7, PO8, and Oz) were based on the extended international
10–20 system for electrode placement. The channels were
referenced to the left and grounded to the right earlobe when
using the gel-based and dry electrode-based systems. The ground
of the tap water-based system was attached to the participant’s
wrist. In addition, as recommended by the manufacturer, a
grounding of the user and operator was performed for the dry
electrode-based system. The data acquisition was started only
once before each session.

Due to the fact that different data acquisition systems (see
Section 2.1) were used, the signal processing differed slightly
between the systems (see Table 1). We used the integrated
0.1–60Hz band-pass filter for the hydrogel-based electrode
signal and the 0.5–30Hz filter for the dry electrode-based
signal. The dry electrode is more sensitive to person and cable
movement artifacts. Therefore, the signals from that electrodes

FIGURE 2 | Setup of the noise test. All three systems were attached to a polished copper plate to simulate a short circuit of the electrodes.
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were band-pass filtered between 0.5 and 30Hz. Further signal
processing was performed with Matlab. The data of the systems
were streamed to Matlab, see Section 2.2. No band-pass filter
is integrated into the tap water-based system. Consequently,
we implemented a filter in Matlab. We used a fourth order
Butterworth band-pass filter with cut-off frequencies of 0.1 and
60Hz. The rest of the signal processing and classification was
identical between the tested systems.

2.3.3. P300 Classification
A stepwise linear discriminant analysis (SWLDA) classifier was
trained with the training data and used for the online runs.
The number of flashing sequences (one sequence means that
all characters of the stimulation matrix flashed once) was
automatically set between 8 and 15 according to Pinegger et al.
(2013). The algorithm classifies the training letters with a leave
one letter out cross-validation and calculates the reached total
accuracy for every flashing sequence. The number of sequences,
where 100% accuracy is reached, plus two sequences is chosen as
number of flashing sequences for the online run.Whenever 100%
accuracy is not reached, but the highest value for the accuracy
is higher than 75% , 15 sequences are chosen. Otherwise, the
calibration fails and must be performed again.

2.3.4. Experimental Design
The participants were seated in a comfortable chair approx. 65 cm
away from two computer screens (39.5 and 43 cm diameter). One
screen was centered in front of the participants. On this screen,

a P300 matrix was displayed to select letters or commands; a
second screen was placed right beside the first and was used to
show a multimedia player or a web browser. The multimedia
player was controlled via network commands (see Halder et al.,
2015 for details). The custom-made web browser automatically
detects all possible links, buttons, and text fields of the currently
shown website and marks them with letters. These letters were
sent to the BCI for selection with the P300 matrix. By sending
back the desired element to the web browser, the corresponding
link, button, or text field was selected (see Halder et al., 2015 for
details).

The P300 user interface and the signal processing in Matlab
were presented in Pinegger et al. (2013). Elements of the matrix
were highlighted with famous faces (Kaufmann et al., 2011).

Every participant performed one session per day and system.
The experimenter was trained once on every system by an
experienced supervisor. In addition, the supervisor supported the
experimenter and was available during the whole length of every
measurement. A graphical sketch of the user-centered test can be
seen in Figure 3. One session comprised the following tasks:

• P300 classifier training

The word “BRAIN” was used for P300 classifier calibration.
The speller matrix consisted of six rows and six columns, and
every target letter was highlighted 30 times. The collected data
was used to train an SWLDA classifier and to calculate an
optimal number of flashing sequences.

• Task 1: First copy spelling

FIGURE 3 | The participants had to perform four tasks for the user-centered test. The basis was a P300 BCI system. The first task was to spell two words (ten

letters), the second task was to control a media player, the third task was to look for a certain web page in a special web browser, and the fourth task was to spell two

words (10 letters) again.
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The participants had to spell the German words
“SONNE” (English “sun”) and “BLUME” (English “flower”)
consecutively. Each word was presented to them shortly
before they started spelling. The users were instructed not to
correct wrongly spelled letters. After a short break, the second
word was spelled. The matrix for training and copy spelling
was the same.

• Task 2: Multimedia player

Within this task, the participants had to start a slideshow
and to look at certain pictures within the Xbox media
center (XBMC), a powerful multimedia player. Instructions
as to which commands to execute were provided by the
experimenter in spoken form. The task could be completed at
best with 10 correct selections. To correct wrong selections,
the investigator indicated a correct alternative or the way
back to the last correct selection. If the goal could not
be reached within 15 selections, the task was aborted.
The matrix for this task consisted of six rows and three
columns.

• Task 3: Web browser

The goal of this task was to navigate to the Wikipedia article
about BCI and look over the whole article. The start page
was “www.google.de”. Instructions as to which commands to
execute were provided by the experimenter in spoken form.
The task could be finished within 10–12 correct selections.
The ideal number of selections varies because Google has very
dynamic web pages, and therefore, the number of links vary
considerably over time on these pages. Wrong selections were
corrected in the same manner as during the media player run.
If the goal could not be reached within 18 selections, the task
was aborted. The matrix for this task consisted of six rows and
a variable number of columns depending on the number of
links on the actual web page. However, the maximum number
of columns was seven.

• Task 4: Second copy spelling

This task was performed in the same way as the first
copy spelling task. The only difference was that two other
words—“TRAUM” (English “dream”) and “KRAFT” (English
“force”)—have to be spelled.

Overall, every participant had to perform a minimum of 40 and a
maximum of 53 selections per system.

2.3.5. Questionnaires
After the last run of every session, the participants were asked to
fill out several questionnaires concerning the satisfaction with the
system and the system design.

• VAS: The level of satisfaction of the users was assessed with a
visual analog scale (VAS), ranging from 0 (not at all satisfied)
to 10 (absolutely satisfied).

• eQUEST 2.0: A usability test was adapted for BCI usage
by Zickler et al. (2011). This test evaluates 12 categories
(dimension, weight, adjustability, safety, ease of usage, well-
being, effectiveness, service features, reliability/robustness,
speed, learnability, and aesthetic of design) on a scale from one
to five where one stands for not satisfied and five stands for

very satisfied. In addition, the three most important categories
must be indicated.

2.3.6. Evaluation Metrics
The effectiveness was determined by calculating the percentage
of correct selections of all selections (accuracy). The efficiency of
a system was determined with the amount of flashing repetitions
participants needed to make selections with the P300 speller.
Results of the questionnaires were evaluated by calculating the
averaged values.

3. RESULTS

3.1. Technical Results
The noise of the different systems was recorded and evaluated.
A graphical comparison of the signals from the systems can be
seen in Figure 4. The tap water-based system with a mean RMS
(yellow line in Figure 4) of 0.37µV had the lowest measured
value followed by the hydrogel-based (0.68µV) and the dry
electrode-based system (0.82µV) within the frequency range of
0.1–40Hz. Moderate pressure on the electrodes was necessary
to obtain a good signal from the tap water-based and the dry
electrode-based system.

3.2. User-Centered Results
3.2.1. Effectiveness and Efficiency
The hydrogel-based system was the most effective with a mean
BCI accuracy of 96% (SD: 3.5) followed by the tap water-
based system with 93% (SD: 4.5) and the dry electrode-based
system with 77% (SD: 11.8). On average, the accuracies of the
hydrogel-based (between 93 and 99%) and the tap water-based
system (between 91 and 96%) stayed stable above 90% over
the four tasks, whereas the dry electrode-based system showed
decreasing accuracies over time from 87% for the first spelling
task to 70% for the second spelling task (see Table 2 and
Figure 5).

The inter-participant variance (cf. SD in Table 2) was low for
the hydrogel-based system, moderate for the tap water-based
system, and high for the dry electrode-based system.

The tap water-based and gel-based systems showed on
average the same number of needed sequences followed by
the dry electrode-based system (see Table 3). The overall result
of the training cross-validation can be seen in Figure 6.
The hydrogel-based and tap water-based systems showed
comparable results; the accuracies of the dry electrode-based
system, however, were slightly lower at the same number of
sequences.

3.2.2. Satisfaction
Overall device satisfaction per system and results of the eQUEST
2.0 are listed in Table 4. Scores from the VAS were between
6.64 (dry electrode) and 8.76 (tap water-based) on average and
indicate a high general satisfaction.

In the eQUEST 2.0, only “speed” received scores below 4 (quite
satisfied) for all three systems. The items that were rated as
most important by the study participants were “effectiveness”
(n = 6), “reliability” (n = 3), and “speed” (n = 3) for the
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FIGURE 4 | Signal plot (left), histogram (middle), and amplitude spectrum (right) of the short circuit noise measurement after 0.1–40Hz band-pass

filtering. The yellow line in the left plots represents the RMS of the signal.

TABLE 2 | Accuracies of the systems in percent (%).

Participant Hydrogel-based system Tap water-based system Dry electrode system

Sp1 MmP WeB Sp2 Sp1 MmP WeB Sp2 Sp1 MmP WeB Sp2

P1 100 100 70 100 100 100 91 90 80 90 60 50

P2 100 100 100 100 90 100 90 100 90 80 60 90

P3 90 80 100 90 100 100 100 100 50 80 40 60

P4 100 70 80 100 80 64 73 70 90 60 30 30

P5 100 100 100 100 * * * * 100 100 100 80

P6 100 100 100 100 100 100 91 100 100 100 100 90

P7 100 100 100 100 100 100 100 90 100 100 60 90

P8 * * * * 100 92 100 90 * * * *

Mean 99 93 93 99 96 94 92 91 87 87 64 70

SD 4 13 1 4 8 13 10 11 18 15 27 24

Sp1, Sp2. . . Spelling run 1, 2; MmP. . .Multimedia player; WeB. . .Web browser.
*Data not available for this system.

hydrogel-based system; “speed” (n = 6), ”effectiveness” (n =

4), and ”learnability” (n = 4) for the tap water-based system;
“speed” (n = 6), “effectiveness” (n = 5), and “easy of use,”
“reliability” and “learnability” (all three: n = 3) for the dry
electrode-based system.

Participants commented negatively on the unaesthetic and
tight design of the caps and the low speed. On the other
hand, most of the participants were positively surprised that it
worked at all.

4. DISCUSSION

Building a reliable BCI is possible with all the introduced EEG
amplifier systems. However, small but important differences

between the systems are detectable and deliver arguments to
define special areas of application for each system.

4.1. Technical Evaluation
For EEG measurements, it is crucial to have minimal noise
resulting in a maximum signal-to-noise ratio. Having in mind
that all short circuit RMS noise levels stayed below 1 µV, our
measurements indicate that the short circuit RMS noise level
of the tap water-based system is almost half the level of the
hydrogel-based and less than half of the dry electrode-based
system. It is obvious that the histogram of the tap water-based
system is very narrow compared to the others, which means
that the noise amplitude is low (see Figure 4). This is not
surprising with the knowledge that the other electrodes are
active electrodes, i.e., powered electronics are contained within
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Task
Spelling 1 Media player Web browser Spelling 2

A
cc

u
ra

cy
(%

)

0

20

40

60

80

100

Hydrogel-based system Tap water-based system Dry electrode-based system

FIGURE 5 | Boxplots showing the BCI accuracies of each task for every system. The central mark (dashed line) of each box is the median, the edges of the

box are the 25th and 75th percentiles; the whiskers extend to the most extreme data points (1.5× interquartile range). Outliers are marked with red crosses.

TABLE 3 | Sequences needed after training.

Participant Hydrogel-based

system

Tap water-based

system

Dry electrode

system

P1 8 8 8

P2 15 13 13

P3 14 9 15

P4 13 11 15

P5 8 * 8

P6 8 8 15

P7 8 14 15

P8 * 10 *

Mean 10.6 10.4 12.7

SD 3.3 2.4 3.3

Minimum possible value is eight.
*Data not available for this system.

the electrode, and this feature is probably the source of the
additional short circuit noise. The active electronic parts (dry
electrode-based and gel-based systems) and the active shielding
technique (tap water-based system) are used to reduce noise
pickup from cables. From our results, we cannot determine which
technique works better regarding suppressing cable movement
artifacts, because all the cables were fixed and not moving
like they could in real-world usage. To determine the real-
world behavior of the systems, we performed the user-centered
evaluation.

4.2. User-Centered Evaluation
4.2.1. Effectiveness and Efficiency
Both “wet” systems, the hydrogel-based and the tap water-based,
showed comparable averaged accuracies and seemed to be equally
effective (see Figure 5). In addition, the increase of accuracy with

increased number of sequences is also comparable (see Figure 6).
However, the tap water-based as well as the dry electrode-based
system showed a higher standard deviation of the accuracies (see
Table 2). One possible explanation for this is that the connection
between the electrode and the skin of the head is also a crucial
factor. The shape of the human head is neither a sphere nor
identical for all people. Therefore, the connection between the
electrode and the head has to be very flexible. The tap water-based
system as well as the dry electrode-based system has amore or less
rigid connection. The dry electrode-based system with its gold
alloy pins is delivered with two different pin lengths and three
different cap sizes to be adaptable to different head shapes and
hair lengths. It is time consuming to find a tradeoff between too
much pressure of the pins against the skin (good signal quality,
but less wearing comfort) and too little pressure (moderate signal
quality, but comfortable). Since the time of our participants was
limited and every participant used the system only once, we
might have not found the optimal pin length and cap size solution
for all of our participants. However, a visual inspection of the
recorded signal before the measurement guaranteed that at least
the alpha wave (i.e., an oscillation of approx. 8–13Hz) was visible
within the EEG, when the participants were instructed to close
their eyes and relax.

The cotton pieces that connect the electrode of the tap water-
based systemwith the skin are soft and flexible. However, they are
rolled up and put into a housing where just 3mm of the material
is outside. Only these 3mm of the material are available to fit the
electrode to the head shape (see Figure 1). Consequently, the hair
under each electrode has to be carefully pushed to the side (i.e.,
under the electrode housing of the cap) to reach a high real-world
signal quality.

These problems will not occur with hydrogel-based electrodes,
because the electrodes and the skin are connected with gel. Gel
perfectly bridges the gap between the electrode and the skin.
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FIGURE 6 | Result of the leave one letter out cross-validation of the training data. Error bars indicate the standard error of the mean. The dry electrode-based

system showed in general lower accuracies at the same number of sequences compared to the hydrogel-based and the tap water-based systems.

TABLE 4 | Results of the eQUEST 2.0 and VAS for all systems.

Category Hydrogel-based system Tap water-based system Dry electrode system

eQUEST 2.0

Dimensions 4.6 (0.8) 4.6 (0.8) 4.1 (0.7)

Weight 4.4 (1.0) 4.6 (0.5) 4.4 (0.8)

Adjustment: EEG cap 4.4 (0.8) 4.7 (0.8) 4.7 (0.8)

Adjustment: Amplifier 4.8 (0.4) 4.8 (0.4) 4.8 (0.4)

Safety 5.0 (0.0) 5.0 (0.0) 5.0 (0.0)

Comfort: physical 4.1 (0.9) 4.0 (0.8) 4.1 (0.9)

Comfort: emotional 4.3 (1.0) 4.4 (0.8) 4.3 (1.0)

Easy of use 4.4 (0.5) 4.6 (0.8) 3.7 (1.3)

Effectiveness 4.4 (0.5) 4.4 (0.8) 3.3 (1.5)

Reliability: EEG cap 4.7 (0.8) 5.0 (0.0) 5.0 (0.0)

Reliability: Amplifier 5.0 (0.0) 5.0 (0.0) 4.7 (0.8)

Speed 3.4 (1.3) 3.7 (1.0) 3.6 (1.0)

Learnability 4.7 (0.5) 4.9 (0.4) 4.9 (0.4)

Aesthetic design: EEG cap 3.9 (0.9) 4.1 (1.1) 4.0 (1.3)

Aesthetic design: Amplifier 4.4 (0.8) 4.6 (0.5) 3.7 (1.3)

Mean 4.44 (0.40) 4.58 (0.39) 4.33 (0.50)

VAS Mean 8.00 (1.75) 8.76 (2.00) 6.64 (1.41)

The eQUEST 2.0 scores range from 1 (not satisfied at all) to 5 (very satisfied), and the VAS scores range from 0 (not at all satisfied) to 10 (absolutely satisfied). The standard deviation
(SD) is given in parenthesis. Results of the most important features per system are printed in bold.

In addition, this connection is flexible, which means that the
connection will not be lost if the head is slightly moved.

The described electrode fitting problem might also be an
explanation for the higher inter-individual variances (i.e., higher
standard deviations) of the tap water-based and the dry electrode-
based systems (see Table 2).

Another shortcoming of the tap water-based system is that
all 32 available electrodes are permanently connected to the
amplifier in contrast to the two other systems where only the
used number of electrodes are connected. However, it is possible
to order the tap water-based system with fewer permanently

connected electrodes. Nevertheless, the problem is that unused
electrodes could swing around, when the user moves the head,
and the weight of the cable bundle might pull the used electrodes
down causing EEG artifacts. Therefore, we fastened the cable
bundle and the unused electrodes to the cap to minimize those
ar tifacts.

4.2.2. Satisfaction
The high average accuracies achieved with the hydrogel-based
and the tap water-based systems are also reflected in the
results of the VAS and eQUEST 2.0. A mean VAS score of
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8.00 (hydrogel-based) and 8.76 (tap water-based) and a mean
eQUEST 2.0 score close to the maximum indicate that the
participants were “very satisfied” with these two systems.

Although the mean eQUEST 2.0 score of the dry electrode-
based system is not considerably lower than the scores of the two
other systems, the negative difference of the VAS score is 2.12 to
the tap water-based and 1.36 to the hydrogel-based systems (see
Table 4). The main reason for that is probably the dissatisfaction
of the users with the speed and effectiveness of the dry electrode-
based system. Both criteria are rated low (below 4.0), whereas at
the same time, they are listed as the most important features by
most of the users.

However, the participants tested every system only once.
Therefore, one can assume that the questionnaire scores
may change when they are using the systems more often.
Consequently, the results can only indicate a trend not absolute
values.

One statement of the participants is consistent for all EEG
amplifier systems: The users disliked the electrode cap. They felt
that the cap was unaesthetic and conspicuous.

4.3. Comparison to Existing Literature
Volosyak et al. (2010) compared a prototype of the used water-
based electrode system with passive Ag/AgCl electrodes. The
major statements and conclusions out of this paper are “EEG
activity can be measured with the novel water-based electrodes”
and no significant differences between the two sensor modalities
concerning the BCI classification accuracy (SSVEP spelling task)
could be found. Both the points are also supported by our
findings.

In Zander et al. (2011), the prototype of a dry electrode-based
system was compared to an active Ag/AgCl electrode system. The
electrodes were tested in two scenarios: ERPs were investigated
and occipital alpha was measured. In addition, BCI classification
accuracies were evaluated. The outcomes were, that no significant
differences in the amplitude and the temporal structure of ERPs
and no significant classification accuracy differences between
the dry electrode-based and gel-based systems were detectable.
However, the dry electrode-based system has a slightly lower
ERP classification accuracy. Our findings indicate that the
dry electrode-based system has a considerably lower ERP
classification accuracy.

Guger et al. (2012) tested dry electrodes that were identical
with the electrodes tested in this manuscript. Participants
performed a simple P300 spelling task. The results were
compared with the results gathered from standard passive and
active electrodes. In addition, the dry electrodes were evaluated
concerning the wearing comfort. Our results support their
findings that the dry electrodes have a lower ERP classification

accuracy. However, our assessed classification accuracy of the
dry electrodes is on average more than 15% (cf. Guger et al.:
0.6%) lower and some participants reported discomfort after
some time of usage. This is hardly surprising, considering that
the participants of Guger et al. just had to copy spell five
characters. In contrast, our participants had to copy spell at least
40 characters.

5. CONCLUSION

On the basis of the findings, the gel- and tap water-based systems
are comparably suitable to build a very effective and efficient
BCI. However, many users do not want to have gelled or wet
hair and may accept a possibly lower effectiveness or efficiency to
avoid inconveniences. Therefore, the dry based-electrode system
is perfectly suitable.

Taking into account the outcome of a recent user-centered
BCI evaluation (Kübler et al., 2014) and the recommendations
of the BNCI roadmap (Brunner et al., 2015), the further
development of BCI-suitable EEG acquisition systems should
focus on the integration of the hardware into a single unit,
wireless data transmission, and especially an appealing solution
for placing gel-free electrodes on the head. The realization
of these recommendations would strongly increase the user
acceptance of BCIs outside the laboratory.
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Abstract

The P300 event-related potential is a well-known pattern in the electroencephalogram

(EEG). This kind of brain signal is used for many different brain-computer interface (BCI)

applications, e.g., spellers, environmental controllers, web browsers, or for painting. In

recent times, BCI systems are mature enough to leave the laboratories to be used by the

end-users, namely severely disabled people. Therefore, new challenges arise and the sys-

tems should be implemented and evaluated according to user-centered design (USD)

guidelines. We developed and implemented a new system that utilizes the P300 pattern to

compose music. Our Brain Composing system consists of three parts: the EEG acquisition

device, the P300-based BCI, and the music composing software. Seventeen musical partici-

pants and one professional composer performed a copy-spelling, a copy-composing, and a

free-composing task with the system. According to the USD guidelines, we investigated the

efficiency, the effectiveness and subjective criteria in terms of satisfaction, enjoyment, frus-

tration, and attractiveness. The musical participants group achieved high average accura-

cies: 88.24% (copy-spelling), 88.58% (copy-composing), and 76.51% (free-composing).

The professional composer achieved also high accuracies: 100% (copy-spelling), 93.62%

(copy-composing), and 98.20% (free-composing). General results regarding the subjective

criteria evaluation were that the participants enjoyed the usage of the Brain Composing sys-

tem and were highly satisfied with the system. Showing very positive results with healthy

people in this study, this was the first step towards a music composing system for severely

disabled people.

Introduction

Brain-computer interfaces (BCIs) are useful tools to provide communication without the need

of any voluntary muscular control. A BCI can be an assistive device for people who are suffer-

ing from severe disabilities, i.e., who cannot communicate via the normally available channels

due to motor degeneration or brain damage [1]. The so-called P300 event-related potential

(ERP) is a prominent brain signal for BCI-control and is often assessed non-invasively by

measuring the electroencephalogram (EEG). Farwell and Donchin [2] developed the first

P300-based BCI application utilizing the so-called oddball paradigm where approx. 300ms
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after the presentation of a rare stimulus between frequently presented standard stimuli a posi-

tive deflection in the EEG occurs [3]. The P300 was elicited by randomly flashing the rows and

columns of a 6 × 6 matrix containing the letters of the alphabet and numbers between 0–9.

Volunteers were asked to count the flashings of the symbol to be selected and to ignore the

highlighting of the other characters. Almost all existing BCIs attempting to evoke the P300 pat-

tern visually are using this method. This type of BCI allows writing characters and letters or

selecting commands on a computer screen. Based on the oddball principle, also auditory [4]

and tactile [5] P300-based BCIs were developed and evaluated with healthy as well as severely

disabled people, e.g., [6–9]. It has been shown that with a P300 BCI it is possible to spell,

browse the internet, control a smart home, and drive a wheelchair [10–12]. Also applications

for entertainment have been developed [13, 14].

One example for an application which allows the users to paint pictures and thereby express

their creativity is the so-called Brain Painting application. This application was designed by the

German artist Adi Hösele in cooperation with the Institute of Medical Psychology and Beha-

vioural Neurobiology at the University of Tübingen [15]. A P300-based BCI is the basis of the

Brain Painting system. With a special P300 matrix, it is possible to select the color, grid size,

object size, transparency, and other features which allow painting pictures on a virtual canvas.

Various studies have been conducted with the Brain Painting application demonstrating that it

is possible for healthy people as well as for severely disabled people to paint pictures [16–18].

Furthermore, the Brain Painting system was used by several severely disabled painters in their

homes over a long time period and these painters had several exhibitions in different countries

[17]. The development of the Brain Painting application was based on a user-centered design

(USD) approach according to the ISO 9241–210 norm. UCD is becoming more and more

important in BCI research. Many studies have already been published regarding this topic

[19–22]. According to Kübler et al. [23] a BCI system for communication and control devel-

oped by UCD standards is evaluated and improved by three main factors, namely effectiveness,

efficiency and satisfaction.

Besides painting pictures, another possibility for creative expression is to make music. Utiliz-

ing the EEG to make music was first introduced by Adrian and Matthews in 1934 [24]. They

implemented a sonification of the EEG signals. The first attempt to really compose a musical

piece using EEG was performed by Lucier et al. [25] in 1965. Other composers, like Rosenboom

[26] and Teitelbaum [27], followed. All these early so-called brain-to-music interfaces are based

on sonification of the EEG signals. The first attempt to assess the performer’s attention with the

EEG and make parameter-driven music by detecting selective attention was introduced by

Rosenboom in 1990 [28]. Fifteen years later Miranda and Boskamp introduced the brain-con-

trolled piano [29]. They gave generative rules to the most prominent frequency bands in the

spectrum of the EEG. Additionally, the system measured the complexity of the EEG signals to

modulate the tempo and dynamics of the music. Wu et al. proposed a direct parameter map-

ping method to translate characters of the EEG into musical notes which is based on the power

law of brain activities and music [30]. Later this method was extended for deriving a quartet

from multichannel EEG [31]. Daly et al. developed and evaluated an affective brain-computer

music interface for modulating the affective states of its users [32]. Their system attempts to

modulate the users current affective state by playing music which is generated by an algorithmic

music composition system and a case-based reasoning system. An overview about brain-to-

music interfaces is given in the book: “Guide to Brain-Computer Music Interfacing” [25].

Utilizing the P300 component of the EEG to compose music was introduced by Grierson

et al. [33]. They arranged different tone pitches, between A1 and G5, on a P300 spelling matrix.

In a pilot study, five users were asked to select the C major notes, i.e., c’’’, d, e, f, g, a, b, c’’’’.
Four of the tested five subjects could finish the task with an accuracy rate of 75% or above.

Composing only by thought: Novel application of the P300 BCI
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Our Brain Composing system is based on the hypothesis that it is possible to effectively

compose music via BCI without constraints. Therefore, we combined two powerful systems, a

P300-based BCI with a music composing software. The BCI allows the user to control the com-

posing software completely by concentrating on the elements of the P300 matrix. In addition

to the suggested USD approach, in our opinion, a BCI system for disabled people has to be

developed in two steps: first, the system has to be tested and evaluated with healthy subjects

and improved according to the suggestions of that user group. In a second step, the system has

to be evaluated with the disabled users and adapted according to their feedback. This two-step

method allows solving error and usability problems of the system before the intended end-

users work with it for the first time. The objective of this strategy is to avoid that severely dis-

abled people become demotivated by initial problems.

A pilot study, addressing the usability of the Brain Composing system, showed positive

results [34]. Five healthy participants took part in the pilot study. Their task was to copy-

compose a given melody with the Brain Composing system. A minimum of 42 selections were

necessary to finish the task. Three participants completed the task with accuracies between

77.8 and 95.7% and two participants were able to copy-compose more than half of the melody

correctly.

The aim of the current study is to test our hypothesis and therefore, to investigate accuracy

and user-acceptance of the Brain Composing system. User acceptance was determined with

visual analogue scales, user experience questionnaires, and workload assessments. We evalu-

ated the Brain Composing system with 17 healthy volunteers with musical background and

one professional composer with at least 40 years experience in composing. They were asked to

perform several tasks with the system and answer several questionnaires before and after the

usage of the Brain Composing system. Tasks were a copy-spelling task, two copy-composing

tasks and a free-composing task. This study was the proof of concept before testing the system

with disabled people.

Materials and methods

The designed Brain Composing system consists of three parts: the EEG acquisition system, the

P300 control software, and the music composing software. For signal acquisition, we used a

gel-less biosignal acquisition system. Additionally, a universal P300-based BCI control system

[11] was connected to a powerful, open-source music composing software (MuseScore 1.3,

https://musescore.org).

Data acquisition

EEG signals were recorded with the Mobita (Twente Medical Systems International B.V., Old-

enzaal, the Netherlands) biosignal amplifier, which transmits signals with 24 bit resolution via

Wi-Fi wireless technology. The electrodes consist of small cotton pieces, connected to silver

chloride pellets. The cotton is soaked in tap water prior to the measurement. The ground elec-

trode is connected to a tap water soaked, conductive wrist band. The amplifier internally cre-

ates an average reference out of all used electrodes. Therefore, a real reference electrode is not

required. This system ensures high usability [35]. EEG was recorded from six scalp electrodes

(Fz, Cz, Pz, PO7, PO8, Oz) placed according to the extended international 10–20 system, with

a sampling rate of 250 Hz.

P300-based BCI control system

The used P300-based BCI control system is a further development of a system which was

introduced in [36] and has been used for various studies, e.g., [11, 35, 37]. One of the main

Composing only by thought: Novel application of the P300 BCI
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features is that it is a distributed system, i.e., a C-code written part is used for the stimulation,

Matlab (The MathWorks, Natick, USA) is responsible for the signal processing, and another

C-coded program handles the signal acquisition [38]. All the different parts are connected via

a TCP network. The used data acquisition system delivers raw signals. Therefore, we used a 4th

order Butterworth band-pass filter with cut-off frequencies of 1 and 15 Hz. As described in

[11], different stimulation matrices are possible. In addition to the described method in [11],

new ways to change the content of the P300 matrix and to control an external application were

implemented. The content of the P300 matrix is stored in a JSON (javascript object notation)

file. JSON is a lightweight data-interchange format. A JSON file can include the information

for multiple matrices. The transition between different matrices is implemented by means of

cross-links, i.e., every matrix has a unique name and can be called by an element of another

matrix. In sum, every JSON matrix item consists of four parts: a symbol that is shown in the

matrix, a value that is sent to the external application by key-press simulations, a cross-link ele-

ment that can contain the name of another matrix, and finally a selectable element that indi-

cates whether the symbol should change the color when it was selected. This implementation

enables the user to control entire programs with the P300-based BCI.

Additionally, we implemented a dynamic stopping strategy that classifies the data after

every flashing sequence, i.e., all rows and columns flashed once. If the classification result had

been identical three times in a row, the corresponding element was marked yellow in the

matrix, printed out in the bottom line, and sent to the controlled application. Therefore, the

minimal number of highlighting sequences was three, cf. [12]. If the defined maximum num-

ber of flashing sequences was reached without having a final result, the stimulation was reset

and started again.

Music composing software

For the Brain Composing system, we connected the P300-based BCI control system with the

music composing software MuseScore (https://musescore.org) version 1.3. This open-source

music composing software provides an easily and commonly used environment to create

high-quality western musical scores. Music can be composed for many different instruments,

e.g., string instruments, piano, or brass instruments, by combining note lengths and note

pitches. Additional features like rests, slurs, accords, and many more are also available. Sheets

of music can be saved and exported in different media file formats, like MP3 or MIDI. How-

ever, the main reason why we decided to use this composing software is that an integrated

shortcut manager allows creating shortcuts with different key combinations for nearly every

possible command. In this way, all important control functions of the MuseScore software can

be directly called via keyboard shortcuts.

The composer control method

By selecting the MuseScore item in the menu bar of the P300-based BCI control application,

the MuseScore application is started. At the same time, the P300-based BCI control application

displays the main Brain Composing matrix consisting of four cross-link elements: “New”,

“Open”, “Save”, and “Compose”. By selecting one of these first three elements, the MuseScore

program opens the new, open, or save dialog window and the matrix changes to a matrix filled

with Latin letters and control elements to create, open, or save a sheet of music. By selecting

the “Compose” element, the user can directly start to compose music. Composing elements

are displayed in the matrix and the last used sheet of music is shown in the MuseScore

window.

Composing only by thought: Novel application of the P300 BCI
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To insert a note into a given sheet of music, first the note length has to be selected, see Fig 1

red arrow. The currently selected value is indicated by yellow color in the P300 matrix, see Fig

1(a). Extra features for the note, like accidentals, dot, slur or chord, can be selected, see Fig 1

yellow arrow. Accidentals and dots are just applied to the note pitch that is selected subse-

quently, whereas the slur and chord function remain activated, marked with yellow color until

selected again. Finally, to add a note, a pitch has to be selected, see Fig 1 blue arrow. After-

wards, the selected note is played and the user sees the note on the sheet of music. Errors can

be corrected by deleting the note. Two elements (”play all”, “play rest”) are available to play the

composed melody, see Fig 1 green arrow. Various other elements are available, e.g., to navigate

back and forth between notes or bars and to change the pitch in steps of one octave.

Study design and procedure

We evaluated the new Brain Composing system with eighteen participants in terms of effi-

ciency, effeciveness and satisfaction. During the performed experiment, participants were

seated in a comfortable chair approximately 70 cm away from two computer screens centered

in front of them, see Fig 2. The upper screen displayed the P300 matrix used to control the

music composing software, which was shown on the bottom screen when activated. The bot-

tom screen remained black during the calibration and copy-spelling tasks.

Participants. Seventeen healthy, non-professional musicians, hereinafter called non-

professional participants, (5 female, mean age: 27.12, SD:8.54 years) took part in the study (16

right-handers, 1 left-hander). Twelve participants were naive to BCI, four had experience with

BCI (not P300-based), and one had taken part in the Brain Composing pilot study. All partici-

pants disavowed any history of neurological or psychiatric disease and hearing impairment,

and had normal or corrected-to-normal vision. They gave written, informed consent before

the experiment. The study was approved by the Ethic Committee of the Medical University of

Graz, Austria.

Before the main experiment participants had to fill out a questionnaire covering different

aspects of musical training, instruments and demographic information. All participants had

Fig 1. Brain Composing P300 matrix. Sketch of the P300 matrix and the corresponding commands in MuseScore. (a) Screenshot of the

black and white P300 stimulation matrix; (b) Screenshot of the MuseScore window. All colored areas are inserted to visualize the different

commands for the reader and were not shown during the study.

https://doi.org/10.1371/journal.pone.0181584.g001
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played at least one instrument and/or sang (mean duration: 15.18, SD:5.83 years), and had

received instrumental or vocal training in the past (mean duration: 10.74, SD:5.83 years). Four

participants were still taking instrumental lessons. Twelve participants were playing their

instrument/singing regularly (mean 5.25, SD:3.79 hours/week), five did currently not play/

sing. Six participants had been playing/singing exclusively solo, eleven had additional experi-

ence in playing/singing in a band, orchestra or choir. All participants were able to read music

notes. Apart from instrumental or vocal lessons, they had received musical training to a vary-

ing degree. However, none of them worked as a professional musician or composer. Nine par-

ticipants stated that they did not compose music, eight composed music. Six participants

reported to use composing software, three of them had used MuseScore before. The partici-

pants considered themselves as moderately to highly musical (M:7.55, SD:1.65), indicated by a

score between 0 and 10 (0 = “not musical at all”, 10 = “highly musical”).

One professional musician and composer, hereinafter called professional composer, (68

years old, right-hander, BCI naive) took part in the study. He has played clarinet for 58 years

and had received instrumental training for 20 years. He had studied clarinet, composition and

orchestral training at the University and had been teaching music as a professor for many

years. He has been working as a free-lance composer for more than 10 years and has created

numerous compositions. He composed up to 10 hours/day and played clarinet 2 hours/day.

He worked with professional computer software but had not used MuseScore before.

We performed the evaluation of the Brain Composing system separately for the non-

professional participants and the professional composer to investigate related differences.

Calibration. For calibration, a 6 × 6 matrix, consisting of the letters of the German alpha-

bet, the numerals 1–7, and three other commands, was used. Calibration was performed with

Fig 2. Brain Composing setup. The upper screen shows the P300 stimulation matrix and the bottom screen shows the music composing

software.

https://doi.org/10.1371/journal.pone.0181584.g002
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15 highlighting flashes per row and column, with a flash duration of 50 ms and an inter-stimu-

lus interval (ISI) of 125 ms. Elements of the matrix were highlighted with famous faces [39].

Each block of sequences was followed by a four seconds pause. Participants were asked to

copy-spell six symbols (”H3P5FU”), which were equally distributed over the matrix. At the

beginning of each block, the target element was marked yellow in the matrix for two seconds.

Participants were asked to focus their attention on the target and to mentally count the num-

ber of times the symbol was highlighted. Accuracy was calculated for every flashing sequence

with a leave-one-letter-out cross validation. The calibration was successful when the accuracy

was higher than 70% at any number of sequences.

Main experiment. After the calibration, participants had to fulfill four different tasks: a

copy-spelling, a manual copy-composing, a P300-based BCI copy-composing, and a free-com-

posing task, see Fig 3.

The copy-spelling task consisted of copy-spelling the words “MUSIK” (Eng. “MUSIC”) and

“LISZT” (the name of a famous Austrian composer), see Fig 3, first row. The word to spell was

inserted in the bottom line of the computer screen, below the P300 matrix. Stimulation param-

eters were equal to the calibration except the number of flashing repetitions, which were

dynamically stopped. In case of an error, participants were instructed not to correct it but to

proceed with the next selection. In the copy-composing task, participants were asked to copy-

compose the first six bars of the well-known French Canadian children’s song “Alouette”, see

Fig 3, second row. The melody was printed on a sheet of paper and placed at the top of the bot-

tom monitor, thus located in the middle of the two screens. First, participants were given a ver-

bal instruction how to control the composing software, insert music notes via the P300 matrix

by mouse clicks, and get familiar with the application. Afterwards, they were asked to copy-

compose the given melody via the P300 matrix by mouse clicks, see Fig 3, third row. In case of

mistakes, further explanations were given how to control the music composing system.

For the P300-based BCI controlled copy-composing task, see Fig 3, fourth row, the pause

after each block of sequences was set to 10 seconds in order to give the participants sufficient

time to prepare for the next selection. Additionally, the participants were instructed to briefly

state each element they intended to select before the next block of flashes started. Errors and

false intentions were corrected via spoken commands of the experimenter. Intended and actual

selections were noted in a protocol. The task included first selecting the “Compose” element in

a 3 × 6 matrix with the elements “New”, “Open”, “Save”, and “Compose”. All other fourteen

elements were filled with a meaningless symbol (”–,,–”). When the “Compose” element was

selected, the matrix switched automatically to the 6 × 6 “composing” matrix and the music

composing software was opened on the bottom screen with a prepared empty music sheet.

After inserting all notes correctly, participants were asked to select the element “play all”. In

total, 41 selections were required to complete the task. The task was aborted when the partici-

pants reached a number between 62 and 70 selections. This number varies because the task

was aborted in this range when the user had no chance to finish.

After copy-spelling and copy-composing, participants could compose an individual melody

(free-composing task), see Fig 3, fifth row. They were given a maximum of 30 minutes but they

were also able to stop earlier. The stimulation parameters were identical to the copy-composing

task. The participants again had 10 seconds time between each block of sequences to think

about the next step, i.e., the next note length, pitch, feature. During this part of the experiment,

they were no longer instructed to verbally state the symbols they intended to select but to say

“false” in case of a misclassification, i.e., if the symbol they had focused on was not selected.

Misclassifications were again noted in a protocol to calculate accuracies for the different tasks

afterwards. Accuracies are defined as the ratio of the sum of correct selections to the sum of

made selections for the copy-spelling, the copy-composing, and the free-composing tasks.

Composing only by thought: Novel application of the P300 BCI
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Fig 3. Sketch of the tasks. First row: Task 1 was to copy-spell “musik” and “liszt” with the P300-based BCI.

Second row: The participants had to copy-compose the first six bars of the well-known French Canadian

children’s song “Alouette”. Third row: Task 2 was to manually, i.e., by mouse-clicks, copy-compose the

melody of Alouette. Fourth row: Task 3 was to copy-compose the melody of Alouette with the P300-based

BCI. Fifth row: Task 4 was to compose free for 30 minutes.

https://doi.org/10.1371/journal.pone.0181584.g003
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Acquisition of behavioral data

In the present study, participants had to fill out several questionnaires covering their motiva-

tion, mood, fatigue, workload and user experience. In the following section, the used question-

naires are introduced in detail.

Motivation, mood, fatigue. Visual analogue scales have been used in many BCI studies,

e.g., [20, 22, 40], and have been shown to be reliable and valid in measuring emotions or atti-

tudes. The participants were asked to indicate their motivation, mood and fatigue on a VAS.

Each VAS consists of a 10 cm long horizontal line with the anchor points 0 and 10 (0 = “not at

all motivated”/ “bad mood”/ “not at all tired”, 10 = “highly motivated”/ “very good mood”/

“very tired”). Participants were asked to mark the position on the line which best represented

their motivation, mood, or fatigue. Motivation was assessed before the experiment, mood and

fatigue before and after the experiment. Pre- and post-values of mood and fatigue were com-

pared with a paired sample t-test, respectively.

Workload. To assess subjective workload an electronic version of the NASA Task Load

Index (NASA-TLX) [41] was administered. The NASA-TLX is a well validated instrument for

workload assessment [42] also used in BCI research [21, 23, 43]. The NASA-TLX is a multi-

dimensional scale used to estimate subjective workload on six dimensions: mental demand,

physical demand, temporal demand, performance, effort, and frustration. Each of these factors

is rated on a 20-step bipolar rating scale with a score ranging from 0 to 100 and anchor

descriptors such as “high/low”. In a second step, participants indicate in 15 pairwise compari-

sons which factor contributed more to their subjective workload. The number of times a factor

is chosen as more relevant is the weighting of the factor for the given task. By this weighting

procedure, a global workload score is yielded (ranging from 0 to 100, a high score indicating a

high workload), and the relative contribution of each factor to the total workload is identified

(the highest possible score for each factor is 33.3).

User experience. To evaluate user experience (UX), the user experience questionnaire

(UEQ) was administered [44]. The UEQ was developed to assess UX in an easy and immediate

way, covering both pragmatic and hedonic aspects. It has been used to assess UX for a variety

of software products, e.g., [45, 46] and was used in a recent BCI study [21]. The UEQ consists

of 26 bipolar items rated on a 7-point semantic differential scale. The single items are trans-

formed to the range from −3 to +3 and are assigned to six subscales: attractiveness, perspicuity,

efficiency, dependability, stimulation, and novelty. Values above 0.8 indicate a positive impres-

sion, values below −0.8 a negative impression and values between −0.8 and 0.8 a neutral

impression. The score of each subscale is calculated by averaging the rating of the correspond-

ing items. The obtained subscales can further be grouped into three categories: attractiveness,

use quality, and design quality. Attractiveness is a pure valence dimension, describing a per-

son’s general attitude towards a product. Use quality reflects pragmatic quality aspects (average

over the subscales efficiency, perspicuity and dependability) and design quality describes

hedonic quality aspects (average over the scales novelty and stimulation).

In addition, participants completed a custom-made usability questionnaire (UQ) gathering

further information about user satisfaction with the Brain Composing system, and rated their

overall satisfaction, enjoyment and level of control on VAS (ranging from 0 and 10) after the

experiment (0 = “not at all satisfied”/ “no enjoyment at all”/ “no control”, 10 = “absolutely sat-

isfied”/ “absolute enjoyment”/ “absolute control”).

Results

A video that demonstrates how the Brain Composing system works is available: S1 Video.

Composing only by thought: Novel application of the P300 BCI
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BCI effectiveness and efficiency

A comparison of the different accuracies per participant and task is shown in Fig 4. The accu-

racy has to be higher than 70% to be sufficient, cf. [47–50]. This threshold value is marked by a

red dotted line in Fig 4. The non-professional participants’ (N = 17) average copy-spelling

accuracy was 88.2 (SD:16.3)% in a range between 60 and 100%. The average time to spell one

word (5 letters) was 77 (SD:6.8) seconds with a break of 6 seconds between the letters. For two

participants, the task was unclear at the beginning. Their accuracy increased from 20% for the

first word to 100% for the second word. Calculating the accuracy without these two partici-

pants (N = 15), the average accuracy would be 92.0 (SD:13.2)% instead.

The professional composer needed 73 seconds and 66 seconds to spell the two words with

an accuracy of 100%.

Thirteen non-professional participants finished the copy-composing task with an average

accuracy of 88.6 (SD:8.2)%. On average, they needed 54 (SD:9) selections to finish the task.

With a pause of 11.5 seconds between the selections, the average time was 21:23 (SD:3:38) min-

utes. Four participants did not finish the task, because the task was aborted between 62 and 70

selections when the participants had no chance to finish it within 70 selections. However, at

the end of the task only two participants were more than 10 steps away from finishing the com-

position. One participant copy-composed the given melody without any error. Six out of 17

participants composed the given melody with fewer than four errors. The professional com-

poser composed the given melody with an accuracy of 93.6% in 20 minutes. He needed 47

selections.

Thirteen non-professional participants used the full length of 30 minutes to compose their

own melody. The four participants who did not used the whole 30 minutes, stated that they

composed what they wanted to achieve. All the composed pieces of music are shown in Fig 5.

To hear the compositions please use S1 Music. The average classification accuracy of the non-

professional participants was 76.5 (SD:17.2)%. If the participants that could not finish the

copy-composing task were excluded, the average accuracy would increase to 84.3 (SD:9.6)%.

The non-professional participants composed, on average, 17.9 (SD:6.9, range: 6–31) notes

during the free-composing run. For this, they needed, on average, 4.3 (SD:2.3, range 2.4–10.7)

Fig 4. Accuracies of the different tasks. The accuracies of the copy-spelling, copy-composing, and the free-composing tasks are shown.

P1-17 represent the non-professional participants and PC is the professional composer. Asterisks indicate that the participant did not finish

the copy-composing task. The red dotted line indicates the 70% accuracy limit. Below that limit a BCI could not be used satisfactorily.

https://doi.org/10.1371/journal.pone.0181584.g004
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selections per note. Consequently, the participants made 2.4 selections per minute (SD:0.21)

with an inter-selection pause of 11.5 seconds. On average, they needed 1 hour and 32 minutes

to fulfil all tasks plus the calibration with a standard deviation of 13 minutes. This period also

includes pauses between the tasks. During that time the participants made, on average, 132

(SD:18) selections with the BCI.

The professional composer composed only fourteen minutes freely. However, he had an

accuracy of 98.1%, composed 26 notes, needed 2.1 selections per note, and made 3.9 selections

per minute.

Behavioral data

Visual analogue scales. All non-professional participants were highly motivated (M:8.85,

SD:0.83). During the study, mood did not change significantly (t(16) = 1.08, p = 0.30, Cohen’s

d = 0.26) from M:8.04 (SD:1.31) to M:7.55 (SD:1.66) and fatigue increased significantly from

M:2.74 (SD:1.8) to M:3.73 (SD:1.89) (t(16) = 2.52, p = 0.02, Cohen’s d = 0.61). Satisfaction was

rated high (M:7.85, SD:1.60). All non-professional participants enjoyed the usage of the brain

composing system (M:8.11, SD:1.49) and felt to have good control (M:7.39, SD:1.89). Box plots

of the results can be seen in Fig 6.

Ratings of the professional composer are shown as green asterisks in Fig 6. In the satisfac-

tion box plot, the value of the professional composer is an outlier. He argued that the method

to make selections restricted his composing process.

NASA-TLX. Fig 7 shows the stacked bar plot of the NASA-TLX workload score for all

participants. The non-professional participants’ mean global workload score was 62.92

(SD:13.75, range:25.33–83.33). Four participants reached workloads higher than 70. Factors

contributing to the global workload score were mental demand (M:19.82, SD:7.07), effort

(M:15.06, SD:8.69), performance (M:11.33, SD:7.32), temporal demand (M:9.76, SD:8.14),

frustration (M:4.92, SD:5.29), and physical demand (M:2.02, SD:6.48).

Fig 5. Participants’ free compositions. The non-professional participants’ (P1-17) and the professional composer’s (PC) musical pieces.

https://doi.org/10.1371/journal.pone.0181584.g005

Composing only by thought: Novel application of the P300 BCI

PLOS ONE | https://doi.org/10.1371/journal.pone.0181584 September 6, 2017 11 / 19



Fig 6. VAS scores. The non-professional participants’ VAS scores are presented as box plots. The professional composer’s scores are

shown as green asterisks.

https://doi.org/10.1371/journal.pone.0181584.g006

Fig 7. NASA-TLX scores. The non-professional participants’ (P1-17) and the professional composer’s (PC) NASA-TLX scores.

https://doi.org/10.1371/journal.pone.0181584.g007
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The global NASA-TLX workload score of the professional composer was 56.67 (perfor-

mance: 19.00, mental demand: 14.00, effort: 9.00, physical demand: 8.00, temporal demand:

6.67, and frustration: 0.00).

User experience questionnaire. According to the six subscales, the non-professional par-

ticipants gave the system high average ratings for stimulation (M:2.02, SD:0.58) and novelty

(M:1.93, SD:1.09) and a moderate rating for attractiveness (M:1.62, SD:0.50), perspicuity

(M:1.60, SD:0.81), efficiency (M:0.84, SD:0.90), and dependability (M:1.49, SD:0.74), see Fig 8.

Consequently, the averaged value for the design quality was higher (M:1.97, SD:0.67) than for

the user quality (M:1.31, SD:0.60). However, the impression of all parameters was positive

except for the efficiency, which was neutral.

The professional composer rated the system lower compared to the other participants’ val-

ues, see green asterisks in Fig 8. Participant four rated the “novelty” with a low value (−1.5),

see outlier in Fig 8, without giving reasons.

Usability questionnaire. Two participants stated that sometimes it was unclear to them

where the next note will be set. Normally, the position was indicated by a grey line in the

MuseScore software. However, sometimes the note was set before or after this grey line

depending on the previous selections. Eight users remarked that they want to have something

like a pause button to have time to think about the next step (note) or that the system should

detect when they think about the next note and pause automatically. Eight users negatively

remarked that the correction of an error can be difficult and often requires more than one

selection. The professional composer negatively remarked that it is complicate to select one

note and this disturbs his creative process of composing. He suggested that commonly used

notes (the combination of note length and pitch) should be selectable with a single selection

step to fasten the system.

Fig 8. UEQ scores. The non-professional participants’ UEQ scores are presented as box plots. The professional composer’s UEQ scores

are shown as green asterisks.

https://doi.org/10.1371/journal.pone.0181584.g008
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Discussion

We presented the implementation and evaluation of the first BCI controlled music composing

system. Furthermore, the results indicate that the system works efficiently and effectively and

the users enjoyed using it. However, there is still potential to improve the whole system accord-

ing to the participants’ recommendations. Additionally, a new version of the MuseScore soft-

ware is available, which solves some arising problems and can be used without substantial

changes in the system.

Composer control method

The communication between the P300-based BCI system and the composing software works

only in one direction: from the BCI to the composer. Therefore, if a command from the

P300-based BCI does not reach the composing software, an asynchrony between the two sys-

tems can occure. For example, if the selection of a different note length is lost between the

speller and the composing software, a wrong note length will be displayed in the P300 matrix.

This problem can only be solved by a two-way communication between the P300-based BCI

and the music composing software. Then the composing software can acknowledge the

received commands. The implementation would require a network connection between the

applications. Due to the open-source-feature of MuseScore, this implementation would be

possible, but with much more implementation effort.

Evaluation of the BCI efficiency and effectiveness

The used tap water-based EEG amplifier system worked satisfactorily and had the advantage

that hair wash was not necessary after the measurements. Excluding the two participants who

did not know how to spell at the beginning, the accuracy of the copy-spelling task was above

90%. This high value could not be reached again at the copy-composing or the free-composing

task. The copy-composing tasks were more complex and thus cognitively more demanding

than the simple spelling tasks. As opposed to copy-spelling, during composing sometimes a

combination of subsequent selections was necessary to insert a specific note, i.e., specifying

according features such as accidentals or dots. Moreover, in free-composing one needs to

focus their attention on the to-be-selected element in the matrix while still creating a composi-

tion/melody. For the non-professional participants, this is even more challenging and

demanding than copy-composing a given melody. On the other side, it seems that this fact did

not influence the performance of the professional composer: his accuracies were at all three

P300-based BCI tasks above 93%, see Fig 4. Therefore, one can assume that he had the melody

in his mind and just concentrated on the transposition of it. Interestingly, he had lower accura-

cies when he had to copy-compose a melody than when he composed his own melody.

The pause between the blocks of P300 stimulation sequences was 10 seconds. The profes-

sional composer and one non-professional participant told us that 10 seconds were too long.

According to their recommendation, the breaks between the P300 stimulation periods could

be adapted to the users to increase the efficiency of the system.

Another reason for decreasing accuracies might be the time the participants had to spell in

a row. During the spelling task, the participants had a break after five selections. No regular

breaks were planned during the composing tasks. Eight of the seventeen non-professional par-

ticipants recommended that a “pause” element should be included into the P300 matrix to

pause the system, cf. [11]. This functionality should definitely be integrated in the next version

of the Brain Composing system.

A third reason for the lower composing accuracies could be that nine of the seventeen non-

professional participants did not compose music at all and only six of the remaining
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participants reported to use composing software. Out of this six only one participant solely

uses composing software. All the other non-professional participants stated that they first use

their favorite instrument to compose and afterwards they transfer the composition to a com-

puter using composing software. Therefore, they are not used to compose directly on the com-

puter like the professional composer.

Evaluation of behavioral data

The motivation of the users is a crucial factor for P300-based BCIs [51]. The average result of

the motivation VAS indicates that all participants were highly motivated. This fact is reflected

in the averaged high accuracies. In line with these high accuracies, the participants felt to have

good control over the system which, in turn, likely contributed to the high enjoyment and sat-

isfaction they reported. After approximately one hour and 31 minutes of using the system, the

fatigue score had increased only slightly from 2.6 to 3.84. This result indicates that the duration

of our measurement is not the upper limit of usage and can be extended. One important out-

lier of the satisfaction values was the score of the professional composer. The way he had to

compose music with the Brain Composing system was very different to his normally used

method, namely, a musical keyboard in combination with a music composing software (not

MuseScore). This combination allows him to give complex commands with low effort. Com-

pared to the Brain Composing method, his method is of course faster and more efficient.

According to the UEQ, the participants had a positive impression of all the asked items,

except for efficiency, which was rated as neutral. This is not very surprising, because compared

to the normally used healthy participants’ input modalities a BCI works much slower and

therefore less efficient. However, one has to keep in mind that the introduced Brain Compos-

ing system is not designed for healthy people. It is designed for disabled people, who are not

able to use the normal computer input modalities. The design quality factor is very high,

which means that the users had a very positive impression about the design of the Brain Com-

posing system. The use quality, which is calculated out of perspicuity, efficiency, and depend-

ability, delivers also a mostly positive impression, albeit with a trend to be neutral. The

professional composer rated the attractiveness and dependability significant lower than the

other participants, but not negative. The reasons might be the same as for the already described

VAS satisfaction item.

Although the given tasks were complex and cognitively demanding, the non-professional

participants’ averaged NASA-TLX scores were moderate ranging from 25.33 to 83.33. Mainly

three factors contributed to the workload: mental demand, effort, and performance. These

three elements have also contributed most to the professional composer’s result. The low val-

ues for frustration indicate that the partly low accuracies did not seriously frustrate the partici-

pants. The overall rating of the professional composer was lower compared to the mean value

of the others. Interestingly, temporal demands did not contribute much to the total score,

although eight of the seventeen non-professional participants asked for a “pause” button inside

the matrix.

Summarizing the answers from the UQ, many participants recognize that it is very impor-

tant to avoid errors, because it costs a lot of effort to correct wrong selections. As already men-

tioned, many users suggest to implement a “pause” button to have flexible time between

selections to think or make a break. The most important reported weakness, namely that it was

sometimes unclear to the users where the selected note will be set, is already solved and/or

integrated in the next version of the MuseScore software as first tests with the new version

indicated. There the actual position in the sheet of music is better highlighted with a half trans-

parent grey box instead of a line. Therefore, any uncertainty about the actual composing
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position should be a problem of the past. Apart from minor remarks, fifteen of the seventeen

non-professional participants stated that they enjoyed using the Brain Composing system.

Conclusion

We could show that it is possible to compose complex music pieces with the introduced Brain

Composing system in a fast and comfortable way. The average accuracies of the P300-based

BCI tasks were very high even though the participants reported a moderate to high workload.

Furthermore, the participants reported that they enjoyed composing with the system.

This was the first step towards establishing a Brain Composing system as a tool for enter-

tainment and, even more important, self-expression for severely disabled people.

Supporting information

S1 Music. Composed music. This mp3 file contains the study participants’ compositions.

(MP3)

S1 Video. Brain Composing video. This video shows how the Brain Composing system is

used.

(MP4)

S1 File. Original raw data of the tasks and the questionnaires. XLSX file containing the orig-

inal raw data of the tasks and the questionnaires.

(XLSX)
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4. Käthner I, Ruf CA, Pasqualotto E, Braun C, Birbaumer N, Halder S. A portable auditory P300 brain-

computer interface with directional cues. Clinical Neurophysiology. 2013; 124(2):327–338. https://doi.

org/10.1016/j.clinph.2012.08.006 PMID: 22959257

5. Brouwer AM, van Erp JB. A tactile P300 brain-computer interface. Frontiers in Neuroscience. 2010;

4:19. https://doi.org/10.3389/fnins.2010.00019 PMID: 20582261

6. Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, et al. P300-based brain computer interface:

reliability and performance in healthy and paralysed participants. Clinical Neurophysiology. 2006;

117(3):531–537. https://doi.org/10.1016/j.clinph.2005.07.024 PMID: 16458069
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ABSTRACT: One of the main goals of modern brain-

computer interfaces (BCIs) is that they should be simple 

and intuitive to use. Long-lasting training and learning 

periods are demotivating for the intended user. 

Therefore, the training should be reduced to a 

minimum. This particularly applies to P300-based BCIs, 

which are known as highly accurate and robust.  

In this paper, we evaluated an approach that uses a 

generic classifier for P300 spelling instead of the usual 

personalized classifier, which  users have to train before 

they can use the P300-based BCI. The generic classifier 

was calculated using the training data of 18 persons and 

evaluated with the data of 7 persons. Results were 

compared to the results achieved with personalized 

classifiers. We found that the generic classifier achieved 

comparable results regarding the effectiveness and 

efficiency. Therefore, our approach seems to be an 

appropriate, zero training alternative to personalized 

classifiers. 

 

INTRODUCTION 

 

The electroencephalogram (EEG) can be used to 

establish a noninvasive communication or control 

channel between the human brain and a computer, a so-

called brain-computer interface (BCI) [1].  

A very prominent BCI application is the P300 speller 

[2]. This type of BCI is mainly based on the positive 

component of an event-related potential (ERP) that 

appears approximately 300ms after a rare stimulus 

occurred among frequently occurring stimuli.  

P300-based BCI provide high accuracies in combination 

with low illiteracy rates. Therefore, they are often used 

for communication and control systems. Various 

applications (e.g., speller [3], Brain Painting [4], music 

composer [5], and web browser [6]) are implemented. 

Prior using such an application, training of a classifier is 

required. Normally, the training is performed by copy-

spelling 5-10 predefined symbols and takes between 5 

and 10 minutes. However, the question is, whether this 

training is really necessary. 

Different approaches are proposed to avoid or reduce 

the training of the classifier. Kindermans et al. 

introduced a probabilistic zero training framework for 

ERPs [7]. They report high accuracies after a certain 

number of sequences. A sequence is defined as all rows 

and columns of the P300 matrix flashed once. However, 

the accuracy is still poor, when the number of sequences 

is limited to 3 or 4. 

Lu et al. introduced a subject-independent model, 

learned offline from EEG of a pool of subjects, to 

capture common P300 characteristics [8]. They 

compared the learned model with a subject-specific 

classification model and a cross-subject model. Results 

indicate that this approach delivers high classification 

accuracies (on average approx. 84%) in combination 

with zero training. The number of sequences was 

defined with ten. No statement was given regarding the 

accuracies achieved with a lower number of sequences. 

 

We asked whether the measured ERP during a P300 

spelling task is stable enough to use a generic classifier. 

Consequently, the aim of this paper is to evaluate the 

power of a generic classifier (GC). The GC was 

calculated with the training data of eighteen P300 BCI 

users. The shrinkage regularized linear discriminant 

analysis (sLDA) was used for classification. Blankertz 

et al. suggested to use this method as a new standard for 

classifying ERPs [9].  The GC was evaluated with the 

data of seven users regarding the efficiency, in terms of 

highlighting sequences that are needed to reach certain 

accuracy. Effectiveness was investigated by 

recalculating the results of a prior study [10] with the 

GC: seven users had to spell four words and to control a 

multimedia player and a web browser with the P300 

BCI. The accuracies of the online measurements and the 

offline simulations were compared. 

 
MATERALS AND METHODS 

 
     Data acquisition:  

The EEG data were acquired with a tap water-based 

biosignal amplifier (Mobita, TMSi, Oldenzaal, the 

Netherlands). Data were taken from six scalp electrodes 

(Fz, Cz, Pz, PO7, PO8, Oz) placed according to the 

extended international 10-20 system. A sampling rate of 

250 Hz was used. The signal processing was performed 

in Matlab (MathWorks, Natick, USA). The EEG signal 

was filtered between 0.1 and 60 Hz with a 4
th

 order 

Butterworth band pass filter. These filter settings were 

chosen to compare the results of this evaluation to the 

results of a prior study [10]. 
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     Generic training data generation: 

Eighteen healthy volunteers (5 female, mean age: 29.39, 

SD:12.71 years) performed a standard P300 classifier 

training procedure: the participants were seated in a 

comfortable chair approximately 60 cm away from a 

computer screen showing the P300 stimulation matrix, 

see Fig. 1. The training was performed with fifteen 

highlighting flashes per row and column. Each 

highlighting had a duration of 50 ms and the time 

between flashes was set to 125 ms. The task of the 

participants was to copy-spell five characters out of a 6 

x 6 matrix filled with letters and numbers. The 

characters were ''H3P5FU'', which were equally 

distributed over the matrix. Elements of the matrix were 

highlighted with famous faces [11].  

 

     Test data generation: 

Data from the study presented in [10] were used as test 

data. Seven  participants (1 female, mean age 25.29, 

SD:2.75) performed a training, hereinafter called 

personal training, two copy-spelling tasks, a multimedia 

player, and a web browser control task with the same 

data acquisition system, which we used to gather the 

training data. None of the seven participants 

participated in the generic training data generation 

measurements and the data were acquired at least half a 

year later than the training data. In [10] the personal 

training setup and signal processing were the same as 

described for the generic training data generation, 

except the word ‘’BRAIN’’ was spelled. 

The copy-spelling tasks consisted of spelling 4 words 

with 5 letters each. The participants were advised to 

spell the German words ‘’SONNE’’ (engl. ‘’sun’’), 

‘’BLUME’’ (engl. ‘’flower‘‘), ‘’TRAUM‘‘ (engl. 

‘’dream’’), and ‘’KRAFT’’ (engl. ‘’force’’). Between 

the second and the third word additional tasks, see 

below, were performed. The users were instructed not to 

correct wrongly spelled letters. The matrix was the same 

for training and copy-spelling.  

The multimedia player task was to control a multimedia 

player to look at pictures. The minimal number of 

selections was 10 and the maximum number was 15. 

The participants were advised to correct 

misclassifications. The web browser task was to look 

for ‘’BCI’’ in Google and to select and read the 

Wikipedia webpage about BCI. The minimal number of 

selections was 9 and the maximum number was 18. The 

participants were advised to correct misclassifications. 

The P300 matrices for the multimedia player and the 

web browser task were different, cf. [6]. 

 

     Generic classifier creation: 

The generic training data of the eighteen volunteers 

were divided into epochs of approximately 800 ms (204 

samples) after stimulus onset. The epochs were 

averaged per channel and row or column. Afterwards, 

the data were downsampled by the factor of 12 to 

reduce the number of features per channel. The data of 

each channel were concatenated to receive one feature 

vector per row and column. Thus, ten target feature 

vectors (2 vectors * 5 characters) and fifty non-target 

feature vectors (10 vectors * 5 characters) were 

available per volunteer.  

In sum, 180 target feature vectors and 900 non-target 

feature vectors were used to train a generic sLDA 

classifier. 

 

     Generic classifier evaluation:  

The GC was evaluated with the test data described 

before. We compared the accuracies calculated with the 

personalized classifier (PC), i.e., the classifier trained 

with data from the personal training, and the GC, 

respectively. PC accuracies for every flashing sequence 

were calculated per participant by a leave-one-letter-out 

cross validation of the personal training data. The same 

personal training data were classified with the GC. 

Accuracies per sequence and participant were calculated 

to evaluate the efficiency of the GC. The efficiency is 

high when a small number of sequences suffice to 

achieve high accuracy, i.e. above 70%. This is the 

proposed minimal level of sufficient accuracy for BCIs, 

cf. [12-15]. 

Additionally, we compared the online accuracies of the 

different tasks with simulated accuracies calculated with 

the GC to investigate the effectiveness of the GC. 

 

RESULTS 

 

The spatial GC weight distribution is shown in Fig. 2. 

To highlight only important weights, absolute values 

below 0.2 are not shown. 

Fig. 3 shows the average accuracies and confidence 

intervals of the GC and the PC using the training data of 

[10]. The confidence intervals show no significant 

differences. Interestingly, the GC on average showed 

better classification accuracies after sequence 13: the 

accuracies of the GC stayed stable at 100% or 2.9% 

above the PC accuracies. The proposed minimal level of  

Figure 1 – P300 stimulation matrix with letters and 

numbers. Rows and columns were highlighted with the 

face of Albert Einstein. 
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Figure 3 – Average (N=7) accuracies achieved with a certain number of sequences. The accuracies for the personal 

classifier were calculated with a leave-one-letter-out cross validation. Gray and green areas indicate the confidence 

intervals (CI) for proportions. The red dashed line indicates the minimal level of sufficient accuracy. 

Figure 2 – The graphs show the averaged EEG data of 18 participants after targets stimulations (blue solid lines) and 

non-target stimulations (red dashed lines). Additionally, the weights of the GC are represented by different gray tone 

areas. Due to the downsampling of the signals, weights are shown as areas. 
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Table 1 – Offline (simulated) accuracies of the copy-spelling tasks using the generic classifier (GC) and the 

personalized classifier (PC). Different results are marked in bold. Sp1, Sp2…Spelling run 1, 2; MMP…Multimedia 

player; WB…Web browser. 
 

Part. Sequ. 
GC accuracies in %  PC accuracies in % 

Sp1 MMP WB Sp2 Av. SEM  Sp1 MMP WB Sp2 Av. SEM 

1 8 100 100 81.8 100 95.5 10.4  100 100 90.9 90 95.2 10.7 

2 8 100 90 100 80 92.5 13.2  100 100 90.9 100 97.7 7.5 

3 9 100 100 100 100 100 0.0  100 100 100 100 100 0.0 

4 10 80 91.7 88.9 80 83.9 18.4  100 91.7 100 90 95.4 10.4 

5 11 70 100 66.7 80 79.2 20.3  80 64.3 73.3 70 71.9 22.5 

6 13 100 100 100 100 100 0,0  90 100 90 100 95.0 10.9 

7 14 100 100 100 100 100 0.0  100 100 100 90 97.5 7.8 

 

sufficient accuracy (70%) was reached by the GC on 

average after 2 (71.4%) and by the PC after 3 (77.1%) 

sequences. However, the lower limits of the confidence 

intervals exceeded this level after 5 sequences (PC) and 

7 sequences (GC), respectively, see Fig. 3. 
 

The GC evaluation showed comparable results between 

the PC and GC, see Tab. 1. Differences are marked in 

bold. On average the GC outperformed the PC four 

times (range 0.3 – 7.3%) and the PC outperformed the 

GC two times (5.2% and 11.5%, respectively).  

The average accuracies are far above the level of 

sufficient accuracy (70%). 

 

DISCUSSION AND CONCLUSION 

 

We showed that it is possible to use a P300-based BCI 

with zero training and high accuracies using a generic 

classifier. The results indicate that in terms of efficiency 

and effectiveness both classifiers are about equal. 

Moreover, the simulated GC spelling results partly 

outperformed the PC results.  

The comparison of the accuracies for a defined number 

of sequences, see Fig. 3, shows that in case of a small 

number (between 1 and 4) no differences were 

detectable. For a medium number (between 5 and 10), 

the PC achieved better results than the GC. Finally for a 

large number (above 12), the GC outperformed the PC. 

However, the confidence intervals overlap most of the 

time and to make a more accurate statement more data 

must be taken into account. 

During the spelling and control tasks the participants 

used a defined number of flashing sequences, see Tab. 1 

second column. Comparing the averaged results 

indicates that participants (P2, P4) who used a medium 

number of sequences (between 8 and 10) would achieve 

better results with the PC. On the other hand, 

participants (P5, P6, and P7) who used a large number 

of sequences (above 10) would achieve higher 

accuracies with the GC.  

 

One limitation of this comparison is that the presented 

online results were achieved with an SWLDA classifier 

and the simulated results were achieved with an sLDA 

classifier. Another limitation is that the GC was 

evaluated with data obtained by the same setup 

regarding the biosignal acquisition system, the signal 

processing etc. as the training data. It might be 

reasonably assumed that using a different biosignal 

acquisition system requires an adapted generic 

classifier. 

 

Lu et al. also reported high P300 spelling accuracies 

using a generic classifier [8]. However, they performed 

two similar sessions with ten participants spelling the 

same 41 characters twice and performed a two-fold 

cross validation. No information was given regarding 

the time between the sessions and they did not evaluate 

the efficiency of their subject-independent model. We 

trained the GC with the data from different users and 

tasks than we evaluated it. In addition, we used different 

matrix sizes, cf. [6]. Finally, we used only six electrodes 

instead of eight in [8]. 

 

The next step would be to test the GC online with a 

representative number of people. In addition, it is 

conceivable to adapt the GC to a person by recalculating 

the GC with data of the actual user. Our results indicate 

that it should be sufficient to use a high number of 

sequences at the beginning to achieve almost 100% 

accuracy with the GC. This data can be used to 

recalculate the GC and adapt it to a person. 

Subsequently, the number of stimulation sequences can 

be reduced afterwards. 
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