
Dipl.-Ing. Martin Tappler, BSc.

Learning-Based Testing in
Networked Environments in the Presence of

Timed and Stochastic Behaviour

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Main Supervisor

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Bernhard Aichernig
Institute of Software Technology (IST)

Co-Supervisor

Univ.-Prof. Roderick Bloem, Ph.D.
Institute of Applied Information Processing and Communications (IAIK)

External Reviewer and Examiner

Prof. Kim Guldstrand Larsen, Ph.D.
Department of Computer Science, Aalborg University

Graz, November 21, 2019

Dipl.-Ing. Martin Tappler, BSc.

Lernbasiertes Testen in vernetzten Umgebungen
unter dem Einfluss zeitgesteuerten

und stochastischen Verhaltens

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht an der

Technischen Universität Graz

Hauptbetreuer

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Bernhard Aichernig
Institut für Softwaretechnologie (IST)

Co-Betreuer

Univ.-Prof. Roderick Bloem, Ph.D.
Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie (IAIK)

Externer Gutachter und Prüfer

Prof. Kim Guldstrand Larsen, Ph.D.
Department of Computer Science, Aalborg University

Diese Arbeit ist in englischer Sprache verfasst.

Abstract

Electronic software-based devices are ubiquitous and affect our everyday lives in var-
ious ways. They are used in entertainment as well as in safety-critical areas, such as
driving-assistance systems. In addition to the growing importance of software, the
last decades have seen a transition from large mainframe-style computers towards
lightweight devices that solve complex tasks in collaboration. In recent years, the
growing number of small-scale networked devices used in ordinary things, such as
household appliances, has been dubbed the internet of things (IoT). Hence, software
systems serve important purposes on the one hand, while they form complex hetero-
geneous networks on the other hand. This calls for rigorous verification techniques
addressing the specifics of today’s networked software systems.

In this thesis, we propose the application of automata learning-based testing in this
context. Testing is a well-established technique for error detection and learning-
based testing is well-suited for our targeted application domain, due to its appli-
cability in a so-called black-box setting. In this setting, we assume no knowledge
about the internals of systems which is a realistic assumption in the IoT. Generally,
learning-based testing incrementally extends its knowledge about the system under
test through testing. It records the gained knowledge in models learned from test
observations, which are used to derive further test cases.

The work performed towards this thesis spans two phases. In the exploratory phase,
we combined and applied existing techniques in a case study on learning-based test-
ing of implementations of the IoT protocol MQTT. This case study uncovered several
violations of the MQTT specification, demonstrating that learning-based testing can
be effective in networked environments. Additionally, shortcomings of the state of
the art were discovered as well. We used these findings on shortcomings as the basis
for the second phase, in which we contributed to the state of the art in various ways.

As a first step towards enhancing the applicability of learning-based testing in net-
worked environments, we developed an approach for efficient conformance testing in
active automata learning. Subsequent work focused on learning techniques for vari-
ous types of systems, including stochastic, real-time, and hybrid systems, to broaden
the applicability of learning-based testing. Our contributions in this context com-
prise: (1) a learning-based technique for testing stochastic systems with respect to
reachability objectives, (2) an active test-based algorithm for learning stochastic sys-
tem models, (3) a metaheuristic technique for learning real-time system models from
test observations, and (4) a test-based machine learning process for hybrid system
models. We implemented and evaluated all proposed learning and testing techniques.
With that, we demonstrated that we are able to automatically generate near-optimal
testing strategies in the presence of stochastic behaviour and that accurate models
of stochastic systems can be learned via testing. Furthermore, our work demon-
strates that metaheuristic techniques enable learning of real-time system models and
that model-based testing combined with automata learning is able to generate good
datasets for machine learning in the context of hybrid systems.

Keywords: Model-Based Testing, Automata Learning, Active Automata Learning, Learning-Based
Testing, Model Inference, Model Learning.

i

Kurzfassung

Software-gesteuerte Geräte sind allgegenwärtig und beeinflussen unseren Alltag auf
viele verschiedene Arten. Software wird sowohl in Unterhaltungselektronik als auch
in sicherheitskritischen Bereichen, wie zum Beispiel Fahrassistenzsystemen, ange-
wandt. In den letzten Jahren werden Software-basierte Systeme nicht nur wichtiger,
sondern auch ihre Art und Struktur wandeln sich. Früher wurden Berechnungen von
grossen Zentralrechnern ausgeführt, während heute kleine Geräte kollaborativ kom-
plexe Aufgaben ausführen. Die zurzeit stark wachsende Zahl kleiner, vernetzter Re-
cheneinheiten in alltäglichen Dingen wird als Internet der Dinge (englisch: IoT) be-
zeichnet. Die Zunahme der Wichtigkeit von Software erfordert Korrektheit, welche
in komplexen, heterogene Netzwerken wie dem IoT aber schwierig zu erreichen ist.
Diese Umstände verlangen nach rigorosen Verifikationstechniken, die auf die Spezi-
fika der heutigen vernetzten Software-Systeme abgestimmt sind.

In dieser Dissertation wird lernbasiertes Testen präsentiert und angewandt. Software-
Testen ist eine etablierte Technik für das Auffinden von Fehlern, während lernbasier-
tes Testen gut für vernetzte Systeme geeignet ist, da es in einem Black-Box-Setting
anwendbar ist. In einem solchen Setting wird angenommen, dass kein Wissen über
die Interna des zu testenden Systems verfügbar ist, was eine realistische Annahme
im IoT darstellt. Die Funktionsweise von lernbasiertem Testen beruht darauf, dass
inkrementell Wissen über das zu testende System gesammelt wird. Das gesammelte
Wissen wird von gelernten Modellen repräsentiert, welche wiederum dazu dienen,
neue Testfälle zu generieren.

Die hier präsentierte Arbeit umfasst zwei Phasen. In der ersten, explorativen Phase
werden existierende Lern- und Testtechniken kombiniert und in einer Fallstudie zu
lernbasiertem Testen angewandt. In dieser Fallstudie werden Implementierungen des
IoT-Protokolls MQTT getestet und dadurch mehrere Spezifikationsverletzungen fest-
gestellt. Damit wird zum einen demonstriert, dass lernbasiertes Testen effektiv Fehler
in vernetzten Umgebungen auffinden kann und zum anderen werden Schwächen ak-
tueller Lerntechniken aufgezeigt. Die gefundenen Schwächen dienen als Basis für die
zweite Phase, in welcher gezielt Techniken erforscht werden, um diese Schwächen
zu beseitigen und zum aktuellen Stand der Technik beizutragen.

Zuerst wird ein Ansatz zum effizienten Konformanztesten im aktivem Automaten-
Lernen entwickelt, um die Anwendbarkeit von lernbasiertem Testen in vernetzten
Umgebungen zu verbessern. Der Fokus nachfolgender Arbeiten richtet sich auf die
Ausweitung des Anwendungsgebiets von testbasiertem Automaten-Lernen. Im Zu-
ge dessen werden Techniken für verschiedene Arten von Systemen erforscht, wobei
stochastische, Echtzeit- und hybride Systeme betrachtet werden. Die Forschungs-
beiträge umfassen hierzu (1) eine lernbasierte Technik, um stochastische Systeme
bezüglich der Erreichbarkeit spezifizierter Zustände zu testen, (2) einen aktiven test-
basierten Algorithmus für das Lernen stochastischer Modelle, (3) eine metaheuristi-
sche Technik, um Modelle von Echtzeitsystemen zu lernen und (4) einen testbasierten
Prozess für das maschinelle Lernen von Modellen, welche hybrides Systemverhalten
repräsentieren. Alle präsentierten Lern- und Testtechniken wurden implementiert und
experimentell evaluiert. Die Evaluierungsergebnisse zeigen, dass es durch lernbasier-
tes Testen möglich ist, automatisch effektive Teststrategien für stochastische Systeme
zu generieren und, dass es basierend auf Testen möglich ist, akkurate Modelle stocha-

ii

stischer Systeme zu lernen. Des Weiteren demonstrieren durchgeführte Experimente,
dass Modelle von Echtzeitsystemen durch metaheuristische Verfahren gelernt werden
können. Durch die Kombination von modellbasiertem Testen und Automaten-Lernen
ist es gelungen, Datensätze für präzises maschinelles Lernen von hybridem System-
verhalten zu generieren.

Schlagworte: Modellbasiertes Testen, Automaten-Lernen, Aktives Automaten-Lernen, Lernbasiertes
Testen, Modell-Inferenz, Modell-Lernen.

iii

Affidavit

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the
present doctoral thesis.

. .
place, date (signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angege-
benen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnom-
menen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument
ist mit der vorliegenden Dissertation identisch.

. .
Ort, Datum (Unterschrift)

iv

Acknowledgements

I am grateful to my supervisor Bernhard Aichernig. His lectures introduced me to
various fascinating areas including declarative programming, formal methods, and
model-based testing. Moreover, Bernhard Aichernig introduced me to active au-
tomata learning, which offered many exciting challenges that I tackled in the course
of the work on this thesis. He was always open to discuss new ideas and also to talk
about sources of frustration that probably every PhD student faces after studying the
literature and realising that everything has been done before. I also want to thank
Kim Larsen for reviewing my thesis and for the opportunity to visit and work with
him and his team in Aalborg.

I would like to thank the consortium of the Lead project “Dependable Internet of
Things in Adverse Environments” headed by Kay Römer and the Graz University
of Technology for funding this project that made the research presented within this
thesis possible. The “Dependable Things”-project provided an excellent environ-
ment for performing my research. I would also like to thank my colleagues in this
project, especially from the subproject “Dependable Composition” in which I partic-
ipated. I had many fruitful and inspiring discussions with my co-supervisor Roderick
Bloem, Masoud Ebrahimi, Tobias Schrank, Richard Schumi, Wolfgang Roth, and
Franz Pernkopf. I want to address special thanks to Florian Lorber for providing
helpful advice and being a great colleague and a nice guide during my stay in Aal-
borg.

I am also thankful to my friends and colleagues who helped me preparing this the-
sis by providing feedback on papers and on parts of this thesis. I want to thank
Christian Burghard, Irena Ruprecht, Nina Ruderes, Andrea Pferscher and all my co-
authors. Furthermore, I want to thank Andrea Pferscher and Felix Wallner, whose
thesis projects I co-supervised, for their valuable contributions.

I would like to thank my partner Nina for her support, for helping me to rehearse
my talks, for bearing with me in times of deadline pressure, and for celebrating suc-
cessfully accepted papers with me. Finally, I want to thank my family, especially my
aunt Elfi, my uncle Toni and most importantly my parents Gerhard and Helga, for
providing me with a loving home and supporting me throughout my education.

Martin Tappler
Graz, Austria, November 21, 2019

v

Danksagung

Ich möchte meinem Betreuer Bernhard Aichernig danken. Seine Vorlesungen mach-
ten mich auf verschiedenste faszinierende Gebiete, wie die deklarative Programmie-
rung, formale Methoden und modellbasiertes Testen, aufmerksam. Über dies hinaus
hat Bernhard Aichernig mir aktives Automaten-Lernen näher gebracht, welches viele
interessante Herausforderungen bot, die ich während der Arbeit an dieser Dissertati-
on in Angriff genommen habe. Er war immer offen für Diskussionen über neue Ideen
und auch über Quellen der Frustration, denen vermutlich alle Doktoratsstudierenden
begegnen, genauer nach der Erkenntnis, dass bereits quasi alles erforscht wurde. Ich
möchte auch Kim Larsen für das Begutachten der vorliegenden Dissertation danken
und dafür, dass ich ihn und sein Team in Aalborg zur gemeinsamen Arbeit besuchen
konnte.

Ich möchte mich beim Konsortium des Lead-Projekts “Dependable Internet of Things
in Adverse Environments”, unter der Leitung von Kay Römer, und bei der techni-
schen Universität Graz für die Unterstützung und Finanzierung dieses Projekts be-
danken, welches meine Forschung für die vorliegende Dissertation möglich gemacht
hat. Das “Dependable Things”-Projekt hat mir ein ausgezeichnetes Umfeld für die
Durchführung meiner Forschung geboten. Ich möchte auch meinen Kollegen in die-
sem Projekt, allen voran den Kollegen im Sub-Projekt “Dependable Composition”, an
dem ich teilgenommen habe, danken. Ich führte viele aufschlussreiche und inspirie-
rende Diskussionen mit meinem Co-Betreuer Roderick Bloem, mit Masoud Ebrahi-
mi, Tobias Schrank, Richard Schumi, Wolfgang Roth und Franz Pernkopf. Spezieller
Dank gilt Florian Lorber, der mir hilfreiche Ratschläge gegeben hat und ein großarti-
ger Kollege war und ist. Darüber hinaus wäre mein Besuch in Aalborg ohne ihn und
seine Freunde nur halb so lustig gewesen.

Ich bin meinen Freunden und Kollegen dankbar, die mir während der Arbeit an dieser
Dissertation geholfen haben, beispielsweise durch Feedback auf Konferenzbeiträge
oder durch das Korrekturlesen von Teilen der Dissertation. In diesem Zusammenhang
möchte ich Christian Burghard, Irena Ruprecht, Nina Ruderes, Andrea Pferscher und
allen meinen Koautoren danken. Des weiteren möchte ich mich bei Andrea Pferscher
und Felix Wallner, deren Abschlussprojekte ich mitbetreut habe, für ihre wertvollen
Beiträge bedanken.

Ich möchte mich bei meiner Partnerin Nina für ihre Unterstützung bedanken – dafür,
dass sie geholfen hat, meine Vorträge zu proben, dass sie für mich in stressreichen
Zeiten vor Deadlines da ist and dafür, meine akzeptierten Konferenzbeiträge und Ar-
tikel mit mir zu feiern. Schlussendlich möchte ich mich bei meiner Familie, bei mei-
ner Tante Elfi, meinem Onkel Toni und vor allem bei meinen Eltern Gerhard und Hel-
ga, dafür bedanken, dass sie mir ein liebevolles Zuhause geboten und mich während
meiner Ausbildung unterstützt haben.

Martin Tappler
Graz, Österreich, 21. November 2019

vi

Table of Contents

Abstract i

Acknowledgements v

List of Figures xiii

List of Tables xv

List of Algorithms xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Software Testing . 2
1.3 Model-Based Testing . 2
1.4 Learning-Based Testing and Test-Based Learning . 3
1.5 Automata Learning . 4
1.6 Scope and Research Goals . 4

1.6.1 Scope . 4
1.6.2 Research Context . 5
1.6.3 Research Plan . 5
1.6.4 Problem Statements and Research Questions 6
1.6.5 Thesis Statement . 8

1.7 Structure of this Thesis . 8
1.8 Contributions and Publications . 9

1.8.1 Contributions . 9
1.8.2 Main Publications . 10
1.8.3 Related Publications . 12

1.9 Notation . 13

2 Introduction to Active Learning of Deterministic System Models 15
2.1 Mealy Machines . 15
2.2 L∗ and the Minimally Adequate Teacher Framework 17

2.2.1 Minimally Adequate Teacher Framework . 18
2.2.2 Learning Mealy Machines . 18

2.3 Improvements in Active Automata Learning . 22
2.3.1 Reduced Observation Tables & Distinguishing Suffixes 22
2.3.2 Tree-Based Storage . 23

2.4 Conformance Testing . 24
2.4.1 The Conformance Testing Problem . 25
2.4.2 Conformance Testing Approaches . 26
2.4.3 Conformance Testing in Learning . 28

2.5 Alphabet Abstraction . 30

vii

3 Learning-Based Testing of MQTT Brokers 33

3.1 Learning-Based Testing of Network Protocols . 33

3.2 The MQTT Protocol . 35

3.3 Approach . 37

3.3.1 Learning Environment . 37

3.3.2 Learning-Based Testing via Cross-Checking Equivalence 39

3.4 Case Study . 41

3.4.1 Implementation of Learning Environment . 42

3.4.2 Checking Equivalence between Models . 44

3.4.3 Experimental Setup . 45

3.4.4 Detected Bugs . 46

3.4.5 Efficiency . 50

3.5 Summary . 51

3.6 Results and Findings . 52

4 Efficient Conformance Testing in Active Automata Learning 55

4.1 Introduction . 55

4.2 Test-Suite Generation . 58

4.2.1 Test-Case Generation . 58

4.2.2 Test-Case Selection . 59

4.2.3 Mutation-Based Selection . 60

4.2.4 The Complete Testing Process . 61

4.3 Mutation for Learning . 62

4.3.1 Split-State Mutation Operator Family . 62

4.3.2 Implementation of Mutant Generation . 65

4.3.3 Efficiency Considerations & Optimisation . 65

4.3.4 Additional Implementation Details . 67

4.4 Evaluation of Fault-Based Conformance Testing . 68

4.4.1 Measurement Setup . 69

4.4.2 TCP Experiments . 70

4.4.3 MQTT Experiments . 73

4.4.4 TLS Experiments . 74

4.4.5 Discussion, Limitations & Threats to Validity 77

4.5 Benchmarking Active Automata Learning . 78

4.5.1 Measurement Setup . 79

4.5.2 Measurement Results . 80

4.6 Summary . 87

4.7 Results and Findings . 87

viii

5 Modelling and Learning of Uncertain Behaviour 91
5.1 Choice of Modelling Formalism for Learning-Based Testing of

Uncertain Behaviour . 91
5.2 Basics . 92

5.2.1 Probability Distributions . 92
5.2.2 String Notation . 92

5.3 Markov Decision Processes . 93
5.3.1 Execution of Markov Decision Processes . 94

5.4 Learning Stochastic Automata . 95
5.5 Property Specification . 96

5.5.1 Step-Bounded Reachability . 97
5.6 Statistical Model-Checking . 97
5.7 Discussion . 98

6 Learning-Based Testing of Stochastic Systems 99
6.1 Probabilistic Black-Box Reachability Checking . 99
6.2 Method . 102

6.2.1 Reachability Checking Process . 102
6.2.2 Convergence to the True Model . 107
6.2.3 Application and Choice of Parameters . 108

6.3 Experiments . 109
6.3.1 Measurement Setup and Criteria . 109
6.3.2 Slot-Machine Experiments . 111
6.3.3 MQTT Experiments . 113
6.3.4 TCP Experiments . 114
6.3.5 Gridworld Experiments . 115
6.3.6 Shared Coin Consensus-Protocol Experiments 116
6.3.7 Convergence Check . 119
6.3.8 Runtime . 120
6.3.9 Discussion . 121

6.4 Summary . 122
6.5 Results and Findings . 122

7 Test-Based Learning of Stochastic Systems 125
7.1 Introduction . 125
7.2 MDP Observations . 126

7.2.1 Sequences of Observations . 126
7.2.2 Semantics of MDPs . 127

7.3 Exact Learning of MDPs . 129
7.3.1 Queries . 129
7.3.2 Observation Tables . 129
7.3.3 Learning Algorithm . 131
7.3.4 Correctness & Termination . 132

7.4 Learning MDPs by Sampling . 136

ix

7.4.1 Queries . 136
7.4.2 Learner Implementation . 137
7.4.3 Teacher Implementation . 142

7.5 Convergence of L∗MDP . 145
7.5.1 Proof Structure . 145
7.5.2 Hoeffding-Bound-Based Difference Check 147
7.5.3 Hypothesis Construction . 147
7.5.4 Equivalence Queries . 149
7.5.5 Putting Everything Together . 152

7.6 Experiments . 152
7.6.1 Measurement Setup . 153
7.6.2 Experiments with First Gridworld . 153
7.6.3 Experiments with Second Gridworld . 154
7.6.4 Shared Coin Consensus-Protocol Experiments 155
7.6.5 Slot-Machine Experiments . 156
7.6.6 Discussion and Threats to Validity . 157

7.7 Summary . 158
7.8 Results and Findings . 158

8 Learning Timed Automata via Genetic Programming 161
8.1 Introduction . 161
8.2 Preliminaries . 163

8.2.1 Timed Automata . 163
8.2.2 Genetic Programming . 165

8.3 Genetic Programming for Timed Automata . 166
8.3.1 Overview . 166
8.3.2 Creation of Initial Random Population . 168
8.3.3 Fitness Evaluation . 168
8.3.4 Creation of New Population . 170
8.3.5 Implementation . 172

8.4 Case Studies . 173
8.5 Summary . 176
8.6 Results and Findings . 177

9 Active Genetic Programming of Timed Automata 179
9.1 Introduction . 179
9.2 Method . 180

9.2.1 Moving from Passive Learning to Active Learning 180
9.2.2 The Active Genetic Programming Process . 180
9.2.3 Real-Time Test-Case Generation for Active Genetic Programming 181

9.3 Evaluation . 183
9.3.1 Evaluation Setup . 183
9.3.2 Selected Results . 184

9.4 Summary . 186
9.5 Results and Findings . 187

x

10 Test-Based Learning of Hybrid Systems 189
10.1 Introduction . 189

10.2 Methodology . 192

10.2.1 Testing Process . 192

10.2.2 Learning a Recurrent Neural Network Behaviour Model 197

10.3 Evaluation . 197

10.3.1 Predicting Crashes with Recurrent Neural Networks 198

10.3.2 Evaluation of the Detected Crash Times . 199

10.4 Summary . 201

10.5 Results and Findings . 201

11 Related Work 203
11.1 Model Learning for Model-Based Testing . 204

11.1.1 Conformance Testing . 204

11.1.2 Requirements-Based Testing . 204

11.1.3 Security Testing . 205

11.1.4 Integration Testing . 206

11.1.5 Regression Testing . 206

11.1.6 Performance Testing . 207

11.1.7 GUI Testing . 207

11.1.8 Protocol Testing . 207

11.1.9 Web Service Testing . 208

11.2 Model-Based Testing for Model Learning . 208

11.3 Learning Models of Stochastic and Non-deterministic Systems 208

11.4 Learning Models of Real-Time Systems . 210

11.5 Strategy Generation for Stochastic Systems . 211

11.6 Metaheuristic Approaches to Model Learning and Testing 211

11.7 Further Related Work . 212

12 Conclusion and Outlook 215
12.1 Summary . 215

12.1.1 Exploratory Research . 215

12.1.2 Contributions . 216

12.2 Conclusions . 217

12.3 Future Work . 220

Bibliography 222

xi

xii

List of Figures

1 Introduction
1.1 The interaction between model learning and model-based testing 3

2 Introduction to Active Learning of Deterministic System Models
2.1 A Mealy machine modelling a car alarm system . 16
2.2 The interaction between a learner and a teacher . 18
2.3 The interaction between a learner and a teacher to learn a Mealy machine 19
2.4 A first hypothesis of the car alarm system derived during learning 22
2.5 An overview of the conformance testing process . 24
2.6 Alphabet abstraction through a mapper . 31

3 Learning-Based Testing of MQTT Brokers
3.1 Overview of the learning-based testing process . 34
3.2 An example of the structure of an MQTT network . 35
3.3 An example of a communication via MQTT . 36
3.4 The learning environment for MQTT . 38
3.5 An example of a bug of an MQTT broker . 47

4 Efficient Conformance Testing in Active Automata Learning
4.1 Data flow of test-suite generation and execution . 62
4.2 Demonstration of split-state mutations . 63
4.3 Average number of equivalence test steps required to reliably learn TCP models 72
4.4 Minimum number of tests per equivalence query to reliably learn TCP models 72
4.5 Average number of equivalence test steps required to reliably learn MQTT models . . . 74
4.6 Reliability of learning correctly with limited testing budget 75
4.7 Average number of equivalence test steps required to reliably learn TLS models 75
4.8 The overall s1 score . 81
4.9 The overall s2 score . 82
4.10 The overall number of successful learning experiments with limited testing budget . . . 83
4.11 The score s1 for learning small models with a sink state 84
4.12 The score s2 for learning small models with a sink state 84
4.13 The number of successful experiments on learning small models with a sink state given

a limited testing budget . 85
4.14 A Mealy-machine model of a coffee machine . 86
4.15 The score s1 for learning large models . 86
4.16 The score s2 for learning large models . 87
4.17 The number of successful experiments on learning large models given a limited testing

budget . 88

xiii

5 Modelling and Learning of Uncertain Behaviour
5.1 An MDP modelling a faulty coffee machine . 94
5.2 An IOFPTA of the faulty coffee machine . 96

6 Learning-Based Testing of Stochastic Systems
6.1 Overview of probabilistic black-box reachability checking 101
6.2 Simulation-based probability estimations of reaching Pr10 with the slot machine . . . 112
6.3 Model-checking-based probability estimations of reaching Pr10 with the slot machine 112
6.4 Box plots of probability estimations of different learning configurations for MQTT . . 113
6.5 Box plots of probability estimations of different learning configurations for TCP 114
6.6 The evaluation gridworld and corresponding experimental results 116
6.7 Probability estimations of reaching finished in the consensus protocol 118
6.8 Statistics of probability estimations computed in each round of the incremental approach 119

7 Test-Based Learning of Stochastic Systems
7.1 The second evaluation gridworld . 154

8 Learning Timed Automata via Genetic Programming
8.1 A timed automaton modelling a passing train . 164
8.2 Overview of genetic programming for timed automata 166
8.3 Creating a new global population of timed automata 167
8.4 Parameter-settings tab of the genetic-programming tool 173
8.5 Evolution tab of the genetic-programming tool . 174
8.6 Evolution of the fitness of the fittest timed automata 176
8.7 A learned timed automaton modelling a car alarm system 177

9 Active Genetic Programming of Timed Automata
9.1 Overview of the active genetic programming process 180
9.2 Correctness evaluation of learned random timed automata with 20 locations 184
9.3 Training set size needed for learning a timed automaton model of a car alarm system . 185
9.4 Runtime for learning a timed automaton model of a car alarm system 185
9.5 Correctness evaluation of learned timed automata modelling a light switch 186

10 Test-Based Learning of Hybrid Systems
10.1 Learning a behaviour model of a black-box hybrid system 190
10.2 Platooning as a distributed control scenario . 191
10.3 Components involved in the testing process . 192
10.4 Evaluation of crash detection performance . 199
10.5 Evaluation of crash detection time . 200

xiv

List of Tables

1 Introduction
1.1 Notational conventions . 13

2 Introduction to Active Learning of Deterministic System Models
2.1 Initial observation table for the car alarm system . 20
2.2 First closed and consistent observation table for the car alarm system 21

3 Learning-Based Testing of MQTT Brokers
3.1 Timeout values for receiving messages . 45
3.2 Runtime measurements for learning experiments with one MQTT client 51
3.3 Runtime measurements for learning experiments with two MQTT clients 51

4 Efficient Conformance Testing in Active Automata Learning
4.1 Size of test suites generated by the (partial) W-method 56
4.2 A short description of the systems examined in the evaluation 69
4.3 Performance measurements for learning TCP-server models 71
4.4 Performance measurements for learning MQTT-broker models 73
4.5 Performance measurements for learning TLS-server models 76
4.6 Evaluated learning and testing algorithms . 79

6 Learning-Based Testing of Stochastic Systems
6.1 All parameters with short descriptions . 108
6.2 General parameter settings for experiments . 111
6.3 Parameter settings for the slot-machine case study . 111
6.4 Parameter settings for the MQTT case study . 113
6.5 Parameter settings for the TCP case study . 114
6.6 Parameter settings for the gridworld case study . 116
6.7 Parameter settings for the consensus-protocol case study 117
6.8 Average runtime of learning and scheduler generation 120

7 Test-Based Learning of Stochastic Systems
7.1 An observation table for the faulty coffee machine . 130
7.2 Results for learning models of the first gridworld . 153
7.3 Results for learning models of the second gridworld 154
7.4 Results for learning models of the shared coin consensus-protocol 155
7.5 Results for learning models of the slot machine with tunamb = 0.9 156
7.6 Results for learning models of the slot machine with tunamb = 0.99 156

xv

8 Learning Timed Automata via Genetic Programming
8.1 Parameters for the initial creation of timed automata 168

8.2 Mutation operators . 171

8.3 Measurement results for learning timed automata via genetic programming 175

xvi

List of Algorithms

2 Introduction to Active Learning of Deterministic System Models
2.1 General pattern of active automata learning for black-box systems 19
2.2 Test-case generation with the W-method . 27
2.3 Random-words-based test-case generation . 27
2.4 Random-walks-based test-case generation . 28

4 Efficient Conformance Testing in Active Automata Learning
4.1 Test-case generation for efficient conformance testing in learning 59
4.2 Breadth-first exploration implementing the function path 60
4.3 Coverage-based test-case selection . 61
4.4 Split-state mutant generation . 64
4.5 Creation of NFA representing sets of mutants . 66
4.6 Mutation-coverage analysis using the NFA-based mutant representation 67

6 Learning-Based Testing of Stochastic Systems
6.1 Property-directed sampling . 105

7 Test-Based Learning of Stochastic Systems
7.1 Function for making an observation table closed and consistent 131
7.2 The main algorithm implementing the exact L∗MDPe 132
7.3 Creation of compatibility classes . 139
7.4 The main algorithm implementing the sampling-based L∗MDP 141
7.5 Refine query . 143
7.6 State-coverage-based testing for counterexample detection 144

8 Learning Timed Automata via Genetic Programming
8.1 Crossover of locations l1 and l2 . 172

9 Active Genetic Programming of Timed Automata
9.1 Testing process for active genetic programming of timed automata 182

10 Test-Based Learning of Hybrid Systems
10.1 Output-directed test-case generation . 196

xvii

xviii

List of Acronyms

ioco input-output conformance.

CAS car alarm system.

CDF cumulative distribution function.

CPS cyber-physical system.

DFA deterministic finite automaton.

DTMC discrete time Markov chain.

EFSM extended finite-state machine.

IoT Internet of Things.

ISO International Organization for Standardization.

LTL linear temporal logic.

LTS labelled transition system.

MAT minimally adequate teacher.

MBT model-based testing.

MDP Markov decision process.

MQTT Message Queuing Telemetry Transport.

NFA nondeterministic finite automaton.

PAC probably approximately correct.

PC particle counter.

PCTL probabilistic computation tree logic.

QoS quality of service.

RNN recurrent neural network.

SMC statistical model-checking.

SMT satisfiability modulo theories.

SUL system under learning.

xix

SUT system under test.

TA timed automaton.

TCP transmission control protocol.

TLS transport layer security.

TTS timed transition system.

UDP user datagram protocol.

xx

1
Introduction

1.1 Motivation

Electronic software-based devices are ubiquitous and their number is ever-growing. They affect our daily
lives in various ways, ranging from providing entertainment over enabling communication to performing
safety-critical tasks, like controlling airbags in cars. This calls for a rigorous verification of software sys-
tems. In itself, the quest to verify that software is correct is not new. An early mathematical tool to verify
programs, Hoare logic, was proposed by Antony Hoare fifty years ago in 1969 [140]. A year earlier,
the “software crisis” was first considered an issue which refers to the increasing complexity of software
that leads to errors in program code [238]. On the same occasion the term “software engineering” was
coined as well, with the goal of establishing software engineering as an engineering discipline. Likewise,
safety-critical software that may endanger lives is not new. In the eighties, for instance, the Therac-25
accidents caused deaths and serious injuries through overdoses in radiation therapy [189].

What has changed in recent years, though, is the increased number of software-based systems. More-
over, the nature of software-based systems shifted more towards networked systems that perform tasks
in collaboration. Individual systems may be small and simple in these scenarios, such as temperature
sensors, but complexity arises from composition in networked systems. Systems also tend to not only
communicate with each other, but they interact with their environments as well. An adaptive cruise con-
troller is an example of a safety-critical device that interacts with its environment. It controls the car
and it also receives information from other software systems, such as the distance to other cars. Further
examples are smart appliances that are connected to the internet, for instance, to provide remote-control
features. Recently, the term Internet of Things (IoT) has been adopted to refer to electronic devices
(things) that form networks to collaboratively perform tasks in our everyday lives. In conclusion, com-
plexity is still increasing since the “software crisis” in the sixties and composition adds to that, while the
correctness of software is becoming more and more important due to the ubiquitous nature of software.

In the short history of the IoT, we have already seen large-scale issues related to faulty or untrust-
worthy software systems. For example, in 2016 the Mirai botnet took over large numbers of IoT devices,
such as webcams, to carry out distributed denial-of-service attacks [164]. In that case, the faults enabling
these attacks were weak network configurations. Kolias et al. [164] state that IoT devices are easy targets
for hackers “because they’re constantly connected to the Internet and seemingly permeated with flaws”.
Another security-related issue concerning network communication is the SKIP-TLS vulnerability in the
transport layer security (TLS) protocol [57]. This attack is enabled by the incorrect composition of state

1

2 Chapter 1. Introduction

machines. A safety-related flaw of a feature of a Tesla® car was recently discovered only after deploy-
ment by a user [224]. The flaw caused the air conditioning to be turned off in “dog mode”. This mode is
actually supposed to regulate air condition to allow for dogs to be left alone in the car. Hence, the flaw
endangered the life of these dogs. These examples demonstrate that it is necessary to verify that all parts
of software including their interconnections are correctly implemented in order to ensure secure and safe
operation. This even includes seemingly innocuous consumer electronics, like webcams.

Different from the software-engineering landscape from about fifty years ago, software testing is
now well-accepted. While early research, such as Hoare logic [140], focused on proving programs
correct, software testing nowadays is widely applied in practice [228]. It is accepted as a cost-effective
means to detect errors in software. However, many testing approaches require either program code or
an abstract system model as a basis for testing. As a consequence, they may not be applicable in the
IoT, since commonly neither program code nor models are available for the countless devices in the IoT.
Alternative approaches that do not rely on knowledge about system behaviour may be ineffective, as
they are often unable to systematically cover the unknown behaviour. To address that, we propose the
application of learning-based testing in networked environments, particularly in the IoT. This form of
testing is applicable in a black-box setting, that is, in a setting without knowledge about the internals
of the tested system and it incrementally learns models of the system’s behaviour. These models help
to systematically derive test cases for further testing and they can be analysed manually and through
verification techniques, such as model checking.

1.2 Software Testing

Most text books on software testing contain definitions such as “The goal of a software testing is to find
bugs.” [228]. Additional objectives, like early bug detection, may also be given and what constitutes a bug
may be further specified. For example, the IEEE standard glossary of Software Engineering Terminology
distinguishes mistakes, faults, errors, and failures [150]. Mistakes refer to human actions, faults refer to
incorrect parts of software, errors denote the difference between a correct value and a computed value,
and failures are observable, incorrect results.1

In this thesis, we use more liberal definitions of bugs and software testing. The reason for this is that
we perform learning-based testing and test-based learning, which will be explained below. Learning-
based testing is a form of dynamic black-box testing [228]. In dynamic black-box testing, a tester pro-
vides inputs to the software, observes outputs, and checks whether those outputs are correct. The tester
has no knowledge about the internals of the software, thus it is only possible to observe failures. Since
a failure is generally caused by a fault, we will use the terms fault detection and failure detection mostly
interchangeably. Moreover, we may also use the term bug to refer to failures.

In short, test-based learning automatically generates behavioural models from test observations. Its
goal is to create faithful models regardless of the presence of bugs. Hence, it can be considered a form of
exploratory testing [228], but it actually does not try to detect bugs. The goal of the testing applied in this
thesis is generally to gain knowledge about the system at hand by providing inputs and observing outputs.
This should not be confused with testing processes at “Level 0” described by Beizer [36, 50], referring
to poorly implemented testing processes. Test-based learning is rather a component of a verification
process that analyses learned models systematically, for instance, via model checking.

1.3 Model-Based Testing

In model-based testing, a behaviour model of the system under test (SUT) [273, 274, 296] serves as the
basis for testing. Such a model explicitly describes the expected behaviour of the SUT and allows for
the automatic generation of test cases. In addition to that, models serve as the basis for the decision

1Actually, the IEEE standard glossary contains another different definition of failure as well.

1.4. Learning-Based Testing and Test-Based Learning 3

Test-Observation
Data

Learned
Model

generate & execute test cases

learn from data

Figure 1.1: The interaction between model learning and model-based testing

on a verdict that is assigned to the execution of a test case. Models are also referred to as test oracles
in this context. Therefore, models usually encode some requirements to be tested. The approach to
assign verdicts varies between different testing techniques, but often a conformance relation captures the
relation between the model and correct implementations [271].

As mentioned in Section 1.2, we generally perform a form of exploratory testing. This is true from a
high-level point of view. At intermediate stages of learning, however, we aim at detecting new behaviour
to extend a learned hypothesis model. With that, we essentially try to falsify the hypothesis model via
model-based testing. Contrary to traditional model-based testing, we assume the SUT to be correct and
test if the model is correct. More concretely, we test if the model conforms to the SUT with respect to
some conformance relation by applying model-based testing techniques. Hence, our goal is to find faults
in learned models. For more information on model-based testing, we refer to Section 2.4.

1.4 Learning-Based Testing and Test-Based Learning

In our survey titled “Model Learning and Model-Based Testing” [26], we discussed works in the in-
tersection between model learning and model-based testing. We distinguished two types of research in
this area: (1) test-based learning referring to (active) learning techniques that actively query systems via
testing to gain knowledge about their behaviour and (2) learning-based testing which refers to works that
apply model learning to generate models for model-based testing, or model-based verification in general.
In this thesis, we apply similar definitions. Likewise, we concentrate on behavioural models of stateful
systems, mainly in the form of automata.

To further clarify, with test-based learning we refer to techniques that learn models from observed
test data. Such techniques are generally active techniques that actively query a system under learning
through testing, but passive techniques that learn models from logged test observations are also possible.

Here, we use the term learning-based testing in a more general sense than in our survey [26]. As
mentioned above, our survey classifies works to perform learning-based testing if they apply model
learning to create models for model-based verification. Model-based verification may, for instance, in-
volve model-based testing directly or model checking, which can be considered as exhaustive testing on
model level. In this thesis, we extend this definition. We consider testing performed in the course of
active test-based learning also as learning-based testing, because this form of testing is based on learned
intermediate models. Hence, whenever we perform active test-based learning, we also perform learning-
based testing. Figure 1.1 shows schematically the relation between model learning and model-based
testing in an active setting. The former learns models from test data, whereas the latter derives test cases
from learned models.

Thus, these two activities are often interconnected. We use these terms generally to emphasise either
the learning aspect or the testing aspect. Hence, we use the term test-based learning to emphasise the
learning aspect. In such cases, the goal is usually to create a behaviour model of a system under learning
(SUL). In learning-based testing approaches, we emphasise the testing aspect which has varying goals.
Potential goals are, for example, detecting specification violations, reliably provoking stochastic failures,

4 Chapter 1. Introduction

or simply crashing the system under test (SUT). The acronyms system under learning (SUL) and SUT
serve a similar purpose to put emphasis on either learning or testing.

1.5 Automata Learning

Now that we have discussed the form of testing we perform and introduced what test-based learning is,
we want to discuss different forms of automata learning and their application. This discussion is based
on our previous work on learning-based testing [18]. Note that while automata learning can learn from
different sources of information, we generally consider test data as the main source of information.

Automata learning establishes the basis for model-based verification in a black-box setting by au-
tomatically learning automata models of black-box systems from observed test data. Data used for
automata learning is usually given in the form of system traces, that is, sequences of system events.
We commonly partition these events into input and output events. Unless otherwise noted, whenever
we use the term learning, we refer to automata learning. Various other terms are used in the literature,
such as model learning that we used in our survey on the topic [26], automata inference [95], regu-
lar inference [54], and regular extrapolation [134]. These terms basically refer to the same concepts,
but emphasise different aspects. In this thesis, we mainly use the terms model learning and automata
learning.

There are two main forms of model learning: passive learning and active learning. Passive learning
learns from preexisting data such as system logs, while active learning actively queries the system that is
examined to gain relevant information. In this thesis, we generally query systems via testing, but active
learning may be applied in non-test-based settings as well. Non-test-based queries may, for instance, be
implemented through model checking [87].

Noteworthy early examples of passive learning techniques are RPNI for regular languages [95, 225]
and ALERGIA [74] for stochastic regular languages, which learn deterministic finite automata (DFA)
and their stochastic counterparts, respectively. Both, RPNI and ALERGIA, apply a principle called state
merging. These algorithms have been developed for grammatical inference and take text as input. In or-
der to learn system models, system traces are usually considered to form (regular) languages. The k-tail
algorithm [60] is an early example of a technique that directly addresses passive learning (synthesis) of
finite-state machines from sample traces. More recent work based on the principle of state merging ex-
tends passive model learning to timed systems [279, 280, 282], Moore machines [119], and to stochastic
systems involving non-deterministic choices [198, 199].

In contrast to passive learning, active learning approaches rely on the possibility to query relevant
information. Angluin formalised this by introducing the minimally adequate teacher framework in her
seminal work on the L∗ algorithm [37]. This framework assumes the existence of a teacher that is able to
answer two types of queries: membership queries and equivalence queries. Like RPNI, the original L∗

algorithm learns DFA accepting some regular language. Hence, to learn a model of a software system via
L∗ it is necessary to assume that the system traces form a regular language. More concretely, membership
queries in this framework basically check whether a given trace can be observed and equivalence queries
check whether a hypothesised system model is equivalent to the system under learning. In practice,
both queries are usually implemented via testing. Since the introduction of L∗, it has been adapted and
extended to various types of systems, such as Mealy machines [200, 246], timed systems [126], and
non-deterministic systems [161, 283].

1.6 Scope and Research Goals

1.6.1 Scope

Our focus lies on learning-based testing of black-box systems in networked environments. This sets the
scope of this thesis as described in the following. By considering black-box systems, we assume to have

1.6. Scope and Research Goals 5

minimal knowledge about systems. In particular, we assume no knowledge about their internal structure,
but only require a way to interact with them. This means that a system only needs to provide an interface
to interact with it and observe its reactions. By focusing on testing, we consider test interactions and ob-
servations of finite length, in contrast to other verification approaches such as model checking [46, 86].
As explained above, we consider learning-based testing as testing based on learned models. Therefore,
it is also a part of test-based learning, a process involving interleaved testing of systems and learning of
system models from test observations. In this process, we commonly iteratively refine our knowledge
about black-box systems represented by learned automata models that we can use for model-based test-
ing. We consider networked environments, such as the IoT. Since reliable communication is essential
for the dependability of networked systems, we mostly concentrate on testing of communication proto-
cols. However, we also consider aspects, such as the communication and interaction of software-based
systems among each other and with the physical world. Especially testing the interaction with the phys-
ical world is becoming increasingly important in the context of the IoT, therefore we also investigate
learning-based testing of so-called hybrid systems [196].

1.6.2 Research Context

The work that serves as basis for this thesis was performed in the project “Dependable Internet of Things
in Adverse Environments”2. This project is a Lead project, an initiative funded by TU Graz to perform
basic research on dependability in the IoT. At the time of writing, the project has entered the second
project period after a successful evaluation of the first project period to which we contributed.

Researchers from the departments of Computer Science & Biomedical Engineering and Electrical &
Information Engineering collaborate in this project to study various aspects of dependability. These as-
pects include reliability, availability, safety, confidentiality, and integrity. The project’s goal is to provide
methods and techniques to (1) increase dependability in these aspects and to (2) guarantee certain levels
of dependability.

The first project period was organised into four subprojects. The work discussed in this thesis has
been carried out in the subproject Dependable Composition. This subproject focused on developing
techniques to ensure correct communication between IoT devices (things). By verifying communication
to be correct, it shall be guaranteed that the composition of communicating things is dependable, given
that these things fulfil additional criteria. An example of an additional criterion is that sensitive informa-
tion should not be accessible to third parties, such as attackers. The subproject Dependable Computing
worked on providing guarantees with respect to security.

1.6.3 Research Plan

The work discussed within this thesis can roughly be grouped into two phases: (1) an exploratory phase
determining the state-of-the art in learning-based testing and identifying research questions related to the
domain of networked environments, and (2) a focused phase addressing the identified research questions.

Exploratory Research

In the exploratory phase, we surveyed the literature on work combining model learning and testing and
applied existing automata-learning techniques for model-based testing to gain practical experience.

We carried out the literature survey in collaboration with Wojciech Mostowski, Mohammad Reza
Mousavi, and Masoumeh Taromirad from Halmstad University and specifically focused on work that
explicitly targets testing, that is, we included work that either uses model-based testing for model learn-
ing, or model learning for model-based testing. The literature survey was published in the book on the

2Project website: http://dependablethings.tugraz.at, accessed on November 4, 2019

http://dependablethings.tugraz.at

6 Chapter 1. Introduction

Dagstuhl seminar “Machine Learning for Dynamic Software Analysis” that was attended by Mohammad
Reza Mousavi from Halmstad University [26].

In the practice-oriented line of work, we learned deterministic discrete-time finite-state models of
broker implementations of the IoT protocol Message Queuing Telemetry Transport (MQTT) [73, 153].
Through equivalence checking on model-level, we performed implicit model-based differential testing
between these implementations to discover specification violations. We presented the applied approach
and the results of this case study on learning-based testing at the ICST 2017 [263]. The main goal of
this work was to get a better understanding of learning-based testing in general and more specifically to
answer the following two research questions.

• RQ E.1 Is learning-based testing effective in networked environments such as the IoT?

• RQ E.2 What are the shortcomings of existing automata-learning approaches in practical applica-
tions?

Findings from Exploratory Research

We found several specification violations of MQTT implementations used in practice, therefore we con-
cluded that RQ E.1 can be answered positively. Learning-based testing is an effective method for failure
detection in our considered domain. Chapter 3 discusses this line of research in more detail and revisits
the research questions related to the exploratory research. In the course of the work on learning-based
testing MQTT implementations, we identified shortcomings in the following aspects leading to the defi-
nition of further research questions discussed below.

• Runtime: we found that automata learning generally has a high runtime, especially in networked
environments due to the high response times of the systems under learning.

• Non-deterministic & stochastic behaviour: existing deterministic learning techniques fail when
systems show non-deterministic or stochastic behaviour. More concretely, these techniques do not
produce any tangible results in these situations.

• Timing-related behaviour: through the application of discrete-time learning, we had to ignore
timing-related behaviour.

1.6.4 Problem Statements and Research Questions

Runtime. Initial learning experiments in our MQTT case study [263] took an excessive amount of
time. There are two common strategies to counter such issues: (1) abstraction to learn system models
with small abstract state space [1] and (2) smart test-case generation to reduce the number of test cases
required for finding discrepancies between learned models and the system under learning [144]. We
applied harsh abstraction focusing on selected properties of MQTT to enable learning. Despite this harsh
abstraction, learning still took a large amount of time and due to this abstraction, we could not check
certain properties. In multiple cases, it took several hours to learn models with less than twenty states.
Moreover, we found that deterministic conformance testing algorithms do not scale, which is in line with
findings by Howar et al. [144]. Consequently, we identified the following research questions.

• RQ 1.1 Are randomised testing techniques a sensible choice for learning-based testing?

• RQ 1.2 What guarantees can be given if randomised testing is applied?

• RQ 1.3 Can learning with randomised conformance testing reliably generate correct system mod-
els?

1.6. Scope and Research Goals 7

• RQ 1.4 Is fault-based testing, such as model-based mutation testing, applicable in automata learn-
ing?

Since deterministic conformance testing does not scale, randomised testing techniques should be
investigated. The first two questions address the issue that random testing usually comes with weak or
no guarantees. This carries over to models learned with random testing, that is, learned models may be
incorrect. Thus, RQ 1.2 could be rephrased as “How can potentially incorrect models help in verification
and testing?”. The third question asks whether complete deterministic conformance testing is necessary
for learning correct automata. Testing is incomplete in general, but still it is very successful in verification
and validation of software systems. Therefore, it should be investigated if similar observations can be
made for conformance testing in learning. The last research question addresses a concrete form of test-
case generation. It is motivated by our previous work in Professor Bernhard Aichernig’s group, in which
we researched and applied model-based mutation testing for fault-based testing of reactive systems [11,
19, 20, 21, 22, 23, 169]. In general, this form of testing injects known faults, so-called mutations, into a
specification model and generates test cases that cover those faults. Model-based mutation testing was
found to be especially effective in combination with random testing [22], therefore it is a natural choice
for the black-box setting considered in learning.

Non-deterministic & Stochastic Behaviour. We were not able to finish all learning experiments in
our MQTT case study, due to cases in which systems did not behave deterministically. Behaviour that
is not deterministic is usually modelled as being non-deterministic or stochastic. Non-deterministic
models may react to given inputs with responses from a finite set of choices, but they do not include
information about the likelihood of each response, whereas stochastic models assign probabilities to the
possible responses. There are also modelling formalisms incorporating non-deterministic and stochastic
behaviour. To simplify our discussion, we refer to non-deterministic or stochastic behaviour as uncertain
behaviour. Hence, we observe uncertain behaviour if the repeated application of the same input stimuli
may produce different outputs.

Deterministic learning techniques, such as Angluin’s L∗ [37], usually do not produce any model if
uncertain behaviour is observed during learning. Hence, it is necessary to apply alternative learning tech-
niques that learn types of models which are able to capture uncertainties. There are learning approaches
for non-deterministic [161, 283] and stochastic systems [199], however, the research in this area is in its
early stages, thus we identified the following research questions.

• RQ 2.1 Which modelling formalisms are appropriate in learning-based testing of uncertain be-
haviour?

• RQ 2.2 When can we stop learning in the presence of uncertain behaviour?

• RQ 2.3 Is test-based active learning feasible in the presence of stochastic behaviour?

In order to answer the first question, we need to investigate if uncertainties should be represented
stochastically or non-deterministically. As noted above, systems involving uncertainties react with one
of finitely many responses for a given input. This gives rise to the question of when we have seen all
possible reactions during learning as those should be captured in the learned model. RQ 2.2 addresses
this issue and is also related to RQ 1.2. Due to the black-box nature of learning, we can never be entirely
sure that we have seen every possible behaviour, but we may still be able to give guarantees relative to
the model we learned. Finally, RQ 2.3 is a specific question concerning active learning. In the literature,
we found test-based active learning of non-deterministic models [161, 283] based on Angluin’s L∗ [37],
but we did not find L∗-based learning of stochastic models applicable in a test-based setting. Therefore,
we decided to examine whether L∗-based learning is feasible in this context and if it is feasible, how it
differs from other approaches.

8 Chapter 1. Introduction

Timing-Related Behaviour. The MQTT specification allows users to set a Keep Alive time defining
the maximum duration between consecutive packets sent by a client that must not be exceeded [73].
Similar timeout mechanisms are also available in other communication protocols like the transmission
control protocol (TCP) [235]. Since discrete-time models can hardly capture such functionality, we had
to ignore all timing-related behaviour in our MQTT case study. A literature survey revealed that learning
of real-time system models is often restricted in expressiveness and difficult to implement via testing.
Therefore, we decided to study alternative approaches and defined the following two research questions.

• RQ 3.1 Is learning of real-time system models feasible through metaheuristic search-based tech-
niques?

• RQ 3.2 What assumptions are sufficient to enable learning in the context of real-time systems?

There are two major approaches to automata learning, namely passive state-merging-based learning
and active L∗-based learning; see Section 1.5. Both, the passive [279] and the active [126] approach,
have been studied for real-time systems. Motivated by the recent success of genetic programming [167]
in program synthesis [159], we decided to investigate the feasibility of metaheuristic model learning for
real-time systems. This investigation gave rise to the first research question RQ 3.1. Our goal was to
overcome limitations of existing approaches with respect to expressiveness. In other words, we wanted to
learn models covering a wider range of possible systems. The second research question RQ 3.2 concerns
learnability. It asks for properties that a system under learning needs to fulfil for learning to be feasible
or successful.

1.6.5 Thesis Statement

Test-case generation based on intermediate learned automata models combined with ran-
domisation enables active learning of accurate automata models.

Exhaustive conformance testing is usually infeasible in practice, therefore testing strategies that
take the targeted application domain into account have to be devised. Promising scalable strate-
gies include, but are not limited to, coverage-guided testing, reachability-directed testing, and
fault-based testing. Appropriately chosen testing strategies enable accurate learning as well as
guarantees with respect to verification objectives in a black-box setting.

1.7 Structure of this Thesis

This thesis is structured as follows. This chapter, Chapter 1, is the introductory chapter. It describes
the motivation, the context and the outline of this thesis, defines research questions and discusses the
work that forms the basis of this thesis. In Section 1.9, it introduces notational conventions that are used
throughout this thesis.

The main part of this thesis is structured along similar categories as the research questions introduced
above. Each chapter in the main part discusses learning-based testing or test-based learning of different
types of systems. We cover model learning for deterministic systems, stochastic systems, real-time
systems, and hybrid systems which extend real-time systems.

The first three chapters focus on learning of deterministic system models. Chapter 2 provides an
introduction to test-based active automata learning which serves as background knowledge for the fol-
lowing chapters. Chapter 3 covers the practical exploratory research. It discusses learning-based testing
of MQTT brokers. In Chapter 4, we concentrate on efficient conformance testing in active automata
learning. We present an approach to fault-based test-case generation in automata learning in this chapter.

1.8. Contributions and Publications 9

Additionally, we also present benchmarking experiments that evaluate active automata learning configu-
rations with respect to efficiency.

Chapter 5 to Chapter 7 discuss our work with regard to systems involving uncertainties. Our work
in this area focused on learning uncertain behaviour that is modelled stochastically and covers both
learning-based testing and test-based learning. Chapter 5 introduces background knowledge on stochastic
models and verification. Learning-based verification is the focus of Chapter 6. The chapter presents
an approach to learning-based testing of stochastic systems. This approach learns near-optimal testing
strategies with respect to reachability objectives. Test-based learning of stochastic system models is
covered by Chapter 7, which presents an L∗-based learning approach for Markov decision processes
(MDPs).

In Chapter 8, we discuss metaheuristic learning of models of real-time systems. The chapter intro-
duces a passive learning framework which is extended to active learning in Chapter 9. Finally, Chapter 10
presents our work on learning behaviour models of hybrid systems.

The final two chapters revisit the topics and work covered in this thesis. We first discuss work related
to the topics considered in this thesis in Chapter 11. The chapter concentrates on work in the intersection
between automata learning and model-based testing, closely following our literature survey [26], but
it also discusses other related work, such as strategy generation for stochastic systems. Chapter 12
concludes this thesis by first summarising the performed work. Subsequently, we discuss our findings
with respect to the research questions defined in Section 1.6.4. Finally, we give an outlook on potential
future work.

1.8 Contributions and Publications

1.8.1 Contributions

With our research on learning-based testing, we contributed to the state of the art in various ways. Our
contributions span the development of learning and testing approaches, the implementation of these
approaches, case studies on learning-based testing and test-based learning, and the creation of benchmark
models for learning and conformance testing. In more detail, our contributions are as follows.

• Learning-based testing of communication protocols [263]: to study the applicability of automata
learning for semi-automatic fault detection without prior knowledge, we performed a case study
on learning-based testing of the IoT protocol MQTT. In the course of this work, we learned mod-
els that are now part of a set of benchmark models for automata learning and conformance test-
ing [214].

• Learning-based testing of stochastic systems [16, 18]: we developed and implemented a learning-
based testing approach for reachability objectives of stochastic systems. Our extensive evaluation
showed that this testing approach generates near-optimal testing strategies.

• Efficient test-based learning of deterministic systems [15, 17]: with the goal of improving the
efficiency of test-based learning, we developed a fault-based testing technique for active automata
learning that derives test suites from learned intermediate models. For this purpose, we designed a
mutation operator injecting faults into learned models that are specifically tailored towards active
automata learning. We evaluated our implementation of this technique in combination with various
learning algorithms by comparing it to alternative conformance testing techniques.

• Test-based learning [29, 264, 265, 266, 267]: we developed and implemented test-based learning
methods for various types of system models including stochastic systems, timed systems, and hy-
brid systems. In each case, we applied or extended state-of-the-art techniques to enable learning
of the targeted type of system. For learning of stochastic systems, we adapted and extended the

10 Chapter 1. Introduction

classic L∗ algorithm [37]. To learn timed system models, we first developed a passive learning
technique based on genetic programming [167] that was subsequently extended to an active set-
ting in Andrea Pferscher’s master’s thesis [234], under co-supervision of the author of this thesis.
Finally, we learned neural network models of hybrid systems by generating training data through
learning-based testing.

• Implementations: the implementations of the developed learning and testing approaches are pub-
licly available online in various forms. They are available in the form of source code [259, 260],
as evaluation package including source code [261], and as demonstrator with graphical user inter-
face [262].

1.8.2 Main Publications

The statutes of the Doctoral School of Computer Science at Graz University of Technology mandate
that a dissertation needs to include an annotated list of publications explaining the relation between the
dissertation and the publications. Additionally, joint work with third parties needs to be highlighted.
The following list briefly introduces the content of each publication considered for this dissertation and
the contributions of the author of this dissertation. It is sorted chronologically with respect to the date of
creation and refers to publication venues. To ease presentation, contributions are described in first-person
singular form.

This thesis builds upon research and findings presented in six peer-reviewed conference papers, two
journal articles, one book chapter, one co-supervised master’s thesis and one co-supervised bachelor’s
thesis.

1. ICST 2017 – Model-Based Testing IoT Communication via Active Automata Learning [263]: this
conference paper discusses learning-based testing of the IoT protocol MQTT. Thus, it covers the
practical part of our exploratory research performed for this thesis that we will discuss in Chapter 3.

I presented the paper at the ICST 2017 and it was published in the proceedings of this conference.
The initial idea for learning-based testing in the IoT was developed by my co-authors Bernhard
Aichernig and Roderick Bloem. I designed the case study on MQTT and implemented the MQTT
interface and the learning setup to perform the case study. Furthermore, I analysed the case study
results and wrote the initial version of the paper. I polished the paper in collaboration with my
co-authors and based on feedback from colleagues.

2. Dagstuhl Seminar – Machine Learning for Dynamic Software Analysis – Model Learning and
Model-Based Testing [26]: this chapter is part of a book that has been published following a
Dagstuhl Seminar on machine learning in the context of verification. The chapter presents a sur-
vey on works in the intersection between model learning and model-based testing. We wrote it in
collaboration with researchers from Halmstad University. I wrote most of the section on learning.
All authors contributed in approximately equal parts to the three main sections of the survey. I
worked on this chapter in the exploratory phase of the research performed for this thesis. Chap-
ter 11 uses content from the survey.

3. NFM 2017 – Learning from Faults: Mutation Testing in Active Automata Learning [15]: this
conference paper presents an efficient fault-based conformance testing technique for active au-
tomata learning. It tackles issues related to learning runtime that we discovered in the exploratory
research. This line of work is discussed in Chapter 4.

I presented the paper at the NFM 2017 and it was published in the proceedings of this symposium.
I developed, implemented, and evaluated the test-case generation approach including the mutation
operator targeting the specifics of active automata learning. My supervisor Bernhard Aichernig
helped to fine-tune certain aspects concerning mutation-based testing. I wrote the initial draft of
the paper and polished it in collaboration with Bernhard Aichernig.

1.8. Contributions and Publications 11

4. RV 2017 – Probabilistic Black-Box Reachability Checking [16]: this conference paper presents a
technique for learning-based testing of stochastic systems with respect to reachability properties.
The technique is a step towards learning-based verification of systems with uncertain behaviour
via testing. Chapter 6 covers this technique.

I presented the paper at the RV 2017 and it was published in the proceedings of this conference.
I developed, implemented, and evaluated the presented online-testing approach. My supervisor
Bernhard Aichernig provided help with respect to aspects, such as statistical model-checking. I
wrote the initial draft of the paper and polished it in collaboration with Bernhard Aichernig.

5. JAR 2018 – Efficient Active Automata Learning via Mutation Testing [17]: following the pre-
sentation of our paper at the NFM 2017, we were invited to submit an extended version of our
conference paper on efficient fault-based conformance testing in active automata learning [15] to
the Journal of Automated Reasoning as part of the special issue on the NFM 2017. In addition to
the content of the conference paper, the extended version includes optimisations and a substantially
more thorough evaluation. These additions are also discussed in Chapter 4.

I developed the optimisations of the testing technique and performed the extended evaluation.
Moreover, I extended the conference paper by a discussion of these additions, an in-depth discus-
sion of the applied mutation technique and several further improvements. I polished the article in
collaboration with Bernhard Aichernig.

6. FMSD 2019 – Probabilistic black-box reachability checking (extended version) [18]: following
the presentation of our paper at the RV 2017, we were invited to submit an extended version of
our conference paper on learning-based testing of stochastic systems [16] to the journal Formal
Methods in System Design as part of the special issue on the RV 2017. The additional material
extending the original paper includes a heuristic stopping criterion for our testing technique and a
more thorough evaluation. Chapter 6 covers these aspects as well.

I developed the new stopping criterion and performed the extended evaluation. Additionally, I
extended and improved the original conference paper in various other aspects, for instance, by an
extensive introduction into learning-based testing and a discussion on convergence. I polished the
article in collaboration with Bernhard Aichernig.

7. FORMATS 2019 – Time to Learn – Learning Timed Automata from Tests [267]: this conference
paper presents a genetic-programming-based technique for learning models of real-time systems
from test observations. With that, we tackle issues with respect to the expressiveness of modelling
formalisms supported by existing learning techniques. Chapter 8 is based on this work.

I presented the paper at the FORMATS 2019 and it was published in the proceedings of this
conference. I developed, implemented, and evaluated the genetic-programming-based technique
described in the conference paper. In collaboration with my co-authors, I extended and fine-tuned
the technique as well as the experiments performed in the evaluation. I wrote the initial draft of the
paper, before extending and polishing it in collaboration with my co-authors. Furthermore, Andrea
Pferscher and I implemented a demonstrator including a graphical user interface. A technical
report focusing on other aspects than the conference paper is available at arxiv.org [264].

8. ICTSS 2019 – Learning a Behavior Model of Hybrid Systems Through Combining Model-Based
Testing and Machine Learning [29]: this conference paper discusses the application of model-
based testing for training data generation in machine learning. It demonstrates various approaches
for data generation in a platooning case study. Chapter 10 covers the work presented in this paper.

I presented the paper at the ICTSS 2019 and it appeared in the proceedings of this conference. The
paper was selected as being the best paper of the ICTSS 2019.
I implemented the learning-based and the model-based testing techniques used for performing the
testing part of the presented case study. In collaboration, we developed the idea of applying model-
based testing to generate training data for machine learning. I wrote the testing-related parts of the

arxiv.org

12 Chapter 1. Introduction

conference paper and also contributed to other parts. An extended version of the conference paper
is available as preprint [28].

Our initial efforts in this line of research have been presented at the “Lange Nacht der Forschung”
20183. At this event, we presented learning-based testing using the platooning case study to the
general public, focusing on testing for functional correctness.

9. FM 2019 – L∗-Based Learning of Markov Decision Processes [265]: this paper presents L∗-based
learning of MDPs. The main contributions of the paper encompass development, evaluation, and
implementation of a sampling-based active automata learning approach for MDPs that relies solely
on test observations. This approach is discussed in Chapter 7.

I presented the paper at the FM 2019 and it appeared in the proceedings of this conference. I de-
veloped and implemented the sampling-based learning algorithm, including auxiliary techniques,
like model-based equivalence testing of MDPs. In collaboration with my supervisor Bernhard
Aichernig, I fine-tuned various aspects of the learning algorithm. I wrote the initial version of the
conference paper where an extended version of the paper is available as preprint [266]. In collab-
oration with my co-authors, I improved the presentation, worked out proofs on convergence, and
generally polished the paper.

10. Master’s thesis of Andrea Pferscher – Active Model Learning of Timed Automata via Genetic
Programming [234]: Andrea Pferscher’s master’s thesis extends our passive genetic-programming-
based learning technique for models of real-time systems to an active learning technique. This is
done by interleaving learning and testing. The master’s thesis forms the basis of Chapter 9.

I co-supervised this thesis, providing advice on the passive learning technique, on active automata
learning, and on the evaluation of timed-automata learning. I also proofread the thesis.

11. Bachelor’s thesis of Felix Wallner (not yet submitted) – Benchmarking Active Automata Learning
Configurations [288] : Felix Wallner evaluated combinations of active automata learning algo-
rithms with conformance-testing techniques, including our fault-based conformance testing ap-
proach [15, 17], in his bachelor’s thesis project. Section 4.5 discusses the evaluation and its results
which is part of the chapter on efficient conformance testing in active automata learning. At the
time of writing, Felix Wallner has not yet submitted the final bachelor’s thesis.

I co-supervised the thesis project, providing guidance on the application of active automata learn-
ing and the evaluation of active automata learning.

1.8.3 Related Publications

In the course of the project “Dependable Internet of Things in Adverse Environments”, I participated in
joint research related to this thesis. The following publications have been created in these efforts, but are
not discussed in-depth.

1. S&P 2016 – Learning Models of a Network Protocol using Neural Network Language Models [10]:
this poster presented by Tobias Schrank proposes to learn neural networks capturing the message flow
of the TLS protocol. The main author of the poster was Tobias Schrank.

2. IJC 2017 – Dependable Internet of Things for Networked Cars [130]: this article presents the work in
the project “Dependable Internet of Things in Adverse Environments”. The main author of the article
was Bernhard Großwindhager.

3. FMCAD 2018 – Automata Learning for Symbolic Execution [24]: this conference paper presents a
combination of active automata learning and symbolic execution to test systems comprising black-box
and white-box components. Active automata learning automatically generates models of black-box
components. These models can be composed with the white-box components to enable symbolic
execution of the composition. The main author of the paper was Masoud Ebrahimi.
3https://www.langenachtderforschung.at, accessed on November 4, 2019

https://www.langenachtderforschung.at

1.9. Notation 13

Table 1.1: Notational conventions

Notation Condition Meaning
S∗ S is a non-empty set arbitrary-length sequences of elements in S
Sl sequences of elements in S with length l

s · s′ s, s′ ∈ S∗ concatenation of s and s′

ε empty sequence ε ∈ S∗
|s| length of sequence s
|S| cardinality of set S
e e ∈ S sequence e ∈ S∗ of length one (elements lifted to sequences)

s[i] s = s1 · · · sn ∈ S∗ s[i] is the ith element si . . . one-based indexed access
s[< i] s[< i] = s1 · · · s<i . . . subsequence of s with indexes j < i

s[≤ i] s[≤ i] = s1 · · · s≤i . . . subsequence of s with indexes j ≤ i
s[≥ i] s[≥ i] = s≥i · · · sn . . . subsequence of s with indexes j ≥ i
s[> i] s[> i] = s>i · · · sn . . . subsequence of s with indexes j > i

s� s′ s is a prefix of s′, i.e. ∃ t ∈ S∗ : s · t = s′

s� s′ s is a suffix of s′, i.e. ∃ t ∈ S∗ : t · s = s′

A ·B A,B ⊆ S∗ pair-wise concatenation: A ·B = {a · b|a ∈ A, b ∈ B}
prefixes(A) prefixes of sequences in A: {a′ ∈ S∗|∃ a ∈ A : a′ � a}
suffixes(A) suffixes of sequences in A: {a′ ∈ S∗|∃ a ∈ A : a′ � a}

P(C) C is a set power set of C
P(a) a is an event probability of a
T (e) T is a multiset multiplicity of e in T

1.9 Notation

This thesis mainly discusses automata learning and automata-based verification, therefore we introduce
notational conventions in Table 1.1 that we will use throughout this thesis. The left column introduces
some notation, the middle column specifies conditions on variables used in the table and the right column
describes the corresponding meaning of the notation. Note that conditions in Table 1.1 are cumulative,
that is, conditions introduced in a row also hold in the rows below. In addition to that, we will introduce
some terminology and auxiliary functions below.

Terminology

A set of sequences A ⊆ S∗ is prefix-closed, if it contains all prefixes of all sequences in A, that is, if
A = prefixes(A). Analogously, A is suffix-closed if it contains all suffixes of all sequences in A, that is,
if A = suffixes(A).

Auxiliary Functions

Throughout this thesis, we will use three pseudo-random functions to perform probabilistic choices, for
instance, to decide whether test-case generation should be stopped. The function coinFlip implements a
biased coin flip performing binary probabilistic choice. It is defined for p ∈ [0, 1] by P(coinFlip(p) =
true) = p and P(coinFlip(p) = false) = 1− p. The function rSel selects a single sample e from a set
S according to a uniform distribution, that is, ∀e ∈ S : P(rSel(S) = e) = 1

|S| . The function rSeq takes a
set S and a length bound b ∈ N to create a random sequence s of elements in S. The length l ≤ b of s is
chosen uniformly from [0 . . b] and each element of s is chosen via rSel(S).

14 Chapter 1. Introduction

All three pseudo-random functions require to be initialised. The respective initialisation operations
take a seed-value for a pseudo-random number generator as input and return an implementation of the
corresponding pseudo-random function. We assume these initialisation operations to be called prior to
the execution of procedures that apply those functions. To simplify presentation, we do not make these
calls explicit.

2
Introduction to Active Learning of

Deterministic System Models

Declaration of Sources

The presentation in this chapter partly follows the presentation of active automata learning in our
article on efficient fault-based conformance testing in the Journal of Automated Reasoning [17].

The following chapters cover our work on learning models of deterministic systems. All of our work
in this area focused on the practical application of active automata learning in the minimally adequate
teacher (MAT) [37] framework via testing. Therefore, we will introduce background knowledge on this
topic in this chapter. This includes:

• Mealy machines, the modelling formalism we mainly used for deterministic systems,

• Angluin’s L∗ algorithm and the MAT framework [37],

• extensions of L∗ and other active automata learning algorithms,

• conformance testing based on Mealy machine models,

• and abstraction in automata learning.

2.1 Mealy Machines

Mealy machines are well-suited to model reactive systems, such as implementations of communication
protocols, and they have successfully been used in contexts combining learning and some form of ver-
ification [97, 112, 200, 263]. Moreover, the Java-library LearnLib [152] provides mature and efficient
algorithms for learning Mealy machines.

Basically, Mealy machines are finite-state automata with inputs and outputs. The execution of a
Mealy machine starts in an initial state and by executing inputs it changes its state. Additionally, exactly
one output is produced in response to each input. Formally, Mealy machines can be defined as follows.

15

16 Chapter 2. Introduction to Active Learning of Deterministic System Models

q0start q1

q2q3

q4

Open/Q

Wait/Q

Lock/Ack

Close/Ack
Wait/Q

Lock/Ack

Open/Opened
Close/Ack

Open/Opened

Close/Ack

Lock/Ack

Open/
Opened

Wait/Armed

Lock/Q
Close/Q

Wait/Q

Open/Alarm

Wait/Q
Close/Ack

Lock/Ack

Open/
Opened

Figure 2.1: A Mealy machine modelling a car alarm system

Definition 2.1 (Mealy Machines).
A Mealy machineM is a 6-tupleM = 〈Q, q0, I, O, δ, λ〉 where

• Q is a finite set of states,

• q0 is the initial state,

• I is a finite set of input symbols,

• O is a finite set of output symbols,

• δ : Q× I → Q is the state transition function, and

• λ : Q× I → O is the output function.

We require Mealy machines to be input enabled and deterministic. Input enabledness demands that
outputs and successor states must be defined for all inputs in all states, that is, δ and λ must be total. A
Mealy machine is deterministic if it defines at most one output and one successor state for every pair of
input and source state. This means that δ and λmust be functions in the mathematical sense. Example 2.1
shows a Mealy machine modelling a simple car alarm system. It is an adaptation of the car alarm system
used in previous work by Bernhard Aichernig’s group on test-case generation [22, 23].

Example 2.1 (Mealy Machine Model of a Car Alarm System). Figure 2.1 shows a Mealy-
machine model of a simple car alarm system. We generally use this representation of Mealy
machines, in which circles denote states and the edges denote transitions. Furthermore, each
edge is labelled by a pair of an input and an output, separated by a slash. The initial state is
marked by an edge without source state.

The car alarm system has the inputs Open , Close , and Lock for opening, closing, and locking
the doors of a car. Another input Wait denotes waiting for some time. Depending on the current
state, the system reacts with one of the outputs O = {Ack ,Alarm,Armed ,Opened ,Q} to each
input, where Q denotes quiescent behaviour, i.e. the absence of outputs. There are two main
requirements for the car alarm system: (1) it must be Armed if the doors have been closed and
locked for some time and (2) it must produce an Alarm output if the doors are opened in the
Armed state.

The second requirement is modelled by the transition from the state q3 to q0, which is formally
described by δ(q3,Open) = q0 and λ(q3,Open) = Alarm . The state q3 is the only state reached
by a transition labelled with the output Armed .

2.2. L∗ and the Minimally Adequate Teacher Framework 17

We extend δ and λ to sequences of inputs in the standard way. Let s ∈ I∗ be an input sequence and
q ∈ Q be a state, then δ(q, s) = q′ ∈ Q is the state reached by executing s starting in state q. This
state is defined inductively by δ(q, ε) = q and δ(δ(q, s[1]), s[> 1]) if |s| > 0. For s ∈ I∗ and q ∈ Q,
the output function λ(q, s) = t ∈ O∗ returns the outputs produced in response to s executed in state
q. Formally, λ(q, ε) = ε and λ(q, s) = λ(q, s[1]) · λ(δ(q, s[1]), s[> 1]) if |s| > 0. Furthermore, let
λ(s) = λ(q0, s) and δ(s) = δ(q0, s). For a state q, the set acc(q) = {s ∈ I∗ | δ(q0, s) = q} contains the
access sequences of q. These sequences are the sequences leading to q. Note that certain works define
a unique access sequence s ∈ I∗ for each q [151], but we are generally interested in a set of access
sequences leading to a state.

We combine the state transition function and the output function to the transition relation→⊆ Q×
I × O × Q and we write q

i/o−−→ q′, if δ(q, i) = q′ and λ(q, i) = o. The transitive-reflexive closure
→∗⊆ Q × I∗ × O∗ ×Q of the transition relation is the smallest relation containing all (q, ī, ō, q′) such

that |̄i| = |ō|, δ(q, ī) = q′, and λ(q, ī) = ō. In slight abuse of notation, we write q
ī/ō−−→ q′ for the

transitive-reflexive closure, as for the one-step transition relation, if (q, ī, ō, q′) ∈→∗.
In learning and conformance testing, we usually take a black-box view of systems. This means that

we cannot observe the state structure of the considered systems. We can, however, observe which out-
puts they produce in response to inputs. Therefore, we define observations and observation equivalence
similar to Aarts et al. [5]. Informally, an observation is an input/output sequence consisting of outputs
produced by a Mealy machine in response to an input sequence. We also refer to observations as traces
of Mealy machines.

Definition 2.2 (Observations).
Given a Mealy machine M = 〈Q, q0, I, O, δ, λ〉, the observations of M in state q are obs(q)M =

{(i, o) ∈ I∗ × O∗|∃q′ ∈ Q : q
i,o−→ q′} and the observations obsM ofM are the observations in the

initial state, that is, obsM = obsM(q0).

Definition 2.3 (Observation Equivalence).
Two Mealy machines M1 and M2 with the same input alphabets and the same output alphabets are
observation equivalent, denotedM1 ≡M2, iff obsM1 = obsM2 .

Definition 2.3 states that two Mealy machines are observation equivalent if they produce the same ob-
servations starting from their initial states. Since we usually take a black-box view, we mainly talk about
observation equivalence. Therefore, we will generally refer to observation equivalence as equivalence in
the context of Mealy machines. Equivalence of Mealy machinesM1 andM2 can equivalently be defined
with respect to their output functions λ1 and λ2.M1 andM2 are equivalent iff ∀i ∈ I∗ : λ1(i) = λ2(i).
In conformance testing, we want to find input sequences that show non-equivalence, therefore we define
counterexamples to equivalence as follows.

Definition 2.4 (Counterexamples to Observation Equivalence).
Given two Mealy machinesM1 andM2 with output functions λ1 and λ2, a counterexample to observa-
tion equivalence betweenM1 andM2 is an input sequence i ∈ I∗ such that λ1(i) 6= λ2(i).

2.2 L∗ and the Minimally Adequate Teacher Framework

We learn deterministic discrete-time automata in the minimally adequate teacher (MAT) framework in-
troduced by Angluin for the L∗ algorithm [37]. Algorithms in this framework interact with a so-called
minimally adequate teacher (MAT) to learn automata accepting some unknown regular language or mod-
elling a black-box SUL. This section presents the MAT framework and how algorithms in this framework
usually work by abstractly describing L∗. Then, we will discuss learning of Mealy machines in more
detail to give an intuition on how models of reactive systems can be learned in the MAT framework.
Finally, we will discuss how L∗-based learning algorithms derive the structure of learned models from
queried data.

18 Chapter 2. Introduction to Active Learning of Deterministic System Models

Teacher
Learning
Algorithm

Equivalence Query (Hypothesis)

Yes / Counterexample

Membership Query

Yes / No

Figure 2.2: The interaction between a learning algorithm and a MAT [275]

2.2.1 Minimally Adequate Teacher Framework

A MAT usually needs to be able to provide answers to two types of queries that are posed by learning
algorithms in the MAT framework. These two types of queries are commonly called membership queries
and equivalence queries; see Figure 2.2 for a schematic depiction of the interaction between the learning
algorithm, also called learner, and the MAT, also called teacher. In order to understand the basic notions
of queries, consider that Angluin’s original L∗ algorithm is used to learn a DFA representing a regular
language known to the teacher [37]. Given some alphabet, the L∗ algorithm repeatedly selects strings
and performs membership queries to check whether these strings are in the language to be learned. The
teacher may answer with either yes or no.

After some queries, the learning algorithm uses the knowledge gained so far and forms a hypothesis.
A hypothesis is a DFA consistent with the obtained information which is supposed to accept the regular
language under consideration. The algorithm presents the hypothesis to the teacher and issues an equiv-
alence query in order to check whether the language to be learned is equivalent to the language accepted
by the hypothesis automaton. The response to this kind of query is either yes, signalling that a correct
DFA has been learned, or a counterexample to equivalence. Such a counterexample serves as a witness
showing that the learned model is not yet correct, that is, it is a word in the symmetric difference of the
language under learning and the language accepted by the hypothesis.

After processing a counterexample, the learner starts a new round of learning. The new round again
involves membership queries and a concluding equivalence query. This general mode of operation is
basically used by all algorithms in the MAT framework with some adaptations. These adaptations may,
for instance, enable the learning of Mealy machines as described in the following.

2.2.2 Learning Mealy Machines

Margaria et al. [200] and Niese [218] were among the first to learn Mealy-machine models of reactive
systems using an L∗-based algorithm. Another L∗-based learning algorithm for Mealy machines has
been presented by Shahbaz & Groz [246]. They reuse the structure of L∗, but substitute membership
queries for output queries. Instead of checking whether a string is accepted, the learner provides inputs
and the teacher responds with the corresponding outputs. For a more practical discussion, consider the
instantiation of a teacher. Usually we want to learn the behaviour of a black-box SUL of which we
only know the interface, that is, we only know the SUL’s inputs and outputs. Hence, output queries are
conceptually simple: provide inputs to the SUL and observe the produced outputs. In other words, an
output query can be performed by executing a single test case and recording the test observations. How-
ever, there is a slight hidden difficulty. Similar to the original L∗ algorithm [37], Shahbaz & Groz [246]
assume that outputs are produced in response to inputs executed from the initial state. For this reason,
we need to have some means to reset a system. Moreover, we generally cannot check for equivalence
directly, because we take a black-box view of the SUL. It is thus necessary to approximate equivalence
queries, for instance, via conformance testing as implemented in LearnLib [152], an automata learning
library for Java. To summarise, a learning algorithm for Mealy machines relies on three operations:

2.2. L∗ and the Minimally Adequate Teacher Framework 19

Teacher

Model-Based
Testing Tool

System Under
Learning

Learning
Algorithm

Equivalence Query (Hypothesis)

Yes / Counterexample

Perform Tests

All Pass /
Failed Test

Output Query

Query Output

Reset + Inputs

Outputs

Outputs Reset + Inputs

Figure 2.3: The interaction between a learning algorithm and a MAT communicating with a SUL
to learn Mealy machines [275]

1. reset: resets the SUL

2. output query: performs a single test case executing inputs and recording outputs

3. equivalence query: tests for conformance between SUL and hypothesis, by generating and per-
forming a set of test cases, often referred to as test queries. During each test-case execution, the
teacher compares the outputs of the SUL with the outputs predicted by the current hypothesis.

As shown in Figure 2.3, the teacher is usually a component communicating with the SUL. It includes a
model-based testing tool to generate test queries for equivalence queries. An equivalence query results
in a positive answer if all generated test queries pass. A test query passes if the SUL produces the same
outputs as the hypothesis, otherwise it fails. If there is a failing test query, the corresponding input
sequence is returned as a counterexample to the learner.

Learning Process for Black-Box Systems

Based on the three operations described above, active automata learning of black-box SULs usually im-
plements the general pattern given in pseudocode by Algorithm 2.1. We can see that this algorithm fol-
lows the active automata learning process introduced for L∗. It performs output queries until it can build

Algorithm 2.1 General pattern of active automata learning for black-box SULs
Input: SUL with a RESET operation and a function TEST : I∗ → O∗ executing a sequence of inputs and

collecting the produced outputs
Output: learned Mealy machine

1: repeat
2: t← select sequence for output query
3: RESET

4: u← TEST(t) . perform output query
5: STORE(t, u)
6: until sufficient information to build hypothesis
7: H = 〈Qh, q0h, I, O, δh, λh〉 ← build hypothesis
8: Generate test suite Ts ⊂ I∗ fromH . perform equivalence query
9: for all t ∈ Ts do

10: RESET

11: u← TEST(t)
12: if u 6= λh(t) then
13: extract and store information from counterexample t and goto 1
14: end if
15: end for
16: returnH

20 Chapter 2. Introduction to Active Learning of Deterministic System Models

Table 2.1: Initial observation table for the car alarm system

S
E

Open Lock Close Wait

S ε Q Ack Ack Q

S · I

Lock Opened Ack Ack Q
Open Q Ack Ack Q
Close Opened Ack Ack Q
Wait Q Ack Ack Q

a hypothesis (Line 1 to Line 6). Then, it performs an equivalence query via testing (Line 8 to Line 15),
and if it finds a counterexample to equivalence, it returns to performing output queries. Aside from this
general process, there are also algorithm-dependent operations, which we left abstract in Algorithm 2.1,
like how output queries are selected (Line 2) and how information is stored (Line 5).

Deriving Model Structure

We will now discuss how the structure of models is derived in active automata learning on the basis of the
car alarm system introduced in Example 2.1 by performing one round of learning. For that, we execute
Algorithm 2.1 until Line 13.

The way information is stored, what output queries are performed, and the amount of information
necessary to build a hypothesis depends on the specific learning algorithm. A prefix-closed set of input
sequences identifying hypothesis states is commonly maintained by various active automata learning
approaches [37, 151, 258]. The states reached by these sequences are usually distinguished by outputs
produced in response to another set of input sequences. In other words, states are distinguished by their
future behaviour [258].

The following discussion is roughly based on the L∗M algorithm for Mealy machines by Shahbaz and
Groz [246] and Angluin’s L∗ [37]. For this discussion, letM = 〈Q, q0, I, O, δ, λ〉 be the Mealy machine
modelling the car alarm system introduced in Example 2.1, serving as our SUL. L∗ and its adaptations
for Mealy machines commonly store information in observation tables which are triples 〈S,E, T 〉, where
S ⊂ I∗ is a prefix-closed set of input sequences identifying states, E ⊂ I∗ is a suffix-closed set of input
sequences distinguishing states (with the exception that ε /∈ E), and T : (S ∪ S · I) · E → O+ is a
mapping storing the outputs of the SUL produced in response to some e ∈ E, after executing an input
sequence s ∈ S ∪ S · I . Note that the sequences S · I , the one-input extensions of S, identify transitions
in learned models. Observation tables in L∗M are initialised by setting S = {ε} and E = I .

Example 2.2 (Filling the Observation Table of the Car Alarm System). We first need to make
output queries such that T is defined for all (S∪S·I)·E. As we initially have S = {ε} andE = I ,
the first observation table is shown in Table 2.1. The upper part of the table rows contains the
information for all sequences in S, that is, only ε, whereas the lower part contains the information
for all sequences in S ·I . The columns are labelled by elements inE. For instance, the right-most
cell in the bottom row stores T (Wait ·Wait) = Q , where the first Wait is in S ·I and the second
Wait is in E. The output Q (quiescent behaviour) is produced in response to the second Wait .

L∗-based approaches represent rows by a function row(s) : E → O+ for s ∈ S ∪ S · I and consider
each unique row in the observation to represent a different hypothesis state. In order to be able to build
well-defined hypotheses from observation tables, L∗ requires two conditions to hold. These conditions
are called closedness and consistency and they are checked in Line 6 of Algorithm 2.1. Closedness
requires for each unique row row(s) that there must be an s′ ∈ S with row(s) = row(s′), thus the set
S must cover all unique rows. This condition is required to ensure that transitions can be created for
all states and all inputs. It can be seen that the observation table in Table 2.1 is not closed, as there
is no s′ ∈ S such that row(s′) = row(Lock). Consistency requires that for all pairs of equivalent rows

2.2. L∗ and the Minimally Adequate Teacher Framework 21

Table 2.2: First closed and consistent observation table for the car alarm system

S
E

Open Lock Close Wait

S

ε Q Ack Ack Q
Lock Opened Ack Ack Q
Lock · Close Opened Ack Ack Armed
Lock · Close ·Wait Alarm Q Q Q

S · I

Open Q Ack Ack Q
Close Opened Ack Ack Q
Wait Q Ack Ack Q
Lock ·Open Q Ack Ack Q
Lock · Lock Opened Ack Ack Q
Lock ·Wait Opened Ack Ack Q
Lock · Close ·Open Q Ack Ack Q
Lock · Close · Lock Opened Ack Ack Armed
Lock · Close · Close Opened Ack Ack Armed
Lock · Close ·Wait ·Open Q Ack Ack Q
.

labelled by S, their one-input extensions must be equivalent too, that is, for s, s′ ∈ S if row(s) = row(s′)
then row(s · i) = row(s′ · i) for all i ∈ I . This condition is required to build deterministic hypotheses.
Table 2.1 is obviously consistent. Consistency violations are resolved by adding new columns to E. The
following example demonstrates how to make our initial observation table closed and consistent.

Example 2.3 (Creating a Closed and Consistent Observation Table). Table 2.1 is not closed,
therefore we add Lock to S to make the table closed. We could as well have added Close .
This requires us to issue additional output queries. In this process, we find additional closedness
violations that we fix by adding Lock · Close and Lock · Close ·Wait to S as well. Table 2.2
shows the first closed and consistent observation table created during learning of the car alarm
system. We omitted some rows labelled by S ∪ I for presentation purposes. Note that we did not
extend E, as we did not find consistency violations.

Given a closed and consistent observation table, we can create a hypothesis by creating a state for
each unique row row(s). The rationale behind this is based on the Myhill-Nerode theorem for formal
languages [216]. For further information on the Myhill-Nerode theorem and an adaptation to Mealy
machines, we refer to Steffen et al. [258]. The transition function δh of hypotheses is defined by
δh(row(s), i) = row(s · i) and the output function λh is given by λh(row(s), i) = T (s · i), where
s ∈ S. Finally, the initial state is row(ε). This construction is well-defined due to closedness, consis-
tency, ε ∈ S, and I ⊆ E. An important property of this construction is that automata learned via L∗M
have the minimal number of states among all Mealy machines consistent with the information stored in
the observation tables [246]. Consequently, learned hypotheses converge to a Mealy machine equivalent
to the SUL with the least number of states possible.1 This property is generally shared by other active
automata learning algorithms in the MAT framework as well [258].

Our next example shows the hypothesis derived from Table 2.2.

Example 2.4 (Deriving a First Hypothesis with L∗M). After the first batch of output queries,
we derive the hypothesis shown in Figure 2.4 from the closed and consistent observation table
presented in Table 2.2. The set S contains access sequences of all four states of the hypothesis.
The sequences in E distinguish them and the one-input extensions S · I define transitions in the
hypothesis. We also see that sequences with equivalent row functions are access sequences for the

1The final hypothesis is usually not uniquely defined, but it is equivalent to the smallest possible automaton up to isomor-
phism [37].

22 Chapter 2. Introduction to Active Learning of Deterministic System Models

q0start q1

q2q3

{Open,Wait}/Q
Lock/Ack

Close/Ack

Wait/Q

Lock/Ack

Open/Opened
Close/Ack

{Lock ,Close}/
Ack

Open/
Opened

Wait/Armed

{Lock ,Close,Wait}/Q

Open/Alarm

Figure 2.4: A first hypothesis of the car alarm system derived during learning

same state. Consider the sequences ε and Open for instance, it holds that row(ε) = row(Open)
and both sequences lead to the same state in the hypothesis.

To conclude the first round, we shall perform an equivalence query via testing. The following ex-
ample shows a counterexample that we may find during testing. There are various strategies to process
counterexamples in order to extract information from them. The original L∗ algorithm, for instance, adds
all prefixes of a counterexample to S [37], while another strategy proposed by Maler and Pnueli adds
all suffixes of a counterexample to E [195], except for the empty sequence. We will further investigate
counterexample processing further in the next section.

Example 2.5 (A Counterexample for the Car Alarm System). Suppose that we generated a set
of test cases including the input sequence t = Close ·Lock ·Wait in Line 8 of Algorithm 2.1. The
hypothesis produces the outputs Ack ·Ack ·Q for t, while the SUL produces Ack ·Ack ·Armed
(see Figure 2.1). Hence, the input sequence t is a counterexample to equivalence which we can
use to improve our hypothesis.

2.3 Improvements in Active Automata Learning

Angluin provided the basis for active automata learning by introducing the MAT framework [37]. The
runtime complexity and the space complexity of the L∗ algorithm are polynomial in the size of the
learned automata and the length of the longest counterexample returned from an equivalence query, but
neither is optimal. In the following, we will discuss some improvements of active automata learning with
regard to efficiency.

2.3.1 Reduced Observation Tables & Distinguishing Suffixes

Rivest and Schapire [240] proposed two influential improvements of Angluin’s L∗ [37] which are related
to each other. We will refer to the L∗ algorithm with these improvements as RS algorithm. Recall that
an observation table is a triple 〈S,E, T 〉 and that L∗ requires consistency to derive hypotheses. The
first improvement of the RS algorithm is that it maintains reduced observation tables. These observation
tables satisfy the condition ∀s, s′ ∈ S : s 6= s′ → row(s) 6= row(s′) which implies consistency.
This condition ensures that each element of S corresponds to exactly one state in a hypothesis, thus |S|
cannot exceed the size of the minimal automaton modelling the SUL. The RS algorithm achieves this
through advanced counterexample processing which is its second improvement. Rather than adding all
prefixes of a counterexample c returned from an equivalence query to S, the RS algorithm extracts a
single distinguishing suffix v from c and adds that to E. Through these improvements, the observation
table size does not depend on the counterexample length which may significantly improve runtime.

2.3. Improvements in Active Automata Learning 23

A distinguishing suffix is a sequence that is able to distinguish the rows labelled by two sequences
in S ∪ S · I . The key insight into the proposed technique is that the counterexample c can be split into
three parts: c = s′ · i · v, with s′ ∈ I∗, i ∈ I , and v ∈ I∗. For such a splitting, there exists a uniquely
defined s ∈ S such that row(s) = row(s′ · i) [240]. Furthermore, if c is a counterexample, then there
exists a splitting such that executing s · v and s′ · i · v on the SUL produces different outputs. Note
that it suffices to check the last output produced by each sequence [258]. Hence, adding v to E causes
row(s) 6= row(s′ · i). Making the observation table closed after adding v to E adds at least one sequence
to S as well, thus creating a new hypothesis state. As a result, v basically splits the states reached by s
and s′ · i in the next hypothesis. Thus, we learn that s and s′ · i reach different states in the SUL. This
also serves as the basis for our fault-based testing technique presented in Chapter 4 [15, 17].

An appropriate splitting can be found via binary search using log(|c|) output queries. Hence, the
counterexample processing does not cause a large runtime overhead. Without going into detail, we
want to note that directly applying this counterexample processing strategy may lead to issues regarding
canonicity of hypotheses. We refer to Steffen et al. [258] for more information. The following example
demonstrates the counterexample processing.

Example 2.6 (Distinguishing Suffix Extraction). Figure 2.4 shows the first hypothesis learned
for our car alarm system depicted in Figure 2.1 which is not yet correct. In Example 2.5, we
presented t = Close · Lock ·Wait as a counterexample to equivalence between the hypothesis
and the true car alarm system. Though not intended, the observation table in Table 2.2 satisfies
the condition that all rows labelled by S are different.

We can split t into s′ = ε, i = Close and v = Lock ·Wait . From Table 2.2, we derive
s = Lock , as row(ε ·Close) = row(Lock). Executing Close ·Lock ·Wait and Lock ·Lock ·Wait
on the SUL shown in Figure 2.1 produces Ack · Ack · Armed and Ack · Ack · Q , respectively.
Hence, v = Lock ·Wait is a suffix that is able to distinguish the states reached by Lock and Close .
By adding v to E, we learn that Lock and Close reach different states in the SUL. Generally, we
would perform a binary search for the values s′, i, and v.

2.3.2 Tree-Based Storage

Kearns and Vazirani presented an active automata learning algorithm [160], which we abbreviate as KV
algorithm, that uses trees to store the access sequences S and the distinguishing sequences E. The main
idea behind the data storage used in the KV algorithm is that for each pair of sequences s, s′ in S there
exists an e in E distinguishing s from s′. Hence, this algorithm also maintains the property |S| ≤ n,
where n is the minimal number of states of the hypothesis.

For the sake of simplicity we assume that we learn DFA. In this case, a binary tree serves as data
structure with leaves labelled by elements of S and nodes labelled by elements of E. Due to the one-to-
one correspondence between S and the leaves, each leaf represents a hypothesis state. Therefore, each
leaf also represents an equivalence class of access sequences. The exact leaf position of some sequence
s, that is, the hypothesis state reached by s, is determined by an operation called sifting [160]. Starting
at the root node, sifting determines the node label e in E and checks whether s · e should be accepted.
If it should be accepted, we move to the right child and otherwise to the left child. In this way, sifting
traverses the tree until reaching a leaf position. Hypotheses are constructed by creating a state for each s
in S and creating transitions through sifting s′ in S · I .

Reducing Redundancy. A weakness of the KV algorithm is its counterexample processing. In its
original version [160], the KV algorithm analyses counterexamples to determine two sequences s and s′

corresponding to the same leaf in the current tree, but leading to different states in the SUL. It then splits
the leaf labelled s, adds the counterexample prefix s′ to S and adds the corresponding counterexample
suffix e to E which distinguishes s and s′.

24 Chapter 2. Introduction to Active Learning of Deterministic System Models

Specification Model

Test Suite

Test ExecutorImplementation

pass / fail

impm

generate test cases

execute

Figure 2.5: An overview of the conformance testing process [269]

Isberner et al. [151] note that this may introduce redundancies, especially when dealing with long
counterexamples. Roughly speaking, a subsequence of s′ may also lead to a new state and a subsequence
of e may also be able to distinguish states. Therefore, they proposed the TTT algorithm [151], which
uses trees for storage as well. In addition to the tree used by the KV algorithm, they keep track of a
spanning tree formed by S in the hypothesis and a trie for storing all distinguishing suffixes E.

The TTT algorithm decreases the length of both prefixes and suffixes derived from counterexamples,
whereby counterexample processing is partly based on the approach of Rivest and Schapire [240]. They
also conduct the splitting of states and leaves due to counterexamples explicitly, but for more information
we refer to the original publication [151]. At the time of writing, the TTT algorithm is presumably
the most sophisticated algorithm for learning deterministic models, with optimal space complexity and
best-known worst-case runtime complexity. The RS algorithm [240] has the same worst-case runtime
complexity, though.

2.4 Conformance Testing

As explained in Section 2.2, we assume the existence of a teacher in active automata learning of Mealy
machines. This teacher needs to be capable of answering two types of queries: output queries and
equivalence queries. When we learn models of black-box systems, the former query can usually be
answered through a single test, executing given inputs and observing the corresponding outputs. The
latter query is more difficult to implement. Mostly, it is implemented through conformance testing as
we discussed in our survey for instance [26]. We also outlined this in Line 8 of Algorithm 2.1, which
generates a set of test cases to be executed on the SUL. In the following, we will therefore introduce
the conformance testing problem for Mealy machines in active automata learning, discuss approaches to
conformance testing, and conclude with considerations specific to conformance testing in learning.

Overview. Figure 2.5 provides an overview of the conformance testing process. In conformance test-
ing, a specification model and an implementation are related through a conformance relation, denoted
impm here. The first step in the testing process generates a set of test cases from the specification model,
called test suite. Therefore, this kind of testing is also called model-based testing. A test executor, also
called test driver, then executes these tests on the implementation to find faulty behaviour. Such faulty
behaviour is a discrepancy in the behaviour described by the specification model and the implementation.
In conformance testing, discrepancies are captured as violations of a conformance relation impm.

2.4. Conformance Testing 25

2.4.1 The Conformance Testing Problem

In conformance testing based on finite state machines, we are generally given a state-machine model, also
called specification, and our goal is to test whether a black-box implementation, also called system under
test (SUT), conforms to the given model [184]. In this scenario, we assume that the model is correct and
we want to determine whether the implementation behaves correctly with respect to the model. This view
on conformance testing changes slightly in automata learning. Since we want to learn a faithful model of
an implementation, we assume the implementation to be correct for the purpose of conformance testing
and we test whether a learned hypothesis model conforms to the behaviour of the implementation. We
will see in the following that this change of perspective does not greatly affect testing based on Mealy
machines.

Conformance Relations

We formalise the testing problem by defining a conformance relation impm, also called implementation
relation, that expresses the conditions for an implementation to conform to a specification model [269].
The subscript m stands for Mealy machine in our case. For this purpose, it is usually assumed that the
black-box implementation can be modelled in the formalism for which the relation impm is defined.
This assumption is commonly referred to as testing hypothesis [269]. It is actually also present in active
automata learning. If we use a learning algorithm for Mealy machines, we implicitly assume that our
SUL can be modelled as a Mealy machine. Note that this hypothesis does not require an explicit imple-
mentation model, but just the possibility to express the dynamics of the implementation in the chosen
modelling formalism.

Since we implement equivalence queries through conformance testing, we use observation equiv-
alence as defined in Definition 2.3 as conformance relation. Therefore, we refer to the conformance
relation also as equivalence relation. Given an implementation Mealy machine I and a specification
Mealy machine S, we say that I conforms to S , denoted I impm S, if and only if obsI = obsS .

Test-Case Generation

Having defined what a conformance relation is and how we instantiate conformance relations for testing
Mealy machines, we will now formalise test-case generation and cite desirable properties of test-case
generation. Our discussion of test-case generation follows Tretmans [271]. In the following, we assume
an implementation Mealy machine I with output function λI and a specification Mealy machine S with
output function λS as given. Furthermore, let M be the set of all Mealy machines and let TEST be the
set of all test cases.

Test cases basically describe what input stimuli need to be provided to a SUT during test-case exe-
cution. A set of test cases is called a test suite. To determine the outcome of performing all test cases in
a test suite, we need a procedure exec : TEST → {fail,pass}. This procedure assigns a verdict exec(t)
of either fail or pass to the execution of a test case t, where pass denotes conformance between I
and S with respect to t and fail denotes a conformance violation. A test case t with fail verdict thus
demonstrates a discrepancy between S and I. Due to input-enabledness and deterministic behaviour of
Mealy machines, we use input sequences as test cases, thus we instantiate TEST = I∗. Since we test for
observation equivalence, we assign verdicts based on outputs. Formally,

exec(t) =

{
pass if λI(t) = λS(t)

fail otherwise.

Note that test-case execution implicitly resets the implementation, because λI(t) and λS(t) return outputs
produced in response to t starting from the initial state. As shorthand notations, we define a predicate
denoting whether an implementation I passes a test case t and another predicate denoting whether I
passes a test suite T : I passes t⇔ exec(t) = pass and I passesT ⇔ ∀t ∈ T : I passes t.

26 Chapter 2. Introduction to Active Learning of Deterministic System Models

Following Tretmans [271], we view test-case generation algorithms as functions genimpm
: M →

P(TEST), that is, functions mapping from Mealy machines to test suites. Ideally, it should hold that:

∀I ∈M : I impm S ⇔ I passes genimpm
(S) (2.1)

The test-case generation function genimpm
should produce test suites T from S such that an im-

plementation I passes T if and only if I conforms to S. Such test suites are called complete for S.
However, completeness usually cannot be achieved in practice when testing black-box implementations.
Unless we place restrictions on possible implementations, the set of implementations is infinitely large.
Therefore, we place weaker requirements on test suites. We require test suites to be sound. A test suite
T is sound if any conforming implementation passes it, that is, it corresponds to the left-to-right impli-
cation of Equation (2.1). By the contrapositive of this implication, any implementation not passing a
sound test suite does not conform to the specification. A test suite satisfying the right-to-left implication
is called exhaustive and can detect errors in all implementations that do not conform to the specification.
A test-case generation algorithm producing complete test suites for any specification is called complete.
The terms sound and exhaustive are analogously assigned to test-case generation algorithms.

In the following, we will discuss some basic test-case generation algorithms for Mealy machines.
Hence, these algorithms produce sets of input sequences to be executed on the SUT. We generally assign
verdicts via exec, therefore our test suites are sound. To see why this holds, recall from Section 2.1 that
I impm S (i.e. I ≡ S) iff ∀i ∈ I∗ : λI(i) = λS(i). This implies ∀i ∈ T : λI(i) = λS(i)⇔ I passesT
for any T ⊆ I∗.

2.4.2 Conformance Testing Approaches

We mainly use the Java library LearnLib [152] for learning Mealy machines, therefore we concentrate
on testing algorithms available in LearnLib2 at the time of writing this thesis. However, note that these
algorithms are standard algorithms for testing Mealy machines. All testing algorithms generate test cases
based on a specification S = 〈Q, q0, I, O, δ, λ〉.

W-Method

The W-method by Vasilevskii [277] and Chow [83] is a well-known, early test-case generation technique.
Originally, it was proposed as a technique for generating tests from a possibly incorrect design of a
program’s control structure in order to test the program with respect to a specification. Here, we will
use it to generate test cases from a specification Mealy machine that also serves as specification in order
to execute the generated test cases on an implementation. It requires an estimation m of the maximum
number of states of the implementation and produces an exhaustive test suite under the assumption that
the implementation has less than or equal to m states. In other words, if the implementation passes the
produced test suite, then the implementation either conforms to the specification model or it has strictly
more than m states.

Algorithm 2.2 shows pseudocode for test-case generation with the W-method. It applies concepts
from finite-state machine theory. The setW is a set of characterising input sequences for the specification
S. This means that for any pair of states of S there is a sequence in W that can distinguish the states
in the pair. Formally, we require that ∀q, q′ ∈ Q : q 6= q′ =⇒ ∃w ∈ W : λ(q, w) 6= λ(q′, w). For
standard approaches to computeW , we refer to Gill [120], as Chow [83]. Furthermore, we create a set of
input sequences, called transitionCover in Algorithm 2.2, that covers every transition of the specification
at least once. Sequences in the concatenation of transitionCover and W are able to detect all errors
in λ and δ in Mealy machines with at most the same number of states as S. These errors are called
operation errors and transfer errors by Chow [83]. The infix sequences in middle are necessary to detect

2See also https://learnlib.de/ and https://github.com/Learnlib/learnlib, accessed on
November 4, 2019

https://learnlib.de/
https://github.com/Learnlib/learnlib

2.4. Conformance Testing 27

Algorithm 2.2 Test-case generation with the W-method [83]
Input: S = 〈Q, q0, I, O, δ, λ〉, m
Output: test suite T

1: stateCover← {seq | q ∈ Q, seq ∈ acc(q)}
2: transitionCover← stateCover · I
3: middle←

⋃m−|Q|
d=0 Id

4: W ← buildCharacterising(S)
5: T ← transitionCover · middle ·W

Algorithm 2.3 Random-words-based test-case generation
Input: ntest ∈ N, lmin ∈ N, lmax ∈ N
Output: test suite T

1: T ← ∅
2: for i← 1 to ntest do
3: l← rSel([lmin . . lmax])
4: test← ε
5: for i← 1 to l do
6: test← test · rSel(I)
7: end for
8: T ← T ∪ {test}
9: end for

missing or additional states. Altogether, every test case consists of three parts, a sequence to a transition,
a potentially empty middle part, and a characterising sequence.

The partial W-method, or Wp-method, by Fujiwara et al. [117] improves the W-method by creating
smaller test suites, while achieving the same guarantees. Both testing techniques are implemented in
LearnLib [152] and take a depth parameter d specifying the maximum difference between the number
of states of the specification and the implementation, expressed as m − |Q| in Algorithm 2.2. The W-
method and the Wp-method suffer from the same drawbacks. First, we usually do not know an upper
bound m on the number of states of a black-box implementation. Second, the size of the test suites
produced by both techniques are exponential in d = m− |Q|, therefore it is usually not feasible to
choose d conservatively, i.e., to choose large d.

Random Testing

LearnLib [152] implements the two completely random testing algorithms random-words and random-
walks. These algorithms ignore the specification S to produce entirely random input sequences and
they mainly differ in how the length of random sequences is chosen. Algorithm 2.3 and Algorithm 2.4
implement these testing algorithms; see Section 1.9 for the definitions of coinFlip and rSel. To simplify
presentation, we present a slight modification of the random-walks algorithm. LearnLib does not specify
a number of tests, but it specifies a limit on the overall combined length of tests. Moreover, LearnLib
implements random walks as online testing. This form of testing basically combines test-case generation
and execution in a single operation [278], testing the SUT and simulating the model in parallel. By doing
that, LearnLib stops the test execution as soon as an error is detected. The online and the offline version
perform the same steps, in case no error is detected.

Algorithm 2.3 takes a maximum number of test cases ntest, a minimum test-case length lmin, and
a maximum test-case length lmax, whereas Algorithm 2.4 controls test-case length through a stopping
probability pstop. Hence, the length of test cases produced by Algorithm 2.4 follows a geometric distri-
bution with parameter pstop. In practice, both algorithms can be assumed to behave similarly as long as
the maximum test-case length lmax is large enough in relation to the length of potential counterexamples.

28 Chapter 2. Introduction to Active Learning of Deterministic System Models

Algorithm 2.4 Random-walks-based test-case generation
Input: ntest ∈ N, pstop ∈ (0, 1)
Output: test suite T

1: T ← ∅
2: for i← 1 to ntest do
3: test← ε
4: repeat
5: test← test · rSel(I)
6: until coinFlip(pstop)
7: T ← T ∪ {test}
8: end for

In theory, random-walks is slightly favourable as it actually produces exhaustive test suites in the limit by
letting ntest go to infinity. Because of the geometric length distribution, any test-case length and thereby
any input sequence has a non-zero probability to be produced.

Random W-method. At the time of writing, the latest version of LearnLib [152] is 0.14.0 which
implements randomised versions of the W-method and the Wp-method. Like test cases produced by the
deterministic W(p)-method, each test case produced by the random W(p)-method consists of three parts:
a sequence t leading to a transition, a middle sequence m and a characterising sequence c. Basically, t
and c are chosen uniformly at random from their respective sets in the deterministic test-case generation
counterpart. The middle sequence m is a random walk with a minimum length, that is, its length is
geometrically distributed with some offset.

Compared to purely random testing, the random W(p)-method applies a notion of randomised cov-
erage of transitions, by selecting the test-case prefix t such that some transition is covered (i.e. exe-
cuted). Through this selection and through the selection of a characterising suffix c, the randomised
W(p)-method benefits from incrementally extended knowledge about the SUT in the form of increasingly
more accurate hypotheses. In contrast to the deterministic W(p)-method it scales well, as it produces as
many test cases as requested, but it generally cannot provide the same guarantees.

2.4.3 Conformance Testing in Learning

The conformance testing approaches discussed above mainly focus on techniques that have been applied
in active automata learning. For more information on testing based on finite state machines, such as
testing with unique input/output sequences [241], we refer to a survey by Lee and Yannakakis [184]. In
the following, we will discuss some theoretical and practical considerations regarding the application of
conformance testing in learning.

Conformance Relation

In conformance testing, a conformance relation impm provides the theoretical basis to decide if an
implementation I conforms to a specification S. We test if I impm S with a finite test suite T , where
I is a black-box system and S is a given Mealy machine. This is reversed in learning, that is, we are
given a hypothesis Mealy machine H and want to check if its behaviour conforms to I. Since impm is
an equivalence relation, we have I impmH ⇔ H impm I, therefore testing for H impm I is justified.
More concretely, a test case shows a violation of the conformance relation I impmH iff it shows a
violation ofH impm I. This does not hold in general, for instance, the input-output conformance (ioco)
relation is not reflexive [270]. Now that we have established that testing with respect to impm remains
sound, if we swap the operands of the relation impm, we will discuss further theoretical insights.

2.4. Conformance Testing 29

Theoretical Insights

As discussed in our survey [26], Weyuker was among the first to put learning and testing into relation to
each other [292]. She proposed a program-inference-based test-adequacy criterion. In contrast to test-
selection criteria, a test-adequacy criterion shall determine whether a passing test suite provides sufficient
evidence for the correctness of the SUT. According to Weyuker [292], a test set T should be considered
adequate for P if the observations made during the execution of T contained enough information to
learn a program P ′ that is equivalent to P and to the specification that is used for testing. Since checking
equivalence is generally undecidable, Weyuker suggests testing-based approximations of that, like for
equivalence queries in active automata learning.

More recently, Berg et al. [54] studied the relation between conformance testing and active automata
learning, to which they refer as regular inference. Essentially, they conclude that conformance testing
and active automata learning perform very similar tasks, with the difference that the former solves a
checking problem and the latter solves a synthesis problem. More specifically, they note that it is possible
to learn a complete model equivalent to an implementation I from a complete conformance test suite for
I. Likewise, the input sequences executed while learning a complete model of I, form a complete
conformance test suite for I. Note that it is in general impossible to derive a complete conformance test
suite for black-box implementations, but it is possible if we, for instance, know the maximum number of
states; see above for a discussion of the W-method.

While random testing generally does not provide guarantees in terms of (bounded) exhaustiveness,
there is a link between random testing and learning in the probably approximately correct (PAC) frame-
work [276]. Angluin already showed that a perfect equivalence oracle can be replaced by random sam-
pling in L∗ [37]. Automata learned from sufficiently many samples are approximately correct with some
probability 1−δ, whereby the approximation is parameterised with some error-bound ε. In fact, efficient
exact learning with membership queries and equivalence queries is generally related to PAC learning
with only membership queries, see also [212, Theorem 13.3]. Hence, we can give a partial answer to
research question RQ 1.2. which asks for guarantees provided by randomised testing techniques applied
for learning. Randomised testing techniques can provide PAC guarantees.

It should be noted that PAC learnability generally assumes sampling according to an arbitrary but
fixed distribution [95]. If we learn a model of some reactive system with random testing in the PAC
framework, then we need to keep in mind that this model is only probably approximately correct with
respect to the trace distribution used for testing. Thus, such guarantees may provide some false sense of
security, if the interaction with a system in practice does not resemble random testing.

Practical Insights

As noted above, test suites are generally not exhaustive, as we cannot test all input sequences. As a
result, learned models may be incorrect. This could, for instance, happen if we estimate the maximum
number of states m incorrectly, when testing with the W-method [83, 277]. This is problematic, because
conservative choices of m, that is, larger than presumably necessary, are not possible due to the expo-
nential growth of test suites in m. Hence, deterministic conformance testing approaches face the issue
that they do not scale.

The problem of learning automata from a limited amount of membership queries (test cases) has been
addressed in the ZULU challenge [88]. Active automata learning algorithms in this challenge needed to
implement equivalence queries through a limited amount of tests. An important insight gained from this
challenge has been formulated by Howar et al. [144]. They noted that this challenge required participants
to “find counterexamples fast” rather than to “prove equivalence”, for instance, up to some bound with
the W-method [83, 277]. For the ZULU challenge, Howar et al. [144] proposed a test-case generation
heuristic which, like our mutation-based approach [15, 17], takes inspiration from Rivest and Schapire’s
reduced observation tables and the corresponding counterexample processing [240]. Moreover, their
generated test cases are of similar shape as test cases created by the random W-method. Each test

30 Chapter 2. Introduction to Active Learning of Deterministic System Models

case has a prefix covering a transition in the hypothesis and a suffix that is chosen according to some
heuristic [144]. However, the suffix-selection heuristic does not consider characterising sequences like
the random W-method.

More recently, randomised conformance testing has been demonstrated to be successful in practi-
cal applications, such as learning a large model of a printer controller [254] or for learning models of
TCP clients and servers [112]. The testing technique applied in [112, 254] is similar to a combina-
tion of the deterministic W-method and the random W-method, but it applies adaptive distinguishing
sequences [183] as suffix if possible.

2.5 Alphabet Abstraction

Active automata learning is usually only feasible for relatively small alphabets and small target automata.
This is the case, because the number of tests required for learning grows quickly in the alphabet size k
and the target automaton size n. The most efficient active automata learning algorithms, TTT [151] and
the RS algorithm [240], require O(kn2 + n logm) membership queries in the worst case, where m is
the length of the longest counterexample returned by equivalence queries. Depending on the applied
testing technique, conformance testing often requires even more tests to be executed and dominates the
learning runtime. Grinchtein et al. [54], for instance, consider conformance testing “the true bottleneck
of automata learning”.

For these reasons, abstraction of inputs and outputs is an essential part of most applications of active
automata learning. Let us consider learning-based testing of communication protocols, a popular appli-
cation domain, to see why abstraction is necessary. The number of valid, concrete messages in protocols
such as TCP is virtually unbounded [235]. Even if we ignore message payload, we need to abstract
away other parts of messages, like concrete sequence numbers. Generally, we determine a small set of
representative messages for abstraction which form the abstract input alphabet. To communicate with
the SUL we translate those into concrete messages. Outputs received from the SUL are abstracted as
well by discarding message details. Learning from abstract alphabets results in abstract automata with a
low number of states.

Mappers. Abstraction and the inverse operation concretisation are often implemented by a mapper
component, as described by Aarts et al. [1]. Basically, a mapper acts as a mediator between learner and
SUL, as shown in Figure 2.6. It maps abstract inputs to concrete inputs and concrete outputs to abstract
outputs during learning. Often, the mapper is considered part of the teacher, thus it would be located
inside the teacher box in Figure 2.3.

The following steps implement the execution of a single abstract input i:

1. The learner decides to execute abstract input i and sends i to the mapper.

2. The mapper updates its state depending on i and maps i to a concrete input x according to condi-
tions specified by i.

3. The mapper executes x on the SUL which produces a concrete output y.

4. The mapper updates its state depending on y and abstracts away details of y, mapping it to an
abstract output o.

5. The mapper sends o to the learner.

6. The learner records o as abstract output produced in response to the abstract input i.

2.5. Alphabet Abstraction 31

Learning
Algorithm

Mapper
System

Under Learning

abstract
inputs

concrete
inputs

abstract
outputs

concrete
outputs

Figure 2.6: Alphabet abstraction through a mapper

Automation and Abstraction in this Thesis. There are approaches to semi-automatically create map-
pers through abstraction refinement of alphabets [3, 7]. Howar et al. [145] also described alphabet ab-
straction refinement while integrating the control over abstraction into the learning process. A drawback
of these approaches is that they are somewhat restricted with respect to the types of conditions available
to express abstraction and concretisation.

In this thesis, we do not employ such techniques, as we focus on other aspects of automata learning,
such as timing and uncertainties. Nevertheless, we generally consider abstract automata learning which
has implications on the expected size of learned models. Abstract automata learned from deterministic
systems usually have less than 100 states [97, 112, 113]. Commonly, abstract automata sizes range
from 10 states to approximately 50 states. In experiments presented in the remainder of this thesis, we
either create mappers manually or simulate abstract Mealy machines for evaluation purposes. In other
words, some evaluation experiments use known abstract Mealy machines as implementations, however,
we generally treat these Mealy machines as black boxes during learning.

3
Learning-Based Testing of MQTT Brokers

Declaration of Sources

This chapter discusses our work on learning-based testing of MQTT brokers. It is mainly based
on our conference paper presented at ICST 2017 [263], however, it provides some additional
content and it contains some improvements of the text. Hence, this chapter covers our practical
exploratory research.

3.1 Learning-Based Testing of Network Protocols

In Section 2.4.3, we discussed that conformance testing and learning are related to each other. Berg et
al. [54] pointed out that the goal in both areas is to gain knowledge about the behaviour of a black-box
system by executing test cases and analysing corresponding observations. In learning, we are interested
in the synthesis aspect, that is, we want to learn a model, whereas in conformance testing, we perform a
checking task, which means checking conformance to a given model.

This opens up the possibility to combine these approaches. Aarts et al. [4, 5] have for instance shown
how to combine learning, testing and verification. They learned the model of a reference implementation
of the bounded retransmission protocol and checked equivalence between this model and several mutated
(faulty) implementations via two different techniques.

1. The authors performed model-based testing of the mutants using the learned reference model.

2. Additionally, they also learned models of the mutants to check equivalence between the learned
specification model and each of the learned mutant models.

In this chapter, we will follow an approach similar to the latter. Our work differs from the work by
Aarts et al. [4, 5] mainly in the kind of implementations considered. The authors actually generated Java
applications from models with a known structure. Furthermore, the faulty implementations have been
created artificially by seeding known errors into the reference model. We, on the contrary, do not know
anything about the structure of the analysed implementations and we merely know that they implement
a common specification given in natural language.

In order to detect faults in the considered implementations, we thus propose the following learning-
based approach. In a first phase, we learn Mealy-machine models of several different implementations of

33

34 Chapter 3. Learning-Based Testing of MQTT Brokers

Implementations

Abstract Models

Single Abstract Model Single Abstract Model

Differences

Spurious?

Standards Document

restart learning

Bugs

learn

choose pair

check equivalence

analyse manually

check if spurious

no

yes

Figure 3.1: Overview of the learning-based testing process

some standardised protocol or operation. These models are then pair-wise cross-checked with respect to
equivalence. All counterexamples to equivalence are checked for spuriousness in the next step. We check
that, by testing each counterexample on the corresponding implementations. With that, we determine if
the counterexample can actually be observed or if it has resulted from incorrect learning. If we have
learned incorrectly, we restart learning with more thorough conformance testing to decrease the likeli-
hood of incorrect learning results. After that, we analyse all non-spurious counterexamples manually by
consulting a given standards document. This may either reveal a bug in one or both implementations cor-
responding to the counterexample, or it may reveal an underspecification of some aspect of the standard.
The process we follow is also depicted in Figure 3.1.

This approach apparently cannot detect all possible faults since specific faults may be implemented
by all examined implementations. In addition to that, the fault-detection capabilities are limited by
the level of abstraction used for learning. This gave rise to the research questions RQ E.1 and RQ
E.2 for our exploratory research that we discussed in Section 1.6.3. RQ E.1 is whether learning-based
testing as discussed above is effective in networked environments. In other words, we want to examine,
if it is possible to effectively detect non-trivial faults using our approach despite the necessary severe
abstraction. RQ E.2 addresses limitations of state-of-the-art approaches, that is, we want to investigate
what limitations we encounter using the approach outlined above. With respect to the second question,
our goal was to identify additional research questions that were briefly discussed in Section 1.6.3 and to
identify potential ways to mitigate encountered limitations.

Since we focus on networked environments and in particular the IoT as application domain, we have
chosen the MQTT protocol as target for a case study in learning-based testing, as it is used in the IoT. In
this chapter, we will analyse the behaviour of brokers implementing MQTT version 3.1.1 [73], a protocol
standardised by the International Organization for Standardization (ISO) [153]. Since the MQTT pro-
tocol is a lightweight publish/subscribe protocol, it is well-suited for resource-constrained environments
such as the IoT. We consider broker implementations, because they constitute central communication
units, hence it is essential to assure their correct operation for a reliable communication in the IoT. Ba-
sically, brokers allow clients to subscribe and publish to topics. If a message is published, the broker
forwards it to all clients with matching subscriptions.

Contributions. The main contribution discussed in this chapter is the presentation and empirical eval-
uation of the aforementioned approach based on learning experiments with five different black-box sys-
tems. More concretely, we learned models of five MQTT brokers and tested these IoT communication
systems. In our analysis, we will discuss failure detection with a focus on required effort, issues related

3.2. The MQTT Protocol 35

MQTT Broker

MQTT-SN
Forwarder

MQTT-SN
Gateway

MQTT-SN
Gateway

MQTT-SN
client

MQTT-SN
client

MQTT-SN
client

MQTT-SN
client

encapsulated
MQTT-SN

MQTT-SN

MQTT-SN

MQTT-SN

MQTT-SN

MQTT

MQTT
client

MQTT
client

MQTT
client

MQTT

MQTT

MQTT

Figure 3.2: An example of the structure of an MQTT network. This example is adapted from
Figure 1 of the MQTT-SN specification [257].

to runtime, and general challenges that we faced. Our case study was among the first to apply confor-
mance checking between learned models in a purely black-box setting. Furthermore, it was also one of
the first case studies focusing on the verification of implementations of the IoT protocol MQTT.

Chapter Structure. The rest of this chapter is structured as follows. In Section 3.2, we briefly discuss
the MQTT protocol. Section 3.3 introduces the approach we follow in our case study in more detail.
We will present implementation details and results obtained from learning experiments in Section 3.4.
Section 3.5 briefly summarises our work on learning-based testing of MQTT brokers. In Section 3.6, we
subsequently discuss the results and findings gained from the performed case study and we also discuss
the identified limitations providing the basis for additional research questions.

3.2 The MQTT Protocol

In this section, we will give a short introduction into the MQTT protocol. Unless otherwise noted,
we consider version 3.1.1 of the protocol with which we carried out our experiments. For an in-depth
description, we refer to the OASIS standards document [73].

The MQTT protocol is a light-weight publish/subscribe-protocol initially developed at IBM and
Arcom in 1999 [213]. In March 2013 standardisation at OASIS started and it is now an open standard. It
is usually used in machine-to-machine communication. The light-weight nature of the protocol makes it
well-suited for resource-constrained environments, such as the IoT. Application areas with particularly
strong limitations on resource consumption are considered within a variant of the protocol designed
specifically for sensor networks, the MQTT-SN protocol [257].

Generally, MQTT distinguishes between clients and brokers. Additionally, nodes called gateways
and forwarders may be present in the network if MQTT-SN is used. Clients can be light-weight devices,
such as sensors in the IoT, whereas brokers have to serve multiple clients and also maintain a substantial
amount of state related to clients. An example of an MQTT-network structure is shown in Figure 3.2. We
see that both, ordinary clients and sensors using MQTT-SN connect to the same broker. As already noted,
their role as central communication units makes brokers an ideal subject for our case study. It is of utmost
importance to thoroughly test and verify their behaviour in order to ensure reliable communication in IoT
infrastructures relying on MQTT.

36 Chapter 3. Learning-Based Testing of MQTT Brokers

Client 1 Client 2 Broker

CONNECT(id = "client1")

CONNACK

CONNECT(id = "client2")

CONNACK

SUBSCRIBE(topic = "kitchen/temperature", QoS = 0)

SUBACK

PUBLISH(topic = "kitchen/temperature", message = "21 Celsius", QoS = 1)

PUBACK

PUBLISH(topic = "kitchen/temperature", message = "21 Celsius", QoS = 0)

DISCONNECT

DISCONNECT

Figure 3.3: An example of an MQTT-based communication involving two clients and a broker.
Some message parameters are abstracted away.

In addition to that, other properties of the MQTT protocol motivated us to select MQTT for our case
study. MQTT and MQTT-SN are, for instance, relatively similar. As a result, gateways perform simple
tasks so that we can concentrate on testing broker implementations. Another advantage is that there exist
several free and open-source implementations of brokers and client libraries.

Basic communication via MQTT is relatively simple. Clients can subscribe to topics and publish
messages to topics. A broker forwards messages for some topic to all clients with matching subscriptions.
An example communication between a broker and two clients is shown in Figure 3.3. In addition to basic
publish-subscribe communication, it illustrates the concept of quality of service (QoS) levels. MQTT
defines three QoS levels with varying guarantees on message transmission. In this chapter, we consider
only the levels 0 and 1. The former ensures that messages are transmitted at most once, whereas the latter
ensures that messages are transmitted at least once.

In Figure 3.3, we see the exchange of so-called control packets. The first packets are sent to con-
nect the two clients to the broker. More concretely, the clients send CONNECT packets and receive
acknowledgements in the form of CONNACK packets in return. After client2 subscribes to the topic
kitchen/temperature with QoS level 0, the other client, client1, publishes the message 21
Celsius to this topic with QoS level 1. As a result, the publishing client receives an acknowledgement
in the form of a PUBACK packet. Furthermore, the message is forwarded to client2, but with QoS
level 0, as that client subscribed with this QoS level. Afterwards, both clients disconnect.

In addition to these simple packets enabling basic publish-subscribe-communication, MQTT also
defines some more complex functionality. An example for such functionality are will messages. Upon
connection, a client may specify a will message along with a will topic. A broker conforming to the
standard must, for instance, publish the will message to the will topic once the connection to the corre-
sponding client is closed due to a protocol error. We will discuss further selected functionalities related
to identified faults in Section 3.4. As indicated in Figure 3.3, topics can be hierarchically structured with
the delimiter /. This is, for instance, used in kitchen/temperature. MQTT allows to subscribe
to topics using patterns including wild-cards, but we will ignore this functionality, as it would require
learning approaches that can cope with data, as presented by Aarts et al. [6] and Cassel et al. [76]. In
contrast, we focus on learning of Mealy machines to discover state-machine faults.

3.3. Approach 37

3.3 Approach

In this section, we will discuss our approach to learning-based testing of MQTT brokers in more detail.
We will start with a discussion on automata learning with a focus on practical considerations to enable
learning models of MQTT brokers. These consideration more generally also apply to model learning for
reactive systems accessible via network communication.

3.3.1 Learning Environment

Mealy machines are well-suited to model reactive systems, but MQTT-broker implementations may not
behave exactly like Mealy machines. This results from the fact that (1) the actual duration of delays
between messages may be of relevance, but is usually abstracted away and (2) some implementations do
not behave deterministically. Both issues are actually related, as varying network latency may cause the
arrival of messages to appear non-deterministically. Additionally, delays may also vary depending on
incompletely known influences.

However, MQTT-brokers behave largely deterministic under certain restrictions. For this reason
and because we want to explore the limitations of deterministic automata learning, we have chosen
Mealy machines as modelling formalism in this case study. Moreover, this enabled us to apply the Java
library LearnLib [152] which provides efficient and mature implementations of learning algorithms for
deterministic Mealy machines.

Learning Architecture

Two aspects influence the architecture of a learning environment for MQTT. First, we need to account for
dependencies between clients. Unlike in pure client/server-settings, such as the TLS protocol [97] or the
TCP [7, 112], it is not sufficient to simulate one client to adequately learn a model of the server/broker
in MQTT. We need to control multiple clients and record the messages received by each client.

Secondly, we need to cope with the enormous amount of possible inputs, i.e. the large number of
packets that we can send to the broker. This, however, is a general problem of model-based testing and
active automata learning in the MAT framework, as discussed in Section 2.5. This is an issue for testing
and learning of almost all non-trivial systems. We need a way to select representative inputs. To deal with
this problem, we introduce a mapper component performing abstraction and concretisation [3, 7, 145];
see also Section 2.5. Comparing automata learning and testing, the abstraction used in learning needs
to ensure deterministic observations while some testing approaches do not have this requirement. For
instance, property-based testing selects inputs at random from a potentially large set of inputs [84].

As briefly mentioned in Section 2.5, we do not apply approaches to automatically refine abstractions
during learning in an iterative manner [3, 7, 145]. We rather use static abstractions, that is, we do not
change the mapper throughout the learning phase. If we detected non-determinism arising from abstrac-
tion or from the processing of outputs in general, we manually adapted the mapper in an appropriate
way to ensure deterministic observations. There may be cases where non-determinism is not caused by
abstraction, though, which will be discussed later.

Figure 3.4 shows the architecture of our learning setup. The SUL, an MQTT broker, is shown on
the left-hand side. In order to learn its behaviour, we control its environment made up of several clients,
each consisting of an adapter block and a client-interface block. The adapters handle low-level tasks,
such as serialisation and opening sockets, whereas the client-interface components implement a client
library with a simple interface and default values for control-packet parameters.

The right-hand side of Figure 3.4 shows the components responsible for learning. LearnLib [152]
implements several algorithms for actively learning Mealy machines. During the execution of such
an algorithm, LearnLib interacts with a mapper component by choosing and executing abstract inputs.
The mapper concretises abstract inputs by choosing one of the clients and executing some action with

38 Chapter 3. Learning-Based Testing of MQTT Brokers

MQTT
Broker

Adapter 1

Adapter 2

Adapter n

client
interface 1

client
interface 2

client
interface n

Mapper LearnLib

/ abstract
inputs

. abstract
outputs

/ concrete
inputs

. concrete
outputs

/ control
packets

. control
packets

/ bytes via
TCP/IP

. bytes via
TCP/IP

Figure 3.4: The learning environment for learning of Mealy-machine models of MQTT brokers

concrete values. Note that the sending of packets and serialisation tasks performed during an input action
are handled by the clients. As soon as outputs are available, the mapper collects them from all clients
and abstracts them, creating one abstract output symbol in response to each abstract input.

Practical Considerations

We will now briefly discuss considerations influencing the implementation of the adapter and the mapper
component. Both introduce some imprecision into our observations, which is, however, necessary to
avoid non-deterministic observations, i.e. cases where two queries sharing some common prefix of inputs
produce different outputs.

Timeouts. We already noted that there are delays between the transmission of messages to the broker
and the receipt of corresponding responses. These are inevitably present since network communication
is involved, which is asynchronous. In addition to that a system may not send any message. It may not
produce any output at all. A more faithful model of such a system might therefore, for instance, be a
timed automaton [32].

However, instead of changing the modelling formalism we followed a more pragmatic approach. We
basically set a configurable timeout on the receipt of messages, as de Ruiter and Poll [97]. All messages
received before reaching this timeout are processed by the mapper component to form an abstract output
symbol. If some client does not receive any message, we say that the system is quiescent for that client
and the mapper produces the corresponding output symbol Empty. This is similar to the way the absence
of outputs is handled in input-output conformance testing which represents quiescent behaviour by the
symbol δ [270]. In Example 2.1, we similarly used the output symbol Q to denote quiescence. Here, we
use Empty, since there may be an Empty symbol for each individual client.

Processing Outputs. We process messages received from brokers in several steps. Following deseri-
alisation in the adapters, the mapper extracts relevant information from messages, such as packet types,
abstracting away from details such as identifiers. Each individual client may receive multiple messages in
response to a single input sent by one of the clients. Therefore, we process message groups correspond-
ing to each client individually to create one output per client. For that, we sort the messages received
by each client alphabetically to ensure determinism. This is necessary as messages may arrive in any
order. Afterwards, we concatenate the sorted messages. In other words, we interpret received message
sequences as multisets of messages. If a client does not receive any messages, we interpret this as having
received a single message Empty. The outputs of individual clients are concatenated to create a single
abstract output.

While some messages may arrive in any order, the MQTT specification also places restrictions on
message ordering [73]. As a result, we lose relevant information through sorting and we might miss

3.3. Approach 39

some specification violations. To avoid that, we would need to learn non-deterministic models which is
potentially more expensive in terms of runtime. Hence, this way of handling outputs represents a tradeoff
between completeness and efficiency.

Example 3.1 (Creating Abstract Outputs). Consider a learning experiment in which we con-
trol two clients c1 and c2. Now suppose that during a single output query both clients connect
to the broker and that both clients subscribe to the topic top a. At this state, c1 publishes mes-
sage mes a with QoS level 1 to the topic top a. Consequently, both clients receive PUBLISH
packets from the broker with message mes a, as both are subscribed to top a. Additionally, c1
receives an acknowledgement, that is, c1 receives a PUBACK packet.

For learning, we usually extract the packet type from every packet and we extract the topic and
the message from PUBLISH packets. Hence, for c1 we would extract relevant information from
the received packets to create abstract messages PUBLISH(top a,mes a) and PUBACK, while
c2 receives only PUBLISH(top a,mes a). Through sorting the abstract messages received
by c1, we create the abstract output PUBACK PUBLISH(top a,mes a) for c1. Combining
the abstract outputs from each client through concatenation with delimiter -, we create the com-
plete abstract output PUBACK PUBLISH(top a,mes a)-PUBLISH(top a,mes a). This
output is forwarded to the learning algorithm.

Restrictions Placed on MQTT Functionality. We had to exclude some features of MQTT from our
analysis, as they cannot be adequately modelled using Mealy machines. The MQTT specification, for ex-
ample, includes a ping functionality. To cover this functionality, we would need to learn time-dependent
behaviour.

Moreover, there are dependencies between sent and received data. For instance, identifiers sent
in acknowledgements should match identifiers of the acknowledged messages [73]. For this reason,
we send acknowledgements automatically from the clients to the broker and do not learn behaviour
related to that. Such dependencies between different actions could be captured in extended finite-state
machines (EFSMs). EFSMs are Mealy machines with parameterised actions, variables storing action
parameters, and transitions restricted by guards over state variables and action parameters. The learning
tool Tomte [3, 6] is able to learn a restricted class of EFSMs which are expressive enough to model the
acknowledgement mechanism. However, we explicitly focus on learning of Mealy machines in this case
study to determine how effective this form of learning is.

It should be noted that the excluded features do not affect the parts of MQTT that we learn.

3.3.2 Learning-Based Testing via Cross-Checking Equivalence

We describe our approach to learning-based testing in the following. Roughly speaking, we test for
conformance between implementations and flag traces leading to conformance violations as suspicious.
This is accomplished by learning models of the concerned systems and subsequent equivalence checking
between those models.

For a more detailed discussion on the topic, assume that a model learned with the setup described
above faithfully represents the SUL under the abstraction applied by the mapper. As a result, we can
execute tests on the model and thereby implicitly perform tests on the SUL under the same abstraction.
In other words, we can simulate a testing environment similar to Figure 3.4, but with LearnLib replaced
by a conformance testing component.

This differs from the usual approach to model-based testing [274]. In general, a model is assumed
to be given which can be used for generating tests and as a test oracle. Generating tests is still possible
with learned models, that is, we can generate tests according to some criterion. Using learned models
as oracle, however, is problematic, because we cannot be sure whether the model is correct. A model
learned by observing a faulty implementation will also be incorrect. To circumvent this problem, we use
the learned model of another implementation as oracle.

40 Chapter 3. Learning-Based Testing of MQTT Brokers

We thus test whether some learned model conforms to another learned model and thereby we test
for conformance between the implementations. Since we do not know anything about the correctness
of either implementation, we do not consider conformance violations to be errors, but rather flag traces
leading to conformance violations as suspicious. After completing a conformance check, we manually
investigate all traces which show non-conformance in order to determine whether any of the implemen-
tations violates the specification (in our case the MQTT specification [73]).

This may reveal zero, one or two errors depending on whether the specification allows some free-
dom of implementation for the corresponding functionality, and whether one or both implementations
implemented the functionality in a wrong way. Not all errors are detected for two reasons: (1) it may not
be possible to detect some errors because of abstraction and (2) we do not detect an error if it is equally
present in all implementations. The first problem is inherent to learning-based testing and to model-based
testing in general. The second problem is directly related to our approach. To overcome this issue and to
decrease the probability of missing errors we compared the behaviour of five implementations instead of
just two.

Input Abstraction. We applied abstraction in our experiments on both inputs and outputs. Example 3.1
demonstrates the output abstraction, in which we simply extract relevant information from packets sent
by brokers. In contrast to this, we created abstract inputs by selecting representative concrete inputs to
be sent to the broker and assigning an abstract input symbol to each such concrete input. For instance,
an abstract input ConnectC1 may translate to connecting a client with identifier C1 to the broker by
sending the corresponding CONNECT control packet. Thus, we fixed the parameters of concrete messages
that are sent to the broker. Still, we identified a large number of abstract inputs that are relevant to the
MQTT protocol.

Since learning with a large input alphabet containing all identified abstract inputs would not be fea-
sible, we created several smaller input alphabets, each containing only a few abstract inputs. Given these
small input alphabets, we learned models using only inputs from a single alphabet. To enable that, we
had to implement an individual mapper for each of the alphabets.

We have created the input alphabets in a way such that inputs within some alphabet have relevant
dependencies among each other. The effectiveness of fault detection may be impeded by this approach
due to implicitly placed assumptions on independence relationships between inputs from different alpha-
bets. Issues such as the effectiveness of the overall approach will be discussed in Section 3.4. A similar
approach has been followed by Smeenk et al. [254] for equivalence testing. In addition to a complete
alphabet containing all inputs, they identified a subset of inputs relevant to initialisation which they tested
more thoroughly.

Testing Process. This form of input abstraction combined with active automata learning and equiva-
lence checking led to the following model-based testing process.

For each input alphabet:
1. Learn a modelMi of each implementation i
2. For each pair (Mi,Mj) of learned models:

1.1. Check equivalence:Mi ≡Mj

1.2. For each counterexample c to equivalence
1.2.1. Test c on implementations i and j
1.2.2. If outputs of i and j are not different: c is spurious→ restart learning
1.2.3. Analyse manually if outputs of i and j are correct

The steps performed for each individual alphabet are also shown in Figure 3.1. Note that if we
find a counterexample c to equivalence, we test it on the corresponding implementations. With that,
we check if c actually shows a difference between the implementations or if it is spurious. A spurious

3.4. Case Study 41

counterexample may result from an error introduced by learning. This may happen because we approxi-
mate equivalence queries by conformance testing. In cases, where we found spurious counterexamples,
we restarted learning with more thorough conformance testing. Alternatively, it would be possible to
use such counterexamples as counterexamples to equivalence queries in the active-automata-learning
process, but we did not implement this direct feedback loop to learning.

As we check for conformance on model level, it is possible to use techniques other than testing. We
could use external tools such as CADP to check equivalence [12], encode the problem as reachability
problem and use satisfiability modulo theories (SMT) solvers for the task [23], or use a graph-based
approach [14, 68]. We actually used a graph-based approach, where we roughly interpreted Mealy ma-
chines as labelled transition systems (LTSs) and built a synchronous product with respect to observation
equivalence that we use as conformance relation [108, 290]. This will be described in more detail in
Section 3.4.

Comparison to Traditional Model-Based Testing. Now that we introduced the approach, we want
to discuss the effort required to perform learning-based testing in comparison to the effort required for
traditional model-based testing. First, it should be noted that some kind of adapter and abstraction
component has to be implemented for both techniques. For this reason, we focus on the effort related to
the interpretation of requirements.

Usually in model-based testing, a large set of requirements stated in natural language has to be for-
malised by creating a system model. This is both labour-intensive and error-prone. In contrast, our
learning-based approach does not require such a rigorous formalisation of requirements. To perform the
case study, we skimmed through the MQTT specification to get a rough understanding of the protocol in
general. Afterwards, we identified interesting interactions between control packets and specific param-
eters thereof to implement mappers. This can be compared to the definition of scenarios encoding test
purposes that are, for instance, used by Spec Explorer [124]. In addition to that, we only had to analyse
parts of the specification that correspond to suspicious traces in greater depth. Hence, less manual effort
is required.

However, less manual effort comes at the cost of decreased control of the testing process. While it
is usually possible to direct the test-case generation through test selection criteria [274], the test cases
performed for learning are selected by learning algorithms. This has disadvantages but may also be an
advantage. We cannot specifically target certain message flows, but targeting only specific behaviour
may also introduce a bias that potentially weakens fault-detection.

The Role of Learning. A question that comes to mind concerns the role of learning in our approach.
Why do we actually learn Mealy machines? It would also be possible to generate some test suite, for
instance, randomly, execute the test suite on all implementations and check whether differences in out-
puts exist. However, learning offers two benefits. First, it provides us with a model which can be used in
further verification steps, such as targeted model checking of properties derived from requirements [112].
Second, active automata learning essentially defines a stopping criterion. Once we cannot find a coun-
terexample to equivalence between learned model and SUL, we stop testing. Put differently, we can
assume to have tested adequately and that we can stop testing as soon as we can derive a system model
that is probably correct. Meinke and Sindhu follow a similar approach [206]. They stop testing when
learning converges, but they also use other stopping criteria if learning does not converge, such as a
bound on the maximum testing time.

3.4 Case Study

In the section, we will discuss our learning-based testing case study. First, we discuss some application-
specific details concerning model learning and equivalence checking of learned models. Then, we present

42 Chapter 3. Learning-Based Testing of MQTT Brokers

the case study results. In this context, we will consider difficulties and issues we faced as well as the
manual effort required to classify counterexamples as failures.

3.4.1 Implementation of Learning Environment

The learning part was implemented in Scala using the Java-library LearnLib for active automata learn-
ing [152]. Most of the learning-related functionality was thus already implemented and we only had
to implement application-specific components such as mappers, and a component responsible for the
configuration of learning experiments.

Application-Specific Components

We had to implement the three components shown in the middle of Figure 3.4: the adapter, the client
interface, and the mapper. While adapter and client interface merely perform parsing, serialisation, and
sending of packets, mappers define a learning target by specifying an input alphabet. Note that we did
not use existing client libraries for MQTT, as such libraries may place restrictions on executable input
sequences.

As noted in Section 3.3, we used several different abstract input alphabets with interesting depen-
dencies within these alphabets as a basis for learning and consequently testing. For this purpose, we
implemented seven different mappers, which all use the same client interface. Because of that, the
mappers can be used interchangeably to test different aspects. We will now briefly discuss each of the
mappers, with respect to the parts of MQTT they consider. All mappers except for the second allow TCP
connections to be reestablished. This means that clients can generally initiate a new TCP connection
after they get disconnected from the broker during a query. Put differently, all mappers except for the
second allow clients to reconnect multiple times to the MQTT brokers. The mappers developed for our
case study are:

Simple. The mapper Simple controls one client and offers seven inputs exercising only basic function-
ality, such as the simplest forms of subscribing and publishing with QoS level 0.

Complex Single Client. This mapper also controls one client, but offers further inputs for publishing
and deleting retained messages as well as publishing with QoS level 1. It also offers an input for
subscribing to a topic with a retained message. A retained message is a message stored by the
broker for some specific topic. Each time a client subscribes to such a topic it receives the retained
message immediately.

Two Clients with Will. This mapper controls two clients, one of which sets a will message while con-
necting. The same client may close the TCP connection without properly disconnecting, prompting
the will message to be published. The other client may subscribe to the topic to which the will
message is published.

Two Clients with Retained Will. This mapper is defined similarly to the former, but publishes will
messages as retained messages and allows for the deletion of retained messages.

Non-Clean. This mapper controls two clients, one of which connects with a clean session and another
one which connects by possibly resuming an MQTT session. An MQTT session is resumed with
the Clean Session flag set to 0. Learning-based testing with this mapper is supposed to check
whether subscriptions of clients are correctly persisted after session termination. A client recon-
necting to the broker should be subscribed to the same topics as before it disconnected from the
broker.

3.4. Case Study 43

Two Clients with Same Client Identifier. This mapper also controls two clients, but with the same
client identifier. One client starts a clean session upon connection establishment and the other
one tries to resume an existing session. With that, we aim to check whether it is possible to take
over sessions from a different TCP connection. Additionally, we may learn how brokers implement
the termination of clean sessions using this mapper (Clean Session flag set to 1).

Invalid. This mapper controls only one client and allows for some invalid inputs to be transmitted, such
as subscribing with QoS level −1, publishing to a topic containing a wild card and connecting
with an empty client identifier, but with the Clean Session flag set to 0. Learning-based testing
with this mapper can be considered as robustness testing [150] or fuzzing, because we stimulate
brokers with invalid inputs.

These mappers do not cover all aspects of MQTT. It would be possible to define further mappers to
target other functionality, but it was not our goal to completely test MQTT brokers. We rather aimed at
showing that the proposed approach is an effective aid at finding errors and we assume that experiments
performed with seven different mappers provide sufficient evidence for this purpose.

Resets. As mentioned in Section 2.2, active automata learning requires the ability to reset SULs. Ba-
sically, we implemented resets of MQTT brokers through the application of several consecutive inputs.
More concretely, we performed the following steps to reset brokers during learning:

1. delete all retained messages
2. for each client:

2.1. reconnect to the broker with the Clean Session flag set to 1
2.2. unsubscribe from all topics (actually not necessary if Clean Session is correctly implemented)
2.3. disconnect again

Alternatively, brokers could be restarted, but the steps above are generally faster, especially because the
number of retained messages and active subscriptions is usually low.

Learning & Conformance Testing Configuration

During the course of this case study, we experimented with different learning algorithms, conformance
testing algorithms and MQTT implementations. For that, we needed to implement a configuration com-
ponent that is able to setup learning. However, we did not perform an in-depth evaluation of active
automata learning configurations with respect to efficiency as part of the case study. A thorough com-
parison of learning algorithms and conformance testing algorithms can be found in Section 4.5.

We used the TTT learning algorithm [151] for all experiments presented in the following as it per-
formed best in our experiments. Furthermore, we used the random-walk equivalence oracle provided
by LearnLib to perform equivalence queries that we described in Section 2.4.2. This oracle generates
random input sequences with geometrically distributed length and it executes these test cases online. We
used the LearnLib implementation that places a bound on the maximum number of test steps (abstract in-
puts) that are executed for an equivalence query. Although random testing is not well-suited to guarantee
coverage of some kind, it is a valid choice in our context. The main reason for this is the lack of scalabil-
ity of complete conformance testing methods, like the W-method [83, 277] or the Wp-method [117]. As
mentioned in Section 2.4.2, the number of test cases created by these methods grows exponentially with
the estimated maximum model size. Hence, it would be necessary to use low size estimations (depth
value in LearnLib) which limits their capability to find counterexamples.

Another reason why we have chosen random testing is that inaccurately learned models due to missed
counterexamples may not even be an issue. First, we may detect that we learned incorrectly in our
spuriousness check, that is, the check determining whether two brokers truly behave differently for some
input sequence. Second, inaccurately learned models might lead to faults being missed, but the overall

44 Chapter 3. Learning-Based Testing of MQTT Brokers

approach may be effective nonetheless. Since testing is inherently incomplete, we can never find all
possible faults, thus potentially missing some faults may not be a severe limitation.

We used random walks with the following settings:

• probability of resetting the SUL (pstop in Algorithm 2.4): 0.05

• maximum number of steps: 10000

• reset step count after finding a counterexample: true

At each step, we reset the SUL and start a new test with a probability of 0.05. For each equivalence
query, we execute at most 10000 abstract inputs. If we did not find a counterexample within this time,
we consider the learned hypothesis correct. Additionally, there is a configuration parameter specifying a
broker-specific timeout on the receipt of messages. This is the time we wait for messages to be received
in response to a single input (see also Table 3.1).

3.4.2 Checking Equivalence between Models

In the following, we will describe how we check for conformance between two learned models. As usual,
observation equivalence serves as conformance relation. As a result from a conformance check, we either
output that the checked models are observation equivalent or we present all found counterexamples to
equivalence to the user. Conformance checking is basically implemented through bisimulation checks
by interpreting Mealy machines as LTSs.

”On the Fly”-Check. We implemented equivalence checking similarly to the on-the-fly bisimulation
check proposed by Fernandez and Mounier [108]. For this purpose, we interpret Mealy machines as
LTSs by treating each input-output pair labelling a transition in a Mealy machine as a single transition
label in the LTS-interpretation.

Following Fernandez and Mounier [108], we build product graphs with respect to bisimulation from
two Mealy machines. These product graphs contain special sink states labelled fail denoting confor-
mance violations. In order to find counterexamples to equivalence we hence have to find paths to these
fail-states. More concretely, product graphs contain states formed by pairs of states of both Mealy ma-
chines, the fail-states, and transitions between those states. A transition between ordinary states is added
for input-output pairs executable in both Mealy machines. If a transition for some input-output pair is
executable in only one of the Mealy machines, but not in the other, we add a transition to a fail-state. We
check for observation equivalence with that, because we add a fail-state only if there is some input for
which the two Mealy machines produce different outputs.

Since we consider deterministic Mealy machines, this check is simple to implement [108]. We im-
plemented it via an implicit depth-first search for fail-states in the product graph. During this exploration,
we collect all traces leading to fail-states and present them as counterexamples to the user. Since coun-
terexamples are the only relevant information, we do not actually create the graph. It suffices to store
visited states in order to avoid exploring some state twice.

Note that the straight-forward implementation may miss some bugs. Consider a bug which merely
produces wrong outputs, but does not affect state transitions. In this case, the bisimulation check will stop
exploring at the wrong output and add the reached state to the visited states. If, however, it is necessary
to explore the model beyond this state to find another bug, we may miss this bug. Hence, it is possible to
miss double faults if both faults are reached by a single trace.

To circumvent this problem, we added the possibility to extend counterexamples further until reach-
ing either another difference or a visited state. Actually, the exploration can be continued until a preset
maximum number of differences along a trace has been found. With this extended exploration it is thus
possible to find multiple counterexamples in cases where the standard exploration would have found only

3.4. Case Study 45

Table 3.1: Timeout values for receiving messages
Implementation Timeout in Milliseconds

Apache ActiveMQ 300
emqtt 25

HBMQTT 100
Mosquitto 100
VerneMQ 300

one. This increases the effort required to analyse counterexamples, but it may pay off if additional bugs
are found.

The extended exploration did not uncover further bugs in our experiments, but led to a modification
of the learning setup. Two models were incorrectly learned because of insufficient equivalence testing
during equivalence query. This issue was detected by cross-checking with models of other implementa-
tions with extended exploration. Consequently, we increased the number of steps for random equivalence
testing during learning and we restarted learning as shown in Figure 3.1.

3.4.3 Experimental Setup

We learned models of five freely available implementations of MQTT brokers. All of them were in active
development at the time we performed the case study and wrote the conference paper that we presented
at ICST 2017 [263]. The brokers are:

• Apache ActiveMQ 5.13.31

• emqtt 1.0.2 2

• HBMQTT 0.7.1 3

• Mosquitto 1.4.9 4

• VerneMQ 0.12.5p4 5

Since all brokers implement version 3.1.1 of MQTT, it was possible to perform all learning exper-
iments in the same way with only minor adaptations. The adaptations basically amount to specifying
application-specific timeouts for receiving packets. Table 3.1 shows the timeout values used for the dif-
ferent implementations. We found these values via experiments and should note that they are neither
optimal nor do large timeout values indicate poor performance in general. A broker requiring a large
timeout may, for instance, provide excellent scalability to large numbers of connections which we did
not test. For an in-depth analysis of MQTT timing behaviour, we refer to an evaluation and performance
comparison by my supervisor Bernhard Aichernig and Richard Schumi [13].

All experiments were performed with a Lenovo Thinkpad T450 with 16 GB RAM and an Intel Core
i7-5600U CPU operating at 2.6 GHz and running Xubuntu Linux 14.04.

1http://activemq.apache.org/, accessed on November 4, 2019
2http://emqtt.io/, accessed on November 4, 2019
3https://github.com/beerfactory/hbmqtt, accessed on November 4, 2019
4http://mosquitto.org/, accessed on November 4, 2019
5https://vernemq.com/, accessed on November 4, 2019

http://activemq.apache.org/
http://emqtt.io/
https://github.com/beerfactory/hbmqtt
http://mosquitto.org/
https://vernemq.com/

46 Chapter 3. Learning-Based Testing of MQTT Brokers

3.4.4 Detected Bugs

In the following, we will discuss our findings with respect to error detection in implementations. Al-
together we found 17 bugs in all implementations combined. Every implementation contained at least
one bug, except for the Mosquitto broker. The detected bugs are actual violations of the MQTT specifi-
cation [73]. Additionally, we found two cases of unexpected non-determinism in two implementations.
These two cases hindered learning, therefore they are not included in the 17 bugs found. Finally, we
found a part of the specification which, strictly speaking, none of the implementations implemented
correctly. However, four of the implementations showed behaviour users might expect to see, thus we
consider these implementations to be correct. One implementation, however, showed unexpected faulty
behaviour. Hence, we actually found 18 bugs altogether.

Four of the bugs correspond to issues already reported by other users. The remaining bugs were
reported by us to the developers of the brokers and have been reviewed. As a result, the bugs have mostly
been fixed. In the following, we will review two examples of bugs we found in more detail. In contrast
to our conference paper [263], we also provide a complete list of all bugs, where each one is briefly
discussed.

Violations of the Specification

A Simple Error. A simple example of a violation of the protocol specification can be found by con-
sidering the behaviour of the HBMQTT broker with respect to the functionality covered by the Simple
mapper. Figure 3.5 shows the models learned by observing the Mosquitto broker and the HBMQTT
broker with abbreviated action labels. A counterexample to equivalence is CONNECT ·CONNECT, which
is shown in red in both models. For Mosquitto, we observe the output C Ack · ConnectionClosed
and for HBMQTT, we observe the output C Ack · Empty. HBMQTT acknowledges the first connection
attempt and ignores the second one by not producing any output and it actually does not change its state
as well.

The MQTT specification states that Mosquitto’s behaviour is correct whereas HBMQTT behaves in
an incorrect way [73]:

“A Client can only send the CONNECT Packet once over a Network Connection. The Server
MUST process a second CONNECT Packet sent from a Client as a protocol violation and
disconnect the Client [MQTT-3.1.0-2].”

An Error Requiring Two Clients. The first example of an error is admittedly rather simple. However,
we also found more subtle bugs. A strength with regard to error detection of our approach is that Mealy
machines are input enabled. Therefore, we do not only learn and test the usual behaviour, but also
exceptional cases. Using the mapper Two Clients with Retained Will, we found an interesting sequence
which uncovered errors in both, emqtt and ActiveMQ. The sequence is as follows:

1. A client connects with client identifier Client1

2. Another client connects with client identifier Client2, specifying bye as retained will message
for topic c2_will

3. Client2 disconnects unexpectedly prompting the broker to publish the will message

4. Client1 subscribes to c2_will

5. Client1 subscribes again to c2_will

3.4. Case Study 47

s0 + / Closed

s1

Con / C_Ack Con / Closed Discon(TCP) / Closed

+ / +

s2

Sub / S_Ack

Con / Closed Discon(TCP) / Closed

UnSub / US_Ack

+ / +

(a) Mosquitto model

0

1

Con / C_Ack

2

+ / Empty

3

 DisconTCP / Closed

+ / +Con / Empty

Discon(TCP) / Closed 4

Sub / S_Ack + / Empty

Discon / Closed

+ / Closed

UnSub / US_Ack

Discon(TCP) / Closed

+ / +

(b) HBMQTT model

Figure 3.5: Models of two MQTT brokers learned with the Simple mapper, where red transitions
highlight a difference corresponding to a bug. Some inputs and outputs have been
combined, which is denoted by the ‘+’-symbol.

The responses to the first two steps are delivered as expected. The tested brokers sent acknowledge-
ments to the clients in response to their connection. They also sent the will message to Client1 in
the fourth step which is correct as well. In the fifth step, Mosquitto behaved differently from emqtt and
ActiveMQ. While emqtt and ActiveMQ did not resend bye to Client1, the Mosquitto broker sent bye
again.

The behaviour of ActiveMQ and emqtt was incorrect according to [MQTT-3.8.4-3] [73] which states
that repeated subscription requests must replace existing subscriptions and that “any existing retained
messages matching the Topic Filter MUST be re-sent”.

Further Errors. We have just discussed the first three errors, with one error being equally implemented
by two different brokers which is why we counted it twice. The complete list of errors is:

• 4th error: ActiveMQ responded to ping requests from clients that have not sent a CONNECT packet
before. This violates [MQTT-3.1.0-1] and [MQTT-4.8.0-1] of the specification [73].

• 5th & 6th error: emqtt and VerneMQ implemented a detail related to the Clean Session incorrectly.
The error could be triggered by the sequence: (1) connect with client identifier c1 and Clean
Session set to true, (2) subscribe with client identifier c1 to top, (3) connect again with c1, but
with Clean Session set to false, and (4) publish some message to top.

In step (3), the brokers correctly close the first session and create a new one with the same client
identifier. According to [MQTT-3.1.2-6] [73], state data from sessions with Clean Session set to
true must not be reused in subsequent sessions, thus the subscription from the first session must be
discarded. However, emqtt and ActiveMQ forward the published message to the new client c1 in
step (4) which is incorrect, as this client has no valid subscription at this point.

• 7th & 8th error: ActiveMQ and emqtt did not resend retained messages if clients subscribed twice
to the same topic. In other words, if a client subscribed twice to a topic with a retained message,
it should also receive the retained message twice, but ActiveMQ and emqtt sent it only once. This
behaviour violates [MQTT-3.8.4-3] of the specification [73].

• 9th error: HBMQTT kept TCP connections open in case of protocol violations, but ignored all
subsequent packets sent by clients. This violates [MQTT-3.1.0-1] and [MQTT-4.8.0-1] of the
specification [73].

48 Chapter 3. Learning-Based Testing of MQTT Brokers

• 10th error: VerneMQ did not publish empty retained messages which is incorrect according to
[MQTT-3.3.1-10] [73].

• 11th error: in learning experiments with mapper Two Clients with Retained Will, VerneMQ pub-
lished the retained will message even if the corresponding client disconnected gracefully. This is
incorrect according to [MQTT-3.1.2-8] [73].

• 12th error: HBMQTT implemented hierarchical topics incorrectly. We found this error uninten-
tionally, as we actually did not target data-related behaviour. However, we observed that by sub-
scribing to my topic, we would receive messages published to my topic/retained as well.
This behaviour is incorrect, as the topic my topic does not match my topic/retained [73].
Note that my topic/# would match my topic/retained, because of the wild-card charac-
ter #.

• 13th error: VerneMQ showed another error related to the 5th error. The error was observed when
executing the following sequence: (1) connect with client identifier c1, (2) subscribe with c1
to top, (3) connect again with client identifier c1, (4) subscribe again with c1 to top, and (5)
publish to top. The message from step (5) was published twice by VerneMQ. Hence, the broker
stored two subscriptions for the same client and the same topic. The second subscription from step
(4) should replace the first subscription [73].

• 14th error: ActiveMQ allows publishing to topics containing wildcards. This is not allowed by
[MQTT-3.3.2-2] [73]. We found this error by testing with the mapper Invalid.

• 15th error: HBMQTT acknowledges subscriptions with QoS level 3 which must be treated as a
protocol violation according to [MQTT-3-8.3-4] [73]. The MQTT specification defines only the
QoS levels 0, 1 and 2.

• 16th error: HBMQTT ignores PUBLISH packets with QoS level 3, but according to [MQTT-3.3.1-
4] [73], the network connection must be closed in such a situation.

• 17th error: emqtt accepts connections with empty client identifier and with Clean Session set
to false. According to [MQTT-3.1.3-8] [73], brokers must acknowledge such connections, but
immediately close the network connection.

• 18th error: as noted above, all tested brokers implemented one aspect of the protocol non-standard
conform. The clause [MQTT-3.3.1-2] [73] states that the DUP flag must be set to false in PUBLISH
packets with QoS level 0. In general, brokers and clients need to close the network connection,
when they observe a protocol violation [73, MQTT 4.8.0-1]. Hence, brokers should close the
network connection when [MQTT-3.3.1-2] is violated by a client.

However, none of the tested brokers did that. ActiveMQ, Mosquitto, VerneMQ, and emqtt ignored
the DUP flag and published messages with QoS level 0. In contrast to this, HBMQTT ignored
such malformed PUBLISH packets altogether, without closing the network connection. As the
DUP actually only provides additional information, we consider HBMQTT’s behaviour incorrect
and the behaviour of the other four brokers to be not faulty. Strictly speaking, the behaviour of the
other brokers is not correct either, but it is more likely to conform to user expectations.

In summary, we found four errors in ActiveMQ, four errors in emqtt, six errors in HBMTT, four errors
in VerneMQ, and none in Mosquitto.

Non-Determinism

An issue we faced during our experiments was that Mealy-machine learning algorithms cannot cope
with non-deterministic behaviour. In our setup based on LearnLib, LearnLib throws an exception and

3.4. Case Study 49

stops learning as soon as it detects non-deterministic behaviour. Thus, we may waste test time in such
cases. The only information we gain from such experiments is that non-determinism affects the experi-
ments accompanied with sequences witnessing non-determinism. These witness sequences are pairs of
input/output sequences with the same inputs but with different outputs.

Non-determinism may result from several sources including:

• learning setup

• time-dependent issues

• actual non-determinism displayed by implementations

In the first case, it is actually beneficial that learning stops, as the setup should not introduce non-
determinism. It is likely to contain errors in this case. One issue related to timing is the unknown
time it takes for a broker to respond. In order to avoid non-deterministic behaviour in this regard, we
implemented the aforementioned timeout on the receipt of messages. We thus introduce imprecision to
overcome time-related non-determinism. Considering that TCP is actually a reliable transport protocol
and that the user datagram protocol (UDP) is often used in the IoT, time-related non-determinism is
likely to be a more severe issue in other IoT protocols.

Implementations may also show truly non-deterministic/uncertain behaviour. In this case, the re-
peated execution of some input sequence under the same conditions may lead to different results. Un-
fortunately, it is not possible to adapt our learning setup with reasonable effort to account for such cases
of non-determinism. For this reason, we could not successfully perform 3 out of 35 learning experi-
ments. We actually evaluated further MQTT implementations in addition to those listed in Section 3.4,
which we excluded from the experiments because of non-deterministic behaviour. These additional im-
plementations showed non-deterministic behaviour in learning experiments with the simplest mapper.
Considering that, we conclude that learning-based verification would greatly benefit from being able to
learn models capturing uncertainties.

Discussion

In the following, we will review our experiences using the proposed approach with special regard to
manual effort. In this context, we will also recapitulate some already discussed issues affecting the
required effort.

In the initial phase, some experimentation was necessary to understand how to define mappers with
reasonable complexity. By this we mean mappers that are not trivial, but which allow for learning to
be completed in an acceptable amount of time. This usually does not require a substantial amount of
human labour, but requires computation time as experiments have to be executed repeatedly with at least
one implementation. Defining mappers can probably best be compared to defining test-case specification
scenarios, like for testing with Spec Explorer [124].

We also spent a considerable amount of time analysing suspicious traces, a task not needed in tradi-
tional model-based testing as requirements have to be formalised beforehand. In this context, we made
the observation that a single bug usually results in several counterexamples to equivalence. In addition
to the standard equivalence check, we also used the extended bisimulation check to avoid missing bugs.
This led to additional manual effort.

Consider, for instance, the first bug discussed and highlighted in Figure 3.5. Essentially the same bug
can be detected by analysing the counterexample Connect · Subscribe · Connect. Wenn cross-checking
the models in Figure 3.5, we actually found seven counterexamples with the bisimulation check and we
found 24 counterexamples by extended exploration. All these counterexamples point to only two differ-
ent bugs. The 10th error which causes VerneMQ to not publish empty retained messages exemplifies that
the extended check may not cause any overhead. Checking equivalence between a model of Mosquitto
and a model of VerneMQ finds four counterexamples with either of the checks.

50 Chapter 3. Learning-Based Testing of MQTT Brokers

At the current stage, we implemented a mechanism to manually define filters to hide counterexamples
matching a specified pattern. Thus, it is possible to analyse a counterexample, find a bug and specify a
pattern to exclude similar counterexamples. Coarse patterns may lead to bugs being undetected, therefore
we did not use filters in our experiments.

However, a reduction of counterexamples or some kind of automated partitioning into equivalence
classes of counterexamples may be crucial for a successful application of the approach to more complex
systems. It would, for instance, be possible to follow an approach similar to MoreBugs [147] to imple-
ment such a technique. The MoreBugs method tries to infer a bug pattern from a failing test case and
avoids testing the same pattern repeatedly.We could group counterexamples by matching them to inferred
patterns and present only one counterexample per group to users. Especially the parallel-composition-
based pattern-inference of MoreBugs seems promising in our use case. Since Mealy machines are input-
enabled, inputs result in self-loops in many states which causes counterexample traces to be interleaved
with non-relevant inputs.

We noted in Section 3.3 that it may be possible to learn an incorrect model if the equivalence ora-
cle, which is only an approximation, provides a wrong answer. Therefore, we test counterexamples as
stand-alone tests to see whether they are spurious. Note that test cases corresponding to non-spurious
counterexamples form a regression test suite focused on previously detected bugs.

A more problematic scenario is that we may learn incompletely and consequently miss erroneous
behaviour. However, on the one hand we have seen that bugs usually result in several counterexamples
which lowers the probability of missing bugs. On the other hand, testing is inherently incomplete, so
there is always the possibility that we do not detect all bugs.

We conclude that it is possible to find non-trivial bugs in protocol implementations with reasonable
effort despite necessary harsh abstraction. Testing more complex systems may be complicated by the
large number of counterexamples that need to be analysed. Tasks other than that have comparable coun-
terparts in traditional model-based testing. It should be emphasised that the initial effort to set up a
learning environment is relatively low due to the flexibility and ease of use of LearnLib [152].

3.4.5 Efficiency

We faced an issue related to runtime during learning. Learning generally took a long time. Table 3.2 and
Table 3.3 show runtime measurement results for learning with the mapper Simple and the mapper Two
Clients with Retained Will, respectively.

The results include the number of states in the learned models, the time and number of queries
needed for output queries (OQ time[s] and OQ # queries), and the time and number of queries needed for
conformance testing (CT time[s] and CT # queries). The number of queries for conformance testing is the
combined number of test cases executed during all equivalence queries performed throughout learning.
The number of equivalence queries represents the number of rounds of every learning experiment. The
last row of the tables contains this number.

It can be observed that we actually deal with relatively simple models. The largest models have eigh-
teen states and the larger of the two input alphabets contains nine input symbols. Despite the possibility
to learn much larger models with active automata learning, such as Merten et al. who achieved to learn a
model with over a million states [208], we faced efficiency issues while learning much smaller models.
This can be explained by considering the long runtime of individual tests/queries. In contrast to this,
Merten et al. [208] used an extremely fast membership oracle in their setting.

In our setting, tests may take several seconds since we wait up to 600 milliseconds for outputs from
two clients in response to a single input (300 milliseconds per client). Thus, we see similar learning
performance as when learning the TLS protocol [97]. Unlike in the context of learning TLS, we do not
stop testing once a connection is closed, thus testing MQTT is more expensive in terms of test-execution
time. This is required to learn behaviour relevant to persistent session state.

3.5. Summary 51

Table 3.2: Runtime measurement results obtained by learning with the mapper Simple with an al-
phabet size of 7

ActiveMQ emqtt HBMQTT Mosquitto VerneMQ
states 4 3 5 3 3

OQ time[s] 59.72 3.87 31.94 14.01 43.91

OQ # queries 88 59 110 56 57

CT time[s] 914.18 78.3 491.06 278.21 915.77

CT # queries 525 519 482 487 490

equivalence
queries

4 3 4 3 3

Table 3.3: Runtime measurement results obtained by learning with the mapper Two Clients with
Retained Will with an alphabet size of 9

ActiveMQ emqtt HBMQTT Mosquitto VerneMQ
states 18 18 17 18 17

OQ time[s] 1855.55 167.32 557.14 641.89 1570.8

OQ # queries 732 735 640 730 625

CT time[s] 4787.92 481.36 2022.47 1612.59 4355.97

CT # queries 672 816 613 670 658

equivalence
queries

13 12 11 9 11

The drastic influence of testing runtime can be seen in experiments performed with ActiveMQ and
VerneMQ, as they require the largest timeout on the receipt of broker responses. Even the 3-state
VerneMQ model learned with Simple mapper takes almost 16 minutes to learn (see Table 3.2). The
longest experiment, learning a model of ActiveMQ with the mapper Two Clients Retained Will, takes
more than 110 minutes and resulted in a model with only eighteen states (see Table 3.3). These high
runtimes for learning comparably simple models make apparent that there is a need to keep the number
and length of queries to be executed as small as possible. This can, for instance, be achieved via domain-
specific optimisations, heuristics and smart test selection [149, 254] or via algorithmic advantages [151].

3.5 Summary

We presented a learning-based approach to semi-automatically detect failures of reactive systems in this
chapter. We evaluated the effectiveness of this approach by means of a case study. In total we found 18
faults in four out of five MQTT brokers.

More concretely, we learned abstract models of MQTT brokers. Based on that, we identified ob-
servable differences between the considered implementations in an automated manner. Since these dif-
ferences are likely to show erroneous behaviour we inspected them manually to determine whether they
show specification violations.

The performed case study was among the first to apply learning-based testing on reactive systems
implemented independently by open-source developers and it was the first attempt at model-based testing
MQTT brokers. We showed that the proposed approach can effectively detect bugs without requiring any
prior modelling.

52 Chapter 3. Learning-Based Testing of MQTT Brokers

3.6 Results and Findings

In the following, we will analyse our case study in learning-based testing with respect to the two research
questions defined for the exploratory research phase.

RQ E.1 Is learning-based testing effective in networked environments such as the IoT?

Since we found 18 protocol violations with comparably low effort, we conclude that learning-based
testing is effective. While the approach can generally be applied to any type of reactive system for which
there exist multiple implementations, it is especially well-suited for networked environments. This is the
case, because network protocols can be modelled abstractly with a low number of states, making active
automata learning feasible. Moreover, well-defined standards are likely to exist for common network
protocols.

The effectiveness of learning-based testing in networked environments is also apparent in other case
studies [97, 112, 113, 253]. However, we have specifically chosen the MQTT protocol for its relevance to
the IoT and because we had little prior knowledge about the protocol. Our goal was to truly examine how
much effort is necessary to apply the approach in an unknown environment. As mentioned in Section 3.4,
implementing the learning setup required low effort, as LearnLib [152] is easy to use. In comparison to
model-based testing, which usually requires a complete formalisation of requirements, the requirements
analysis was significantly less labour-intensive, as it was focused on counterexample traces. Putting
the outcome of finding several true errors into relation with low testing effort reinforces the claim that
learning-based testing is effective.

RQ E.2 What are the shortcomings of existing automata-learning approaches in practical applica-
tions?

In addition to investigating the practicality of learning-based testing in general, we wanted to determine
potential limitations with the performed case study in order to identify directions for further research.
We concretely formulated these directions for further research as research questions separated into three
groups. They are discussed and summarised below and can be found in Section 1.6.4.

Uncertainties. We observed uncertain behaviour. As noted in Section 1.6.3, we use the term uncer-
tain behaviour for both non-deterministic and stochastic behaviour. Such behaviour exists when a single
input sequence may produce different outputs when applied multiple times. Not being able to capture
uncertainties directly affects effectiveness. We were not able to perform all experiments for some imple-
mentations.

Since it is common for complex reactive systems to show uncertain behaviour, we deemed it impor-
tant to investigate ways to learn such behaviour, especially in test-based settings. There are basically two
main approaches to model uncertainties, either through non-determinism or probabilistically in stochas-
tic models. Active non-deterministic learning techniques [161, 283] suffer from the fact that they abstract
from the observed frequency of actions. As a result, it may be hard to decide when all possible outcomes
have been observed. Alternatively, learning methods for stochastic behaviour may be used [74, 199].
Such methods have been studied in the grammatical-inference community [95] and have been analysed
with respect to PAC guarantees [77]. PAC learning provides quantitative correctness guarantees in rela-
tion to the number of sampled system traces. While these methods have also been applied in a verification
context [199], most of them are passive. This means that they learn from given system traces. This poses
the question of how to actively learn models of stochastic behaviour via testing.

In summary, we face three questions which are in short: (1) are non-deterministic or stochastic
models more appropriate? (2) When do we have observed sufficient data to create a faithful model? (3)
If we model uncertainties stochastically, how can we learn such models via active testing?

3.6. Results and Findings 53

Timing-related Behaviour. Certain aspects of the MQTT functionality depend on timing. We had
to exclude these aspects from our analysis, because Mealy machines cannot precisely capture timing
aspects. The inability to model timing therefore impedes the effectiveness of testing. This issue is likely
to be more severe in lower-level protocols and in networks with transport protocols less reliable than
TCP, which is used by MQTT.

Existing learning approaches for timed models focus on relatively restricted types of models, such
as event-recording automata [125, 126] and real-time automata [281, 282]. General timed automata
are more expressive and provide more degrees of freedom, making learning also more difficult. In this
context, Verwer et al. [281] provide hardness results for learning models that are more expressive than
real-time automata. Grinchtein et al. [126] note that general timed automata do not have canonical forms,
which complicates learning.

In general, our goal is to enable learning-based analysis with prior knowledge as little as possible.
This means that we want to learn timed models that are as expressive as possible. Given that existing
techniques support only restricted types of models, we decided to investigate (1) whether alternative
techniques, such as metaheuristics, are applicable for learning expressive timed models. Moreover, we
decided to examine (2) what assumptions about the SUL are necessary to enable learning.

Runtime. We discussed that learning often took a relatively long time to complete in Section 3.4.5.
This is mainly due to the high test-execution time caused by the timeouts on the receipt of messages
from the broker. In Table 3.2 and in Table 3.3 we see that we spent the most time on conformance
testing. This matches our expectations, because we applied the TTT algorithm which aims to keep data
structures small and consequently output queries short. Hence, it would be worthwhile to develop more
efficient conformance-testing techniques.

Recall that we applied random testing. We did that because deterministic testing with the W-
method [83, 277] did not complete in reasonable time. For instance, learning ActiveMQ models with
complex mappers did not finish in less than a day, unless we set the depth parameter to a value that
resulted in learning incorrect models. Instead we performed random walks for testing and we restarted
learning with more thorough testing when we found spurious counterexamples. This means that a lower
number of random test cases would likely cause incorrect learning.

Given these observations, we identified four research questions. (1) Our observations suggest that
random testing can be an appropriate choice, because deterministic testing did not scale, but is this gen-
erally true? Suppose that only random testing can be applied, as deterministic testing does not terminate.
(2) Can we still give guarantees in that case? In the MQTT case study, we are able to guarantee that
a non-spurious counterexample reveals a difference between two implementations, although the learned
models may be incorrect. (3) Is it possible, though, to reliably learn correct models with random test-
ing? As mentioned above, we could not have executed a lower number of test cases, without risking
to learn incorrectly. This raises the questions whether we can generate test cases in a smarter way, to
cover system behaviour thoroughly with a lower number of test cases. (4) Since Bernhard Aichernig’s
group successfully combined random testing with fault-based testing [22], we decided to investigate if
this combination is also effective in active automata learning.

A concluding remark on research priority. All the identified limitations impede the effectiveness of
learning-based testing in some way. The inability to capture uncertainties and timing behaviour requires
certain systems and some specific aspects of systems to be ignored. High test-execution times also
impede effectiveness, by restricting the applicability of learning-based testing to systems with small
abstract state space. This issue affects all types of systems. As a consequence, we decided to investigate
test-case generation techniques as a first step, to gain insights into testing in a learning-based setting.

4
Efficient Conformance Testing in

Active Automata Learning

Declaration of Sources

In this chapter, we discuss our work on efficient conformance testing in active automata learning.
This mainly includes our fault-based testing approach for active automata learning as well as an
evaluation of various active automata learning configurations with respect to efficiency. We first
presented the proposed testing approach at the NFM 2017 [15]. Following the presentation at the
symposium, we extended our work on this topic to a journal article, which is included in the spe-
cial issue of the Journal of Automated Reasoning on the NFM 2017 [17]. This chapter is mostly
based on the extended article, which has already been published online. Section 4.5 is based on
Felix Wallner’s bachelor’s thesis on benchmarking active automata learning configuration [288].

4.1 Introduction

This chapter addresses efficiency in active automata learning. Since executing equivalence queries usu-
ally dominates the runtime of active automata learning, we focus on conformance testing in active au-
tomata learning. Our main contribution in this context is an efficient fault-based conformance testing
technique for the implementation of equivalence queries. Hence, this technique is presented in this
chapter. In addition, we consider efficiency of active automata learning in general and evaluate various
learning configurations with respect to efficiency.

In the following, we will briefly discuss previous research on the implementation of equivalence
queries, highlighting some of the findings that relate to efficiency. Subsequently, we will present the idea
behind our fault-based testing approach. Before going into details, we should comment on terminology:
we mainly consider efficiency with respect to the required testing budget, thus efficient testing techniques
require a low number of test cases/steps to be executed. Related to that, we say that test cases are effective
if they are likely to detect conformance violations. Hence, the execution of effective test cases leads to
efficient testing.

55

56 Chapter 4. Efficient Conformance Testing in Active Automata Learning

Table 4.1: The number of test cases generated by the W-method and the Wp-method during learn-
ing the car alarm system via L∗

M

depth
W-method Wp-method

1st eq. query 2nd eq. query 1st eq. query 2nd eq. query
1 136 252 130 200

2 680 1260 546 840

3 2856 5292 2210 3400

Test-Based Equivalence Query Implementations

Peled et al. [230] introduced Black Box Checking as a technique for model checking black-box systems.
As one of the first to combine active automata learning and formal verification, the authors proposed
to implement equivalence queries via conformance testing. In particular, they suggested to use the
W-method [83, 277]. It should be noted that optimisations of the W-method, such as the partial W-
method [117] or an approach by Lee and Yannankakis [54, 184] could have been used as well. Similar to
the W-method, these techniques achieve completeness relative to some bound m on the maximum num-
ber of states of a minimal system model. In comparison to the W-method, these alternative techniques
require fewer tests to be executed with the reduction being only polynomial [54]. All three techniques
have the same worst-case complexity that is exponential in the boundm. The exponential size of the con-
structed test suites severely limits the practical applicability of automata learning combined with these
testing techniques. Additionally, we usually do not know the bound m, as we take a black-box view of
systems. This bound was originally derived as an estimation given a known system design [83], while
we, however, strive for learning the system design without prior knowledge. Without such knowledge it
is generally impossible to implement perfect equivalence queries [54]. Due to these issues, implementing
equivalence queries can be considered “the true bottleneck of automata learning” [54]. The following
example shall demonstrate the large cost of deterministic conformance testing in terms of test-suite size.

Example 4.1 (Testing the Car Alarm System). The following example demonstrates testing
with the W-method and the partial W-method by applying them to learn the car alarm system
shown in Example 2.1. The first hypothesis learned with L∗M [246] is shown Figure 2.4. This
hypothesis has only one state less than the complete true model that has five states. Hence, we
need to execute at most two equivalence queries: one producing a counterexample and adding a
new state and another confirming that the final hypothesis and the SUL are equivalent.

Table 4.1 shows the number of test cases generated by the W-method and the Wp-method for
both equivalence queries with varying depth values. The depth value d is the difference between
assumed bound m on the number of states and the number of states of the hypothesis under test;
see d = m − |Q| in Line 3 of Algorithm 2.2 which specifies how many infix sequences are
generated and tested. Although the Wp-method requires fewer tests than the W-method, we see
that the number of test cases is mainly influenced by the depth parameter d. We also observe that
the number of test cases is quite large, even for this simple example with only four inputs. If we
set d to three, we generate 3,400 test cases just for the second equivalence query with the Wp-
method. Note that by setting d to three we assume that the system has at mostm = 8 states, since
the second hypothesis has five states. In contrast to the large number of test cases for equivalence
queries, we need to perform only 84 output queries.

Despite the apparent hardness of implementing equivalence queries, active automata learning has
been successfully applied in verification and testing [26]. Hence, we shall examine properties of suc-
cessful applications of active automata learning. In Chapter 3, we have shown that learned models do not
need to be complete. In our case study on learning-based testing of the MQTT protocol, it was sufficient
for models to capture enough information such that non-trivial faults could be detected. Hence, it is not
necessary for equivalence queries to be perfect. However, in order to capture as much information in
learned models as possible, equivalence queries should be as complete as possible. Given the limited

4.1. Introduction 57

time for testing in practice, testing approaches should aim at covering as much behaviour as possible.

Learning with Limited Testing Budget

The ZULU challenge [88] addressed the issue of a limited time budget for learning, by limiting the num-
ber of test cases that can be executed for learning [144]. More concretely, competitors learned finite
automata from a limited number of membership queries without explicit equivalence queries. Equiva-
lence queries thus had to be approximated through clever selection of membership queries. This led to
a different view of the problem: rather than “trying to prove equivalence”, the new target was “finding
counterexamples fast” [144]. Thus, one of the insights from this challenge was that techniques such
as the W-method are not feasible in most scenarios. Howar et al. further note that it is necessary to
find counterexamples with few tests for automata learning to be practically applicable [144]. Follow-
ing this reasoning, they described effective test-case generation heuristics for active automata learning.
These heuristics produced random test cases matching counterexample patterns inspired by Rivest and
Schapire’s improvements of the L∗ algorithm [240] (see also Section 2.3.1).

More recently, Smeenk et al. [254] applied a partly randomised conformance testing technique to
actively learn large models of embedded control software. They generate test cases similarly to the
random W-method discussed in Section 2.4.2, without using characterising sequences [83, 277]. In order
to distinguish states with as few test cases as possible, they applied a technique to determine an adaptive
distinguishing sequence described by Lee and Yannakakis [183]. The proposed testing technique actually
applies deterministic conformance testing relative to some small bound m and randomised conformance
testing relative to a larger bound. The same technique has also been used to learn models of TCP
implementations [112] and of SSH implementations [113].

We see that randomised conformance testing has successfully been applied in active automata learn-
ing. Although both techniques discussed above are randomised, they actually achieve some form of
model coverage. Test cases generated by Howar et al. [144] and by Smeenk et al. [254] start with a
prefix leading to a transition/state in the current hypothesis. After sufficiently many test cases have been
executed, it is likely that all transitions/states of the current hypothesis have been covered. Howar et
al. [144] address coverage explicitly in their heuristics. During the creation of prefixes, they favour
prefixes that cover transitions that have not been covered before.

Fault-Based Conformance Testing for Learning

Like the heuristics by Howar et al. [144], the approach to conformance testing presented in this chapter
is randomised, coverage-guided, and inspired by Rivest and Schapire’s improvements of L∗ [240]. De-
spite these similarities, we target a different notion of coverage and we implement randomisation quite
differently, as we do not use fixed counterexample patterns to generate test cases. We propose an im-
plementation of equivalence queries based on mutation testing [155], more specifically on model-based
mutation testing [22]. In this fault-based testing approach, a given model is mutated by injecting known
faults into it. This creates a set of mutated models, called mutants. Test-case generation then creates test
cases that can distinguish mutants from the original model. By executing those test cases on the SUT,
it is possible to either detect faults corresponding to mutants or to demonstrate that these faults have not
been implemented.

In the approach presented in this chapter, we do not aim at covering all possible mutants, since
this would not scale, much like the W-method.1 Our goal is rather to cover as many model mutants as
possible. More concretely, we combine random testing and mutation analysis to achieve high variability
of test cases and to address coverage appropriately. In short, we first create mutants of the current
hypothesis that represent potential succeeding hypotheses. Then, we create random test cases and select

1Note that this holds for automata learning, where the number of relevant mutants is indeed very large. Covering all mutants
is feasible in other scenarios, though.

58 Chapter 4. Efficient Conformance Testing in Active Automata Learning

the ones covering the most mutants. In other words, we select test cases that are likely able to distinguish
the current hypothesis from a future hypothesis which is closer to the SUL. Our mutation technique is
inspired by the effect of counterexample processing presented by Rivest and Schapire [240]. Extracting
and adding a counterexample basically splits states in the current hypothesis. We mimic this operation
through mutation.

The combination of model-based mutation testing and random testing was found to be effective in
previous work of Bernhard Aichernig, the supervisor of this thesis [21, 22]. Generally, random testing is
able to detect a large number of mutants fast, such that only a few subtle mutants need to be checked with
directed search techniques. Since we follow the spirit of the ZULU challenge [88, 144], we do not aim at
complete coverage of all mutants, as this might require too many test cases. Therefore, we do not perform
directed search for test-case generation optimising mutation coverage. Still, the mutation coverage by
randomly generated test cases provides a certain level of confidence. An analysis of mutation coverage
allows to guarantee that covered mutations do not affect the learned model.

We implemented our testing technique in the LearnLib library [152] to use it in active automata
learning. We evaluate it by comparing it to other testing techniques and show that the cost of testing
during learning can be significantly reduced while still learning correctly. In particular, we compare our
approach to the partial W-method [117] and to the testing technique applied by Smeenk et al. [254],
but we apply this technique fully randomised. In our evaluation, we empirically determine the lowest
number of test cases that are required to reliably find counterexamples for all incorrect hypotheses. The
evaluation is based on a set of 16 benchmark models from the area of active automata learning [214].

We target systems that can be modelled with a moderately large number of states, that is, with up to
about fifty states. This restriction is necessary, because mutation analysis is a computationally intensive
task for large systems. As noted in Section 2.5, this is also sufficient for many applications. Through
abstraction it is possible to model many non-trivial reactive systems under this restriction. For instance,
all Mealy machines used in our evaluation model real-world communication protocols and have at most
57 states. Since abstraction is generally required in learning-based verification, we do not consider this
restriction to be severe.

Chapter Structure. The rest of this chapter is structured as follows. Section 4.2 presents our proposed
process for test-suite generation involving mutation-coverage-based test-case selection. In Section 4.3,
we introduce a mutation technique tailored towards active automata learning. Section 4.4 covers the
evaluation of the proposed test-suite generation. In Section 4.5, we discuss efficiency in active automata
learning in general, by presenting benchmarking experiments of various learning configurations. We
provide a summary of our work in this area in Section 4.6 and conclude the chapter with a discussion of
our findings in Section 4.7.

4.2 Test-Suite Generation

Aichernig et al. had shown previously “that by adding mutation testing to a random testing strategy
approximately the same number of bugs were found with fewer test cases” [22]. Motivated by this, we
developed a simple, yet effective test-suite generation technique. The test-suite generation has two parts,
(1) generating a large set of test cases T and (2) selecting a subset Tsel ⊂ T to be executed on the SUL.

4.2.1 Test-Case Generation

The goal of the test-case generation is to achieve high coverage of the model under consideration com-
bined with variability through random testing. Algorithm 4.1 implements this form of test-case genera-
tion based on a Mealy machineMh = 〈Qh, q0h, I, O, λh, δh〉 given as input. The test-case generation
may start with a random walk through the model (Line 3 to Line 6) and then iterates two operations. First,
a transition of the model is chosen randomly and a path leading to it is executed to cover that transition

4.2. Test-Suite Generation 59

Algorithm 4.1 The test-case generation algorithm
Input: Mh = 〈Qh, q0h, I, O, λh, δh〉, pretry, pstop, maxSteps , linfix,
Output: test

1: state ← q0h

2: test ← ε
3: if coinFlip(0.5) then
4: test ← rSeq(I, linfix)
5: state ← δh(state, test)
6: end if
7: loop
8: rQ ← rSel(Qh) . (rQ, rI) defines
9: rI ← rSel(I) . a transition

10: p← path(state, rQ)
11: if p 6= None then
12: rSteps ← rSeq(I, linfix)
13: test ← test · p · rI · rSteps
14: state ← δh(δh(rQ , rI), rSteps)
15: if |test | > maxSteps then
16: break
17: else if coinFlip(pstop) then
18: break
19: end if
20: else if ¬coinFlip(pretry) then
21: break
22: end if
23: end loop

(Line 8 to Line 10). If the transition is not reachable, another target transition is chosen. Second, another
short random walk is executed (Line 12). These two operations are repeated until a stopping criterion is
reached.

Stopping. Test-case generation stops as soon as the test case has a length greater than a maximum
number of steps maxSteps (Line 15). Alternatively, it may also stop dependent on probabilities pretry

(Line 20) and pstop (Line 17). The first one controls the probability of continuing in case a selected
transition is not reachable, while the second one controls the probability of stopping prematurely.

Random Functions. Algorithm 4.1 uses the three random functions: coinFlip, rSel, and rSeq. These
auxiliary functions have been introduced in Section 1.9. Here, they are used to control stopping, to create
short random words, and to select random transitions in a Mealy machine.

The test-case generation is controlled by the stopping parameters and linfix ∈ N, an upper bound
on the number of random steps executed between visiting two transitions. The function path returns
a path leading from the current state to another state. Currently, this is implemented via a breadth-
first exploration given by Algorithm 4.2, but other approaches are possible as long as they satisfy
path(q, q′) = None iff @ i ∈ I∗ : δ(q, i) = q′ and path(q, q′) = i ∈ I∗ such that δ(q, i) = q′,
where None /∈ I denotes that no such path exists.

4.2.2 Test-Case Selection

To account for variations in the quality of randomly generated test cases, not all generated test cases
are executed on the SUL, but rather a selected subset. This selection is based on coverage, for instance,

60 Chapter 4. Efficient Conformance Testing in Active Automata Learning

Algorithm 4.2 Breadth-first exploration implementing the function path
Input: Mh = 〈Qh, q0h, I, O, λh, δh〉, arguments q, q′ of path
Output: either p ∈ I∗ such that δ(q, p) = q′ or None

visited ← {}
next ← emptyQ() . an empty queue of states to explore
next ← enqueue(next , 〈q, ε〉) . and traces leading to those states
while next 6= emptyQ() do
〈qc, p〉 ← dequeue(next)
if qc /∈ visited then . current state not visited yet

visited ← visited ∪ {qc}
for all i ∈ I do

qn ← δ(qc, i)
if qn = q′ then . we found the target state

return p · i
end if
next ← enqueue(next , 〈qn, p · i〉)

end for
end if

end while
return None . did not find a path to the target q′

transition coverage. For the following discussion, assume that a set of test cases Tsel of fixed size nsel

should be selected from a previously generated set T to cover elements from a set C. In a simple case,
C can be instantiated to the set of all transitions by setting C = Qh × I , as (q, i) ∈ Qh × I uniquely
identifies a transition because of determinism. The selection comprises the following steps:

1. The coverage of single test cases is analysed. For that we associate each test case t ∈ T with a set
Ct ⊆ C covered by t.

2. The actual selection has the objective of optimising the overall coverage of C. It is implemented
by Algorithm 4.3. We greedily select test cases until either the upper bound nsel is reached (Line 2
and Line 3), all elements in C are covered (second condition in Line 2), or we do not improve
coverage (Line 4 and Line 5).

3. If nsel test cases have not yet been selected, then further test cases are selected which individually
achieve high coverage. For that t ∈ T \ Tsel are sorted in descending size of Ct and the first
nsel − |Tsel| test cases are selected.

More sophisticated test-suite reduction/prioritisation strategies could have been used. Such strategies
potentially have a high runtime, because the problem of selecting Tsel such that C is covered reduces
to the set covering problem, which is known to be NP-complete [158]. Therefore, we use the efficient
greedy selection.

4.2.3 Mutation-Based Selection

A particularly interesting selection criterion is selection based on mutation. The choice of this criterion
is motivated by the fact that model-based mutation testing can effectively be combined with random
testing [22]. Generally, in this fault-based test-case generation technique, known faults are injected into
a model creating so-called mutants. Test cases are generated which distinguish these mutants from the
original model. The execution of these test case covers the injected faults.

4.2. Test-Suite Generation 61

Algorithm 4.3 Coverage-based test-case selection
Input: T , C, Ct for all t ∈ T , nsel

Output: Tsel

1: Tsel ← ∅
2: while |Tsel| < nsel ∧ C 6= ∅ do
3: topt ← argmint∈T |C \ Ct|
4: if C ∩ Ctopt = ∅ then
5: break . no improvement
6: end if
7: Tsel ← Tsel ∪ {topt}
8: C ← C \ Ctopt
9: end while

Thus, in our case we alter the hypothesisMh, creating a set of mutantsMSmut. The objective is
now to distinguish mutants from the hypothesis. We want to select test cases that show that mutants
are observably different from the hypothesis. Hence, we can set C = MSmut and Ct = {Mmut ∈
MSmut | λh(t) 6= λmut(t)} to achieve that.

Type of Mutation

The type of faults injected into a model is governed by mutation operators, which basically map a model
to a set of mutated models (mutants). There is a variety of operators for programs [155] and also for
finite-state machines [104]. As an example, consider a mutation operator change output which changes
the output of each transition and thereby creates one mutant per transition. Since there is exactly one
mutant that can be detected by executing each transition, selection based on such mutants is equivalent
to selection with respect to transition coverage. Hence, mutation can simulate other coverage criteria. In
fact, for our evaluation we implemented transition coverage via mutation.

Blindly using all available mutation operators may not be effective. Fault-based testing should rather
target faults that are likely to occur in the considered application domain [236]. For this reason, we
developed a family of mutation operators, called split-state operators, directly addressing active automata
learning. We will discuss this kind of mutation in Section 4.3.

4.2.4 The Complete Testing Process

Now that we have discussed test-case generation, coverage-based selection, and mutation-based selection
in particular, we want to give an overview of the proposed process for executing an equivalence query
eq via mutation-based conformance testing. The data flow of the complete process involving test-suite
generation and execution is shown in Figure 4.1.

The input to this process is a hypothesis H, a learned intermediate Mealy machine model. From
this model H, we generate a set T of randomised test cases via Algorithm 4.1 and we generate a set
MSmut of mutants. Then, we analyse the mutation coverage Ct of each test case t ∈ T . We do
that by executing each t and determining which mutants produce outputs different from the hypothesis’
outputs. Next, the test suite for conformance testing is created by selecting a subset Tsel of T based on
the coverage information Ct and by applying Algorithm 4.3. Finally, we execute all test cases of the
test suite Tsel. A test case producing different outputs on the SUL than the outputs predicted by the
hypothesis is a counterexample to equivalence. If such a counterexample is found, it is returned to the
learning algorithm. If no counterexample is found, we assign a PASS verdict to the test suite. Such a
PASS verdict translates to a positive answer to the equivalence query eq.

62 Chapter 4. Efficient Conformance Testing in Active Automata Learning

Generation of
large test-case set

Generation
of mutants

Coverage analysis

Selection of
test suite

Execute tests

hypothesis Hhypothesis H

mutantsMSmuttest cases T

hypothesis H

tests t with coverage Ct

test suite Tsel

SUL

PASS or a failing test

hypothesis H

Figure 4.1: Data flow of test-suite generation and execution

4.3 Mutation for Learning

We gave a general overview of test-suite generation in the previous section. In the following, we present
a mutation technique specifically targeting conformance testing in active automata learning. Hence,
instantiating the process shown in Figure 4.1 with this technique yields an efficient testing method for
learning. In the following, we will first introduce split state mutation operators, defining the form of
mutants in our implementation of mutation testing. After that, we will present our implementation of
mutant generation and optimised mutation analysis. We conclude the section with specifics affecting
mutant generation and mutation analysis.

4.3.1 Split-State Mutation Operator Family

There are different ways to process counterexamples in the MAT framework, such as by adding all
prefixes to the used data structures [37]. An alternative technique due to Rivest and Schapire [240]
takes the “distinguishing power” of a counterexample into account. We described this technique in
Section 2.3.1. Recall that its underlying idea is to decompose a counterexample into a prefix u, a single
action a and a suffix v such that v is able to distinguish access sequences in the current hypothesis. In
other words, the distinguishing sequence v shows that two access sequences, which were hypothesised
to lead to the same state, actually lead to observably nonequivalent state; see also Example 2.6. This
knowledge is then integrated into the learner’s data structures.

Since this approach to counterexample processing is efficient, adaptations of it have been used in
other learning algorithms such as the TTT algorithm [151]. This algorithm makes the effect of the
decomposition explicit. It splits a state q reached by an access sequence derived from u and a. The
splitting further involves (1) adding a new state q′ reached by another access sequence derived from u
and a (which originally led to q) and (2) adding sequences to the internal data structures which distinguish
q from q′.

The development of the split-state family of mutation operators is motivated by the principle under-
lying the TTT and related algorithms. To create a single mutant of a Mealy machineM, we take a pair
(u, u′) of access sequences of a state q ofM, add a new state q′ toM and redirect u′ to q′. Furthermore,

4.3. Mutation for Learning 63

qh0start

qh1

qh2

qh3 qh4 qh5

ī/ō

ī′/ō′

i1/o1

i′1/o
′
1

i2/o2 i/o

Split

Change output

(a) A possible hypothesis model

qm0start

qm1

qm2

qm3

q′m3

qm4

q′m4

qm5

ī/ō

ī′/ō′

i1/o1

i′1/o
′
1

i2/o2

i2/o2

i/o

i/oM

(b) A possible SUL/mutant

Figure 4.2: Demonstration of split-state mutations

we add transitions such that q′ behaves the same as q except for a distinguishing sequence v. These steps
split a state q to create a mutant. Example 4.2 illustrates this mutation technique.

Example 4.2 (Split State Mutation). A hypothesis produced by a learning algorithm may be of
the form shown in Figure 4.2a. Note that not all edges are shown in the figure and dashed edges
represent sequences of transitions. The access sequences acc(qh3) of qh3 include i · i1 and i′ · i′1.
A possible corresponding black-box SUL is shown in Figure 4.2b. In this case, the hypothesis
incorrectly assumes that i · i1 and i′ · i′1 lead to the same state. We can model a transformation
from the hypothesis to the SUL by splitting qh3 and qh4 and changing the output produced in
response to input i in the new state qm

′
4 from o to oM , as indicated in Figure 4.2b. State qh4 has

to be split as well to introduce a distinguishing sequence of length two while still maintaining
determinism. A test case covering the mutation is i′ · i′1 · i2 · i.

Mutation operators usually capture fault models that represent certain types of faults [155]. Strictly
speaking, a split-state mutation potentially “repairs” the current hypothesis to create a mutant that is
closer to the true model. In slight abuse of terminology, we will use the term fault model when discussing
split-state mutations rather than introducing a new term.

A mutant models a SUL containing two different states q and q′ which are assumed to be equivalent
by the hypothesis. By executing a test covering a mutantMmut, we either find an actual counterexample
to equivalence between SUL and hypothesis or prove that the SUL does not implementMmut. Hence,
it is possible to guarantee that the SUL possesses certain properties. This is similar to model-based
mutation testing in general, where the absence of certain faults, those modelled by mutation operators,
can be guaranteed [22].

Split state is a family of mutation operators as the effectiveness of the approach is influenced by
several parameters, such that the instantiation of parameters can be considered a unique operator. The
parameters are:

1. Maximum number of sequences nacc: an upper bound on the number of mutated access sequences
leading to a single state.

2. Length of distinguishing sequences k: for each splitting operation we create |I|k mutants, one for
each input sequence of length k. This is necessary due to the input enabledness of Mealy machines.
Note that introducing a distinguishing sequence of length k requires the creation of k new states.
Coverage of all mutants generated with length k implies coverage of all mutants with length l < k.

3. Split at prefix flag: given an access sequence pair (u · a, u′ · a), redirecting a sequence u′ · a from
q to a new state q′ usually amounts to changing δh(δh(q0h, u

′), a) = q to δh(δh(q0h, u
′), a) = q′.

However, if the other access sequence u · a is such that δh(q0h, u
′) = δh(q0h, u), then we cannot

simply redirect the transition labelled with input a in the state δh(q0h, u
′). This is not possible,

because it would introduce non-determinism. The split at prefix flag specifies whether the access
sequence pair (u · a, u′ · a) is ignored or whether further states are added to enable redirecting
u′ · a. We generally set it to true, that is, we add additional states to create mutants for such
access sequence pairs.

64 Chapter 4. Efficient Conformance Testing in Active Automata Learning

Algorithm 4.4 Split-state mutant generation
Input: hypothesisM = 〈Q, q0, I, O, δ, λ〉, nacc, k
Output: set of mutants Mut

1: Mut ← {}
2: for q ∈ Q do . mutants for all unordered pairs of access sequences of q
3: for {s1, s2} ∈ {{s1, s2} | s1, s2 ∈ subset(acc(q), nacc)} do
4: Mut ← Mut ∪ SPLIT(s1, s2,M, k) ∪ SPLIT(s2, s1,M, k)
5: end for
6: end for

7: function SPLIT(s1, s2, 〈Q, q0, I, O, δ, λ〉, k)
8: if ∃s : s1 · s = s2 then
9: return {} . s1 prefix of s2 ?

10: else
11: eqSuf ← argmaxs{|s| | ∃ s′1, s′2 : s′1 · s = s1 ∧ s′2 · s = s2 ∧ δ(s′1) = δ(s′2)}
12: s′1 · pI · eqSuf ← s1 . equivalent behaviour of s1 and s2 along eqSuf
13: Mutants ← {}
14: for all distSeq ∈ Ik do . all possible distinguishing sequences of length k
15: qsp ← δ(s′1 · pI) . qsp is split
16: qpre ← δ(s′1)
17: M′ ← 〈Q′, q0, I, O, δ

′, λ′〉 s.t. Q′ = Q,λ′ = λ, and δ′ = δ \ {(qpre, pI , qsp)}
18: Q′ ← Q′ ∪ {qs} . copy original
19: δ′ ← δ′ ∪ {(qpre, pI , qs)} for a new qs /∈ Q′
20: qpremut ← qs
21: v ← eqSuf · distSeq
22: newQ ← {}
23: for j ← 1 to |v| do
24: qorig ← δ(s′1 · pI · v[< j])
25: qnorig ← δ(s′1 · pI · v[≤ j])
26: if j = |v| then . mutation transition back to original states
27: δ′ ← δ′ ∪ {(qpremut, v[j], qnorig)}
28: λ′ ← λ′ ∪ {(qpremut, v[j], omut)} s.t. omut 6= λ(qorig, v[j])
29: else . new states with indistinguishable behaviour
30: Q′ ← Q′ ∪ {qn}, for a new qn /∈ Q′
31: newQ ← newQ ∪ {(qn, qnorig)}
32: δ′ ← δ′ ∪ {(qpremut, v[j], qn)}
33: λ′ ← λ′ ∪ {(qpremut, v[j], λ(qorig, v[j]))}
34: qpremut ← qn
35: end if
36: end for
37: for all (q, qorig) ∈ newQ do
38: for all i ∈ I do . copy original behaviour for transitions from new states
39: δ′ ← δ′ ∪ {(q, i, δ(qorig, i))}
40: λ′ ← λ′ ∪ {(q, i, λ(qorig, i))}
41: end for
42: end for
43: Mutants ← Mutants ∪ {M′} . add mutant
44: end for
45: return Mutants
46: end if
47: end function

4.3. Mutation for Learning 65

4.3.2 Implementation of Mutant Generation

The generation of mutants is implemented by Algorithm 4.42. This algorithm requires the auxiliary
function subset(S, k), defined by subset(S, k) = S′ such that |S′| = k, S′ ⊂ S if |S| > k and S′ = S
otherwise. In the main loop of Algorithm 4.4 (Line 2 to Line 6), we process all unordered pairs {s1, s2}
of nacc access sequences for a state q. Via the function SPLIT, we create mutants for these pairs. This
function returns the empty set if one sequence is a prefix of the other (Line 8). The reason for this is that
we would alter the behaviour for an input sequence v if we would redirect a prefix of v.

Otherwise, we compute the common suffix eqSuf of s1 and s2, along which both sequences visit the
same states and execute the same inputs (Line 11). Then, we decompose s1 into a prefix s′1, an input pI ,
and the suffix eqSuf . Mutants are created for all distinguishing sequences distSeq (Line 14 to Line 44).
Initially, mutants are copies of the original Mealy machine except for the state qsp reached by s′1 · pI ,
the state which is split, and the transition leading to this state (Line 16 to Line 19). We create a new
state qs for qsp that is reached by pI . Furthermore, we create states along the sequence eqSuf (see Split
at prefix flag above) to ensure determinism and along the distinguishing sequence distSeq (Line 30 to
Line 34). Finally, we mutate the last output corresponding to the last input of distSeq (Line 28). All
other transitions, added in Line 30 to Line 34 and in Line 38 to Line 41, ensure that the mutant produces
the same outputs as the original hypothesis, if the distinguishing sequence is not executed.

In the implementation of acc(q), we collect access sequences by performing a breadth-first explo-
ration while traversing every state at most twice. Therefore, we may not find all nacc access sequences
for a state q. This strategy is motivated by performance considerations and the mutant sampling strategy
reduce to min, which we commonly use.

4.3.3 Efficiency Considerations & Optimisation

While test-case generation can be implemented efficiently, mutation-based selection is generally compu-
tationally intensive. It is necessary to check which of the mutants is covered by each test case. Since the
number of mutants may be as large as |S| · nacc · |I|k, this may become a bottleneck. Consequently, cost
reduction techniques for mutation [155] need to be considered.

Optimisation of Mutation Analysis

We reduce execution cost by avoiding the explicit creation of mutants. Essentially only the difference
to the hypothesis is stored and executed. This optimisation is based on the following observation. In
Algorithm 4.4, we can see that a mutant is uniquely identified by the triple 〈M, (qpre, pI), v〉 where
M is the original Mealy machine, (qpre, pI) is a transition of M (Line 16) and v = eqSuf · distSeq
is the sequence leading to the mutated output (Line 21). Hence, we basically check for coverage of a
combination consisting of: (1) a sequence leading to transition (qpre, pI), (2) the transition (qpre, pI),
and (3) the sequence v.

Given that insight, we implemented an efficient mutation analysis technique. Instead of explicitly
creating all mutants, we rather generate all triples which implicitly describe all mutants. Let these triples
be stored in a set IMut . We arrange this information in an NFA created by Algorithm 4.5. An NFA is a
5-tuple 〈S, s0,Σ, T, F 〉 with states S, an initial state s0 ∈ S, an alphabet Σ, transitions T ⊆ S ×Σ× S,
and final states F ⊆ S. Since it is non-deterministic, there may be several transitions (s, e, s′) for a
source state s and a symbol e. Here, we set Σ = I , i.e. the symbols are the inputs of the original Mealy
machine. Furthermore, let S ⊆ Q ∪ X × IMut for a set of fresh unique symbols X . A state of the
NFA is either a state of the original Mealy machine, or a new state corresponding to a mutant in IMut .
The generation of the NFA by Algorithm 4.5 works as follows. Initially, the NFA has the same structure
as the original Mealy machine but without outputs. Then, we add transitions and corresponding new

2 In contrast to our published article [17], we use one-based indices in this thesis.

66 Chapter 4. Efficient Conformance Testing in Active Automata Learning

Algorithm 4.5 Creation of NFA representing sets of mutants
Input: hypothesisM = 〈Q, q0, I, O, δ, λ〉, mutants IMut
Output: nondeterministic finite automaton (NFA) NMut

1: NMut ← 〈S, s0, I, T, F 〉 with S ← Q, s0 ← q0, T ← {(q, i, δ(q, i))) | q ∈ Q, i ∈ I}, F ← {}
2: for allM′ = 〈M, (q, pI), v〉 ∈ IMut do
3: s← (x,M′) new state s.t. s /∈ S, S ← S ∪ {s}
4: T ← T ∪ {(q, pI , s)} . s corresponds to state that is split
5: for j ← 1 to |v| do . add new states along sequence leading to mutation
6: s′ ← (x,M′) new state s.t. s′ /∈ S, S ← S ∪ {s′}
7: T ← T ∪ {(s, v[j], s′)}
8: if j = |v| then
9: F ← F ∪ {s′} . final state corresponds to mutation

10: end if
11: s← s′

12: end for
13: end for

states for (q, pI) and v of all mutants (Line 3 to Line 11). The last state added for each of the mutants
is a final state of the NFA (Line 9). Roughly speaking, a test case test ∈ I∗ covers a mutantM′ if it
reaches the corresponding final state (x,M′). However, we need to account for the fact that mutants are
deterministic, therefore it is not sufficient to check for reachability of final states via executing test on
the NFA.

The representation of mutants in an NFA is similar to the representation of mutants via mutation
machines [166, 233]. Mutation machines are also non-deterministic finite-state machines, where sets of
deterministic submachines define a fault domain. Likewise, mutation machines may be used to avoid the
explicit enumeration of mutants.

The actual NFA-based mutation analysis is implemented by Algorithm 4.6. It implements a non-
deterministic exploration of the NFA (Line 4 to Line 25), but if we enter an execution path corresponding
to a mutant we temporarily block the corresponding transition (Line 9 to Line 13). Blocked transitions
cannot be traversed (Line 8) and are stored in a mapping blocked , which maps from states to transitions.
The exploration of the NFA works like the execution of several mutants in parallel. The blocking of
transitions ensures that each mutant is executed at most once. Without this mechanism, we could execute
multiple instances of a single mutant in parallel.

If we follow an execution path corresponding to a mutant, we update blocked such that the newly
reached state blocks the initially blocked transition (Line 10 and Line 11). If we are in a state blocking
a transition and the current input test [j] did not lead to a new state, then we left the execution path of
the corresponding mutant. Consequently, we unblock the transition (Line 18 and Line 19). Finally, we
identify covered mutants via final states. If a test case test visits a final state (x,M′), then test covers
the mutantM′ (Line 23).

Mutant Sampling

Since the optimisation shown above does not solve the efficiency problem completely, mutant reduction
techniques need to be considered as well. Jia and Harman identify four techniques to reduce the number
of mutants [155]. We use two of them: Selective Mutation applies only a subset of effective mutation
operators. In our case, we apply only one type of mutation operator, therefore we perform selective
mutation. With Mutant Sampling, only a subset of mutants is randomly selected and analysed while the
rest is discarded. Prior to sampling we collect all mutant triples IMut . Then, we apply three types of
sampling strategies in our experiments:

4.3. Mutation for Learning 67

Algorithm 4.6 Mutation-coverage analysis using the NFA-based mutant representation
Input: test ∈ I∗,NMut = 〈S, s0,Σ, T, F 〉
Output: Mutants cMut covered by test

1: cMut ← {} . covered mutants
2: state ← {s0}
3: blocked ← {}
4: for j ← 1 to |test | do . execute all steps of a test
5: next ← {}
6: for all s ∈ state do
7: n← {} . partial next state for state s
8: for all t = (s, test [j], s′) ∈ T s.t. @s′′ : blocked(s′′) = t do . follow unblocked t
9: if s′ = (x,M) then . update blocked if t was added for mutant

10: if ∃t′ : (s, t′) ∈ blocked then . if current state s blocks a transition
11: blocked ← (blocked ∪ {(s′, blocked(s))}) \ {(s, blocked(s))}
12: else . block t with target state s′

13: blocked ← blocked ∪ {(s′, t)}
14: end if
15: end if
16: n← n ∪ {s′} . add target state s′ to next state
17: end for
18: if n = {} ∧ ∃t : blocked(s) = t then . no trans. executed and blocked a transition
19: blocked ← blocked \ {(s, blocked(s))} . unblock transition
20: end if
21: next ← next ∪ n
22: end for
23: cMut ← cMut ∪ {M′ | ∃x : (x,M′) ∈ next ∧ (x,M′) ∈ F} . newly covered mutants
24: state ← next
25: end for

1. Fraction: this sampling strategy is parameterised by a real r. Given this parameter, we select |IMut |
2r

of the mutants, where each mutant is selected uniformly at random from all mutants IMut . Hence,
the resulting mutants are given by subset(IMut , |IMut |

2r).

2. Reduce to Minimum (redmin): for this strategy, we partition IMut into sets IMutq where q is
the state that is split for creating mutants in IMutq. A mutantM′ = 〈M, (q, pI), v〉 withM =
〈Q, q0, I, O, δ, λ〉 is in IMutδ(q,pI). After partitioning, we compute m = minq∈Q(|IMutq|), the
minimum number of mutants in a set. Then, we select onlymmutants from these sets and combine
them again. The resulting mutants after sampling are given by

⋃
q∈Q subset(IMutq,m). With this

strategy we achieve a uniform coverage of all states.

3. Reduce to Mean (redmean): this strategy is similar to the last, but we select the average number
of mutants in the sets IMutq, i.e., m =

∑
q∈Q |IMutq |
|Q| . It may be necessary to apply this strategy if

there are states q with only one access sequence, that is, |acc(q)| = 1. In this case, there would
be no access sequence pairs for q and consequently we would not create mutants for q such that
redmin would discard all mutants.

4.3.4 Additional Implementation Details

Generally, the parameter choices, like the bound on the number of access sequences, the number of
selected test cases, the sample size, etc. need to take the cost of executing test cases on the SUL into

68 Chapter 4. Efficient Conformance Testing in Active Automata Learning

account. Thus, it is tradeoff between the cost of mutation analysis and testing, as a more extensive
analysis can be assumed to produce more effective test cases which leads to fewer test-case executions.

In addition to mutant sampling, we identified two non-parameterised ways to reduce the number of
mutants that we describe below.

1. Mutation analysis of executed test cases: we keep track of all test cases executed on the SUL.
Prior to test-case selection, these test cases are examined to determine which mutants are covered
by them. Covered mutants can be discarded, because we know for all executed test cases t and
covered mutantsMmut that λh(t) = λsul(t) and λh(t) 6= λmut(t). This implies λsul(t) 6= λmut(t)
which means that the covered mutants are not implemented by the SUL. Such a coverage check
of executed test cases prevents unnecessary coverage of already covered mutants and reduces the
number of mutants to be analysed. Furthermore, it takes the iterative nature of learning into ac-
count, as suggested by Howar et al. [144] in the context of equivalence testing. We analyse the
coverage of test cases executed for equivalence queries and also of test cases executed during out-
put queries. By analysing output-query coverage, we are able discard mutants whose mutations
could be detected with a low number of interactions, consequently reducing computation time
further.

2. Adapting to learning algorithm: by considering the specifics of a learning algorithm, the number
of access sequences could be reduced. For instance in observation-table-based learning, as in
L∗ [37], it would be possible to create mutants only for access sequences stored in the rows of
a table. We evaluated this approach for L∗ combined with the counterexample processing by
Rivest and Schapire [240]. This evaluation showed that stored access sequences are non-uniformly
distributed across states. A few states are reached by a large number of sequences while other states
are reached by only a low number of stored access sequences. Consequently, mutation analysis
would concentrate on those states for which there are many access sequences. This turned out
to be detrimental to test-case effectiveness, because a uniform coverage of all states should be
preferred. Applying the redmin sampling strategy would achieve this. However, it would also
discard too many mutants since it is likely that some states are reached by very few sequences
in the observation table. As a result, we do not apply this approach, but ignore the internal data
structures of learning algorithms.

4.4 Evaluation of Fault-Based Conformance Testing

In the following, we present the evaluation of two variations of our test-suite generation approach: one
with transition-coverage-based selection and one with mutation-based selection applying split-state mu-
tation. We will refer to test-case generation with transition-coverage-based selection as transition cover-
age and we will refer to the combination with mutation-based selection as mutation. We compare these
two techniques to alternatives from the literature: the partial W-method [117] and the random version of
the approach discussed in [254], available at [210]. We refer to the latter as random L & Y, as it applies
an approach by Lee and Yannakakis [183] to compute adaptive distinguishing sequences. Note that this
differs slightly from the setup in [112, 254] that also generates non-randomised test cases, to perform
deterministic testing up to some bound. The random setup used in this evaluation for random L & Y is
similar to the random W-method described in Section 2.4.2.

Our evaluation is based on our Java implementation of the presented test-suite generation approach
that is available online [260]. In the learning experiments, we learn models of three implementations of
TCP servers, four implementations of MQTT brokers, and nine implementations of TLS servers. The ex-
perimental results presented here have also been reported in our article on this topic [17]. The examined
systems are summarised in Table 4.2. This table includes the number of states and the number of inputs
of the true Mealy machine model and a short description of each system. For in-depth descriptions, we

4.4. Evaluation of Fault-Based Conformance Testing 69

Table 4.2: A short description of the systems examined in the evaluation
System # States # Inputs Short Description

TCP servers
Ubuntu

Windows
BSD

57
38
55

12
13
13

Models of TCP server/client implementations from
three different vendors have been learned and anal-
ysed by Fiterău-Broştean et al. [112]. We simulated
the server models available at [110].

MQTT brokers
emqtt 1.0.2

VerneMQ 0.12.5p4
HBMQTT 0.7.1
Mosquitto 1.4.9

18
17
17
18

9
9
9
9

Models of an MQTT [73] broker interacting with two
clients that we learned with the Two Clients with Re-
tained Will mapper described in Section 3.4.1 [263].

TLS servers
GnuTLS 3.3.8
GnuTLS 3.3.12

miTLS 0.1.3
NSS 3.17.4

OpenSSL 1.0.1j
OpenSSL 1.0.1l
OpenSSL 1.0.2

RSA BSAFE C 4.0.4
RSA BSAFE Java 6.1.1

16
9
6
8
11
10
7
9
6

11
12
8
8
7
7
7
8
8

Models of TLS servers learned by de Ruiter and
Poll [97], which are available at [98].

refer to the publications referenced in the table. All Mealy machines used in this evaluation are now also
part of a set of benchmark models for conformance testing and learning [214].

4.4.1 Measurement Setup

To objectively evaluate randomised conformance testing, we investigate how many test-case executions
are necessary to reliably learn models. For that, we estimate the probability of learning the correct model
with a limited number of interactions with the SUL. Like in the Zulu challenge [88], only a limited
number of test cases may be executed by each testing approach. We generally base the cost of learning in
our discussion on the number of executed inputs rather than on the number of tests/resets. This decision
follows from the observation that resets in the target application area, communication protocols, can
be done fast (simply start a new session), whereas timeouts and quiescent behaviour cause long test
durations [97, 263]; see also Section 3.4.5. Note that we take previously learned models as SULs. These
models are given in a textual format specifying Mealy machines comprising the available inputs, outputs,
transitions, and states. To simulate them, we built a test driver which produces outputs corresponding
to given input sequences. Consequently, we still take a black-box view in which we interact with the
simulated systems only via testing. As compared to testing of the actual systems, simulation of models
allows fast test-case execution enabling a thorough evaluation.

We refer to one execution of a learning algorithm as a learning run. Such a learning run consists of
several rounds, each concluded by an equivalence query that is carried out via conformance testing. To
estimate the probability of learning the correct models with a given setup, we perform 50 learning runs
and calculate the relative frequency of learning the correct model. In the following, we refer to such an
execution of 50 learning runs as a single experiment. We deem learning reliable if the corresponding
probability estimation is equal to one. Note that given the expected number of states of each system, we
can efficiently determine whether the correct model has been learned, since the L∗ algorithm guarantees
that learned models are minimal with respect to the number of states [37]. In order to find a lower
bound on the number of tests required by each method to work reliably, we bounded the number of test
cases executed for each equivalence query and gradually increased this bound. Once all learning runs

70 Chapter 4. Efficient Conformance Testing in Active Automata Learning

of an experiment succeeded we stopped this procedure. As in Section 4.2, we refer to this bound as
nsel, because it defines the number of test cases selected for execution. For learning with the partial
W-method [117] we gradually increased the depth parameter d implemented in LearnLib [152] until we
learned the correct model; see Line 3 of Algorithm 2.2 for the definition of d. Since the partial W-method
does not use randomisation, we did not run repeated experiments and report the measurement results for
the lowest possible depth setting.

As all algorithms can be run on standard notebooks, we will only exemplarily comment on runtime.
For a fair comparison, we evaluated all conformance-testing approaches in combination with the same
learning algorithm. We used L∗ with Rivest and Schapire’s counterexample-processing [240] imple-
mented for Mealy machines by LearnLib 0.12 [152].

4.4.2 TCP Experiments

The number of tests and steps (input executions) required to reliably learn the different TCP servers are
given in Table 4.3. In these experiments, we generated 200,000 test cases as a basis for the test-case
selection of the approaches mutation and transition coverage. From these test cases, we selected the
number of test cases nsel given in the second row of Table 4.3 to perform each equivalence query. For
random L & Y we generated the number of test cases given in the second row but we did not perform
coverage-based selection from the test cases generated by this approach. For the partial W-method this
row includes the depth-parameter value which determines the set of test cases to be executed for each
equivalence query.

The test-case generation with Algorithm 4.1 has been performed with parameters maxSteps = 60,
pretry = 0.95, pstop = 0.05, and linfix = 6. The chosen parameters for mutation-based selection are
k = 2 (length of distinguishing sequence) and nacc = 100. Due to our implementation of acc (see
Section 4.3), which returns access sequences that form at most one loop, setting nacc to a value as large
as 100 has the effect that no access sequences are discarded. Since we sample mutants afterwards, we
set it to such a large value. We performed sampling by first applying the redmin sampling strategy and
then fraction sampling with r = 1.

Note that we used the same setup for all TCP implementations. We only varied the bound nsel on
the number of equivalence tests. With that, we want to demonstrate that it is possible to learn several
systems from the same application domain with similar setup. In practice, it is therefore possible to learn
a first model with a conservatively chosen setup, by executing a large number of test cases. This model
can be used to fine-tune parameter settings. Additional models with presumably similar structure could
then be learned efficiently and reliably with the identified parameter settings.

As noted above, we executed 50 learning runs for each experiment. During one run, the number of
tests for a single equivalence query (there may be several in one run), is bounded by the number given
in Row 23 of Table 4.3. We collected data on the overall number of test cases executed for equiva-
lence/membership queries as well as the overall number of inputs executed during those tests. The table
shows these values averaged over all 50 runs of an experiment, where eq stands for equivalence queries
and mem stands for membership queries. We also show further statistics with respect to the number
of test steps executed for equivalence testing as we consider this to be the most important measure of
performance. In addition to the complete information given in the table, we summarise the most impor-
tant measures of performance in bar charts. Figure 4.3 provides an overview of the average number of
required equivalence test steps and Figure 4.4 provides an overview of the required nsel, which is the
minimum number equivalence tests to learn reliably.

In Table 4.3, we see that the average number of tests and test steps required for membership queries
is roughly the same for all techniques. This is what we expected, as the same learning algorithm is used
in all cases, but the numbers shall demonstrate that techniques requiring less equivalence tests do not
trade membership queries for equivalence tests. It can be considered a coincidence that learning with the

3Note that here we consider the table header to be Row 1.

4.4. Evaluation of Fault-Based Conformance Testing 71

Table 4.3: Performance measurements for learning TCP-server models

Ubuntu mutation transition
coverage

partial
W-method

random
L & Y

nsel / depth 3,500 5,000 2 44,000
mean # tests [eq.] 4,074 5,628 793,939 65,716
mean # steps [eq.]

median
Q1
Q3

min.
max.

154,551
151,758
141,497
164,089
132,953
226,119

350,678
334,147
322,584
346,430
313,800
612,634

7,958,026

703,315
643,785
588,320
761,456
519,250

1,338,526
mean # tests [mem.] 9,015 9,237 13,962 11,896
mean # steps [mem.] 120,195 128,276 147,166 138,340

BSD mutation transition
coverage

partial
W-method

random
L & Y

nsel / depth 1,500 2,000 5 58,000
mean # tests [eq.] 2,037 2,361 2,105,585,114 96,224
mean # steps [eq.]

median
Q1
Q3

min.
max.

91,089
86,031
77,142
99,824
69,771
152,133

152,301
147,513
139,952
156,330
131,788
270,108

30,435,822,650

1,069,553
1,002,069
857,912

1,225,874
728,148

1,985,223
mean # tests [mem.] 8,989 9,437 15,608 12,219
mean # steps [mem.] 132,126 141,588 170,416 146,893

Windows mutation transition
coverage

partial
W-method

random
L & Y

nsel / depth 3,500 2,500 2 40,000
mean # tests [eq.] 4,337 3,006 521,635 49,594
mean # steps [eq.]

median
Q1
Q3

min.
max.

144,074
131,750
125,873
158,914
120,173
210,253

178,985
167,658
158,452
195,210
152,442
298,169

4,597,896

514,458
492,830
455,614
555,076
419,910
839,380

mean # tests [mem.] 5,939 5,999 7,919 6,865
mean # steps [mem.] 65,137 63,547 67,834 68,563

partial W-method requires more membership queries while it also requires more equivalence tests. With
this out of the way, we can concentrate on equivalence testing.

Figure 4.3 shows that mutation pays off in this experiment as it performs best for all different systems.
It performs, for instance, significantly better than transition coverage for Ubuntu, which requires 2.27
times as many equivalence test steps on average. The average cost of test-case selection is approximately
324 seconds for mutation and 9 seconds for transition coverage. However, considering the large savings
in actual test-case execution, mutation performs better. The small performance gain of mutation over
transition coverage for Windows shows that our mutation analysis may not add value in some situations.

Considering the minimum required number of equivalence tests nsel depicted in Figure 4.4, mutation
and transition coverage show similar performance. Given that transition coverage executed more test
steps suggests that it favours longer tests than mutation. Since both techniques require relatively few
tests, they are applicable in setups, where reset operations are computationally expensive.

We also evaluated random L & Y with a middle sequence of expected length 3 for BSD and Ubuntu
and length 4 for Windows (similarly to [112] where sequences of length 4 were used). For this setup,
random L & Y requires significantly more steps and tests than both alternatives (see Figure 4.3 and Fig-
ure 4.4). There may be more suitable parameters, however, which might improve the performance of
random L & Y. Moreover, the implementation also offers deterministic test-case generation for com-
plete conformance testing up to some bound which may be beneficial as well. Nevertheless, the model
structure of the TCP servers seems to be well-suited for our approach.

All randomised approaches outperformed the partial W-method. For instance for Ubuntu, mutation
reduces the number of equivalence test steps by a factor of 51.5 on average (Row 4 of Table 4.3). Taking

72 Chapter 4. Efficient Conformance Testing in Active Automata Learning

Ubuntu BSD Windows
0

2 · 105

4 · 105

6 · 105

8 · 105

1 · 106

m
ea

n
#

st
ep

s
[e

q.
]

mutation
transition coverage
random L& Y

Figure 4.3: Average number of equivalence test steps required to reliably learn TCP models

Ubuntu BSD Windows
0

20,000

40,000

60,000

n
se

l

mutation
transition coverage
random L& Y

Figure 4.4: Minimum number of tests per equivalence query (nsel) to reliably learn TCP models

the membership queries into account (Row 6 of Table 4.3), the overall cost of learning is reduced by
a factor of 29.5. Comparing the average number of equivalence tests (Row 3 of Table 4.3) rather than
the required test steps, we see an even larger reduction. The relative gap between equivalence tests
shows a reduction by a factor of about 195 on average. This is an advantage of our approach as we
can flexibly control test-case length which allows us to account for systems with expensive resets. The
enormously large number of tests required by the partial W-method for BSD highlights a problem of
complete conformance testing. Increasing the depth parameter causes an exponential growth of the
number of tests. In practice, executing such a large number of test cases, as required to correctly learn
the BSD model, would be infeasible. Completely random testing is not a viable choice in this case
as well. A learning experiment with Ubuntu showed that it is practically infeasible to reliably learn
correct models. We executed 1,000,000 random test cases for each equivalence query with a uniformly
distributed length between 1 and 50 and learned correctly in only 4 out of 50 runs. For completely
random test-case generation, we applied Algorithm 2.3.

Finally, we want to investigate the distribution of equivalence test steps. The gap between the first
quartile Q1 and the third quartile Q3 is generally relatively small. Therefore, half of the runs of an
experiment require roughly the same number of test steps. In other words, we see a uniform performance
across runs. In general, the ratio between the minimum and the maximum number of steps is not very
large as well. It is largest for random L & Y and BSD with a value of 2.73. This property of uniform
performance of the randomised approaches can be explained by the following observations. Only a
few tests are usually required to find a counterexample in the early phases of learning while the last

4.4. Evaluation of Fault-Based Conformance Testing 73

Table 4.4: Performance measurements for learning MQTT-broker models

emqtt mutation transition
coverage

partial
W-method

random
L & Y

nsel / depth 175 200 2 1,085
mean # tests [eq.] 253 253 72,308 1,664
mean # steps [eq.] 11,058 11,822 487,013 11,857

mean # tests [mem.] 1,647 1,603 1,808 1,683
mean # steps [mem.] 13,655 12,942 11,981 12,005

HBMQTT mutation transition
coverage

partial
W-method

random
L & Y

nsel / depth 200 325 2 4,350
mean # tests [eq.] 255 374 49,860 5,173
mean # steps [eq.] 10,986 17,212 334,298 35,781

mean # tests [mem.] 1,067 1,044 1,033 1,111
mean # steps [mem.] 9,116 8,257 6,133 7,513

Mosquitto mutation transition
coverage

partial
W-method

random
L & Y

nsel / depth 150 100 2 650
mean # tests [eq.] 187 132 59,939 1,036
mean # steps [eq.] 8,201 6,102 400,781 7,240

mean # tests [mem.] 1,309 1,372 1,355 1,378
mean # steps [mem.] 10,686 10,218 8,623 9,271

VerneMQ mutation transition
coverage

partial
W-method

random
L & Y

nsel / depth 125 125 2 1,200
mean # tests [eq.] 183 177 56,609 1,692
mean # steps [eq.] 7,983 8,245 375,263 11,947

mean # tests [mem.] 1,295 1,336 1,279 1,350
mean # steps [mem.] 10,410 10,063 7,985 9,193

equivalence queries require thorough testing. Put differently, a large portion of the state space can be
explored with a small number of tests. Since there are no extreme outliers, we give only average numbers
of equivalence test steps for the next case studies.

4.4.3 MQTT Experiments

The number of tests and test steps required to reliably learn models of four different MQTT brokers
are given in Table 4.4. In order to perform these experiments, we used largely the same setup as for
the TCP experiments, but generated only 50,000 test cases as a basis for selection. Additionally, we
decreased the maximum test-case length maxSteps to 40 and changed the parameter r of the fraction
sampling strategy to 0, to effectively only apply the redmin sampling strategy. As for TCP, we set k = 2
(length of distinguishing sequence introduced by split-state mutation). We applied random L & Y with a
middle sequence of expected length 3. Figure 4.5 provides a graphical overview of the most important
performance measure, the average number of equivalence test steps.

As before, Table 4.4 shows that the randomised approaches outperform the partial W-method. Con-
sidering test execution time in non-simulated setups highlights that applying such a randomised ap-
proach may save a significant amount of time. In the original learning setup for MQTT described in
Chapter 3 [263], execution time was heavily affected by network communication. The execution of
a single test step while learning VerneMQ models took 600 milliseconds (waiting for outputs from
two clients with a timeout of 300 milliseconds per client). As a result, it would take approximately
(375,263 + 7,985) · 0.6 seconds ≈ 63.9 hours to learn a model of VerneMQ with the partial W-method.
Applying the mutation-based approach mutation on the other hand would require (7,983 + 10,410) ·
0.6 seconds ≈ 3.1 hours while still learning reliably. Since these calculations take membership and
equivalence queries into account, this gives us a reduction of overall learning time by a factor of about
20.6. We see varying but large reductions for all other MQTT brokers as well.

Figure 4.5 shows that all three of the randomised approaches perform similarly well with no clear
winner. We can see in Table 4.4 that random L & Y, for instance, performs best for emqtt in terms

74 Chapter 4. Efficient Conformance Testing in Active Automata Learning

emqtt HBMQTT Mosquitto VerneMQ
0

10,000

20,000

30,000

m
ea

n
#

st
ep

s
[e

q.
]

mutation
transition coverage
random L& Y

Figure 4.5: Average number of equivalence test steps required to reliably learn MQTT models

of executed test steps, if we also take membership queries into account (Row 6 of Table 4.4). The
transition coverage approach requires the least number of steps for the Mosquitto model, but performs
only slightly better than random L & Y. However, mutation also performs well for this example. We
assume that our mutation-based approach produces good results in general, but as demonstrated by the
MQTT experiments, it is not the best-performing solution in all circumstances.

Figure 4.6 shows how reliably each of the three approaches learned the emqtt model depending on
the number of executed test steps. Additionally, it also provides a comparison to completely random test-
case generation implemented by Algorithm 2.3. Each input of the random test cases is chosen uniformly
at random from all available inputs and the test-case length is uniformly distributed between 1 and 50. As
noted at the beginning of this section, we say that a model is learned reliably if it is learned correctly with
a high probability. We estimate the probability of learning correctly by computing the relative number
of successful learning runs, which are runs in which the correct model was learned. This estimation is
denoted by p̂correct and labels the y-axis in Figure 4.6. The x-axis of Figure 4.6 gives the number of
executed equivalence test steps. The leftmost data point of the black line with +-markers, for instance,
lies at x = 529.66 and y = 0.12 and represents the result of a transition-coverage learning experiment.
It denotes that transition coverage learned correctly in 6 out of 50 learning runs while executing 530
equivalence test steps on average.

We see in Figure 4.6 that the reliability of random L& Y and transition coverage grows more
smoothly than the reliability of mutation. Although allowing for more equivalence test steps gener-
ally increases reliability of learning, we also see slight drops for mutation. The reason for this behaviour
is that we are able to cover only a small portion of the mutants with a low number of test steps/cases
such that we may select test cases covering irrelevant mutants. Covering all transitions on the other hand
is simpler and random L & Y follows a rather different approach. However, if we allow for sufficiently
many test cases to be selected and executed, these drops can be expected to disappear. Despite these
drops, mutation requires slightly less test steps to learn reliably. Furthermore, we see that random testing
may be applied successfully, but it is less reliable at producing correct results.

4.4.4 TLS Experiments

For the last case study, we learn models of nine TLS-server implementations [98]. The models were
originally learned by de Ruiter and Poll [97] while taking domain-specific knowledge into account.
They stopped executing a test case once the connection between the TLS server and the test harness
had been closed. This is reflected in the structure of the models such that we may use shorter tests.
Therefore, we set the following parameters for test-case generation: maxSteps = 20, pretry = 0.95,

4.4. Evaluation of Fault-Based Conformance Testing 75

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

·103

0

0.5

1

mean # equivalence test steps

p̂
c
o
rr
e
c
t

random
random L & Y

mutation
transition coverage

Figure 4.6: Reliability of learning the correct emqtt-broker model with a limited number equiva-
lence test steps

GnuTLS
3.3.8

GnuTLS
3.3.12

miTLS
0.1.3

NSS
3.17.4

OpenSSL 1.0.1j

OpenSSL 1.0.1l

OpenSSL 1.0.2

RSA
BSAFE

C

RSA
BSAFE

J

0

20,000

40,000

60,000

80,000

100,000

m
ea

n
#

st
ep

s
[e

q.
]

mutation
transition coverage
random L& Y

Figure 4.7: Average number of equivalence test steps required to reliably learn TLS models

pstop = 0.05, and linfix = 3. Compared to the previous experiments, we reduced the bound on test-
case length and we also reduced the length of the purely random sequences created by Algorithm 4.1.
Since there are nine implementations with varying structure (see the number of states in Table 4.2), we
decided to perform a thorough coverage analysis by generating 300,000 test cases as a basis for test-case
selection. We used the same mutation parameters as before but a different sampling strategy. Some of the
states of the considered models were reached by only one access sequence such that no mutants would
be produced for these states. As a result, the redmin strategy would discard all mutants, including those
mutants produced for states with multiple access sequences. Instead, we applied the redmean strategy
and fraction sampling with r = 1.

Since we have seen that membership queries are not affected by different approaches to equivalence
testing, we now provide only measurement results for equivalence testing. These results are listed in Ta-
ble 4.5. Like for all other models, we provide an overview of the average number of executed equivalence
test steps. This overview is shown in Figure 4.7. The first issue to notice is that for transition coverage
and the OpenSSL models, we would need to set the equivalence test bound nsel to a value larger than
10,000. For this reason, we stopped at this point and deemed learning infeasible with this setup. The
same holds for random L& Y and GnuTLS 3.3.8 where we performed experiments with up to 20,000
tests, because the generated test cases were shorter than the test cases generated by Algorithm 4.1. The
mutation approach on the other hand was successful for all models.

76 Chapter 4. Efficient Conformance Testing in Active Automata Learning

Table 4.5: Performance measurements for learning TLS-server models
GnuTLS

3.3.8 mutation transition
coverage

partial
W-method

random
L & Y

nsel / depth 100 200 3 > 20,000
mean # tests [eq.] 182 283 709,845 -
mean # steps [eq.] 2,888 3,513 4,979,346 -

GnuTLS
3.3.12 mutation transition

coverage
partial

W-method
random
L & Y

nsel / depth 100 300 1 7,600
mean # tests [eq.] 141 333 1,354 8,776
mean # steps [eq.] 2,441 5,819 5,815 52,536

miTLS
0.1.3 mutation transition

coverage
partial

W-method
random
L & Y

nsel / depth 300 100 1 700
mean # tests [eq.] 347 122 1,017 884
mean # steps [eq.] 5,913 2,027 4,508 4,939

NSS
3.17.4 mutation transition

coverage
partial

W-method
random
L & Y

nsel / depth 200 100 1 1,000
mean # tests [eq.] 274 138 1,428 1,357
mean # steps [eq.] 4,206 2,115 5,970 7,932

OpenSSL
1.0.1j mutation transition

coverage
partial

W-method
random
L & Y

nsel / depth 1,100 > 10,000 2 12,400
mean # tests [eq.] 1,209 - 13,853 15,392
mean # steps [eq.] 16,635 - 78,615 100,332

OpenSSL
1.0.1l mutation transition

coverage
partial

W-method
random
L & Y

nsel / depth 800 > 10,000 2 15,300
mean # tests [eq.] 864 - 12,666 18,332
mean # steps [eq.] 11,566 - 68,524 115,122

OpenSSL
1.0.2 mutation transition

coverage
partial

W-method
random
L & Y

nsel / depth 500 > 10,000 1 500
mean # tests [eq.] 529 - 916 690
mean # steps [eq.] 7,934 - 3,621 3,970
RSA BSAFE for C

4.0.4 mutation transition
coverage

partial
W-method

random
L & Y

nsel / depth 100 5,000 1 1,100
mean # tests [eq.] 125 5,831 980 1,369
mean # steps [eq.] 1,656 106,563 4,188 8,209

RSA BSAFE for Java
6.1.1 mutation transition

coverage
partial

W-method
random
L & Y

nsel / depth 200 100 1 600
mean # tests [eq.] 254 137 960 873
mean # steps [eq.] 4,235 2,247 3,877 4,793

In Table 4.5, we notice better performance of the partial W-method. It even requires the lowest
number of test steps for OpenSSL 1.0.2. This stands in stark contrast to previous observations, but is
simply caused by the low depth-parameter value required for learning TLS models. It actually highlights
the effect of the depth parameter. To correctly learn the GnuTLS 3.3.8 model, the depth parameter needs
to be at least 3. For this model, mutation needs three orders of magnitude fewer test steps. If we were to
choose 2 as depth-parameter value for all other models, to be on the “safe side”, the performance of the
partial W-method would drastically drop. Note that we usually do not know the required depth.

Comparing the randomised approaches in Figure 4.7, we see that mutation generally performs well.
It is not the best performing solution in all cases, though. We made the same observation above for
MQTT as well. Hence, mutation may be better suited to changing environments. In comparison to the
other approaches, it shows the worst performance for miTLS, for which it requires three times as many
test steps as transition coverage. However, it performs best for other models, like for OpenSSL 1.0.1j.
Note that it does not show extreme outliers as well. The different versions of OpenSSL, for example,
cannot be learned efficiently with transition coverage.

It should be noted that the non-randomised version of random L & Y discussed in [254] can be

4.4. Evaluation of Fault-Based Conformance Testing 77

assumed to perform best for the models that can be learned by setting the depth parameter to 1. The
reason for this is that random L & Y implements an effective method for computing distinguishing
sequences. Moreover, the partial W-method already performs well for these models.

4.4.5 Discussion, Limitations & Threats to Validity

Effectiveness of Mutation-based Selection. The measurements shown and discussed above suggest
that our mutation-based test-case selection pays off. Mutation performed very well in the TCP case
study, but did not perform best in some other cases. Still, it generally showed good performance in
comparison to the other randomised approaches. There are, for instance, systems for which transition
coverage performs slightly better. In such cases, the mutation-based selection apparently does not add
value. It should be noted that a crucial aspect of mutation is that it uses Algorithm 4.1 for test-case
generation. Initially, we generated test cases purely randomly. These tests, however, would fail to
reach most of the mutations. The coverage-directed generation of Algorithm 4.1 mitigates this issue. A
potential further improvement would be to perform a mutation-directed, but still randomised, test-case
generation. Preliminary experiments with such an approach required very high runtimes for test-case
generation, therefore we did not explore it any further. Algorithm 4.1 represents a good tradeoff between
test-case generation efficiency and test-case effectiveness.

Application Domain. Our evaluation is limited to variations of three types of systems, therefore it may
not generalise to other systems, especially from other application domains. All considered are implemen-
tations of communication protocols. Since communication protocols are the main focus of this thesis,
we decided to thoroughly evaluate our approach with respect to such systems. We evaluate additional
configurations of test-based learning with respect to efficiency in the domain of communication protocols
in Section 4.5, providing further evidence for the effectiveness of mutation-based test-case selection.

Guarantees. We compared mutation with the partial W-method, which provides certain completeness
guarantees. The total cost of learning in our setting is given by the average number of test steps combined
for equivalence and membership queries. Mutation improves upon the partial W-method with respect to
this measure by at least one order of magnitude for all MQTT and TCP models. It may be argued
that the comparison is unfair because the partial W-method provides guarantees while mutation aims at
optimising coverage. In the considered setup, however, mutation provides guarantees as well. Since the
automata learned with L∗ are minimal [37], we can state: if we learn a model, then it is either correct
or the SUL has more states than the learned model. The (partial) W-method performed with depth d
provides the stronger guarantee: if we learn a model with k states, then it is either correct or the SUL has
more than k + d states [117].

Given the difference in guarantees, we decided to perform another type of experiment that we want
to discuss only briefly. In this type of experiment, we took the maximum number of steps required by
mutation as a basis and we bounded the number of equivalence test steps for the partial W-method by
this number. As an illustrative example consider learning the Ubuntu TCP-server model. The mutation
approach requires a maximum of 226,119 equivalence test steps to learn reliably. Equivalence testing
with the partial W-method with depth 2 while additionally bounding the number of steps by 226,119,
resulted in learning of a model with 27 states. Hence, the guarantee provided by that is that the model is
either correct or the system has more than 29 states. Strictly speaking, the guarantee would actually be
weaker, because we did not execute all test cases prescribed by the partial W-method. If we learn with
mutation, we learn a model with 57, thus providing us with a lower bound of 57 on the number of states
of the true model. Hence, conditioned on allowed test-execution time, learning with mutation is able to
provide stronger guarantees.

78 Chapter 4. Efficient Conformance Testing in Active Automata Learning

Parameter Settings. An advantage of the randomised approaches is that they can be controlled more
flexibly through parameters. However, a large number of parameters also increases the difficulty of
finding suitable parameter settings. This holds for all performed experiments. There may be better
parameters for mutation as well as for random L & Y. In general, we tried to find parameters that would
work for one of the MQTT/TCP/TLS models and used these settings for all the other models as well.
Since we developed the mutation technique, the learning performance in our evaluation may be biased.
Put differently, it is likely that we are able to find well-suited parameters for our approach but not for
random L & Y. For this reason, performance gains of mutation over random L & Y may be smaller in
general.

Another risk related to the large parameter space of mutation is that it may be possible that only a
small portion of the parameter settings actually produces good results. To limit the risk that we found
good parameters by chance, we used the same parameter settings for all systems of a certain type. The
TLS case study shows that the same parameter settings may work nicely for various different systems.
Still, finding parameter settings for mutation is likely to be the most difficult.

Variability. Another benefit of randomised approaches is that randomness introduces variability which
may help. For the BSD case study, we needed to set the depth of the partial W-method to 5. In principle,
this implies for mutation that mutants should be created with distinguishing sequences of length k = 5.
But we set k = 2 and still learned successfully. This may be explained by the fact that if we cover a
large number of mutants with k = 2, we will with high probability cover mutants with k > 2 as well.
Additionally, variability in tests may help to explore the search space more thoroughly. Completely
random testing did not perform well, though. Without any form of directed testing, we fail to reach
relevant portions of the search space.

System Size and Computation Time. A shortcoming of mutation is that mutation analysis is compu-
tationally intensive although we spend effort optimising it. Comparing the test-case generation durations
for the different protocols, we see an increase with system size. Mutation-based test-case generation
requires on average 27 seconds during a complete learning run of OpenSSL 1.0.1j and it requires 45 sec-
onds for emqtt. Due the substantially larger state space, it takes 324 seconds to generate test cases for the
Ubuntu TCP-server. Therefore, we target moderately-sized systems with the mutation-based approach.

As random L & Y generates test cases more efficiently, it can be applied for larger systems as well.
It has, for instance, been used to learn a system with more than 3,000 states [254]. Applying mutation
to systems with significantly more than 100 states would likely not pay off. We would have to perform
aggressive mutant sampling which might negatively impact the effectiveness of mutation-based selection.
Note that transition coverage does not suffer from this limitation. We were able to learn a model with
more than 6,000 states by conformance testing via transition coverage. Chapter 10 presents a case study
on that.

In general, we did not evaluate the influence of mutant sampling. We have observed during develop-
ment that sampling is detrimental to test-case effectiveness if we discard too many mutants. However, a
thorough evaluation would improve our understanding of the effects and limitations of sampling in the
context of active automata learning. There are various works studying the effects of mutant sampling on
traditional mutation testing [155].

4.5 Benchmarking Active Automata Learning

Declaration of Sources

As indicated at the beginning of this chapter, this section is based on work performed by Felix
Wallner for his bachelor’s thesis, which was co-supervised by me [288].

4.5. Benchmarking Active Automata Learning 79

Table 4.6: Evaluated learning and testing algorithms
Learning algorithm Testing algorithm

L∗ [37, 246] W-method [83, 277]
RS [240] partial W-method [117]
KV [160] random words (see Algorithm 2.3)

TTT [151] random walks (see Algorithm 2.4)
mutation (see Section 4.4)
transition coverage (see Section 4.4)
random Wp-method (see Section 2.4.2)

Section 4.4 focused on the evaluation of our mutation-based test-case generation, comparing it to
different testing techniques. To enable a fair comparison, we used the same learning algorithm in com-
bination with each of the four testing techniques that we applied. We generally measured efficiency in
terms of the number of test steps required to perform equivalence queries via testing. Additionally, we
also measured the number of test steps for output queries and the number of tests/resets performed for
equivalence and output queries.

In this section, we present similar measurements performed by Felix Wallner for his bachelor’s the-
sis [288], but we compare combinations of learning algorithms and testing algorithms. The goal of these
measurements is to evaluate the overall performance of learning. This evaluation, for instance, examines
the performance of L∗ combined with random-walks-based testing implemented by Algorithm 2.4. As
in Section 4.4, we “re-learn” known models of network protocols for that. Thus, we treat these mod-
els as black boxes and simulate them to generate outputs in response to input sequences. The setup is
also mostly the same, but we perform ten learning runs rather than 50 in each experiment and compute
statistics from that. We lowered the number of learning runs to be able to perform a larger number of
experiments in reasonable time. Since we are interested in the overall performance of test-based learn-
ing, we mainly consider the combined number of test steps required for equivalence queries and output
queries.

4.5.1 Measurement Setup

Selection of Algorithms. Altogether, we evaluated all combinations of four learning algorithms and
seven testing techniques, that is, we evaluated 28 learner-tester combinations. The learning algorithms
are listed in the first column of Table 4.6 and the testing techniques are listed in the second column of
Table 4.6. We have chosen the random Wp-method over random L&Y, because it is readily available
as equivalence-query implementation in LearnLib [152]. Both techniques produce test cases of similar
shape, but random L & Y tends to perform better. Note that the W-method creates test suites that are
generally larger than the partial W-method. Individual equivalence queries using the partial W-method
are therefore more efficient. However, the partial W-method and the W-method may find different coun-
terexamples, therefore intermediate hypotheses may be different as well. For this reason, we included
both testing algorithms in our evaluation. In contrast to Section 4.4, we use LearnLib 0.14 instead of
LearnLib 0.12, thus results may differ from Section 4.4.

Benchmark Models. In this section, we consider a subset of the benchmark models from the automata-
learning benchmark models collected by the Radboud University Nijmegen [214]4. In particular, we use
all six TCP models, including both server and client models of the TCP stacks of Ubuntu, Windows, and
BSD, learned by Fiterău-Broştean et al. [112]. We consider all 32 MQTT models, created in our learning-
based testing case study presented in Chapter 3. Finally, we also consider a simple coffee machine that is
similar to a model used by Steffen et al. [258]. The evaluation in this section does not include experiments

4available via http://automata.cs.ru.nl/, accessed on November 4, 2019

http://automata.cs.ru.nl/

80 Chapter 4. Efficient Conformance Testing in Active Automata Learning

with the TLS models learned by de Ruiter and Poll [97], because like most of the MQTT models, the
TLS models have a low number of states. In order to keep the imbalance between large and small models
low, we decided to not include the TLS models. The experimental results presented in the following are
thus based on learning experiments with 39 benchmark models.

Search for Required Number of Tests. Like in Section 4.4, we search for the minimum number of test
cases that need to be executed during individual equivalence queries to learn reliably using randomised
testing techniques. As before, we denote this number by nsel. Moreover, we consider learning to be
reliable if all ten learning runs in a learning experiment are successful. Since the relative number of
small models is larger than in Section 4.4, we perform a fine-grained binary search for nsel, instead of a
coarse-grained linear search.

Configuration of Testing Techniques. We apply the same configuration of every testing technique
for all considered models. The configurations have been chosen to enable learning of system with up to
approximately 50 states. For instance, we configured random-words-based testing such that all generated
test cases have a length between 10 and 50. Note that we apply more aggressive mutant sampling than
in Section 4.4, because we perform more experiments. The parameter configurations are as follows.

random words: minimum length lmin = 10 and maximum length lmax = 50; see also Algorithm 2.3.

random walks: test stop probability pstop = 1
30 ; see also Algorithm 2.4. This setting ensures that the

expected length of random walks is the same as of random words.

random Wp-method: we set the minimal length of the middle sequence to 0 and the expected length
to 4; see also the discussion of the random W-method in Section 2.4.2.

transition coverage: maxSteps = 50, pretry = 29
30 , pstop = 1

30 , and linfix = 4; for a description of the
parameters see Section 4.2 and Section 4.4. Note that we have chosen pstop to be the same value
as pstop of random walks.

mutation: maxSteps = 50, pretry = 29
30 , pstop = 1

30 , linfix = 4, k = 2 (length of distinguishing
sequence), and nacc = 100. We applied the redmin mutant sampling strategy, then applied fraction
sampling with r = 1 and finally sampled 10,000 of the remaining mutants, unless there were less
than 10,000 mutants remaining after fraction sampling.

The only parameter of the deterministic algorithms, the W-method and the partial W-method, is the
depth parameter. We increased this parameter linearly until we learned correctly, like in Section 4.4. For
transition coverage and mutation, we created min(100,000, nsel · 100) test cases using Algorithm 4.1
and selected nsel of these test cases based on coverage. In the remainder of this section, we write testing
techniques in italics like in Section 4.4.

4.5.2 Measurement Results

Altogether we performed 39 learning experiments with each of the 28 learner-tester combinations. We
present selected results from these experiments in the following, focusing on the number of test steps
required for both equivalence queries and output queries. In particular, we consider the maximum and
mean number of test steps required to learn reliably. Due to the large amount of learning experiments,
we present aggregated results for learner-tester combinations in (1) cactus plots and (2) bar plots. Ad-
ditional information and the complete results can be found in Felix Wallner’s bachelor’s thesis and the
accompanying supplementary material [288].

The cactus plots show how many experiments can be finished successfully, such that learning is
reliable, given a maximum number of test steps. The bar plots show two different scores, s1 and s2,

4.5. Benchmarking Active Automata Learning 81

muta
tio

n

ra
nd

om
walk

s

ra
nd

om
wor

ds

ra
nd

om
W

p

tra
ns

itio
n co

ve
ra

ge

W
-m

eth
od

W
p-

meth
od

106

107

108

109

1010

1011
s 1

L∗

RS
KV
TTT

Figure 4.8: The score s1 computed over all experiments for all learner-tester combinations,
grouped by testing technique

computed for the learner-tester combinations lt. The actual scores are not important, but they allow for
comparisons, where a lower value means better performance. The scores are given by

s1(lt) =
∑
e∈E

meanAllSteps(lt, e) and

s2(lt) =
∑
e∈E

meanAllSteps(lt, e)
maxlt′∈LT meanAllSteps(lt′, e)

,

where E is the set of considered experiments, LT is the set of all learner-tester combinations, and
meanAllSteps(lt, e) returns the mean number of steps to reliably learn with the combination lt in the
experiment e. The first score s1(lt) simply sums up the average number of test steps required in all
experiments, whereas s2(lt) is normalised, through dividing by the worst-performing combination of
each experiment. Hence, s1 allows to analyse which combinations perform best, when learning all 39
models consecutively and under the assumption that test steps require the same amount of time in each
experiment. The normalised score s2 accounts for the large variation in terms of model complexity
across the different experiments. Normalisation ensures that individual performance outliers do not
severely affect the overall score of a learner-tester combination. As information about outliers is useful,
it is represented in the cactus plots.

Categories. Certain behavioural aspects of communication-protocol models may favour a particular
learner-tester combination, but other aspects may favour different combinations. For this reason, we
grouped the benchmark models into categories based on the following properties:

• small: a model is small, if it has less than or equal to 15 states

• large: a model is large, if it has more than 15 states

• sink-state: a model satisfies the property sink-state, if there exists a (sink) state q such that all
outgoing transitions from q reach q

• strongly-connected: a model satisfies the property strongly-connected, if its underlying directed
graph is strongly connected, that is, for each ordered pair of nodes exists a directed path between
these nodes

For instance, we examined which combinations perform best for small models that have a sink state.

82 Chapter 4. Efficient Conformance Testing in Active Automata Learning

muta
tio

n

ra
nd

om
walk

s

ra
nd

om
wor

ds

ra
nd

om
W

p

tra
ns

itio
n co

ve
ra

ge

W
-m

eth
od

W
p-

meth
od

0

5

10

15

20

25

s 2

L*
RS
KV
TTT

Figure 4.9: The score s2 computed over all experiments for all learner-tester combinations,
grouped by testing technique

Overview

First, we want to provide a rough overview. Figure 4.8 shows the score s1(lt) for each learner-tester
combinations computed over all experiments. Due to large variations in the required test steps it uses
logarithmic scale. Figure 4.9 shows the normalised score s2(lt). We see a similar picture as in Sec-
tion 4.4. Mutation, transition coverage, and random Wp perform well in comparison to other techniques.
In Figure 4.8, we can observe that the relative gap between mutation and the worst-performing tech-
niques is very large. This is caused by a few outliers. In particular, the TCP server models required a
very large number of test steps for random walks and random words to learn reliably. For this reason, we
see a smaller gap between those test techniques and mutation in Figure 4.9, because s2 is less affected
by outliers.

Furthermore, we see that the W-method indeed generally performs worse than the partial W-method.
Random words and random walks perform similarly well. Figure 4.9 shows that the performance of
KV combined with some testing algorithm is similar to the performance of L∗ combined with the same
testing algorithm. For these reasons and to ease readability, we will ignore certain combinations in
the following. In the remainder of this section, we will not show performance plots for combinations
involving the W-method, random-walks-based testing, or the KV algorithm.

Figure 4.10 shows a cactus plot describing how many learning experiments can reliably be completed
with a limited number of test steps. For instance, with RS-mutation we are able to learn about 28 models
with at most approximately 10,000 test steps, whereas L∗-mutation requires about 100,000 test steps to
learn only 25 models. We see a steep increase in the required test steps for random-words-based testing
to learn three of the 39 models. This explains the discrepancy between s1-score and and s2-score of
random-words-based testing. It is interesting to note that L∗ combinations require a very low number of
test steps to learn eight of the models. In general, L∗ combinations perform worst, though.

Selected Findings

Next, we discuss a few selected findings.

Counterexample Processing. In Figure 4.8 and Figure 4.9, we see that mutation combined with RS
and mutation combined with TTT perform best overall. In contrast to that, mutation combined with KV

4.5. Benchmarking Active Automata Learning 83

1 5 10 15 20 25 30 35 39
102

103

104

105

106

107

experiments

m
ax

.
te

st
st

ep
s

RS-mutation
RS-random words
RS-random Wp
RS-transition coverage
RS-Wp-method
L∗-mutation
L∗-random words
L∗-random Wp
L∗-transition coverage
L∗-Wp-method
TTT-mutation
TTT-random words
TTT-random Wp
TTT-transition coverage
TTT-Wp-method

Figure 4.10: A cactus plot showing how many learning experiments can be completed successfully
with a limited number of test steps

and mutation combined with L∗ perform substantially worse, whereas random Wp shows uniform per-
formance across different combinations with learning algorithms. Similar observations as for mutation
can be made for transition coverage.

This can be explained by considering the counterexample-processing techniques of different learning
algorithms. RS processes counterexamples by extracting distinguishing suffixes [240], like TTT which
also performs additional processing steps [151]. This reduces the length and number of sequences that are
added to the learning data structures. L∗ and KV do not apply such techniques, therefore the performance
of these learning algorithms suffers from long counterexamples. We have chosen the parameters for
mutation conservatively to create long test cases, which leads to long counterexamples, explaining our
observations. In contrast to this, random Wp generates much shorter test cases. Therefore, we see
uniform performance in combination with different learning algorithms. Hence, mutation and transition
coverage should be combined with either RS or TTT. In such combinations, mutation-based testing
performs efficient equivalence queries, while sophisticated counterexample processing ensures that a
low number of short output queries is performed. Comparing RS and TTT combined with mutation,

84 Chapter 4. Efficient Conformance Testing in Active Automata Learning

muta
tio

n

ra
nd

om
wor

ds

ra
nd

om
W

p

tra
ns

itio
n co

ve
ra

ge

W
p-

meth
od

105

106

s 1

L∗

RS
TTT

Figure 4.11: The score s1 computed for experiments involving small models with a sink state

muta
tio

n

ra
nd

om
wor

ds

ra
nd

om
W

p

tra
ns

itio
n co

ve
ra

ge

W
p-

meth
od

0

1

2

3

4

5

6

s 2

L∗

RS
TTT

Figure 4.12: The score s2 computed for experiments involving small models with a sink state

there is no clear winner; both combinations performed similarly well in our experiments.

Small Models with Sink State. We evaluated the learner-tester combinations on ten small models that
have a sink state. Small models may result from harsh abstraction. Sink states may be created if learning
focuses on individual sessions in a communication protocol, where the sink state is reached upon session
termination. Hence, this is an important class of systems that we can identify prior to learning. Therefore,
it makes sense to analyse which active automata learning configurations work well in such scenarios.

Figure 4.11 and Figure 4.12 show scores computed for this kind of models. The non-normalised score
s1 shows that transition-coverage-based testing may be very inefficient for such models. In particular,
the combinations with RS and TTT are the two worst-performing with respect to s1. However, the
normalised score s2 is in a similar range as the s2 score of random-words-based testing. This suggest
that the s1 score is affected by a few experiments for which transition coverage performs very poorly.
The cactus plot shown in Figure 4.13 demonstrates that this is indeed the case. There is a steep increase
in the test steps required to reliably learn in 7 or more experiments. Thus, four models seem to be difficult
to learn with transition coverage.

4.5. Benchmarking Active Automata Learning 85

1 3 5 7 9 10

103

104

105

106

107

experiments

m
ax

.
te

st
st

ep
s

RS-mutation
RS-random words
RS-random Wp
RS-transition coverage
RS-Wp-method
L∗-mutation
L∗-random words
L∗-random Wp
L∗-transition coverage
L∗-Wp-method
TTT-mutation
TTT-random words
TTT-random Wp
TTT-transition coverage
TTT-Wp-method

Figure 4.13: A cactus plot showing showing how many learning experiments involving small mod-
els with a sink state can be completed successfully with a limited number of test steps

We analysed one of these models in more detail to determine the reason for the poor performance of
transition coverage. It is a coffee-machine model similar to the model used as an illustrative example by
Steffen et al. [258]. Figure 4.14 shows the corresponding Mealy machine. Two properties of the coffee
machine cause the poor performance of transition-coverage-based testing. First, many input sequences
reach the sink state q5 that only produces error outputs. Second, other states require very specific input
sequences. In experiments, we observed that learning frequently produced incorrect models with 5 states
that did not include q1 or q2. The transition-coverage heuristic does not help to detect these states. In fact,
it is even detrimental. To reach q1 or q2, we need to reach the initial state q0 first. Consequently, covering
any known hypothesis transition other than the water (pod) transition in q0 leads away from detecting q2

(q1). Random testing from q0 is necessarily more effective. Moreover, the transition-coverage heuristic
generates very long test cases. For this reason, most suffixes of these test cases merely execute the self-
loop transitions in q5, because the probability of reaching q5 is high. This worsens the performance of
transition coverage even more.

It is interesting to note that mutation-based test-case generation performs well on the coffee machine,
although it generates test cases using Algorithm 4.1, like transition coverage. Hence, mutation-based
test-case selection is able to drastically improve performance, as can be seen in Figure 4.13. This can be
explained by considering the same situation as outlined above. Suppose that we learned an intermediate
hypothesis with five states. In this scenario, the true model is a mutant of the hypothesis. By covering
that mutant, we detect the last remaining state and learn the true model.

Large Models. Finally, we want to examine the learning performance on large models. In our classifi-
cation, models are large if they have more than 15 states. Our benchmark set includes 11 such models.
Figure 4.15 and Figure 4.16 show scores computed for learning these models. Figure 4.17 shows the
corresponding cactus plots.

86 Chapter 4. Efficient Conformance Testing in Active Automata Learning

q0

start

q1q2 q3

q4 q5

clean/ok

water/ok pod/ok pod/ok

water/ok

button/error

clean/ok

water/ok
pod/ok

button/error

clean/ok

{water, pod}/
ok

button/coffee

clean/ok

{button, pod,
water}/error

clean/ok

{pod, clean,water,
button}/error

button/error

Figure 4.14: A Mealy-machine model of a coffee machine [258]

muta
tio

n

ra
nd

om
wor

ds

ra
nd

om
W

p

tra
ns

itio
n co

ve
ra

ge

W
p-

meth
od

106

107

108

109

1010

s 1

L∗

RS
TTT

Figure 4.15: The score s1 computed for experiments involving large models

We can observe that both random words and the Wp-method show poor performance. Their detailed
performance characteristics is different, though. On the one hand, we see in Figure 4.17 that the Wp-
method combined with any learning algorithm performs bad over the whole range of experiments. On
the other hand, random words is able to efficiently learn eight of 11 models, but it requires a very
large amount of test steps for the remaining three models. These are the TCP-server models, which are
much larger than the other considered models. Hence, random-words-based testing is only feasible for
moderately large models. We can also observe that the combinations RS-mutation and RS-transition
coverage perform very well for large models. This is in line with findings from Section 4.4.

Discussion of Benchmarking Results

We performed experiments with 28 learner-tester combinations and identified a few representative com-
binations that we analysed in more detail. As expected, deterministic conformance testing showed poor
performance for large models, i.e., it does not scale. Random-words-based testing also cannot reliably
learn large models with a limited number of test steps. Transition coverage showed weaknesses for small
models with sink states, an important class of system models. Hence, mutation or random Wp should be

4.6. Summary 87

muta
tio

n

ra
nd

om
wor

ds

ra
nd

om
W

p

tra
ns

itio
n co

ve
ra

ge

W
p-

meth
od

0

1

2

3

4

5

6

7

s 2

L∗

RS
TTT

Figure 4.16: The score s2 computed for experiments involving large models

chosen to efficiently learn automata.

We have also observed that counterexample processing has a large impact on efficiency, especially
if test cases are long, as is the case in mutation-based testing. Overall, the combinations RS-mutation
and TTT-mutation performed best. Mutation-based testing requires a low number of test cases for equiv-
alence queries, while sophisticated counterexample processing keeps the number and length of output
queries low.

4.6 Summary

This chapter addressed efficiency in active automata learning. We focused on conformance testing for
implementing equivalence queries efficiently, because equivalence queries can be considered the main
bottleneck of active automata learning with respect to runtime [54]. To tackle this issue, we presented an
efficient test-case generation technique which accompanied with appropriate test-case selection yields
effective test suites. In particular, we further motivated and described a fault-based test-case selection
approach with a fault model tailored towards learning. We performed various experiments in the domain
of communication protocols. They showed that it is possible to reliably learn system models with a
significantly lower number of test cases than with complete conformance testing, for instance, via the
partial W-method [117]. Additionally, we presented an evaluation of combinations of learning algorithms
and testing techniques with respect to overall learning performance. This evaluation demonstrated that
our fault-based testing approach performs favourably if combined with appropriate learning techniques.

4.7 Results and Findings

We evaluated the performance of our mutation-based test-suite generation in Section 4.4 as well as active
automata learning configurations more broadly in Section 4.5. We discussed limitations and potential
issues in Section 4.4.5, such as the large number of parameters of randomised testing techniques. In the
following, we discuss the evaluation results and our findings concerning the research questions listed
in Section 1.6.3. In particular, we address the research questions related to runtime in the work on this
chapter.

88 Chapter 4. Efficient Conformance Testing in Active Automata Learning

1 3 5 7 9 11
103

104

105

106

107

108

experiments

m
ax

.
te

st
st

ep
s

RS-mutation
RS-random words
RS-random Wp
RS-transition coverage
RS-Wp-method
L∗-mutation
L∗-random words
L∗-random Wp
L∗-transition coverage
L∗-Wp-method
TTT-mutation
TTT-random words
TTT-random Wp
TTT-transition coverage
TTT-Wp-method

Figure 4.17: A cactus plot showing showing how many learning experiments involving large mod-
els can be completed successfully with a limited number of test steps

RQ 1.1 Are randomised testing techniques a sensible choice for learning-based testing? On the
one hand, completely random testing did not perform well in our experiments. For instance, the ex-
periments presented in Section 4.5 showed that large models require an enormous amount of completely
random tests for reliable learning. On the other hand, the randomised testing techniques that generate test
cases from learned models performed very well. Hence, it is essential for testing techniques to exploit
knowledge gained throughout learning. Mutation and transition coverage optimise generated test suites
for different forms of coverage of intermediate hypothesis models. As explained in Section 4.1, random
L & Y and random Wp also cover hypothesis states through the selection of test-case prefixes. We found
that these four randomised techniques outperformed the deterministic partial W-method significantly.

Hence, we conclude that randomised testing techniques can enable efficient active automata learning
and learning-based testing. Such techniques, however, need to exploit knowledge gained during learning
to be effective.

RQ 1.2 What guarantees can be given if randomised testing is applied? The goal of the evalu-
ation in Section 4.4 was to empirically demonstrate the effectiveness of our mutation-based test-suite
generation, where we also briefly discussed guarantees in this chapter.

First, we can provide similar guarantees as model-based mutation testing in general. By executing a
test case covering a mutant, we can show that this particular mutant has not been implemented. Second,

4.7. Results and Findings 89

we benefit from the minimality of actively learned automata models. If we learned a model with n
states, then we know that we either learned the true model, or that the true model has more than n states.
As explained in Section 4.4.5, this is similar to the guarantees provided by deterministic conformance
testing using the partial W-method [117]. In fact, conditioned on limited test-execution time, learning
supported by randomised testing may be able to provide stronger guarantees than learning supported by
deterministic testing.

RQ 1.3 Can learning with randomised conformance testing reliably generate correct system mod-
els? We conclude from our experiments presented in Section 4.4 and Section 4.5 that learning sup-
ported by randomised conformance testing can reliably generate correct system models. In particular,
the mutation-based testing approach performed well. It was able to reliably learn models of all sys-
tems considered in Section 4.4 and it achieved the best scores in Section 4.5, if combined with the RS
algorithm or the TTT algorithm.

RQ 1.4 Is fault-based testing, such as model-based mutation testing, applicable in automata learn-
ing? We developed and successfully applied a fault-based testing technique, therefore we conclude
that a fault-based approach, implemented via model-based mutation testing, is applicable in automata
learning.

It should be noted, though, that not all types of mutations are equally effective. As mentioned in
Section 4.2.3, the transition coverage testing technique can be implemented by change output mutations.
This testing strategy showed poor performance in some cases. We observed poor performace for small
models with sink states, as pointed out in Section 4.5. Actually, change output mutations do not model
realistic faults in the context of active automata learning. Mutants created by solely changing outputs
cannot represent the true SUL, due to the minimality of learned hypotheses. A learned hypothesis either
has strictly less states than the true model of the SUL or it is correct and minimal, that is, every transition
including its output is correct.

Concluding Remarks. In summary, we conclude that randomised mutation-based test-suite generation
is a valuable technique for conformance testing in active automata learning. In general, coverage-guided
randomised testing can be considered promising in this area, as it neatly combines exploitation of gained
knowledge in the form of hypotheses with exploration through randomisation. This form of testing also
requires little prior knowledge about SULs which suits our black-box view in automata learning.

5
Modelling and Learning of Uncertain Behaviour

Declaration of Sources

This chapter introduces background information on stochastic models, verification, and learning.
Our work on stochastic automata learning is covered by four publications [16, 18, 265, 266],
therefore we base the presentation of material in this chapter mostly on these publications.
The background information covers (1) basics, like probability distributions and corresponding
notations, (2) Markov decision processes (MDPs), which is the modelling formalism we used,
(3) automata learning, (4) probabilistic model-checking and reachability objectives, and (5) sta-
tistical model-checking (SMC).

5.1 Choice of Modelling Formalism for Learning-Based Testing of
Uncertain Behaviour

In our exploratory research, we identified uncertain behaviour as an issue limiting the applicability of
deterministic learning-based testing; see Section 1.6.4 and Section 3.6. Recall that we consider be-
haviour to be uncertain if the repeated application of the same input sequence results in different output
sequences. This kind of behaviour renders the application of deterministic automata learning such as the
L∗ algorithm [37] infeasible. In order to perform learning-based testing in the presence of uncertainties,
we need to apply a learning technique that can cope with uncertainties. RQ 2.1 addresses the question of
which modelling formalism and, consequently, which learning technique should be used in this context.
To approach this question, we present examples from the literature on learning uncertain behaviour in
the following.

Most L∗-based work targets deterministic models, but there are exceptions to that. We want to
discuss two approaches to learning non-deterministic models that consider a testing scenario [161, 283].
Volpato and Tretmans presented an adaptation of Angluin’s L∗ for learning non-deterministic input-
output transition systems [283]. They note that learned models can be applied in model-based testing
and that testing can be used in their learning algorithm. However, they discuss learning only abstractly
on the basis of an oracle (a teacher). In particular, they assume an oracle capable of answering output
queries. Such output queries non-deterministically return an output that can be produced after a given
system trace. Hence, these queries need to be called repeatedly to determine all possible outputs. In
addition to output queries, they assume that the oracle can tell, when all outputs after a given trace have

91

92 Chapter 5. Modelling and Learning of Uncertain Behaviour

been observed. Khalili and Tacchela presented an active learning algorithm for non-deterministic Mealy
machines [161] which extends concepts introduced by Angluin [37] as well. They also note that they
need to perform tests repeatedly to observe all possible outputs. Unlike Volpato and Tretmans, they
discuss practical issues. They assume that there are no rare events to ensure that all possible outputs can
be observed in an acceptable amount of time. Their implementation of output queries is parameterised
by a minimum probability of observing some output and by a confidence value. Thus, they consider an
implicit stochastic behaviour model, but they abstract away from observed output frequencies and learn
purely non-deterministic models. What is more, they actually suggest that a stochastic (MDP-based)
interpretation of learned models can be used for effective testing during equivalence queries.

We gained an important insight from studying these approaches. A practical implementation of a
learning technique for non-deterministic models requires some form of stochastic interpretation of the
SUL [161]. This is necessary to be able to tell when all non-deterministically produced outputs have
likely been observed. Therefore, we decided to study modelling formalisms and learning techniques for
stochastic systems. We found MDPs to be well-suited models for our application domain of networked
systems for the following reasons. MDPs are commonly used to model randomised distributed algo-
rithms [46] and more specifically to model network protocols for verification [173, 220]. This kind of
models can be controlled via inputs like Mealy machines, while transitions are stochastic, thus enabling
testing. There exist learning algorithms for MDPs as well. IOALERGIA is a state-of-the-art passive learn-
ing algorithm for MDPs that has already successfully been applied in a verification context [198, 199].

Another benefit of MDPs is that they potentially encode more information than non-deterministic
models like non-deterministic Mealy machines. They model the probability of events which undoubtedly
matters in practical scenarios. Consequently, we decided to model uncertain behaviour as stochastic
behaviour by choosing MDPs as modelling formalism. As a first step, we developed a learning-based
testing approach relying on IOALERGIA [198, 199] for learning, as we will discuss in Chapter 6.

5.2 Basics

As in our previous publications on stochastic automata learning [16, 18, 265, 266], we introduce back-
ground material mostly following Mao et al. [199] and Forejt et al. [114]. An important difference to
these works [114, 199] is that we mainly consider finite traces and finite paths, as we follow simulation-
based approaches that generate traces via testing. In contrast to that, model checking mostly considers
properties defined over infinite sequences [114]. We also use slightly different notation.

5.2.1 Probability Distributions

Given a set S, we denote by Dist(S) the set of probability distributions over S, thus for all µ in Dist(S)
we have µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. In this thesis, distributions µ may be partial functions,

in which case we implicitly set µ(e) = 0 if µ is not defined for e. For A ⊆ S, 1A denotes the indicator
function ofA, i.e. 1A(e) = 1 if e ∈ A and 1A(e) = 0 otherwise. Hence, 1{e} for e ∈ S is the probability
distribution assigning probability 1 to e.

We apply the two pseudo-random functions coinFlip and rSel in Chapter 6 and in Chapter 7. Sec-
tion 1.9 introduces these auxiliary functions.

5.2.2 String Notation

Let I and O be sets of input and output symbols. As explained below, outputs label states and inputs
label edges in MDPs, like in Moore machines. Hence, traces of MDPs are usually alternating sequences
of outputs and inputs that start and end with an output, because paths corresponding to traces that start
and end in a state. A trace is therefore an input/output string s which is an alternating sequence of inputs
and outputs, starting with an output, i.e. s ∈ O×(I×O)∗. We extend the general notational conventions

5.3. Markov Decision Processes 93

for sequences introduced in Section 1.9, like concatenation and indexed access, to such input/output
string. The first element in such a string is generally the first input-output pair and we access the initial
output explicitly, if required. Furthermore, the length of an input/output string is its number of pairs,
thus traces consisting of only an initial output have length zero. Prefix- and suffix-closedness are adapted
analogously. In slight abuse of notation, we use A×B and A ·B interchangeably to simplify notation.

5.3 Markov Decision Processes

MDPs allow modelling reactive systems with probabilistic responses. An MDP starts in an initial state.
During execution, the environment chooses and executes inputs non-deterministically upon which the
system reacts according to its current state and its probabilistic transition function. For that, the system
changes its state and produces an output.

Definition 5.1 (Markov decision process (MDP)).
A labelled Markov decision process (MDP) is a tupleM = 〈Q, I,O, q0, δ, L〉 where

• Q is a finite set of states,

• I is a finite set of input symbols,

• O is a finite set of output symbols,

• q0 ∈ Q is the initial state,

• δ : Q× I → Dist(Q) is the probabilistic transition function, and

• L : Q→ O is the labelling function.

The transition function δ must be defined for all q ∈ Q and i ∈ I , thus MDPs are input enabled in our
definition. We consider only deterministic MDPs, therefore it must hold that

∀q, q′, q′′ ∈ Q,∀i : (δ(q, i)(q′) > 0 ∧ δ(q, i)(q′′) > 0)→ (q′ = q′′ ∨ L(q′) 6= L(q′′)).

Non-determinism results only from the non-deterministic choice of inputs by the environment.

We generally consider deterministic labelled MDPs. Labelling of states with outputs allows us to
distinguish states in a black-box setting, thus it is essential for us. Deterministic MDPs define at most
one successor state for each source state and input-output pair, which ensures that a given trace always
reaches the same state (see also below). This assumption simplifies learning such that learning algo-
rithms, like IOALERGIA [199], generally place this assumption on SULs. In this thesis, we refer to
deterministic labelled MDPs uniformly as MDPs.

As a shorthand notation, we use ∆ : Q× I ×O → Q∪ {⊥} to compute successor states for a given
source state and an input-output pair. The function is defined by ∆(q, i, o) = q′ ∈ Q with L(q′) = o and
δ(q, i)(q′) > 0 if there exists such a q′, otherwise ∆ returns ⊥.

In the context of verification, labels are often propositions that hold in states [114], thusO = P(AP),
where AP is a set of relevant (atomic) propositions, and L(q) returns the propositions that hold in state q.
Additionally to requiring determinism and labelling, Definition 5.1 requires MDPs to be input enabled.
They must not block or reject inputs. Since we assume stochastic SUTs to be MDPs, this allows us to
execute any input at any point in time. This is a common assumption in model-based testing [271].

Example 5.1 (Faulty Coffee Machine). Figure 5.1 shows an MDP modelling a faulty coffee
machine. Edge labels denote input symbols and corresponding transition probabilities, whereas
output labels in curly braces are placed above states. After providing the inputs coin and but,
the coffee machine MDP produces the output coffee with probability 0.9, but with probability
0.1 it resets itself producing the output init.

94 Chapter 5. Modelling and Learning of Uncertain Behaviour

q0start q1 q2

but : 1

coin : 1

coin : 1

but : 0.1 but : 0.9

coin : 1

but : 1

{init} {beep} {coffee}

Figure 5.1: An MDP modelling a faulty coffee machine

5.3.1 Execution of Markov Decision Processes

A (finite) path ρ through an MDP is an alternating sequence of states and inputs starting in the initial
state and ending in some state qn ∈ Q, that is, ρ = q0 · i1 · q1 · · · in−1 · qn−1 · inqn ∈ Q × (I × Q)∗.
The set of all paths of an MDP M is denoted by PathM. In each state qk, the next input ik+1 is
chosen non-deterministically and based on that, the next state qk+1 is chosen probabilistically according
to δ(qk, ik+1). Hence, we have for each k that δ(qk, ik+1) > 0. In contrast to finite paths, infinite paths
do not have a dedicated end state. An infinite path ρ̂ is sequence q0 · i1 · q1 · i2 · · · [114]. We denote the
set of infinite paths ofM by IPathM. Unless otherwise noted, we refer to finite paths simply as paths,
as we generally consider a test-based setting in which we execute finite paths.

The execution of an MDP is controlled by a so-called scheduler, resolving the non-deterministic
choice of inputs. A scheduler, as defined below, specifies a distribution over the next input given the
current execution path. In other words, they basically choose the next input action (probabilistically)
given a history of visited states. Schedulers are also referred to as adversaries or strategies [199].

Definition 5.2 (Scheduler).
Given an MDPM = 〈Q, I,O, q0, δ, L〉, a scheduler forM is a function s : PathM → Dist(I).

The composition of an MDPM and a scheduler s induces a deterministic Markov chain [114]. A
Markov chain is a fully probabilistic system allowing to define a probability measure over paths. Below,
we define a probability measure over finite paths based on the definition in our article on learning-based
testing [18].

Probability Distributions on Paths. For a probability distribution over finite paths of an MDP M
controlled by scheduler s, we also need a probability distribution pl ∈ Dist(N0) over the path lengths.

Definition 5.3 (Path Probabilities).
An MDPM = 〈Q, I,O, q0, δ, L〉, a scheduler s : PathM → Dist(I), and a path length probability
distribution pl induce a probability distribution PlM,s on finite paths PathM defined by:

PlM,s(q0 · i1 · q1 · · · in · qn) = pl(n) ·

 n∏
j=1

s(q0 · · · ij−1qj−1)(ij) · δ(qj−1, ij)(qj)

 (5.1)

Probability distributions over finite paths may instead of pl, for instance, include state-dependent
termination probabilities [197]. We take a path-based view because we actively sample from MDPs.
Moreover, probability distributions are often defined for each state and are therefore parameterised by
states [114]. Since we sample all SUL traces starting from the initial state q0, Equation (5.1) defines only
probabilities of paths starting in q0.

Verification techniques, such as model checking, usually reason about infinite paths [46, 114]. Con-
sequently, probability spaces are defined over infinite paths, where the basis for the construction of such
probability spaces is the probability of executing a finite prefix of a set of infinite paths. Since we take a
test-based view, we consider only finite paths. For more information, we refer to Forejt et al. [114] and
Baier and Katoen [46].

5.4. Learning Stochastic Automata 95

Scheduler Subclasses. There are subclasses of schedulers that are relevant to us. Since we mainly
target reachability in Chapter 6, we do not need general schedulers, but may restrict ourselves to mem-
oryless deterministic schedulers [172]. A scheduler is memoryless if its choice of inputs depends only
on the current state, thus it is a function from the states Q to Dist(I). A scheduler s is deterministic if
for all ρ ∈ PathM, there is exactly one i ∈ I such that s(ρ)(i) = 1. Otherwise, it is called randomised.
Example 5.2 describes an MDP and a scheduler for our faulty coffee machine introduced in Example 5.1.

Note that bounded reachability, as considered in Chapter 6, actually requires finite-memory sched-
ulers. However, bounded reachability can be encoded as unbounded reachability by transforming the
MDP model [69], at the expense of increased state space.

Example 5.2 (Scheduler for Coffee Machine). A deterministic memoryless scheduler s may
provide the inputs coin and but in alternation to the coffee machine of Example 5.1. Formally,
s(q0) = 1{coin}, s(q1) = 1{but}, and s(q2) = 1{coin}. By setting the length probability distri-
bution to pl = 1{2}, all strings must have length 2, such that, for instance, PlM,s(ρ) = 0.9 for
ρ = q0 · coin · q1 · but · q2.

Traces. During the execution of a finite path ρ, we observe a trace L(ρ) = t. As mentioned above, a
trace is an alternating sequence of inputs and outputs starting with an output. The trace t observed during
the execution of ρ = q0 · i1 · q1 · · · in−1 · qn−1 · in · qn is given by t = o0 · i1 · o1 · · · in−1 · on−1 · in · on
where L(qi) = oi.

Since we consider deterministic MDPs, L is invertible, thus each trace in O× (I ×O)∗ corresponds
to at most one path and PlM,s can be adapted to traces t by defining:

PlM,s(t) =

{
PlM,s(ρ) . . . if there is a ρ with L(ρ) = t

0 . . . otherwise

By controlling path length via pl, we also control the length of observed traces via pl.

5.4 Learning Stochastic Automata

An influential learning algorithm for stochastic automata is ALERGIA [74]. ALERGIA learns stochas-
tic finite automata which are essentially discrete-time Markov chains with state-dependent termination
probabilities. Each state in such an automaton specifies a probability stating that the produced sequence
ends in that state. ALERGIA has been adapted to learn MDPs [198, 199]. This adaptation is called IOA-
LERGIA, as learned automata distinguish between inputs and outputs. IOALERGIA takes a multiset of
traces as input and as a first step, it constructs an input output frequency prefix tree acceptor (IOFPTA)
representing the traces. An IOFPTA is a tree with edges labelled by inputs and nodes labelled by outputs.
It concisely represents the input sample of traces. Additionally, edges are annotated with frequencies de-
noting how many traces corresponding to an edge are included in the input sample. An IOFPTA with
normalised frequencies represents a tree-shaped MDP where tree nodes correspond to MDP states.

In a second step, the IOFPTA is transformed through iterated state-merging, which potentially intro-
duces cycles. This step compares nodes in the tree and merges them if they show similar output behaviour
such that it is likely that they correspond to the same state of the SUL. IOALERGIA basically views the
IOFPTA as an MDP with non-normalised transition probabilities.

More concretely, the state-merging algorithm IOALERGIA initialises the learned non-normalised
MDP with the IOFPTA. During the operation of this algorithm, the learned MDP is continuously up-
dated. The states of this MDP are partitioned into three sets: red states which have been checked and
which are states of final learned MDP, blue states which are neighbours of red states, and uncoloured
states. Initially, the only red state is the root of the IOFPTA. After initialisation, pairs of blue and red
states are checked for compatibility and merged if compatible. If there is no compatible red state for a

96 Chapter 5. Modelling and Learning of Uncertain Behaviour

s0start

s1 s2

s3 s4 s7s6s5

but : 18 coin : 19

but : 6 coin : 7 but : 1 coin : 7 but : 6

{init}

{init} {beep}

{coffee}{beep}{init}{beep}{init}

Figure 5.2: An IOFPTA of the faulty coffee machine

blue state, the blue state is coloured red. This is repeated until all compatible states have been merged.
After normalisation of transition probabilities, IOALERGIA returns the final learned MDP.

Roughly speaking, two states are compatible if they have the same label, their outgoing transitions are
compatible and their successors are recursively compatible [199]. Outgoing transitions are compatible,
if their empirical probabilities, estimated from the input data, are sufficiently close to each other. In other
words, we check for all inputs if the estimated probability distribution over outputs conditioned on inputs
are statistically similar. If they are, we check recursive compatibility of successors reached by all input-
output pairs. In IOALERGIA, a parameter εALERGIA ∈ (0, 2] controls the significance level of a statistical
test, which determines whether two empirical probabilities are sufficiently close to each other [199]. We
represent calls to IOALERGIA by IOALERGIA(S, εALERGIA) =M where S is a multiset of traces andM
is the learned MDP.

Example 5.3 (IOFPTA of Coffee Machine). Figure 5.2 shows an IOFPTA for the coffee ma-
chine from Example 5.2, computed from traces sampled with a (uniformly) randomised scheduler
and a pl with a support that includes {0, 1, 2}. Edge labels denote inputs and associated frequen-
cies, while outputs are placed next to nodes. In the first step of state-merging, s0 would be
coloured red and its neighbours, s1 and s2, would be coloured blue. Then, s1 might be chosen
first to be checked for compatibility with s0. As the successors of s0 and s1 are similar, s1 would
be merged with s0 (depending on εALERGIA). Redirecting the but edge from s1 to s0 would create
the self-loop transition in the initial state.

5.5 Property Specification

There exist various specification languages for probabilistic model-checking, including probabilistic
computation tree logic (PCTL) [46, 114] which is also supported by the probabilistic model-checker
PRISM [174]. Generally, PCTL distinguishes between state formulas and path formulas. State formulas
include a probabilistic path operator P⊕p[φ], where φ is a path formula. This operator is satisfied in a
state q, if for all schedulers, the probability p′ of taking an (infinite) path in q which satisfies φ is such
that p′⊕ p, where ⊕ ∈ {≤, <,>,≥} and p ∈ [0, 1]. Moreover, state formulas may be combined through
Boolean operators. Path formulas are formed using temporal operators, such as the next and the until op-
erator. A path formula φ basically defines a set of paths that satisfy φ. PRISM also supports an extension
of the probabilistic path operator, the operator Pmax=?[φ], which computes the maximum probability of
satisfying φ quantified over all schedulers.

Since we use only a small subset of PCTL, we refer to [46, 114] for the precise syntax and semantics
of PCTL. In our evaluation of test-based learning of MDPs in Section 7.6, we provide a description of all
PCTL properties in natural language. In learning-based testing of stochastic systems in Chapter 6, we use
a special form of properties that we describe below. We check the maximum probability of step-bounded
reachability. Step-bounded reachability can be derived from the bounded until operator [174].

5.6. Statistical Model-Checking 97

5.5.1 Step-Bounded Reachability

The syntax of the step-bounded reachability formulas φ that we consider in Chapter 6 is given by:

φ = F<kψ with ψ = ¬ψ | ψ ∧ ψ | ψ ∨ ψ | AP,AP denoting an atomic proposition, and k ∈ N.

The formula φ = F<kψ denotes that ψ needs to be satisfied in a state reached in less than k steps from the
initial state, where ψ is a property defined over output labels. A finite trace t = o0i1o1 · · · in−1on−1inon
satisfies φ = F<kψ, denoted by t |= φ, if there is an i < k such that oi |= ψ. The evaluation of a trace
t with respect to a formula φ = F<kψ places restrictions on the length of t. In particular, we can only
conclude that t 6|= φ if t does not contain an oi with oi |= ψ and contains at least k − 1 steps. In other
words, tmust be long enough to determine that it does not satisfy a reachability property. To ascertain that
all traces can be evaluated, we set the length probability pl on paths/traces accordingly when executing
MDPs. We generally ensure for all traces that pl(j) = 0 for j < k − 1, when we sample traces for
step-bounded reachability. Note that the length distribution of finite traces is completely specified by pl
as MDPs cannot reach deadlock states, because they are input-enabled by Definition 5.1.

We aim to maximise the probability of satisfying a step-bounded reachability property F<kψ in
Chapter 6. This can be expressed by the formula Pmax=?[F<kψ] for probabilistic model-checking with
PRISM [114].

5.6 Statistical Model-Checking

Statistical model-checking (SMC) provides simulation-based techniques to statistically analyse stochas-
tic systems with respect to properties that are, for instance, expressed in temporal logics [177]. Basically,
SMC allows to answer two types of questions: (1) qualitative questions asking whether the probability of
satisfying a certain property is above or equal to a given threshold; (2) quantitative questions asking for
the probability of satisfying certain properties, relative to a given precision of the probability. In general,
SMC simulates a system finitely many times. It then checks whether the traces produced by the simu-
lation satisfy the property under consideration and applies statistical techniques to answer the two types
of questions, depending on the simulation outcomes. It is usually more light-weight than probabilistic
model-checking, as it does not suffer from state-space explosion. In this thesis, we apply SMC only for
quantitative questions asking for the probability of satisfying step-bounded reachability properties.

The composition of a scheduler s and an MDPM behaves fully probabilistically. It is not affected
by non-determinism. In fact, such a composition induces a discrete time Markov chain (DTMC) [114].
As a result, we can apply techniques from SMC without considering non-determinism.

In order to analyse step-bounded reachability properties φ, we can define the probability of satisfying
φ with an MDP M, and a scheduler s by PM,s(φ) = PlM,s({ρ ∈ PathM | L(ρ) |= φ}) for an
appropriate pl. Note that the value PM,s(φ) does not depend on the actual pl as long as pl ensures that
traces are long enough to allow reasoning about the satisfaction of φ. Put differently, pl must be such
that traces shorter than the step bound specified by φ have zero probability.

In order to estimate the probability PM,s(φ) via SMC [177], we associate Bernoulli random variables
Bi with success probability p with simulations of the MDPM, serving as our SUT, controlled by s. A
realisation bi is 1, if the corresponding sampled trace satisfies φ and 0 otherwise. To estimate p =
PM,s(φ), we apply a Monte Carlo simulation. Given n individual simulations, the estimate p̂ is the
observed relative success frequency, computed by p̂ =

∑n
i=1

bi
n . In order to bound the error of the

estimation with a certain degree of confidence, we compute the number of required simulations based on
a Chernoff bound [177, 223]. This bound guarantees that if p is the true probability, then the distance
between p̂ and p is greater than or equal to some ε with a probability of at most δ. Formally it holds that
P(|p̂− p| ≥ ε) ≤ δ if we perform sufficiently many simulations. The required number of simulations n
and the parameters ε and δ are related by δ = 2e−2nε2 [223], hence we compute n by

n =

⌈
ln(2)− ln(δ)

2ε2

⌉
. (5.2)

98 Chapter 5. Modelling and Learning of Uncertain Behaviour

We commonly refer to ε as error bound and to 1− δ as confidence.

5.7 Discussion

At the beginning of this chapter, we discussed our choice of modelling formalism to represent uncertain
behaviour. To conclude this chapter, we shall revisit RQ 2.1 that addresses this choice.

RQ 2.1 Which modelling formalisms are appropriate in learning-based testing of uncertain be-
haviour? Models like non-deterministic Mealy machines are a suitable choice for active automata
learning via testing, as demonstrated by Khalili and Tacchela [161]. They also showed that a stochas-
tic interpretation of systems facilitates learning. This suggests that stochastic models like MDPs are
a more natural choice. Moreover, MDPs model probabilities of events which is not possible with
non-deterministic Mealy machines. Due to that, stochastic model learning can utilise more informa-
tion provided by sampled traces. It can make use of observed frequencies of events and encode them
in learned models. Finally, MDPs are often used in verification to model (communication) proto-
cols [47, 78, 102, 105, 173, 220, 242, 295], which are the focus of this thesis. For these reasons, we
decided to model uncertain behaviour with MDPs.

It should be noted, though, that non-deterministic models are often used in model-based testing and
conformance relations like ioco enable testing based on such models [269]. However, non-determinism
in test models often serves a specific purpose. It allows for implementation freedom in certain aspects.
Since we want to accurately capture the behaviour of implementations through learning, this type of
non-determinism is generally not relevant to us.

6
Learning-Based Testing of Stochastic Systems

Declaration of Sources

This chapter discusses a learning-based approach to test stochastic systems with respect to reach-
ability properties. We presented this approach first at the RV 2017 [16]. Following the confer-
ence presentation, we extended the approach and its evaluation. We wrote a journal article on
our extended work that has been published as part of the special issue on the RV 2017 of the
journal Formal Methods in System Design [18]. The presentation of the testing approach and its
evaluation is mainly based on the extended article.

6.1 Probabilistic Black-Box Reachability Checking

Model checking has a long-standing tradition in software verification. Given a system design, model-
checking techniques determine whether requirements stated as formal properties are satisfied. These
techniques and other forms of model-based verification fall short if no design is available.

Black Box Checking. Peled et al. [230] presented black box checking as a solution to this problem.
Black box checking comprises strategies to check formal properties of black-box systems without a
known design. One of these strategies is a technique that combines automata learning, model checking
and testing.

This learning-based technique learns models of black-box SUTs in the form of DFA on-the-fly and
iteratively via Angluin’s L∗ [37]. Whenever a hypothesis automaton model is created, the hypothesis is
model checked with respect to some property. If model checking determines that the hypothesis does not
satisfy the checked property, it returns a counterexample sequence c as a witness. Such a counterexample
c is tested on the SUT. This may reveal an actual fault in the SUT causing the process to be stopped as
it has successfully found a fault. If testing c does not reveal a fault, the hypothesis and the SUT disagree
on the input sequence c. Hence, c is a counterexample to equivalence between hypothesis and SUT.
Black box checking uses such a counterexample, comparable to a counterexample returned from an
equivalence query, to improve the hypothesis. If model checking determines that the hypothesis satisfies
the checked property, black box checking tests for equivalence between SUT and hypothesis via the
W-method [83, 277]. In other words, it implements an equivalence query via conformance testing as
discussed in Section 2.2.2. In case non-equivalence is detected by testing, the learned hypothesis is

99

100 Chapter 6. Learning-Based Testing of Stochastic Systems

improved using a failed test and learning via L∗ is resumed. This process continues until either a fault
has been detected, or SUT and hypothesis are determined to be equivalent using the W-method. The
latter is the usual stopping criterion in active automata learning.

Black box checking enables the verification of black-box systems. However, it has a few short-
comings. It assumes a known upper bound on the number of SUT states. With that assumption, the
W-method [83, 277] can be used to implement a perfect equivalence query. Its application is still expen-
sive as explained in Section 2.4.2 and as demonstrated in Chapter 4. What is more, black box checking
assumes the SUT to be deterministic, thus it cannot be applied if the SUT shows uncertain behaviour.

In this chapter, we tackle this limitation to enable black box checking of uncertain behaviour, also
by combining model learning, model checking and testing. However, the exact techniques and their
combinations are different, as we, for instance, cannot apply Angluin’s L∗ [37].

Goal and Setting. We consider a testing scenario, in which we know the interface of a black-box
system and we can gain information by testing the system. Furthermore, we assume that inputs to the
system can be freely chosen and that reactions are stochastic. As noted in Section 5.1, this makes MDPs
a well-suited choice of model type. Given such a system, we aim at generating testing strategies that
produce desired outputs with high probability. Put differently, we aim at maximising the probability of
reaching desired outputs. We call the proposed learning-based testing approach probabilistic black-box
reachability checking.

We apply IOALERGIA [198, 199] for learning. Although this learning technique is passive in general,
our technique is active, as we generate new data for learning by testing. In an iterative approach, we steer
the data generation based on learned models towards desired outputs to explore relevant parts of the
system more thoroughly. That way, we aim at iteratively improving the accuracy of learning with respect
to these outputs. This is in contrast to the application of IOALERGIA in an active setting by Chen and
Nielsen [79], as they aimed at actively improving the overall accuracy of learned models.

Overview of Approach. More concretely, inspired by black-box checking [230], we propose the fol-
lowing learning-based testing approach to analyse reactive systems exhibiting stochastic behaviour in a
black-box setting. Instead of targeting general properties, for instance, formulated in probabilistic com-
putation tree logic (PCTL), we check reachability as a first step. Since we follow a simulation-based
approach, we check step-bounded reachability. Hence, we focus on formulas of the form F<kψ. The
restriction to bounded properties is also common in SMC [177], which is simulation-based and applied
in this context. SMC of unbounded properties is actually especially challenging in the black-box set-
ting [187] that we consider in learning.

Rather than learning DFA like Peled et al. [230], we assume that systems can be modelled by MDPs.
Hence, we consider systems controllable by inputs, chosen by an environment or a tester. As such, these
systems involve non-determinism resulting from the choice of inputs and stochastic behaviour reflected
in state transitions and outputs. Given such a system, our goal in bounded reachability checking is to
find an input-selection strategy, i.e a resolution of non-determinism, which maximises the probability
of reaching a certain property within a bounded number of steps. Properties can, for example, be the
observation of desired outputs. A possible application scenario for our technique is stress testing of
systems with stochastic failures. We could generate a testing strategy that provokes such failures.

The approach we follow is shown in Figure 6.1. First, we sample system traces randomly. Then,
we learn an MDP from these traces via the state-merging-based technique IOALERGIA, an adaptation
of ALERGIA [74], which we discussed in Section 5.4 and which was originally described by Mao et
al. [198, 199]. Once we learned a hypothesis modelMh1, we use the PRISM model checker [174] for a
reachability analysis to find the maximal probability of reaching a state satisfying a property ψ inMh1.
PRISM computes a probability p and a scheduler s1 to reach ψ with probability p. Since IOALERGIA

learns models from system traces, the quality of the model Mh1 depends on these traces. If ψ is not
adequately covered, s1 derived fromMh1 may perform poorly and rarely reach ψ. To account for that,

6.1. Probabilistic Black-Box Reachability Checking 101

Random
Sampling

Model
Learning

(IOALERGIA)

Reachability
Analysis
(PRISM)

reachability
property

samples

Mhi

Sample with
Strategy

Stop?

Evaluate

samples

samples

strategy si

strategy sl

reachability probability
with SUT

Figure 6.1: Overview of probabilistic black-box reachability checking

we follow an incremental process. After initial random sampling, we iteratively learn modelsMhi from
which we derive schedulers si. To sample new traces forMhi+1 we select inputs randomly and based
on si. In other words, we use the scheduler si for directed testing. Selecting inputs with si ensures that
paths relevant to ψ will be explored more thoroughly. Traces sampled in this way shall improve the
accuracy of learned models with respect to ψ such that subsequently derived schedulers reach ψ more
frequently. This process is repeated until either a maximal number of rounds n has been executed, or a
heuristic detects that the search has converged to a scheduler.

We mainly use PRISM to generate strategies, but ignore the probabilities computed in the reachabil-
ity analysis. Since the computations are based on possibly inaccurate learned models, the probabilities
may significantly differ from the true probabilities. Schedulers, however, may serve as testing strategies
regardless of the accuracy of the learned models. In fact, we evaluate the final scheduler generated in
the process described above via directed testing of the SUT that is assumed to behave like an MDP.
Since the behaviour of an MDP under a scheduler is purely probabilistic, this is a form of Monte Carlo
simulation, such that we can apply SMC [177]. The evaluation provides an estimation of the probability
of reaching ψ with the actual SUT controlled by scheduler sl, where l is the last round that has been
executed. By directly interacting with the SUT during evaluation, the computed estimation is an ap-
proximate lower bound for the optimal probability of reachability with the SUT. In contrast to this, the
reachability probabilities computed by PRISM based on the learned model do not enjoy this property.

In summary, we combine techniques from various disciplines to optimise the probability of observing
desired outputs within a bounded number of steps.

Learning: we rely on IOALERGIA for learning MDPs. This algorithm has been developed with verifi-
cation in mind and it has been evaluated in a model-checking context [198, 199].

Probabilistic Model-Checking: we use PRISM [174], a state-of-the-art probabilistic model checker, to
generate strategies for bounded reachability based on learned models.

Testing: directed sampling guided by a strategy is a form of model-based testing with learned models.
The sampling algorithm was developed for the presented technique.

102 Chapter 6. Learning-Based Testing of Stochastic Systems

Statistical Model-Checking: we evaluate the final strategy on the SUT. As the SUT is a black-box
system, we cannot apply probabilistic model-checking on it and instead perform a Monte Carlo
simulation to estimate reachability probabilities, like in SMC [177].

Chapter Structure. Section 6.2 discusses the proposed approach for learning-based testing of stochas-
tic systems in more detail. We present evaluation results in Section 6.3. In Section 6.4, we provide a
summary and we conclude this chapter in Section 6.5 by discussing our findings focusing on our research
questions.

6.2 Method

This section discusses probabilistic black-box reachability checking in more detail. We begin with a
detailed discussion of the test-based reachability checking process, then we comment on convergence
and finally conclude with considerations regarding the practical application of probabilistic black-box
reachability checking.

6.2.1 Reachability Checking Process

To discuss the test-based reachability checking process, we first give an overview, discussing each of the
steps in the process briefly. Subsequently, we provide in-depth descriptions of the process steps. In the
remainder of this chapter, we assume that we interact with an MDPM = 〈Q, I,O, q0, δ, L〉 representing
the SUT of which we only know the inputs I . For the interaction withM, we assume to be able to reset
M to q0, to perform inputs onM, and to observe outputs ofM.

Basically, we try to find an optimal scheduler for satisfying a given reachability property φ = F<kψ
with the SUT M. For this purpose, we iteratively sample system traces, learn models from the traces
and derive schedulers from the learned models. The derived schedulers also serve to refine the sampling
strategy. This process is also shown in Figure 6.1 and includes the following steps.

1. Create Initial Samples. This step collects a multiset of system traces through interaction with
M by choosing inputs from I uniformly at random and executing them. Basically, we perform
random-walks-based testing via Algorithm 2.4 to create the first batch of samples.

For at most maxRounds rounds do:

2.1. Learn Model. Given the system traces sampled so far, we use IOALERGIA to learn an MDP
Mhi = 〈Qh, I, Oh, q0h, δh, Lh〉, where h stands for hypothesis and i ∈ [1 . .maxRounds]
denotes the current round.

2.2. Analyse Reachability. Reachability analysis on Mhi with PRISM [174]: we compute the
maximum probability PMhi,si(φ) of satisfying φ and generate the corresponding scheduler
si in this analysis. We refer to such schedulers also as learned schedulers, since they are
derived from learned models.

2.3. Sample with Scheduler. We extend the multiset of system traces through property-directed
sampling. For that, we choose some inputs with the learned scheduler si and we choose
some inputs randomly. With increasing number of rounds i, we decrease the portion of
random choices.

2.4. Check Early Stop. We may stop before executing maxRounds rounds if a stopping criterion
is satisfied. This criterion is realised with a heuristic check for convergence. In this check,
we basically determine whether several consecutive schedulers behave similarly.

6.2. Method 103

3. Evaluate. In a last step, we evaluate the most recent scheduler that we have generated. For
this evaluation, we sample system traces again, but avoid choosing inputs randomly. The relative
number of traces satisfying φ now gives us an estimate for the success probability to satisfy φ with
M, the black-box SUT, controlled by scheduler sl, where l is the last round that we executed. A
Chernoff bound [177, 223], which is commonly used in SMC, specifies the required number of
samples.

Create Initial Samples. In the first step, we sample system traces by choosing input actions randomly
according to a uniform distribution. Hence, we sample with a scheduler sunif defined as follows: ∀q ∈
Q, sunif : q 7→ µunif(I) where ∀i ∈ I : µunif : i 7→ 1

|I| . Sampling is further controlled by the length
probability pl and by the batch size nbatch, which is the number of traces collected at once. These
parameters also affect subsequent sampling. Additionally, we set a seed-value for the initialisation of
pseudo-random functions that are, for instance, used to select random inputs.

As discussed in Section 5.5.1, we need to choose pl appropriately to enable checking whether a trace
satisfies a step-bounded reachability property. Therefore, we set pl(j) = 0 for j < k − 1 where k is
the step bound of the property we test for. Due to that, each sampled trace has a prefix that is relevant
to the property φ. This would not be necessary for learning, but we generally apply this constraint. The
length of suffixes, i.e. the trace extensions beyond k, follows a geometric distribution parameterised by
pquit ∈ [0, 1]. Before each step, we stop with probability pquit. Hence, the number of input-output pairs
|t| in a trace t is distributed according to pl(|t|) = (1− pquit)

|t|−k+1pquit for |t| ≥ k − 1 and pl(|t|) = 0
otherwise. Both pquit and nbatch must be supplied by the user. In the remainder of this section, Si denotes
the multiset of traces created by the ith sampling step, and Sall refers to the multiset of all sampled traces.
Hence, Sall is initially set to S1, containing nbatch traces distributed according to PlM,sunif

, collected by
random testing. It is continuously extended in the testing process.

Learn Model. In this step, we learn an MDP Mhi = 〈Qh, I, Oh, q0h, δh, Lh〉 from Sall =
⋃
j≤i Sj

using IOALERGIA [198, 199], which is an approximate system model. Strictly speaking, we learn an
MDP with a partial transition function, which we make input-complete with a function complete. The
transition function of a learned MDP may be undefined for some state-input pair if there is no corre-
sponding trace in Sall. For this reason, we add transitions to a special sink-state labelled with dontKnow
for undefined state-input pairs. Once we enter that state, we cannot leave it. The label dontKnow is
more generally a special output label, which is not part of the original output alphabet.

Formally, we learnM′h = 〈Q′h, I, O′h, q0
′
h, δ
′
h, L

′
h〉 = IOALERGIA(Sall, εALERGIA) and completeM′h

viaMhi = complete(M′h) where Qh = Q′h ∪ {qundef}, Oh = O′h ∪ {dontKnow}, with dontKnow /∈
O′h, q0

′
h = q0h, δh = δ′h ∪ {(qundef , i) 7→ 1{qundef} | i ∈ I} ∪ {(q, i) 7→ 1{qundef} | q ∈ Q

′
h, i ∈ I, @d :

(q, i) 7→ d ∈ δ′h} and Lh = L′h ∪ {qundef 7→ dontKnow}.
Following the terminology of active automata learning [37], we refer toMhi as the current hypoth-

esis. Input completion via complete is required by Definition 5.1, but it does not affect the reachability
analysis. We maximise the probability of reaching desired events, therefore generated schedulers will
not choose to execute inputs leading to the state qundef labelled dontKnow . This is due to the fact that
once we reach qundef , we have a probability of zero to observe anything other than dontKnow according
to our hypothesis model.

Analyse Reachability. Given the current hypothesis learned in the last step, our implementation uses
the PRISM model checker [174] to derive a scheduler for satisfying the property φ. This is achieved by
performing the following steps in a fully automated manner:

1. TranslateMhi into the PRISM modelling language by encoding

1.1. states using integers,

104 Chapter 6. Learning-Based Testing of Stochastic Systems

1.2. inputs using commands labelled with actions, and

1.3. outputs using labels.

2. Since PRISM only supports scheduler generation for unbounded reachability properties, we pre-
process the translatedMhi further and encode φ as unbounded property [69]:

2.1. We add a step-counter variable steps ranging between 0 and k, where k is the step bound of
the examined property.

2.2. The variable steps is incremented with every execution of an input until the maximal value
k is reached. Once steps = k, steps is left unchanged.

2.3. We change φ to φ′ = F (ψ ∧ steps < k), thus moving the bound from the temporal operator
to the property that should be reached.

3. Finally, we use the sparse engine of PRISM to compute the maximum probability maxs PMhi,s(φ
′)

for satisfying φ′ and export the corresponding scheduler shi. This is done by verifying the property
Pmax=?[F(psi & steps < k)] with PRISM.

These steps actually create an MDPMsteps i in PRISM. This MDP contains k + 1 copies (q, st) of
each state q ofMhi, one for each value st that the variable steps can take. Note that not all k+ 1 copies
of a state are reachable. If q′ is reachable from q inMhi, then (q′, st + 1) is reachable from (q, st) if
st < k. If st = k, then (q′, st) is reachable from (q, st). The target states inMsteps i for the unbounded
reachability property φ′ = F (ψ ∧ steps < k) are all (q, st) with L(q) |= ψ and st < k. Furthermore,
all (q, st) with st = k are non-target states from which we cannot reach target states, as required by
the original bounded reachability property φ. Given Msteps i and the unbounded reachability property
φ′, PRISM exports memoryless deterministic schedulers. These schedulers, however, do not define input
choices for all states, but only for states reachable by the composition of scheduler and corresponding
model. To account for cases with undefined scheduler behaviour, we use the notation shi(q) = ⊥. It
denotes that scheduler shi does not define a choice for q. The scheduler shi is actually defined for states
ofMsteps i, therefore we treatMhi as being transformed toMsteps i in the following. This allows us to
use shi on the hypothesisMhi.

Sample with Scheduler. Property-directed sampling with learned schedulers aims at exploring parts
of the system more thoroughly that have been identified to be relevant to the property. To avoid getting
trapped in local probability maxima, we also explore new paths by choosing actions randomly with
probability prandi, where i corresponds to the current round. This probability is decreased in each round
to explore more broadly in the beginning and focus on relevant parts in later rounds. Two parameters
control prandi: pstart ∈ [0, 1] defines the initial probability and cchange ∈ [0, 1] specifies an exponential
decrease, where prand1 = pstart and prandi+1 = cchange · prandi for i ≥ 1.

Basically, we execute both, SUT and hypothesisMhi, in parallel. The former ensures that we sample
traces of the actual system while the latter is necessary because the learned scheduler shi is defined for
Mhi. Stated differently, we need to simulate the path taken by the SUT on the current hypothesisMhi.
This enables selecting actions with shi. AsMhi is an approximation, two scenarios may occur in which
we cannot use shi. In the following scenarios, we default to selecting inputs randomly:

1. The SUT may show outputs not foreseen byMhi. This may happen if parts of the system structure
and not only probabilities have been learned incorrectly. In such cases, we cannot determine the
correct state transition inMhi. Consequently, we cannot use shi in subsequent states.

2. By performing random inputs we may follow a path that is not optimal with respect toMhi and
the reachability property φ. Thus, we may enter a state where shi is undefined.

6.2. Method 105

Algorithm 6.1 Property-directed sampling

Input: prandi,Mhi, shi, nbatch, φ = F<kψ,Sall, cchange

Output: prandi+1, Si+1, Sall

1: Si+1 ← {}
2: while |Si+1| < nbatch do
3: Si+1 ← Si+1 ∪ {SAMPLE(prandi,Mhi, shi, k)}
4: end while
5: prandi+1 ← prandi · cchange

6: Sall ← Sall ∪ Si+1

7: function SAMPLE(prandi,Mhi, shi, k)
8: trace ← reset()
9: qcurr ← q0hi

10: while |trace| − 1 < k ∨ ¬coinFlip(pquit) do
11: if coinFlip(prandi) ∨ qcurr = ⊥ ∨ shi(qcurr) = ⊥ then
12: input ← rSel(I)
13: else
14: input ← shi(qcurr)
15: end if
16: outSut ← step(input)
17: trace ← trace · (input · outSut)
18: distQcurr = δhi(qcurr, input)

19: qcurr ←

{
q ∈ Qhi such that Lhi(q) = outSut ∧ distQcurr(q) > 0

⊥ if there is no such q
20: end while
21: return trace
22: end function

The sampling is detailed in Algorithm 6.1. In addition to artefacts generated by other steps, such
as the input-enabled hypothesis1 Mhi and the generated scheduler shi, sampling requires two auxiliary
operations:

• reset: resets the SUT to the initial state and returns the unique initial output symbol

• step: executes a single input changing the state of the SUT and returning the corresponding output

Both operations are realised by a test adapter. Lines 1 to 5 of the algorithm collect traces by calling
the SAMPLE function and update prandi. The SAMPLE function returns a single trace, which is created
on-the-fly and initialised with the output produced upon resetting the SUT (Line 8). Line 9 initialises
the current model state. Afterwards, an input is chosen (Line 11 to Line 14). It is chosen randomly
with probability prandi or if we cannot determine an input (Line 11 and Line 12). Otherwise, the input is
selected with shi (Line 14). We record the output of the SUT in response to the input and extend the trace
in Line 16 and Line 17. The next two lines update the model state. In case, the SUT produces an output
which is not allowed by the model, the new model state is undefined (second case in Line 19). This
corresponds to the first scenario, in which we default to choosing inputs randomly. Trace creation stops
if the trace is long enough and if a probabilistic Boolean choice returns true (Line 10). Hence, the actual
trace length follows a probability distribution. Note that lines 11 to 19 implement a randomised scheduler
derived from shi. We will refer to this scheduler as randomised(shi). In the taxonomy of Utting et
al. [274], property-directed sampling can be categorised as model-checking-based online testing with a
combination of requirements coverage and random input-selection as test-selection criterion.

1Note that if we reach the state labelled dontKnow during sampling, the outputs of the hypothesis and the SUT are guar-
anteed to differ. Due to Condition 1 for random input selection, we continue sampling with random inputs after that.

106 Chapter 6. Learning-Based Testing of Stochastic Systems

Evaluate. As a result of the reachability analysis, PRISM calculates a probability of reaching φ. This
probability, however, is derived from a learned model which is possibly inaccurate. Therefore, the calcu-
lated probability may greatly differ from the actual probability of reachability with the SUT. To account
for that, we evaluate the scheduler sh = shl, where l is the last round we executed. We do this by
sampling a multiset of traces Seval, while generally selecting inputs with sh. For that we execute Algo-
rithm 6.1 with prandi = 0. This effectively samples traces from the DTMC induced by the composition of
the SUTM and the scheduler randomised(sh). Since the behaviour of this DTMC is fully probabilistic,
we can apply SMC. Hence, we estimate PM,randomised(sh)(φ) by p̂M,sh = |{s∈Seval|s|=φ}|

|Seval| . To achieve a
given error bound εeval with a given confidence 1 − δeval, we compute the required number of samples
|Seval| = nbatch based on a Chernoff bound [223], i.e. we apply Equation (5.2). The estimation provides
an approximate lower bound of the maximal reachability probability with the SUT. We consider p̂M,sh

an approximate lower bound, because we know with confidence 1 − δeval that maxs PM,s(φ) is at least
as large as p̂M,sh − εeval.

Check Early Stop. We have observed that the performance of schedulers usually increases with the
total amount of available data. Probability estimations derived with intermediate schedulers showed
that schedulers generated in later rounds tend to perform better than those generated in earlier rounds.
However, we have also seen that fluctuations in these estimations occur over time. Some schedulers may
perform worse than schedulers generated in previous rounds. With increasing number of rounds, these
fluctuations generally diminish and the estimations converge. Intuitively, this can be explained by the
influence of prandi in Algorithm 6.1, which controls the probability of selecting random inputs and which
decreases over time. As this probability prandi approaches zero, we will almost always select inputs with
generated schedulers. This will generally only increase the confidence in parts of the system we have
already explored, but will not explore new parts and therefore new schedulers are likely to show similar
behaviour to previous ones.

Based on these observations, we developed a heuristic check for convergence. If it detects conver-
gence, we stop the iteration early before executing maxRounds rounds. Two simpler checks actually
form the basis of the heuristic. The first, called SIMILARSCHED, basically compares the scheduler gen-
erated in the current round to the scheduler from the previous round and returns true if both behave
similarly. The second check, called CONV builds upon the first and reports convergence if we detect
statistically similar behaviour via SIMILARSCHED in multiple consecutive rounds. The rationale behind
this is that schedulers should behave alike after convergence. We check for similarity rather than for
equivalence, because there may be several optimal inputs in a state and slight variations in transition
probabilities in the learned models may lead to the different choices of inputs. Furthermore, we can
compare schedulers during sampling by checking whether they would choose the same inputs. This
gives us a large number of events as basis for our decision and does not require additional sampling.

The convergence check has three parameters: αconv controlling the confidence level, an error bound
εconv, and a bound on the number of rounds rconv. The first two parameters control a statistical test which
checks whether two schedulers behave similarly. For this test, we consider Bernoulli random variables
Ei for i ∈ [2 . .maxRounds]. Ei is equal to one if two consecutive schedulers shi and shi−1 behave
the same, by choosing the same input in some state. Ei is zero otherwise. Let pEi be the corresponding
success probability, that is, the probability of Ei being equal to one. We observe samples of Ei in
Line 14 of Algorithm 6.1. Each time we choose an input a with shi, we also determine which input a′

the previous scheduler shi−1 would have chosen. We record a positive outcome if a = a′ and a negative
outcome otherwise.

Let p̂Ei be the relative number of recorded positive outcomes, which is an estimate of pEi . If pEi is
equal to one, then both schedulers behave equivalently, as they always choose the same input. Conse-
quently, we test whether p̂Ei is close to one. We test the null hypothesis H0 : pEi ≤ 1 − εconv against
the alternative hypothesis H1 : pEi > 1 − εconv with a confidence level of 1 − αconv using an exact
binomial test. The hypothesis H1 denotes that the compared schedulers choose the same inputs in most

6.2. Method 107

of the cases. Let SIMILARSCHED(αconv, εconv, i) be the result of this test in round i, which is true if
H0 is rejected and false otherwise.

Finally, we can formulate the complete convergence check CONV(αconv, εconv, i). It returns true in
round i if rconv consecutive calls of SIMILARSCHED returned true, thus

CONV(αconv, εconv, i) =
i∧

j=i−rconf+1

SIMILARSCHED(αconv, εconv, j).

Note that prandi implicitly affects the convergence check. We collect samples of Ei in Line 14 of
Algorithm 6.1, and large prandi cause Line 13 to be executed infrequently. As a result, sample sizes of
Ei are small in early rounds with large prandi. This influence on the convergence check is beneficial,
because schedulers are more likely to improve if prandi is large, as new parts of the system may be
explored via frequent random steps.

While the check introduces further parameters, it may simplify the application of the approach in
scenarios where we have little knowledge about the system at hand. In such cases, it may be difficult
to find a reasonable choice for the number of rounds maxRounds . With this heuristic, it is possible to
choose maxRounds conservatively, but stop early once convergence is detected. However, it may also
impair results, if convergence is detected too early.

6.2.2 Convergence to the True Model

Generally, Mao et al. [199] showed convergence in the large sample limit for IOALERGIA. However,
the sampling mechanism applied for generating traces needs to ensure that sufficiently many executions
of all inputs in all states are observed. This is also discussed in earlier work by Mao et al. [198]. The
authors state that IOALERGIA requires a fair scheduler, one that chooses each input infinitely often. The
uniformly randomised scheduler sunif satisfies this requirement. As a result, we have convergence in the
limit, if we perform only a single round of learning, in which we sample with sunif .

Property-directed sampling favours certain inputs with increasing number of rounds, but it also se-
lects random inputs with probability prandi in round i. If we ensure that prandi is always non-zero, we
will select all inputs infinitely often in an infinite number of rounds. Therefore, the learned models will
converge to the true model (up to bisimulation equivalence) and the derived schedulers will converge to
an optimal scheduler.

An alternative way to approach convergence is to follow a hybrid approach by collecting traces via
property-directed sampling and via uniform sampling in parallel. Uniform sampling ensures that all
inputs are executed sufficiently often, which entails convergence. Property-directed sampling explores
parts of the system that have been identified to be relevant, which helps to correctly learn those parts. As
a result, intermediate schedulers are more likely to perform well.

Hence, we have convergence in the limit under certain assumptions. In practice, when we learn from
limited data, uniform schedulers are likely to be insufficient if events occur only after long interaction
scenarios. If events occur rarely in the sampled system traces, then it is unlikely that the part modelling
those events is accurately learned. Active learning, as described by Chen and Nielsen [79], addressed
this issue by guiding sampling so as to reduce the uncertainty in the learned model. In Chapter 7, we also
actively guide sampling towards rarely observed behaviour of stochastic SULs. The approach discussed
in this chapter similarly guides sampling, but with the aim at reducing uncertainty along traces that are
likely to satisfy a reachability property.

As noted above, we have seen that the learned schedulers usually converge to a scheduler. This
scheduler may not be globally optimal, though. We also performed experiments with the outlined hybrid
approach to avoid getting trapped in local maxima by collecting half of the system traces through uniform
sampling. While it showed favourable performance in a few cases, the non-hybrid approach generally

108 Chapter 6. Learning-Based Testing of Stochastic Systems

Table 6.1: All parameters with short descriptions
Parameter Description

nbatch number of traces sampled in one round
maxRounds maximum number of rounds

pstart initial probability of random input selection
cchange factor changing the probability of random input selection
pquit parameter of geometric distribution of sampled trace length

εALERGIA controls significance level of statistical compatibility check of IOALERGIA

1− αconv confidence level of convergence check
εconv error bound of convergence check

1− δeval confidence level of scheduler evaluation (Chernoff bound)
εeval error bound of scheduler evaluation (Chernoff bound)
rconv number of rounds considered in convergence check

produced better results with the same number of samples. Therefore, we will not discuss experiments
with the hybrid approach.

Apart from convergence, it may not always be necessary to find a (near-)optimal scheduler. A re-
quirement may state that the probability of reaching an erroneous state e must be smaller than some p.
By learning and evaluating a scheduler sh such that the probability estimate p̂M,sh of reaching e satisfies
p̂M,sh ≥ p, we basically show with some confidence that the requirement is violated. Such a requirement
could be the basis of another stopping criterion. If in round i, a sufficiently large number of the sampled
traces Si reaches an erroneous state, we may decide to evaluate the corresponding scheduler shi−1. We
could then stop if p̂M,shi−1

≥ p and continue otherwise.

6.2.3 Application and Choice of Parameters

We will now briefly discuss the choice of parameters taking our findings into account. A summary of all
parameters along with a concise description is given in Table 6.1.

The product ns = nbatch ·maxRounds defines the overall maximum number of samples for learning,
thus it can be chosen as large as the testing/simulation budget permits. Increasing maxRounds while fix-
ing ns increases the time required for learning and model checking. Intuitively, it improves accuracy as
well, because sampling is more frequently adjusted towards the considered property. For the systems ex-
amined in Section 6.3, values in the range between 50 and 200 led to reasonable accuracy while incurring
an acceptable runtime overhead. Runtime overhead is the time spent learning and model checking, as
opposed to the time spent doing actual testing, i.e. (property-directed) sampling. The convergence check
takes three parameters as input for which we identified well-suited default parameters. To ensure a high
confidence of the statistical test, we set αconv = 0.01. Since schedulers should choose the same input in
most cases, εconv should be small, but greater than zero to allow for some variation. In our experiments,
we set it to εconv = 0.01 and we set rconv = 6. More conservative choices would be possible at the
expense of performing additional rounds.

The value of pstart should generally be larger than 0.5, while cchange should be close to 1. This
ensures broad exploration in the beginning and more directed exploration afterwards. Finally, the choice
of pquit depends on the simulation budget and the number of inputs. If there is a large number of
inputs, it may be highly improbable to reach certain states within a small number test steps via random
testing. Consequently, we should allow for the execution of long tests, in order to reach states requiring
complex combinations of inputs. Domain knowledge may also aid in choosing a suitable pquit. If we, for
instance, expect a long initialisation phase, pquit should be low to ensure that we reach states following
the initialisation.

6.3. Experiments 109

6.3 Experiments

We evaluated our learning-based testing approach in five case studies from the areas of automata learning,
control policy synthesis, and probabilistic model-checking. For the first case study, we created our own
model of the slot machine described by Mao et al. [199] in the context of learning MDPs. Two case
studies consider models of network protocols extended with stochastic failures. For that, we transformed
deterministic Mealy-machine models as detailed below. The model used in the fourth case study is
inspired by the gridworld example, for which Fu and Topcu synthesised control strategies [116]. Finally,
we generate schedulers for a consensus protocol [42] which serves as a benchmark in probabilistic model-
checking.

Adding Stochastic Failures. Deterministic Mealy machines serve as the basis for two case studies.
These Mealy machines model communication protocols and are the results from previous learning ex-
periments. One of the Mealy machines is part of the TCP models learned by Fiterău-Broştean et al. [112]
and we also use one of the MQTT models that we learned with the setup described in Chapter 3 [263].
Basically, we simulate stochastic failures by adding outputs represented by the label crash . These occur
with a predefined probability instead of the correct output. Upon such a failure, the system is reset. We
implemented this by transforming the Mealy machines as follows:

1. Translate a Mealy machine into a Moore machine, creating an MDPM = 〈Q, I,O, q0, δ, L〉 with
a non-probabilistic δ.

2. Extend O with a new symbol crash and add a new state qcr to Q with L(qcr) = crash .

3. For a predefined probability pcr and for all o in a predefined set Crashes:

3.1. Find all q, q′ ∈ Q, i ∈ I such that δ(q, i)(q′) = 1 and L(q′) = o

3.2. Set δ(q, i)(q′) = 1− pcr and δ(q, i)(qcr) = pcr

3.3. For all i ∈ I set δ(qcr, i)(qcr) = pcr and δ(qcr, i)(q0) = 1− pcr

This simulates stochastic failures of outputs belonging to a set Crashes . Instead of producing the
correct outputs, we output crash and reach state qcr with a certain probability. With the same probability
we stay in this state and otherwise we reset the system to q0 after the crash.

6.3.1 Measurement Setup and Criteria

We have complete information about all models. This allows us to compare our results to optimal values.
Nevertheless, for the evaluation we simulate the models and treat them as black-box systems. The
state spaces of the models without step-counter variables for bounded reachability are of sizes 471 (slot
machine), 63 (MQTT), 157 (TCP), 35 (gridworld), and 272 (consensus protocol), respectively2. For each
of these systems, we identified an output relevant to the application domain and applied the presented
technique to reach states emitting this output within varying numbers of steps. The slot machine grants
prizes, therefore we generated strategies to observe the rarest prize. We seeded stochastic failures into
the models of MQTT and TCP using the steps discussed above. For this reason, we generated schedulers
to reach these failures. The gridworld we used in the evaluation contains a dedicated goal location that
served as a reachability objective. In case of the consensus protocol, we generated strategies to finish the
protocol, i.e. reach consensus, with high probability.

For a black-box MDPM and a reachability property φ, we compare four approaches to find sched-
ulers s for PM,s(φ):

2The slot machine could actually be modelled with about 160 states [199], but the other models are approximately minimal.

110 Chapter 6. Learning-Based Testing of Stochastic Systems

Incremental Scheduler Learning. We apply the incremental approach discussed in Section 6.2 with a
fixed number of rounds. Learned schedulers are denoted by sinc.

Incremental with Convergence Check. We apply the incremental approach, but stop if we either detect
convergence with CONV or if maxRounds rounds have been executed. Learned schedulers are
denoted by sconv.

Monolithic Scheduler Learning. To check if the incremental refinement of learned models pays off, we
use the same approach as for incremental learning, but set maxRounds = 1. In other words, we
sample traces by solely choosing inputs randomly. Based on this, we perform a single round, which
includes learning a model and deriving a scheduler that we evaluate. To balance the simulation
budget, we collect maxRounds · nbatch traces, where maxRounds and nbatch are the parameter
settings for learning sinc. We denote monolithically learned schedulers by smono.

Uniform Schedulers. As a baseline for comparison, we compare learned schedulers to the randomised
scheduler sunif which chooses inputs according to a uniform distribution. This resembles random
testing without additional knowledge.

Furthermore, let sopt = argmaxs PM,s(φ) be the optimal scheduler for a given SUTM and a property φ.
As the most important measure of quality, we compare estimates of PM,s(φ) to the maximal probability
PM,sopt(φ). We consider a scheduler s to be near optimal, if the estimate p̂M,s of PM,s(φ) derived via
SMC is approximately equal to PM,sopt(φ), i.e. |p̂M,s−PM,sopt(φ)| ≤ ε, for an ε > 0. In the following,
we use ε = εeval for deciding near optimality, where εeval is the error bound of the applied Chernoff
bound (Equation (5.2)) [223].

We balance the number of test steps for the incremental and the monolithic approach by executing
the same number of tests. As a result, the simulation costs for executing tests is approximately the same.
Since the incremental approach requires model learning and model checking in each round, it will also
require more computation time than the monolithic approach. While we focus on evaluating with respect
to the achieved probability estimation, we will briefly discuss computation costs at the end of the section.

We also briefly discuss estimations based on model checking of learned modelsMh. For that, we
calculate maxs PMh,s(φ) with PRISM [174]. These estimations have also been discussed by Mao et
al. [199]. They noted that estimations may differ significantly from optimal values in some cases, but
generally represent good approximations.

Implementation and Settings. The evaluation is based on our Java implementation of the presented
technique which can be found on GITHUB [259]. All experiments were performed on a Lenovo Thinkpad
T450 with 16 GB RAM and an Intel Core i7-5600U CPU operating at 2.6 GHz and running Xubuntu
Linux 18.04. The systems were modelled with PRISM [174]. PRISM served three purposes:

• We exported the state, transition, and label information from PRISM models. We simulated the
models in a black-box fashion with this information.

• The maximal probabilities were computed via PRISM.

• PRISM’s scheduler generation was used to derive schedulers.

Simulation as well as sampling is controlled by probabilistic choices. To ensure reproducibility, we used
fixed seeds for pseudo-random number generators controlling the choices. All experiments were run with
20 different seeds and we discuss statistics derived from 20 such runs. For the evaluation of schedulers,
we applied a Chernoff bound with εeval = 0.01 and δeval = 0.01. We used a fixed significance level
for the compatibility check of IOALERGIA, by setting εALERGIA = 0.5, a value also used by Mao et
al. [199]. They noted that IOALERGIA is generally robust with respect to the choice of this value, but
also suggested a lower, data-dependent value for εALERGIA as an alternative. We found that our approach

6.3. Experiments 111

Table 6.2: General parameter settings for experiments
Parameter Value

pstart 0.75

cchange 0.95

εALERGIA 0.5

αconv 0.01

εconv 0.01

δeval 0.01

εeval 0.01

rconv 6

Table 6.3: Parameter settings for the slot-machine case study
Parameter Value

pquit 0.05

maxRounds 100

nbatch 1000

benefits from a larger εALERGIA, which causes fewer state merges and consequently larger models. Put
differently, our approach benefits from more conservative state merging.

As noted in Section 6.2, we should ensure broad exploration in the beginning and property-directed
exploration in later rounds. Therefore, we set pstart = 0.75 and cchange = 0.95 unless otherwise noted.
We set the convergence-check parameters in all experiments as suggested in Section 6.2 to αconv = 0.01,
εconv = 0.01, and rconv = 6. Table 6.2 summarises parameter settings that apply in general.

6.3.2 Slot-Machine Experiments

The slot machine was analysed in the context of MDP learning before [199]. Basically, it has three reels
which are initially blank and which either show apple or bar after spinning (one input per reel). With
increasing number of spins the probability of bar decreases. A player is given a number of spins m,
after which one of three prizes is awarded depending on the reel configuration. A fourth input leads with
equal probability either to two extra spins (with a maximum of m), or to stopping the game prematurely
including issuance of prizes. For the evaluation, we reimplemented the model, therefore the probabilities
and the state space differ from the model by Mao et al. [199]. As property, we investigated reaching the
output Pr10 if m = 5, representing a prize that is awarded after stopping the game if all reels show bar.
The parameter settings for the learning experiments are given by Table 6.3, which specifies pquit = 0.05,
maxRounds = 100, and nbatch = 1000.

Figure 6.2 shows evaluation results comparing the different approaches. Box plots summarising the
probability estimations for reaching Pr10 in less than 8 steps are shown in Figure 6.2a and Figure 6.2b
shows results for a limit of 14 steps. From left to right, the blue boxes correspond to smono, the black
boxes correspond to sinc, and the red boxes correspond to sconv, which is the incremental approach with
convergence check. Dashed lines mark optimal probabilities. Note that estimations may be slightly
larger than the optimal value in rare cases because they are based on simulations. This can be observed
for sinc in Figure 6.2a and also in some of the following experiments. The applied Chernoff bound gives
a confidence value for staying within error bound εeval, in case we actually find an optimal scheduler.

Estimations with the baseline sunif are fairly constant, at approximately 0.012 for 8 steps and at
0.019 for 14 steps. As estimations with smono, sinc, and sconv are significantly higher, this shows that
our approach positively influences the probability of reaching a desired event. We further see that the
incremental approach performs better than the monolithic, whereby the gap increases with step size.

112 Chapter 6. Learning-Based Testing of Stochastic Systems

smono sinc sconv
0.2

0.25

0.3

0.35

P M
,s

(F
<
8
P

r1
0

)

(a) Reaching Pr10 in less than 8 steps

smono sinc sconv

0.3

0.4

0.5

P M
,s

(F
<
1
4
P

r1
0

)

(b) Reaching Pr10 in less than 14 steps

Figure 6.2: Simulation-based probability estimations of reaching Pr10 with the slot machine

smono sinc sconv
0.3

0.4

0.5

0.6

m
a
x
s
P M

h
,s

(F
<
8
P

r1
0

)

(a) Reaching Pr10 in less than 8 steps

smono sinc sconv
0.4

0.5

0.6

0.7

0.8
m

a
x
s
P M

h
,s

(F
<
1
4
P

r1
0

)

(b) Reaching Pr10 in less than 14 steps

Figure 6.3: Model-checking-based probability estimations of reaching Pr10 with the slot machine

Unlike the monolithic approach, the incremental approach finds near-optimal schedulers in both cases.
However, the relative number of near-optimal schedulers decreases with increasing step bound.

Early stopping via detecting convergence affects performance only slightly. The differences between
the quartiles derived for sconv and for sinc are actually smaller than the error bound εeval = 0.01. Random
variations could therefore be the cause of a visually perceived performance change. For the first experi-
ment with a limit of 8 steps, early stopping reduced the number of executed rounds to 72.2 on average.
The mean number of rounds performed in the second experiment was reduced to 71.05. However, one
run of the first experiment failed to stop early, because convergence was not detected in less than 100
rounds. Runs of the second experiment executed at most 92 rounds.

Alternatively to simulation-based estimation, estimations may be based on model checking a learned
model [199]. For that, a modelMh is learned , either incrementally or in a single step, and then a proba-
bilistic model-checker computes maxs PMh,s(φ). In other words, SMC of the actual SUT controlled by
a learned scheduler is replaced by probabilistic model-checking of a learned model. In the first scenario,
estimations are generally bounded above by the optimal probability while estimations in the second
scenario may be larger than the true optimal probability. An advantage of the model-checking-based
scenario is that it reduces the simulation cost since SMC requires additional sampling of the SUT.

Figures 6.3a and 6.3b show model-checking-based estimations of reaching Pr10 in less than 8 and
14 steps respectively. Here, smono denotes that the models Mh were learned in one step, while sinc

denotes incremental model learning. Incremental model learning with early stopping is labelled sconv.
The figures demonstrate that these estimations differ from estimations obtained via SMC (see Figure 6.2).

6.3. Experiments 113

Table 6.4: Parameter settings for the MQTT case study
Parameter Value

pquit 0.025

maxRounds 60 (240 for sconv)
nbatch 100

5 8 11 14 17

0.2

0.4

0.6

0.8

k

P M
,s

(F
<
k

cr
a

sh
)

Figure 6.4: Box plots of probability estimations of different learning configurations for MQTT

The monolithic approach computes estimations that are significantly larger than the true optimal value
in both cases. The incremental approach leads to more accurate results. None of the measurement
results exceeds the optimal value by more than εeval. Note that early stopping did not significantly affect
these estimations. Still, the SMC-based estimations are more reliable in the sense that they establish an
approximate lower bound on the true optimal probability.

6.3.3 MQTT Experiments

The following case study is based on a Mealy-machine model of an MQTT [73] broker, learned in our
case study on learning-based testing MQTT presented in Chapter 3 [263]. We transformed a model of
the EMQ3 broker learned with the mapper Two Clients with Retained Will, adding stochastic failures
to connection acknowledgements and to subscription acknowledgements for the second client, where
we set pcr = 0.1. For the evaluation we learn schedulers s maximising PM,s(F

<kcrash) for k ∈
{5, 8, 11, 14, 17}. For the sampling, we set pquit = 0.025. This leads to samples longer than necessary
for evaluation, because, for instance, for k = 5 the expected length of traces is 43. However, it increases
the chance of seeing crash in a sample which is reflected in learned models. The simulation budget is
limited by maxRounds = 60 and nbatch = 100 for the incremental approach without early stopping.
Since the experiments required more than 60 rounds for convergence to be detected, we set maxRounds
to 240 for the incremental approach with convergence check. The parameters are also summarised in
Table 6.4.

Figure 6.4 shows box plots for the scheduler-generation approaches. At each k, the box plots from left
to right summarise measurements for smono (blue), sinc (black), and sconv (red). The dashed line is the
optimal probability achieved with sopt, and the solid line represents the average probability of reaching
crash with a uniformly randomised scheduler. The box plots demonstrate that larger probabilities are
achievable with learning-based approaches than with random testing. All runs including outliers reach
crash with a higher probability than random testing. The monolithic approach, however, only performs
marginally better in some cases. All learning-based approaches find at least one near-optimal scheduler
in 20 learning runs, but incremental learning finds near-optimal schedulers more reliably than monolithic
scheduler generation.

3Website: https://www.emqx.io/, accessed on November 4, 2019 – this broker was called emqtt(d) when we
performed our MQTT case study presented in Chapter 3.

https://www.emqx.io/

114 Chapter 6. Learning-Based Testing of Stochastic Systems

Table 6.5: Parameter settings for the TCP case study
Parameter Value

pquit 0.025

maxRounds 120 (240 for sconv)
nbatch 250

5 8 11 14 17

0

0.2

0.4

0.6

0.8

k

P M
,s

(F
<
k

cr
a

sh
)

Figure 6.5: Box plots of probability estimations of different learning configurations for TCP

The convergence check causes a reliability gain for k = 8 and k = 17 in this case study, as it
basically detected that executing 60 rounds is not enough. It was generally required to perform more
than 60 rounds to detect convergence, except in a few cases. Experiments for larger values of k required
slightly more rounds to be executed, such that on average 79.6 rounds were executed for k = 17. In
contrast to this, we executed on average only 72.15 for k = 5. We also see that most estimations of
sinc and sconv are in a small range near to the optimal values. However, a few outliers are significantly
lower. For instance, one measurement for k = 8 is at 0.46. Therefore, it makes sense to learn multiple
schedulers and discard those performing poorly.

Model-checking-based estimations of reaching crash with the incremental approach led to overesti-
mations in some cases. For instance, the maximal estimation for k = 11 is 0.724 while 0.651 is the true
optimal value. Also for k = 5, one run leads to a model-checking-based estimation of 0.373 although
0.344 is the true optimal value. This is in contrast to the slot machine example (see Figure 6.3), where the
incremental approach produced model-checking-based results close to or lower than the optimal value.

6.3.4 TCP Experiments

The TCP case study is based on a Mealy-machine model of Ubuntu’s TCP server learned by Fiterău-
Broştean et al. [110, 112]. In Section 4.4 [15, 17], we have shown that conformance testing of this
system is challenging. Here, we consider a version with random crashes with pcr = 0.05, as discussed
in the beginning of this section. We mutated transitions to states outputting an acknowledgement which
increments both sequence and acknowledgement numbers. For the evaluation, we learn schedulers for
PM,s(F

<kcrash) with k ∈ {5, 8, 11, 14, 17} and we set maxRounds = 120, and nbatch = 250 for
the incremental approach without early stopping. Consequently, we set nbatch = 250 · 120 for the
monolithic approach. Since the convergence check detected convergence only after 120 rounds in several
experiments, we set maxRounds to 240 for the incremental approach with early stopping. We set pquit

to the same value as for MQTT. The parameter settings are also shown in Table 6.5.

Figure 6.5 shows box plots summarising the computed probability estimations. As before, there
are groups of three box plots at each k, which from left to right represent smono, sinc, and sconv. The
figure does not include plots for random testing with sunif , because it reaches the crash with very low
probability. Estimations produced by sunif are lower than 0.01 for all k. This demonstrates that random
testing is insufficient in this case to reliably reach crashes of the system.

6.3. Experiments 115

We further see that all learning-based approaches achieve to generate near-optimal schedulers for
all k. As before, both configurations of the incremental approach are more reliable than the monolithic
approach. For this more complex system, the reliability gain from incremental scheduler generation is
actually much larger than for the MQTT experiments. Early stopping affects probability estimations only
marginally. This is also in line with previous observations.

Like for MQTT, we needed to set maxRounds to a value larger than initially planned, for conver-
gence to be detected. There is a large spread in the number of executed rounds. We, for instance, executed
between 42 and 240 rounds for k = 14. In this case, convergence was detected after 133.5 rounds on
average. The average number of executed rounds is lower than 135 rounds for all k.

6.3.5 Gridworld Experiments

The following case study is inspired by a motion-planning scenario discussed by Fu and Topcu [116],
also in the context of learning control strategies. In the experiments, we generate schedulers for a robot
navigating in a gridworld environment. These schedulers shall with high probability reach a fixed goal
location after starting from a fixed initial location.

A gridworld consists of tiles of different terrains and is surrounded by walls. To model obstacles,
interior tiles may be walls as well. The robot starts at a predefined location and may move into one of
four directions via one of four inputs. It can observe changes in the type of terrain, whether it bumped
into a wall, and whether it is located at the goal location. If the robot bumps into a wall, it will not change
location. Whenever the robot moves, it may not reach its target, but rather reach a tile neighbouring the
target with some probability, unless the neighbouring tile is a wall. For example, if the robot moves
north, it may reach the tile situated north west or north east to its original position. The probability of
such an error depends on the terrain of the target tile. We distinguish the terrains (with error probabilities
in parentheses): Mud (0.4), Sand (0.25), Concrete (0), and Grass (0.2). As indicated above, Wall is
actually also a terrain that cannot be entered.

We created the gridworld such that adjacent tiles, with non-zero error probabilities, do not have
the same terrain. Otherwise, the MDP modelling the gridworld would be non-deterministic, because it
would contain indistinguishable, but different states, reached by the same input. If the generating MDP
is non-deterministic, it cannot be guaranteed that IOALERGIA is able to learn an adequate deterministic
approximation [198].

Figure 6.6a shows the gridworld that we used for evaluation. Black tiles represent walls, while the
other terrains are represented by different shades of grey and their initial letters. A circle marks the initial
location and a double circle marks the goal location. Although its state space, containing 35 different
states4, is relatively small, navigating in this gridworld is challenging without prior knowledge. Initially,
three moves to the right are necessary, as walls block direct moves towards the goal. This mimics the
requirement of performing an initialisation routine.

Before discussing measurements, we want to briefly describe the structure of the MDP modelling this
gridworld and how probabilities affect it. The initial state is labelled C and corresponds to the location
with the coordinate (1, 1). Moving towards north is not possible, therefore the input north leads to a
state labelled Wall , which also corresponds to the coordinate (1, 1). If the robot instead moves towards
east, it will reach a state corresponding to the coordinate (2, 1), which is labelled C . Moving from
coordinate (3, 1) towards east, the target tile with the coordinate (4, 1) is labelled by M (Mud). This
tile has a non-zero error probability of 0.4, therefore the input east causes a stochastic transition; with a
probability of 0.6 the robot reaches the target coordinate (4, 1) and observes M , but with a probability
of 0.4, it reaches the location (4, 2) to the south and observes C .

4The number of states does not equal the number of reachable locations because locations adjacent to walls require two
states in the MDP – one outputting the terrain and one with the output Wall . States outputting Wall are reached after the robot
bumps into a wall.

116 Chapter 6. Learning-Based Testing of Stochastic Systems

C C C M

C M

S M G C G

M G C M

G S M G

(a) The gridworld used in our evaluation

smono sinc sconv sunif

0

0.2

0.4

0.6

P M
,s

(F
<
1
0
go

a
l)

(b) Reaching goal in the gridworld in less than 10 steps

Figure 6.6: The evaluation gridworld and corresponding experimental results

Table 6.6: Parameter settings for the gridworld case study
Parameter Value

pquit 0.5

maxRounds 150

nbatch 500

cchange 0.975

To learn schedulers, we applied the configuration given by Table 6.6, where maxRounds = 150, and
nbatch = 500, and pquit = 0.5. Due to the larger value of maxRounds , we increased cchange as well to
0.975. This causes more random choices and hence broad exploration in a larger number of rounds. As
this case study differs significantly from the others, we chose maxRounds conservatively, performing a
larger number of rounds.

Figure 6.6b shows measured estimations of PM,s(F
<10goal) for sinc, sconv, smono, and random

testing with sunif . The dashed line denotes the optimal probability.

Random testing obviously fails to reach the goal in less than ten steps. This is caused by the fact
that it is unlikely to navigate past the walls via random exploration. The performance of the monolithic
approach is also affected by this issue, because it learns solely from uniformly randomised traces sampled
by sunif . Random exploration covers only the initial part of the state space thoroughly. Therefore, the
monolithically generated schedulers tend to perform worse than the incrementally generated schedulers.
By directing exploration towards the goal, the incremental approach achieves to generate near-optimal
schedulers.

We also see that the impact of the convergence check is not severe. Both settings, with and without
convergence check, produced similar results. The convergence check was able to reduce simulation costs
for all but three runs of the experiment, in which convergence was not detected in less than 150 rounds.
The incremental scheduler generation with early stopping required a minimum of 94 rounds and a mean
of 131.9 rounds to detect convergence.

6.3.6 Shared Coin Consensus-Protocol Experiments

The last case study examines scheduler generation for a randomised consensus protocol by Aspnes
and Herlihy [42]. In particular, we used a model of the protocol distributed with the PRISM model
checker [174] as a basis for this case study.5 Note that we changed the functionality of the protocol only

5A thorough discussion of the consensus protocol model and related experiments can be found at http://www.
prismmodelchecker.org/casestudies/consensus_prism.php, accessed on November 4, 2019

http://www.prismmodelchecker.org/casestudies/consensus_prism.php
http://www.prismmodelchecker.org/casestudies/consensus_prism.php

6.3. Experiments 117

Table 6.7: Parameter settings for the consensus-protocol case study
Parameter Value

pquit 0.025

maxRounds 100

nbatch 250

slightly by performing minor adaptions such as adding action labels for inputs.

This protocol’s goal is to achieve consensus between multiple asynchronous processes. This is mod-
elled by finding a common preferred value of either 1 or 2 on which all processes agree. In the model
distributed with PRISM, the processes share a global counter c with a range of [0 . . 2 · (K+1) ·N] where
N is the number of processes and K is an integer constant. Initially, c is set to (K + 1) ·N . All involved
processes perform the following steps to locally determine a preferred value v:

1. Flip a fair coin (local to the process)

2. Check coin

2.1. If the coin shows tails, decrement shared counter c

2.2. Otherwise increment c

3. Check value of c

3.1. If c ≤ N , then the preferred value is v = 1

3.2. If c ≥ 2 · (K + 1) ·N −N , then v = 2

3.3. Otherwise goto 1.

Each of those actions, flipping a coin, checking it, and checking the value of c, represents one step
in the protocol. Since the processes execute asynchronously, their actions may be arbitrarily interleaved,
with interleavings controlled by schedulers. A scheduler may choose from N inputs goi, one for each
process i. Performing goi basically instructs process i to perform the next step in the protocol. If process
i already picked a preferred value in Step 3.1. or in Step 3.2., goi is simply ignored.

The visible outputs of the system are sets of propositions that hold in the current step. First, the
propositions expose the current value of the shared counter, that is, they include (c = k) for a k ∈
[0 . . 2 · (K + 1) · N]. Secondly, they expose values of the local coins, thus the outputs include one
(coini = x) for each process i, where x ∈ {heads, tails}. Additionally, the outputs may include a
proposition finished , signalling that all processes decided on a preferred value. As generating schedulers
for this protocol in a learning-based fashion represents a demanding task, we only consider the case of
two asynchronously executing processes by setting N = 2 and K = 2. Setting either of these constants
to larger values significantly increases the number of steps to reach consensus.

Note that information about the current value of local coins is necessary to be able to generate optimal
schedulers. Consider the property φ = F<5(c = 5) and maxs PM,s(φ), which is equal to 0.75, to see
why this is the case. Initially, we have c = 6 and an optimal scheduler may choose any action, say go1.
After that, we have coin1 = heads with 0.5 probability and we should perform go2, because go1 would
increment c. After performing go2, we have coin2 = heads with 0.5 probability and we cannot satisfy φ
anymore. All other traces would satisfy φ. Without knowledge about the state of local coins, we would
not be able to make sensible choices of inputs. The randomised state machines controlling the processes
remain a black box to us, though. Models of their composition are learned.

For the measurements, we optimise PM,s(F
<kfinished) for k ∈ {14, 20}, thus we try to find

schedulings of the two processes which optimise the probability of finishing the protocol in less than
14 steps and 20 steps, respectively. Finishing here means that both processes picked a preferred value.

118 Chapter 6. Learning-Based Testing of Stochastic Systems

smono sinc sunif

0.125

0.1

0.075

0.05

0.025

0

P M
,s

(F
<
1
4
fi

n
is

h
ed

)

(a) Reaching finished in less than 14 steps

smono sinc sunif

0.25

0.2

0.15

0.1

0.05

0

P M
,s

(F
<
2
0
fi

n
is

h
ed

)

(b) Reaching finished in less than 20 steps

Figure 6.7: Probability estimations of reaching finished in the consensus protocol

In the experiments, we applied the configuration given by Table 6.7, setting maxRounds = 100, and
nbatch = 250, and pquit = 0.025. Since we know that states outputting finished are absorbing (sink
states), we stopped sampling upon seeing the finished proposition in an output, as suggested in [198].

Figure 6.7 shows evaluation results for the incremental and the monolithic approach in comparison
to random testing. The box plots corresponding to each of these techniques are labelled smono, sinc,
and sunif , respectively. The dashed line represents the optimal probability as before. In contrast to
previous experiments, we see that the monolithic approach may perform worse than random testing.
For k = 14, there are three measurements, which are exactly zero. However, more than a quarter of
the measurement results are near-optimal. For k = 20, the number of experiments achieving lower
estimations than random testing decreases to two, but none of the generated schedulers is near optimal.
This can be explained by considering the minimum number of steps necessary to reach finished . We
need to execute at least 12 steps to observe finished . As a result, it may happen that relevant parts of
the system, states reached only after 12 steps, are inaccurately learned. This exemplifies that incremental
scheduler generation pays off, because it is able to generate near-optimal schedulers for both values of
k. For k = 14, three-quarters of the incrementally generated schedulers are near optimal and for k = 20,
more than one-quarter of the schedulers are near optimal.

It can also be observed that some probability estimations shown in Figure 6.7 are greater than the
optimal probability popt. This may happen, because we apply SMC to compute estimations. Note that
all estimations are below popt + εeval, where εeval is the error bound of the applied Chernoff bound [223].
The probability for estimations to exceed popt + εeval is at most δeval; see also Section 5.6.

This case study actually highlights a weakness of the convergence check. It assumes that the search
will converge to some unique behaviour. The protocol is completely symmetric for both processes,
therefore it does not matter which process performs the first step. Hence, there are at least two optimal
schedulers which differ only in their initial action. This action is present in each of the 250 traces col-

6.3. Experiments 119

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0.3

0.4

0.5

rounds

P M
h
,s

in
c
(F

<
1
4
P

r1
0

)

(a) Statistics for reaching Pr10 in less than 14 steps (slot machine)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0

0.2

0.4

0.6

rounds

P M
h
,s

in
c
(F

<
1
0
go

a
l)

(b) Statistics for reaching goal in less than 10 steps (gridworld)

Figure 6.8: Statistics of probability estimations computed in each round of the incremental ap-
proach

lected in one round, which presumably include further ambiguous choices. This causes SIMILARSCHED

to return false in most of the cases. Consequently, we do not discuss results obtained with the conver-
gence check, as it rarely led to early stopping. An approach to counter this problem would be, assuming
there is a lexicographic ordering on inputs, to always select the lexicographically minimal input, in case
of ambiguous choices.

6.3.7 Convergence Check

We discussed the influence and application of early stopping throughout this section. Now, we want
to briefly examine the underlying assumption. The rationale behind the convergence check and early
stopping is that scheduler behaviour converges with increasing number of rounds. As a result, fluctua-
tions in the probability estimations produced by schedulers are expected to diminish. Ideally, estimations
should increase over time as well. In other words, schedulers should improve. To investigate whether
our assumptions hold, we applied the incremental approach and evaluated intermediate schedulers by
computing probability estimations in each round of learning.

Figure 6.8 contains graphs showing statistics summarising the computed estimations. The experi-
ment summarised in Figure 6.8a optimises reaching Pr10 in less than 14 steps with the slot machine.
Figure 6.8b shows statistics for reaching goal in the gridworld in less than 10 steps. The graphs read as
follows: the horizontal axis displays the rounds, and the vertical axis displays the values of the proba-
bility estimations. The lines from top to bottom represent the maximum, the third quartile, the median,
the first quartile, and the minimum computed from the estimations collected in each round. Like before,
these values were calculated from 20 runs.

In both cases we see that fluctuations decrease over time. The interquartile range decreases as well
until it becomes relatively stable. Stable estimations are reached at around the 70th round in Figure 6.8a,

120 Chapter 6. Learning-Based Testing of Stochastic Systems

Table 6.8: Average runtime of learning and scheduler generation for various properties (all values
in seconds)
Case Study & Property Operation smono sinc sconv

Slot Machine: F<14Pr10
learning 3.4 114.4 64.8

scheduler generation 3.8 364.6 226.6

MQTT: F<17crash
learning 1.7 50.5 75.4

scheduler generation 2.6 166.4 174.0

TCP: F<17crash
learning 21.3 471.7 564.4

scheduler generation 3.4 256.9 248.3

Gridworld: F<10goal
learning 2.1 97.5 96.7

scheduler generation 2.0 324.6 317.9

Shared Coin: F<20finished
learning 7.7 300.9 -

scheduler generation 3.9 316.8 -

which is the area where convergence was detected – we stopped on average after 71.05 rounds. We see
larger fluctuations of the minimal value in Figure 6.8b, but they decline as well. Fluctuations of the
minimal value can also be observed after 150 rounds. As a result, we may stop too early in rare cases.

Figure 6.8b also reveals unexpected behaviour. Testing of the gridworld actually required relatively
few rounds of learning to achieve good results. In particular, the estimations after the first rounds were
larger than expected, because the basis for the first round of learning is formed by only nbatch random
tests.

6.3.8 Runtime

We simulated previously learned models for the evaluation, thus the simulation cost was very low in our
experiments. As a result, the time for learning and reachability checking dominated the computation
time. Table 6.8 lists the average runtime of learning and reachability checking for the property with the
largest bound of each case study.

It can be seen that the incremental approaches, denoted by sinc and sconv, require considerably more
time to complete. Incremental scheduler generation without convergence detection, for instance, takes
on average 728.6 seconds for the TCP property F<17crash , while the monolithic approach requires only
24.7 seconds. Thus, the better performance with respect to maximising probability estimations comes
at the cost of increased runtime for learning and scheduler generation. In a testing scenario with real-
world implementations, however, this time overhead may be negligible. If network communication is
necessary, for instance, in protocol testing, the simulation time required for interacting with the SUT
can be assumed to dominate the overall runtime. This is similar as for our mutation-based test-case
generation, which requires more computation time than other approaches, but is more efficient with
respect to the simulation time. See Section 4.4 for a discussion on the reduction of required test-case
executions.

To contrast simulation runtime with the runtime of learning and scheduler generation, consider the
hypothetical, but realistic scenario in which each simulation step takes about 10 milliseconds. In fact,
simulation steps may take much longer. A single step in our MQTT case study took up to 600 mil-
liseconds; see Section 3.4. Both approaches, the monolithic and the incremental, require approximately
the same number of simulation steps, about 1.7 · 106 for F<17crash . In this scenario, the simulation
duration would amount to about 4.7 hours, such that the runtime overhead of 703.9 seconds caused by
the incremental approach would be low in comparison. Similar observations can be made for other case
studies. Since the time spent simulating the SUT can be expected to dominate the computation time, we
conclude that the incremental approach is preferable to the monolithic approach in this context.

In Table 6.8, we also see that the convergence detection provides a performance gain for the slot
machine, but causes slightly worse runtime for MQTT and TCP. The decreased performance is caused

6.3. Experiments 121

by the fact that convergence often could not be detected within the maxRounds setting used for sinc.
Therefore, we increased the maxRounds setting of sconv for MQTT and TCP, as discussed above. How-
ever, the goal of convergence detection is not a reduction of runtime. With the convergence detection
heuristic, we want to provide a stopping criterion that does not solely rely on an arbitrarily chosen value
for the maxRounds parameter.

Finally, we want to discuss the runtime complexity of learning and scheduler generation. The worst-
case complexity of IOALERGIA is cubic in the size of the IOFPTA representation of the sampled traces,
but the typical behaviour observed in practice is approximately linear [199]. Hence, it is unlikely that
learning runtime could be improved, but the scheduler-generation runtime can be improved. Our imple-
mentation communicates with PRISM via files, standard input, and standard output. As a result, there
is a substantial communication overhead that can be removed via a tighter integration of scheduler gen-
eration. PRISM’s default technique for scheduler generation, which is called value iteration, could also
benefit algorithmically from such a tight integration. Since we check reachability with respect to a bound
k, it is possible to bound the number of iterations performed by value iteration by k [46]. This leads to a
worst-case runtime complexity of O(k · n2 ·m), where n is the number of states of a learned model and
m is the number of inputs. The number of inputs m is generally a small constant and we have observed
that n2 is generally smaller than the number of sampling steps required for learning. As a result, we
expect the simulation time to generally dominate in non-simulated scenarios.

6.3.9 Discussion

We applied probabilistic black-box reachability checking to various types of models in several configu-
rations. We compared the configurations among each other, to the true optimal testing strategy and also
to random testing as a baseline. The results of the performed experiments show (1) that learning-based
approaches outperform the baseline and (2) that incremental scheduler learning is able to generate near-
optimal schedulers in all cases. In most experiments, the median probability estimation derived with
the incremental approach was near optimal, thus it generated near-optimal schedulers reliably. We have
also seen that the convergence detection heuristic did not have a negative impact on the accuracy of the
incremental approach. However, we are not able to give concrete bounds on the required number of
samples to achieve a desired success rate. This is due to the fact that we rely on IOALERGIA, for which
convergence in the limit has been shown [199], but stronger guarantees are currently not available.

We generally targeted systems with small state space. An application in practice therefore requires
abstraction to ensure that the state space is not prohibitively large. As explained in Section 2.5, this
is generally required in learning-based verification and several applications have shown that learning
combined with abstraction provides effective means to enable model-based analysis in black-box set-
tings [97, 112, 113], including our work on testing MQTT brokers discussed in Chapter 3 [263].

In addition to that, we have also seen limitations that cannot be solved by abstraction. The differences
between estimations and optimal values tend to increase with the step bound k. This is potentially caused
by the exponential growth of different traces. This growth also affects the application of the approach
for large gridworld examples. Increasing the width of the gridworld also increases the steps required to
reach the goal and causes the performance to drop. A possible mitigation would be to identify disabled
inputs that are rejected by the SUT if we have such information. This might prevent certain traces from
being executed beyond a disabled input. In the original version of IOALERGIA [198], such knowledge
facilitates learning, because disabled inputs are assumed to leave the current state unchanged. In the
gridworld example, we could consider inputs to be disabled if they cause the robot to move into a wall.

A related issue also affects the case study on the consensus protocol. Changing the number of pro-
cesses from two to four, increases the minimum number of steps to reach finished from 12 to 24. Here,
composition actually causes the state space to grow. We could tackle such problems via decomposition.
Instead of learning a large monolithic model, several small models could be learned, which would then
be composed for the reachability analysis. Recently, Petrenko and Avellaneda have shown that the effi-
ciency of test-based learning can be improved by following such an approach [231]. The authors propose

122 Chapter 6. Learning-Based Testing of Stochastic Systems

to learn communicating finite-state machines rather than large composite models, as they found that the
required amount of testing can be reduced in this way.

6.4 Summary

In this chapter, we presented a learning-based approach for testing stochastic black-box systems with
respect to reachability properties. The goal of this approach is to maximise the probability of satisfy-
ing such properties, which may, for instance, specify that certain outputs should be produced. More
concretely, we developed and implemented an incremental technique that interleaves automata learning,
probabilistic model-checking and property-directed testing, to learn near-optimal schedulers for reacha-
bility properties of MDPs. The learned schedulers basically serve as online testing-strategies.

To our knowledge, it is the first such approach that is applicable in a purely black-box setting, where
only the input interface is known. We evaluated this approach in various configurations and case studies
in Section 6.3. The evaluation showed (1) that learning-based testing generally achieves significantly
better results than random testing which served as baseline and (2) that near-optimal schedulers can be
learned reliably.

6.5 Results and Findings

Our results and findings with respect to relevant research questions introduced in Section 1.6.3 are dis-
cussed in this section.

RQ 2.2 When can we stop learning in the presence of uncertain behaviour? We discussed conver-
gence in Section 6.2.2, noting that schedulers learned by our approach converge in the large sample limit
to an optimal scheduler. Since there are no PAC guarantees for IOALERGIA yet, we cannot determine
approximate correctness of models learned from finitely many samples.

In contrast to that, it may be possible to determine online during learning whether we can stop
learning. We may stop if (1) the learned scheduler is already sufficiently good, or (2) if the scheduler
is unlikely to improve. We addressed the latter by developing a stopping heuristic that checks whether
learning has likely converged. We also commented briefly on a scenario, which does not require optimal
schedulers. Supppose that a requirement states that the probability of observing a certain output must be
lower than p. If an intermediate scheduler achieves to produce this output with an estimated probability
p̂ larger than p, then we can stop learning. This probability estimate can be computed via SMC, like in
the Evaluate step, the final step in our process; see Section 6.2.1.

In conclusion, our approach allows for stopping criteria based on schedulers. This is valuable, as the
quality of learned models is hard to determine, especially in the absense of PAC learnability guarantees.

RQ 1.1 Are randomised testing techniques a sensible choice for learning-based testing? We ap-
plied randomised online testing successfully in the technique presented in this chapter, therefore we
consider it a sensible choice. In fact, randomised online testing is commonly applied for systems with
uncertain behaviour, for instance, by the tool JTORX [51, 52]. Another example is online testing of
real-time systems based on non-deterministic timed automata models [179].

In probabilistic black-box reachability checking, randomly selected inputs provide a way to explore
new parts of the SUT. Hence, the rationale behind executing random inputs is similar as for the mutation-
based testing approach discussed in Chapter 4.

6.5. Results and Findings 123

RQ 1.2 What guarantees can be given if randomised testing is applied? We evaluate learned sched-
ulers via SMC in the last step of the discussed process. This provides us with a probability estimate p̂ of
satisfying a step-bounded reachability property by controlling the SUT with a learned scheduler. Such
an estimate p̂ is an approximate lower bound on the true optimal probability with respect to some
confidence. By applying a Chernoff bound [223] (Equation (5.2)) in the Evaluate step, we know with
confidence 1 − δ that the true optimal probability must be greater than or equal to p̂ − ε, where δ and ε
are the parameters of Equation (5.2).

RQ 1.3 Can learning with randomised conformance testing reliably generate correct system mod-
els? We rather tested the SUT to explore its state space than actually testing for conformance. We were
able to reliably learn near-optimal schedulers, which is demonstrated by our evaluation in Section 6.3.
Since our goal was to learn testing strategies represented by schedulers, the quality of learned system
models was not analysed directly.

7
Test-Based Learning of Stochastic Systems

Declaration of Sources

This chapter introduces an active learning technique for MDPs. We presented this technique at
FM 2019 [265]. In addition to the conference paper, we developed an extended technical report
which is available via arxiv.org [266]. This chapter is mainly based on the technical report
which includes additional implementation details, proofs as well as an extended evaluation. An
evaluation package including the source code of our implementation is available online [261].

7.1 Introduction

Motivation. In Chapter 6, we presented probabilistic black-box reachability checking, a learning-based
approach to testing stochastic black-box systems with respect to bounded reachability properties. For
that, we applied the state-of-the-art passive learning algorithm IOALERGIA [198, 199] in an active setting
by sampling through testing based on learned intermediate models. Our evaluation demonstrated that
this increases accuracy, as compared to standard random-sampling-based learning. Moreover, with this
approach it is possible to reliably produce near-optimal results. A drawback of the technique is that the
results are specific to a given reachability property.

This poses the question, whether active test-based learning can improve the accuracy of stochastic
models in general. Compared with passively learned automata, can active test-based learning create
MDPs that are closer to the black-box system under learning? The goal is to answer this question in
this chapter, by presenting an L∗-based approach for learning MDPs. The rationale behind this approach
is that actively querying the SUL enables to steer the trace generation towards parts of the SUL’s state
space that have not been thoroughly covered, potentially finding yet unknown aspects of the SUL. In
contrast, passive algorithms take a given sample of system traces as input and generate models consistent
with the sample. The quality and the comprehensiveness of learned models therefore largely depend on
the given sample.

Before going into details, we want to note a few things about our motivating question on whether
active learning can produce more accurate MDPs than passive learning. First, we want to emphasise
that we consider a test-based setting. Like in Chapter 6, we consider a realistic black-box setting, in
which we only know an interface to the SUL. Secondly, we want to discuss the actual meaning of closer
in this context. Similar to Chapter 6, we will present an evaluation based on controlled experiments,

125

arxiv.org

126 Chapter 7. Test-Based Learning of Stochastic Systems

in which we know the true model of the SUL. Given such a true model, we apply distance measures,
such as the discounted bisimilarity distance [44], to determine how close a learned model is to the true
model. Finally, it should be noted why we aim for closeness rather than absolute correctness or probably
approximately correct (PAC) learning [276]. IOALERGIA learns the correct model in the limit [199].
Currently, it is not possible to make statements about the quality of models learned by IOALERGIA from
finitely many traces. As a first step, we also strive for guaranteed learning in the limit. For this reason,
we empirically investigate how close learned models are to the corresponding true models.

Overview. In this chapter, we present L∗-based learning of MDPs from traces of stochastic black-box
systems. For this purpose, we developed two learning algorithms. The first algorithm takes an ideal view
assuming perfect knowledge about the exact distribution of system traces. The second algorithm relaxes
this assumption, by sampling system traces to estimate their distribution. We refer to the former as exact
learning algorithm L∗MDPe and to the latter as sampling-based learning algorithm L∗MDP. We implemented
L∗MDP and evaluated it by comparing it to IOALERGIA [198, 199]. The experiments presented in this
chapter showed favourable performance of L∗MDP. It produced more accurate models than IOALERGIA

given approximately the same amount of data. Hence, the answer to our motivating question stated above
is positive. Active learning can improve accuracy, compared to passive learning.

Apart from the empirical evaluation, we show that the model learned by L∗MDP converges in the limit
to an MDP isomorphic to the canonical MDP representing the SUL. To the best of our knowledge, L∗MDP

is the first L∗-based learning algorithm for MDPs that can be implemented via testing. Our contributions
in this context span the algorithmic development of learning algorithms, their analysis with respect to
convergence and the implementation as well as the evaluation of learning algorithms.

Chapter Structure. The rest of this chapter is structured as follows. Section 7.2 discusses observa-
tions of MDPs and provides a characterisation of MDPs. Section 7.3 presents the exact learning algo-
rithm L∗MDPe , while Section 7.4 describes the sampling-based L∗MDP. We analyse L∗MDP with respect to
convergence in Section 7.5 and discuss its evaluation in Section 7.6. After that, we provide a summary
in Section 7.7 and conclude with remarks on our findings in Section 7.8.

7.2 MDP Observations

In the following, we first introduce different types of observation sequences of MDPs and some related
terminology. Then, we formally define the semantics of MDPs in terms of observation sequences.

7.2.1 Sequences of Observations

Let I and O be finite sets of inputs and outputs. Recall that a trace observed during the execution of
an MDP is an input-output sequence in O × (I × O)∗ (see also Section 5.3). We say that a trace t is
observable if there exists a path ρ with L(ρ) = t, thus there is a scheduler s and a length distribution pl
such that PlM,s(t) > 0. In a deterministic MDPM, each observable trace t uniquely defines a state of
M that is reached by executing t from the initial state q0. We compute this state by δ∗(t) = δ∗(q0, t)
where

δ∗(q, L(q)) = q and

δ∗(q, o0i1o1 · · · in−1on−1inon) = ∆(δ∗(q, o0i1o1 · · · in−1on−1), in, on).

If t is not observable, then there is no path ρ with t = L(ρ), denoted by δ∗(t) = ⊥. Therefore, we
extend ∆ by defining ∆(⊥, i, o) = ⊥. The last output on of a trace t = o0 · · · inon is denoted by last(t).

We use three types of observation sequences with shorthand notations in this chapter:

7.2. MDP Observations 127

• Traces: abbreviated by T R = O × (I ×O)∗

• Test sequences: abbreviated by T S = (O × I)∗

• Continuation sequences: abbreviated by CS = I × (O × I)∗ = I × T S

These sequence types alternate between inputs and outputs, thus they are related among each other. As
mentioned in Section 5.2.2, we extend the sequence notations and the notion of prefixes to sequences
containing both inputs and outputs in the context of MDPs. Therefore, we extend these concepts also to
T R, T S , and CS . For instance, test sequences and traces are related by T R = T S ·O.

As noted above, an observable trace in T R leads to a unique state of an MDPM. A test sequence
in s ∈ T S of length n consists of a trace in t ∈ T R with n outputs and an input i ∈ I with s = t · i;
thus executing the test sequence s = t · i putsM into the state reached by t and testsM’s reaction to
i. Extending the notion of observability, we say that the test sequence s is observable if t is observable.
A continuation sequence c ∈ CS begins and ends with an input, i.e. concatenating a trace t ∈ T R and c
creates a test sequence t · c in T S . Informally, continuation sequences testM’s reaction in response to
multiple consecutive inputs.

The following lemma states that an extension of a non-observable traces is also not observable. We
will apply this lemma in the context of test-based learning.

Lemma 7.1.
If trace t ∈ T R is not observable, then any t′ ∈ T R such that t� t′ is not observable as well.

Lemma 7.1 follows directly from Equation (5.1). For a non-observable trace t, we have ∀s, pl :
PlM,s(t) = 0 and extending t to create t′ only adds further factors to Equation (5.1). The same property
holds for test sequences as well.

7.2.2 Semantics of MDPs

We can interpret an MDP as a function M : T S → Dist(O) ∪ {⊥}, mapping test sequences s to output
distributions or undefined behaviour for non-observable s. This follows the interpretation of Mealy
machines as functions from input sequences to outputs [258]. Likewise, we will define which functions
M capture the semantics of MDPs by adapting the Myhill-Nerode theorem on regular languages [216].
In the remainder of this chapter, we denote the set of test sequences s where M(s) 6= ⊥ as defined
domain dd(M) of M .

Definition 7.1 (MDP Semantics).
The semantics of an MDP 〈Q, I,O, q0, δ, L〉, is a function M , defined for i ∈ I , o ∈ O, and t ∈ T R as
follows:

M(ε)(L(q0)) = 1

M(t · i) = ⊥ if δ∗(t) = ⊥
M(t · i)(o) = p if δ∗(t) 6= ⊥ ∧ δ(δ∗(t), i)(q) = p > 0 ∧ L(q) = o

M(t · i)(o) = 0 if δ∗(t) 6= ⊥ ∧ @ q : δ(δ∗(t), i)(q) = p > 0 ∧ L(q) = o

Definition 7.2 (M -Equivalence of Traces).
Two traces t1, t2 ∈ T R are equivalent with respect to M : T S → Dist(O) ∪ {⊥}, denoted t1 ≡M t2,
iff

• last(t1) = last(t2) and

• it holds for all continuations v ∈ CS that M(t1 · v) = M(t2 · v).

128 Chapter 7. Test-Based Learning of Stochastic Systems

A function M defines an equivalence relation on traces, like the Myhill-Nerode equivalence for for-
mal languages [216]. Two traces are M -equivalent if they end in the same output and if their behaviour
in response to future inputs is the same. Two traces leading to the same MDP state are in the same equiv-
alence class of ≡M , analogously to the adapted Myhill-Nerode equivalence for Mealy machines [258].

We can now state which functions characterise MDPs, as an adaptation of the Myhill-Nerode theorem
for regular languages [216], like for Mealy machines [258].

Theorem 7.1 (Characterisation).
A function M : T S → Dist(O) ∪ {⊥} represents the semantics of an MDP iff

1. ≡M has finite index, . . . finite number of states

2. M(ε) = 1{o} for an o ∈ O, . . . initial output

3. dd(M) is prefix-closed, and

4. ∀t ∈ T R : either ∀i ∈ I : M(t · i) 6= ⊥ or . . . input enabledness
∀i ∈ I : M(t · i) = ⊥

Proof. Direction⇒: first we show that the semantics M of an MDPM = 〈Q, I,O, q0, δ, L〉 fulfils the
four conditions of Theorem 7.1. Let t ∈ T R be an observable trace, then we have for i ∈ I, o ∈ O:
M(t · i)(o) = δ(q′, i)(q) = p, where q′ = δ∗(t), if p > 0 and L(q) = o. AsM contains finitely many
states q′, δ(q′, i) and therefore also M(t · i) takes only finitely many values. M -equivalence of traces
ti depends on the outcomes of M and on their last outputs last(ti). Since the set of possible outputs
is finite like the possible outcomes of M , M -equivalence defines finitely many equivalence classes for
observable traces. For non-observable t ∈ T R we have δ∗(t) = ⊥ which implies M(t · i) = ⊥. As
a consequence of Lemma 7.1, we also have M(t · c) = ⊥ for any c ∈ CS. Hence, non-observable
traces are equivalent with respect to M if they end in the same output, therefore M defines finitely many
equivalence classes for non-observable traces. In summary, ≡M has finite index, which fulfils the first
condition.

According to Definition 7.1, it holds that M(ε)(L(q0)) = 1, thus the second condition is fulfilled.

Prefix-closedness of the defined domain dd(M) of M follows from Lemma 7.1. Any extension of a
non-observable test sequence is also non-observable, thus M fulfils the third condition.

For the fourth condition, we again distinguish two cases. If t is a non-observable trace, i.e. δ∗(t) = ⊥,
then M(t · i) = ⊥ for all i ∈ I according to Definition 7.1, which fulfils the second sub-condition. For
observable t, the distribution M(t · i) depends on δ(δ∗(t), i), which is defined for all i due to input
enabledness ofM, satisfying the first subcondition.

The semantics of an MDP satisfies all four conditions listed in Theorem 7.1.

Direction ⇐: from an M satisfying the conditions given in Theorem 7.1, we can construct an MDP
Mc = 〈Q, I,O, q0, δ, L〉 by:

• Q = (T R/ ≡M) \ {[t] | t ∈ T R, ∃i ∈ I : M(t · i) = ⊥}

• q0 = [o0], where o0 ∈ O such that M(ε) = 1{o0}

• L([s · o]) = o where s ∈ T S and o ∈ O, by Definition 7.2 all traces in the same equivalence class
end with the same output

• for [t] ∈ Q:
δ([t], i)([t · i · o]) = M(t · i)(o), defined by fourth condition of Theorem 7.1

Each equivalence class of ≡M gives rise to exactly one state in Q, except for the equivalence classes of
non-observable traces.

7.3. Exact Learning of MDPs 129

The MDPMc in the construction above is minimal with respect to the number of states and unique up
to isomorphism. Therefore, we refer to an MDP, constructed in this way, as canonical MDP can(M)
for MDP semantics M . Mc is minimal, because any other MDP M′ with a lower number of states
necessarily contains a state that is reached by traces from differentM -equivalence classes. Consequently,
M′ cannot be consistent with the semantics M .

Viewing MDPs as reactive systems, we consider two MDPs to be equivalent, if we make the same
observations on both.

Definition 7.3 (Output-Distribution Equivalence).
MDPsM1 andM2 over I andO with semanticsM1 andM2 are output-distribution equivalent, denoted
M1 ≡od M2, iff

∀s ∈ T S : M1(s) = M2(s)

7.3 Exact Learning of MDPs

This section presents L∗MDPe , an exact active learning algorithm for MDPs. L∗MDPe serves as basis for
the sampling-based learning algorithm presented in Section 7.4. In contrast to sampling, L∗MDPe assumes
the existence of a teacher with perfect knowledge about the SUL that is able to answer two types of
queries: output distribution queries and equivalence queries. The former asks for the exact distribution
of outputs following the execution of a test sequence on the SUL. The latter takes a hypothesis MDP
as input and responds either with yes iff the hypothesis is observationally equivalent to the SUL or
with a counterexample to equivalence. A counterexample is a test sequence leading to different output
distributions in hypothesis and SUL.

7.3.1 Queries

Before discussing learning, we formally define the queries available to the learner that focus on the
observable behaviour of MDPs. Assume that we want to learn a model of a black-box deterministic
MDPM, with semantics M . Output distribution queries (odq) and equivalence queries (eq) are then
defined as follows:

• output distribution query (odq): an odq(s) returns M(s) for input s ∈ T S.

• equivalence query (eq): an eq query takes a hypothesis MDP H with semantics H as input and
returns yes ifH ≡od M; otherwise it returns an s ∈ T S such that H(s) 6= M(s) and M(s) 6= ⊥.

Lemma 7.2 (Counterexample Observability).
For any counterexample s toH ≡od M withM(s) = ⊥, there exists a prefix s′ of s withH(s′) 6= M(s′)
and M(s′) 6= ⊥, thus s′ is also a counterexample but observable on the SUL with semantics M . Hence,
we can restrict potential counterexamples to be observable test sequences.

Proof. Since s is a counterexample and M(s) = ⊥, we have H(s) 6= ⊥. Let s′′ be the the longest
prefix of s such that M(s′′) = ⊥, thus s′′ is of the form s′′ = s′ · o · i with M(s′)(o) = 0. Due to
prefix-closedness of dd(H), H(s) 6= ⊥ implies H(s′′) 6= ⊥, therefore H(s′)(o) > 0. Hence, s′ with
M(s′) 6= ⊥ is also a counterexample because H(s′)(o) 6= M(s′)(o)⇒ H(s′) 6= M(s′).

7.3.2 Observation Tables

Like Angluin’s L∗ [37], we store information in observation table triples 〈S,E, T 〉, where:

• S ⊆ T R is a prefix-closed set of traces, initialised to {o0}, a singleton set containing the trace
consisting of the initial output o0 of the SUL, given by odq(ε)(o0) = 1,

130 Chapter 7. Test-Based Learning of Stochastic Systems

Table 7.1: An observation table created during learning of the faulty coffee machine (Figure 5.1)
but coin

S
init {init 7→ 1} {beep 7→ 1}
init · coin · beep {coffee 7→ 0.9, init 7→ 0.1} {beep 7→ 1}
init · coin · beep · but · coffee {init 7→ 1} {beep 7→ 1}

Lt(S)

init · but · init {init 7→ 1} {beep 7→ 1}
init · coin · beep · but · init {init 7→ 1} {beep 7→ 1}
init · coin · beep · coin · beep {coffee 7→ 0.9, init 7→ 0.1} {beep 7→ 1}
init · coin · beep · but · coffee·
but · init {init 7→ 1} {beep 7→ 1}

init · coin · beep · but · coffee·
coin · beep {coffee 7→ 0.9, init 7→ 0.1} {beep 7→ 1}

• E ⊆ CS is a suffix-closed set of continuation sequences, initialised to I ,

• T : (S ∪ Lt(S)) · E → Dist(O) ∪ {⊥} is a mapping from test sequences to output distributions
or to⊥, denoting undefined behaviour. This mapping basically stores a finite subset of M . The set
Lt(S) ⊆ S · I ·O is given by Lt(S) = {s · i · o | s ∈ S, i ∈ I, o ∈ O,odq(s · i)(o) > 0}.

We can view an observation table as a two-dimensional array with rows labelled by traces in S ∪ Lt(S)
and columns labelled by E. We refer to traces in S as short traces and to their extensions in Lt(S) as
long traces. An extension s · i · o of a short trace s is in Lt(S) if s · i · o is observable. Analogously to
traces, we refer to rows labelled by S as short rows and we refer to rows labelled by Lt(S) as long rows.
The table cells store the mapping defined by T . To represent rows labelled by traces s we use functions
row(s) : E → Dist(O) ∪ {⊥} for s ∈ S ∪ Lt(S) with row(s)(e) = T (s · e). Equivalence of rows
labelled by traces s1, s2, denoted eqRowE(s1, s2), holds iff row(s1) = row(s2)∧ last(s1) = last(s2).
It approximates M -equivalence s1 ≡M s2 by considering only continuations in E, hence s1 ≡M s2

implies eqRowE(s1, s2). The observation table content defines the structure of hypothesis MDPs based
on the following principle: we create one state per equivalence class of S/eqRowE , thus we identify
states with traces in S reaching them and we distinguish states by their future behaviour in response to
sequences in E. The long traces Lt(S) serve to define transitions. As discussed in Section 2.2.2, this is a
common approach to hypothesis construction in active automata learning [258]. Transition probabilities
are given by the distributions in the mapping T .

Example 7.1 (Observation Table for Coffee Machine). Table 7.1 shows an observation table
created during learning of the coffee machine shown in Figure 5.1. The hypothesis derived from
that observable table is already equivalent to the true model. The set S includes a trace for
each state of the coffee machine. Note that these traces are pairwise inequivalent with respect to
eqRowE , where E = I = {but, coin}. As noted above, the traces labelled by Lt(S) define
transitions in hypotheses. For instance, the row labelled by init ·but ·init gives rise to the self-
loop transition in the initial state with the input but and probability 1. This is the case, because
the rows labelled by init · but · init and init are equivalent, where init ∈ S corresponds to
the initial state of the hypothesis.

Definition 7.4 (Closedness).
An observation table 〈S,E, T 〉 is closed if for all l ∈ Lt(S) there is an s ∈ S such that eqRowE(l, s).

Definition 7.5 (Consistency).
An observation table 〈S,E, T 〉 is consistent if for all s1, s2 ∈ S, i ∈ I, o ∈ O such that eqRowE(s1, s2)
it holds either that (1)1 T (s1 · i)(o) = 0 ∧ T (s2 · i)(o) = 0 or (2) eqRowE(s1 · i · o, s2 · i · o).

1 Note that s1 ∈ S implies that T (s1·i) 6= ⊥ such that T (s2·i)(o) = 0 follows from eqRowE(s1, s2) and T (s1·i)(o) = 0.

7.3. Exact Learning of MDPs 131

Algorithm 7.1 Function for making an observation table closed and consistent
1: function MAKECLOSEDANDCONSISTENT(〈S,E, T 〉)
2: if 〈S,E, T 〉 is not closed then
3: l← l′ ∈ Lt(S) such that ∀s ∈ S : row(s) 6= row(l′) ∨ last(s) 6= last(l′)
4: S ← S ∪ {l}
5: return 〈S,E, T 〉
6: else if 〈S,E, T 〉 is not consistent then
7: for all s1, s2 ∈ S such that eqRowE(s1, s2) do
8: for all i ∈ I, o ∈ O do
9: if T (s1 · i)(o) > 0 and ¬eqRowE(s1 · i · o, s2 · i · o) then

10: e← e′ ∈ E such that T (s1 · i · o · e′) 6= T (s2 · i · o · e′)
11: E ← E ∪ {i · o · e}
12: return 〈S,E, T 〉
13: end if
14: end for
15: end for
16: end if
17: return 〈S,E, T 〉 . reached if already closed and consistent
18: end function

Closedness and consistency are required to derive well-formed hypotheses, analogously to L∗ [37]. We
require closedness to create transitions for all inputs in all states and we require consistency to be able
to derive deterministic hypotheses. During learning, we apply Algorithm 7.1 repeatedly to establish
closedness and consistency of observation tables. The algorithm adds a new short trace if the table is not
closed and adds a new column if the table is not consistent.

We derive a hypothesis H = 〈Qh, I, O, q0h, δh, Lh〉 from a closed and consistent observation table
〈S,E, T 〉, denotedH = hyp(S,E, T), as follows:

• Qh = {〈last(s), row(s)〉 | s ∈ S}

• q0h = 〈o0, row(o0)〉, o0 ∈ S is the trace consisting of the initial SUL output

• for s ∈ S, i ∈ I and o ∈ O :
δh(〈last(s), row(s)〉, i)(〈o, row(s · i · o)〉) = p if T (s · i)(o) = p > 0 and 0 otherwise

• for s ∈ S: Lh(〈last(s), row(s)〉) = last(s)

7.3.3 Learning Algorithm

Algorithm 7.2 implements L∗MDPe using queries odq and eq. First, the algorithm initialises the obser-
vation table and fills the table cells with output distribution queries (lines 1 to 3). The main loop in
lines 4 to 18 makes the observation table closed and consistent, derives a hypothesis H and performs an
equivalence query eq(H). If eq(H) returns a counterexample cex, we add all its prefix traces as short
traces to S, otherwise Algorithm 7.2 returns the final hypothesis, as it is output-distribution equivalent
to the SUL. Whenever the observation table contains empty cells, the FILL procedure assigns values to
these cells via odq.

Note that we use the classic L∗-style counterexample processing, because other techniques to process
counterexamples are hard to apply efficiently in a sampling-based setting. It would be possible to adapt
Rivest and Schapire’s counterexample processing [240] in the exact setting considered in this section,
but the main purpose of introducing L∗MDPe is to provide a basis for the sampling-based L∗MDP.

132 Chapter 7. Test-Based Learning of Stochastic Systems

Algorithm 7.2 The main algorithm implementing the exact L∗MDPe

Input: I , exact teacher capable of answering odq and eq
Output: learned modelH (final hypothesis)

1: o0 ← o such that odq(ε)(o) = 1
2: S ← {o0}, E ← I
3: FILL(S,E, T)
4: repeat
5: while 〈S,E, T 〉 not closed or not consistent do
6: 〈S,E, T 〉 ← MAKECLOSEDANDCONSISTENT(〈S,E, T 〉)
7: FILL(S,E, T)
8: end while
9: H ← hyp(S,E, T)

10: eqResult ← eq(H)
11: if eqResult 6= yes then
12: cex← eqResult
13: for all (t · i) ∈ prefixes(cex) with i ∈ I do
14: S ← S ∪ {t}
15: end for
16: FILL(S,E, T)
17: end if
18: until eqResult = yes
19: return hyp(S,E, T)

20: procedure FILL(S,E, T)
21: for all s ∈ S ∪ Lt(S), e ∈ E do
22: if T (s · e) undefined then . we have no information about T (s · e) yet
23: T (s · e)← odq(s · e)
24: end if
25: end for
26: end procedure

7.3.4 Correctness & Termination

In the following, we will show that L∗MDPe terminates and learns correct models. We consider learned
models correct if they are output-distribution equivalent to the SUL. Like Angluin [37], we will show
that derived hypotheses are consistent with queried information and that they are minimal with respect
to the number of states. For the remainder of this section, let M be the semantics of the MDP underlying
the SUL and let M = can(M) be the corresponding canonical MDP and let H = 〈Q, I,O, q0, δ, L〉
denote hypotheses. The first two lemmas relate to observability of traces.

Lemma 7.3.
For all s ∈ T S, o ∈ O, e ∈ CS : M(s)(o) = 0⇒M(s · o · e) = ⊥.

Proof. Let δM be the probabilistic transition relation of M. M(s)(o) = 0 with s = t · i for i ∈ I
implies that there is no state labelled o reachable by executing i in the state δ∗M (t) (Definition 7.1), thus
δ∗M (t · i · o) = δ∗M (s · o) = ⊥. By Definition 7.1, M(s · o · i′) = ⊥ for any i′. Due to prefix-closedness
of dd(M), we have M(s · o · e) = ⊥ for all e ∈ CS .

Lemma 7.4.
Let 〈S,E, T 〉 be a closed and consistent observation table. Then for s ∈ S and s · i · o ∈ S ∪ Lt(S) we
have T (s · i)(o) > 0.

7.3. Exact Learning of MDPs 133

Proof. The lemma states that traces labelling rows are observable. Algorithm 7.2 adds elements to S
and consequently to Lt(S) in two cases: (1) if an equivalence query returns a counterexample and (2) to
make observation tables closed.

Case 1. Counterexamples c ∈ T S returned by equivalence queries eq(H) satisfy M(c) 6= ⊥ (see
also Lemma 7.2). In Line 14 of Algorithm 7.2, we add tp to S for each tp · ip ∈ prefixes(c). Due to
prefix-closedness of dd(M), M(tp · ip) 6= ⊥ for all tp · ip ∈ prefixes(c), and therefore M(s · i)(o) =
T (s ·i)(o) > 0 for each added trace tp of the form tp = s ·i ·owith i ∈ I and o ∈ O. Due to its definition,
the set Lt(S) is implicitly extended by all observable extensions of added tp. By this definition, Lt(S)
contains only traces t = s · i · o such that T (s · i)(o) > 0.

Case 2. If an observation table is not closed, we add traces from Lt(S) to S. As noted above, all traces
t = s · i · o in Lt(S) satisfy T (s · i)(o) > 0. Consequently, all traces added to S satisfy this property as
well.

Theorem 7.2 (Consistency and Minimality).
Let 〈S,E, T 〉 be a closed and consistent observation table and let H = hyp(S,E, T) be a hypothesis
derived from that table with semantics H . Then H is consistent with T , that is, ∀s ∈ (S ∪ Lt(s)) · E :
T (s) = H(s), and any other MDP consistent with T but inequivalent toH must have more states.

The following four lemmas are necessary to prove Theorem 7.2.

Lemma 7.5.
Let 〈S,E, T 〉 be a closed and consistent observation table. For H = hyp(S,E, T) and every s ∈
S ∪ Lt(S), we have δ∗(q0, s) = 〈last(s), row(s)〉.

Proof. Similarly to Angluin [37], we prove this by induction on the length k of s. In Section 5.2.2, we
defined the length of a trace as its number of input-output pairs. Hence, for the base case of k = 0, we
consider the trace s consisting of only the initial output o, that is, s = o. In this case, we have

δ∗(q0, o) = δ∗(〈o, row(o)〉, o) = 〈o, row(o)〉.

Assume that for every s ∈ S ∪ Lt(S) of length at most k, δ∗(q0, s) = 〈last(s), row(s)〉. Let
t ∈ S∪Lt(S) be a trace of length k+1. Such a t is of the form t = s · i ·ot, with s ∈ T R, i ∈ I, ot ∈ O.
If t ∈ Lt(S) then s must be in S, and if t ∈ S, then also s ∈ S because S is prefix-closed.

δ∗(q0, s · i · ot) = ∆(δ∗(q0, s), i, ot) (definition of δ∗)

= ∆(〈last(s), row(s)〉, i, ot) (by induction hypothesis)

= 〈ot, row(s · i · ot)〉 (definition of ∆)

if δ(〈last(s), row(s)〉, i)(〈ot, row(s · i · ot)〉) > 0

and L(〈ot, row(s · i · ot)〉) = ot

δ(〈last(s), row(s)〉, i)(〈ot, row(s · i · ot)〉) > 0

⇔ T (s · i)(ot) > 0 (construction of δ)

⇔ true (Lemma 7.4)

L(〈ot, row(s · i · ot)〉) = ot

⇔ true (construction of L)

Lemma 7.6.
Let (S,E, T) be a closed and consistent observation table. Then hyp(S,E, T) is consistent with T , i.e.
for every s ∈ S ∪ Lt(S) and e ∈ E we have T (s · e) = H(s · e).

134 Chapter 7. Test-Based Learning of Stochastic Systems

Proof. We will prove this by induction on k, the number of inputs in e. As induction hypothesis, we
assume that T (s · e) = H(s · e) for all s ∈ S ∪ Lt(S) and e ∈ E containing at most k inputs. For the
base case with k = 1, we consider e consisting of a single input, that is, e ∈ I . From Definition 7.1 we
can derive that H(s · i) 6= ⊥ if δ∗(s) 6= ⊥, which holds for s ∈ S ∪ Lt(S). Then we have:

H(s · i)(o) = δ(δ∗(s), i)(q) with L(q) = o

= δ(〈last(s), row(s)〉, i)(q) with L(q) = o (Lemma 7.5)

= δ(〈last(s), row(s)〉, i)(〈o, row(s · i · o)〉) (hypothesis construction)

= T (s · i)(o) (hypothesis construction)

For the induction step, let e ∈ E be such that it contains k+1 inputs, thus it is of the form e = i ·o ·ek
for i ∈ I , o ∈ O, and due to suffix-closedness of E, ek ∈ E. Note that ek contains k inputs. We have to
show that T (s · e) = H(s · e) for s ∈ S ∪Lt(S). Let s′ ∈ S such that eqRowE(s, s′), which exists due
to observation table closedness. Traces s and s′ lead to the same hypothesis state because:

δ∗(q0, s) = 〈last(s), row(s)〉 (Lemma 7.5)

= 〈last(s′), row(s′)〉 (eqRowE(s, s′))

= δ∗(q0, s
′) (Lemma 7.5)

Thus, s and s′ are H-equivalent and therefore H(s · e) = H(s′ · e). Due to eqRowE(s, s′), T (s · e) =
T (s′ · e) and in combination:

T (s · e) = H(s · e)⇔ T (s′ · e) = H(s′ · e)⇔ T (s′ · i · o · ek) = H(s′ · i · o · ek)

We will now show that T (s′ · i · o · ek) = H(s′ · i · o · ek) holds by considering two cases.
Case 1. Suppose that s′ · i ·o ∈ S∪Lt(S). Then, T (s′ · i ·o ·ek) = H(s′ · i ·o ·ek) holds by the induction
hypothesis, as ek contains k inputs.
Case 2. Suppose that s′ · i · o /∈ S ∪ Lt(S). Due to s′ ∈ S and the definition of Lt(S), we have

odq(s′ · i)(o) = M(s′ · i)(o) = 0.

By Lemma 7.3, it follows that M(s′ · i · o · e) = ⊥ for any continuation e ∈ CS. Since the observation
table is filled via odq we have

T (s′ · i · o · ek) = odq(s′ · i · o · ek) = M(s′ · i · o · ek) = ⊥.

By the induction base, we have H(s′ · i) = T (s′ · i) for i ∈ I , thus H(s′ · i)(o) = T (s′ · i)(o), for
which we know T (s′ · i)(o) = 0, because s′ · i · o /∈ S ∪ Lt(S). Combined with Lemma 7.3, we can
conclude that H(s′ · i · o · ek) = ⊥.
In both cases, it holds thatH(s′ · i ·o ·ek) = T (s′ · i ·o ·ek) which is equivalent toH(s ·e) = T (s ·e).

With Lemma 7.6, we have shown consistency between derived hypotheses and the queried informa-
tion stored in T . Now, we show that hypotheses are minimal with respect to the number of states.

Lemma 7.7.
Let 〈S,E, T 〉 be a closed and consistent observation table and let n be the number of different values
of 〈last(s), row(s)〉, i.e. the hypothesis hyp(S,E, T) has n states due to its construction. Any MDP
consistent with T must have at least n states.

Proof. Let M′ = 〈Q′, I, O, q′0, δ′, L′〉 with semantics M ′ be an MDP that is consistent with T . Let
s1, s2 ∈ S be such that ¬eqRowE(s1, s2), then (1) last(s1) 6= last(s2) or (2) row(s1) 6= row(s2). If
last(s1) 6= last(s2), then s1 and s2 cannot reach the same state in M′, because the states reached by
s1 and s2 need to be labelled differently. If row(s1) 6= row(s2), then there exists an e ∈ E such that

7.3. Exact Learning of MDPs 135

T (s1 · e) 6= T (s2 · e). SinceM′ is consistent with T , it holds also that M ′(s1 · e) 6= M ′(s2 · e). In this
case, s1 and s2 cannot reach the same state as well, as the observed future behaviour is different.

Consequently, M′ has at least n states, as there must exist at least one state for each value of
〈last(s), row(s)〉. Two traces s1 and s2 satisfying 〈last(s1), row(s1)〉 6= 〈last(s2), row(s2)〉 cannot
reach the same state.

Lemma 7.8.
Let 〈S,E, T 〉 be a closed and consistent observation table and H = hyp(S,E, T) be a hypothesis with
n states derived from it. Any other MDPM′ = 〈Q′, I, O, q′0, δ′, L′〉 with semantics M ′ consistent with
T , initial output L′(q′0) = L(q0), and with n or fewer states is isomorphic toH.

Proof. From Lemma 7.7, it follows thatM′ has at least n states, therefore we examineM′ with exactly
n states. For each state of H, i.e. for each unique row value 〈last(s), row(s)〉 labelled by some s ∈ S,
exists a unique state in Q′. Let φ be a mapping from short traces to Q′ given by φ(〈last(s), row(s)〉) =
δ′∗(q′0, s) for s in S. This mapping is bijective and we will now show that it maps q0 to q′0, that it
preserves the probabilistic transition relation and that it preserves labelling.

First, we start with the initial state and show φ(q0) = q′0:

φ(q0) = φ(〈o, row(o)〉) where o is the initial output of the SUL

= δ′
∗
(q′0, o)

= q′0 (definition of δ′∗)

For each s in S, i in I and o ∈ O. We have:

δ(〈last(s), row(s)〉), i)(〈last(s · i · o), row(s · i · o)〉)
= T (s · i)(o) (hypothesis construction)

and

δ′(φ(〈last(s), row(s)〉), i)(φ(〈last(s · i · o), row(s · i · o)〉)))
= δ′(δ′

∗
(q′0, s), i)(δ

′∗(q′0, s · i · o))
= M ′(s · i)(o) (Definition 7.1)

= T (s · i)(o) (M′ is consistent with T)

Transition probabilities are preserved by the mapping φ.

Finally, we show that labelling is preserved. For all s in S:

L′(φ(〈last(s), row(s)〉)) = L′(δ′
∗
(q′0, s))

= last(s) (definition of δ′∗)

and

L(〈last(s), row(s)〉) = last(s) (definition of L)

⇒ L′(φ(〈last(s), row(s)〉)) = L(〈last(s), row(s)〉)
Labelling is preserved by the mapping φ.

Hence, φ is an isomorphism betweenH andM′.

This concludes the proof of Theorem 7.2. Lemma 7.6 shows consistency between hypotheses and
the queried information stored in 〈S,E, T 〉. From Lemma 7.7 and Lemma 7.8, we can infer that any
MDP consistent with 〈S,E, T 〉, but inequivalent to hypothesis hyp(S,E, T), must have more states than
hyp(S,E, T).

136 Chapter 7. Test-Based Learning of Stochastic Systems

Theorem 7.3 (Termination and Correctness).
The algorithm L∗MDPe terminates and returns an MDPH isomorphic toM, thus it is minimal and it also
satisfiesM≡od H.

Proof.
Termination. Let 〈S,E, T 〉 be a closed and consistent observation table and let c ∈ T S be a coun-
terexample to equivalence between M and hypothesis hyp(S,E, T) with semantics H . Since c is a
counterexample, M(c) 6= H(c). Now let 〈S′, E′, T ′〉 be an observation table extended by adding all
prefix traces of c to S and (re-)establishing closedness and consistency. For hyp(S′, E′, T ′) = H′ with
semantics H ′, we have T ′(c) = M(c) due to output distribution queries. SinceH′ is consistent with T ′,
we have T ′(c) = H ′(c) = M(c). Hence, H ′(c) 6= H(c), which shows that H′ is not equivalent to H,
with c being a counterexample to equivalence. We do not remove elements from S, E, or T , thus H′
is also consistent with T . Therefore, H′ must have at least one state more than H according to Theo-
rem 7.2. It follows that each round of learning, which finds a counterexample, adds at least one state.
Since Algorithm 7.2 derives minimal hypotheses andM can be modelled with finitely many states, there
can only be finitely many rounds that find counterexamples. Hence, we terminate after a finite number
of rounds, because Algorithm 7.2 returns the final hypothesis as soon as an equivalence query eq returns
yes, which happens once no counterexample can be found.

Correctness. The algorithm terminates when an equivalence query eq(H) does not find a counterex-
ample between the final hypothesis H andM. Since there is no counterexample at this point, we have
H ≡od M. Theorem 7.2 states that H is minimal andM = can(M) is consistent with T , because T is
filled through output queries. Consequently, it follows from Lemma 7.8 that H is isomorphic toM, the
canonical MDP modelling the SUL.

7.4 Learning MDPs by Sampling

In this section, we introduce L∗MDP, a sampling-based learning algorithm for MDPs derived from L∗MDPe .
In contrast toL∗MDPe , which requires exact information,L∗MDP places weaker assumptions on the teacher. It
does not require exact output distribution queries and equivalence queries, but approximates these queries
via sampling by directed testing of the SUL. Distribution comparisons are consequently approximated
through statistical tests. While we use similar data structures as in Section 7.3, we alter the learning
algorithm structure. Since large amounts of data are required to produce accurate models, the sampling-
based L∗MDP allows to derive an approximate model at any time, unlike most other L∗-based algorithms.
This section is split into three parts: first, we present a sampling-based interface between teacher and
learner, as well as the interface between teacher and SUL. The second and third part describe the adapted
learner and the implementation of the teacher, respectively.

7.4.1 Queries

The sampling-based teacher maintains a multiset of traces S for the estimation of output distributions.
Whenever new traces are sampled in the course of learning, they are added to S. In contrast to the exact
setting, the teacher offers four queries, namely an equivalence query and three queries relating to output
distributions and samples S:

• frequency query (fq) : given a test sequence s ∈ T S, fq(s) : O → N0 are output frequencies
observed after s, where fq(s)(o) = S(s · o) for o ∈ O.

• complete query (cq) : given a test sequence s ∈ T S, cq(s) returns true if sufficient information
is available to estimate an output distribution from fq(s); returns false otherwise.

7.4. Learning MDPs by Sampling 137

• refine query (rfq) : instructs the teacher to refine its knowledge of the SUL by testing it directed
towards rarely observed samples. Traces sampled by rfq are added to S , increasing the accuracy
of subsequent probability estimations.

• equivalence query (eq) : given a hypothesis H, eq tests for output-distribution equivalence be-
tween the SUL and H; returns a counterexample from T S showing non-equivalence or returns
none if no counterexample was found.

The sampling-based teacher thus needs to implement two different testing strategies, one for increas-
ing accuracy of probability estimations along observed traces (refine query) and one for finding discrep-
ancies between a hypothesis and the SUL (equivalence query). The frequency query and the complete
query are used for hypothesis construction by the learner.

To test the SUL, we require the ability to (1) reset it and to (2) perform an input action and observe
the produced output. For the remainder of this section, let M = 〈Q, I,O, q0, δ, L〉 be the canonical
MDP underlying the SUL with semantics M . Based on q ∈ Q, the current execution state of M, we
define two operations available to the teacher:

• reset: resetsM to the initial state by setting q = q0 and returns L(q0).

• step: takes an input i ∈ I and selects a new state q′ according to δ(q, i)(q′). The step operation
then updates the execution state to q′ and returns L(q′).

Note that we consider M to be a black box, assuming its structure and transition probabilities to be
unknown. We are only able to perform inputs and observe output labels. For instance, we observe the
initial SUL output L(q0) after performing a reset. The same two operations are used for sampling in
Section 6.2 as well.

7.4.2 Learner Implementation

Sampling-Based Observation Tables

L∗MDP also uses observation tables, therefore we use the same terminology as in Section 7.3. Sampling-
based observation tables carry similar information as their exact counterparts, but instead of output dis-
tributions in Dist(O), they store non-negative integers denoting observed output frequencies. More
concretely, observation tables in the sampling-based setting store functions in (O → N0), from which
we estimate probability distributions.

Definition 7.6 (Sampling-based Observation Table).
An observation table is a tuple 〈S,E, T̂ 〉, consisting of a prefix-closed set of traces S ⊆ T R, a suffix-
closed set of continuation sequences E ⊆ CS , and a mapping T̂ : (S ∪Lt(S)) ·E → (O → N0), where
Lt(S) = {s · i · o | s ∈ S, i ∈ I, o ∈ O : fq(s · i)(o) > 0}.

An observation table can be represented by a two-dimensional array, containing rows labelled with
elements of S and Lt(S) and columns labelled by E. Each table cell corresponds to a sequence c = s ·e,
where s ∈ S ∪ Lt(S) is the row label of the cell and e ∈ E is the column label. It stores queried
output frequency counts T̂ (c) = fq(c). To represent the content of rows, we define the function row on
S ∪ Lt(S) by row(s)(e) = T̂ (s · e). The traces in Lt(S) are input-output-extensions of S which have
been observed so far. We refer to traces in S/Lt(S) as short/long traces. Analogously, we refer to rows
labelled by corresponding traces as short and long rows.

As in Section 7.3, we identify states with traces reaching these states. These traces are stored in the
prefix-closed set S. We distinguish states by their future behaviour in response to sequences in E. We
initially set S = {L(q0)}, where L(q0) is the initial output of the SUL, and E = I . Long traces, as
extensions of access sequences in S, serve to define transitions of hypotheses.

138 Chapter 7. Test-Based Learning of Stochastic Systems

Hypothesis Construction

As in Section 7.3, observation tables need to be closed and consistent for a hypothesis to be constructed.
Unlike before, we do not have exact information to check equivalence of rows. We need to statistically
test if rows are different. Therefore, Definition 7.7 gives a condition to determine whether two sequences
lead to statistically different observations, meaning that the corresponding output frequency samples
come from different distributions. The condition is based on Hoeffding bounds [142] which are also
used by Carrasco and Oncina [75]. In Definition 7.8, we further apply this condition in a check for
approximate equivalence between cells and extend this check to rows. Using similar terminology as
Carrasco and Oncina [75], we refer to such checks as compatibility checks and we say that two cells/rows
are compatible if we determine that they are not statistically different. These notions of compatibility
serve as the basis for slightly adapted definitions of closedness and consistency.

The confidence levels of the statistical tests in Condition 2.b. of Definition 7.7 depend on a parameter
α [75], which we assume to be globally accessible to simplify presentation. For convergence proofs,
we let α depend on the number of sampled traces in S, but we observed slightly better performance
for small constant values, such as 0.05; see also Section 7.6. In general, learning performance can be
assumed to be robust with respect to the exact setting of α. Carrasco and Oncina pointed out that: “The
algorithm behaved robustly with respect to the choice of parameter α, due to its logarithmic dependence
on the parameter.” [75] Similar observations have been made by Mao et al. [199], who applied Hoeffding
bounds as well.

Definition 7.7 (Different).
Two test sequences s and s′ in T S produce statistically different output distributions with respect to
f : T S → (O → N0), denoted difff(s, s

′), iff

1. cq(s) ∧ cq(s′) ∧ n1 > 0 ∧ n2 > 02, where n1 =
∑

o∈O f(s)(o), n2 =
∑

o∈O f(s′)(o), and one
of the following conditions holds

2.a. ∃o ∈ O : ¬(f(s)(o) > 0⇔ f(s′)(o) > 0), or

2.b. ∃o ∈ O :
∣∣∣f(s)(o)

n1
− f(s′)(o)

n2

∣∣∣ > (√ 1
n1

+
√

1
n2

)
·
√

1
2 ln 2

α , where α specifies the confidence level

(1− α)2 for testing each o separately based on a Hoeffding bound [75, 142].

Definition 7.8 (Compatible).
Two cells labelled by c = s·e and c′ = s′·e′ are compatible, denoted compatible(c, c′), iff¬diff

T̂
(c, c′).

Two rows labelled by s and s′ are compatible, denoted compatibleE(s, s′) iff last(s) = last(s′) and
the cells corresponding to all e ∈ E are compatible, i.e. ∀e ∈ E : compatible(s · e, s′ · e).

Compatibility Classes

In Section 7.3, we formed equivalence classes of traces with respect to eqRowE to create one hypothesis
state per equivalence class. Now we partition rows labelled by S based on compatibility. Compatibility
given by Definition 7.8, however, is not an equivalence relation, as it is not transitive in general. As a
result, we cannot simply create equivalence classes.

We apply the heuristic implemented by Algorithm 7.3 to partition S. This heuristic chooses a rep-
resentative r for each block in the partition based on the amount of information available for r. The
available information is computed by the rank function in Algorithm 7.3, which basically checks how
many input-output extensions of r have been sampled. As in equivalence classes, every trace in a block
is compatible to its block representative.

2A similar condition is also used in the compatibility checks by Carrasco and Oncina [75], which assumes no difference if
there are no observations for either s or s′.

7.4. Learning MDPs by Sampling 139

Algorithm 7.3 Creation of compatibility classes
1: for all s ∈ S do
2: rank(s)←

∑
i∈I
∑

o∈O T̂ (s · i)(o)
3: end for
4: unpartitioned← S
5: R← ∅
6: while unpartitioned 6= ∅ do
7: r ← m where m ∈ unpartitioned with largest rank(m)
8: R← R ∪ {r}
9: cg(r)← {s ∈ unpartitioned | compatibleE(s, r)}

10: for all s ∈ cg(r) do
11: rep(s)← r
12: end for
13: unpartitioned← unpartitioned \ cg(r)
14: end while

Algorithm 7.3 first assigns a rank to each trace in S. Then, it partitions S by iteratively selecting
the trace r with the largest rank and computing a compatibility class cg(r) for r. The trace r is the
(canonical) representative for s in cg(r), which we denote by rep(s) (Line 11). Each representative r is
stored in the set of representative tracesR. In contrast to equivalence classes, elements in a compatibility
class need not be pairwise compatible and an s may be compatible to multiple representatives, where
the unique representative rep(s) of s has the largest rank. However, in the limit compatibleE based
on Hoeffding bounds converges to an equivalence relation [75] and therefore compatibility classes are
equivalence classes in the limit; see Section 7.5.

Definition 7.9 (Sampling Closedness).
An observation table 〈S,E, T̂ 〉 is closed if for all l ∈ Lt(S) there is a representative s ∈ R with
compatibleE(l, s).

Definition 7.10 (Sampling Consistency).
An observation table 〈S,E, T̂ 〉 is consistent if for all compatible pairs of short traces s, s′ in S and all
input-output pairs i·o ∈ I ·O, we have that (1) at least one of the extensions has not been observed yet, i.e.
T̂ (s·i)(o) = 0 or T̂ (s′·i)(o) = 0, or (2) both extensions are compatible, i.e. compatibleE(s·i·o, s′·i·o).

The adapted notions of closedness and consistency of observation tables are based on compatibil-
ity and compatibility classes. Note that the first condition of consistency may be satisfied because of
incomplete information.

Hypothesis Construction

Given a closed and consistent observation table 〈S,E, T̂ 〉, we derive a hypothesis H = hyp(S,E, T̂)
through the steps below. Note that extensions s · i · o of s in R ⊆ S define transitions. Some extensions
may have few observations, such that

∑
o∈O T̂ (s · i)(o) is low and cq(s · i) = false. In case of such

uncertainties, we add transitions to a special sink state labelled by “chaos”, an output not in the original
alphabet3. A hypothesis is a tupleH = 〈Qh, I, O ∪ {chaos}, q0h, δh, Lh〉 where:

3This is inspired by the introduction of chaos states in ioco-based learning [283]. We also added such a state in Section 6.2,
if the trace sample for learning did not include information on certain state-input pairs.

140 Chapter 7. Test-Based Learning of Stochastic Systems

• representatives for long traces l ∈ Lt(S) are given by (see Algorithm 7.3):
rep(l) = r where r ∈ {r′ ∈ R | compatibleE(l, r′)} with largest rank(r)

• Qh = {〈last(s), row(s)〉 | s ∈ R} ∪ {qchaos},

– for q = 〈o, row(s)〉 ∈ Qh \ {qchaos}: Lh(q) = o

– for qchaos: Lh(qchaos) = chaos and for all i ∈ I: δh(qchaos, i)(qchaos) = 1

• q0h = 〈L(q0), row(L(q0))〉 (note that L(q0) ∈ S due to initialisation)

• for q = 〈last(s), row(s)〉 ∈ Qh \ {qchaos} and i ∈ I (note that I ⊆ E):

1. If ¬cq(s · i): δ(q, i)(qchaos) = 1, i.e. move to chaos

2. Otherwise estimate a distribution µ = δh(q, i) over the successor states:

for o ∈ O with T̂ (s · i)(o) > 0: µ(〈o, row(rep(s · i · o))〉) = T̂ (s·i)(o)∑
o′∈O T̂ (s·i)(o′)

Updating the Observation Table

Closedness and Consistency. Analogously to Section 7.3, we make observation tables closed by
adding new short rows and we establish consistency by adding new columns. We refer to the function im-
plementing that also as MAKECLOSEDANDCONSISTENT. While L∗MDPe implemented by Algorithm 7.2
needs to fill the observation table after executing MAKECLOSEDANDCONSISTENT, this is not required
in the sampling-based setting due to the adapted notions of closedness and consistency.

Trimming the Observation Table. Observation table size greatly affects learning performance, there-
fore it is common to avoid adding redundant information [151, 240], which we also discussed in Sec-
tion 2.3. Due to inexact information, this is hard to apply in a stochastic setting. We instead remove rows
via a function TRIM once we are certain that removing them does not change the hypothesis. Given an
observation table 〈S,E, T̂ 〉, we remove s and all s′ such that s� s′ from S if:

1. there is exactly one r ∈ R such that compatibleE(s, r)

2. s /∈ R and ∀r ∈ R : ¬(s� r)

3. and ∀s′ ∈ S, i ∈ I , with s� s′: difffq(s′ · i, r · i) = false, where r ∈ R such that δ∗h(r) = δ∗h(s′),
〈last(r), row(r)〉 = δ∗h(r), and δh is the transition relation of hyp(S,E, T̂).

The first condition is motivated by the observation that if s is compatible to exactly one r, then all ex-
tensions of s can be assumed to reach the same states as the extensions of r. In this case, s presumably
corresponds to the same SUL state as r, therefore we do not need to store s in the observation table. The
other conditions make sure that we do not remove required rows, because of a spurious compatibility
check in the first condition. The second condition ensures that we do not remove representatives and the
third condition is related to the implementation of equivalence queries. It basically checks for compatibil-
ity between the hypothesis hyp(S,E, T̂) and the frequency information available via frequency queries.
This is done by checking if an extension s′ of s reveals a difference between the output frequencies ob-
served after s′ (queried via fq) and the output frequencies observed after the representative r reaching the
same hypothesis state as s′. Put differently, we check if s′ is a counterexample to equivalence between
hypothesis and SUL. Note that removed rows do not affect hypothesis construction.

7.4. Learning MDPs by Sampling 141

Algorithm 7.4 The main algorithm implementing the sampling-based L∗MDP

Input: sampling-based teacher capable of answering fq, rfq, eq and cq
Output: final learned model hyp(S,E, T̂)

1: S ← {L(q0)}, E ← I , T̂ ← {} . initialise observation table
2: perform rfq(〈S,E, T̂ 〉) . sample traces for initial observation table
3: for all s ∈ S ∪ Lt(S), e ∈ E do
4: T̂ (s · e)← fq(s · e) . update observation table with frequency information
5: end for
6: round ← 0
7: repeat
8: round ← round + 1
9: while 〈S,E, T̂ 〉 not closed or not consistent do

10: 〈S,E, T̂ 〉 ← MAKECLOSEDANDCONSISTENT(〈S,E, T̂ 〉)
11: end while
12: H ← hyp(S,E, T̂) . create hypothesis
13: 〈S,E, T̂ 〉 ← TRIM(〈S,E, T̂ 〉,H) . remove rows that are not needed
14: cex ← eq(H)
15: if cex 6= none then . we found a counterexample
16: for all (t · i) ∈ prefixes(cex) with i ∈ I do
17: S ← S ∪ {t} . add all prefixes of the counterexample
18: end for
19: end if
20: perform rfq(〈S,E, T̂ 〉) . sample traces to refine knowledge about SUL
21: for all s ∈ S ∪ Lt(S), e ∈ E do
22: T̂ (s · e)← fq(s · e) . update observation table with frequency information
23: end for
24: until STOP(〈S,E, T̂ 〉,H, round)
25: return hyp(S,E, T̂) . output final hypothesis

Learning Algorithm

Algorithm 7.4 implements L∗MDP. It first initialises an observation table 〈S,E, T̂ 〉 with the initial SUL
output as first row and with the inputs I as columns (Line 1). Lines 2 to 5 perform a refine query and then
update 〈S,E, T̂ 〉 with output frequency information, which corresponds to output distribution queries in
L∗MDPe . Here, the teacher resamples the only known trace L(q0). Resampling that trace consists of
observing L(q0), performing some input, and observing another output.

After that, we perform Line 7 to Line 24 until a stopping criterion is reached. We establish closedness
and consistency of 〈S,E, T̂ 〉 in Line 10 to build a hypothesis H in Line 12. After that, we remove
redundant rows of the observation table via TRIM in Line 13. Then, we perform an equivalence query,
testing for equivalence between SUL and H. If we find a counterexample, we add all its prefix traces as
rows to the observation table as in L∗MDPe . Finally, we sample new system traces via rfq to gain more
accurate information about the SUL (Lines 20 to 23). Once we stop, we output the final hypothesis.

Stopping. L∗MDPe and deterministic automata learning usually stop learning once equivalence between
the learned hypothesis and the SUL is achieved. In implementations of equivalence queries via testing,
equivalence is usually assumed to hold when no counterexample can be found. Here, we employ a
different stopping criterion, because equivalence can hardly be achieved via sampling. Furthermore, we
may wish to carry on resampling via rfq although we did not find a counterexample. Resampling may
improve the accuracy of a hypothesis such that subsequent equivalence queries reveal counterexamples.

142 Chapter 7. Test-Based Learning of Stochastic Systems

Our stopping criterion takes statistical uncertainty4 in compatibility checks into account. As previ-
ously noted, rows may be compatible to multiple other rows. In particular, a row labelled by s may be
compatible to multiple representatives. In such a case, we are not certain which state is reached by the
trace s. We address this issue by stopping based on the ratio runamb of unambiguous traces to all traces,
which we compute by:

runamb =
|{s ∈ S ∪ Lt(S) : unambiguous(s)}|

|S ∪ Lt(S)|
where

unambiguous(s)⇔ |{r ∈ R : compatibleE(s, r)}| = 1

More concretely, we stop if:

1.a. at least rmin rounds have been executed and

1.b. the chaos state qchaos is unreachable and

1.c. and runamb ≥ tunamb, where tunamb is a user-defined threshold,

or

2.a. alternatively we stop after a maximum number of rounds rmax.

7.4.3 Teacher Implementation

In the following, we describe the implementation of each of the four queries provided by the teacher.
Recall that we interact with the SUL with semantics M via the two operations reset and step; see
Section 6.2 and Section 7.4.1. The canonical MDP can(M) = M = 〈Q, I,O, q0, δ, L〉 has the same
observable behaviour as the SUL.

Frequency Query

The teacher keeps track of a multiset of sampled system traces S. Whenever a new a trace is added, all
its prefixes are added as well, as they have been observed as well. Therefore, we have for t ∈ T R, t′ ∈
prefixes(t) : S(t) ≤ S(t′). The frequency query fq(s) : O → N0 for s ∈ T S returns output frequencies
observed after s:

∀o ∈ O : fq(s)(o) = S(s · o)

Complete Query

Trace frequencies retrieved via fq are generally used to compute empirical output distributions µ fol-
lowing a sequence s in T S , i.e. the learner computes µ(o) = fq(s)(o)∑

o′∈O fq(s)(o′) to approximate M(s)(o).
The complete query cq takes a sequence s as input and signals whether s should be used to approximate
M(s), for instance, to perform statistical tests5. We base cq on a threshold nc > 0 by defining:

cq(s) =

true if

∑
o∈O S(s · o) ≥ nc

true if ∃s′, o, i : s′ · o · i� s ∧ cq(s′) ∧ S(s · o) = 0

false otherwise

Note that for a complete s, all prefixes of s are also complete. Additionally if cq(s), then we assume
that we have seen all extensions of s. Therefore, we set for each o with S(s · o) = 0 all extensions of
s · o to be complete (second clause). The threshold nc is user-specifiable in our implementation.

4This form of uncertainty does not refer to uncertain behaviour in general, but to uncertainty related to decisions based on
statistical tests.

5This query serves a similar purpose as the completeness queries used by Volpato and Tretmans [283].

7.4. Learning MDPs by Sampling 143

Algorithm 7.5 Refine query

Input: observation table 〈S,E, T̂ 〉, number of requested new traces nresample

Output: updated multiset of traces S
1: rare ← {s | s ∈ (S ∪ Lt(S)) · E : ¬cq(s)} . identify incomplete sequences
2: prefixTree ← BUILDPREFIXTREE(rare)
3: for i← 1 to nresample do . collect nresample new samples
4: newTrace ← SAMPLESUL(prefixTree)
5: S ← S] {newTrace}
6: end for
7: function SAMPLESUL(prefixTree)
8: node ← root(prefixTree)
9: trace ← reset . initialise SUL and observe initial output

10: loop
11: input ← rSel({i ∈ I | ∃o ∈ O,n : node

i,o−→ n}) . random input
12: output ← step(i) . execute SUL and observe output
13: trace ← trace · i · o
14: if trace /∈ prefixTree or trace labels leaf then . did we leave the tree?
15: return trace
16: end if
17: node ′ ← n with node

i,o−→ n . move in tree
18: node ← node ′

19: end loop
20: end function

Refine Query

Refine queries serve the purpose of refining our knowledge about output distributions along previously
observed traces. Therefore, we select rarely observed traces and resample them to perform this query.
We implemented this through the procedure outlined in Algorithm 7.5.

First, we build a prefix tree from rarely observed traces (Line 1 and Line 2), where edges are labelled
by input-output pairs and nodes are labelled by traces reaching the nodes. This tree is then used for
directed online-testing of the SUL via SAMPLESUL (Lines 7 to 20) with the goal of reaching a leaf of
the tree. In this way, we create nresample new samples and add them to the multiset of samples S.

Equivalence Query

As explained in Section 2.4, equivalence queries are often implemented via (conformance) testing in
active automata, for instance, using the W-method [83] method for deterministic models. Such testing
techniques generally execute some test suite to find counterexamples to conformance between a model
and the SUL. In our setup, a counterexample is a test sequence inducing a different output distribution
in the hypothesis H than in the SUL. Since we cannot directly observe those distributions, we perform
equivalence queries by applying two strategies to find counterexamples. First, we search for counterex-
amples with respect to the structure of H via testing. Secondly, we check for statistical conformance
between all traces S sampled so far andH, which allows us to detect incorrect output distributions.

Note that all traces to the state qchaos are guaranteed to be counterexamples, as its label chaos is
not part of the original output alphabet O. For this reason, we do not search for other counterexamples
if qchaos is reachable in H. In slight abuse of terminology, we implement this by returning none from
eq(H). L∗MDP in Algorithm 7.4 will then issue further rfq queries, lowering uncertainty about state
transitions, which in turn causes qchaos to be unreachable eventually.

144 Chapter 7. Test-Based Learning of Stochastic Systems

Algorithm 7.6 State-coverage-based testing for counterexample detection
Input: H = 〈Qh, I, Oh, q0h, δh, Lh〉, schedulers qSched
Output: counterexample test sequence s ∈ T S or none

1: qcurr ← q0h . current state
2: trace ← reset
3: qtarget ← rSel(reachable(Qh, qcurr)) . choose a target state
4: loop
5: if coinFlip(prand) then
6: in ← rSel(I) . random next input
7: else
8: in ← qSched(qtarget) . next input leads towards target
9: end if

10: out ← step(in) . perform input
11: qcurr ← ∆h(qcurr, in · out) . move in hypothesis
12: if qcurr = ⊥ then . output not possible in hypothesis
13: return trace · in . return counterexample
14: end if
15: trace ← trace · in · out
16: if coinFlip(pstop) then . stop with probability pstop

17: return none
18: end if
19: if qcurr = qtarget or qtarget /∈ reachable(Qh, qcurr) then
20: qtarget ← rSel(reachable(Qh, qcurr)) . choose new target
21: end if
22: end loop

Testing of Structure. Our goal in testing is to sample a trace of the SUL that is not observable on the
hypothesis. For this purpose, we adapted the randomised transition coverage testing strategy, which we
presented in Chapter 4, from Mealy machines to MDPs. We adapted this strategy rather than the mutation
strategy, because it is unclear how to adapt the mutation strategy and our evaluation in Section 4.4 showed
that transition coverage was effective in most cases [17]. It reliably found counterexamples with a low
number of tests. Since MDPs produce outputs in states, whereas Mealy machines produce outputs on
transitions, we target state coverage in MDP-based testing instead of transition coverage.

To test stochastic SULs, we generate test cases that interleave random walks in hypotheses with paths
leading to randomly chosen states. By performing many of these tests, we aim at covering hypotheses
adequately, while exploring new parts of the SUL’s state space through random testing. In contrast to
Section 4.2, but as in Chapter 6, we perform online testing. This is necessary, because of the stochastic
behaviour of the SUL. The online-testing procedure is outlined in Algorithm 7.6.

The algorithm takes a hypothesis and qSched as input where qSched is a mapping from states to
schedulers. Given q ∈ Q, qSched(q) is a scheduler maximising the probability of reaching q, therefore
it selects inputs optimally with respect to the reachability of q. As noted in Section 5.3.1, there exist
memoryless and deterministic schedulers for optimal reachability [114]. Such schedulers take only the
last state in the current execution path into account and they select inputs non-probabilistically. Hence,
a scheduler qSched(q) is a function s : Q → I . We compute these schedulers similarly as in Sec-
tion 6.2, except that here we consider unbounded reachability of a hypothesis state, rather than bounded
reachability of an output. Unfortunately, value iteration is less efficient and accurate in this scenario.

In Algorithm 7.6, we start by randomly choosing a target state qtarget from the states reachable
from the initial state (Line 3). These states are given by reachable(Q, qcurr). Then, we execute the SUL,
either with random inputs (Line 6) or with inputs leading to the target (Line 8), which are computed using
schedulers. If we observe an output which is not possible in the hypothesis, we return a counterexample

7.5. Convergence of L∗MDP 145

(Line 13). Alternatively, we may stop with probability pstop (Line 17). If we reach the target or it
becomes unreachable, we simply choose a new target state (Line 20).

For each equivalence query, we repeat Algorithm 7.6 up to ntest times and report the first counterex-
ample that we find, if any. In case we find a counterexample c, we resample it up to nretest times or
until cq(c), to get more accurate information about it. If we do not find a counterexample, we check for
conformance between the current hypothesis and the sampled traces S, as described below.

Checking Conformance to S. For each sequence t · i ∈ T S with i ∈ I such that cq(t · i), we check
for consistency between the information stored in S and the current hypothesis H by evaluating two
conditions:

1. Is t observable on H? If it is not, then we determine the longest observable prefix t′ of t such
that t′ · i′ · v = t, where i′ is a single input, and return t′ · i′ as counterexample from eq(H).
The sequence t′ · i′ is a counterexample, because at least one of its extensions has been observed
(cq(t · i) =⇒ S(t) > 0), but none of its extensions is observable on the hypothesis.

2. If t is observable, we determine q = 〈o, row(r)〉 reached by t in H, where r ∈ R, and return t · i
as counterexample if difffq(t · i, r · i) is true. This statistical check approximates the comparison
M(t · i) 6= M(r · i), to check if t 6≡M r. Therefore, it implicitly checks M(t · i) 6= H(t · i), as
t ≡H r.

If neither of the two equivalence checking strategies, i.e. testing of structure and checking conformance
to S, finds a counterexample, we return none from the corresponding equivalence query.

7.5 Convergence of L∗MDP

In the following, we will show that the sampling-based L∗MDP learns a correct MDP. Based on the notion
of language identification in grammatical inference [95], we describe our goal as producing an MDP
isomorphic to the canonical MDP modelling the SUL with probability one in the limit.

To show identification in the limit, we introduce slight simplifications. First, we disable trimming of
the observation table (see Section 7.4.2), thus we do not remove rows. Secondly, we set prand = 1 for
equivalence testing and we do not stop testing at the first detected difference between SUL and hypoth-
esis, but we stop solely based on a pstop < 1. As a result, all input choices are distributed uniformly
at random (i.e. equivalence testing does not use schedulers for achieving state coverage) and the length
of each test is geometrically distributed with pstop. This is motivated by the common assumption that
sampling distributions do not change during learning [95]. Thirdly, we change the function rank in Al-
gorithm 7.3 to assign ranks based on a lexicographic ordering of traces rather than based on observed
frequencies, such that the trace consisting only of the initial SUL output has the highest rank. We actu-
ally implemented both types of rank functions and found that the frequency-based function led to better
accuracy, but would require more complex proofs. We let the number of samples for learning approach
infinity, therefore we do not use a stopping criterion. Finally, we concretely instantiate the complete
query cq by setting nc = 1, since nc is only relevant for applications in practice.

7.5.1 Proof Structure

We show convergence in two major steps: (1) first we show that the hypothesis structure derived from a
sampling-based observation table converges to the hypothesis structure derived from the corresponding
observation table with exact information. (2) Then, we show that if counterexamples exist, we will
eventually find them. Through that, we eventually arrive at a hypothesis with the same structure as the
canonical MDP can(M), where M is the SUL semantics. Given a hypothesis with correct structure,

146 Chapter 7. Test-Based Learning of Stochastic Systems

it follows by the law of large numbers that the estimated transition probabilities converge to the true
probabilities, thus the hypotheses converge to an MDP isomorphic to can(M).

A key point of the proofs concerns the convergence of the statistical test applied by difff, which is
based on Hoeffding bounds [142]. With regard to that, we apply similar arguments as Carrasco and
Oncina [75, p.11-13 & Appendix]. Given convergence of difff, we also rely on the convergence of the
exact learning algorithm L∗MDPe discussed in Section 7.3.4. Another important point is that the shortest
traces in each equivalence class of S/≡M do not form loops in can(M). Hence, there are finitely many
such traces. Furthermore, for a given can(M) and some hypothesis MDP, the shortest counterexam-
ple has bounded length, therefore it suffices to check finitely many test sequences to check for overall
equivalence.

Definitions & Notation

We show convergence in the limit of the number of sampled system traces n. We take n into account
through a data-dependent αn for the Hoeffding bounds used by difff defined in Definition 7.7. More
concretely, let αn = 1

nr for r > 2 as used by Mao et al. [199], which implies
∑

n αnn < ∞. For
the remainder of this section, let 〈Sn, En, T̂n〉 be the closed and consistent observation table containing
the first n samples stored by the teacher in the multiset Sn. Furthermore, let Hn be the hypothesis
hyp(Sn, En, T̂n), let the semantics of the SUL be M and letM be the canonical MDP can(M). We say
that two MDPs have the same structure, if their underlying graphs are isomorphic, thus exact transition
probabilities may be different. Now we can state the main theorem on convergence.

Theorem 7.4 (Convergence).
Given a data-dependent αn = 1

nr for r > 2, which implies
∑

n αnn <∞, then with probability one, the
hypothesisHn is isomorphic toM, except for finitely many n.

Hence, in the limit, we learn an MDP that is minimal with respect to the number of states and output-
distribution equivalent to the SUL.

Access Sequences

The exact learning algorithm L∗MDPe presented in Section 7.3 iteratively updates an observation table.
Upon termination it arrives at an observation table 〈S,E, T 〉 and a hypothesis H = hyp(S,E, T) =
〈Qh, I, O, q0h, δh, Lh〉. Let Sacc ⊆ S be the set of shortest access sequences leading to states in Q given
by Sacc = {s | s ∈ S,@s′ ∈ S : s′ � s ∧ s′ 6= s ∧ δ∗h(q0h, s) = δ∗h(q0h, s

′)} (the shortest traces in each
equivalence class of S/eqRowE = S/≡M). By this definition, Sacc forms a directed spanning tree in
the structure ofH. There are finitely many different spanning trees for a given hypothesis, therefore there
are finitely many different Sacc. Hypothesis models learned byL∗MDPe are isomorphic toM, thus there are
finitely many possible final hypotheses. Let S be the finite union of all access sequence sets Sacc forming
spanning trees in all valid final hypotheses. Let L = {s · i · o | s ∈ S, i ∈ I, o ∈ O,M(s · i)(o) > 0} be
one-step extensions of S with non-zero probability.

Note that for the construction of correct hypotheses in L∗MDPe , it is sufficient for eqRowE to ap-
proximate M -equivalence (see Definition 7.2) for traces in L. Actually, if eqRowE is equivalent to
M -equivalence for traces in L, then both are equivalent on all possible traces in T R. Consequently, the
approximation of eqRowE via compatibleE needs to hold only for traces in L.

Proof. We now show that ∀t1, t2 ∈ T R : eqRowE(t1, t2) ⇔ t1 ≡M t2 follows from ∀t′1, t′2 ∈ L :
eqRowE(t′1, t

′
2)⇔ t′1 ≡M t′2.

Direction “⇐”: By the definition of ≡M and eqRowE , we have eqRowE(t1, t2) ⇐ t1 ≡M t2
for all t1, t2 ∈ T R and all E ⊆ CS. Intuitively, two traces in the same M -equivalence class cannot be
distinguished by a finite set of continuation sequences.

7.5. Convergence of L∗MDP 147

Direction “⇒”: Hence, it remains to show that ∀t1, t2 ∈ T R : eqRowE(t1, t2) ⇒ t1 ≡M t2 if
∀t′1, t′2 ∈ L : eqRowE(t′1, t

′
2) ⇔ t′1 ≡M t′2. We shall prove this by contradiction, thus we assume that

there exist t1 and t2 in T R such that eqRowE(t1, t2), but t1 6≡M t2, thus violating the implication.

Let t′1 and t′2 be traces in L such that t′1 ≡M t1 and t′2 ≡M t2. These traces exist, because L contains
all input-output extensions of traces corresponding to simple paths in the structure of the canonical MDP
M. Put differently, all states can be reached by traces in L. By our assumption and transitivity of ≡M ,
we have t′1 6≡M t′2. Since t′1, t

′
2 ∈ L and eqRowE(t′1, t

′
2) ⇔ t′1 ≡M t′2 for such traces, it follows that

¬eqRowE(t′1, t
′
2).

Since t′1 ≡M t1 and t′2 ≡M t2, we have eqRowE(t′1, t1) and eqRowE(t′2, t2) (see Direction “⇐”).
Due to the transitivity of eqRowE and the assumption that eqRowE(t1, t2) holds, we can deduce
eqRowE(t′1, t

′
2). This is a contradiction to the paragraph above. Hence, our assumption must be wrong.

There does not exist a pair of traces t1, t2 ∈ T R such that eqRowE(t1, t2), but t1 6≡M t2.

7.5.2 Hoeffding-Bound-Based Difference Check

Before discussing hypothesis construction, we briefly discuss the Hoeffding-bound-based test applied by
difff. Recall that for two test sequences s and s′, we test for each o ∈ O if the probability p of observing
o after s is different than the probability p′ of observing o after s′. This is implemented through:

∃o ∈ O :

∣∣∣∣f(s)(o)

n1
− f(s′)(o)

n2

∣∣∣∣ > (√ 1

n1
+

√
1

n2

)
·
√

1

2
ln

2

α
= εα(n1, n2)

As pointed out by Carrasco and Oncina [75, p.11-13 & Appendix], this test works with a confidence
level above (1 − α)2 and for large enough n1 and n2, it tests for difference and equivalence of p and
p′. More concretely, for convergence, n1 and n2 must be such that 2εα(n1, n2) is smaller than the
smallest absolute difference between any two different p and p′. As our data-dependent αn decreases
only polynomially, εα(n1, n2) tends to zero for increasing n1 and n2. Hence, the test implemented by
difff converges to an exact comparison between p and p′.

In the remainder of the paper, we ignore Condition 2.a for difff, which checks if the sampled dis-
tributions have the same support. By applying a data-dependent αn, as defined above, Condition 2.b
converges to an exact comparison between output distributions, thus 2.a is a consequence of 2.b in the
limit. Therefore, we consider only the Hoeffding-bound-based tests of Condition 2.b.

7.5.3 Hypothesis Construction

Theorem 7.5 (Compatibility Convergence).
Given αn such that

∑
n αnn <∞, then with probability one: compatibleE(s, s′)⇔ eqRowE(s, s′)

for all traces s, s′ in L, except for finitely many n.

Proof. Let An be the event that compatibleE(s, s′) 6⇔ eqRowE(s, s′) and p(An) be the probability
of this event. In the following, we derive a bound for p(An) based on the confidence level of applied tests
in Definition 7.7 which is above (1−αn)2 [75]. An observation table stores |S∪Lt(S)| · |E| cells, which
gives us an upper bound on the number of tests performed for computing compatibleE(s, s′) for two
traces s and s′. However, note that cells do not store unique information; multiple cells may correspond
to the same test sequence in T S , therefore it is simpler to reason about the number of different tests
in calls to diff

T̂
(c, c′) = difffq(c, c′) with respect to Sn. A single call to difffq involves either 0 or |O|

tests. We apply tests only if we have observed both c and c′ at least once, therefore we perform at most
2 · |O| · n different tests for all pairs of observed test sequences. The event An may occur if any test
produces an incorrect result, i.e. it yields a Boolean result different from the comparison between the
true output distributions induced by c and c′. This leads to p(An) ≤ 2 · |O| · n · (1− (1− αn)2), which
implies p(An) ≤ 4 · |O| ·n ·αn. By choosing αn such that

∑
n αnn <∞, we have

∑
n p(An) <∞ and

148 Chapter 7. Test-Based Learning of Stochastic Systems

we can apply the Borel-Cantelli lemma like Carrasco and Oncina [75], which states An happens only
finitely often. Hence, there is an Ncomp such that for n > Ncomp, we have compatibleE(s, s′) ⇔
eqRowE(s, s′) with respect to Sn.

Lemma 7.9.
Under the assumed uniformly randomised equivalence testing strategy, it holds for every s · i · o ∈ L :
Sn(s · i · o) > 0 after finitely many n.

Proof. Informally, we will eventually sample all traces l ∈ L. The probability pL of sampling l =
o0 · i1 · o1 · · · on · i · o during a test, where l[≤ k] is the prefix test sequence of l of length k, is given by
(note that we may sample l as a prefix of another sequence):

pL =
1

|I|n+1
M(l[≤ 1])(o1) · · ·M(l[≤ n])(on) ·M(l[≤ n+ 1])(o)(1− pstop)n

Since every l ∈ L is observable, we have M(l[≤ 1])(o1) · · ·M(l[≤ n])(on) ·M(t[≤ n+ 1])(o) > 0,
thus pL > 0. Hence, there is a finite NL such that for all s · i · o ∈ L : Sn(s · i · o) > 0 for n > NL.

Lemma 7.10.
If compatibleE(s, s′)⇔ eqRowE(s, s′), then the set of representativesR computed by Algorithm 7.3
for the closed and consistent observation table 〈Sn, En, T̂n〉 is prefix-closed.

Proof. Recall that we assume the function rank to impose a lexicographic ordering on traces, thus all
ranks are unique. This simplifies showing prefix-closedness ofR, which we do by contradiction. Assume
that R is not prefix-closed. In that case, there is a trace r of length n in R with a prefix rp of length n− 1
that is not in R. Since rp /∈ R and because the representative rep(rp) has the largest rank in its class
cg(rp), we have rp 6= rep(rp) and rank(rp) < rank(rep(rp)).

As Sn is prefix-closed and R ⊆ Sn, we have rp ∈ Sn. Let i ∈ I and o ∈ O be such that
rp · i · o = r. Algorithm 7.3 enforces compatibleE(rp, rep(rp)) and due to consistency, we have that
compatibleE(rp · i · o, rep(rp) · i · o) = compatibleE(r, rep(rp) · i · o). Since r is a representative in
R, rep(rp) · i · o ∈ cg(r). Representatives r have the largest rank in their compatibility class cg(r) and
r 6= rep(rp) · i · o, thus rank(r) > rank(rep(rp) · i · o).

In combination we have that

rank(rp) < rank(rep(rp)) and also

rank(r) = rank(rp · i · o) > rank(rep(rp) · i · o).

This is a contradiction given the lexicographic ordering on traces imposed by rank. Consequently, R
must be prefix-closed under the premises of Lemma 7.10.

Lemma 7.11.
Let 〈Sn, En, Tn〉 be the exact observation table corresponding to the sampling-based observation table
〈Sn, En, T̂n〉, i.e. Tn(s) = odq(s) for s ∈ (Sn∪Lt(Sn)) ·E. Then, Tn(r · i)(o) > 0⇔ T̂n(r · i)(o) > 0
for r ∈ R, i ∈ I, o ∈ O after finitely many n.

Proof. First, we will show for prefix-closed R (Lemma 7.10) that R ⊆ S, if compatibleE(s, s′) ⇔
eqRowE(s, s′). S contains all traces corresponding to simple paths of can(M), therefore we show by
contradiction that no r ∈ R forms a cycle in can(M).

Assume that r ∈ R forms a cycle in can(M), i.e. it visits states multiple times. We can split r
into three parts r = rp · rc · rs, where rp ∈ T R such that rp and rp · rc reach the same state, rc is
non-empty, and rs ∈ (I ×O)∗ is the longest suffix such that starting from δ∗(rp), rs visits every state of
can(M) at most once. As R is prefix-closed, R includes rp and rp · rc as well. The traces rp and rp · rc

7.5. Convergence of L∗MDP 149

reach the same state in can(M), thus we have rp ≡M rp · rc which implies eqRowE(rp, rp · rc) and
compatibleE(rp, rp · rc).

By Algorithm 7.3 all r ∈ R are pairwise not compatible with respect to compatibleE , thus Algo-
rithm 7.3 ensures ¬compatibleE(rp, rp · rc) for rp ∈ R and rp · rc ∈ R. This leads to a contradiction,
therefore our assumption is false and we can deduce that no r visits a state of can(M) more than once.
As a consequence, it holds that R ⊆ S.

Hence, every observable rl = r · i · o for r ∈ R, i ∈ I and o ∈ O is in L, as L includes all
observable extensions of S. By Lemma 7.9, we will sample rl eventually, i.e. T̂n(r · i)(o) > 0 and
therefore Tn(r · i)(o) > 0⇔ T̂n(r · i)(o) > 0 after finitely many n.

Lemma 7.12.
The chaos state qchaos is not reachable inHn, except for finitely many n.

Proof. We add a transition from state q = 〈last(r), row(r)〉 with input i to qchaos if cq(r · i) = false.
As we consider nc = 1, cq(r · i) = true if there is an o such that T̂n(r · i)(o) > 0. Lemma 7.11
states that T̂n(r · i)(o) > 0 for any observable r · i · o after finitely many n. Thus, Lemma 7.11 implies
cq(r · i) = true for all r ∈ R and i ∈ I , therefore the chaos is unreachable in Hn, except for finitely
many n.

Corollary 7.1.
Let 〈Sn, En, Tn〉 be the exact observation table corresponding to the sampling-based observation table
〈Sn, En, T̂n〉, i.e. Tn(s) = odq(s) for s ∈ (Sn ∪Lt(Sn)) ·E. Then there exists a finite Nstruct such that
the exact hypothesis hyp(Sn, En, Tn) has the same structure asHn for n > Nstruct.

By combining Theorem 7.5, Lemma 7.11 and Lemma 7.12, it follows that, after finitely many n,
hypotheses created in the sampling-based setting have the same structure as in the exact setting.

7.5.4 Equivalence Queries

Theorem 7.6 (Convergence of Equivalence Queries).
Given αn such that

∑
n αnn < ∞, an observation table 〈Sn, En, T̂n〉 and a hypothesis Hn, then with

probability one,Hn has the same structure asM or we find a counterexample to equivalence, except for
finitely many n.

In the following, we introduce lemmas to prove Theorem 7.6, but first we recap relevant details of
equivalence queries. According to Corollary 7.1, there is an Nstruct such that Hn has the same structure
as in the exact setting and compatibleE(s, s′) ⇔ eqRowE(s, s′) for n > Nstruct. Therefore, we
assume n > Nstruct for the following discussion of counterexample search through the implemented
equivalence queries eq. LetHn be the semantics ofHn. Recall that we apply two strategies for checking
equivalence:

1. Random testing with a uniformly randomised scheduler (prand = 1): this form of testing can find
traces s · o, with s ∈ T S and o ∈ O, such that H(s)(o) = 0 and M(s)(o) > 0. While this form
of search is coarse, we store all sampled traces in Sn that is used by our second counterexample
search strategy for performing a fine-grained analysis.

2. Checking conformance with Sn: for all observed test sequences, we statistically check for differ-
ences between output distributions in Hn and distributions estimated from Sn through applying
difffq. Applying that strategy finds counterexample sequences s ∈ T S such that M(s) 6= ⊥ (as s
must have been observed) and approximately M(s) 6= H(s).

150 Chapter 7. Test-Based Learning of Stochastic Systems

Case 1. In the case that the hypothesis Hn and M have the same structure and n > Nstruct, such
that eqRowE(s, s′) ⇔ compatibleE(s, s′), we may still find counterexamples that are spurious
due to inaccuracies. Therefore, we will show that adding a prefix-closed set of traces to the set of short
traces Sn does not change the hypothesis structure, as this is performed by Algorithm 7.4 in response to
counterexamples returned by eq.

Lemma 7.13.
IfHn has the same structure asM and n > Nstruct, then adding a prefix-closed set of observable traces
St to Sn will neither introduce closedness-violations nor inconsistencies, hence 〈Sn ∪ St, En, T̂n〉 is
closed and consistent. Consequently, the hypothesis structure does not change, thus Hn has the same
structure as hyp(Sn ∪ St, En, T̂n).

Proof. Let t be a trace in St and qt = δ∗h(t) be the hypothesis state reached by t, which exists because
Hn has the same structure asM. Let ts ∈ Sn be a short trace also reaching qt. SinceM and Hn have
the same structure, t and ts also reach the same state ofM, therefore t ≡M ts (by reaching the same
state both traces lead to the same future behaviour), which implies eqRowE(t, ts). With n > Nstruct,
we have compatibleE(t, ts). By the same reasoning, we have compatibleE(t · i · o, ts · i · o) for any
i ∈ I , o ∈ O withM(t · i)(o) > 0; which is the condition for consistency of observation tables, therefore
adding t to Sn leaves the observation tables consistent.

Furthermore because 〈Sn, En, T̂n〉 is closed, there exists a t′s ∈ Sn, with compatibleE(ts · i ·o, t′s).
Since compatibleE(t · i · o, ts · i · o) and because compatibleE is transitive for n > Nstruct, we
have compatibleE(t · i · o, t′s). Hence, adding t as to Sn does not violate closedness, because for each
observable extensions of t, there exists a compatible short trace t′s.

Case 2. If Hn does not have the same structure as M and n > Nstruct, then Hn has fewer states
thanM. This follows from Lemma 7.7 given that H is consistent with T̂n and compatibleE(s, s′)⇔
eqRowE(s, s′). SinceM is minimal with respect to the number of states, Hn andM are not equiv-
alent, thus a counterexample to observation equivalence exists and we are guaranteed to find any such
counterexample after finitely many samples.

Lemma 7.14.
If compatibleE(s, s′) ⇔ eqRowE(s, s′) for traces s and s′ in Sn, then the hypothesis Hn derived
from 〈Sn, En, T̂n〉 has the minimal number of states among all MDPs consistent with T̂n with respect to
diff

T̂n
.

Proof. Recall that for a given observation table 〈S,E, T 〉, the exact learning algorithm L∗MDPe derives the
smallest hypothesis consistent with T . By Corollary 7.1,Hn has the same structure as the smallest MDP
consistent with T . As diff

T̂n
does not produce spurious results for n > Nstruct (Theorem 7.5), Hn has

the same structure as the smallest MDP consistent with T̂n with respect to diff
T̂n

, therefore the number
of states ofHn is minimal.

Lemma 7.15.
Let nq be the number of states ofM, C =

⋃n2
q+1

i=0 (O × I)i and Cobs = {c | c ∈ C : M(c) 6= ⊥}. For
any other MDPM′ with at most nq states and semantics M ′, we have ∀c ∈ Cobs : M(c) = M ′(c) iff
M≡od M′.

Hence, there is a finite set Cobs of sequences with lengths bounded by n2
q + 1 such that by testing all

sequences in Cobs, we can check equivalence with certainty.

7.5. Convergence of L∗MDP 151

Proof. Let M and M′ with states Q and Q′ be defined as above, i.e. |Q| = nq and |Q′| ≤ nq, and
let reachQSeq(t) ∈ (Q × Q′)∗ be the sequence of state pairs visited along a trace t by M and M′,
respectively. M ≡od M′ iff for all t ∈ T R and i ∈ I , we have M(t · i) = M ′(t · i). If the length of
t · i is at most n2

q + 1, then t · i ∈ C. Otherwise, reachQSeq(t) contains duplicated state pairs, because
|Q × Q′| ≤ n2

q . For t longer than n2
q , we can remove loops on Q × Q′ from t to determine a trace t′

of length at most n2
q such that reachQSeq(t)[|t|] = reachQSeq(t′)[|t′|], i.e. such that t and t′ reach the

same state pair. Since t reaches the same state as t′ in M and in M′, we have M(t · i) = M(t′ · i)
and M ′(t · i) = M ′(t′ · i), thus M(t · i) = M ′(t · i) ⇔ M(t′ · i) = M ′(t′ · i). Consequently for all
t · i ∈ T R · I: either t · i ∈ C, or there is a t′ · i ∈ C leading to an equivalent check betweenM andM′.

We further restrict C to Cobs by considering only observable test sequences in C. This restriction is
justified by Lemma 7.2. In summary:

M≡od M′ ⇔ ∀c ∈ T S : M(c) = M ′(c)

⇔ ∀c ∈ C : M(c) = M ′(c)

⇔ ∀c ∈ Cobs : M(c) = M ′(c)

Lemma 7.16.
Under the randomised testing strategy with prand = 1 and pstop < 1, all c in Cobs have non-zero
probability to be observed.

Proof. Due to prand = 1 and pstop < 1 we apply uniformly randomised inputs during testing and each
test has a length that is distributed dependent on pstop. Let c = o0 · i1 · o1 · · · on−1 · in be a sequence in
Cobs with c[≤ k] being its prefix of length k, then the probability pc of observing c is (note that we may
observe c as a prefix of another sequence):

pc =
1

|I|n
M(c[≤ 1])(o1) ·M(c[≤ 2])(o2) · · ·M(c[≤ n− 1])(on−1) · (1− pstop)n−1

By definition of Cobs, we have M(c[≤ j])(oj) > 0 for all indexes j and c in Cobs, therefore pc > 0.

In every round of L∗MDP, we check for conformance between Sn and the hypothesis Hn and return a
counterexample, if we detect a difference via difffq. Since we apply difffq, we follow a similar reasoning
as for the convergence of hypothesis construction. Here, we approximate M(c) 6= H(c) for c ∈ T S
by difffq(t · i, r · i), where c = t · i for a trace t, an input i, and r ∈ R given by the hypothesis state
〈last(r), row(r)〉 reached by t.

Lemma 7.17.
Given αn such that

∑
n αnn < ∞, then with probability one M(c) 6= H(c) ⇔ difffq(t · i, r · i) for

c = t · i ∈ Cobs and r as defined above, except for finitely many n.

Proof. We use the identity H(t · i) = H(r · i) for traces t and r and inputs i, which holds because
t and r reach the same state in the hypothesis H. Applying that, we test for M(t · i) 6= H(t · i)
by testing M(t · i) 6= H(r · i) via difffq(t · i, r · i). We perform |O| tests for each unique observed
sequence c, therefore we apply at most n · |O| tests. Let Bn be the event that any of these tests is
wrong, that is, M(t · i) 6= H(r · i) 6⇔ difffq(t · i, r · i) for at least one observed c = t · i. Due to
the confidence level greater than (1 − αn)2 of the tests, the probability p(Bn) of Bn is bounded by
p(Bn) ≤ n · |O| · (1− (1− αn)2) ≤ 2 · n · |O| · αn. By choosing αn such that

∑
n αnn < ∞, we can

apply the Borel-Cantelli lemma as in the proof of Theorem 7.5. Hence, Bn happens only finitely often,
thus there is an N1 such that for all n > N1 we have M(t · i) 6= H(r · i) ⇔ difffq(t · i, r · i) for all

152 Chapter 7. Test-Based Learning of Stochastic Systems

observed c = t · i ∈ Cobs. Furthermore, the probability of observing any c of the finite set Cobs during
testing is greater than zero (Lemma 7.16), thus there is a finite N2 such that Sn contains all c ∈ Cobs for
n > N2. Consequently, there is an Ncex, such that Lemma 7.17 holds for all n > Ncex.

Lemma 7.14 states that hypothesesHn are minimal after finitely many n, thus all potential counterex-
amples are in Cobs (Lemma 7.15). From Lemma 7.17, it follows that we will identify a counterexample
in Cobs if one exists. Combining that with Lemma 7.13 concludes the proof of Theorem 7.6.

7.5.5 Putting Everything Together

We have established that after finitely many n, the sampling-based hypothesisHn has the same structure
as in the exact setting (Corollary 7.1). Therefore, certain properties of the exact learning algorithm
L∗MDPe hold for the sampling-based L∗MDP as well. The derived hypotheses are therefore minimal, i.e.
they have at most as many states asM. As with L∗MDPe , adding a non-spurious counterexample to the
trace set Sn introduces at least one state in the derived hypotheses. Furthermore, we have shown that
equivalence queries return non-spurious counterexamples, except for finitely many n (Theorem 7.6).
Consequently, after finite n we arrive at a hypothesis Hn with the same structure as M. We derive
transition probabilities by computing empirical means, thus by the law of large numbers these estimated
probabilities converge to the true probabilities. Hence, we learn a hypothesis Hn isomorphic to the
canonical MDPM in the limit as stated by Theorem 7.4.

More efficient parameters. So far, we discussed a particular parametrisation of L∗MDP. Among others,
we used uniformly random input choices for equivalence testing with prand = 1, and instantiated cq to
accept samples as complete after only nc = 1 observation. This simplified the proof, but is inefficient in
practical experiments. As demonstrated in Section 4.5, completely random testing is inefficient for large
systems and a small nc may lead to spurious states in intermediate hypotheses. However, the arguments
based on nc = 1, such as Lemma 7.11 and Lemma 7.12, are easily extended to small constant values of
nc. Since the samples are collected independently, any observation that occurs at least once after a finite
number of steps also occurs at least nc times after a finite number of steps.

7.6 Experiments

In active automata learning, our goal is generally to learn a model equivalent to the true model of the
SUL. This changes in the stochastic setting, where we want to learn a model close to the true model,
because equivalence can hardly be achieved. In this section, we evaluate the sampling-based L∗MDP and
compare it to the passive IOALERGIA [199], by learning several models with both techniques. In each
case, we treat the known true MDP modelM as a black box for learning and measure similarity to this
model using two criteria:

1. bisimilarity distance: we compute the discounted bisimilarity distance between the true modelM
and the learned MDPs [44, 45]. Giovanni Bacci adapted the distance measure from MDPs with
rewards to labelled MDPs, by defining a distance of 1 between states with different labels.

2. probabilistic model-checking: we compute and compare maximal probabilities of manually de-
fined temporal properties with all models using PRISM 4.4 [174]. The difference between proba-
bilistic model-checking results forM and the learned MDPs serves as a similarity measure.

We performed experiments with three of the models that we used in the evaluation of probabilistic
black-box reachability checking in Section 6.3, including the gridworld, the slot machine, and the shared
coin consensus protocol. In addition to that, we performed experiments with another larger gridworld
model. Experimental results, the examined models, and the implementation of L∗MDP can be found in the
evaluation material [261].

7.6. Experiments 153

Table 7.2: Results for learning models of the first gridworld
true model L∗MDP IOALERGIA

outputs - 3,101,959 3,103,607

traces - 391,530 387,746

time [s] - 118.4 21.4

states 35 35 21

δ0.9 - 0.1442 0.5241

Pmax(F≤11(goal)) 0.9622 0.9651 0.2306

Pmax(¬G U≤14(goal)) 0.6499 0.6461 0.1577

Pmax(¬S U≤16(goal)) 0.6912 0.6768 0.1800

7.6.1 Measurement Setup

Like Mao et al. [199] did in one of two configurations, we configure IOALERGIA with a data-dependent
significance parameter for the compatibility check, by setting εN = 10000

N , whereN is the total combined
length of all traces used for learning. This parameter serves a purpose analogous to the α parameter for
the Hoeffding bounds used by L∗MDP. IOALERGIA showed good performance under this configuration in
the experiments discussed in this section. Other than Section 6.3, where we used a fixed ε, this section
also considers unbounded properties and bisimilarity distances. In contrast to that, we observed that
L∗MDP generally shows better performance with non-data-dependent α, therefore we set α = 0.05 for all
experiments. We sample traces for IOALERGIA with a length geometrically distributed with parameter
pl and inputs chosen uniformly at random, like Mao et al. [199]. The number of traces is chosen such
that IOALERGIA and L∗MDP learn from approximately the same amount of data.

We implemented L∗MDP and IOALERGIA using Java 8. In addition to our Java implementations, we
use PRISM 4.4 [174] for probabilistic model-checking and an adaptation of the MDPDIST library [43]
to labelled MDPs for computing bisimilarity distances. We performed the experiments with a Lenovo
Thinkpad T450 running Xubuntu Linux 18.04 with 16 GB RAM and an Intel Core i7-5600U CPU with
2.6 GHz.

7.6.2 Experiments with First Gridworld

The basis for our first experiments is the gridworld that we used in Section 6.3 to evaluate our learning-
based testing technique. It is shown in Figure 6.6a. As before, a robot moves around in this world of
tiles of different terrains. It may make errors in movement, for instance, by moving south west instead
of south with an error probability depending on the target terrain. Our aim in this chapter is to learn an
environment model, i.e. a map, rather than a strategy for reaching a goal location as in Section 6.3. The
minimal true model of this gridworld has 35 different states.

For L∗MDP, we set the sampling parameters to nresample = nretest = 300, ntest = 50, pstop = 0.25
and prand = 0.25. As stopping parameters served tunamb = 0.99, rmin = 500 and rmax = 4000. Finally,
we set the parameter pl for IOALERGIA’s geometric trace length distribution to 0.125.

Results. Table 7.2 shows the measurement results for learning the first gridworld. Active learning
stopped after 1147 rounds, sampling 391,530 traces (Row 2) with a combined number of outputs of
3,101,959 (Row 1). The bisimilarity distance discounted with λ = 0.9 to the true model is 0.144 for
L∗MDP and 0.524 for IOALERGIA (Row 5); thus it can be assumed that model checking the L∗MDP model
produces more accurate results. This is indeed true for our three evaluation queries in the last three
rows. These model-checking queries ask for the maximum probability (quantified over all schedulers) of
reaching the goal within a varying number of steps. The first query does not restrict the terrain visited
before the goal, but the second and third require to avoid G and S, respectively. The absolute difference

154 Chapter 7. Test-Based Learning of Stochastic Systems

C C M C C G M S

C G G M C G

C M S G M C G

S C C C C G S C

M C C G S M C

G S M G G M

Figure 7.1: The second evaluation gridworld

Table 7.3: Results for learning models of the second gridworld
true model L∗MDP IOALERGIA

outputs - 3,663,415 3,665,746

traces - 515,950 457,927

time [s] - 166.9 15.1

states 72 72 31

δ0.9 - 0.1121 0.5763

Pmax(F≤14(goal)) 0.9348 0.9404 0.0208

Pmax(F≤12(goal)) 0.6712 0.6796 0.0172

Pmax(¬M U≤18(goal)) 0.9743 0.9750 0.0196

Pmax(¬S U≤20(goal)) 0.1424 0.1644 0.0240

to the true values is at most 0.015 for L∗MDP, but the results for IOALERGIA differ greatly from the true
values. One reason for this is that the IOALERGIA model with 21 states is significantly smaller than the
minimal true model, while the L∗MDP model has as many states as the true model.

IOALERGIA is faster than L∗MDP, which applies time-consuming computations during equivalence
queries. However, as noted in Section 6.3 and in Section 4.4, the runtime of learning-specific compu-
tations is often negligible in practical applications. This is due to the fact that the communication with
the SUL during test-case execution usually dominates the overall runtime. We experienced that while
learning models of MQTT brokers which we discuss in Section 3.4.5 [263].

Given the smaller bisimilarity distance and the lower difference to the true probabilities computed
with PRISM, we conclude that the L∗MDP model is more accurate.

7.6.3 Experiments with Second Gridworld

Figure 7.1 shows the second gridworld used in our evaluation. As before, the robot starts in the initial
location in the top left corner and can only observe the different terrains. The goal location is in the
bottom right corner in this example. The true minimal MDP representing this gridworld has 72 states.
We configured learning as for the first gridworld, but collect more samples per round by setting nretest =
nresample = 1,000. Table 7.3 shows the measurement results including the model-checking results and
the bisimilarity distances.

L∗MDP sampled 515,950 traces with a combined number of outputs of 3,663,415. Hence, the combined
length of all traces is in a similar range as before, although L∗MDP sampled more traces in a single round.
This is the case, because learning stopped already after 500 rounds. We used similar model-checking
queries as in the previous example that ask for the maximum probability of reaching the goal location
with varying number of steps. The third and fourth query additionally specify to avoid the terrains M and
the S, respectively. We can again see that the L∗MDP model has the same size as the minimal true model,
while the IOALERGIA model is much smaller. The bisimilarity difference between the true model and
the L∗MDP model is much smaller than for IOALERGIA as well. Also as in the first gridworld experiment,

7.6. Experiments 155

Table 7.4: Results for learning models of the shared coin consensus-protocol
true L∗MDP IOALERGIA

outputs - 537,665 537,885

traces - 98,064 67,208

time [s] - 3,188.9 3.5

states 272 163 94

δ0.9 - 0.1142 0.4482

Pmax(F (finished ∧ p1 heads ∧ p2 tails)) 0.1069 0 0

Pmax(F (finished ∧ p1 tails ∧ p2 tails)) 0.5556 0.6765 0.6594

Pmax(counter 6= 5 U finished) 0.3333 0.3899 0.5356

Pmax(counter 6= 4 U finished) 0.4286 0.5191 0.6682

Pmax(F<40(finished ∧ p1 heads ∧ p2 tails)) 0.0017 0 0

Pmax(F<40(finished ∧ p1 tails ∧ p2 tails)) 0.2668 0.3066 0.2694

Pmax(counter 6= 5 U<40 finished) 0.2444 0.2928 0.4460

Pmax(counter 6= 4 U<40 finished) 0.2634 0.3246 0.5050

the difference to the true model-checking results is smaller for L∗MDP. However, compared to the previous
example, the absolute difference between the L∗MDP model and the true model with respect to model-
checking has slightly increased.

7.6.4 Shared Coin Consensus-Protocol Experiments

The following experiments are based on the shared coin consensus protocol by Aspnes and Herlihy [42]
that we also examined in Section 6.3. Recall that we adapted a model of the protocol distributed with
the PRISM model checker [174]. We generally performed only minor adaptions such as adding action
labels for inputs, but we also slightly changed the functionality by doing that. For the purpose of this
evaluation these changes are immaterial, though.

As in Section 6.3, we consider the configuration with the smallest state space of size 272 with two
processes and the constant K set to 2. We set the learning parameters to nresample = nretest = ntest =
50, pstop = 0.25 and prand = 0.25. We controlled stopping with tunamb = 0.99, rmin = 500 and
rmax = 4000. Finally, we set pl = 0.125 for IOALERGIA.

Table 7.4 shows the measurement results computed in the evaluation of learned models of the shared
coin consensus protocol. Compared to the previous examples, we need a significantly lower sample
size of 98,064 traces containing 537,665 outputs, although the models are much larger. A reason for
this is that there is a relatively large number of outputs in this example, such that states are easier to
distinguish from each other. The bisimilarity distance is in a similar range as before for L∗MDP, which
is again significantly smaller than IOALERGIA’s bisimilarity distance. The L∗MDP model is larger than
the IOALERGIA model as in previous experiments, but in this example it is smaller than the true model.
This happens because many states are never reached during learning, as reaching them within a bounded
number of steps has a very low probability; see, for instance, the fifth model-checking query. This query
determines the maximum probability of finishing the protocol within less than 40 steps, but without
consensus, as process p1 chooses heads and process p2 chooses tails. The computed probability of this
event is very low.

The other model-checking queries consider the maximum probability of: (1) finishing the protocol
without consensus, (2) finishing the protocol with consensus, (3) finishing the protocol without reaching
an intermediate counter state of 5, (4) finishing the protocol without reaching an intermediate counter
state of 4. The queries (5) to (8) bound the number of steps by less than 40, but consider the same
properties as the queries (1) to (4), which are unbounded. Here, we see that the model-checking results
computed with the IOALERGIA model are more accurate in some cases, butL∗MDP produces more accurate

156 Chapter 7. Test-Based Learning of Stochastic Systems

Table 7.5: Results for learning models of the slot machine with tunamb = 0.9

true L∗MDP IOALERGIA

outputs - 4,752,687 4,752,691

traces - 1,567,487 594,086

time [s] - 3,381.0 60.3

states 109 109 86

δ0.9 - 0.1632 0.2983

Pmax(F (Pr10)) 0.3637 0.3769 0.4169

Pmax(F (Pr2)) 0.6442 0.6697 0.6945

Pmax(F (Pr0)) 1.0000 1.0000 1.0000

Pmax(X(X(bar− bar− blank))) 0.1600 0.1615 0.1639

Pmax(X(X(X(apple− bar− bar)))) 0.2862 0.2865 0.2776

Pmax(¬(F<10(end))) 0.2500 0.3013 0.3283

Pmax(X(X(X(apple− apple− apple))) ∧ (F (Pr0))) 0.0256 0.0262 0.0107

Table 7.6: Results for learning models of the slot machine with tunamb = 0.99

true L∗MDP IOALERGIA

outputs - 24,290,643 24,282,985

traces - 7,542,332 3,036,332

time [s] - 18,048.0 518.9

states 109 109 97

δ0.9 - 0.0486 0.2518

Pmax(F (Pr10)) 0.3637 0.3722 0.3991

Pmax(F (Pr2)) 0.6442 0.6552 0.6997

Pmax(F (Pr0)) 1.0000 1.0000 1.0000

Pmax(X(X(bar− bar− blank))) 0.1600 0.1607 0.1597

Pmax(X(X(X(apple− bar− bar)))) 0.2862 0.2866 0.2851

Pmax(¬(F<10(end))) 0.2500 0.2606 0.4000

Pmax(X(X(X(apple− apple− apple))) ∧ (F (Pr0))) 0.0256 0.0264 0.0128

results overall. The absolute difference from the true values averaged over all model-checking results is
about 0.066 for L∗MDP, approximately half of IOALERGIA’s average absolute difference of 0.138.

We see an increase in runtime compared to the gridworld examples. Learning the consensus-protocol
model took about 53 minutes, whereas learning the gridworld models took less than 3 minutes. This is
caused by the larger state space of the consensus protocol, since the precomputation time for equivalence
testing grows with the state space. Overall, we see a similar picture as before: L∗MDP trades runtime for
increased accuracy which we deem reasonable.

7.6.5 Slot-Machine Experiments

The final experiments in this section are based on the slot machine example that we also used in Sec-
tion 6.3 and which we adapted from Mao et al. [198, 199]. Here, we set the maximum number of rounds
m to 3, leading to a state space of 109 states for the minimal true model of the slot machine.

We configured sampling for IOALERGIA with pl = 0.125 and we set the following parameters for
L∗MDP: nresample = nretest = ntest = 300, pstop = 0.25, prand = 0.25, rmin = 500 and rmax = 20000.
To demonstrate the influence of the parameter tunamb, we performed experiments with tunamb = 0.9 and
with tunamb = 0.99.

7.6. Experiments 157

Table 7.5 and Table 7.6 show the results for tunamb = 0.9 and tunamb = 0.99, respectively. Config-
ured with tunamb = 0.9, L∗MDP stopped after 2,988 rounds and it stopped after 12,879 rounds if configured
with tunamb = 0.99. We see here that learning an accurate model of the slot machine requires a large
amount of samples; in the case of tunamb = 0.99, we sampled 7,542,332 traces containing 24,290,643
outputs. The amount of outputs is almost 10 times as high as for the gridworld examples. However, we
also see that sampling more traces clearly pays off. The L∗MDP results shown in Table 7.6 are much better
than those shown in Table 7.5. Notably the state space stayed the same. Thus, the model learned with
fewer traces presumably includes some incorrect transitions. This is exactly what our stopping heuristic
aims to avoid; it aims to avoid ambiguous membership of traces in compatibility classes to reduce the
uncertainty in creating transitions.

Like in the gridworld experiments, the L∗MDP models have the same size as the true model, while the
IOALERGIA models are smaller. We also see in both settings for L∗MDP that L∗MDP models are more accu-
rate than IOALERGIA models, with respect to bisimilarity distance and with respect to model-checking
results. While the experiment with tunamb = 0.99 required the most samples among all experiments, it
also led to the lowest bisimilarity distance.

The first three model-checking queries determine the maximum probability of reaching one of the
three prizes issued by the slot machine. The next two queries consider certain reel configurations reached
after exactly two and three steps, respectively. The sixth query checks the maximum probability that
ending the game can be avoided for 9 steps. The final query computes the maximum probability of
reaching the prize Pr0 and observing the reel configuration apple− apple− apple after exactly three
steps. It is noteworthy that the model-checking results for the L∗MDP model learned with tunamb = 0.99
are within a low range of approximately 0.01 of the true results.

A drawback of L∗MDP compared to IOALERGIA is again the learning runtime, as L∗MDP with tunamb =
0.99 required about 5 hours while learning with IOALERGIA took only about 8.7 minutes. As pointed
out several times, in a non-simulated environment, the sampling time would be much larger than 5 hours,
such that the learning runtime becomes negligible. Consider, for instance, a scenario where the sampling
of a single trace takes 20 milliseconds. The sampling time of L∗MDP is about 42 hours in that scenario
which is about 8.4 times as long as the learning runtime.

7.6.6 Discussion and Threats to Validity

Our case studies demonstrated that L∗MDP is able to achieve better accuracy than IOALERGIA. The bisim-
ilarity distances of L∗MDP models to the true models were generally lower and the model checking results
were more accurate. These observations should be investigated in further case studies. It should be
noted, though that the considered systems have different characteristics. The gridworld has small state
space, but it is strongly connected and the different terrains lead to different probabilistic decisions. For
instance, if we try to enter mud there is a probability of 0.4 of entering one of the neighbouring tiles,
whereas entering concrete is generally successful (the probability of entering other tiles instead is 0).
The consensus protocol has a large state space with many different outputs and finishing the protocol
takes at least 14 steps. The slot machines requires states to be distinguished based on subtle differences
in probabilities, because the probability of seeing bar decreases in each round.

Due to the high runtimes of L∗MDP and the bisimilarity-distance computation, we did not perform
repeated experiments. Hence, there is a risk that the accuracy of learned models varies greatly.

L∗MDP has several parameters that affect performance and accuracy. We plan to investigate the in-
fluence of parameters in further experiments. For the presented experiments, we fixed most of the
parameters except for nretest, ntest and nresample. However, we observed that results are robust with
respect to these parameters. We increased, for instance, nresample from 300 for the first gridworld to
1,000 for the second gridworld. Both settings led to approximately the same results, as learning simply
performed fewer rounds with nresample = 1,000. Nevertheless, we will examine in further experiments
if the fixed parameters are indeed appropriately chosen and if guidelines for choosing other parameters
can be provided.

158 Chapter 7. Test-Based Learning of Stochastic Systems

L∗MDP and IOALERGIA learn from different traces, thus the trace selection may actually be the main
reason for the better accuracy of L∗MDP. We examined if this is the case by learning IOALERGIA models
from two types of given traces: traces with uniform input selection and traces sampled during learning
with L∗MDP. We noticed that models learned from L∗MDP traces led to less accurate results overall, es-
pecially in terms of bisimilarity distance. Therefore, we reported only results for models learned with
IOALERGIA from traces with uniformly distributed inputs.

7.7 Summary

In this chapter, we presented two L∗-based algorithms for learning MDPs. For our exact learning al-
gorithm L∗MDPe , we assume an ideal setting that allows to query information about the SUL with exact
precision. Subsequently, we relaxed our assumptions by approximating exact queries through sampling
SUL traces via directed testing. These traces serve to infer the structure of hypothesis MDPs, to estimate
transition probabilities and to check for equivalence between the SUL and learned hypotheses. The re-
sulting sampling-based L∗MDP iteratively learns approximate MDPs which converge to the correct MDP
in the large sample limit. We implemented L∗MDP and evaluated it by comparing it to IOALERGIA [199],
a state-of-the-art passive learning algorithm for MDPs. The evaluation showed that L∗MDP is able to pro-
duce more accurate models. To the best of our knowledge, L∗MDP is the first L∗-based algorithm for MDPs
that can be implemented via testing. Experimental results and the implementation can be found in the
evaluation material for L∗MDP [261].

7.8 Results and Findings

In the following, we want to discuss the results of our experiments withL∗MDP and our findings concerning
learning of MDPs. The research questions that are relevant in this context shall provide a framework for
the discussion.

RQ 1.1 Are randomised testing techniques a sensible choice for learning-based testing? As in
Chapter 6, we successfully applied randomised online conformance testing in automata learning. Fur-
thermore, we were able to adapt a testing technique, the transition coverage testing strategy proposed for
deterministic systems in Chapter 4, to state-coverage-based testing in stochastic automata learning. The
adapted testing technique enabled us to reliably learn models that are close to the true model of the SUL.
Hence, we can provide a positive answer to RQ 1.3 in this context as well, which addresses whether
correct models can be learned reliably. As discussed in Section 7.1, we do not target absolute correctness
in the presence of stochastic behaviour.

RQ 1.2 What guarantees can be given if randomised testing is applied? In the context of MDP
learning, we need to take the stochastic nature of the SUL into account. The guarantee we can provide for
L∗MDP is that it learns correct models in the limit. Mao et al. [199] provide this guarantee for IOALERGIA

as well. They also state that PAC learnability results [276], which are stronger, are difficult to achieve in
a verification context, since appropriate distance measures are difficult to define.

RQ 2.2 When can we stop learning in the presence of uncertain behaviour? As mentioned above,
we learn correct models in the limit, but we do not provide stronger convergence results. For this reason,
we cannot compute the sample size necessary to achieve a given model accuracy. However, we developed
a stopping heuristic that addresses uncertainties in the hypothesis construction which is based on statis-
tics. We empirically demonstrated that this heuristic works well by learning accurate models with L∗MDP.
In the slot machine example in Section 7.6.5, we specifically examined the influence of this heuristic. By
setting the parameter tunamb to a larger value, demanding a higher degree of certainty before stopping,
we improved the model accuracy substantially.

7.8. Results and Findings 159

RQ 2.3 Is test-based active learning feasible in the presence of stochastic behaviour? Since we
learned accurate models with L∗MDP, we can answer this question positively. We discovered various
pitfalls in the development of L∗MDP, though. These pitfalls should be avoided or at least considered in
the development of a test-based L∗-style algorithm for stochastic systems.

• Observation table size: the size of observation tables should be controlled in our experience. This
is the reason why we remove rows from observation tables.

Incorrect statistical test results may cause rows to be added that are not needed. This is likely to
occur during learning and with increasing table size, the likelihood of such events even increases.
A larger table contains more data, which leads to more statistical tests and consequently to more
opportunities for incorrect decisions. Hence, a growing observation table may cause additional
growth in a snowball effect.

The initial version of L∗MDP did not remove rows, i.e. it did not apply the TRIM function in Al-
gorithm 7.4. This version successfully learned the coffee machine MDP shown in Example 5.1,
but it could not learn gridworld MDPs. In preliminary experiments with gridworld models, the
observation tables grew to a size that prevented learning from terminating in reasonable time, due
to the runtime of operations like closedness checks.

• Unnecessary counterexamples: equivalence queries return none if the chaos state is reachable in
the current hypothesis. This is motivated by the fact that we trivially know that the hypothesis is
incorrect in such cases. Rather than adding new traces to the observation table, the information
stored in the observation table should be refined.

Concluding Remarks. The evaluation of L∗MDP showed promising results. We applied it to success-
fully learn a protocol model, the shared coin consensus protocol, for instance. Despite its hardness, it
would be worthwhile to analyse L∗MDP with respect to PAC learnability [276] to provide stronger conver-
gence guarantees. L∗MDP also provides room for experimentation. Different testing techniques, such as
reachability-property-directed sampling presented in Chapter 6, could be applied in equivalence queries.

8
Learning Timed Automata via

Genetic Programming

Declaration of Sources

We presented the work discussed in this chapter at the FORMATS 2019. The chapter is mainly
based on the conference paper that appeared in the proceedings of the FORMATS 2019 [267]
and on a technical report available via arxiv.org [264], which includes additional technical
details.

8.1 Introduction

In the exploratory research discussed in Section 3.6, we identified the need to capture time-dependent
behaviour in learned models. Otherwise, certain aspects of networked systems cannot be adequately
covered by learning-based testing. In the MQTT case study, we had to abstract away from timing details,
by employing a timeout mechanism; see Section 3.3.

Time-dependent behaviour is often modelled with timed automata (TA) [32]. These are finite au-
tomata extended with real-valued variables, called clocks, that measure the progress of time. Clocks
can be reset and based on clock valuations, actions can be enabled or disabled. Learning of TA mod-
els has received little attention, with two notable exceptions that we will discuss briefly. Verwer et al.
presented passive learning algorithms for deterministic real-time automata and a probabilistic variant
thereof [279, 280]. Like IOALERGIA [199], the passive algorithm that we used to learn MDPs (see Sec-
tions 5.4 and 6.2), these algorithms are based on state merging. In a different line of research, Grinchtein
et al. proposed active learning algorithms for deterministic event-recording automata [125, 126]. They
extended Angluin’s L∗ [37] in one approach [126] and used timed decision trees as a basis in another
work [125]. More recently, Jonsson and Vaandrager developed an L∗-based technique for Mealy ma-
chines with timers [157] that can model timeouts accurately.

Limitations of the State of the Art. The existing learning solutions for TA contain several limitations.
Real-time automata learned by Verwer et al. [279, 280] are restricted to one clock, which is reset on
every transition. Thus, these automata allow modelling delays depending on the current location, but
they cannot model more complex conditions on timing. Event-recording automata learned by Grinchtein

161

arxiv.org

162 Chapter 8. Learning Timed Automata via Genetic Programming

et al. [125, 126] are also less expressive than TA [34]. These automata contain one clock for each action
that is always reset when the corresponding action is performed. Moreover, the learning algorithms for
this class of automata have a high runtime complexity. Depending on the specific subclass of event-
recording automata that should be learned, the query complexity can be double exponential in the alpha-
bet size [126]. Both real-time automata and event-recording automata do not distinguish between inputs
and outputs, as DFA. Introducing such a distinction is not as simple as partitioning the set of actions into
two disjoint sets. Adapting either of the existing learning approaches would require substantial changes.
Since this thesis takes a testing view, we generally consider input-enabled systems, as is common in
testing [64, 137, 154, 170, 270, 271]. Mealy machines and MDPs that served as modelling formalisms
in previous chapters are both input enabled. As for discrete-time systems, different rules apply to inputs
of real-time systems than to their outputs, since we can control inputs, while outputs are produced by the
systems.

Goal. We present a learning approach for TA in this chapter. With this approach, we want to overcome
limitations of existing techniques. It shall be possible to learn input-enabled TA with arbitrary clock
resets from observations of a real-time SUL. Such observations may, for instance, be recorded during
testing. Arbitrary clock resets enable modelling of complex time-dependent interdependencies between
actions. Therefore, we aim at learning general TA, as used by the model checker UPPAAL [178]. How-
ever, these automata usually do not have canonical forms [126] which complicates the development of
learning techniques. Due to that and because we cannot benefit from assumptions about clock resets like
existing techniques [125, 126, 279, 280], we follow a non-traditional automata learning approach. We
apply genetic programming on TA to basically search for TA that are consistent with given SUL observa-
tions. This is also motivated by the successful application of genetic programming in program synthesis
by Katz and Peled [159]. In contrast to previous chapters, we present a passive technique as a first step
towards learning TA. However, we consider a test-based setting, since we learn from test observations
and we target models suitable in this setting. This serves the goal of enabling an active extension of
the basic passive technique. We will actually present an active extension that has been developed and
evaluated by Andrea Pferscher in her master’s thesis [234] in Chapter 9.

Assumptions. Despite targeting general TA, we need to place some assumptions on the SULs. This
is motivated by a classic result of language learnability by Gold [122]. He showed that only classes of
finite formal languages can be learned solely from words of the languages. Basically, this means that
for classes of infinite languages it is not sufficient to have only positive examples (e.g. system traces),
but also additional information is required for learnability. Since TA are generally able to produce an
infinite number of different traces, we need to place some restrictions on allowed SUL behaviour to avoid
tackling an ill-posed problem. Verwer et al. [279], for instance, learn deterministic real-time automata
from positive and negative samples. Negative samples are sets of traces that cannot be produced by the
SUL. In Mealy machine learning, we assume determinism, thus any trace introducing non-determinism
is a negative example.

Therefore, we also consider SULs to be deterministic. More concretely, we assume three different
forms of determinism, one is related to discrete behaviour and two are related to time-dependent be-
haviour. The restrictions required by our approach are that the SULs are deterministic, output urgent,
and with isolated outputs (a special form of output determinism) [137]. Determinism is defined simi-
larly to determinism of finite automata. Output urgency means that outputs shall be produced as soon as
possible. A TA has isolated outputs if at most one output is enabled at any time.

These assumptions often hold in applications. While specifications are generally vague, especially
with respect to timing, and leave freedom to the actual implementation, implementations are often con-
crete instantiations of a design. They can be assumed to implement specific choices deterministically
with the goal of satisfying a specification [92]. Thus, we do not consider the restriction to deterministic
behaviour as a severe limitation, since we learn from concrete implementations. Moreover, determinism
is a common assumption in automata learning.

8.2. Preliminaries 163

Scope and Contribution. We use a form of genetic programming [167] to passively learn a deter-
ministic TA consistent with a given set of timed traces which are sampled through random testing. Put
differently, we perform a metaheuristic search to find a TA that produces the same traces as the SUL.
The implementation of this learning technique is available for download [262]. It contains a graphical
user interface for demonstration purposes. We evaluate the technique on four manually created TA and
several randomly generated TA. Our evaluation demonstrates that the search reliably converges to a TA
consistent with test cases given as training data. Furthermore, we simulate learned TA on independently
produced test data to show that our identified solutions generalise well and that they do not overfit to the
training data.

Chapter Structure. The rest of this chapter is structured as follows. Section 8.2.1 contains background
information on TA and genetic programming. Section 8.3 describes our approach to learning TA. The
evaluation of this approach is presented in Section 8.4. In Section 8.5, we provide a summary and
conclude with a discussion of our findings and results in Section 8.6.

8.2 Preliminaries

8.2.1 Timed Automata

Timed automata are finite automata enriched with real-valued variables called clocks [32]. Clocks mea-
sure the progress of time which elapses while an automaton resides in some location. Transitions can be
constrained based on clock values and clocks may be reset on transitions. We denote the set of clocks by
C and the set of guards over C by G(C). Guards are conjunctions of constraints of the form c ⊕ k, with
c ∈ C,⊕ ∈ {>,≥,≤, <}, k ∈ N. Edges of TA are labelled by input and output actions, denoted by ΣI

and ΣO respectively, with Σ = ΣI ∪ ΣO and ΣI ∩ ΣO = ∅. Input labels are suffixed by ‘?’ and output
labels end with ‘!’. A TA over (C,Σ) is a triple 〈L, l0, E〉, where L is a finite non-empty set of locations,
l0 ∈ L is the initial location and E is the set of edges, with E ⊆ L × Σ × G(C) × 2C × L. We write
l
g,a,r−−−→ l′ for an edge (l, g, a, r, l′) ∈ E with guard g, action label a, and clock resets r.

Example 8.1 (Train TA Model). Figure 8.1 shows a TA model of a train approaching, enter-
ing, and leaving a track section. The TA is defined by the inputs ΣI = {start?, stop?, go?},
the outputs ΣO = {appr !, enter !, leave!}, the clock C = {c}, the locations L = {l0, . . . , l5},
and the edges E = {l0

>,start?,{c}−−−−−−−→ l1, l1
c≥5,appr!,{c}−−−−−−−−→ l2, l2

>,stop?,{c}−−−−−−−→ l3, l2
c≥10,enter!,{c}−−−−−−−−−→

l5, l3
>,go?,{c}−−−−−−→ l4, l4

c≥7,enter!,{c}−−−−−−−−−→ l5, l5
c≥3,leave!,{}−−−−−−−−→ l0}}. From the initial location l0, the train

accepts the input start?, resetting clock c, denoted by c in curly braces. After that, it can produce
the output appr ! if c ≥ 5, thus the train may approach 5 time units after it is started.

Semantics. The semantics of a TA is given by a timed transition system (TTS) 〈Q, q0,Σ, T 〉, with
states Q = L × R≥0

C , initial state q0, and transitions T ⊆ Q × (Σ ∪ R≥0) × Q, for which we write
q

e−→ q′ if (q, e, q′) ∈ T . A state q = (l, ν) is a pair consisting of a location l and a clock valuation
ν. For r ⊆ C, we denote resetting the clocks in r to zero by ν[r], i.e. ∀c ∈ r : ν[r](c) = 0 and
∀c ∈ C \ r : ν[r](c) = ν(c). Let (ν + d)(c) = ν(c) + d for d ∈ R≥0, c ∈ C denote the progress of
time and ν |= φ denote that valuation ν satisfies formula φ. Finally, 0 is the valuation assigning zero
to all clocks, which we use to define the initial state q0 as (l0,0). Transitions of TTSs are either delay

transitions (l, ν)
d−→ (l, ν + d) for a delay d ∈ R≥0, or discrete transitions (l, ν)

a−→ (l′, ν[r]) for an edge
l
g,a,r−−−→ l′ such that ν |= g. Delays are usually further constrained, for instance, by invariants limiting the

sojourn time in locations [137].

164 Chapter 8. Learning Timed Automata via Genetic Programming

l0l1

l2

l3

l4 l5

>
start?
{c}

c ≥ 5
appr !
{c}

>
stop?
{c}

c ≥ 10
enter !
{c}

>
go?
{c}

c ≥ 7
enter !
{c}

c ≥ 3
leave!
{}

Figure 8.1: A TA modelling a passing train

Timed Traces. We use the terms timed traces and test sequences similarly to Springintveld et al. [256].
The latter are sequences of inputs and corresponding execution times, while the former are sequences of
inputs and outputs, together with their times of occurrence. Timed traces are produced in response to test
sequences. A test sequence ts is an alternating sequence of non-decreasing time stamps tj and inputs ij ,
that is, ts = t1 · i1 · · · tn · in ∈ (R≥0 × ΣI)

∗ with ∀j ∈ {1, . . . , n − 1} : tj ≤ tj+1. Informally, a test
sequence prescribes that ij should be executed at time tj . A timed trace tt ∈ (R≥0 × Σ)∗ consists of
inputs interleaved with outputs produced by a timed system. Analogously to test sequences, timestamps
in timed traces are non-decreasing.

Assumptions on Timed Systems. Testing based on TA often places further assumptions on TA [137,
256]. Since we consider a test-based setting and we learn models from test observation we make similar
assumptions to enable learning (closely following Hessel et al. [137]). We describe these assumptions
on the level of semantics and use q a−→ to denote ∃q′ : q a−→ q′ and q 6a−→ for @q′ : q a−→ q′:
1. Determinism. A TA is deterministic iff for every state q = (l, ν) and every action a ∈ Σ, whenever
q
a−→ q′ and q a−→ q′′ then q′ = q′′.

2. Input Enabledness. A TA is input enabled iff for every state q = (l, ν) and every input i ∈ ΣI , we
have q i−→.

3. Output Urgency. A TA shows output-urgent behaviour if outputs occur immediately as soon as they
are enabled, i.e. for o ∈ ΣO, if q o−→ then q 6 d−→ for all d ∈ R≥0. Thus, outputs must not be delayed.

4. Isolated Outputs. A TA has isolated outputs iff whenever an output may be executed, then no other

output is enabled, i.e. if ∀o ∈ ΣO, ∀o′ ∈ ΣO : q
o−→ and q o′−→ implies o = o′.

It is necessary to place restrictions on the sojourn time in locations to establish output urgency.
Deadlines provide a simple way to model the assumption that systems are output urgent [65]. With
deadlines it is possible to model eager actions. We use this concept and implicitly assume all learned
output edges to be eager. This means that outputs must be produced as soon as their guards are satisfied.
For that, we extend the semantics given above by adding the following restriction:

delays (l, ν)
d−→ (l′, ν + d) are only possible if

∀ d′ ∈ R≥0, d
′ < d : ν + d′ |= ¬

∨
g∈GO

g,

where GO = {g | ∃l′, a, r : l
g,a,r−−−→ l′, a ∈ ΣO} are the guards of outputs in location l.

To avoid issues related to the exact time at which outputs should be produced, we further restrict the
syntax of TA by disallowing strict lower bounds for output edges. The model checker UPPAAL [178]

8.2. Preliminaries 165

uses invariants rather than deadlines to limit sojourn time. In order to analyse TA using UPPAAL, we use
the translation from TA with deadlines to TA with invariants presented by Gómez [123]. Additionally,
we apply two slight adaptations related to inputs and the properties discussed above. Whenever inputs
and outputs are enabled, we disable inputs implicitly, i.e. we restrict the semantics further by adding
a transition (l, ν)

i−→ (l′, ν[r]) for i ∈ ΣI only if ∀l g,a,r−−−→ l′ : a ∈ ΣO → ν��|=g. This follows the
reasoning that we cannot block outputs and that outputs occur urgently. Furthermore, we implicitly add
self-loop transitions to all states s = (l, ν) for inputs i undefined in s,i.e. we add (l, ν)

i−→ (l, ν) if
ν��|=

∨
∃l′,r:l

g,i,r−−→l′
g and ∀o ∈ ΣO : s 6 o−→ (due to isolated outputs). This ensures input enabledness while

avoiding TA cluttered with input self-loops. It also allows to ignore input enabledness during genetic
programming. As a result, mutations may remove any input edge without restrictions.

Testability and Learnability. The above assumptions placed on SULs ensure testability [137]. As-
suming that SULs can be modelled in some modelling formalism is usually referred to as testing hypoth-
esis [269]. Placing the same assumptions on learned models simplifies checking conformance between
model and SUL.

Under these assumptions, the execution of a test sequence uniquely determines a response in the form
of a timed trace [256] and due to input enabledness we may execute any test sequence. Therefore, we
can view a timed SUL satisfying our assumptions as a function t : (R≥0×Σi)

∗ → (R≥0×Σ)∗, mapping
from test sequences to timed traces. Based on that, we can specify how to derive negative samples, even
though the observed timed traces produced by the SUL are positive samples. If we observe the timed
trace tt = t(ts) in response to performing the test sequences ts on the SUL, then any tt′ which is not a
prefix of tt is a negative sample trace. This means that correct models must not produce tt′.

This form of determinism allows us to use equivalence as conformance relation between learned
models and the SUL. What is more, we can approximate checking equivalence between the learned
models and the SUL by simulating test sequences on the models and checking for equivalence between
the SUL’s responses and the responses predicted by the models.

8.2.2 Genetic Programming

Genetic programming [167] is a search-based technique to automatically generate programs exhibiting
some desired behaviour. Similar to Genetic Algorithms [209], it is inspired by nature. Programs, also
called individuals, are iteratively refined by: (1) fitness-based selection followed by (2) operations alter-
ing program structure, such as mutation and crossover. Fitness measures the quality of individuals in a
problem-specific way, for instance, based on tests. In this case, one could assign a fitness value propor-
tional to the number of tests that are passed by an individual. The following basic functioning principle
underlies genetic programming.

1. Randomly create an initial population of individuals.

2. Evaluate the fitness of each individual in the population.

3. If an acceptable solution has been found or the maximum number of iterations has been performed:
stop and output the best individual

4. Otherwise repeatedly select an individual based on fitness and apply one of:

• Mutation: change a part of the individual to create a new individual.
• Crossover: select another individual according to its fitness and combine both individuals to

create offspring.
• Reproduction: copy the individual to create a new equivalent individual.

5. Form a new population from the new individuals and go to Step 2.

166 Chapter 8. Learning Timed Automata via Genetic Programming

Test SUL Evaluate Evaluate

Random Global
Population

Random Local
PopulationSUL

Stop?

Create New
Population

Create New
Population

Migrate
Output
Fittest

ntest

traces
npop npop

≤ nmig

yes

no

≤ npop + nmig

npop

Tfail

Figure 8.2: Overview of genetic programming for timed automata

Several variations and extensions of this general approach exist. In the following, we are going to discuss
additional details regarding extensions that will be applied in Section 8.3.

Mutation Strength and Parameter Adaptation. In metaheuristic search techniques, such as evolution
strategies [59], mutation strength typically describes the level of change caused by mutations. This
parameter heavily influences search, therefore there exist various schemes to adapt it. Since the optimal
parameter value is problem-specific, it makes sense to evolve it throughout the search together with the
actual individuals. Put differently, individuals are equipped with their own mutation strength, which is
mutated during the search. Individuals with good mutation strength are assumed to survive fitness-based
selection and to produce offspring.

Elitism. Elitist strategies keep track of a portion of the fittest individuals found so far and copy them
into the next generation [209]. This may improve performance, as correctly identified partial solutions
cannot be forgotten.

Subpopulations and Migration. Due to their nature, genetic algorithms and genetic programming
lend themselves to parallelisation. Several populations may, for instance, be evolved in parallel, which is
particularly useful if speciation is applied [222]. In speciation, different subpopulations explore different
parts of the search space. In order to exchange information between the subpopulations, it is common
that individuals migrate between them.

8.3 Genetic Programming for Timed Automata

8.3.1 Overview

In this section, we discuss our implementation of genetic programming. Figure 8.2 provides an overview
of the performed steps, while Figure 8.3 shows the creation of a new population in more detail.

We first test the SUL by generating and executing ntest test sequences to sample ntest timed traces.
Our goal is then to genetically program a TA consistent with the sampled timed traces. Put differently,
we want to generate a TA that produces the same outputs as the SUL in response to the inputs of the test
sequences. For the following discussion, we say that a TA passes a timed trace t of the SUL if it produces
the same trace t when simulating the test sequence corresponding to t. Otherwise it fails t. In addition to
passing all timed traces, the final TA shall be deterministic. This is achieved by assigning larger fitness
values to deterministic solutions. Both mutation and crossover can create non-deterministic intermediate
solutions, which might help the search in the short-term and will be resolved in future generations.

8.3. Genetic Programming for Timed Automata 167

Choose
Operation

CrossoverMutate Migration
Crossover

Fitness-
Based

Selection

Apply
Operation

do npop times

Global
Population

Local
Population New Global

Population

pcr
2

pcr
21− pcr

Create New Population:

npop

Figure 8.3: Creating a new global population of timed automata

Generally, we evolve two populations of TA simultaneously, a global population, evaluated on all
the traces, and a local population, evaluated only on the traces that fail on the fittest automaton of the
global population. Both are initially created equally and contain npop TA. After initial creation, the
global population is evaluated on all ntest traces. During that, we basically test the TA to check how
many traces each TA passes and assign fitness values accordingly; i.e., the more passed traces, the fitter.
Additionally, we add a fitness penalty for model size.

The local population is evaluated only on a subset Tfail of the traces. This subset Tfail contains all
traces which the fittest TA fails, and which likely most of the other TA fail as well. With the local
population, we are able to explore new parts of the search space more easily since the local search may
ignore functionality already modelled by the global population. We integrate functionality found via this
local search into the global population through migration and migration combined with crossover. To
avoid overfitting to a low number of traces, we ensure that Tfail contains at least ntest

100 traces. If there are
fewer actually failing traces, we add randomly chosen traces from all ntest traces to Tfail.

After evaluation, we stop if we either reached the maximum number of generations gmax or the fittest
TA passes all traces and has not changed in gchange generations. Note that two TA passing all traces may
have different fitness values depending on model size, thus gchange controls how long we try to decrease
the size of the fittest TA. The motivation for this is that smaller TA are less complex and simpler to
comprehend. Additionally, they can be expected to be more general than larger TA and less likely to
overfit to the given data.

If the search has not stopped, we create new populations of TA, which works slightly differently for
the local and the global population. Figure 8.3 illustrates the creation of a new global population. Before
creating new TA, existing TA may migrate from the local to the global population. For that, we check
each of the fittest nmig local TA and add it to the global population, if it passes at least one trace from
Tfail. We generally set nmig to 5npop

100 , i.e., the top five per cent of the local population are allowed to
migrate. After migration we create npop new TA through the application of one of three operations:

1. with probability 1− pcr: mutation of a TA from the global population

2. with probability pcr
2 : crossover of two TA from the global population

3. with probability pcr
2 : crossover of two TA, one from each population

The rationale behind migration combined with crossover is that migrated TA may have low fitness from a
global point of view and will therefore not survive selection. They may, however, have desirable features
which can be transferred via crossover. For the local population, we perform the same steps, but without
migration from the global population, in order to keep the local search independent. Once we have new
populations, we start a new generation by evaluating the new TA.

168 Chapter 8. Learning Timed Automata via Genetic Programming

Table 8.1: Parameters for the initial creation of TA
Name Short description
npop number of TA in population

ΣI & ΣO the input and output action labels on edges
nclock number of clocks in the set of clocks C
cmax approximate largest constant in clock constraints

A detail not illustrated in Figure 8.2 is our implementation of elitism [209]. We always keep track of
the fittest TA found so far for both populations. In each generation, we add these fit TA to their respective
populations after performing mutation and crossover.

Parameters. The genetic-programming implementation can be controlled by a large number of pa-
rameters. To ease applicability and to avoid the need for meta-optimisation of parameter settings for a
particular SUL, we fixed as many as possible to constant values. The actual values, such as 5npop

100 for
nmig, are motivated by experiments. The remaining parameters can usually be set to default values or
chosen based on guidelines. For instance, npop, gmax, and ntest may be chosen as large as possible, given
available memory and maximum computation time. The same holds for gchange.

8.3.2 Creation of Initial Random Population

We initially create npop random TA parameterised by: (1) the labels ΣI and ΣO, (2) the number of
clocks nclock, and (3) the approximately largest constant in clock constraints cmax. These parameters
are also summarised in Table 8.1. Note that cmax is an approximation, because mutations may increase
constants to values larger than cmax, but with low probability. Each TA has initially only two locations,
as we intend to increase size and with that complexity only through mutation and crossover. Moreover,
TA are assigned the given action labels and have nclock clocks. During creation we add random edges,
such that at least one edge connects the initial location to the other location. These edges are entirely
random, where the number of constraints in guards as well as the number of clock resets are geometrically
distributed with fixed parameters. The edge labels, the relational operators and constants in constraints
are chosen uniformly at random from the respective sets Σ, {<,≤,≥, >}, and [0 . . cmax] (operators for
outputs exclude >). The source and target locations are also chosen uniformly at random from the set of
locations, i.e. initial choices consider two locations.

If the required number of clocks is not known a priori, we suggest setting nclock = 1 and increasing
this value only if it is not possible to find a valid TA. A similar approach can be used for cmax.

8.3.3 Fitness Evaluation

Simulation. We simulate timed traces on TA to evaluate their fitness. At the beginning of this section,
we mentioned failing and passing traces, but the evaluation is actually more fine grained. We execute the
inputs of each timed trace and observe the produced outputs until (1) the simulation is complete, (2) an
expected output is not observed, or (3) output isolation is violated (output non-determinism).

As pointed out in Section 8.2.1, if T is a deterministic, input-enabled TA with isolated and urgent
outputs and ts is a test sequence, then executing ts on T uniquely determines a timed trace tt [256]. By
the testing hypothesis, the SUL fulfils these assumptions. However, TA generated through mutation and
crossover are input-enabled, but they may show non-deterministic behaviour. Hence, simulating a test
sequence or a timed trace on a generated TA may follow multiple paths of states. Some of these paths
may produce the expected outputs and some may not. Our goal is to find a TA that is both correct, i.e.
produces the same outputs as the SUL, and is deterministic. Consequently, we reward these properties
with positive fitness.

8.3. Genetic Programming for Timed Automata 169

The simulation function SIM(G, tt) simulates a timed trace tt on a generated TA G and returns a set
of timed traces. It builds the basis for fitness computation and uses the TTS semantics but does not treat
outputs as urgent outputs. From the initial state (l0,0), where l0 is the initial location of G, it performs
the following steps for each tiei ∈ tt with t0 = 0:

1. From state q = (l, ν)

2. Delay for d = ti − ti−1 to reach qd = (l, ν + d)

3. If ei ∈ ΣI , i.e. ei is an input:

3.1. If ∃o ∈ ΣO, d
o ≤ d : (l, ν + do)

o−→, i.e. an output would have been possible while delaying
or an output is possible at time ti

→ then mark ei
3.2. If ∃q1, q2, q1 6= q2 : qd

ei−→ q1 ∧ qd ei−→ q2

→ then mark ei
3.3. For all q′ such that qd ei−→ q′

→ carry on exploration with q′

4. If ei ∈ ΣO, i.e. ei is an output:

4.1. If ∃o ∈ ΣO, d
o < d : (l, ν + do)

o−→, i.e. an output would have been possible while delaying

→ stop exploration

4.2. If ∃q1, q2, q1 6= q2 : qd
ei−→ q1 ∧ qd ei−→ q2 or ∃o, o 6= ei : qd

o−→
→ stop exploration

4.3. If there is a q′ such that qd ei−→ q′

→ carry on exploration with q′

The procedure shown above allows for two types of non-determinism. During delays and before exe-
cuting an input, we may ignore outputs (3.1.) and we may explore multiple paths with inputs (3.3.). We
mark these inputs as non-deterministic (3.1. and 3.2.). Since we explore multiple paths, a single input
ei may be marked along one path but not marked along another path. In contrast, we do not explore
non-deterministic outputs, leading to lower fitness for respective traces. By ignoring non-deterministic
outputs, we avoid issues related to trivial TA which produce every output all the time. These TA would
completely simulate all traces non-deterministically, but would not be useful.

During exploration, SIM(G, tt) collects and returns timed traces tts, which are prefixes of tt but with
marked and unmarked inputs. For fitness computation, we apply four auxiliary functions. The first one
assigns a verdict to simulations and it is defined as follows.

Let tts = SIM(G, tt) be collected timed traces

VERDICT(tts, tt) =

PASS if |tts| = 1 ∧ tt ∈ tts

NONDET if |tts| > 1 ∧ ∃tt′ ∈ tts : |tt′| = |tt|
FAIL otherwise

The simulation verdict is PASS if G behaves deterministically and produces the expected outputs. It
is NONDET, if G produces the correct outputs along at least one execution path, but behaves non-deter-
ministically. Otherwise it is FAIL. A TA, which produces a PASS verdict for all timed traces, behaves
equivalently to the SUL for these traces.

The function STEPS(tts) returns the maximum number of unmarked inputs in a trace in tts , i.e. the
number of deterministic steps, and OUT(tts) returns the number of outputs along the longest traces in
tts . Finally, SIZE(G) returns the number of edges of G.

170 Chapter 8. Learning Timed Automata via Genetic Programming

Fitness Computation. In order to compute the fitness of G, we assign the weights wPASS, wNONDET,
wFAIL, wSTEPS, wOUT, and wSIZE to the information gathered about G. Basically, we give some positive
fitness for deterministic steps, correctly produced outputs, and verdicts, but we penalise size. Let T T be
the timed traces on which G is evaluated. The fitness FIT(G) is then (note that wVERDICT(tts) evaluates to
one of wPASS, wNONDET, or wFAIL):

FIT(G) =
∑
tt∈T T

FIT(G, tt)− wSIZE SIZE(G) where

FIT(G, tt) = wVERDICT(tts) + wSTEPS STEPS(tts) + wOUT OUT(tts) and tts = SIM(G, tt)

Fitness evaluation adds further parameters and we identified guidelines for choosing them adequately.
We generally set wFAIL = 0 and use wOUT as the basis for other weights. Usually, we set wSTEP = wOUT/2
and wPASS = k · l ·wOUT, where l is the average length of test sequences and k is a small natural number,
for instance k = 4. More important than the exact value of k is setting wNONDET = wPASS/2 which gives
positive fitness to correctly produced timed traces but with a bias towards deterministic solutions. The
weight wSIZE should be chosen low, such that it does not prevent the creation of necessary edges. We
usually set it to wSTEP. It needs to be non-zero, though. Otherwise an acceptable solution could be a tree-
shaped automaton exactly representing T T without generalisation. As noted at the beginning of this
section, we assign larger fitness to solutions that accept a larger portion of the traces deterministically, as
our goal is to learn deterministic TA.

As noted above, a TA T producing only PASS verdicts behaves equivalently to the SUL with respect
to T T , hence T is “approximately trace equivalent” to the SUL. Due to the restriction to deterministic
output-urgent systems, trace inclusion and trace equivalence coincide. As a result, a TA producing a
FAIL verdict is neither an under- nor an over-approximation.

8.3.4 Creation of New Population

We discussed how new populations are created at the beginning of this section on the basis of Figure 8.3.
In the following, we will present details of the involved steps.

Migration. Initially, we distinguished only passed and failed traces, but later introduced a third verdict
for non-deterministically passed traces. In the context of migration, we consider non-deterministically
passed traces to be failed. Therefore, Tfail contains all traces for which the fittest TA of the global
population produces a verdict other than PASS. The rationale behind this is that we want to improve the
global population for traces with both FAIL and NONDET verdicts.

Selection. We use the same selection strategy for mutation and crossover, except that crossover must
not select the same parent twice. In particular, we combine truncation and probabilistic tournament
selection: first, we discard the (npop− nsel) worst-performing non-migrated TA (truncation), where nsel

is the only paramter of truncation selection. This parameter is initially set to a user-defined value.
After truncation, we perform a probabilistic tournament selection for each selection of an individual.

The pool for this form of selection includes the remaining nsel TA of the global population and the
migrated TA. Probabilistic tournament selection [139] randomly chooses a set of nt TA and sorts them
according to their fitness. It then selects the ith TA with probability pi, which we set to pi = pt(1−pt)

i−1

for i ∈ [1 . . nt−1] and to pnt = (1−pt)
nt−1, where pt and nt are parameters of the tournament selection.

We fix these parameters to nt = 10 and pt = 0.5.
Truncation selection is mainly motivated by the observation that it increases convergence speed dur-

ing early generations by focusing search on the fittest TA. However, it can be expected to cause a larger
loss of diversity than other selection mechanisms [63]. As a result, search may converge to a suboptimal
solution, because TA that might need several generations to evolve to an optimal solution are simply
discarded through truncation. Therefore, we gradually increase nsel until it becomes as large as npop

8.3. Genetic Programming for Timed Automata 171

Table 8.2: Mutation operators
Name Short description
add constraint add a guard constraint to an edge
change guard select an edge and create a random guard if the edge does not have a guard, other-

wise mutate a constraint of its guard
change target change the target location of an edge
remove guard remove either all or a single guard constraint from an edge
change resets remove clocks from or add clocks to the clock resets of an edge
remove edge remove a selected edge
add edge add an edge connecting two randomly chosen existing locations
sink location add a new location
merge location merge two locations
split location split a location l by creating a new location l′ and redirecting an incoming edge of l

to l′

add location add a new location and two edges connecting the new location to existing locations
split edge replace an edge e with either the sequence e′ · e or e · e′ where e′ is a new random

edge (adds a location to connect e and e′)

such that no truncation is applied in later generations. For the same reason, we do not discard migrated
TA, since they may possess valuable features.

Application of Mutation Operators. We implemented mutation operators for changing all aspects of
TA, such as adding and removing clock constraints. Table 8.2 lists all implemented mutation operators
for TA. Whenever an operator selects an edge or a location, the selection is random with a bias towards
locations and edges which are associated with faults and non-deterministic behaviour. We augment TA
with such information during fitness evaluation. To create an edge, we create random guards, create reset
sets and choose a random label, as in the initial creation of TA.

The mutation operators form three groups separated by bold horizontal lines. The first and largest
group contains basic operators, which are sufficient to create all possible automata. The second group
containing merge location and split location is motivated by the basic principles behind automata learning
algorithms. Passive algorithms, such as IOALERGIA [199], often start with a tree-shaped representation
of traces and transform this representation into an automaton via iterated state-merging [95]. Active
learning algorithms, such as L∗ [37], on the other hand usually start with a low number of locations and
add new locations if necessary. This can be interpreted as splitting of existing locations, as in the TTT
algorithm [151]. Note that this intuition also served as a basis for our fault-based test-case generation for
active automata learning that we presented in Chapter 4 [17]. The last two operators are motivated by
observations during experiments: add location increases the automaton size but avoids creating deadlock
states, unlike the operator sink location. Split edge addresses issues related to input enabledness, where
an input i is implicitly accepted without changing state, although an edge labelled i should change the
state. The operator aims to introduce such edges. For a single mutation, we generally select one of the
mutation operators uniformly at random.

Mutation Strength. To control mutation strength, we augment each TA with a probability pmut. Ba-
sically, we perform iterated mutation and stop with pmut after each application of a mutation operator.
Hence, low values of pmut cause strong mutation.

TA created by mutation are either assigned the parent’s pmut, pmut increased by multiplication with
10
9 , or pmut decreased by multiplication with 9

10 . These changes are constrained to not exceed the range
[0.1, 0.9] and each of the three choices has the same probability. TA created via crossover are assigned the

172 Chapter 8. Learning Timed Automata via Genetic Programming

Algorithm 8.1 Crossover of locations l1 and l2

1: (l1, l2)← current product location

2: for all l1 g1,a,r1−−−−→ l1
′ do

3: if l2 g2,a,r2−−−−→ l2
′ then . synchronise on label a

4: ADD ((l1, l2)
choose(g1,g2),a,choose(r1,r2)−−−−−−−−−−−−−−−−−→ (l1

′
, l2
′
))

5: else
6: ADD ((l1, l2)

g1,a,r1−−−−→ (l1
′
, rSel(L2)))

7: end if
8: end for
9: for all l2 g2,a,r2−−−−→ l2

′ s.t. @g1, r1, l1
′
: l1

g1,a,r1−−−−→ l1
′ do

10: ADD ((l1, l2)
g2,a,r2−−−−→ (rSel(L1), l2

′))
11: end for

average pmut of both parents. In the first generation, we set pmut of all TA to the user-specified pmutinit.
The search is insensitive to this parameter as it quickly finds suitable values for pmut via mutation.

Simplification. In addition to mutation, we apply a simplification procedure. The procedure changes
the syntactic representation of TA without affecting semantics, for instance, by removing unreachable
locations and self-loop edges for inputs which do not reset clocks. This limits the search to relevant parts
of the search space ensuring that unreachable edges are not mutated. The parameter gsimp specifies the
number of generations between simplifications. Note that we only check the graph underlying the TA,
but we do not consider clock values to ensure fast operation.

Crossover. We implemented crossover as a randomised product of two parents. It works as follows.
Let L1 and L2 be the locations of the two parents and let l01 and l02 be their respective initial locations,
then the locations of the offspring are given by L1 × L2. Beginning from l0

1 and l02 and the initial
product location (l0

1, l0
2), we explore both parents in a breadth-first manner and we add edges via the

algorithm shown in Algorithm 8.1. The algorithm synchronises on action labels and adds edges common
to both parents, while randomly choosing the guard and reset set from one of the parents. Edges present
in only one parent (Line 6 and Line 10) are added as well, but the target location for the other parent
is chosen randomly. As in previous chapters, we apply rSel for uniformly random selections. Based on
that, the auxiliary function CHOOSE(a, b) = rSel({a, b}) returns either a or b with equal probability and
rSel(L) chooses a location in L uniformly at random.

To avoid creating excessively large offspring, we stop the exploration and the addition of edges, once
the number of reachable product locations is equal to max(L1, L2). As a result, the offspring may not
have more locations than both parents. The reachability check only considers the graph underlying the
TA and ignores guards due to efficiency reasons.

8.3.5 Implementation

The presented algorithms have been implemented in a tool using Java 8. The tool can be found on-
line [262] and screenshots of it are shown in Figures 8.4 and 8.5. It supports customisation of almost all
relevant parameters. When selecting one of the presented experiments, the tool will propose the same
values that were used in the evaluation presented in Section 8.4. While the tool is general enough to
learn from any set of timed traces given in the correct format, the prototype is currently only meant for
evaluating the examples presented in this chapter.

8.4. Case Studies 173

Figure 8.4: A screenshot of the parameter-settings tab of the genetic-programming tool for timed
automata

The tool implements the genetic-programming process, with the possibility to inspect the current
status of the search, such as the passed timed traces by the current population. In case the search gets
stuck, the tool also allows the user to perform manual changes, which enables semi-automatic modelling.

8.4 Case Studies

The genetic-programming evaluation is based on four manually created and 40 randomly generated TA,
which serve as our SULs. Using known TA provides us with an easy way of checking whether we
found the correct model. It also allows us to simulate time for fast experimentation. However, our
approach and our tool are general enough to work on real black-box implementations. As previously
mentioned, the approach has been implemented in Java. The implementation includes a demonstrator
with a graphical user interface that is available online as part of the supplementary material on learning
timed automata [262]. The demonstrator allows users to repeat all experiments presented in the following
with freely configurable parameters. The supplementary material additionally includes Graphviz dot-
files of the TA used in the evaluation.

For the evaluation, we generated timed traces by simulating ntest random test sequences on the
SULs. The inputs in the test sequences were selected uniformly at random from the available inputs. The
lengths of the test sequences are geometrically distributed with a parameter ptest, which is set to 0.15
unless otherwise noted. To avoid creating trivial timed traces, we ensure that all test sequences cause at
least one output to be produced. Short test sequences not leading to an output are actually discarded by
that, which changes the test-sequence length distribution slightly.

The delays in test sequences were chosen probabilistically in accordance with the user-specified
largest constant cmax. Additionally, delays close to important constants of the SULs were favoured
during test-sequence generation. In practice, one could specify constants gathered from a requirements
document if available. Since we simulated known TA for learning, we collected the constants used
in guards for that. Specifying appropriate delays generally helps to ensure that the SULs are covered
sufficiently well by the test sequences.

174 Chapter 8. Learning Timed Automata via Genetic Programming

Figure 8.5: A screenshot of the evolution tab of the genetic-programming tool for timed automata

Measurement Setup and Criteria. The measurements were done on a Lenovo Thinkpad T450 with
16 GB RAM and an Intel Core i7-5600U CPU operating at 2.6 GHz. Our main goal is to show that we
can learn models in a reasonable amount of time. Improvements of learning efficiency may be possible,
for instance, via parallelisation.

We use a training set and a test set for evaluation, each containing ntest timed traces. First, we learn
from the training set until we find a TA which produces a PASS verdict for all traces. Then, we simulate
the traces from the test set and report all traces leading to a verdict other than PASS as erroneous. Note
that since we generate the test set traces through testing, there are no negative traces. Similar to the
training traces, all traces are observable and can be considered positive. Consequently, notions such as
precision and recall do not apply to our setting.

Our four manually created TA, with number of locations and cmax in parentheses, are called car alarm
system (CAS) (14, 30), Train (6, 10), Light (5, 10), and particle counter (PC) (26, 10). All of them use
one clock. The CAS is an industrial case study, which served as a benchmark for test-case generation
for timed systems [20]. A simplified, discrete-time Mealy-machine version of the CAS is shown in
Example 2.1 in Section 2.1. Different versions of the Train and Light have been used as examples
in real-time verification [49] and variants of them are distributed as demo examples with the real-time
model checker UPPAAL [178] and the real-time testing tool UPPAAL TRON [138]. Our version of the
Train example is shown in Figure 8.1. The particle counter (PC) is the second industrial case study.
Discrete-time versions of it have been examined in model-based testing [21].

In addition to the manually created timed systems, we consider four categories of random TA, each
containing ten TA: C15/1, C20/1, C6/2, C10/2, where the first number specifies the number of loca-
tions and the second number is the number of clocks. TA from the first two categories have alphabets
containing 5 distinct inputs and 5 distinct outputs, while the TA from the other two categories have 4
inputs and 4 outputs. For all random TA, we have cmax = 15.

We used similar configurations for all experiments. Following the suggestions in Section 8.3, we
set the fitness weights to wOUT = 0.25, wSTEPS = wOUT

2 = wSIZE, wPASS = 4wOUT

ptest
, wNONDET = PASS

2 ,
and wFAIL = 0, with the exception of CAS. Since the search frequently got trapped in local fitness
maxima with non-deterministic behaviour, we set wOUT = wSTEPS

2 and wNONDET = −0.5. Through these

8.4. Case Studies 175

Table 8.3: Measurement results for learning timed automata via genetic programming
TA test set errors generations time
CAS 0 147/246.0/305.8/595 27.3m/57.2m/1.2h/2.7h

Train 0 50/71.0/83.4/180 2.9m/4.7m/4.8m/9.1m

Light 0 42/77.5/84.5/240 3.2m/7.4m/8.7m/31.1m

PC 0 278/685.5/554.9/859 3.0h/8.7h/7.3h/10.6h

C15/1 0/2.0/1.8/6 201/404.5/401.3/746 1.4h/3.1h/3.2h/6.6h

C20/1 0/0.0/1.0/6 45/451.0/665.8/1798 23.4m/6.7h/7.4h/18.3h

C6/2 0/0.0/0.5/3 18/68.5/176.9/709 9.4m/43.9m/1.8h/7.6h

C10/2 0/2.5/2.6/8 73/239.0/344.9/984 35.8m/3.1h/3.4h/9.3h

settings, we assign larger fitness to deterministic steps than to outputs and we add a small penalty for non-
determinism. Other than that, we set gmax = 3000, npop = 2000, the initial nsel =

npop

10 , ntest = 2000,
pcr = 0.25, gchange = 10, pmutinit = 0.33, and gsimp = 10, with the following exceptions. Train and
Light require less effort, thus we set npop = 500. The categories C10/2, C15/1, and C20/1 require
more thorough testing, so we configured ntest = 4000 for C10/2 and C15/1, and ntest = 6000 with
ptest = 0.1 for C20/1. We determined the settings for ntest experimentally, by manually inspecting if
the intermediate learned TA were approximately equivalent to the true models, so as to ensure that the
training sets adequately cover the relevant behaviour.

Altogether, we performed 80 learning runs: 10 repeated runs for each manual TA and 10 for each
random category, i.e. one run per random TA. All learning runs were successful at finding a TA without
errors on the training set, except in two cases, one in category C10/2 and one in category C20/1. In
the first case, we repeated the learning run with a larger population npop = 6000, resulting in success-
ful learning. For the random TA in C20/1, we observed a similar issue as for CAS. Non-determinism
was an issue, but we used another solution to counter that. In some cases, crossover may introduce
non-determinism, thus we decreased the crossover probability pcr to 0.05 which resulted in successful
learning. Hence, we are able to learn TA that are consistent with given trace data via genetic program-
ming.

Results. Table 8.3 shows the learning results. The column test set error contains 0, if there were no
errors on the test set. Otherwise, each cell in the table contains, from left to right, the minimum, the
median and the mean, and the maximum computed over 10 runs for manually created TA and over 10
runs for each random category.

Figure 8.6a and Figure 8.6b illustrate the percentage of correct steps when simulating the timed traces
from the training set on the fittest intermediate learned models. The solid line represents the median out
of the 10 runs, the dots represent the minimum, the triangles the maximum and the coloured area is
the area between first and third quartile. One can see a steep rise in the early generations, while later
generations are mainly needed to minimise the learned models that already correctly incorporate all test
steps. The CAS is the model with the slowest initial learning, where, in the worst case, the first 200
generations did not improve the model.

The test set errors are generally low, so our approach generalises well and does not simply overfit
to the training data. We also see that manually created systems produced no test set errors, while the
more complex random TA led to errors. However, for them the relative number of errors was at most two
thousandths (8 errors out of 4000 tests). Such errors may, for instance, be caused by slightly too loose or
too strict guards on inputs.

The computation time of at most 18.3 hours seems acceptable, especially considering that fitness
evaluation, as the most time-consuming part, is parallelisable. Finally, we want to emphasise that we
identified parameters which almost consistently produced good results. In the exceptions where this was
not the case, it was simple to adapt the configuration.

176 Chapter 8. Learning Timed Automata via Genetic Programming

0 100 200 300 400 500 600
0%

50%

100%

generations

(a) Percentages for the Light (blue) and the CAS (red)

0 100 200 300 400 500 600
0%

50%

100%

generations

(b) Percentages for the PC (blue) and the Train (red)

Figure 8.6: Evolution of the percentages of accepted test steps of the fittest timed automata

The size of our TA in terms of number of locations ranges between 5 and 26. To model real-world
systems, it is therefore necessary to apply abstraction during the testing phase, which samples timed
traces. Since model learning requires thorough testing, abstraction is commonly used; see Section 2.5.
We generally consider similarly-sized systems in this thesis. Consequently, the requirement of abstrac-
tion is not a severe limitation.

Manual Interpretability. Figure 8.7 shows a learned model of the CAS as it is produced by our tool
without any post-processing. It is observationally equivalent to the true system. Hence, there is no
test sequence which distinguishes the SUL from the learned model. Note that the model is also well
comprehensible. This is due to the fitness penalty for larger models and due to implicit input-enabledness.
Both measures target the generation of small models containing only necessary information. The CAS
model only contains a few unnecessary clock resets and an ineffective upper bound in the guard of the
edge labelled soundOff!, but removing any edge would alter the observable behaviour. Therefore, our
approach may enable manual inspection of black-box timed systems, which is substantially more difficult
and labour-intensive given only observed timed traces.

8.5 Summary

We presented an approach to learn deterministic TA with urgent outputs, which is an important subclass
for testing timed systems [137]. The learned models may reveal flaws during manual inspection and
enable verification of black-box systems via model checking. Genetic programming, a metaheuristic
search-based technique, serves as the basis framework for learning. In our instantiation of this frame-
work, we parallelised search by evolving two populations simultaneously and developed techniques for
mutation, crossover, and for a fine-grained fitness evaluation. Due to the heuristic nature of the proposed
method, we cannot provide a convergence proof. Nonetheless, we provide empirical evidence that the
method performs well, is capable of coping with state spaces sufficient to model practical systems and
generally converges to a solution consistent with given trace data. We evaluated the technique on non-
trivial TA with up to 26 locations. We could learn all 44 TA models, where only two random TA needed
a small parameter adjustment.

8.6. Results and Findings 177

Figure 8.7: A learned model of the car alarm system (CAS)

8.6 Results and Findings

In the following, we review the work presented within this chapter in relation to the research questions
defined in Section 1.6.3.

RQ 3.1 Is learning of real-time system models feasible through metaheuristic search-based tech-
niques? Yes, it is possible to learn TA via metaheuristic search-based techniques. We have successfully
adapted genetic programming to this modelling formalism and developed a learning technique that reli-
ably converges to a correct model that is consistent with given training data.

Similar to genetic programming in general, our approach has various parameters that affect perfor-
mance. Therefore, we face the risk that the approach only works under certain configurations for a given
type of systems. To counter this risk, we identified parameter settings that work well across all 44 con-
sidered SULs. Although we could potentially learn each individual SUL more efficiently, we specifically
aimed at a general solution.

RQ 3.2 What assumptions are sufficient to enable learning in the context of real-time systems?
It was sufficient to assume determinism, isolated outputs, and output urgency. However, it was not
necessary to put assumptions on clock resets. We succeeded at learning TA with more than one clock
and arbitrary clock resets. Moreover, we learned input-enabled TA, which makes them well-suited for a
testing context.

178 Chapter 8. Learning Timed Automata via Genetic Programming

The question of how to relax our assumptions arises naturally. Determinism and isolated outputs,
which is a special form of determinism, are not severe limitations, since determinism is a common as-
sumption in learning of Mealy machines as well. Output urgency, however, does not allow for uncertainty
with respect to output timing. Any imprecision that should be allowed in this regard needs to be handled
by the component simulating timed traces for the fitness evaluation. If we want to capture uncertain
output timing in models, then we need to weaken the assumption of output urgency. As discussed in the
context of learnability in Section 8.2.1, our assumptions provide us with negative samples that enable
learning.

Hence, a different source of negative samples might enable getting rid of assumptions. This may not
be necessary, though. Instead of requiring outputs to be produced as soon as they are enabled, we could
require that outputs must be produced within k time units after being enabled. A timed trace containing
an output that is produced after k + 1 timed units would be a negative example under this assumption.

Concluding Remarks. In conclusion, we have presented a genetic-programming-based technique that
reliably learns models of real-time systems which are consistent with given training data. These models
generalise to test data that is produced equally, without overlapping with the training data. Since we
learn from randomly generated data in our experiments, the learned models may not be equivalent to true
underlying models. However, a manual inspection revealed that we generally learned correct models,
with the exception of slight discrepancies in behaviour in some cases.

9
Active Genetic Programming of

Timed Automata

Declaration of Sources

This chapter presents an overview of an active approach to learning timed automata via ge-
netic programming. For details we refer to Andrea Pferscher’s master’s thesis [234] on this
topic. The master’s thesis builds upon the passive learning presented in Chapter 8 and improves
learning efficiency with respect to various performance measures through active testing. It was
co-supervised by the author of this thesis.

9.1 Introduction

The general theme of this thesis is learning-based testing and test-based learning of black-box systems.
While we apply different learning techniques throughout this thesis, we generally consider an active
setting. The only exception to that is Chapter 8, which presents a metaheuristic passive learning approach
for real-time systems. In this chapter, we apply the passive learning approach from Chapter 8 in an active
setting to implement an active learning technique for real-time systems, hence adhering to the theme of
this thesis.

While discussing passive learning in Chapter 8, we emphasised the importance of deriving models
that accommodate model-based testing. In this chapter, we build upon the passive genetic programming
from Chapter 8 to learn approximate hypothesis models. The models serve as the basis for model-based
testing. Test observations in turn are used to learn more accurate models. More concretely, we apply the
passive genetic programming technique in an active setting by repeatedly interleaving phases of learning
and testing. The testing technique developed by Andrea Pferscher [234] performs random walks and
roughly follows ideas that we applied in previous chapters; see for instance the test-case generation
technique proposed in Chapter 4.

Chapter Structure. The rest of this chapter is structured as follows. We present the main approach
and some details on testing in Section 9.2. In Section 9.3, we present selected results from the evaluation
of the proposed active learning approach. Section 9.4 provides a summary and Section 9.5 concludes
this chapter with a discussion of results and findings.

179

180 Chapter 9. Active Genetic Programming of Timed Automata

Random
Test Sequences

Test-Observation
Data

Hypothesis
Model

Learned
Model

generate & execute test sequences

learn passively

execute random
test sequences

no
discrepancies

Figure 9.1: Overview of the active genetic programming process

9.2 Method

9.2.1 Moving from Passive Learning to Active Learning

In order to move from passive to active learning, we apply a learning process similar to the one pro-
posed by Walkinshaw et al. [286]. An overview of this process is depicted in Figure 9.1 (see also [234,
Figure 3.1]). We start with an initially random set of test sequences which we execute on the SUL.
The test-sequence execution produces test observations in the form of timed traces. Given the initial
test observations, we invoke the passive genetic programming technique from Chapter 8 to learn a first
hypothesis model. From this model, we generate test sequences via random walks and execute these test
sequences on the SUL. All timed traces that reveal discrepancies between the hypothesis model and the
SUL are added to the test observations. In other words, we extend the test observations by counterex-
amples to equivalence between hypothesis and SUL. After that, we learn new and more accurate models
from the extended test-observation data. This loop of testing and learning is repeated until the test data
does not contain any counterexample to equivalence between SUL and hypothesis and we are not able
to find new counterexamples via testing. Once we stop, we output the final hypothesis as learned model.
This actually resembles active automata learning in the MAT framework without output queries, that is,
learning is solely based on equivalence queries.

9.2.2 The Active Genetic Programming Process

In the following, we will take a closer look at the active genetic-programming process. Therefore, we dis-
cuss some important details that need to be taken into account when relying on a metaheuristic approach
to passive automata learning.

Adaptation of Passive Learning. For the active process, the passive genetic programming has been
adapted to not start from scratch with a new population containing individuals with only two locations.
Each call of passive learning starts with the final population from the last call, if there is any. The first
call starts with a random population containing simple TA as in Chapter 8.

Incomplete Learning. It may happen that passive learning does not find a TA that models the test
observations perfectly in reasonable time. In other words, it may take an excessive number of generations
to find a model that passes all timed traces stored in the test observations. A potential reason for this kind
of issues is low coverage of certain aspects of the SUL’s behaviour by the test observations. If the test
observations contain little information on some parts of the SUL, the metaheuristic search may not find
an appropriate model. For this reason, we limit the number of generations of each iteration of the active
process: each call of passive genetic programming may perform up to gmaxactive generations.

Hence, if passive learning takes more than gmaxactive generations, we use the final timed automaton
as next hypothesis, even though it may not pass all sampled timed traces. Subsequent iterations of the

9.2. Method 181

active process add further counterexamples to equivalence between SUL and hypothesis. The reasoning
for that is the following. The newly added counterexamples potentially also increase the information
on parts that are not yet modelled by the hypothesis. Eventually, there will be sufficient information to
passively learn an adequate model.

We also need to ensure that we do not add too many traces, as learning performance decreases as the
size of the test-observation data grows. Therefore, we add at most nfail traces in each iteration. Finally,
we limit the maximum number of generations of the complete active process summed over all iterations
by gmax. This is necessary as we rely on metaheuristics, for which we do not have a convergence proof.
Hence, we stop the process if we either (1) do not find any new counterexamples or (2) we reach the
maximum number of iterations gmax.

Initial Hypothesis. As discussed by Pferscher [234], there are various options for choosing an initial
hypothesis model. As in adaptive model-checking [129], we could use an existing approximate model
that may not be up-to-date. In the evaluation, we generally apply the following approach. We create a
single random test sequence and execute this sequence to sample a timed trace produced by the SUL.
Then, we apply genetic programming to find a timed automaton modelling this trace.

This approach has various benefits. First, it does not require prior knowledge. Second, creating an
initial model in this way is very fast. Third, starting from a single trace follows a similar reasoning as the
passive genetic programming in general. The passive approach starts the search from very simple timed
automata with two locations and it only adds complexity incrementally throughout the search.

9.2.3 Real-Time Test-Case Generation for Active Genetic Programming

Next, we will first discuss the testing process that is performed in each iteration of active genetic pro-
gramming. Then, we will discuss how individual test cases are generated through random walks.

Testing Process. In each iteration of active genetic programming, we perform Algorithm 9.1 to test the
current hypothesis TA T . The algorithm creates up to nfail timed traces T T witnessing that the SUL and
T are not equivalent.

Algorithm 9.1 executes up to nattempts test sequences to find a single counterexample trace to equiv-
alence, thus it executes at most nfail · nattempts test sequences overall. For each test-sequence execution,
we first perform a random walk on the hypothesis T to generate a timed trace hypTrace produced by T
(Line 4). Note that for the sake of simplicity we abstract away from details such as further parameters of
the function performing the random walk. However, we will comment on important details below in our
discussion of random walks. From the trace hypTrace, we extract a test sequence containing only inputs,
by removing all outputs in Line 5. In Line 6, we execute the extracted test sequence on the SUL which
produces another timed trace sulTrace.

If sulTrace and hypTrace are different, then sulTrace is a counterexample to equivalence between the
SUL and the hypothesis. In this case, we truncate the trace of the SUL to the shortest trace that still is
a counterexample to equivalence (Line 8). We add the shortened trace to the set of traces T T that show
non-equivalence. In Line 13, we return T T which contains all found counterexamples.

In summary, we generate test sequences one by one by performing walks. Then, we execute those
test sequences to determine whether they reveal non-equivalence between SUL and hypothesis. If they
do, we add them to the set of timed traces that will be used for learning.

Random Walks. On an abstract level, test sequences are generated by random walks on the TTS
capturing the semantics of the current hypothesis. We alternate between timed and discrete actions
that are possible in the hypothesis, but we favour certain transitions over others. In other words, the
probabilistic choices performed during the random walks are biased. We also perform additional checks.

182 Chapter 9. Active Genetic Programming of Timed Automata

Algorithm 9.1 Testing process for active genetic programming of timed automata
Input: T : hypothesis TA, S: SUL
Output: T T : timed traces showing non-equivalence between T and the SUL S

1: T T ← ∅
2: for i← 1 to nfail do
3: for i← 1 to nattempts do
4: hypTrace← RANDOMWALK(T)
5: testSeq← EXTRACTTESTSEQUENCE(hypTrace)
6: sulTrace← EXECUTE(S, testSeq)
7: if hypTrace 6= sulTrace then
8: minTrace← shortest t ∈ prefixes(sulTrace) s.t. t 6= hypTrace[≤ |t|]
9: T T ← T T ∪ {minTrace}

10: end if
11: end for
12: end for
13: return T T

The following considerations affect the effectiveness of generated test sequences with respect to their
capability of detecting non-equivalence.

Implicit input enabledness: recall that our TA are implicitly input enabled. On the level of semantics,
we add self-loop transitions for undefined inputs. Because of that, a hypothesis TA generally
accepts all inputs in the test-observation data. As a result, hypotheses may lack input edges that
are actually needed. This happens especially for inputs, where the test-observation data does not
contain the corresponding outputs produced after those inputs.

For this reason, we also perform input actions that are not enabled (i.e., their guards are not sat-
isfied) in the states visited by the random walk. We call this performing non-location-changing
actions, as these actions correspond to self loops in the hypothesis. The rationale behind this is
that non-location-changing actions potentially explore new behaviour. With that, we aim to detect
if these actions are truly self loops, or if they lead to an observable change of the SUL state.

The probability of performing this kind of actions is set to be large at the beginning of the active
genetic process and decreases in each iteration. Exploring new behaviour is important in the early
phase of learning, whereas we assume the hypothesis to be approximately correct in the final
phase of learning. In this phase, we aim to test the behaviour specified by the hypotheses more
thoroughly.

Choosing delays: during random walks, we apply two strategies to choose delays for timed actions:
(1) we choose delays randomly in some prespecified interval, as for the test-sequence generation
for the passive approach. Alternatively to that, (2) we also choose delays specified in guard con-
straints of edges outgoing from locations that are visited by the random walk.

The choice between the two strategies is determined probabilistically during random walks. In the
evaluation, we configured the probabilistic choice such that both strategies are equally likely to
be applied. Through this strategy it is possible to gradually learn important delays during active
genetic programming. Testing can focus on these delays which increases effectiveness.

Zeno behaviour: random walks perform outputs if they are enabled in the currently visited state, be-
cause we consider them to occur urgently. By doing that we may enter a loop consisting of output
actions, in which time cannot elapse. Behaviour that allows an infinite sequence of discrete actions
to be performed without time elapsing is commonly called Zeno behaviour [41]. If we detect this
kind of behaviour, we stop the random walk and execute the test sequence corresponding to the
generated timed trace on the SUL. In general, this will reveal a discrepancy between the SUL and

9.3. Evaluation 183

the hypothesis, because Zeno behaviour is not possible in actual systems. Time needs to elapse at
some point.

9.3 Evaluation

In the following, we will discuss selected aspects of the evaluation of active genetic programming of
timed automata. The evaluation performed by Pferscher [234] compares the performance of the active
genetic programming to the performance of the passive approach on the basis of four evaluation criteria
discussed below. Forty random timed automata are considered, as in the evaluation in Section 8.4 and
three of the four manually defined timed automata from Section 8.4. Here, we also treat these timed
automata as black boxes and simulate them for trace generation. Also as in Section 8.4, we distinguish
two sets of timed traces: (1) a training set from which we learn automata and (2) a test set on which we
evaluate learned automata.

To investigate the influence of the training set size on the active and the passive approach, we have
performed learning experiments for varying training set sizes. In particular, we want to examine if
the active approach requires fewer traces than the passive approach to learn correctly. Since learning
is affected by random choices, every learning experiment has been repeated ten times and we report
statistics computed from that.

9.3.1 Evaluation Setup

Evaluation Criteria. We use the following four different criteria in our evaluation to compare active
and passive genetic programming.

Correctness: the percentage of traces in the test set that a learned automaton passes.

Needed training set size: the number of timed traces in the training set. For the active approach, this is
the overall number of traces generated by Algorithm 9.1 before stopping. The training set size is
fixed to ntest for the passive approach and bounded by ntest for the active approach.

Test-execution time: the time units that are required for executing the complete training set on the SUL.
This is the amount of time specified by the TA, which is simulated in our case.

Learning runtime: the wall-clock time required by learning-related computations, such as fitness eval-
uation and mutations.

Genetic Programming Configuration. The evaluation configuration for genetic programming is the
same as in Section 8.4, except for two differences. The training set size ntest ranges between 50 and
2000 with a step size of 100 starting at 100. Furthermore, the crossover probability for active genetic
programming is lower. It is set to pcr = 0.05, as this showed better performance in initial experiments.
The other parameters of the active approach are set as follows: gmaxactive is set to 100, limiting the
number of generations in each iteration of active learning to 100, gmax is set to 2000, which limits
the overall number of generations of active learning. The maximum test-sequence length for the active
approach is 40. We have chosen this specific value, as we target systems with up to approximately 30
locations. The probability of choosing a non-location changing action is initially 0.9 and decreased by
0.1 in every iteration of active learning. Finally, we set nattempts = 2000, which is the maximum number
of test-sequences that are executed in a single iteration, and we set nfail according to⌈

ntest
gmax

gmaxactive
· 0.9

⌉
. (9.1)

This formula ensures that all timed traces are added during the first 90 per cent of the iterations. The last
ten per cent of the iterations do not add new behaviour. Instead, the final iterations focus on learning the
behaviour reflected in the test-observation data collected so far. Note that ntest varies across experiments.

184 Chapter 9. Active Genetic Programming of Timed Automata

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

80

85

90

95

100

Maximum Training Set Size

C
or

re
ct

ne
ss

(%
)

Correctness of random TA with 20 locations

Active
Passive

Figure 9.2: Correctness evaluation of the learned TA in the C20/1 category in relation to the train-
ing set size

9.3.2 Selected Results

We will present three selected results in the following and we refer to Andrea Pferscher’s master’s the-
sis [234] for a thorough discussion of the complete evaluation.

Lower Training Set Size. Figure 9.2 shows plots of measurement results for the correctness criterion
for the C20/1 category, with blue denoting results of the active approach and red denoting results of
the passive approach. The plots depict statistics derived from the median correctness values computed
for the individual random timed automata in the C20/1 category. As this category includes ten random
timed automata, the statistics are derived from ten median values at each training set size. Triangles
correspond to the maximum median correctness for one approach at a given training set size, where the
maximum quantifies over all timed automata in the C20/1 category. Dots correspond to the minimum
median correctness and the solid lines denote the median of the median correctness.

We see in Figure 9.2 that the correctness of passive learning approaches 100 per cent, but especially
the minimum median correctness is noticeably below 100 per cent. In contrast, active learning requires
only at most 200 training traces to achieve complete correctness. Recall that we set the training set size
to 6000 for learning the C20/1 category in Section 8.4 and we increased the average training trace length
as well. We did this to ensure that the behaviour of the timed automata is sufficiently covered. A lower
number of traces may cause some parts to be covered infrequently such that those cannot be adequately
modelled by genetic programming. The measurements results shown in Figure 9.2 suggest that this is
indeed necessary for passive learning from random timed traces. We need to generate 6000 traces for
learning to be feasible. Put differently, passive learning requires 30 times as many training traces as
active learning.

Improved Performance. The active genetic programming stops once it cannot find new discrepancies
between SUL and hypothesis. Because of that, it may generate a lower number of traces than the passive
approach. We shall look at measurement results for the CAS to investigate what that means for learning
efficiency. We have chosen the CAS for that, because 100 per cent correctness is achieved with a training
set size of 400 by the passive approach and the active approach requires less than 100 traces.

Figure 9.3 and Figure 9.4 show plots of measurement results for the criteria needed training set size
and learning runtime, respectively. Red represents data of the active approach, whereas blue represents

9.3. Evaluation 185

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0

500

1,000

1,500

2,000

Maximum Training Set Size

N
ee

de
d

Tr
ai

ni
ng

S
et

S
iz

e

Needed Training Set Size for the CAS

Active
Passive

Figure 9.3: Training set size needed for learning a timed automaton model of the CAS

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0

100

200

300

400

500

Maximum Training Set Size

Le
ar

ni
ng

R
un

tim
e

(m
in

)

Learning Runtime for the CAS

Active
Passive

Figure 9.4: Runtime for learning a timed automaton model of the CAS

the passive approach. The solid line shows the median results computed over 10 learning experiments,
while the shaded areas represent the interquartile ranges computed from the results, i.e., the range be-
tween the first and the third quartile.

We see in Figure 9.3 that active learning generates the maximum number of ntest traces when ntest

is set to 50. For all other values of ntest the actual number of generated traces is far below ntest which
is the fixed training set size for passive learning. Hence, active learning improves upon passive learning
also when both learn correctly. However, we also see that the needed training set size slightly grows
with ntest. This can be explained by considering how nfail is calculated in Equation (9.1). The value
of nfail is proportional to ntest. Furthermore, note that during early iterations of the active process, it
is likely that Algorithm 9.1 finds many counterexamples. Hence, if nfail is large due to large ntest, we
consequently generate a large number of counterexamples in the early phase of active learning. It may
be possible to decrease the needed training set size even further by slightly adapting Equation (9.1).
However, computing nfail via Equation (9.1) worked well across all experiments. The measurement
results for test-execution time follow a very similar trend as the needed training set size, therefore we do
not show them.

186 Chapter 9. Active Genetic Programming of Timed Automata

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

70

80

90

100

Maximum Training Set Size

C
or

re
ct

ne
ss

(%
)

Correctness of the learned TA of the Light

Active
Passive

Figure 9.5: Correctness evaluation of the learned TA of the Light example in relation to the training
set size

Since active learning generates smaller training sets, fitness computation is significantly faster than
for passive learning. As a result, the overall active learning runtime is lower than the runtime of passive
learning. This is exactly what we see in Figure 9.4. It is also interesting to observe that the interquartile
range of the active learning runtime is much smaller than for passive learning. Some runs of passive
learning take much longer than other runs. Active learning can be considered more reliable in this
regard.

Local Optima. The evaluation of active genetic programming revealed an issue of passive genetic
programming that we did not discover in our original evaluation presented in Section 8.4. Figure 9.5
shows plots of the correctness measurement results for the Light example. The plots again depict the
median and the interquartile range. We can observe that the passive approach achieves 100 per cent
median correctness only for very few values of ntest. In the cases, where passive genetic programming
did not achieve 100 per cent correctness, it actually did not learn a model consistent with the given
training data. Hence, learning was unsuccessful in many cases. That happened in this evaluation, because
the maximum constant cmax was set to a value twice as large as the value used in the evaluation presented
in Section 8.4. First, this increases the search space for genetic programming. Second, the delays in timed
traces are considerably larger and cover relevant values less frequently. As a result, certain parts of the
Light’s behaviour seem to be hard to model for the passive genetic programming. We observed that
passive learning got stuck in local fitness maxima in many experiments because of that. In these cases,
passive learning found timed automata that modelled most of the training set, but any small number of
mutations could not increase the fitness. In contrast to this, active learning did not have issues related to
local optima, showing another advantage of the active approach.

9.4 Summary

We presented an active learning technique for timed automata in this chapter. The passive genetic pro-
gramming approach for timed automata introduced in Chapter 8 serves as basis for this active learning
technique. The technique iteratively learns models from test observations and it tests learned models in
alternation. This process actively learns a timed automaton model and is stopped once it cannot detect
new behaviour in the SUL or it reaches a bound on the learning time budget. The test-case generation

9.5. Results and Findings 187

applied in active learning is implemented through random walks of hypothesis models. This random-
walk-based testing strategy is specifically tailored towards learning of timed systems. An evaluation
comparing passive genetic programming and active genetic programming demonstrated the favourable
performance of the active approach.

The work presented within this chapter is based on Andrea Pferscher’s master’s thesis [234] which
was co-supervised by the author of this thesis. This chapter focused on selected details, challenges, and
findings discovered in the evaluation. For details, we refer to Andrea Pferscher’s master’s thesis on active
genetic programming of timed automata [234].

9.5 Results and Findings

In the following, we will discuss the results and insights gained from experiments with active genetic
programming of timed automata. As in previous chapters, we will discuss our findings by addressing
relevant research questions.

RQ 1.3 Can learning with randomised conformance testing reliably generate correct system mod-
els? The evaluation presented in Section 9.3 has demonstrated that we are able to improve the reliability
of learning through random-walk-based active testing. Figure 9.2, for instance, shows that we are able
to reliably learn accurate timed automata models from relatively few timed traces. In contrast to that, the
passive genetic programming approach required approximately 30 times as many traces to learn reliably.
Under a limited testing budget for trace generation, the active approach is significantly more reliable than
the passive approach.

Given these observations, we conclude that randomised testing is a sensible choice to implement the
presented form of active learning, that is, we can answer RQ 1.1 affirmatively as well.

RQ 3.2 What assumptions are sufficient to enable learning in the context of real-time systems?
In both active and passive genetic programming, we assume that the SUL’s behaviour can be modelled
with deterministic, output-urgent, input-enabled timed automata with isolated outputs. One experiment
discussed in Section 9.3 revealed an issue of the passive genetic algorithm with respect to local optima.
In the corresponding experiment, we changed the setting of cmax, the maximum constant occurring in
guards, compared to Section 8.4. Setting it to a very large value increased the search space and caused
low coverage of the SUL’s behaviour by the training data. We can deduce from the experimental results
that for passive learning to converge reliably, we require an approximately correct setting of cmax. This
additional assumption is not needed for active genetic programming. The active technique did not suffer
from similar issues.

Concluding Remarks. By applying model-based testing, we transformed the passive genetic-program-
ming-based learning technique presented in Chapter 8 into an active learning technique. The active
technique showed favourable performance with respect to several evaluation criteria. For test-case gen-
eration in active learning, we follow a similar approach as in the discrete-time setting. For instance,
Algorithm 4.1 presented in Chapter 4 for testing Mealy machines also performs random actions and tra-
verses hypothesis models. We applied comparable strategies to test stochastic systems as well. Hence,
learning-based testing combining coverage of hypothesis models with randomisation is an effective test-
ing approach for various types of systems.

10
Test-Based Learning of Hybrid Systems

Declaration of Sources

This chapter covers our work on learning-based testing to generate training data for machine
learning of hybrid system models. It is based on our conference paper which was selected the
best paper at the ICTSS 2019 [29].

10.1 Introduction

This thesis addresses efficient automata learning in networked environments with a special focus on com-
munication protocols. Due to the increasing integration of software-based systems into appliances and
devices used in our everyday lives, it is important to study the verification of so-called cyber-physical
systems (CPSs) [31, 38, 48, 85, 100, 176, 185, 211, 268]. In CPSs, embedded computers and networks
control physical processes. Mostly, CPSs interact with their surroundings based on the context and the
(history of) external events through an analogue interface. We also use the term hybrid system to refer
to such reactive systems that intermix discrete and continuous components [196]. Hybrid systems are
used in consumer electronics as well as in safety-critical areas, such as driving assistance systems used
in cars. This highlights the importance of safety assurance techniques for hybrid systems. The manual
construction of models that comprise physical and digital behaviour is challenging and often requires ex-
pertise in several areas, including control engineering, software engineering and sensor networks [100].
Therefore, the automatic construction of accurate hybrid system models through learning may greatly
aid the verification of CPSs.

Hybrid systems are often modelled with hybrid automata [33, 135]. Basically, hybrid automata
generalise timed automata, which we learned in the previous two chapters. A hybrid automaton has a
finite set of locations (often called modes), discrete events and a set of variables. Similar to the behaviour
of timed automata, the behaviour of hybrid automata can be constrained based on variable valuations.
While clock valuations in timed automata only increase linearly over time, hybrid automata include flow
conditions that govern the evolution of variable evaluations. This increases the complexity of learning
considerably. In order to learn general timed automata, it is necessary to find appropriate clock resets,
while for hybrid automata it is also necessary to find flow conditions that conform to the hybrid SUL’s
behaviour.

189

190 Chapter 10. Test-Based Learning of Hybrid Systems

Hybrid
System

Finite State
Model

Test Cases

Hybrid
System

Behavioural Dataset

Behaviour
Model

Automata
Learning

Test-Case
Generation

Te
st

in
g

Logging

Machine
Learning

Model-Based
Test-Case
Generation

Behaviour
Model

Generation

Figure 10.1: Learning a behaviour model of a black-box hybrid system

Learning approaches for hybrid systems from the literature commonly incorporate different phases
for the discrete system behaviour and the continuous system behaviour, respectively. Medhat et al. [203]
present an L∗-based approach for learning hybrid automata with inputs and outputs. However, it is pas-
sive, as it basically treats a training dataset as SUL. The authors assume to be given preprocessed traces
of variable valuations that include information of change points corresponding to discrete events. First,
they learn a Mealy machine from these traces, then they infer flow conditions and timing relationships.
Niggemann et al. [219] propose HYBUTLA, a passive learning algorithm for hybrid timed automata.
Like real-time automata learned by Verwer et al. [279], these automata do not distinguish between inputs
and outputs and they have a single clock that is reset on every transition. They follow a state-merging-
based approach that learns a discrete automaton based on discrete events. This discrete automaton is
subsequently extended by functions that model continuous changes of variable values while sojourning
in locations.

In this chapter, we propose a two-phase process for learning models of hybrid systems. First, we
learn a discrete automaton model of the hybrid system. Then, we learn a recurrent neural network
(RNN) model focused on the reachability of specific output events. This RNN model captures both the
discrete and the continuous dynamics of the system. Our goal is to learn a RNN-based classifier that can
detect whether given input stimuli cause the specified output events to be produced.

In contrast to existing work [203, 219], we do not enhance the learned discrete automaton with
information about the non-discrete system dynamics. We rather use the learned automaton to abstractly
represent the state space of the system. This abstract representation allows us to explore the state space
thoroughly through model-based testing techniques. Test data collected while testing provides us with a
large and representative dataset of the behaviour of the SUL. We then use this dataset to train the RNN
model, which ensures accurate learning. Through the application of directed testing, we are also able
to adequately cover rare side-conditions. This helps to consider safety-critical features during learning.
Given the large state space of hybrid systems and the nature of this kind of features, safety-critical
features are rarely triggered in random or normal operation. Hence, nominal or random data would
be insufficient to accurately learn safety-critical behaviour. For testing we apply advanced test-case
generation methods inspired by the testing techniques presented in Chapter 4 (coverage in general) and
in Chapter 6 (reachability-directed testing).

Figure 10.1 depicts the execution flow of the complete learning process. In this process, we combine
automata learning and model-based testing (MBT) to derive an adequate training set. Then, we use
machine learning to learn a behaviour model of the black-box hybrid SUL. We can use the learned
behaviour model for various purposes such as monitoring runtime behaviour. Furthermore, it could be
used as a surrogate of a complex and heavy-weight simulation model to efficiently analyse safety-critical
behaviour offline [252].

10.1. Introduction 191

Figure 10.2: Platooning as a distributed control scenario – adapted from a figure by Dolk et
al. [101]

Given a black-box hybrid system, we learn automata as discrete abstractions of the system. More
concretely, we actively learned Mealy machines from discretised traces collected by testing. Next, we
investigate the learned discrete automata for critical behaviours. Once behaviours of interest are discov-
ered, we drive the hybrid system towards these behaviours via model-based testing. During this phase of
testing, we record the SUL’s output response in a continuous domain, i.e., we do not discretise it. This
step in the process creates a behavioural dataset with high coverage of the hybrid system’s behaviour
including specified rare conditions that should be covered. Finally, we use a machine learning method
to train an RNN model that generalises the behavioural dataset. For evaluation, we compare four dif-
ferent test-based approaches to generate data. With each of these approaches, we first generate data via
testing. Then, we learn RNN models from the data and compute various performance measures for de-
tecting critical behaviours in unforeseen situations. Experimental results show that RNNs learned with
data generated via model-based testing achieved significantly better performance compared to models
learned from randomly generated data. In particular, the classification error is reduced by a factor of five
and a similar F1-score is accomplished with up to three orders of magnitude fewer training samples.

Example 10.1 (Platooning Overview). Throughout this chapter we illustrate our approach on
the basis of a complex networked system. We apply the learning process described above to learn
a model of a platooning system focusing on collision detection. In particular, our goal is to learn
a behaviour model that can reliably detect collisions. The platooning system is implemented in a
testbed in the Automated Driving Lab at Graz University of Technology1.

Platooning of vehicles is a complex distributed control scenario, where vehicles automatically
form platoons; see Figure 10.2. Vehicles in platoons autonomously keep a low distance to their
respective successors in order to reduce fuel consumption because of reduced air resistance. Lo-
cal control algorithms of each vehicle are responsible for reliable velocity and distance control.
The vehicles continuously sense their environments. They, for instance, measure the distance
to the vehicle ahead and may use discrete, i.e. event triggered, communication to communicate
desired accelerations along the platoon [101]. Thus, platooning is implemented by a network
of controllers, sensors, and actuators that communicate with their physical environment. As a
first step, we consider two vehicles of a platoon, the leader and its first follower, to illustrate our
approach. An extension to more vehicles is possible through slight adaptations.

Controller designs are often rigorously analysed on the basis of mathematical models. Mathematical
proofs serve to show that important aspects such as stability are satisfied to guarantee safe operation.
Given that, it may seem superfluous to learn another model and to test a system that is proven safe.
However, learning and testing serve an important role. First, mathematical models are often subject to
simplifying assumptions to make proofs tractable. We aim to learn an accurate representation of the
implementation of controllers, while placing as few assumptions on the SUL as possible. Testing helps
to determine whether the assumptions hold in practice. Second, robustness testing, that is, testing in sce-
narios violating assumptions, may provide insights into the system behaviour in exceptional situations.

1See also https://www.tugraz.at/institute/irt/research/automated-driving-lab/,
accessed on November 4, 2019

https://www.tugraz.at/institute/irt/research/automated-driving-lab/

192 Chapter 10. Test-Based Learning of Hybrid Systems

Test-Case
Generator Tester Mapper Test Driver

Hybrid
System

Test
Cases

Test
Observations

Abstract
Inputs

Abstract
Outputs

Concrete
Inputs

Concrete
Outputs

Input
Trajectories

Output
Trajectories

Figure 10.3: Components involved in the testing process

Chapter Structure. The rest of this chapter is structured as follows. Section 10.2 presents the pro-
posed approach. In particular, the section explains the test-case execution, test-case generation, and
automata learning for data generation. Additionally, it also briefly explains the RNN training setup. In
Section 10.3, we present the results of our evaluation, comparing four different testing techniques to
generate behavioural data for the platooning scenario. In Section 10.4, we provide a summary followed
by a discussion on our results and findings in Section 10.5.

10.2 Methodology

Our goal is to learn a behaviour model capturing targeted behaviour of a hybrid SUL. The model’s re-
sponse to a trajectory of input variables shall conform to the SUL’s response with high accuracy and pre-
cision. As in discrete systems, purely random generation of input trajectories is unlikely to exercise the
SUL’s state space adequately. Consequently, models learned from random traces cannot accurately cap-
ture the SUL’s behaviour. Therefore, we propose to apply automata learning followed by model-based
testing to collect system traces while using a machine learning method for non-discrete, i.e. continuous
and hybrid, model learning. In particular, we use RNNs as non-discrete models. Figure 10.1 shows a
generalised version of our approach.

The proposed trace-generation approach does not require any prior knowledge, similar to random
sampling-based trace generation, whereas it may benefit from domain knowledge and specified require-
ments. For instance, we do not explore states any further, which already violate safety requirements. In
the following, we will first discuss the testing process. This discussion includes the interaction with the
SUL, abstraction, automata learning, and test-case generation. Subsequently, we will discuss learning a
behaviour model in the form of an RNN with training data collected by executing test cases.

Example 10.2 (Learning Workflow for Platooning). We learn a behaviour model for our pla-
tooning scenario in three steps: (1) automata learning which explores a discretised platooning
control system to capture the state space structure in learned models, followed by (2) model-
based testing exploring the state space of the learned model directed towards targeted behaviour
while collecting non-discrete system traces. In step (3), we generalise from those traces by learn-
ing an RNN.

10.2.1 Testing Process

We apply various test-case generation methods, with the same underlying abstraction and execution
framework. Figure 10.3 depicts the components implementing the testing process.

• Test-Case Generator. The test-case generator creates abstract test cases. These test-cases are
generated offline as sequences of abstract inputs.

• Tester. The tester takes an input sequence and passes it to the mapper. Feedback from test-case
execution is forwarded to the test-case generator.

10.2. Methodology 193

• Mapper. The mapper maps each abstract input to a concrete input variable valuation and a dura-
tion, defining how long the input should be applied. Concrete output variable valuations observed
during testing are mapped to abstract outputs. Each test sequence produces an abstract output
sequence which is returned to the tester.

• Test Driver & Hybrid System. The test driver interacts with the hybrid system by setting input
variable values and sampling output variable values.

System Interface and Sampling

We assume a system interface comprising two sets of real-valued variables: input variables U and ob-
servable output variables Y , with U further partitioned into controllable variables UC and uncontrol-
lable observable input variables UE affected by the environment. We denote all observable variables by
Obs = Y ∪ UE . Additionally, we assume the ability to reset the SUL, as all test-case execution for
trace generation need to start from a unique initial state. During testing, we change the valuations of
controllable variables UC and observe the evolution of variable valuations at fixed sampling intervals of
length ts.

Example 10.3 (Interfacing with the Platooning System). The platooning SUL has been im-
plemented in MathWorks Simulink®. This implementation actually models a platoon of remote-
controlled trucks used in the testbed at the Automated Driving Lab, therefore the acceleration
values and distance have been downsized. The SUL interface comprises:

• UC = {acc}
• Y = {d, vl, vf}
• UE = {∆}

The leader acceleration ‘acc’ is the single controllable input with values ranging from −1.5m
s2

to
1.5m
s2

. The distance between the leader and the first follower is ‘d’. The velocities of the leader
and the follower are ‘vl’ and ‘vf’, respectively; finally ‘∆’ denotes the angle between the leader
and the x-axis in a fixed coordinate system given in radians, i.e., it represents the orientation of
the leader that changes while driving along the road. Hence, the orientation is an uncontrollable
input that depends on the track used for learning.

We sampled values of these variables at fixed discrete time steps, which are ts = 250 mil-
liseconds apart. Note that this sampling rate only affects our interaction with the system, that
is, it affects how frequently we change controllable inputs and check observable variable values.
The internal controllers and sensors of the platooning system use different sampling rates.

Abstraction

We discretise variable valuations for testing via a mapper. With that, we effectively abstract the hybrid
system such that a Mealy machine over an abstract alphabet can model it. Each abstract input is mapped
to a concrete valuation of UC and a duration specifying how long the valuation shall be applied, thus UC
only takes values from a finite set. As abstract inputs are mapped to uniquely defined concrete inputs, this
form of abstraction does not introduce non-determinism. In contrast, values of observable variables Obs
are not restricted to a finite set. Therefore, we group concrete valuations of Obs and assign an abstract
output label to each group.

The mapper also defines a set called Violations. This is a set containing abstract outputs that signal
violations of assumptions or safety requirements. In the abstraction to a Mealy machine, these outputs
lead to sink states from which the model does not transit away. Such a policy prunes the abstract state
space.

194 Chapter 10. Test-Based Learning of Hybrid Systems

A mapper has five components: (1) an abstract input alphabet I , (2) a corresponding concretisation
function γ, (3) an abstract output alphabet O, (4) an abstraction function α mapping concrete output
values to O, and (5) the set Violations. During testing, the mapper performs the following two actions:

• Input Concretisation. The mapper maps an abstract symbol i ∈ I to a pair γ(i) = (ν, d), where
ν is a valuation of UC and d ∈ N defines time steps, for how long UC shall be set according to ν.
This pair is passed to the test driver.

• Output Abstraction. The mapper receives concrete valuations ν of Obs from the test driver and
maps them to an abstract output symbol o = α(ν) inO that is passed to the tester. If o ∈ Violations,
then the mapper stores o in its state and maps all subsequent concrete outputs to o until it is reset.

The mapper state needs to be reset before every test-case execution. Repeating the same symbol o ∈
Violations after seeing it once creates sink states, which prunes the abstract state space. Furthermore,
the implementation of the mapper contains a cache to return abstract output sequences without SUL
interaction if possible. Given an abstract test case t ∈ I∗, cache access is possible in two situations: (1)
if we executed a t′ before such that t is a prefix of t′, or (2) if we executed a t′ before such that t′ is a
prefix of t and t′ produced an o ∈ Violations. Cache access in Case (1) is justified by determinism, while
cache access in Case (2) is justified by the creation of sink states for each output in the set Violations.

Example 10.4 (Abstracting the Platooning Scenario). We tested the SUL with an alphabet
I of six abstract inputs: fast-acc, slow-acc, const, constl, brake and hard-brake, concretised
by γ(fast-acc) = (acc 7→ 1.5m/s2, 2), γ(slow-acc) = (acc 7→ 0.7m/s2, 2), γ(const) =
(acc 7→ 0m/s2, 2), γ(constl) = (acc 7→ 0m/s2, 8), γ(brake) = (acc 7→ −0.7m/s2, 2), and
γ(hard-brake) = (acc 7→ −1.5m/s2, 2). Thus, each input takes two time steps, except for
constl, which represents prolonged driving at constant speed.

The output abstraction depends on the distance d and the leader velocity vl. If vl is negative,
we map to the abstract output reverse. Otherwise, we partition d into 7 ranges with one abstract
output per range. The range (−∞, 0.43m) is, for instance, mapped to crash (0.43m is the length
of a remote-controlled truck). We assume that platoons do not drive in reverse. Therefore, we
include reverse in Violations, such that once we observe reverse, we ignore the subsequent be-
haviour. The set Violations includes crash as well, since we are only interested in the behaviour
leading to a crash.

Test-Case Execution

The concrete test-case execution is implemented by a test driver. It basically generates step-function-
shaped input signals for input variables and samples output variable values. For each concrete input
(νj , dj) applied at time tj (starting at t1 = 0ms), the test driver sets UC according to νj for dj · ts
milliseconds and samples the values ν ′j of observable variables Y ∪ UE at time tj + dj · ts − ts

2 . After
that, it proceeds to time tj+1 = tj + dj · ts to perform the next input if there is any. In that way, the
test driver creates a sequence of sampled output variable values ν ′j , one for each concrete input. This
sequence is passed to the mapper for output abstraction.

Viewing Hybrid Systems as Mealy Machines

Test-case execution samples exactly one output value for each input, ts2 milliseconds before the next input
is performed. This ensures that there is an output for each input, such that input sequences and output
sequences have the same length. Given an abstract input sequence πi, the test-case execution produces
an output sequence πo of the same length. In slight abuse of notation, we denote this relationship by
λh(πi) = πo. Hence, we view the hybrid system under test on an abstract level as a Mealy machineHm
with obsHm = {〈πi, λh(πi)〉 | πi ∈ I∗}.

10.2. Methodology 195

Learning Automata

We applied the active automata learning algorithm by Kearns and Vazirani (KV) [160], implemented by
LearnLib [152], in combination with the transition-coverage testing strategy described in Chapter 4 [17].
We have chosen the KV algorithm, as it requires fewer output queries to generate a new hypothesis
model than L∗ [37], such that more equivalence queries are performed. As a result, we can guide testing
during equivalence queries more often. We recap the transition-coverage testing strategy briefly below.
Although TTT performed better than KV in Section 4.5, KV showed favourable performance in the
platooning case study. Using the same number of tests, KV learned larger models.

There are two notable differences between the application of automata learning in this chapter and
automata learning in Section 4.5. First, we learn a discrete approximation of a hybrid system. Second,
our goal in this chapter is not learning a complete and perfectly correct automaton model. Automata
learning rather helps to systematically explore the hybrid SUL’s state space. The learned hypothesis
models basically keep track of what has already been tested.

Recall that active automata learning operates in rounds, alternating between series of output queries
and equivalence queries. We stop this process once we performed the maximum number of tests Nautl,
where the subscript autl stands for automata learning. The performed tests include both output queries
and test queries implementing equivalence queries. Due to the large state space of the platooning SUL, it
was infeasible to learn a complete model, hence we stopped learning once we reached the bound Nautl,
even though further tests could have revealed discrepancies between the SUL and the hypotheses.

Example 10.5 (Learning Automata of the Platooning System). The learned automata provided
insights into the behaviour of the platooning SUL. A manual analysis revealed that collisions are
more likely to occur, if trucks drive at constant speed for several time steps. Since we aimed
at testing and analysing the SUL with respect to dangerous situations, we created the additional
abstract input constl, which initially was not part of the set of abstract inputs.

During active automata learning, we executed approximately Nautl = 260000 concrete test
cases on the platooning SUL in 841 learning rounds. These test cases produced 2841 collisions.
The fact that we found collisions is actually noteworthy, as the used platooning configuration
was assumed to be safe. Hence, this demonstrates that learning-based testing can detect safety
violations of complex hybrid systems. In the last learning round, we generated a hypothesis
Mealy machine with 6011 states that we subsequently used for model-based testing. Generally,
Nautl should be chosen as large as possible given the available time budget for testing, as a larger
Nautl leads to more accurate abstract models.

Test-Case Generation

In the following, we describe random test-case generation for Mealy machines, which serves as a base-
line. Then, we discuss three different approaches to model-based test-case generation. Note that our
testing goal is to explore the system’s state space and to generate system traces with high coverage, with
the intention of learning a neural network. Therefore, we generate a fixed number of test cases Ntrain

and do not impose conditions on outputs other than those defined by the set Violations in the mapper.

Random Testing. The random testing strategy generates input sequences with a length chosen uni-
formly at random between 1 and the maximum length lmax. Inputs in the sequences are also chosen
uniformly at random from I . Hence, we generate random words via Algorithm 2.3.

Learning-Based Testing. The learning-based testing strategy relies on active automata learning as
described in Chapter 2 and performs active automata learning using the setup introduced in this section
via the KV algorithm. It produces exactly those tests that are executed during automata learning and
therefore sets Nautl to Ntrain. In other words, the traces produced by the learning-based testing strategy

196 Chapter 10. Test-Based Learning of Hybrid Systems

Algorithm 10.1 Output-directed test-case generation

Input: M = 〈I,O,Q, q0, δ, λ〉, label ∈ O,Ntrain

Output: TestCases : a set of test cases directed to ‘label ∈ O’
1: TestCases← ∅
2: while |TestCases| < Ntrain do
3: randLen← RandomInteger
4: prefix← rSeq(I, randLen)
5: qr ← δ(q0, prefix)
6: q′r ← rSel(Q)
7: interfix← PathToState(qr, q

′
r) . input sequence to q′r

8: if interfix 6= ⊥ then . check if path to state exists
9: suffix← PathToLabel(qr, label) . input sequence to label

10: if suffix 6= ⊥ then . check if path to label exists
11: TestCases← TestCases ∪ {prefix · interfix · suffix}
12: end if
13: end if
14: end while
15: return TestCases

comprise the first Nautl non-cached output queries and test queries performed for automata learning2.
While this strategy systematically explores the abstract state space of the SUL, it also generates very
simple tests during the early rounds of learning, which are not helpful for learning a behaviour model in
Section 10.2.2.

Transition-Coverage-Based Testing. The transition-coverage-based testing strategy uses a learned
model of the SUL as basis. Basically, we learn a model, fix that model and then generate Ntrain test
sequences with the transition-coverage testing strategy discussed in Chapter 4 [17]. We use this testing
strategy, as it performed well in automata learning and scales to large automata. The intuition behind
it is that the combination of variability through randomisation and coverage-guided testing is generally
well-suited in a black-box setting.

Recall from Chapter 4 that test-case generation from a Mealy machineM with this strategy is split
into two phases: a generation phase and a selection phase. The generation phase generates a large
number of tests by performing random walks onM. In the selection phase, n test cases are selected to
optimise the coverage of the transitions ofM. Since the n required to cover all transitions may be much
smaller than Ntrain, we performed several repetitions, alternating between generation and selection until
we selected and executed Ntrain test cases.

Output-Directed Testing. The output-directed testing strategy also combines random walks with cov-
erage-guided testing, but it aims at covering a given abstract output ‘label’. It is based on a learned Mealy
machine M = 〈I,O,Q, q0, δ, λ〉 of the SUL and implemented by Algorithm 10.1. This algorithm
generates a set of Ntrain test cases. All test cases consist of a random ‘prefix’ that leads to a random
source state qr, an ‘interfix’ leading to a randomly chosen destination state q′r and a ‘suffix’ from q′r to
the output ‘label’. The suffix explicitly targets a specific output, the interfix aims to increase the overall
SUL coverage and the random prefix introduces variability.

Example 10.6 (Relevant Outputs in Platooning). In the platooning scenario, we aim at cov-
ering behaviour relevant to collisions, therefore we generally set label = crash and refer to the
corresponding testing strategy also as crash-directed testing. Note that the execution of a crash-

2Queries cached by the mapper are not added twice, as they do not provide additional information.

10.3. Evaluation 197

directed test case may not produce an actual crash on the SUL, because we generate test cases
from a learned Mealy machine, which may be inaccurate.

10.2.2 Learning a Recurrent Neural Network Behaviour Model

In the considered scenario, we are given length T sequences of vectors X = (x1, . . . ,xT) with xi ∈ Rdx
representing the concrete inputs to the hybrid system, and the task is to predict corresponding length
T sequences of target vectors T = (t1, . . . , tT) with ti ∈ Rdy representing the concrete outputs of
the hybrid system. Recurrent neural networks (RNNs) are a popular choice for modelling this kind of
problems.

Given a set ofNtrain training input/output sequence pairsD = {(Xn,Tn)}Ntrain
n=1 , the task of machine

learning is to find suitable model parameters such that the output sequences {Yn}Ntrain
n=1 computed by the

RNN for input sequences {Xn}Ntrain
n=1 closely match their corresponding target sequences {Tn}Ntrain

n=1 .
More importantly, the computed output sequences shall generalise well to sequences that are not part of
the training set D, that is, the RNN shall produce accurate results on unseen data. To obtain suitable
RNN parameters, we typically minimise a loss function describing the misfit between predictions Y and
ground truth targets T. Here, we achieve this through a minimisation procedure known as stochastic
gradient descent which works efficiently. For details on RNN learning, we refer to the extended version
of our paper on test-based learning of hybrid systems [28].

Example 10.7 (Learning an RNN for Detecting Collisions in Platooning). In our platooning
scenario, the inputs xi ∈ R2 at time step i comprise the input variables U , which include the
acceleration value acc and the orientation ∆ of the leader vehicle in radians. We preprocess the
orientation ∆ by transforming it to ∆′ = ∆i −∆i−1, the angular difference in radians between
orientations of consecutive time steps. By doing that we get rid of discontinuities when these
values are constrained to a fixed interval of length 2π. The outputs yi ∈ R3 at time step i of the
hybrid system comprise the values of observable output variables Y . These values include the
velocity of the leader vl, the velocity of the first follower vf, and the distance d between the leader
and the first follower.

Note that RNNs are not constrained to sequences of a fixed length T . However, training with fixed-
length sequences is more efficient as it allows full parallelisation through GPU computations. Hence,
during test-case execution, we pad sequences at the end with concrete inputs (acc 7→ 0, 1), i.e., the
leader drives at constant speed at the end of every test case. In rare cases, the collected test data showed
awkward behaviour that needed to be truncated at some time step. This happened, for instance, in cases
where the leader’s velocity vl became negative. We padded the affected sequences at the beginning by
copying the initial state where all cars have zero velocity. We used this padding procedure to obtain
fixed-length sequences with T = 256.

In our experiments, we used RNNs with one hidden layer of 100 neurons. Since plain RNNs are well-
known to lack the ability to model long-term dependencies, we used long short-term memory (LSTM)
cells for the hidden layer [141]. To evaluate the generated training sequences, we trained models for
several values of training set sizes Ntrain. We used ADAM [163] implemented in Keras [82] with a
learning rate η = 10−3 to perform stochastic gradient descent for 500 epochs. The number of training
sequences per mini-batch was set to min

(
Ntrain

100 , 500
)

. Each experiment has been performed ten times
using different random initial parameters and we report average performance values computed from these
ten runs.

10.3 Evaluation

In this section, we report on the performance of RNNs trained from datasets obtained through executing
test cases produced by the four test-case generation techniques presented in Section 10.2.1. We use two

198 Chapter 10. Test-Based Learning of Hybrid Systems

performance indicators: (1) classification into crash-producing and non-crash-producing sequences and
(2) prediction of crash time for crash-producing sequences. As a shorthand, we refer to the learning-
based testing strategy as LBT, to the transition-coverage-based testing strategy as TCBT, and to output-
directed testing as ODT. We perform experiments for varying Ntrain to observe the influence of the
training dataset size.

10.3.1 Predicting Crashes with Recurrent Neural Networks

We aim to predict whether a sequence of input values results in a crash, thus we are dealing with a binary
classification problem. A sequence is positive, i.e., the sequence results in a crash, if its execution causes
leader-follower distance d to get below 0.43m, which is the length of a remote-controlled truck.

For the evaluation, we generated validation sequences with the ODT strategy. This strategy results in
sequences that contain crashes more frequently than the other testing strategies which is useful to keep
the class imbalance between crash and non-crash sequences in the validation set minimal. We emphasise
that these validation sequences do not overlap with the training sequences that were used to train the
LSTM-RNN with ODT sequences. The validation set3 contains Nval = 86800 sequences out of which
17092 (19.7%) result in a crash.

For the reported scores of our binary classification task we define the following convenient values:

True Positive (TP): number of positive sequences predicted as positive

False Positive (FP): number of negative sequences predicted as positive

True Negative (TN): number of negative sequences predicted as negative

False Negative (FN): number of positive sequences predicted as negative

We report the following four measures: (1) the classification error (CE) in %, (2) the true positive
rate (TPR), (3) the positive predictive value (PPV), and (4) the F1-score (F1). These scores are defined
as

CE =
FP + FN
Nval

× 100 TPR =
TP

TP + FN

PPV =
TP

TP + FP
F1 =

2TP
2TP + FP + FN

The TPR and the PPV suffer from the unfavourable property that they result in unreasonably high values
if the LSTM-RNN simply classifies all sequences as either positive or negative. The F1-score is essen-
tially the harmonic mean of the TPR and the PPV so that these odd cases are ruled out. Note that for
the CE a smaller value indicates a better performance, whereas for the other scores TPR, PPV, and F1 a
higher score indicates better performance. The CE is always in the range between 0% and 100%, while
the other three measures produce values in the interval [0, 1].

The average results and the standard deviations over ten runs for these scores are shown in Fig-
ure 10.4. The LSTM-RNNs trained with sequences from random testing and LBT perform poorly on
all scores especially if the number of training sequences Ntrain is small. Notably, we found that se-
quences generated by LBT during early rounds of automata learning are short and do not contain a lot of
variability, explaining the poor performance of LBT for low Ntrain.

We can observe from the TPR shown in Figure 10.4b that random testing and LBT perform poorly at
detecting crashes when they actually occur. Especially the performance drops of LBT at Ntrain = 10000
and of random testing at Ntrain = 100000 indicate that additional training sequences do not necessarily
improve the capability to detect crashes, as crashes in these sequences appear to remain outliers.

Training LSTM-RNNs with the TCBT strategy and the ODT strategy outperforms random testing
and LBT for all training set sizes Ntrain, where the results slightly favour ODT. The advantage of TCBT

3This set is usually called test set in the context of machine learning, but here we adopt the term validation set to avoid
confusion with model-based testing.

10.3. Evaluation 199

100 200 500 1k 2k 5k 10k 20k 50k 100k 200k
0%

5%

10%

15%

20%

25%

30%

35%

Ntrain

C
E

Random Learning-Based
Transition-Coverage Output-Directed

(a) Classification Error (CE)

100 200 500 1k 2k 5k 10k 20k 50k 100k 200k
0

0.2

0.4

0.6

0.8

1

Ntrain

TP
R

Random Learning-Based
Transition-Coverage Output-Directed

(b) True Positive Rate (TPR)

100 200 500 1k 2k 5k 10k 20k 50k 100k 200k
0

0.2

0.4

0.6

0.8

1

Ntrain

P
P

V

Random Learning-Based
Transition-Coverage Output-Directed

(c) Positive Predictive Value (PPV)

100 200 500 1k 2k 5k 10k 20k 50k 100k 200k
0

0.2

0.4

0.6

0.8

1

Ntrain

F1

Random Learning-Based
Transition-Coverage Output-Directed

(d) F1-score (F1)

Figure 10.4: Crash detection performance measures for all testing strategies over changing Ntrain.

and ODT becomes evident when comparing the training set size Ntrain required to achieve the perfor-
mance that random testing achieves using the maximum of Ntrain = 200000 sequences. The CE of
random testing at Ntrain = 200000 is 7.23% which LBT outperforms at Ntrain = 100000 with 6.36%,
TCBT outperforms at Ntrain = 1000 with 6.16%, and ODT outperforms at Ntrain = 500 with 5.22%.
Comparing LBT and ODT, ODT outperforms the 2.77% CE of LBT at Ntrain = 200000 with only
Ntrain = 5000 sequences to achieve a 2.55% CE.

The F1-score is improved similarly: random testing with Ntrain = 200000 achieves 0.809, while
TCBT achieves 0.830 using onlyNtrain = 1000 sequences and ODT achieves 0.865 using onlyNtrain =
500 sequences. Comparing LBT and ODT, LBT achieves 0.929 at Ntrain = 200000 whereas ODT
requires only Ntrain = 5000 to achieve an F1-score of 0.936. In total, the sample size efficiencies of
TCBT and ODT are two to three orders of magnitudes larger than of random testing and LBT.

10.3.2 Evaluation of the Detected Crash Times

In the next experiment, we evaluate the accuracy of the crash detection time. The predicted crash time is
the earliest time step at which d drops below the threshold of 0.43m, and the crash detection time error
is the absolute difference between the ground truth crash time and the predicted crash time. Please note
that the crash detection time error is only meaningful for true positive sequences.

200 Chapter 10. Test-Based Learning of Hybrid Systems

0 1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crash Detection Time Error

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

200 2k 20k 200k

(a) Random testing

0 1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crash Detection Time Error
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

200 2k 20k 200k

(b) Learning-based testing

0 1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crash Detection Time Error

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

200 2k 20k 200k

(c) Transition-coverage-based testing

0 1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crash Detection Time Error

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

200 2k 20k 200k

(d) Output-directed testing

Figure 10.5: This figure shows Cumulative distribution function (CDF) plots for the difference
between true crash time and predicted crash time for sequences that are correctly
classified as resulting in a crash. Results are shown for all testing strategies and
several training dataset sizes Ntrain.

Figure 10.5 shows CDF plots describing how the crash detection time error distributes over the
true positive sequences. The x-axis of these plots denotes the crash detection time error e and the y-
axis denotes the percentage of traces for which crashes are predicted with an error of at most e. It is
desired that the CDF exhibits a steep increase at the beginning which implies that most of the crashes are
detected close to the ground truth crash time. The CDF value at crash detection time error 0 indicates the
percentage of sequences whose crash is detected without error at the correct time step.

As expected the results get better for larger training sizes Ntrain. Random testing and LBT exhibit
large errors and only relatively few sequences are classified without error. With random testing, less
than 30% of the crashes in the true positive sequences are classified correctly using the maximum of
Ntrain = 200000 sequences. On the other side, TCBT requires only Ntrain = 20000 sequences to
classify 34.9% correctly, and ODT requires only Ntrain = 2000 to classify 41.8% correctly. Combining
the results from Figure 10.5 with the TPR shown in Figure 10.4b strengthens the crash prediction quality
even more. TCBT and ODT do not only achieve a higher TPR, they also predict crash times more

10.4. Summary 201

accurately. Furthermore, using the maximum of Ntrain = 200000 sequences, TCBT and ODT classify
90.9% and 97.3% of the sequences with an error of at most one time step, respectively.

Discussion. We have observed that LBT and random testing generally perform worse than TCBT and
ODT, however, note that TCBT and ODT require a learned automaton as basis. Hence, our experi-
ments demonstrate that automata learning provides us with a model that is sufficiently complete for
model-based testing to achieve good coverage of the SUL’s state space. It should also be noted that
LBT achieves results close to TCBT and ODT at the largest training set size of Ntrain = 200000; see
Figure 10.4. This does not hold true for random testing for which we see fluctuating performance.

10.4 Summary

In this chapter, we presented a two-phase process to learn a behaviour model from observations of a
hybrid system. The process targets specified behaviour through systematic testing without requiring
prior knowledge of the system. We combined abstract active automata learning, model-based testing,
and machine learning in our implementation.

Given a black-box hybrid system, we learn an abstract automaton capturing its discretised state space
in the beginning of the first process phase. After that, we explore the discretised state space via model-
based testing and add variability through randomisation. By testing directed towards the specified be-
haviour of interest, we are able to cover rare and exceptional behaviour. This results in test suites with
high coverage of the targeted behaviour from which we generate behavioural datasets.

In the second phase of the process, we train LSTM-RNNs on the behavioural datasets to learn be-
haviour models. A real-world case study with a platooning scenario demonstrates the advantage of our
approach over alternative data generation via random sampling. Experimental evaluations show that
LSTM-RNNs learned with model-based data generation achieved significantly better results compared
to models learned from randomly generated data. For instance, it was possible to reduce the classifica-
tion error by a factor of five. Model-based data generation also improved the sample size efficiency. It
required up to three orders of magnitude fewer training samples than random testing to achieve a similar
F1-score.

10.5 Results and Findings

We will now briefly discuss our results in the context of the research questions defined in Section 1.6.3.
Note that hybrid automata basically generalise timed automata, as explained in Section 10.1.

RQ 1.2 What guarantees can be given if randomised testing is applied? Unfortunately, we cannot
provide strong guarantees on the outcome of the proposed learning process. We cannot guarantee that
the learned models converge to the true model. However, we have empirically shown that our data-
generation process is able to generate training data that enables learning of accurate RNN models. In
Figure 10.4, we see that the error bars on the graphs for our model-based data generation are small, thus
we reliably produced accurate models. Although we did not learn perfectly “correct” models, we want
to address RQ 1.3 with that. This research question asks whether correct models can be learned reliably
by applying randomised testing.

The proposed testing approach could also be used for learning-based testing, that is, to search for
errors such as safety violations. This has been demonstrated by Meinke in a platooning scenario [205].
The form of abstraction that we apply ensures that learning-based testing does not produce false positives
with respect to reachability4. Hence, we can guarantee that if we detect a collision, then a collision is

4As in Section 10.3, a positive outcome corresponds to reaching the behaviour of interest.

202 Chapter 10. Test-Based Learning of Hybrid Systems

indeed possible. If a collision is reachable in a learned hypothesis automaton, then it is reachable in the
black-box hybrid system.

RQ 3.2 What assumptions are sufficient to enable learning in the context of real-time systems?
The test-based learning approach presented in this chapter requires very few assumptions. Essentially,
we require the existence of a set of controllable input variables and two sets of observable variables.
Strictly speaking, there must exist a suitable discretisation of the input space for our approach to be
applicable.

Concluding Remarks. We were able to apply learning-based testing using the transition-coverage-
based testing strategy for a hybrid system with very large state space, although the testing strategy has
been developed for medium-sized discrete systems in Chapter 4. This demonstrates a certain degree of
generality of learning-based testing. With output-directed testing, we applied a similar testing strategy
as for reachability in stochastic systems; see Chapter 6. Despite differences on the surface, the work
presented in this chapter applies techniques that we discussed in previous chapters.

It is also noteworthy that we found only very few collisions in initial experiments without using
the constl input. In particular, we did not find any collisions during random testing. Upon analysing
sequences leading to collisions that we found in early automata-learning experiments, we added the
constl input. This increased the frequency of collisions across all test-case generation techniques. Hence,
learning-based testing can aid manual analysis and vice versa.

11
Related Work

Declaration of Sources

We discussed related work in each of the publications that form the basis for this thesis, therefore
this chapter mainly follows the presentation of related work in our publications [15, 16, 17, 18,
28, 28, 29, 263, 264, 265, 267], with the exception of the first two sections. These two sections
are mainly based on our survey on model learning and model-based testing [26] and on the
extended article on fault-based testing in learning [17].

This chapter discusses work related to the research presented within this thesis. Since the main
focus of this thesis is on learning-based testing and test-based learning, the first two sections consider
these two lines of research. Section 11.1 gives an overview of works that use model learning for model-
based testing, while Section 11.2 considers the other direction by discussing work that uses model-based
testing to enable model learning. Section 11.3 discusses learning of stochastic and non-deterministic
system models, whereas Section 11.4 discusses learning of real-time system models.

Note that we explicitly focus on models of software systems. Automata learning has traditionally
been applied for grammatical inference, that is, to learn hidden language representations based on data
such as text [95]. In fact, L∗ as the most influential active automata learning algorithm targets the
problem of learning automata accepting some regular language [37]. Consequently, there is a substantial
amount of research on automata learning in grammatical inference and more generally in computational
linguistics that we cannot thoroughly cover in this chapter. However, we will comment on work that is
closely related to this thesis and on influential work in general. For more information, we refer to the
excellent book by Colin de la Higuera [95].

We also identified related research that does not consider traditional automata-learning problems.
Probabilistic black-box reachability checking presented in Chapter 6 addresses simulation-based verifi-
cation of stochastic systems. Section 11.5 discusses work related to that. We learned real-time system
models from test observations via genetic programming, therefore we discuss the application of meta-
heuristics in model learning and testing in Section 11.6. Finally, Section 11.7 covers related work that
does not fit into any of the main categories. The corresponding research areas, which are not in the fo-
cus of this thesis, include verification of platooning systems, model-based protocol testing, model-based
mutation testing, and testing of real-time systems.

203

204 Chapter 11. Related Work

11.1 Model Learning for Model-Based Testing

In the following, we will review works in the area of learning-based testing. Works in this area apply
learning to enable or to support testing. There are various approaches to that and most of the works
discussed below have in common that they consider stateful systems. This section is mainly based on
Section 5 and Section 6 of our survey [26]. Therefore, it groups the approaches similarly.

11.1.1 Conformance Testing

We discussed the basic form of conformance testing in Section 2.4. The goal of conformance testing is
to test for conformance between a SUT and a specification model. Typically behavioural conformance
testing is combined with model learning by learning specification test models to use them subsequently
for generating a conformance test suite [2, 283].

Aarts et al. [4, 5] explore an alternative way to integrate learning into testing. The authors propose to
learn a model of both a reference implementation and the implementation under test and then use equiv-
alence checking tools to check for equivalence between the two learned models. This way conformance
testing is performed in an intensional manner by comparing models rather than by generating test cases
from the specification model and executing test cases on the implementation.

This approach is similar to our MQTT case study presented in Chapter 3 [263]. In this case study, we
learned models of different implementations and compared them among each other. Detected differences
are considered to point to potential bugs that should be analysed manually. The system HVLEARN

described by Sivakorn et al. [253] follows a similar approach as well. It learns DFA models of SSL/TLS
hostname verification implementations via the KV algorithm [160]. Given learned models, HVLEARN is
able to list unique differences between pairs of models and additionally provides analysis capabilities for
single models. The authors reported that they found eight unique, previously unknown RFC violations
by comparing learned models. Another example using a similar technique in the security domain is
SFADIFF [39]. In contrast to the other approaches, it learns symbolic finite automata (SFA) and is able
to find differences between pairs of sets of programs. This can, for instance, be used for fingerprinting
or for creating evasion attacks against security measures. It has been evaluated in case studies involving
TCP state machines, web application firewalls, and parsers in web browsers.

These approaches to conformance testing between implementations generally cannot guarantee ex-
haustiveness. In other words, if models are found to be equivalent this does neither imply that the imple-
mentations are equivalent nor that the implementations are free of errors. In testing of complex systems,
however, the reverse will often hold: it is likely that differences can be detected. These differences may
either help to extend the learned models in case learning introduced the differences, or they may be actual
differences between the considered systems. The discussed case studies showed that found differences
can be exploited in practice. For instance, we detected bugs in MQTT by analysing differences.

11.1.2 Requirements-Based Testing

With the introduction of black-box checking, Peled et al. [229, 230] pioneered a line of research combin-
ing learning, black-box testing, and formal verification. In order to check whether a black-box system
satisfies some formally-defined property, a model is learned with Angluin’s L∗-algorithm and the prop-
erty is checked on this model. If a counterexample is found, it either shows that the property is violated
or it is spurious and can be used to extend the model. To avoid false positives, conformance testing via
the W-method [83, 277] is used to extend the model, i.e., the W-method is used to implement equiva-
lence queries. Black-box checking work also inspired our probabilistic black-box reachability checking
presented in Chapter 6.

Following that, several optimisations and variations have been proposed. Adaptive model check-
ing [127, 128, 129] optimises black-box checking by using a model of the system which is assumed

11.1. Model Learning for Model-Based Testing 205

to be inaccurate but relevant. Another early extension is grey-box checking [103], which considers a
setting in which a system is composed of some completely specified components and some black-box
components. With regard to testing, the W-method [83, 277] and other conformance testing approaches,
taking the grey-box setting into account, are used and compared.

Adaptive model-checking combined with assume-guarantee verification has been considered for the
verification of composed systems [148]. Furthermore, another variation of adaptive model-checking has
been described by Lai et al. [175]. The authors apply genetic algorithms instead of L∗ to learn a system
model. Their results show promising performance for prefix-closed languages.

Meinke and Sindhu [206] applied the learning-based testing paradigm to reactive systems and pre-
sented an incremental learning algorithm for Kripke structures. In their approach, an intermediate learned
model is model-checked against a temporal specification in order to produce a counterexample input
stimulus. The SUT is then tested with this input. If the resulting output satisfies the specification,
then this new input-output pair is integrated into the model. Otherwise, a fault has been found and the
algorithm terminates. Meinke and Sindhu also implemented the tool LBTEST which supports learning-
based testing of reactive systems with respect to properties expressed in propositional linear temporal
logic [207].

There are various approaches to automatically infer non-automata-based specifications for testing.
While a complete discussion is beyond the scope of this section, we want to name two such approaches.
TORADOCU, for instance, generates test oracles for exceptional behaviour of procedures via natural lan-
guages processing of tagged Java code comments [121]. JDOCTOR similarly analyses code comments
by applying natural languages processing, but supports more tags and covers not only exceptional be-
haviour, but also preconditions and non-exceptional postconditions [61]. The authors of TORADOCU and
JDOCTOR note that they plan to also support temporal properties, for instance about call protocols, in the
future [62]. Automata-learning techniques could be applied for this purpose [35].

11.1.3 Security Testing

Based on black-box checking [230], Shu and Lee described an approach to learning-based security test-
ing [250]. Instead of checking more general properties, they try to find violations of security properties in
the composition of learned models of components. In the following work, they presented a combination
of learning and model-based fuzz testing and considered both active and passive model learning [251].
This approach is more extensively described by Hsu et al. [146] with a focus on passive model learn-
ing. For this purpose, the authors detail their state-merging-based learning approach and discuss the type
of fuzzing functions and the coverage criteria they used. Additionally, they provide a more extensive
evaluation.

A compositional approach is also followed by Oostdijk et al. [226] by using various methods to study
the security of cryptographic protocols, where learning by testing black-box implementations is one of
the techniques employed. The secrecy and authenticity properties are then checked on both the protocol
specifications and the actual implementations through the learned model of the implementation.

Hossen et al. [143] presented an approach to model learning specifically tailored to security testing
of web applications. The approach is based on the Z-quotient algorithm [232].

Cho et al. [80] developed a security testing tool called MACE. This tool combines the learning
of a Mealy machine with concolic execution of the source code to explore the state space of protocol
implementations more efficiently. Here, the learning algorithm guides the concolic execution in order to
gain more control over the search process. When applied to four server applications, MACE could detect
seven vulnerabilities.

De Ruiter and Poll [97] learned models of implementations of the TLS protocol via L∗ [37] us-
ing a similar learning setup as we used in Chapter 3. After learning, they manually investigated the
learned models, specifically targeting security-related flaws. They refer to their approach as protocol
state fuzzing, as active automata learning requires fuzzing of various message sequences.

206 Chapter 11. Related Work

11.1.4 Integration Testing

Tackling the issue that complex systems commonly integrate third-party components without any spec-
ification, Li, Groz and Shahbaz [190] proposed a learning-based approach to integration testing. They
follow an integrated approach in which they learn models of components from tests and based on the
composition of these models, they generate integration test cases. The execution of these test cases
may eventually lead to an update of the learned models if discrepancies are detected. Integration test-
ing thus serves also as equivalence oracle. In following work, Li et al. [190, 248, 249] extended their
learning-based integration testing approach to more expressive models. These models also account for
data through the introduction of parameters for actions and predicates over input parameters. Addition-
ally, they also allow for observable non-determinism [248, 249].

Groz et al. [131] present an alternative approach to learning of component models. Instead of learning
each component model separately, they infer a k-quotient of the composed system and learn component
models by projection. With an initial model at hand, they perform a reachability analysis to detect com-
positional problems. If a detected problem can be confirmed, they warn that a problem exists, otherwise
they refine the inferred models if the problem could not be confirmed. Testing is stopped once no new
potential compositional problem can be found.

In a setting similar to that considered by Li et al. [190] and using the same algorithm, Shahbaz et
al. [249] describe an approach to detect feature interaction in an integrated system. Basically, they learn
models of components by testing and execute the same test cases on the composed system again. If the
observations in the second phase do not conform to the observations on the learned models, a feature
interaction is detected.

Based on their previous works, Shahbaz and Groz [247] present an approach for analysing and testing
black-box components by combining model learning and model-based testing techniques. The proposed
procedure starts by learning each component’s (partial) behavioural model and composing them to form
a product. The product is then fed into a model-based test-case generator. The generated test cases are
subsequently executed on the real system. Discrepancies between the learned models and the system’s
observed behaviour form the basis to refine the learned models.

Kunze et al. [171] devised a test-based learning approach, where an already specified system under
test is executed to find and record deviations from the known specification. Based on the collection of
these deviations, a fault model is learned. This fault model is then used to perform model-based testing
with QuickCheck [40, 84] to discover similar faults in other implementations. Being a preliminary work,
it learns abstract deterministic Mealy machines via LearnLib [152], that is, it does not consider data
during learning. The models in this approach are generally rich state-based models with full support
for predicates. It falls into the integration-testing category in that the overall goal of the work is to test
implementations composed of different versions of components, some of which may exhibit deviations
from the reference model.

11.1.5 Regression Testing

Hagerer et al. [134] and Hungar et al. [149] consider regression testing as a particularly fruitful ap-
plication scenario for model learning. The possibility of automatically maintaining models during the
evolution of a system could greatly improve and aid regression testing.

Schuts et al. [244] discuss an industrial application of model learning to support refactoring of legacy
software. Similarly to our MQTT case study and the work by Aarts et al. [4, 5], they learn models of
two different implementations of the same application; in this case, the models of legacy software and
refactored software. The learned models are then checked for equivalence to determine whether the
examined software systems behave equivalently. Differences may reveal errors in both the legacy and
the refactored system.

11.1. Model Learning for Model-Based Testing 207

11.1.6 Performance Testing

Adamis et al. [9] proposed an approach to passively learn FSM models from conformance test logs for
performance testing. The approach aids performance testing by providing test models for systems with
unknown structure, which can be used as a basis for load testing. Since the learned models may be
inaccurate, manual postprocessing is required.

Aichernig and Schumi learned timing information from logs of MQTT brokers and augmented exist-
ing functional models with this information [13, 30]. Furthermore, they evaluated the performance of the
considered MQTT brokers through a statistical analysis of the extended models; see also Section 11.4.

11.1.7 GUI Testing

Choi et al. [81] presented SWIFTHAND, a passive-learning-based testing tool for user interfaces of An-
droid apps. The authors interleave learning and testing as follows: (1) they use a learned model to steer
testing towards previously unexplored states and (2) refine learned models based on test observations.
Their test-case selection strategy aims at minimising the number of restarts, the most time-consuming
action in the considered domain, while maximising (code) coverage. The evaluation shows that SWIFT-
HAND outperforms L∗-based and random testing.

Mariani et al. [201, 202] presented AUTOBLACKTEST, a technique and tool for the automatic gen-
eration of system-level test cases for GUI testing. The authors propose to perform Q-learning via testing
to automatically and incrementally learn models of GUI-based applications and how to interact with
them. An experimental comparison between AUTOBLACKTEST and GUITAR demonstrates that AUTO-
BLACKTEST achieves a higher code coverage and is more effective in terms of fault detection.

11.1.8 Protocol Testing

Learning-based testing in networked environments, which is the focus of this thesis, is generally a popu-
lar application area. Various security protocols and protocol implementations have been analysed through
learning-based approaches. Applying the abstraction technology described by Aarts et al. [3] and Learn-
Lib [152], Fiterău-Broştean et al. [111, 112] report on learning Mealy machine models of different TCP
stack implementations. The authors did not use the models directly for testing, though. They applied
model checking to verify properties of the composition of client and server implementations in an off-
line fashion [112]. Similarly to black-box checking [230], counterexamples returned from the model
checker can be considered test cases that demonstrate invalid behaviour, unless the checked model had
been learned incorrectly. Fiterău-Broştean et al. [113] carried out a similar case study in a security
setting focused on SSH implementations. Model-checking the learned models of different implementa-
tions revealed minor violations of the standard but no security-critical issues. Walkinshaw et al. [287]
applied their inductive testing approach to explore the behaviour of the Linux TCP stack. Aarts, Kup-
pens, Tretmans, Vaandrager and Verwer [4, 5] combined various techniques to learn and test the bounded
retransmission protocol.

Comparetti et al. [89] use learned protocol models as an input for fuzzing tools in order to discover se-
curity vulnerabilities. They learned a number of malware, text-based and binary protocols using domain-
specific and heuristics-based learning techniques. Learning-based fuzz testing has also been applied for
the Microsoft MSN instant messaging protocol [146, 251] (see also requirement-based testing above).
Furthermore, learning-based testing of security protocols has been addressed by Shu and Lee [250] as
well. As mentioned in Section 11.1.3, de Ruiter and Poll [97] learned models of implementations of the
TLS protocols, which they analysed to detect security-related flaws.

208 Chapter 11. Related Work

11.1.9 Web Service Testing

Raffelt et al. [237] applied dynamic testing on web applications. More concretely, they described a test
environment, called WEBTEST, which combines traditional testing methods, like record-and-replay, and
dynamic testing. The latter provides benefits such as systematic exploration and model learning, while
the former eases dynamic testing by defining possible input actions.

11.2 Model-Based Testing for Model Learning

The Java library LearnLib [152] implements standard conformance testing algorithms for active automata
learning. These standard algorithms include the W-method [83, 277] and the partial W-method [117] that
we discussed in Section 2.4. Early work proposing the application of the W-method in combination with
active automata learning was black-box checking [230]. More recently, a slightly modified version of
the W-method has been applied for learning models of TLS servers [97].

The Zulu challenge [88] addressed the problem of implementing automata learning without equiv-
alence queries and a limited number of membership queries. Put differently, it called for solutions to
test-based automata learning with a limited testing budget. Howar et al. reviewed their experience gained
in this challenges and noted that it is necessary to find counterexamples to equivalence with few tests for
automata learning to be practically applicable [144]. Similar to our fault-based testing approach, they
described a testing heuristic inspired by Rivest and Schapire’s counterexample processing [240]. This
is in contrast to deterministic conformance testing via the W(p)-method that guarantees conformance
relative to some bound on the number of states.

Smeenk et al. [254] applied a partly randomised conformance testing technique, similar to the random
W-method discussed in Section 2.4.2. In order to keep the number of tests small, they aimed to test
effectively by determining adaptive distinguishing sequences using a technique described by Lee and
Yannakakis [183]. With this technique and domain-specific knowledge, they succeeded in learning a
large model of industrial control software. The same technique has also been used to learn models of
TCP implementations [112] and SSH implementations [113].

Chapter 4 presents two evaluations of active automata learning configurations with respect to effi-
ciency in terms of required testing budget. Berg et al. [55] performed early work on the practical evalua-
tion of the performance ofL∗-based learning. The authors studied the impact of various system properties
on the learning performance, including the alphabet size, the number of states, and prefix-closedness of
the target language. Smetsers et al. [255] presented an efficient method for finding counterexamples in
active automata learning that applies mutation-based fuzzing. In their evaluation, they compared four
learning configurations with respect to learning performance in terms of the size of learned models and
the required number of queries. They considered combinations of the L∗ algorithm [37] and the TTT
algorithm [151] with their proposed method and the W-method [83, 277].

Groz, Brémond, and Simão applied concepts from finite-state-machine-based testing to implement
an efficient algorithm for active learning of Mealy machines without resets [70, 132]. In particular,
their algorithm uses (adaptive) homing sequences and characterising sets to learn Mealy machines from
a single system trace that continually grows during learning. Moreover, the authors evaluated various
active learning configurations, including L∗-based configurations with and without resets.

11.3 Learning Models of Stochastic and Non-deterministic Systems

In Chapter 6, we presented a testing technique that is based on stochastic automata learning and in
Chapter 7, we presented an L∗-based approach to stochastic automata learning. Therefore, we will
review related work on stochastic automata learning in this section.

11.3. Learning Models of Stochastic and Non-deterministic Systems 209

Most sampling-based learning algorithms for stochastic systems are passive, hence they assume pre-
existing samples of system traces. Their roots can be found in grammatical inference techniques, such
as ALERGIA [74] and RLIPS [75], which identify stochastic regular languages. Similarly to these tech-
niques, we also apply Hoeffding bounds [142] in L∗MDP to test for difference between probability distri-
butions.

Mao et al. [197, 198, 199] learned stochastic automata models with the purpose of verification.
More concretely, they learned models for model checking. Notably, they developed IOALERGIA as
an extension of ALERGIA to learn MDPs [198, 199]. This learning technique basically creates a tree-
shaped representation of the sampled system traces and repeatedly merges compatible nodes to create
an automaton. Finally, transition probabilities are estimated from observed output frequencies. Like
L∗MDP, IOALERGIA converges in the limit, but showed worse accuracy in evaluation experiments. We
applied the passive learning technique IOALERGIA in an active setting in Chapter 6 without changing
the learning algorithm itself. Chen and Nielsen [79] also described active learning of MDPs based on
IOALERGIA. They proposed to generate new samples by directing sampling towards uncertainties in
the data as a way to reduce the number of traces required for learning. In our active application of
IOALERGIA, we direct sampling towards parts of the system that are relevant to reachability properties.
In L∗MDP, our active learning algorithm for MDPs, we base the sampling strategy not only on the data
collected so far (refine queries), but also on the current observation table and the derived hypothesis
MDPs (refine & equivalence queries). With that, we do not only target uncertainties in the collected data,
but we also take information about the SUL’s structure into account.

Wang et al. [289] apply a variant of ALERGIA as well. They take properties into account during
model learning with the goal of probabilistic model-checking. More specifically, they apply automated
property-specific abstraction/refinement to decrease the model-checking runtime. Nouri et al. [221] also
combine stochastic learning and abstraction with respect to some property. Their goal is to improve
the runtime of SMC. Notably, their approach could also be applied for black-box systems, similar to
probabilistic black-box reachability which applies SMC as well. However, they do not consider systems
that are controllable via inputs. Further work on SMC of black-box systems can be found in [245, 294].

Ghezzi et al. [118] presented the BEAR approach that combines inference of probabilistic mod-
els and probabilistic model-checking to analyse user behaviour in web applications. More concretely,
the authors infer labelled discrete-time Markov chains extended with rewards which they analyse using
PRISM [174]. In contrast to our work, they assume all states to be distinguishable through the labelling
function, i.e., two different states cannot have the same label. The proposed approach, for instance,
enables the detection of navigational anomalies.

L∗MDP builds upon Angluin’s L∗ [37], therefore it shares similarities with other L∗-based work such
as active learning of Mealy machines [200, 246]. Interpreting MDPs as functions from test sequences to
output distributions is similar to the interpretation of Mealy machines as functions from input sequences
to outputs [258].

Volpato and Tretmans presented an L∗-based technique for non-deterministic input-output transition
systems [283]. They simultaneously learn an over- and an under-approximation of the SUL with respect
to the ioco relation [270], a popular conformance relation in conformance testing. Inspired by that, L∗MDP

uses completeness queries and adds transitions to a chaos state in case of low/incomplete information.

Beyond that, we consider systems to behave stochastically rather than non-deterministically. While
Volpato and Tretmans [283] leave the concrete implementation of queries unspecified, L∗MDP’s implemen-
tation closely follows Section 7.4. Early work on ioco-based learning for non-deterministic systems has
been presented by Willemse [293]. Khalili and Tacchella [161] addressed non-determinism by present-
ing an L∗-based algorithm for non-deterministic Mealy machines. As Volpato and Tretmans [283], they
assume to be able to observe all possible outputs produced in response to input sequences through the
repeated application of these sequences. Their stochastic interpretation of SULs to implement queries
motivated our research on stochastic model learning. Both learning approaches for non-deterministic
models assume a testing context, as we do.

210 Chapter 11. Related Work

Related to L∗MDP, L∗-based learning for probabilistic systems has also been presented by Feng et
al. [106]. They learn assumptions in the form of probabilistic finite automata for compositional verifi-
cation of probabilistic systems in the assume-guarantee framework. Their learning algorithm requires
queries returning exact probabilities, hence it is not directly applicable in a sampling-based setting. The
learning algorithm shares similarities with anL∗-based algorithm for learning multiplicity automata [56],
a generalisation of deterministic automata. In order to extend the applicability of learning-based assume-
guarantee reasoning for probabilistic systems, Komuravelli et al. [165] presented techniques for learning
labelled probabilistic transition systems from stochastic tree samples, where they rely solely on equiv-
alence queries for active learning. Moreover, they described how their algorithms can be applied to
generate assumptions for assume-guarantee reasoning. Bouchekir and Boukala also consider assume-
guarantee reasoning and proposed an active algorithm for learning assumptions in the form of symbolic
interval Markov decision processes [67]. The authors note that they adapted the L∗ algorithm, but their
learning algorithm works directly on assumptions and uses only equivalence queries. For this reason, the
author of this thesis fails to see the relation to L∗-based learning. Their implementation of equivalence
queries applies membership queries internally, though.

Further query-based learning in a probabilistic setting has been presented by Tzeng [272]. The author
described a query-based algorithm for learning probabilistic automata and an adaptation of Angluin’s
L∗ for learning Markov chains. In contrast to our exact learning algorithm L∗MDPe , which relies on
output distribution queries, Tzeng’s algorithm for Markov chains queries the generating probabilities of
strings. Castro and Gavaldà review passive learning techniques for probabilistic automata with a focus
on convergence guarantees and present them in a query framework [77]. Unlike MDPs, the learned
automata cannot be controlled by inputs.

11.4 Learning Models of Real-Time Systems

Work closely related to our work on learning timed systems with respect to the domain has been per-
formed by Verwer et al. [279]. They passively learn deterministic real-time automata via state-merging
from negative and positive data. In addition to pure state-merging, they also split states and transitions
depending on the given data. Deterministic real-time automata measure the time between two consec-
utive events and use guards in the form of intervals, therefore they have a single clock which is reset
on every transition. Verwer et al. do not distinguish between inputs and outputs. Hence, they do not
assume output urgency, however, they also do not consider systems to be input enabled, as required in
a testing context. They adapted their approach to learn solely from positive data [280]. This adaptation
learns probabilistic real-time automata by applying likelihood-ratio tests to decide if merge operations
or split operations should be performed. Improvements of this adaptation [280] have been presented by
Mediouni et al. [204].

Similarly, Mao et al. applied state-merging to learn continuous time Markov chains [199]. This
kind of Markov chains defines an exponentially distributed sojourn time for each state. A state-merging-
based learning algorithm for more general stochastic timed systems has been proposed by de Matos
Pedro et al. [96]. They target learning generalised semi-Markov processes, which are generated by
stochastic timed automata. All these techniques have in common that they consider systems where the
relation between events is fully described by a system’s structure. Pastore et al. [227] learn specifications
capturing the duration of (nested) operations in software systems. A timed trace therefore includes the
start and end of each operation, thus a trace records pairs of related events. Their algorithm, called Timed
k-Tail, is based on the passive learning technique k-Tail [60], which the authors extended to handle timing
aspects.

Grinchtein et al. [125, 126] developed active learning approaches for deterministic event-recording
automata [34], a subclass of TA with one clock per action. The clock corresponding to an action is reset
upon its execution essentially recording the time since the action has occurred. While the expressiveness
of these automata suffices for many applications, the runtime complexity of the active learning techniques

11.5. Strategy Generation for Stochastic Systems 211

is high and may be prohibitive in practice. Currently, there is no implementation to actually measure
runtime. Furthermore, event-recording automata cannot model certain timing patterns. For instance,
it may not be appropriate to always reset a clock when considering input-enabled systems. Wei-Lin
et al. [191] also presented an active learning algorithm for event-recording automata and applied it to
learn assumptions in compositional verification via assume-guarantee reasoning [192]. However, they
considered a white-box setting.

Jonsson and Vaandrager [157] note that the active learning approaches discussed above [125, 126]
are complex and developed a more practical active-learning approach for Mealy machines with timers.
Currently, there is no implementation for this approach as well. A further drawback is that input edges
cannot be restricted via guards. They can only model timeout that cause outputs to be produced.

Schumi et al. [27, 243] also learned the timing behaviour of reactive systems. In contrast to the
abovementioned approaches, they did not learn the system structure, but augmented known discrete-time
system models with timing information that they learned via multiple linear regression. They used the
augmented models to statistically analyse the response times of web service applications. In subsquent
work, Aichernig, Kann and Schumi [25] used the proposed statistical analysis technique to examine
different deployments of the same system with respect to response times. Aichernig and Schumi applied
this technique in an IoT context by determining the message latency of MQTT communications [13].
Their work complements the work presented in Chapter 3, as they focus on non-functional behaviour,
while we check MQTT implementations for functional correctness. More recently, Aichernig et al. [30]
improved the analysis accuracy by applying deep learning.

Nenzi et al. [215] mine specifications in signal temporal logic (STL) which distinguish between
regular and anomalous time-dependent system behaviour. An important difference to our work is that
they perform a classification task, while we learn models producing the same traces as the systems under
consideration.

11.5 Strategy Generation for Stochastic Systems

In Chapter 6, we aim to find optimal schedulers for MDPs, in order to use them as testing strategies.
Variations of this problem have been tackled in other simulation-based verification approaches, such as
SMC, as well. A lightweight approach for finding schedulers in SMC has been described by Legay et
al. [90, 188]. By representing schedulers efficiently, they are able to consider history-dependent sched-
ulers. Through “smart sampling” they achieve to find near-optimal schedulers with low simulation bud-
get. Brázdil et al. [69] presented an approach to unbounded reachability analysis via SMC. The technique
is based on delayed Q-learning, a form of reinforcement learning, and requires only limited knowledge
of the system. However, it requires more knowledge than the technique discussed in Chapter 6. An-
other approach using reinforcement learning for strategy generation for reachability objectives has been
presented by David et al. [93]. They minimise expected cost while respecting worst-case time bounds.

Learning-based synthesis of control strategies for MDPs has also been studied by Fu and Topcu [116].
They obtain control strategies which are approximately optimal with respect to linear temporal logic
(LTL) specifications. They consider transition probabilities to be initially unknown, but in contrast to our
setting, they assume the MDP structure to be known.

11.6 Metaheuristic Approaches to Model Learning and Testing

Metaheuristic search as an alternative to classical automata learning such as Angluin’s L∗ [37] has been
proposed by Lai et al. for finite state machines [175]. They apply genetic algorithms and assume the
number of states to be known. Lucas and Reynolds compared (evidence driven) state merging with an
evolutionary algorithm, while also fixing the number of states for runs of the latter [194]. Their proposed
evolutionary algorithm achieved better accuracy than the state-merging-based approach in experiments

212 Chapter 11. Related Work

with small target automata. Additionally, they evaluated a genetic-programming-based technique for
automata of variable size and found that this technique performs worse than their evolutionary algorithm.

Lefticaru et al. similarly assume the number of states to be known to generate state machine models
via genetic algorithms [186]. Their goal is to synthesise a model satisfying a specification given in
temporal logics, rather than learning a model of a black-box system. Early work suggesting a similar
approach has been performed by Johnson [156]. A similarity to our metaheuristic learning technique
is that Johnson does not require the solution size to be known. Instead, he allows automata to grow
via mutation. In contrast to our work, Johnson does not apply crossover, noting that it is not clear
how to perform this kind of operation for automata. Genetic-programming-based synthesis by Katz and
Peled [159] aims at generating a correct program or model on the source code level. They successfully
synthesised solutions to the mutual exclusion problem and applied their technique to locate and correct
errors in a communication protocol.

Evolutionary methods have been combined with testing in several areas: Abdessalem et al. [8] use
evolutionary algorithms for the generation of test scenarios and learn decision trees to identify critical
scenarios. Using the learned trees, they can steer the test-case generation towards critical scenarios.
The tool EVOSUITE by Fraser and Arcuri [115] uses genetic operators for optimising whole test suites
at once, increasing the overall coverage, while reducing the size of the test suite. Walkinshaw and
Fraser presented Test by Committee, which is test-case generation using uncertainty sampling [285]. The
approach is independent of the type of model that is inferred and an adaption of Query By Committee,
a technique commonly used in active learning. In their implementation, they infer several hypotheses
at each stage via genetic programming, generate random test cases and select those test cases which
lead to the most disagreement between the hypotheses. In contrast to most other considered works, their
technique does not infer state-based models. It rather infers functions mapping from numerical inputs to
single outputs.

We mentioned the work by Nenzi et al. [215] also in Section 11.4, as they mine specifications of
time-dependent behaviour. They implemented that by applying an evolutionary algorithm to learn the
structure of STL properties.

11.7 Further Related Work

Verification of Platooning Systems. In the work presented in Chapter 10, we performed test-based
learning and learning-based testing of a platooning system [29]. Meinke [205] used learning-based test-
ing to analyse vehicle platooning systems with respect to qualitative safety properties, such as collisions.
While the automata learning setup is similar to our approach, the author focused on different aspects.
Meinke aimed to analyse (1) how well a multi-core implementation of learning-based testing scales and
(2) how problem size and other factors affect scalability, whereas we analysed the quality of the training
data generated for machine learning. Fermi et al. [107] applied rule inference methods to validate colli-
sion avoidance in platooning. More specifically, they used decision trees as classifiers for safe and unsafe
platooning conditions and they suggested three approaches to minimise the number of false negatives.
Rashid et al. [239] modelled a generalised platooning controller formally in higher-order logic. They
proved satisfaction of stability constraints in HOL LIGHT and showed how stability theorems can be
used to develop runtime monitors.

Larsen et al. [180] demonstrated how to synthesise safe and optimal controllers for adaptive cruise
control involving two cars. Hence, they consider a similar setting as Chapter 10, but they have an oppos-
ing goal. While we assume a given controller for the follower and search for unsafe traces via learning-
based testing, they generate safe and optimal controllers for the follower using UPPAAL STRATEGO.
In more recent work on control synthesis with guaranteed safety, they illustrate the proposed synthesis
method on the same adaptive cruise control scenario [182].

11.7. Further Related Work 213

Model-Based Protocol Testing. In the following, we will discuss selected works in the area of model-
based protocol testing. For a thorough technical overview and review of methods for protocol con-
formance testing, we refer to Bochmann and Petrenko [284]. Lee and Yannakakis also cover protocol
conformance testing in their survey on testing based on finite state machines [184]. While learning-based
testing can be considered to be a special form of model-based testing, we will not discuss learning-based
approaches. Such approaches are covered in Section 11.1.

Weiglhofer et al. applied fault-based conformance testing on the SIP protocol [291]. They modelled
the protocol using LOTOS and followed a mutation-based approach for test-case generation. Belinfante et
al. [53] also applied LOTOS for creating formal test models, i.e. specifications, of a protocol. In addition
to LOTOS, they also used PROMELA and SDL to model the conference protocol. Furthermore, they
introduced the TORX environment for testing, the predecessor of JTORX [51]. Botincan and Novakovic
tested the conference protocol using Spec Explorer [66], a model-based testing tool for the .NET platform
that supports textual modelling.

Jard and Jéron present the TGV tool [154], a tool for testing based on transition systems. The model-
based testing approach implemented by the tool has been validated in various experiments including the
conference protocol and other protocols. Fernandez et al. [109] presented a preliminary version of TGV.

Beurdouche et al. [57, 58] tested the TLS protocol, while targeting state-machine flaws, as we did in
our case study on learning-based testing of the MQTT protocol. They followed a test-based approach,
but generated test cases from a known model via some heuristics. With that they checked for specific
faults, such as faults related to skipping mandatory steps in a protocol. Our learning-based approach
allows to detect this kind of faults as well.

Model-Based Mutation Testing. In our fault-based approach to efficient test-case generation for active
automata learning presented in Chapter 4, we combine model-based mutation testing and random testing.
Mutation testing was originally proposed to assess the adequacy of test suites [99]. In contrast, model-
based mutation testing is a fault-based test-case generation technique [11, 22, 23]. It injects faults, called
mutations, into a specification model and generates test cases that cover those faults. Executing these
test cases basically allows to show that certain faults have not been implemented. Early work in this area
has been performed by Budd and Gopal [72] who mutated specifications given in predicate calculus. An
example of early work considering automata-based specification models has been presented by Aichernig
and Corrales Delgado [12]. They represented mutations by test purposes which specify the form of test
cases that cover corresponding mutations.

Combinations of mutation testing and random testing have also been studied in previous work of
Aichernig’s group at Graz University of Technology [21, 22]. An important insight gained in this work
is that random testing is able to cover a large number of mutations fast. Because of that, only a few subtle
mutants need to be checked with directed search techniques. While our learning-focused approach does
not aim at covering all mutations, as it does not involve a directed search, mutation coverage provides a
certain level of confidence in learning as well. We can guarantee that covered mutations do not affect the
learned model.

Furthermore, model-based mutation testing has been applied in the industry [21], it has been applied
for real-time [20] and hybrid systems [19], and it is supported by tools, such as MOMUT::UML1 [169].

Testing Real-Time Systems. Early work on black-box testing of dense real-time systems has been
performed by Springintveld et al. [256], who proposed a test-suite generation technique similar to the
W-method [83, 277]. To handle dense real-time, they reduced timed transition systems to grid automata
which are discrete finite automata. While their work is mostly theoretical, because the generated test
suites are very large, they showed that complete test suites exist and they formalised assumptions on real-
time SUTs that enable testing. In fact, we use these assumptions, but we follow a more practical approach

1MOMUT::UML is available online at: https://momut.org/, accessed on November 4, 2019.

https://momut.org/

214 Chapter 11. Related Work

to testing in Chapter 9. Nielson and Skou also performed early work in the area of real-time conformance
testing [217]. They presented a test-case generation technique for non-deterministic but determinisable
timed automata. The test-case generation applies a coverage criterion based on equivalence classes in a
coarse equivalence class partitioning of the model state space.

The exist variants and extensions of the real-time model-checker UPPAAL [178] for testing real-time
systems based on timed automata. UPPAAL COVER generates test cases based on coverage criteria ex-
pressed via observer automata [136]. UPPAAL TRON performs online black-box conformance testing
with respect to relativized input/output conformance [138]. Our approach to testing in Chapter 9 is sim-
ilar to that of UPPAAL TRON which also performs random choices. However, we generate test cases
offline. Moreover, UPPAAL TRON can handle more general timed automata by solely concentrating on
testing, while we focus on model learning. UPPAAL YGGDRASIL is a more recent addition to the UP-
PAAL tool family, which is fully integrated into the main tool of UPPAAL [162]. This tool generates test
cases offline from timed automata to achieve edge coverage and coverage of user-defined requirements
expressed as test purposes.

UPPAAL ECDAR [91] was originally developed for compositional design and verification of real-time
systems. Larsen et al. [181] have shown how to use it for efficient model-based mutation testing and it
was extended to support mutation-based test-case generation natively [133]. Related to that, Lorber et
al. [193] demonstrated the application of model checking via UPPAAL to perform requirements-based
model-based mutation testing. Model-based mutation testing of dense real-time systems was first pro-
posed by Aichernig et al. [20]. They generated test cases by checking language inclusion between a spec-
ification model and its mutated versions. Counterexamples to language inclusion served as test cases,
as they show non-conformance between specification and mutant with respect to timed input-output
conformance [170]. Motivated by the application for model-based mutation testing, Krenn et al. [168]
proposed an incremental procedure for checking language inclusion between networks of deterministic
timed automata.

In addition to defining timed input-output conformance [170], an adaptation of ioco [270], Krichen
and Tripakis presented various test-case generation algorithms for conformance testing of real-time sys-
tems, including online and offline algorithms and coverage-guided algorithms. Another adaptation of
Tretmans’ ioco theory [270] to testing of real-time systems has been presented by Brandán Briones and
Brinksma [71]. The authors introduced an operational interpretation of quiescent behaviour to define
their variant of timed input-output conformance and they also presented a test-case generation algorithm.
Basically, they consider a system to be quiescent if it does not interact with its environment forM or more
time units, where M is a parameter. Bohnenkamp and Belinfante handled quiescent behaviour similarly
in their adaptation of the conformance-testing tool TORX to online testing of real-time systems [64].

12
Conclusion and Outlook

In this thesis, we have discussed learning-based testing and test-based learning with a focus on networked
environments, such as the IoT. In exploratory research, we performed a case study in which we applied
learning-based testing to the IoT protocol MQTT. The shortcomings and issues that we identified in this
case study served as a starting point for further research.

In this chapter, we will first summarise our motivation for learning-based testing in the IoT, the
initial research steps that we carried out, and the extended research tackling issues relevant to the IoT.
After that, we will provide conclusions by revisiting research questions that we identified following the
exploratory research-phase. Eventually, we will close this chapter and this thesis with an outlook on
directions for future work.

12.1 Summary

In the introductory chapter, we identified that the ever-growing complexity of software systems is not
new in itself. Indeed, the “software crisis” was first discussed more than fifty years ago [238]. In this
discussion, it was pointed out that software engineering as a discipline needs to keep up with the growing
complexity to deliver trustworthy software.

Factors that have become more relevant in recent years are the increasing connectedness of computer
systems and the ubiquity of software-based devices. Especially with the advent of the Internet of Things,
these factors are becoming even more dominant. These trends add both to the complexity of software and
to the importance of software verification, as devices are nowadays tightly integrated into our everyday
lives. We focused on learning-based testing of communication in networked environments for two main
reasons. First, reliable communication is essential for the dependability of networked systems. Second,
learning-based testing is an approach to verification well-suited for networked environments such as the
IoT, since this form of testing is applicable in a black-box setting. It does not require prior information
about the internals of the considered systems, which is rarely available, given the large numbers of IoT
devices.

12.1.1 Exploratory Research

As a first step towards effective learning-based testing in the IoT, we performed exploratory research in
two lines of work. We surveyed work that has been performed in this area and we performed a case study
on learning-based testing in the IoT. By applying existing automata-learning approaches combined with

215

216 Chapter 12. Conclusion and Outlook

differential model-based testing on learned models, we found various errors in implementations of the
communication protocol MQTT. Thus, we have demonstrated that learning-based testing can be effective
in the IoT. Despite the successful error detection, we also identified shortcomings of existing learning
approaches that limit their applicability in certain settings.

We classified the shortcomings into three groups: runtime, uncertain behaviour, and time-dependent
behaviour. First, we observed that the runtime of equivalence-query implementations limits the appli-
cability of automata learning. Traditional conformance testing approaches either do not scale or are not
systematic, like purely random testing. Second, most automata-learning methods assume deterministic
behaviour, hence they cannot cope with uncertainties. Third, these methods usually cannot model time-
dependent behaviour. As a result, we had to ignore certain parts of MQTT. Errors with respect to these
parts could not be detected by our initial approach to learning-based testing of MQTT brokers.

12.1.2 Contributions

We proposed several improvements to the state of the art in automata learning to mitigate the identified
shortcomings. These improvements range from efficient conformance testing in automata learning over
learning-based testing of uncertain behaviour to test-based learning of various types of systems. Note
that the proposed test-based learning techniques generally apply learning-based testing by generating test
cases from learned hypothesis models, while focusing on improvements with respect to learning.

Efficient Testing in Automata Learning. The first shortcoming of automata learning that we tackled
was the high runtime required by conformance testing performed during equivalence queries; see Chap-
ter 4. Motivated by previous research [22], we decided to combine fault-based test-case generation with
random testing. We proposed a three-step testing process for efficient testing in active automata learn-
ing. The first step generates a large number of test cases through random walks on hypothesis automata
models. The second step selects a subset of these test cases to optimise the coverage of a certain class of
faults. In the third step, these test cases are executed to discover discrepancies between hypotheses and
the SUL.

The fault class that shall be covered is governed by so-called mutation operators. We designed oper-
ators specifically for active automata learning in the MAT framework. These operators inject faults into
hypothesis models to create mutated models that mimic potential successor hypotheses. The rationale
behind this form of test-case generation is as follows. By covering a large number of mutated models, test
cases are able to cover a large number of alternative SUL behaviours that are consistent with available
information about the SUL. Variability introduced by random walks during test-case generation helps to
explore the SUL state space more thoroughly.

We evaluated the proposed fault-based testing technique by comparing it to traditional conformance
testing techniques and to a state-of-the-art conformance testing technique, which has been first applied in
automata learning by Smeenk et al. [254]. The evaluation showed that our technique generally performs
well and that it outperforms deterministic conformance testing via the partial W-method [117]. Felix
Wallner’s bachelor’s thesis [288] extended this evaluation by taking different learning algorithms and
additional testing techniques into account. Mutation-based testing showed favourable performance in this
extended evaluation as well, but it needs to be combined with either the RS learning algorithm [240] or
the TTT algorithm [151]. The advanced counterexample processing performed by these two algorithms
is crucial for efficient learning.

Learning-Based Testing of Uncertain Behaviour. In order to address the second shortcoming, we
studied learning approaches that are able to capture uncertain behaviour and decided to learn stochastic
models which model uncertainties probabilistically. To enable learning-based testing of stochastic sys-
tems, we proposed probabilistic black-box reachability checking; see Chapter 6. This approach basically
generates online-testing strategies to maximise the probability of reaching specified outputs.

12.2. Conclusions 217

For that, we follow an iterative process that starts with random sampling of system traces. After
that, the process interleaves learning from samples, generating testing strategies, and property-directed
sampling of new traces through testing. The evaluation of the proposed approach showed that it can
reliably generate near-optimal testing strategies for stochastic systems in a black-box setting.

Test-Based Learning. We presented various approaches to test-based learning. These approaches fo-
cus on the learning aspect, while applying learning-based testing techniques.

In Chapter 7, we adapted the L∗ algorithm by Angluin [37] to stochastic systems. More concretely,
we presented a novel active learning algorithm that is able to learn stochastic system models from sys-
tem traces generated via testing. The testing technique applied in equivalence queries is inspired by the
coverage-guided testing that we proposed in Chapter 4. Our L∗-based algorithm is able to learn signif-
icantly more accurate MDPs than IOALERGIA, a state-of-the-art passive learning algorithm, given the
same amount of data.

For learning of timed system models, we followed a metaheuristic approach that we discussed in
Chapter 8. With that we present a solution to the third shortcoming that we identified. We adopted
genetic programming to automatically learn timed automata models from timed traces recorded during
testing. In particular, our genetic programming implementation involves mutation and crossover for
timed automata, a fine-grained fitness evaluation, and speciation, which splits the metaheuristic search
into a local and a global search. The evaluation of the presented technique showed that medium-sized
timed automata models can be learned successfully via genetic programming.

The passive genetic-programming-based learning approach for timed systems was extended to an
active approach by Andrea Pferscher in her master’s thesis [234]; see Chapter 9. She demonstrated that
the number of traces required for learning can be reduced significantly through active testing during
learning. The applied testing technique is based on random walks, similar to our fault-based testing
technique.

Chapter 10 considers test-based learning of hybrid systems, an extension of timed systems. In said
chapter, we describe a two-phase process that we implemented. The first phase of the process collects
system traces through learning-based testing. The second phase then generalises from these traces by
training a recurrent neural network. In order to be able to apply learning-based testing to hybrid systems
and to target specific behaviours of interest, such as collisions in platooning control systems, we devised
(1) a testing process for abstract test cases and a (2) reachability-property-directed testing technique. The
latter is inspired by the testing technique applied in probabilistic black-box reachability checking that we
presented in Chapter 6. Neural networks trained on traces sampled through directed testing outperformed
neural networks trained on random system traces.

12.2 Conclusions

At the end of every chapter, we discussed our findings with respect to research questions that we iden-
tified following our exploratory research. In this section, we revisit all research questions and provide
concluding remarks at the end of the section.

RQ 1.1 Are randomised testing techniques a sensible choice for learning-based testing? We de-
veloped and applied randomised testing techniques in this thesis to successfully learn various types of
systems. In contrast to that, we found that deterministic conformance testing does not scale and gener-
ally performs worse than randomised testing techniques. It should be noted, though, that purely random
testing fails for large systems. Testing should aim to benefit from intermediate hypothesis models, as our
mutation-based testing technique does. The random Wp-method, for instance, also takes hypotheses into
account.

218 Chapter 12. Conclusion and Outlook

In Section 4.5, we showed that mutation-based testing and the random Wp-method outperform deter-
ministic testing via the Wp-method. Moreover, both techniques learn correct models more reliably than
purely random testing.

Systems involving uncertain behaviour introduce randomisation into testing through their stochastic
nature. Hence, randomised online-testing techniques are generally a sensible choice in this context.
The tool JTORX [51, 52], for instance, also applies an online-testing strategy with random choices for
systems with uncertain behaviour.

RQ 1.2 What guarantees can be given if randomised testing is applied? Before discussing the guar-
antees that we can give, it should be noted that it is in general hard or impossible to provide guarantees
on the results of automata learning, especially prior to learning. In deterministic test-based learning, it
is, for instance, impossible to guarantee that the correct automaton has been learned, unless an upper
bound on the SUL states is known. In this case, the W-method [83, 277] could be used to generate an
exhaustive test suite. From a practical point of view, exhaustive testing may not be feasible even if an
upper bound is known. PAC learnability guarantees are an alternative, but these guarantees usually hold
relative to an arbitrary but fixed sampling distribution of system traces [95]. In practice, these guarantees
may be useful in cases, where we know a distribution of traces that occurs during system usage. Without
this kind of knowledge, PAC guarantees might be misleading.

Despite the apparent difficulty, we are able to give various types of guarantees on learning results
and on learning in general.

In Chapter 3, we applied random testing to learn MQTT models. We could not prove that we learned
the correct models, but we checked every potential error for spuriousness. Due to the spuriousness check,
we can guarantee that every error that we detected is indeed an error.

Deterministic active automata learning, such as L∗ [37], comes with a built-in minimality guarantee.
This means that learned automata are minimal in the number of states. Hence, if we learn an automaton
with 30 states, then this automaton is either equivalent to the SUL or the SUL has strictly more than 30
states. This also holds when randomised testing is applied in equivalence queries. Moreover, more effi-
cient testing generally enables learning of larger automata. Hence, our efficient fault-based conformance
testing approach is often able to provide stronger guarantees than deterministic conformance testing.

We learned testing strategies for reachability properties of stochastic systems in Chapter 6. The eval-
uation step in the process shown in Figure 6.1 computes an estimate of the probability of reaching a
specified property with the SUL controlled by a learned strategy. The probability estimate is approxi-
mately correct with a specified confidence and error bound. Since we evaluate testing strategies on the
actual SUL, the estimate is an approximate lower bound for the true optimal reachability probability.

We have shown that L∗MDP, our active learning technique for MDPs, converges to the true model of
the SUL in the limit. This is a weaker result than PAC learnability, though. PAC learnability, however, is
hard to achieve for MDPs [199].

RQ 1.3 Can learning with randomised conformance testing reliably generate correct system mod-
els? We evaluated active automata learning combined with randomised testing in learning experiments
discussed in Section 4.4 and in Section 4.5. These experiments demonstrated that randomised testing
technique can reliably learn correct Mealy-machine models. Our fault-based technique and the random
Wp-method performed well most consistently in Section 4.5, with the fault-based technique performing
best overall.

Randomised testing showed good performance for learning other types of models as well. L∗MDP

applies randomised testing and learns accurate models of various types of stochastic systems; see Sec-
tion 7.6. We were also able to learn timed automata from random timed traces. A manual inspection of
learned models revealed that we generally learned the correct model. However, purely random testing
may not be sufficient. Learned models should be taken into account during testing. For instance, we

12.2. Conclusions 219

demonstrated that using learned models is crucial in the context of learning neural network models of
hybrid systems in Chapter 10. Neural networks trained on purely randomly generated test data perform
significantly worse than neural networks trained on test data generated via model-based testing. In par-
ticular, neural networks trained on data collected through reachability-directed testing achieved a high
classification accuracy.

RQ 1.4 Is fault-based testing, such as model-based mutation testing, applicable in automata learn-
ing? We demonstrated clearly in Section 4.4 and in Section 4.5 that fault-based testing is applicable
in active automata learning and that it performs well. Overall, it performed best among the considered
testing techniques. Since our implementation of fault-based testing generates relatively long test cases,
it should be combined with learning techniques that apply efficient counterexample processing.

RQ 2.1 Which modelling formalisms are appropriate in learning-based testing of uncertain be-
haviour? Upon studying the literature on learning models of systems with uncertain behaviour, we
decided to capture uncertainties probabilistically in stochastic models. More concretely, we decided to
focus on learning Markov decision processes (MDPs). There are three main reasons for that. First, we
have seen that implementations of learning algorithms for non-deterministic models assume stochastic
system behaviour [161]. This helps, for example, to define a stopping criterion for testing in the im-
plementation of output queries. Hence, it makes sense to directly learn stochastic models. Second, by
learning non-deterministic models we do not use all available information. Observed frequencies of
outputs are abstracted away in non-deterministic models, whereas they are reflected in transition proba-
bilities of stochastic models. Third, we have chosen MDPs, since they are controllable via inputs, which
makes them well-suited for testing.

RQ 2.2 When can we stop learning in the presence of uncertain behaviour? We proposed two
different heuristics as stopping criteria in our work on stochastic learning-based testing. In Chapter 6,
our goal was to learn testing strategies. Therefore, we developed a stopping criterion which checks if
intermediate strategies have likely converged. We basically stop once we observe that several consecutive
intermediate testing strategies make similar decisions.

The stopping criterion of L∗MDP is based on the number of (un-)ambiguous traces. Ambiguous traces
are traces that could lead to multiple hypothesis states. In other words, we are not certain about the target
states of these traces. The stopping criterion applied by L∗MDP aims at decreasing uncertainties in this
respect. L∗MDP terminates once the number of ambiguous traces in the learning data structures is low. At
this point, the hypothesis structure is likely to be correct.

Since we apply learning algorithms that converge in the limit, we cannot make statements about the
quality of models learned from finite samples. Therefore, we rely on heuristics which worked well in
practice. Probabilistic black-box reachability with early stopping produced similar results as without
early stopping. Models learned with L∗MDP were generally accurate.

RQ 2.3 Is test-based active learning feasible in the presence of stochastic behaviour? Through
the development, implementation, and evaluation of L∗MDP, we have demonstrated that test-based active
learning of MDPs is feasible and can produce more accurate models than passive learning, given the
same amount of data.

RQ 3.1 Is learning of real-time system models feasible through metaheuristic search-based tech-
niques? We successfully learned timed automata from timed traces through genetic programming, a
metaheuristic search-based approach. The learned models are sufficiently large to model real-world
systems, such as car alarm systems and devices counting particles in exhaust gas. Andrea Pferscher
demonstrated in her master’s thesis that active testing during learning can increase learning efficiency.
Given a limited testing budget, active testing can make learning more reliable; see Chapter 9 [234].

220 Chapter 12. Conclusion and Outlook

RQ 3.2 What assumptions are sufficient to enable learning in the context of real-time systems?
We assume systems to be deterministic, output urgent, and to have isolated outputs. Since we consider
a test-based setting, we also assume systems to be input enabled. These assumptions allow us to learn
timed automata from positive data that is given in the form of system traces observed during testing.

More concretely, under these assumptions we can view timed automata as functions from test se-
quences to timed traces [256]. Hence, given a timed trace t observed during testing, we know that every
timed trace which is not equivalent to t, but which has the same underlying test sequence, cannot be
observed. With these assumptions, we implicitly get negative data from observed positive data. This
makes learning feasible. It is known that only very restricted classes of languages can be learned from
solely positive data without additional information [95, 122].

In the evaluation of active genetic programming, we found an additional assumption required by the
passive approach; see Section 9.3. It requires an approximately correct estimation of cmax, the largest
constant appearing in clock guards. Active genetic programming can handle inaccurate estimations of
cmax better by basically learning relevant constants.

Concluding Remarks. Finally, we want to discuss how the work presented within this thesis and the
aforementioned findings specifically relate to the thesis statement. The thesis statement reads as follows:

Test-case generation based on intermediate learned automata models combined with ran-
domisation enables active learning of accurate automata models.

In this thesis, we presented various test-case generation techniques that derive test cases from interme-
diate learned models including fault-based, online reachability-directed, transition-coverage-based, and
random-walk-based techniques. As discussed above, we were able to reliably learn accurate models
of deterministic, stochastic, and timed systems. Hence, the thesis statement holds. Testing based on
learned models enables learning of accurate automata models of black-box systems. In addition, we
also successfully learned accurate neural network models of hybrid systems by applying learning-based
testing.

12.3 Future Work

We contributed in various ways to the state of the art in automata learning. Our contributions include
algorithms, testing techniques, approaches to learning, benchmark models, and prototypical implemen-
tations. In addition to that, we identified various directions for future research to extend and improve our
work. The following paragraphs provide an overview of potential future work.

Extending Fault-Based Testing. We presented fault-based testing for Mealy-machine models. As
pointed out in Section 1.6.4, these models may be too restrictive in certain scenarios. We concentrated
mostly on extending learning to stochastic and timed systems. Another potential extension is the in-
clusion of data variables into learned models. There exist active learning approaches for that, but spe-
cialised conformance-testing techniques for these models rarely exist. Cassel et al. [76], for instance,
learn extended finite-state machines and they note that equivalence checking could be implemented via
conformance testing. We believe that fault-based testing would be very well-suited in this context. Our
split-state mutation operators are specialised towards active automata learning and additional mutation
operators could target constraints on data variables. In fact, Bernhard Aichernig’s group worked inten-
sively on efficient fault-based test-case generation from models including data variables [14, 23, 169].

12.3. Future Work 221

Probabilistic Black-Box Checking. We learned testing strategies for stochastic systems with respect
to reachability properties. A natural direction for future research would be to consider more general
properties, for instance, given in PCTL. This may require more general schedulers, that is, memoryless
schedulers may not be sufficient. Another potential extension of this work would be to maximise rewards
or to minimise costs, such as power consumption, rather than maximising a reachability probability.

Probabilistic black-box reachability checking could also be integrated into L∗MDP by performing
reachability-property-directed sampling as part of equivalence queries. Since L∗MDP produced more ac-
curate models than IOALERGIA, the combination of L∗MDP and reachability checking may perform better
than the approach discussed in Chapter 6.

PAC Learnability of MDPs. We showed that L∗MDP converges to the correct model in the large sample
limit. This means that L∗MDP eventually learns an MDP which is isomorphic to the canonical MDP
underlying the SUL. However, we did not prove PAC learning results. PAC learning would allow to make
statements about the required sample size to achieve some desired model accuracy. Hence, practical
applications might benefit from this kind of guarantees. An obstacle to overcome towards PAC learning
is the identification of a distance measure that is adequate in a verification context [199]. It should, for
instance, be possible to relate distance values to the accuracy of model checking results.

Learning Stochastic Time-Dependent Behaviour. This thesis presented learning approaches for dis-
crete-time stochastic systems and for deterministic real-time systems. A natural next step would be
to tackle the problem of learning models of stochastic real-time systems, such as stochastic timed au-
tomata, which can be analysed with UPPAAL SMC [94]. There are various possible ways to approach
this problem. We could extend L∗MDP to consider time as well and integrate ideas from other existing
approaches [96, 199, 280]. Alternatively, we could adapt the genetic programming to learn stochastic
timed automata by computing fitness based on some distance measure.

Meta-Optimisation of Parameters. The techniques presented within this thesis are controlled by pa-
rameterised probabilistic choices. In some cases, such as the genetic programming of timed automata,
the parameter space is relatively large and concrete configurations heavily affect performance. We gener-
ally strived to provide guidelines for choosing parameters and to identify parameter settings that worked
well across all experiments. Meta-optimisation of parameters, which is an automatic search for adequate
parameter values, might ease the application of our work in new environments.

Monitoring of Hybrid Systems. We trained neural networks to detect crashes in a platooning system
as soon as they happen. Hence, we could run the platooning system and a neural network in parallel and
the neural network would output crash once the platooning system crashes. This is not very useful for
monitoring, since crash detection exactly at the time of crashing is obviously too late. However, note
that we have chosen crash detection as an illustrative example. In future work, we plan to extend this
work to the detection of dangerous situations that might lead to crashes. This would be more useful for
monitoring, provided that there is sufficient time to intervene.

Closing Remark. In conclusion, we believe that this thesis constitutes a valuable contribution to the
field of automata learning and in particular to automata learning-based testing. We hope that the pre-
sented techniques and ideas prove useful and provide inspiration to other researchers.

Bibliography

[1] Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating models of infinite-state commu-
nication protocols using regular inference with abstraction. In Alexandre Petrenko, Adenilso
da Silva Simão, and José Carlos Maldonado, editors, Testing Software and Systems - 22nd IFIP
WG 6.1 International Conference, ICTSS 2010, Natal, Brazil, November 8-10, 2010. Proceed-
ings, volume 6435 of Lecture Notes in Computer Science, pages 188–204. Springer, 2010. ISBN
978-3-642-16572-6. doi: 10.1007/978-3-642-16573-3 14. URL https://doi.org/10.1007/

978-3-642-16573-3_14. (Cited on pages 6 and 30.)

[2] Fides Aarts, Julien Schmaltz, and Frits W. Vaandrager. Inference and abstraction of the bio-
metric passport. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification, and Validation - 4th International Symposium on Leveraging
Applications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceedings, Part
I, volume 6415 of Lecture Notes in Computer Science, pages 673–686. Springer, 2010. ISBN
978-3-642-16557-3. doi: 10.1007/978-3-642-16558-0 54. URL https://doi.org/10.1007/

978-3-642-16558-0_54. (Cited on page 204.)

[3] Fides Aarts, Faranak Heidarian, Harco Kuppens, Petur Olsen, and Frits W. Vaandrager. Automata
learning through counterexample guided abstraction refinement. In Dimitra Giannakopoulou and
Dominique Méry, editors, FM 2012: Formal Methods - 18th International Symposium, Paris,
France, August 27-31, 2012. Proceedings, volume 7436 of Lecture Notes in Computer Science,
pages 10–27. Springer, 2012. ISBN 978-3-642-32758-2. doi: 10.1007/978-3-642-32759-9 4.
URL https://doi.org/10.1007/978-3-642-32759-9_4. (Cited on pages 31, 37, 39
and 207.)

[4] Fides Aarts, Harco Kuppens, Jan Tretmans, Frits W. Vaandrager, and Sicco Verwer. Learning
and testing the bounded retransmission protocol. In Jeffrey Heinz, Colin de la Higuera, and Tim
Oates, editors, Proceedings of the Eleventh International Conference on Grammatical Inference,
ICGI 2012, University of Maryland, College Park, USA, September 5-8, 2012, volume 21 of
JMLR Proceedings, pages 4–18. JMLR.org, 2012. URL http://proceedings.mlr.press/

v21/aarts12a.html. (Cited on pages 33, 204, 206 and 207.)

[5] Fides Aarts, Harco Kuppens, Jan Tretmans, Frits W. Vaandrager, and Sicco Verwer. Improv-
ing active Mealy machine learning for protocol conformance testing. Machine Learning, 96
(1-2):189–224, 2014. doi: 10.1007/s10994-013-5405-0. URL https://doi.org/10.1007/

s10994-013-5405-0. (Cited on pages 17, 33, 204, 206 and 207.)

[6] Fides Aarts, Paul Fiterău-Broştean, Harco Kuppens, and Frits W. Vaandrager. Learning reg-
ister automata with fresh value generation. In Martin Leucker, Camilo Rueda, and Frank D.
Valencia, editors, Theoretical Aspects of Computing - ICTAC 2015 - 12th International Col-
loquium Cali, Colombia, October 29-31, 2015, Proceedings, volume 9399 of Lecture Notes
in Computer Science, pages 165–183. Springer, 2015. ISBN 978-3-319-25149-3. doi: 10.
1007/978-3-319-25150-9 11. URL https://doi.org/10.1007/978-3-319-25150-9_11.
(Cited on pages 36 and 39.)

223

https://doi.org/10.1007/978-3-642-16573-3_14
https://doi.org/10.1007/978-3-642-16573-3_14
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-642-32759-9_4
http://proceedings.mlr.press/v21/aarts12a.html
http://proceedings.mlr.press/v21/aarts12a.html
https://doi.org/10.1007/s10994-013-5405-0
https://doi.org/10.1007/s10994-013-5405-0
https://doi.org/10.1007/978-3-319-25150-9_11

224 Bibliography

[7] Fides Aarts, Bengt Jonsson, Johan Uijen, and Frits W. Vaandrager. Generating models of
infinite-state communication protocols using regular inference with abstraction. Formal Meth-
ods in System Design, 46(1):1–41, 2015. doi: 10.1007/s10703-014-0216-x. URL https:

//doi.org/10.1007/s10703-014-0216-x. (Cited on pages 31 and 37.)

[8] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing vision-based
control systems using learnable evolutionary algorithms. In Michel Chaudron, Ivica Crnkovic,
Marsha Chechik, and Mark Harman, editors, Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 1016–
1026. ACM, 2018. ISBN 978-1-4503-5638-1. doi: 10.1145/3180155.3180160. URL https:

//doi.org/10.1145/3180155.3180160. (Cited on page 212.)

[9] Gusztáv Adamis, Gábor Kovács, and György Réthy. Generating performance test model from
conformance test logs. In Joachim Fischer, Markus Scheidgen, Ina Schieferdecker, and Rick
Reed, editors, SDL 2015: Model-Driven Engineering for Smart Cities - 17th International SDL
Forum, Berlin, Germany, October 12-14, 2015, Proceedings, volume 9369 of Lecture Notes
in Computer Science, pages 268–284. Springer, 2015. ISBN 978-3-319-24911-7. doi: 10.
1007/978-3-319-24912-4 19. URL https://doi.org/10.1007/978-3-319-24912-4_19.
(Cited on page 207.)

[10] Bernhard Aichernig, Roderick Bloem, Franz Pernkopf, Franz Röck, Tobias Schrank, and Martin
Tappler. Poster: Learning models of a network protocol using neural network language models. In
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. IEEE
Computer Society, 2016. ISBN 978-1-5090-0824-7. URL https://www.ieee-security.

org/TC/SP2016/poster-abstracts/36-poster_abstract.pdf. (Cited on page 12.)

[11] Bernhard K. Aichernig. Model-based mutation testing of reactive systems – from semantics
to automated test-case generation. In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors,
Theories of Programming and Formal Methods - Essays Dedicated to Jifeng He on the Oc-
casion of His 70th Birthday, volume 8051 of Lecture Notes in Computer Science, pages 23–
36. Springer, 2013. ISBN 978-3-642-39697-7. doi: 10.1007/978-3-642-39698-4 2. URL
https://doi.org/10.1007/978-3-642-39698-4_2. (Cited on pages 7 and 213.)

[12] Bernhard K. Aichernig and Carlo Corrales Delgado. From faults via test purposes to test cases:
On the fault-based testing of concurrent systems. In Luciano Baresi and Reiko Heckel, editors,
Fundamental Approaches to Software Engineering, 9th International Conference, FASE 2006,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 27-28, 2006, Proceedings, volume 3922 of Lecture Notes in Computer
Science, pages 324–338. Springer, 2006. ISBN 3-540-33093-3. doi: 10.1007/11693017 24. URL
https://doi.org/10.1007/11693017_24. (Cited on pages 41 and 213.)

[13] Bernhard K. Aichernig and Richard Schumi. How fast is MQTT? - statistical model checking
and testing of IoT protocols. In Annabelle McIver and Andras Horvath, editors, Quantitative
Evaluation of Systems - 15th International Conference, QEST 2018, Beijing, China, Septem-
ber 4-7, 2018, Proceedings, volume 11024 of Lecture Notes in Computer Science, pages 36–
52. Springer, 2018. ISBN 978-3-319-99153-5. doi: 10.1007/978-3-319-99154-2 3. URL
https://doi.org/10.1007/978-3-319-99154-2_3. (Cited on pages 45, 207 and 211.)

[14] Bernhard K. Aichernig and Martin Tappler. Symbolic input-output conformance checking for
model-based mutation testing. Electronic Notes in Theoretical Computer Science, 320:3–19, 2016.
doi: 10.1016/j.entcs.2016.01.002. URL https://doi.org/10.1016/j.entcs.2016.01.

002. (Cited on pages 41 and 220.)

[15] Bernhard K. Aichernig and Martin Tappler. Learning from faults: Mutation testing in active
automata learning. In Clark Barrett, Misty Davies, and Temesghen Kahsai, editors, NASA Formal

https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1007/978-3-319-24912-4_19
https://www.ieee-security.org/TC/SP2016/poster-abstracts/36-poster_abstract.pdf
https://www.ieee-security.org/TC/SP2016/poster-abstracts/36-poster_abstract.pdf
https://doi.org/10.1007/978-3-642-39698-4_2
https://doi.org/10.1007/11693017_24
https://doi.org/10.1007/978-3-319-99154-2_3
https://doi.org/10.1016/j.entcs.2016.01.002
https://doi.org/10.1016/j.entcs.2016.01.002

Bibliography 225

Methods - 9th International Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017,
Proceedings, volume 10227 of Lecture Notes in Computer Science, pages 19–34, 2017. ISBN
978-3-319-57287-1. doi: 10.1007/978-3-319-57288-8 2. URL https://doi.org/10.1007/

978-3-319-57288-8_2. (Cited on pages 9, 10, 11, 12, 23, 29, 55, 114, 203 and 252.)

[16] Bernhard K. Aichernig and Martin Tappler. Probabilistic black-box reachability checking. In Shu-
vendu K. Lahiri and Giles Reger, editors, Runtime Verification - 17th International Conference,
RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceedings, volume 10548 of Lecture Notes
in Computer Science, pages 50–67. Springer, 2017. ISBN 978-3-319-67530-5. doi: 10.1007/
978-3-319-67531-2 4. URL https://doi.org/10.1007/978-3-319-67531-2_4. (Cited
on pages 9, 11, 91, 92, 99, 203 and 252.)

[17] Bernhard K. Aichernig and Martin Tappler. Efficient active automata learning via mutation testing.
Journal of Automated Reasoning, 63(4):1103–1134, 2019. doi: 10.1007/s10817-018-9486-0.
URL https://doi.org/10.1007/s10817-018-9486-0. (Cited on pages 9, 11, 12, 15, 23,
29, 55, 65, 68, 114, 144, 171, 195, 196, 203 and 252.)

[18] Bernhard K. Aichernig and Martin Tappler. Probabilistic black-box reachability check-
ing (extended version). Formal Methods in System Design, 54(3):416–448, May 2019.
ISSN 1572-8102. doi: 10.1007/s10703-019-00333-0. URL https://doi.org/10.1007/

s10703-019-00333-0. (Cited on pages 4, 9, 11, 91, 92, 94, 99, 203 and 252.)

[19] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. Model-based mu-
tation testing of hybrid systems. In Frank S. de Boer, Marcello M. Bonsangue, Stefan Haller-
stede, and Michael Leuschel, editors, Formal Methods for Components and Objects - 8th In-
ternational Symposium, FMCO 2009, Eindhoven, The Netherlands, November 4-6, 2009. Re-
vised Selected Papers, volume 6286 of Lecture Notes in Computer Science, pages 228–249.
Springer, 2009. ISBN 978-3-642-17070-6. doi: 10.1007/978-3-642-17071-3 12. URL https:

//doi.org/10.1007/978-3-642-17071-3_12. (Cited on pages 7 and 213.)

[20] Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovic. Time for mutants - model-based
mutation testing with timed automata. In Margus Veanes and Luca Viganò, editors, Tests and
Proofs - 7th International Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013. Pro-
ceedings, volume 7942 of Lecture Notes in Computer Science, pages 20–38. Springer, 2013. ISBN
978-3-642-38915-3. doi: 10.1007/978-3-642-38916-0 2. URL https://doi.org/10.1007/

978-3-642-38916-0_2. (Cited on pages 7, 174, 213 and 214.)

[21] Bernhard K. Aichernig, Jakob Auer, Elisabeth Jöbstl, Robert Korosec, Willibald Krenn, Rupert
Schlick, and Birgit Vera Schmidt. Model-based mutation testing of an industrial measurement
device. In Martina Seidl and Nikolai Tillmann, editors, Tests and Proofs - 8th International
Conference, TAP 2014, Held as Part of STAF 2014, York, UK, July 24-25, 2014. Proceed-
ings, volume 8570 of Lecture Notes in Computer Science, pages 1–19. Springer, 2014. ISBN
978-3-319-09098-6. doi: 10.1007/978-3-319-09099-3 1. URL https://doi.org/10.1007/

978-3-319-09099-3_1. (Cited on pages 7, 58, 174 and 213.)

[22] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Rupert Schlick, and
Stefan Tiran. Killing strategies for model-based mutation testing. Software Testing, Verification &
Reliability, 25(8):716–748, 2015. doi: 10.1002/stvr.1522. URL https://doi.org/10.1002/

stvr.1522. (Cited on pages 7, 16, 53, 57, 58, 60, 63, 213 and 216.)

[23] Bernhard K. Aichernig, Elisabeth Jöbstl, and Stefan Tiran. Model-based mutation testing via
symbolic refinement checking. Science of Computer Programming, 97:383–404, 2015. doi:
10.1016/j.scico.2014.05.004. URL https://doi.org/10.1016/j.scico.2014.05.004.
(Cited on pages 7, 16, 41, 213 and 220.)

https://doi.org/10.1007/978-3-319-57288-8_2
https://doi.org/10.1007/978-3-319-57288-8_2
https://doi.org/10.1007/978-3-319-67531-2_4
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/s10703-019-00333-0
https://doi.org/10.1007/s10703-019-00333-0
https://doi.org/10.1007/978-3-642-17071-3_12
https://doi.org/10.1007/978-3-642-17071-3_12
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-319-09099-3_1
https://doi.org/10.1007/978-3-319-09099-3_1
https://doi.org/10.1002/stvr.1522
https://doi.org/10.1002/stvr.1522
https://doi.org/10.1016/j.scico.2014.05.004

226 Bibliography

[24] Bernhard K. Aichernig, Roderick Bloem, Masoud Ebrahimi, Martin Tappler, and Johannes Win-
ter. Automata learning for symbolic execution. In Nikolaj Bjørner and Arie Gurfinkel, edi-
tors, 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, Oc-
tober 30 - November 2, 2018, pages 1–9. IEEE, 2018. ISBN 978-0-9835678-8-2. doi: 10.
23919/FMCAD.2018.8602991. URL https://doi.org/10.23919/FMCAD.2018.8602991.
(Cited on page 12.)

[25] Bernhard K. Aichernig, Severin Kann, and Richard Schumi. Statistical model checking of re-
sponse times for different system deployments. In Xinyu Feng, Markus Müller-Olm, and Zi-
jiang Yang, editors, Dependable Software Engineering. Theories, Tools, and Applications - 4th
International Symposium, SETTA 2018, Beijing, China, September 4-6, 2018, Proceedings, vol-
ume 10998 of Lecture Notes in Computer Science, pages 153–169. Springer, 2018. ISBN 978-
3-319-99932-6. doi: 10.1007/978-3-319-99933-3 11. URL https://doi.org/10.1007/

978-3-319-99933-3_11. (Cited on page 211.)

[26] Bernhard K. Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi, Martin Tappler, and
Masoumeh Taromirad. Model learning and model-based testing. In Amel Bennaceur, Reiner
Hähnle, and Karl Meinke, editors, Machine Learning for Dynamic Software Analysis: Poten-
tials and Limits - International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-
27, 2016, Revised Papers, volume 11026 of Lecture Notes in Computer Science, pages 74–
100. Springer, 2018. ISBN 978-3-319-96561-1. doi: 10.1007/978-3-319-96562-8 3. URL
https://doi.org/10.1007/978-3-319-96562-8_3. (Cited on pages 3, 4, 6, 9, 10, 24,
29, 56, 203 and 204.)

[27] Bernhard K. Aichernig, Priska Bauerstätter, Elisabeth Jöbstl, Severin Kann, Robert Ko-
rosec, Willibald Krenn, Cristinel Mateis, Rupert Schlick, and Richard Schumi. Learning
and statistical model checking of system response times. Software Quality Journal, 27(2):
757–795, 2019. doi: 10.1007/s11219-018-9432-8. URL https://doi.org/10.1007/

s11219-018-9432-8. (Cited on page 211.)

[28] Bernhard K. Aichernig, Roderick Bloem, Masoud Ebrahimi, Martin Horn, Franz Pernkopf, Wolf-
gang Roth, Astrid Rupp, Martin Tappler, and Markus Tranninger. Learning a behavior model
of hybrid systems through combining model-based testing and machine learning (full version).
CoRR, abs/1907.04708, 2019. URL http://arxiv.org/abs/1907.04708. (Cited on
pages 12, 197 and 203.)

[29] Bernhard K. Aichernig, Roderick Bloem, Masoud Ebrahimi, Martin Horn, Franz Pernkopf, Wolf-
gang Roth, Astrid Rupp, Martin Tappler, and Markus Tranninger. Learning a behavior model
of hybrid systems through combining model-based testing and machine learning. In Christophe
Gaston, Nikolai Kosmatov, and Pascale Le Gall, editors, Testing Software and Systems - 31st IFIP
WG 6.1 International Conference, ICTSS 2019, Paris, France, October 15-17, 2019, Proceed-
ings, volume 11812 of Lecture Notes in Computer Science, pages 3–21. Springer, 2019. ISBN
978-3-030-31279-4. doi: 10.1007/978-3-030-31280-0 1. URL https://doi.org/10.1007/

978-3-030-31280-0_1. Best Paper at ICTSS 2019. (Cited on pages 9, 11, 189, 203 and 212.)

[30] Bernhard K. Aichernig, Franz Pernkopf, Richard Schumi, and Andreas Wurm. Predicting and
testing latencies with deep learning: An IoT case study. In Dirk Beyer and Chantal Keller, ed-
itors, Tests and Proofs - 13th International Conference, TAP 2019, Held as Part of the Third
World Congress on Formal Methods 2019, Porto, Portugal, October 9-11, 2019, Proceedings,
volume 11823 of Lecture Notes in Computer Science, pages 93–111. Springer, 2019. ISBN
978-3-030-31156-8. doi: 10.1007/978-3-030-31157-5 7. URL https://doi.org/10.1007/

978-3-030-31157-5_7. (Cited on pages 207 and 211.)

https://doi.org/10.23919/FMCAD.2018.8602991
https://doi.org/10.1007/978-3-319-99933-3_11
https://doi.org/10.1007/978-3-319-99933-3_11
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/s11219-018-9432-8
https://doi.org/10.1007/s11219-018-9432-8
http://arxiv.org/abs/1907.04708
https://doi.org/10.1007/978-3-030-31280-0_1
https://doi.org/10.1007/978-3-030-31280-0_1
https://doi.org/10.1007/978-3-030-31157-5_7
https://doi.org/10.1007/978-3-030-31157-5_7

Bibliography 227

[31] Rajeev Alur. Can we verify cyber-physical systems?: Technical perspective. Communications
of the ACM, 56(10):96, 2013. doi: 10.1145/2507771.2507782. URL https://doi.org/10.

1145/2507771.2507782. (Cited on page 189.)

[32] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126
(2):183–235, 1994. doi: 10.1016/0304-3975(94)90010-8. URL https://doi.org/10.1016/

0304-3975(94)90010-8. (Cited on pages 38, 161 and 163.)

[33] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems. In Robert L.
Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems. HS 1992,
HS 1991, volume 736 of Lecture Notes in Computer Science, pages 209–229. Springer, 1992.
ISBN 3-540-57318-6. doi: 10.1007/3-540-57318-6 30. URL https://doi.org/10.1007/

3-540-57318-6_30. (Cited on page 189.)

[34] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theoretical Computer Science, 211(1-2):253–273, 1999. doi: 10.1016/
S0304-3975(97)00173-4. URL https://doi.org/10.1016/S0304-3975(97)00173-4.
(Cited on pages 162 and 210.)

[35] Rajeev Alur, Pavol Cerný, P. Madhusudan, and Wonhong Nam. Synthesis of interface specifica-
tions for Java classes. In Jens Palsberg and Martı́n Abadi, editors, Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long
Beach, California, USA, January 12-14, 2005, pages 98–109. ACM, 2005. ISBN 1-58113-830-
X. doi: 10.1145/1040305.1040314. URL https://doi.org/10.1145/1040305.1040314.
(Cited on page 205.)

[36] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University Press,
2008. ISBN 978-0-521-88038-1. doi: 10.1017/CBO9780511809163. URL https://doi.org/

10.1017/CBO9780511809163. (Cited on page 2.)

[37] Dana Angluin. Learning regular sets from queries and counterexamples. Information and Com-
putation, 75(2):87–106, 1987. doi: 10.1016/0890-5401(87)90052-6. URL https://doi.org/

10.1016/0890-5401(87)90052-6. (Cited on pages 4, 7, 10, 15, 17, 18, 20, 21, 22, 29, 62,
68, 69, 77, 79, 91, 92, 99, 100, 103, 129, 131, 132, 133, 161, 171, 195, 203, 205, 208, 209, 211,
217 and 218.)

[38] Hugo L. S. Araujo, Gustavo Carvalho, Morteza Mohaqeqi, Mohammad Reza Mousavi, and Au-
gusto Sampaio. Sound conformance testing for cyber-physical systems: Theory and implemen-
tation. Science of Computer Programming, 162:35–54, 2018. doi: 10.1016/j.scico.2017.07.002.
URL https://doi.org/10.1016/j.scico.2017.07.002. (Cited on page 189.)

[39] George Argyros, Ioannis Stais, Suman Jana, Angelos D. Keromytis, and Aggelos Kiayias.
SFADiff: Automated evasion attacks and fingerprinting using black-box differential automata
learning. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. My-
ers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1690–1701. ACM, 2016. ISBN 978-1-4503-4139-4.
doi: 10.1145/2976749.2978383. URL http://doi.acm.org/10.1145/2976749.2978383.
(Cited on page 204.)

[40] Thomas Arts, John Hughes, Joakim Johansson, and Ulf T. Wiger. Testing telecoms software with
quviq QuickCheck. In Marc Feeley and Philip W. Trinder, editors, Proceedings of the 2006 ACM
SIGPLAN Workshop on Erlang, Portland, Oregon, USA, September 16, 2006, pages 2–10. ACM,
2006. ISBN 1-59593-490-1. doi: 10.1145/1159789.1159792. URL https://doi.org/10.

1145/1159789.1159792. (Cited on page 206.)

https://doi.org/10.1145/2507771.2507782
https://doi.org/10.1145/2507771.2507782
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1145/1040305.1040314
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.scico.2017.07.002
http://doi.acm.org/10.1145/2976749.2978383
https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/1159789.1159792

228 Bibliography

[41] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for timed
automata. IFAC Proceedings Volumes, 31(18):447 – 452, 1998. ISSN 1474-6670. doi:
https://doi.org/10.1016/S1474-6670(17)42032-5. URL http://www.sciencedirect.com/

science/article/pii/S1474667017420325. Special issue on the 5th IFAC Conference
on System Structure and Control 1998 (SSC’98), Nantes, France, 8-10 July. (Cited on page 182.)

[42] James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory. Journal of
Algorithms, 11(3):441–461, 1990. doi: 10.1016/0196-6774(90)90021-6. URL https://doi.

org/10.1016/0196-6774(90)90021-6. (Cited on pages 109, 116 and 155.)

[43] Giorgio Bacci, Giovanni Bacci, Kim Guldstrand Larsen, and Radu Mardare. MDPDist library.
http://people.cs.aau.dk/˜giovbacci/tools/bisimdist.zip, accessed on Novem-
ber 4, 2019. (Cited on page 153.)

[44] Giorgio Bacci, Giovanni Bacci, Kim Guldstrand Larsen, and Radu Mardare. Computing be-
havioral distances, compositionally. In Krishnendu Chatterjee and Jirı́ Sgall, editors, Mathe-
matical Foundations of Computer Science 2013 - 38th International Symposium, MFCS 2013,
Klosterneuburg, Austria, August 26-30, 2013. Proceedings, volume 8087 of Lecture Notes in
Computer Science, pages 74–85. Springer, 2013. ISBN 978-3-642-40312-5. doi: 10.1007/
978-3-642-40313-2 9. URL https://doi.org/10.1007/978-3-642-40313-2_9. (Cited
on pages 126 and 152.)

[45] Giorgio Bacci, Giovanni Bacci, Kim Guldstrand Larsen, and Radu Mardare. The BisimDist li-
brary: Efficient computation of bisimilarity distances for Markovian models. In Kaustubh R.
Joshi, Markus Siegle, Mariëlle Stoelinga, and Pedro R. D’Argenio, editors, Quantitative Eval-
uation of Systems - 10th International Conference, QEST 2013, Buenos Aires, Argentina, Au-
gust 27-30, 2013. Proceedings, volume 8054 of Lecture Notes in Computer Science, pages 278–
281. Springer, 2013. ISBN 978-3-642-40195-4. doi: 10.1007/978-3-642-40196-1 23. URL
https://doi.org/10.1007/978-3-642-40196-1_23. (Cited on page 152.)

[46] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008. ISBN
978-0-262-02649-9. (Cited on pages 5, 92, 94, 96 and 121.)

[47] Rena Bakhshi and Ansgar Fehnker. On the impact of modelling choices for distributed information
spread. In QEST 2009, Sixth International Conference on the Quantitative Evaluation of Systems,
Budapest, Hungary, 13-16 September 2009, pages 41–50. IEEE Computer Society, 2009. ISBN
978-0-7695-3808-2. doi: 10.1109/QEST.2009.37. URL https://doi.org/10.1109/QEST.

2009.37. (Cited on page 98.)

[48] Ezio Bartocci, Jyotirmoy V. Deshmukh, Alexandre Donzé, Georgios E. Fainekos, Oded Maler,
Dejan Nickovic, and Sriram Sankaranarayanan. Specification-based monitoring of cyber-physical
systems: A survey on theory, tools and applications. In Ezio Bartocci and Yliès Falcone, editors,
Lectures on Runtime Verification - Introductory and Advanced Topics, volume 10457 of Lecture
Notes in Computer Science, pages 135–175. Springer, 2018. ISBN 978-3-319-75631-8. doi:
10.1007/978-3-319-75632-5 5. URL https://doi.org/10.1007/978-3-319-75632-5_

5. (Cited on page 189.)

[49] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on Uppaal. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time Systems, In-
ternational School on Formal Methods for the Design of Computer, Communication and Software
Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures, volume 3185
of Lecture Notes in Computer Science, pages 200–236. Springer, 2004. ISBN 3-540-23068-8. doi:
10.1007/978-3-540-30080-9 7. URL https://doi.org/10.1007/978-3-540-30080-9_

7. (Cited on page 174.)

http://www.sciencedirect.com/science/article/pii/S1474667017420325
http://www.sciencedirect.com/science/article/pii/S1474667017420325
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1016/0196-6774(90)90021-6
http://people.cs.aau.dk/~giovbacci/tools/bisimdist.zip
https://doi.org/10.1007/978-3-642-40313-2_9
https://doi.org/10.1007/978-3-642-40196-1_23
https://doi.org/10.1109/QEST.2009.37
https://doi.org/10.1109/QEST.2009.37
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7

Bibliography 229

[50] Boris Beizer. Software Testing Techniques (2nd ed.). Van Nostrand Reinhold, 1990. ISBN 978-0-
442-20672-7. (Cited on page 2.)

[51] Axel Belinfante. JTorX: A tool for on-line model-driven test derivation and execution. In Javier
Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analy-
sis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 266–
270. Springer, 2010. ISBN 978-3-642-12001-5. doi: 10.1007/978-3-642-12002-2 21. URL
https://doi.org/10.1007/978-3-642-12002-2_21. (Cited on pages 122, 213 and 218.)

[52] Axel Belinfante. JTorX: Exploring Model-Based Testing. PhD thesis, University of Twente,
Netherlands, 2014. IPA Dissertation series no. 2014-09. (Cited on pages 122 and 218.)

[53] Axel Belinfante, Jan Feenstra, René G. de Vries, Jan Tretmans, Nicolae Goga, Loe M. G. Feijs,
Sjouke Mauw, and Lex Heerink. Formal test automation: A simple experiment. In Gyula Csopaki,
Sarolta Dibuz, and Katalin Tarnay, editors, Testing of Communicating Systems: Method and Appli-
cations, IFIP TC6 12th International Workshop on Testing Communicating Systems, September
1-3, 1999, Budapest, Hungary, volume 147 of IFIP Conference Proceedings, pages 179–196.
Kluwer, 1999. ISBN 0-7923-8581-0. (Cited on page 213.)

[54] Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Harald Raffelt, and Bernhard
Steffen. On the correspondence between conformance testing and regular inference. In Maura
Cerioli, editor, Fundamental Approaches to Software Engineering, 8th International Conference,
FASE 2005, Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3442 of Lecture
Notes in Computer Science, pages 175–189. Springer, 2005. ISBN 3-540-25420-X. doi: 10.
1007/978-3-540-31984-9 14. URL https://doi.org/10.1007/978-3-540-31984-9_14.
(Cited on pages 4, 29, 30, 33, 56 and 87.)

[55] Therese Berg, Bengt Jonsson, Martin Leucker, and Mayank Saksena. Insights to Angluin’s
learning. Electronic Notes in Theoretical Computer Science, 118:3–18, 2005. doi: 10.1016/j.
entcs.2004.12.015. URL https://doi.org/10.1016/j.entcs.2004.12.015. (Cited on
page 208.)

[56] Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from multiplicity
and equivalence queries. SIAM Journal on Computing, 25(6):1268–1280, 1996. doi: 10.1137/
S009753979326091X. URL https://doi.org/10.1137/S009753979326091X. (Cited on
page 210.)

[57] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A messy
state of the union: Taming the composite state machines of TLS. In 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 535–552.
IEEE Computer Society, 2015. ISBN 978-1-4673-6949-7. doi: 10.1109/SP.2015.39. URL
https://doi.org/10.1109/SP.2015.39. (Cited on pages 1 and 213.)

[58] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A messy
state of the union: Taming the composite state machines of TLS. Communications of the ACM,
60(2):99–107, 2017. doi: 10.1145/3023357. URL https://doi.org/10.1145/3023357.
(Cited on page 213.)

[59] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies - a comprehensive introduction.
Natural Computing, 1(1):3–52, 2002. doi: 10.1023/A:1015059928466. URL https://doi.

org/10.1023/A:1015059928466. (Cited on page 166.)

https://doi.org/10.1007/978-3-642-12002-2_21
https://doi.org/10.1007/978-3-540-31984-9_14
https://doi.org/10.1016/j.entcs.2004.12.015
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1109/SP.2015.39
https://doi.org/10.1145/3023357
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466

230 Bibliography

[60] Alan W. Biermann and Jerome A. Feldman. On the synthesis of finite-state machines from samples
of their behavior. IEEE Transactions on Computers, 21(6):592–597, 1972. doi: 10.1109/TC.
1972.5009015. URL https://doi.org/10.1109/TC.1972.5009015. (Cited on pages 4
and 210.)

[61] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D. Ernst, Mauro
Pezzè, and Sergio Delgado Castellanos. Translating code comments to procedure specifications.
In Frank Tip and Eric Bodden, editors, Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-
21, 2018, pages 242–253. ACM, 2018. doi: 10.1145/3213846.3213872. URL https://doi.

org/10.1145/3213846.3213872. (Cited on page 205.)

[62] Arianna Blasi, Mauro Pezzè, Alessandra Gorla, and Michael D. Ernst. Research on NLP for RE
at università della svizzera italiana (USI): A report. In Paola Spoletini, Patrick Mäder, Daniel M.
Berry, Fabiano Dalpiaz, Maya Daneva, Alessio Ferrari, Xavier Franch, Sarah Gregory, Eduard C.
Groen, Andrea Herrmann, Anne Hess, Frank Houdek, Oliver Karras, Anne Koziolek, Kim Lauen-
roth, Cristina Palomares, Mehrdad Sabetzadeh, Norbert Seyff, Marcus Trapp, Andreas Vogelsang,
and Thorsten Weyer, editors, Joint Proceedings of REFSQ-2019 Workshops, Doctoral Sympo-
sium, Live Studies Track, and Poster Track co-located with the 25th International Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ 2019), Essen, Germany,
March 18th, 2019, volume 2376 of CEUR Workshop Proceedings. CEUR-WS.org, 2019. URL
http://ceur-ws.org/Vol-2376/NLP4RE19_paper17.pdf. (Cited on page 205.)

[63] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in evolutionary algo-
rithms. Evolutionary Computation, 4(4):361–394, 1996. doi: 10.1162/evco.1996.4.4.361. URL
https://doi.org/10.1162/evco.1996.4.4.361. (Cited on page 170.)

[64] Henrik C. Bohnenkamp and Axel Belinfante. Timed testing with TorX. In John S. Fitzgerald, Ian J.
Hayes, and Andrzej Tarlecki, editors, FM 2005: Formal Methods, International Symposium of
Formal Methods Europe, Newcastle, UK, July 18-22, 2005, Proceedings, volume 3582 of Lecture
Notes in Computer Science, pages 173–188. Springer, 2005. ISBN 3-540-27882-6. doi: 10.
1007/11526841 13. URL https://doi.org/10.1007/11526841_13. (Cited on pages 162
and 214.)

[65] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in timed systems. In
Willem P. de Roever, Hans Langmaack, and Amir Pnueli, editors, Compositionality: The Sig-
nificant Difference, International Symposium, COMPOS’97, Bad Malente, Germany, Septem-
ber 8-12, 1997. Revised Lectures, volume 1536 of Lecture Notes in Computer Science, pages
103–129. Springer, 1997. ISBN 3-540-65493-3. doi: 10.1007/3-540-49213-5 5. URL https:

//doi.org/10.1007/3-540-49213-5_5. (Cited on page 164.)

[66] Matko Botincan and Vedran Novakovic. Model-based testing of the conference protocol with
Spec Explorer. In 9th International Conference on Telecommunications – ConTEL 2007, June
13-15, 2007, Zagreb, Croatia, pages 131–138, 2007. doi: 10.1109/CONTEL.2007.381861. URL
https://dx.doi.org/10.1109/CONTEL.2007.381861. (Cited on page 213.)

[67] Redouane Bouchekir and Mohand Cherif Boukala. Learning-based symbolic assume-guarantee
reasoning for Markov decision process by using interval Markov process. Innovations in Sys-
tems and Software Engineering, 14(3):229–244, Sep 2018. ISSN 1614-5054. doi: 10.1007/
s11334-018-0316-7. URL https://doi.org/10.1007/s11334-018-0316-7. (Cited on
page 210.)

[68] Harald Brandl, Martin Weiglhofer, and Bernhard K. Aichernig. Automated conformance veri-
fication of hybrid systems. In Ji Wang, W. K. Chan, and Fei-Ching Kuo, editors, Proceedings

https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/3213846.3213872
http://ceur-ws.org/Vol-2376/NLP4RE19_paper17.pdf
https://doi.org/10.1162/evco.1996.4.4.361
https://doi.org/10.1007/11526841_13
https://doi.org/10.1007/3-540-49213-5_5
https://doi.org/10.1007/3-540-49213-5_5
https://dx.doi.org/10.1109/CONTEL.2007.381861
https://doi.org/10.1007/s11334-018-0316-7

Bibliography 231

of the 10th International Conference on Quality Software, QSIC 2010, Zhangjiajie, China, 14-
15 July 2010, pages 3–12. IEEE Computer Society, 2010. doi: 10.1109/QSIC.2010.53. URL
https://doi.org/10.1109/QSIC.2010.53. (Cited on page 41.)

[69] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretı́nský, Marta Z.
Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov decision processes using
learning algorithms. In Franck Cassez and Jean-François Raskin, editors, Automated Technology
for Verification and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia,
November 3-7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer Science, pages
98–114. Springer, 2014. ISBN 978-3-319-11935-9. doi: 10.1007/978-3-319-11936-6 8. URL
http://dx.doi.org/10.1007/978-3-319-11936-6_8. (Cited on pages 95, 104 and 211.)

[70] Nicolas Brémond and Roland Groz. Case studies in learning models and testing without reset. In
2019 IEEE International Conference on Software Testing, Verification and Validation Workshops,
ICST Workshops 2019, Xi’an, China, April 22-23, 2019, pages 40–45. IEEE, 2019. ISBN 978-1-
7281-0888-9. doi: 10.1109/ICSTW.2019.00030. URL https://doi.org/10.1109/ICSTW.

2019.00030. (Cited on page 208.)

[71] Laura Brandán Briones and Ed Brinksma. A test generation framework for quiescent real-time
systems. In Jens Grabowski and Brian Nielsen, editors, Formal Approaches to Software Testing,
4th International Workshop, FATES 2004, Linz, Austria, September 21, 2004, Revised Selected
Papers, volume 3395 of Lecture Notes in Computer Science, pages 64–78. Springer, 2004. ISBN
3-540-25109-X. doi: 10.1007/978-3-540-31848-4 5. URL https://doi.org/10.1007/

978-3-540-31848-4_5. (Cited on page 214.)

[72] Timothy A. Budd and Ajei S. Gopal. Program testing by specification mutation. Computer Lan-
guages, 10(1):63–73, 1985. doi: 10.1016/0096-0551(85)90011-6. URL https://doi.org/

10.1016/0096-0551(85)90011-6. (Cited on page 213.)

[73] Edited by Andrew Banks and Rahul Gupta. MQTT Version 3.1.1. OASIS Standard, Oc-
tober 2014. URL http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.

1-os.html. Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/

mqtt-v3.1.1-os.html, accessed on November 4, 2019. (Cited on pages 6, 8, 34, 35, 38,
39, 40, 46, 47, 48, 69 and 113.)

[74] Rafael C. Carrasco and José Oncina. Learning stochastic regular grammars by means of a
state merging method. In Rafael C. Carrasco and José Oncina, editors, Grammatical Infer-
ence and Applications, Second International Colloquium, ICGI-94, Alicante, Spain, Septem-
ber 21-23, 1994, Proceedings, volume 862 of Lecture Notes in Computer Science, pages 139–
152. Springer, 1994. ISBN 3-540-58473-0. doi: 10.1007/3-540-58473-0 144. URL https:

//doi.org/10.1007/3-540-58473-0_144. (Cited on pages 4, 52, 95, 100 and 209.)

[75] Rafael C. Carrasco and José Oncina. Learning deterministic regular grammars from stochastic
samples in polynomial time. RAIRO – Theoretical Informatics and Applications (RAIRO: ITA), 33
(1):1–20, 1999. doi: 10.1051/ita:1999102. URL https://doi.org/10.1051/ita:1999102.
(Cited on pages 138, 139, 146, 147, 148 and 209.)

[76] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Active learning for extended
finite state machines. Formal Aspects of Computing, 28(2):233–263, 2016. doi: 10.1007/
s00165-016-0355-5. URL https://doi.org/10.1007/s00165-016-0355-5. (Cited on
pages 36 and 220.)

[77] Jorge Castro and Ricard Gavaldà. Learning probability distributions generated by finite-state
machines. In Jeffrey Heinz and José M. Sempere, editors, Topics in Grammatical Inference,
pages 113–142. Springer, Berlin, Heidelberg, 2016. ISBN 978-3-662-48395-4. doi: 10.1007/

https://doi.org/10.1109/QSIC.2010.53
http://dx.doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1109/ICSTW.2019.00030
https://doi.org/10.1109/ICSTW.2019.00030
https://doi.org/10.1007/978-3-540-31848-4_5
https://doi.org/10.1007/978-3-540-31848-4_5
https://doi.org/10.1016/0096-0551(85)90011-6
https://doi.org/10.1016/0096-0551(85)90011-6
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1051/ita:1999102
https://doi.org/10.1007/s00165-016-0355-5

232 Bibliography

978-3-662-48395-4 5. URL https://doi.org/10.1007/978-3-662-48395-4_5. (Cited
on pages 52 and 210.)

[78] Taolue Chen, Marta Z. Kwiatkowska, David Parker, and Aistis Simaitis. Verifying team forma-
tion protocols with probabilistic model checking. In João Leite, Paolo Torroni, Thomas Ågotnes,
Guido Boella, and Leon van der Torre, editors, Computational Logic in Multi-Agent Systems -
12th International Workshop, CLIMA XII, Barcelona, Spain, July 17-18, 2011. Proceedings, vol-
ume 6814 of Lecture Notes in Computer Science, pages 190–207. Springer, 2011. ISBN 978-
3-642-22358-7. doi: 10.1007/978-3-642-22359-4 14. URL https://doi.org/10.1007/

978-3-642-22359-4_14. (Cited on page 98.)

[79] Yingke Chen and Thomas Dyhre Nielsen. Active learning of Markov decision processes for
system verification. In 11th International Conference on Machine Learning and Applications,
ICMLA, Boca Raton, FL, USA, December 12-15, 2012. Volume 2, pages 289–294. IEEE, 2012.
doi: 10.1109/ICMLA.2012.158. URL http://dx.doi.org/10.1109/ICMLA.2012.158.
(Cited on pages 100, 107 and 209.)

[80] Chia Yuan Cho, Domagoj Babic, Pongsin Poosankam, Kevin Zhijie Chen, Edward XueJun Wu,
and Dawn Song. MACE: model-inference-assisted concolic exploration for protocol and vul-
nerability discovery. In 20th USENIX Security Symposium, San Francisco, CA, USA, August
8-12, 2011, Proceedings. USENIX Association, 2011. URL http://static.usenix.org/

events/sec11/tech/full_papers/Cho.pdf. (Cited on page 205.)

[81] Wontae Choi, George C. Necula, and Koushik Sen. Guided GUI testing of Android apps with min-
imal restart and approximate learning. In Antony L. Hosking, Patrick Th. Eugster, and Cristina V.
Lopes, editors, Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH
2013, Indianapolis, IN, USA, October 26-31, 2013, pages 623–640. ACM, 2013. ISBN 978-1-
4503-2374-1. doi: 10.1145/2509136.2509552. URL https://doi.org/10.1145/2509136.

2509552. (Cited on page 207.)

[82] François Chollet et al. Keras, 2015. https://keras.io, accessed on November 4, 2019. (Cited
on page 197.)

[83] Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE Transactions
on Software Engineering, 4(3):178–187, 1978. doi: 10.1109/TSE.1978.231496. URL https:

//doi.org/10.1109/TSE.1978.231496. (Cited on pages 26, 27, 29, 43, 53, 56, 57, 79, 99,
100, 143, 204, 205, 208, 213 and 218.)

[84] Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random testing of Haskell
programs. In Martin Odersky and Philip Wadler, editors, Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000., pages 268–279. ACM, 2000. ISBN 1-58113-202-6. doi: 10.1145/351240.351266.
URL https://doi.org/10.1145/351240.351266. (Cited on pages 37 and 206.)

[85] Edmund M. Clarke and Paolo Zuliani. Statistical model checking for cyber-physical systems. In
Tevfik Bultan and Pao-Ann Hsiung, editors, Automated Technology for Verification and Analy-
sis, 9th International Symposium, ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceed-
ings, volume 6996 of Lecture Notes in Computer Science, pages 1–12. Springer, 2011. ISBN
978-3-642-24371-4. doi: 10.1007/978-3-642-24372-1 1. URL https://doi.org/10.1007/

978-3-642-24372-1_1. (Cited on page 189.)

[86] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors. Handbook
of Model Checking. Springer, 2018. ISBN 978-3-319-10574-1. doi: 10.1007/978-3-319-10575-8.
URL https://doi.org/10.1007/978-3-319-10575-8. (Cited on page 5.)

https://doi.org/10.1007/978-3-662-48395-4_5
https://doi.org/10.1007/978-3-642-22359-4_14
https://doi.org/10.1007/978-3-642-22359-4_14
http://dx.doi.org/10.1109/ICMLA.2012.158
http://static.usenix.org/events/sec11/tech/full_papers/Cho.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Cho.pdf
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1145/2509136.2509552
https://keras.io
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1145/351240.351266
https://doi.org/10.1007/978-3-642-24372-1_1
https://doi.org/10.1007/978-3-642-24372-1_1
https://doi.org/10.1007/978-3-319-10575-8

Bibliography 233

[87] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learning assumptions
for compositional verification. In Hubert Garavel and John Hatcliff, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 9th International Conference, TACAS 2003, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw,
Poland, April 7-11, 2003, Proceedings, volume 2619 of Lecture Notes in Computer Science, pages
331–346. Springer, 2003. ISBN 3-540-00898-5. doi: 10.1007/3-540-36577-X 24. URL https:

//doi.org/10.1007/3-540-36577-X_24. (Cited on page 4.)

[88] David Combe, Colin de la Higuera, and Jean-Christophe Janodet. Zulu: An interactive learn-
ing competition. In Anssi Yli-Jyrä, András Kornai, Jacques Sakarovitch, and Bruce W. Wat-
son, editors, Finite-State Methods and Natural Language Processing, 8th International Work-
shop, FSMNLP 2009, Pretoria, South Africa, July 21-24, 2009, Revised Selected Papers, vol-
ume 6062 of Lecture Notes in Computer Science, pages 139–146. Springer, 2009. ISBN 978-
3-642-14683-1. doi: 10.1007/978-3-642-14684-8 15. URL https://doi.org/10.1007/

978-3-642-14684-8_15. (Cited on pages 29, 57, 58, 69 and 208.)

[89] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Krügel, and Engin Kirda. Prospex:
Protocol specification extraction. In 30th IEEE Symposium on Security and Privacy (S&P 2009),
17-20 May 2009, Oakland, California, USA, pages 110–125. IEEE Computer Society, 2009. ISBN
978-0-7695-3633-0. doi: 10.1109/SP.2009.14. URL https://doi.org/10.1109/SP.2009.

14. (Cited on page 207.)

[90] Pedro D’Argenio, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Smart sampling
for lightweight verification of Markov decision processes. International Journal on Software
Tools for Technology Transfer, 17(4):469–484, 2015. doi: 10.1007/s10009-015-0383-0. URL
https://doi.org/10.1007/s10009-015-0383-0. (Cited on page 211.)

[91] Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski.
ECDAR: An environment for compositional design and analysis of real time systems. In Ahmed
Bouajjani and Wei-Ngan Chin, editors, Automated Technology for Verification and Analysis -
8th International Symposium, ATVA 2010, Singapore, September 21-24, 2010. Proceedings, vol-
ume 6252 of Lecture Notes in Computer Science, pages 365–370. Springer, 2010. ISBN 978-
3-642-15642-7. doi: 10.1007/978-3-642-15643-4 29. URL https://doi.org/10.1007/

978-3-642-15643-4_29. (Cited on page 214.)

[92] Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski.
Timed I/O automata: A complete specification theory for real-time systems. In Karl Henrik Jo-
hansson and Wang Yi, editors, Proceedings of the 13th ACM International Conference on Hy-
brid Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010,
pages 91–100. ACM, 2010. ISBN 978-1-60558-955-8. doi: 10.1145/1755952.1755967. URL
https://doi.org/10.1145/1755952.1755967. (Cited on page 162.)

[93] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel Legay, Didier Lime, Math-
ias Grund Sørensen, and Jakob Haahr Taankvist. On time with minimal expected cost! In
Franck Cassez and Jean-François Raskin, editors, Automated Technology for Verification and
Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-
7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer Science, pages 129–145.
Springer, 2014. ISBN 978-3-319-11935-9. doi: 10.1007/978-3-319-11936-6 10. URL http:

//dx.doi.org/10.1007/978-3-319-11936-6_10. (Cited on page 211.)

[94] Alexandre David, Kim Guldstrand Larsen, Axel Legay, Marius Mikucionis, and Danny Bøgsted
Poulsen. Uppaal SMC tutorial. International Journal on Software Tools for Technology Transfer,
17(4):397–415, 2015. doi: 10.1007/s10009-014-0361-y. URL https://doi.org/10.1007/

s10009-014-0361-y. (Cited on page 221.)

https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-642-14684-8_15
https://doi.org/10.1007/978-3-642-14684-8_15
https://doi.org/10.1109/SP.2009.14
https://doi.org/10.1109/SP.2009.14
https://doi.org/10.1007/s10009-015-0383-0
https://doi.org/10.1007/978-3-642-15643-4_29
https://doi.org/10.1007/978-3-642-15643-4_29
https://doi.org/10.1145/1755952.1755967
http://dx.doi.org/10.1007/978-3-319-11936-6_10
http://dx.doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y

234 Bibliography

[95] Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cambridge
University Press, New York, NY, USA, 2010. ISBN 0521763169, 9780521763165. (Cited on
pages 4, 29, 52, 145, 171, 203, 218 and 220.)

[96] André de Matos Pedro, Paul Andrew Crocker, and Simão Melo de Sousa. Learning stochas-
tic timed automata from sample executions. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation. Technologies for Mas-
tering Change - 5th International Symposium, ISoLA 2012, Heraklion, Crete, Greece, October
15-18, 2012, Proceedings, Part I, volume 7609 of Lecture Notes in Computer Science, pages
508–523. Springer, 2012. ISBN 978-3-642-34025-3. doi: 10.1007/978-3-642-34026-0 38. URL
https://doi.org/10.1007/978-3-642-34026-0_38. (Cited on pages 210 and 221.)

[97] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of TLS implementations. In
Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX Security Symposium, USENIX Se-
curity 15, Washington, D.C., USA, August 12-14, 2015., pages 193–206. USENIX As-
sociation, 2015. URL https://www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/de-ruiter. (Cited on pages 15, 31, 37, 38, 50,
52, 69, 74, 80, 121, 205, 207 and 208.)

[98] Joeri de Ruiter and Erik Poll. TLS – learned models, 2015. http://www.cs.ru.nl/J.

deRuiter/download/usenix15.zip, accessed on November 4, 2019. (Cited on pages 69
and 74.)

[99] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on test data selection:
Help for the practicing programmer. IEEE Computer, 11(4):34–41, 1978. doi: 10.1109/C-M.
1978.218136. URL https://doi.org/10.1109/C-M.1978.218136. (Cited on page 213.)

[100] Patricia Derler, Edward A. Lee, and Alberto L. Sangiovanni-Vincentelli. Modeling cyber-physical
systems. Proceedings of the IEEE, 100(1):13–28, 2012. doi: 10.1109/JPROC.2011.2160929.
URL https://doi.org/10.1109/JPROC.2011.2160929. (Cited on page 189.)

[101] Victor S. Dolk, Jeroen Ploeg, and W. P. Maurice H. Heemels. Event-triggered control for string-
stable vehicle platooning. IEEE Trans. Intelligent Transportation Systems, 18(12):3486–3500,
2017. doi: 10.1109/TITS.2017.2738446. URL https://doi.org/10.1109/TITS.2017.

2738446. (Cited on page 191.)

[102] Marie Duflot, Laurent Fribourg, Thomas Hérault, Richard Lassaigne, Frédéric Magniette,
Stéphane Messika, Sylvain Peyronnet, and Claudine Picaronny. Probabilistic model check-
ing of the CSMA/CD protocol using PRISM and APMC. Electronic Notes in Theoretical
Computer Science, 128(6):195–214, 2005. doi: 10.1016/j.entcs.2005.04.012. URL https:

//doi.org/10.1016/j.entcs.2005.04.012. (Cited on page 98.)

[103] Edith Elkind, Blaise Genest, Doron A. Peled, and Hongyang Qu. Grey-box checking. In Elie
Najm, Jean-François Pradat-Peyre, and Véronique Donzeau-Gouge, editors, Formal Techniques
for Networked and Distributed Systems - FORTE 2006, 26th IFIP WG 6.1 International Confer-
ence, Paris, France, September 26-29, 2006., volume 4229 of Lecture Notes in Computer Sci-
ence, pages 420–435. Springer, 2006. ISBN 3-540-46219-8. doi: 10.1007/11888116 30. URL
https://doi.org/10.1007/11888116_30. (Cited on page 205.)

[104] Sandra Camargo Pinto Ferraz Fabbri, Márcio Eduardo Delamaro, José Carlos Maldonado, and
Paulo César Masiero. Mutation analysis testing for finite state machines. In 5th International
Symposium on Software Reliability Engineering, ISSRE 1994, Monterey, CA, USA, November 6-
9, 1994, pages 220–229. IEEE, 1994. ISBN 0-8186-6665-X. doi: 10.1109/ISSRE.1994.341378.
URL https://doi.org/10.1109/ISSRE.1994.341378. (Cited on page 61.)

https://doi.org/10.1007/978-3-642-34026-0_38
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
http://www.cs.ru.nl/J.deRuiter/download/usenix15.zip
http://www.cs.ru.nl/J.deRuiter/download/usenix15.zip
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10.1109/TITS.2017.2738446
https://doi.org/10.1109/TITS.2017.2738446
https://doi.org/10.1016/j.entcs.2005.04.012
https://doi.org/10.1016/j.entcs.2005.04.012
https://doi.org/10.1007/11888116_30
https://doi.org/10.1109/ISSRE.1994.341378

Bibliography 235

[105] Ansgar Fehnker and Peng Gao. Formal verification and simulation for performance analysis for
probabilistic broadcast protocols. In Thomas Kunz and S. S. Ravi, editors, Ad-Hoc, Mobile, and
Wireless Networks, 5th International Conference, ADHOC-NOW 2006, Ottawa, Canada, August
17-19, 2006, Proceedings, volume 4104 of Lecture Notes in Computer Science, pages 128–141.
Springer, 2006. ISBN 3-540-37246-6. doi: 10.1007/11814764 12. URL https://doi.org/

10.1007/11814764_12. (Cited on page 98.)

[106] Lu Feng, Tingting Han, Marta Z. Kwiatkowska, and David Parker. Learning-based composi-
tional verification for synchronous probabilistic systems. In Tevfik Bultan and Pao-Ann Hsi-
ung, editors, Automated Technology for Verification and Analysis, 9th International Symposium,
ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceedings, volume 6996 of Lecture Notes
in Computer Science, pages 511–521. Springer, 2011. ISBN 978-3-642-24371-4. doi: 10.
1007/978-3-642-24372-1 40. URL https://doi.org/10.1007/978-3-642-24372-1_40.
(Cited on page 210.)

[107] Alessandro Fermi, Maurizio Mongelli, Marco Muselli, and Enrico Ferrari. Identification of safety
regions in vehicle platooning via machine learning. In 14th IEEE International Workshop on
Factory Communication Systems, WFCS 2018, Imperia, Italy, June 13-15, 2018, pages 1–4. IEEE,
2018. ISBN 978-1-5386-1066-4. doi: 10.1109/WFCS.2018.8402372. URL https://doi.org/

10.1109/WFCS.2018.8402372. (Cited on page 212.)

[108] Jean-Claude Fernandez and Laurent Mounier. “On the fly” verification of behavioural equiv-
alences and preorders. In Kim Guldstrand Larsen and Arne Skou, editors, Computer Aided
Verification, 3rd International Workshop, CAV ’91, Aalborg, Denmark, July, 1-4, 1991, Pro-
ceedings, volume 575 of Lecture Notes in Computer Science, pages 181–191. Springer, 1991.
ISBN 3-540-55179-4. doi: 10.1007/3-540-55179-4 18. URL https://doi.org/10.1007/

3-540-55179-4_18. (Cited on pages 41 and 44.)

[109] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, and César Viho. An experiment in au-
tomatic generation of test suites for protocols with verification technology. Science of Com-
puter Programming, 29(1-2):123–146, 1997. doi: 10.1016/S0167-6423(96)00032-9. URL
https://doi.org/10.1016/S0167-6423(96)00032-9. (Cited on page 213.)

[110] Paul Fiterău-Broştean. TCP models, 2016. https://gitlab.science.ru.nl/

pfiteraubrostean/tcp-learner/tree/cav-aec/models, accessed on November 4,
2019. (Cited on pages 69 and 114.)

[111] Paul Fiterău-Broştean, Ramon Janssen, and Frits W. Vaandrager. Learning fragments of the
TCP network protocol. In Frédéric Lang and Francesco Flammini, editors, Formal Methods
for Industrial Critical Systems - 19th International Conference, FMICS 2014, Florence, Italy,
September 11-12, 2014. Proceedings, volume 8718 of Lecture Notes in Computer Science, pages
78–93. Springer, 2014. ISBN 978-3-319-10701-1. doi: 10.1007/978-3-319-10702-8 6. URL
https://doi.org/10.1007/978-3-319-10702-8_6. (Cited on page 207.)

[112] Paul Fiterău-Broştean, Ramon Janssen, and Frits W. Vaandrager. Combining model learn-
ing and model checking to analyze TCP implementations. In Swarat Chaudhuri and Azadeh
Farzan, editors, Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, volume 9780 of Lecture Notes
in Computer Science, pages 454–471. Springer, 2016. ISBN 978-3-319-41539-0. doi: 10.
1007/978-3-319-41540-6 25. URL https://doi.org/10.1007/978-3-319-41540-6_25.
(Cited on pages 15, 30, 31, 37, 41, 52, 57, 68, 69, 71, 79, 109, 114, 121, 207 and 208.)

[113] Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits W. Vaandrager, and Patrick
Verleg. Model learning and model checking of SSH implementations. In Hakan Erdogmus and

https://doi.org/10.1007/11814764_12
https://doi.org/10.1007/11814764_12
https://doi.org/10.1007/978-3-642-24372-1_40
https://doi.org/10.1109/WFCS.2018.8402372
https://doi.org/10.1109/WFCS.2018.8402372
https://doi.org/10.1007/3-540-55179-4_18
https://doi.org/10.1007/3-540-55179-4_18
https://doi.org/10.1016/S0167-6423(96)00032-9
https://gitlab.science.ru.nl/pfiteraubrostean/tcp-learner/tree/cav-aec/models
https://gitlab.science.ru.nl/pfiteraubrostean/tcp-learner/tree/cav-aec/models
https://doi.org/10.1007/978-3-319-10702-8_6
https://doi.org/10.1007/978-3-319-41540-6_25

236 Bibliography

Klaus Havelund, editors, Proceedings of the 24th ACM SIGSOFT International SPIN Symposium
on Model Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017, pages 142–151.
ACM, 2017. ISBN 978-1-4503-5077-8. doi: 10.1145/3092282.3092289. URL https://doi.

org/10.1145/3092282.3092289. (Cited on pages 31, 52, 57, 121, 207 and 208.)

[114] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Automated verification
techniques for probabilistic systems. In Marco Bernardo and Valérie Issarny, editors, Formal
Methods for Eternal Networked Software Systems - 11th International School on Formal Methods
for the Design of Computer, Communication and Software Systems, SFM 2011, Bertinoro, Italy,
June 13-18, 2011. Advanced Lectures, volume 6659 of Lecture Notes in Computer Science, pages
53–113. Springer, 2011. ISBN 978-3-642-21454-7. doi: 10.1007/978-3-642-21455-4 3. URL
http://dx.doi.org/10.1007/978-3-642-21455-4_3. (Cited on pages 92, 93, 94, 96, 97
and 144.)

[115] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic test suite generation for object-oriented
software. In Tibor Gyimóthy and Andreas Zeller, editors, SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European
Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011, pages 416–
419. ACM, 2011. ISBN 978-1-4503-0443-6. doi: 10.1145/2025113.2025179. URL https:

//doi.org/10.1145/2025113.2025179. (Cited on page 212.)

[116] Jie Fu and Ufuk Topcu. Probably approximately correct MDP learning and control with temporal
logic constraints. In Dieter Fox, Lydia E. Kavraki, and Hanna Kurniawati, editors, Proceedings
of Robotics: Science and Systems, Berkeley, USA, July 2014. ISBN 978-0-9923747-0-9. doi:
10.15607/RSS.2014.X.039. URL http://www.roboticsproceedings.org/rss10/p39.

html. (Cited on pages 109, 115 and 211.)

[117] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou, and Abderrazak
Ghedamsi. Test selection based on finite state models. IEEE Transactions on Software Engineer-
ing, 17(6):591–603, 1991. doi: 10.1109/32.87284. URL https://doi.org/10.1109/32.

87284. (Cited on pages 27, 43, 56, 58, 68, 70, 77, 79, 87, 89, 208 and 216.)

[118] Carlo Ghezzi, Mauro Pezzè, Michele Sama, and Giordano Tamburrelli. Mining behavior models
from user-intensive web applications. In Pankaj Jalote, Lionel C. Briand, and André van der
Hoek, editors, 36th International Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014, pages 277–287. ACM, 2014. ISBN 978-1-4503-2756-5. doi:
10.1145/2568225.2568234. URL https://doi.org/10.1145/2568225.2568234. (Cited
on page 209.)

[119] Georgios Giantamidis and Stavros Tripakis. Learning Moore machines from input-output traces.
In John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and Anna Philippou, editors, FM
2016: Formal Methods - 21st International Symposium, Limassol, Cyprus, November 9-11, 2016,
Proceedings, volume 9995 of Lecture Notes in Computer Science, pages 291–309, 2016. ISBN
978-3-319-48988-9. doi: 10.1007/978-3-319-48989-6 18. URL https://doi.org/10.1007/

978-3-319-48989-6_18. (Cited on page 4.)

[120] Arthur Gill. Introduction to the Theory of Finite-State Machines. McGraw-Hill, 1962. (Cited on
page 26.)

[121] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. Automatic generation
of oracles for exceptional behaviors. In Andreas Zeller and Abhik Roychoudhury, editors, Pro-
ceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016,
Saarbrücken, Germany, July 18-20, 2016, pages 213–224. ACM, 2016. ISBN 978-1-4503-4390-
9. doi: 10.1145/2931037.2931061. URL https://doi.org/10.1145/2931037.2931061.
(Cited on page 205.)

https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1145/3092282.3092289
http://dx.doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
http://www.roboticsproceedings.org/rss10/p39.html
http://www.roboticsproceedings.org/rss10/p39.html
https://doi.org/10.1109/32.87284
https://doi.org/10.1109/32.87284
https://doi.org/10.1145/2568225.2568234
https://doi.org/10.1007/978-3-319-48989-6_18
https://doi.org/10.1007/978-3-319-48989-6_18
https://doi.org/10.1145/2931037.2931061

Bibliography 237

[122] E. Mark Gold. Language identification in the limit. Information and Control, 10(5):447 – 474,
1967. ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-9958(67)91165-5. URL http:

//www.sciencedirect.com/science/article/pii/S0019995867911655. (Cited on
pages 162 and 220.)

[123] Rodolfo Gómez. A compositional translation of timed automata with deadlines to Uppaal timed
automata. In Joël Ouaknine and Frits W. Vaandrager, editors, Formal Modeling and Analysis of
Timed Systems, 7th International Conference, FORMATS 2009, Budapest, Hungary, September
14-16, 2009. Proceedings, volume 5813 of Lecture Notes in Computer Science, pages 179–194.
Springer, 2009. ISBN 978-3-642-04367-3. doi: 10.1007/978-3-642-04368-0 15. URL https:

//doi.org/10.1007/978-3-642-04368-0_15. (Cited on page 165.)

[124] Wolfgang Grieskamp and Nicolas Kicillof. A schema language for coordinating construction and
composition of partial behavior descriptions. In Jon Whittle, Leif Geiger, and Michael Meisinger,
editors, SCESM ’06: Proceedings of the 2006 International Workshop on Scenarios and State
Machines: Models, Algorithms, and Tools, Shanghai, China, May 27, 2006, pages 59–66. ACM,
2006. ISBN 1-59593-394-8. doi: 10.1145/1138953.1138966. URL https://doi.org/10.

1145/1138953.1138966. (Cited on pages 41 and 49.)

[125] Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of event-recording automata
using timed decision trees. In Christel Baier and Holger Hermanns, editors, CONCUR 2006 -
Concurrency Theory, 17th International Conference, CONCUR 2006, Bonn, Germany, August
27-30, 2006, Proceedings, volume 4137 of Lecture Notes in Computer Science, pages 435–449.
Springer, 2006. ISBN 3-540-37376-4. doi: 10.1007/11817949 29. URL https://doi.org/

10.1007/11817949_29. (Cited on pages 53, 161, 162, 210 and 211.)

[126] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Learning of event-recording automata.
Theoretical Computer Science, 411(47):4029–4054, 2010. doi: 10.1016/j.tcs.2010.07.008. URL
https://doi.org/10.1016/j.tcs.2010.07.008. (Cited on pages 4, 8, 53, 161, 162, 210
and 211.)

[127] Alex Groce, Doron A. Peled, and Mihalis Yannakakis. AMC: An adaptive model checker. In
Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Verification, 14th Interna-
tional Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, volume
2404 of Lecture Notes in Computer Science, pages 521–525. Springer, 2002. ISBN 3-540-43997-
8. doi: 10.1007/3-540-45657-0 44. URL https://doi.org/10.1007/3-540-45657-0_44.
(Cited on page 204.)

[128] Alex Groce, Doron A. Peled, and Mihalis Yannakakis. Adaptive model checking. In Joost-
Pieter Katoen and Perdita Stevens, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, 8th International Conference, TACAS 2002, Held as Part of the Joint Euro-
pean Conference on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April
8-12, 2002, Proceedings, volume 2280 of Lecture Notes in Computer Science, pages 357–
370. Springer, 2002. ISBN 3-540-43419-4. doi: 10.1007/3-540-46002-0 25. URL https:

//doi.org/10.1007/3-540-46002-0_25. (Cited on page 204.)

[129] Alex Groce, Doron A. Peled, and Mihalis Yannakakis. Adaptive model checking. Logic Journal
of the IGPL, 14(5):729–744, 2006. doi: 10.1093/jigpal/jzl007. URL https://doi.org/10.

1093/jigpal/jzl007. (Cited on pages 181 and 204.)

[130] Bernhard Großwindhager, Astrid Rupp, Martin Tappler, Markus Tranninger, Samuel Weiser,
Bernhard Aichernig, Carlo Alberto Boano, Martin Horn, Gernot Kubin, Stefan Mangard, Mar-
tin Steinberger, and Kay Römer. Dependable internet of things for networked cars. In-
ternational Journal of Computing, 16(4):226–237, 2017. ISSN 2312-5381. URL http:

//computingonline.net/computing/article/view/911. (Cited on page 12.)

http://www.sciencedirect.com/science/article/pii/S0019995867911655
http://www.sciencedirect.com/science/article/pii/S0019995867911655
https://doi.org/10.1007/978-3-642-04368-0_15
https://doi.org/10.1007/978-3-642-04368-0_15
https://doi.org/10.1145/1138953.1138966
https://doi.org/10.1145/1138953.1138966
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/11817949_29
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/3-540-45657-0_44
https://doi.org/10.1007/3-540-46002-0_25
https://doi.org/10.1007/3-540-46002-0_25
https://doi.org/10.1093/jigpal/jzl007
https://doi.org/10.1093/jigpal/jzl007
http://computingonline.net/computing/article/view/911
http://computingonline.net/computing/article/view/911

238 Bibliography

[131] Roland Groz, Keqin Li, Alexandre Petrenko, and Muzammil Shahbaz. Modular system verifica-
tion by inference, testing and reachability analysis. In Kenji Suzuki, Teruo Higashino, Andreas
Ulrich, and Toru Hasegawa, editors, Testing of Software and Communicating Systems, 20th IFIP
TC 6/WG 6.1 International Conference, TestCom 2008, 8th International Workshop, FATES 2008,
Tokyo, Japan, June 10-13, 2008, Proceedings, volume 5047 of Lecture Notes in Computer Science,
pages 216–233. Springer, 2008. ISBN 978-3-540-68514-2. doi: 10.1007/978-3-540-68524-1 16.
URL https://doi.org/10.1007/978-3-540-68524-1_16. (Cited on page 206.)

[132] Roland Groz, Nicolas Brémond, and Adenilso Simão. Using adaptive sequences for learning non-
resettable FSMs. In Olgierd Unold, Witold Dyrka, and Wojciech Wieczorek, editors, Proceedings
of the 14th International Conference on Grammatical Inference, ICGI 2018, Wrocław, Poland,
September 5-7, 2018, volume 93 of Proceedings of Machine Learning Research, pages 30–43.
PMLR, 2018. URL http://proceedings.mlr.press/v93/groz19a.html. (Cited on
page 208.)

[133] Tobias R. Gundersen, Florian Lorber, Ulrik Nyman, and Christian Ovesen. Effortless fault lo-
calisation: Conformance testing of real-time systems in Ecdar. In Andrea Orlandini and Mar-
tin Zimmermann, editors, Proceedings Ninth International Symposium on Games, Automata,
Logics, and Formal Verification, GandALF 2018, Saarbrücken, Germany, 26-28th September
2018., volume 277 of EPTCS, pages 147–160, 2018. doi: 10.4204/EPTCS.277.11. URL
https://doi.org/10.4204/EPTCS.277.11. (Cited on page 214.)

[134] Andreas Hagerer, Hardi Hungar, Oliver Niese, and Bernhard Steffen. Model generation by mod-
erated regular extrapolation. In Ralf-Detlef Kutsche and Herbert Weber, editors, Fundamental
Approaches to Software Engineering, 5th International Conference, FASE 2002, held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002, Greno-
ble, France, April 8-12, 2002, Proceedings, volume 2306 of Lecture Notes in Computer Sci-
ence, pages 80–95. Springer, 2002. ISBN 3-540-43353-8. doi: 10.1007/3-540-45923-5 6. URL
https://doi.org/10.1007/3-540-45923-5_6. (Cited on pages 4 and 206.)

[135] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings 11th Annual IEEE Sympo-
sium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages
278–292. IEEE Computer Society, 1996. ISBN 0-8186-7463-6. doi: 10.1109/LICS.1996.561342.
URL https://doi.org/10.1109/LICS.1996.561342. (Cited on page 189.)

[136] Anders Hessel and Paul Pettersson. CoVer – a test case generation tool for real-time systems. In
Alexandre Petrenko, Margus Veanes, Jan Tretmans, and Wolfgang Grieskamp, editors, Testing of
Software and Communicating Systems: Work-in-Progress and Position Papers, Tool Demonstra-
tions, and Tutorial Abstracts of TestCom/FATES 2007, pages 31–34, 2007. (Cited on page 214.)

[137] Anders Hessel, Kim Guldstrand Larsen, Brian Nielsen, Paul Pettersson, and Arne Skou. Time-
optimal real-time test case generation using UPPAAL. In Alexandre Petrenko and Andreas Ulrich,
editors, Formal Approaches to Software Testing, Third International Workshop on Formal Ap-
proaches to Testing of Software, FATES 2003, Montreal, Quebec, Canada, October 6th, 2003,
volume 2931 of Lecture Notes in Computer Science, pages 114–130. Springer, 2003. ISBN
3-540-20894-1. doi: 10.1007/978-3-540-24617-6 9. URL https://doi.org/10.1007/

978-3-540-24617-6_9. (Cited on pages 162, 163, 164, 165 and 176.)

[138] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson, and
Arne Skou. Testing real-time systems using UPPAAL. In Robert M. Hierons, Jonathan P. Bowen,
and Mark Harman, editors, Formal Methods and Testing, An Outcome of the FORTEST Network,
Revised Selected Papers, volume 4949 of Lecture Notes in Computer Science, pages 77–117.
Springer, 2008. ISBN 978-3-540-78916-1. doi: 10.1007/978-3-540-78917-8 3. URL https:

//doi.org/10.1007/978-3-540-78917-8_3. (Cited on pages 174 and 214.)

https://doi.org/10.1007/978-3-540-68524-1_16
http://proceedings.mlr.press/v93/groz19a.html
https://doi.org/10.4204/EPTCS.277.11
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1007/978-3-540-78917-8_3

Bibliography 239

[139] Kassel Hingee and Marcus Hutter. Equivalence of probabilistic tournament and polynomial rank-
ing selection. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008,
June 1-6, 2008, Hong Kong, China, pages 564–571. IEEE, 2008. doi: 10.1109/CEC.2008.
4630852. URL https://doi.org/10.1109/CEC.2008.4630852. (Cited on page 170.)

[140] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, October 1969. ISSN 0001-0782. doi: 10.1145/363235.363259. URL http:

//doi.acm.org/10.1145/363235.363259. (Cited on pages 1 and 2.)

[141] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/

neco.1997.9.8.1735. (Cited on page 197.)

[142] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963. ISSN 01621459. doi: 10.2307/2282952.
URL http://www.jstor.org/stable/2282952. (Cited on pages 138, 146 and 209.)

[143] Karim Hossen, Roland Groz, Catherine Oriat, and Jean-Luc Richier. Automatic model inference
of web applications for security testing. In Seventh IEEE International Conference on Software
Testing, Verification and Validation, ICST 2014 Workshops Proceedings, March 31 - April 4, 2014,
Cleveland, Ohio, USA, pages 22–23. IEEE Computer Society, 2014. ISBN 978-0-7695-5194-4.
doi: 10.1109/ICSTW.2014.47. URL https://doi.org/10.1109/ICSTW.2014.47. (Cited
on page 205.)

[144] Falk Howar, Bernhard Steffen, and Maik Merten. From ZULU to RERS – lessons learned in the
ZULU challenge. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification, and Validation - 4th International Symposium on Leveraging
Applications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceedings, Part
I, volume 6415 of Lecture Notes in Computer Science, pages 687–704. Springer, 2010. ISBN
978-3-642-16557-3. doi: 10.1007/978-3-642-16558-0 55. URL https://doi.org/10.1007/

978-3-642-16558-0_55. (Cited on pages 6, 29, 30, 57, 58, 68 and 208.)

[145] Falk Howar, Bernhard Steffen, and Maik Merten. Automata learning with automated alphabet
abstraction refinement. In Ranjit Jhala and David A. Schmidt, editors, Verification, Model Check-
ing, and Abstract Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA,
January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes in Computer Science, pages
263–277. Springer, 2011. ISBN 978-3-642-18274-7. doi: 10.1007/978-3-642-18275-4 19. URL
https://doi.org/10.1007/978-3-642-18275-4_19. (Cited on pages 31 and 37.)

[146] Yating Hsu, Guoqiang Shu, and David Lee. A model-based approach to security flaw detection
of network protocol implementations. In Proceedings of the 16th annual IEEE International
Conference on Network Protocols, 2008. ICNP 2008, Orlando, Florida, USA, 19-22 October
2008, pages 114–123. IEEE Computer Society, 2008. ISBN 978-1-4244-2506-8. doi: 10.1109/
ICNP.2008.4697030. URL https://doi.org/10.1109/ICNP.2008.4697030. (Cited on
pages 205 and 207.)

[147] John Hughes, Ulf Norell, Nicholas Smallbone, and Thomas Arts. Find more bugs with
QuickCheck! In Christof J. Budnik, Gordon Fraser, and Francesca Lonetti, editors, Proceed-
ings of the 11th International Workshop on Automation of Software Test, AST@ICSE 2016,
Austin, Texas, USA, May 14-15, 2016, pages 71–77. ACM, 2016. ISBN 978-1-4503-4151-6.
doi: 10.1145/2896921.2896928. URL http://doi.acm.org/10.1145/2896921.2896928.
(Cited on page 50.)

[148] Pham Ngoc Hung and Takuya Katayama. Modular conformance testing and assume-guarantee
verification for evolving component-based software. In 15th Asia-Pacific Software Engineering

https://doi.org/10.1109/CEC.2008.4630852
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.jstor.org/stable/2282952
https://doi.org/10.1109/ICSTW.2014.47
https://doi.org/10.1007/978-3-642-16558-0_55
https://doi.org/10.1007/978-3-642-16558-0_55
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1109/ICNP.2008.4697030
http://doi.acm.org/10.1145/2896921.2896928

240 Bibliography

Conference (APSEC 2008), 3-5 December 2008, Beijing, China, pages 479–486. IEEE Computer
Society, 2008. ISBN 978-0-7695-3446-6. doi: 10.1109/APSEC.2008.51. URL https://doi.

org/10.1109/APSEC.2008.51. (Cited on page 205.)

[149] Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-specific optimization in automata
learning. In Warren A. Hunt Jr. and Fabio Somenzi, editors, Computer Aided Verification, 15th In-
ternational Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, volume 2725
of Lecture Notes in Computer Science, pages 315–327. Springer, 2003. ISBN 3-540-40524-0. doi:
10.1007/978-3-540-45069-6 31. URL https://doi.org/10.1007/978-3-540-45069-6_

31. (Cited on pages 51 and 206.)

[150] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990,
pages 1–84, Dec 1990. doi: 10.1109/IEEESTD.1990.101064. URL https://dx.doi.org/

10.1109/IEEESTD.1990.101064. (Cited on pages 2 and 43.)

[151] Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm: A redundancy-free
approach to active automata learning. In Borzoo Bonakdarpour and Scott A. Smolka, editors,
Runtime Verification - 5th International Conference, RV 2014, Toronto, ON, Canada, Septem-
ber 22-25, 2014. Proceedings, volume 8734 of Lecture Notes in Computer Science, pages 307–
322. Springer, 2014. ISBN 978-3-319-11163-6. doi: 10.1007/978-3-319-11164-3 26. URL
https://doi.org/10.1007/978-3-319-11164-3_26. (Cited on pages 17, 20, 24, 30, 43,
51, 62, 79, 83, 140, 171, 208 and 216.)

[152] Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source LearnLib – a framework
for active automata learning. In Daniel Kroening and Corina S. Pasareanu, editors, Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer Science, pages
487–495. Springer, 2015. ISBN 978-3-319-21689-8. doi: 10.1007/978-3-319-21690-4 32. URL
https://doi.org/10.1007/978-3-319-21690-4_32. (Cited on pages 15, 18, 26, 27, 28,
37, 42, 50, 52, 58, 70, 79, 195, 206, 207 and 208.)

[153] ISO/IEC 20922:2016. Information technology – Message Queuing Telemetry Transport (MQTT)
v3.1.1, ISO/IEC 20922:2016. Standard, International Organization for Standardization, Geneva,
CH, June 2016. (Cited on pages 6 and 34.)

[154] Claude Jard and Thierry Jéron. TGV: Theory, principles and algorithms. International Journal on
Software Tools for Technology Transfer, 7(4):297–315, 2005. doi: 10.1007/s10009-004-0153-x.
URL https://doi.org/10.1007/s10009-004-0153-x. (Cited on pages 162 and 213.)

[155] Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering, 37(5):649–678, 2011. doi: 10.1109/TSE.2010.62. URL
https://doi.org/10.1109/TSE.2010.62. (Cited on pages 57, 61, 63, 65, 66 and 78.)

[156] Colin G. Johnson. Genetic programming with fitness based on model checking. In Marc Ebner,
Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi, and Anna Esparcia-Alcázar, editors, Genetic
Programming, 10th European Conference, EuroGP 2007, Valencia, Spain, April 11-13, 2007,
Proceedings, volume 4445 of Lecture Notes in Computer Science, pages 114–124. Springer, 2007.
ISBN 978-3-540-71602-0. doi: 10.1007/978-3-540-71605-1 11. URL https://doi.org/10.

1007/978-3-540-71605-1_11. (Cited on page 212.)

[157] Bengt Jonsson and Frits W. Vaandrager. Learning Mealy machines with timers. Online preprint,
2018. Available via http://www.sws.cs.ru.nl/publications/papers/fvaan/MMT/,
accessed on November 4, 2019. (Cited on pages 161 and 211.)

https://doi.org/10.1109/APSEC.2008.51
https://doi.org/10.1109/APSEC.2008.51
https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1007/978-3-540-45069-6_31
https://dx.doi.org/10.1109/IEEESTD.1990.101064
https://dx.doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1007/978-3-540-71605-1_11
https://doi.org/10.1007/978-3-540-71605-1_11
http://www.sws.cs.ru.nl/publications/papers/fvaan/MMT/

Bibliography 241

[158] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Com-
putations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum Press,
New York, 1972. ISBN 0-306-30707-3. doi: 10.1007/978-1-4684-2001-2 9. URL https:

//doi.org/10.1007/978-1-4684-2001-2_9. (Cited on page 60.)

[159] Gal Katz and Doron Peled. Synthesizing, correcting and improving code, using model checking-
based genetic programming. International Journal on Software Tools for Technology Transfer,
19(4):449–464, 2017. doi: 10.1007/s10009-016-0418-1. URL https://doi.org/10.1007/

s10009-016-0418-1. (Cited on pages 8, 162 and 212.)

[160] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, 1994. ISBN 978-0-262-11193-5. URL https://mitpress.mit.edu/books/

introduction-computational-learning-theory. (Cited on pages 23, 79, 195 and 204.)

[161] Ali Khalili and Armando Tacchella. Learning nondeterministic Mealy machines. In Alexan-
der Clark, Makoto Kanazawa, and Ryo Yoshinaka, editors, Proceedings of the 12th International
Conference on Grammatical Inference, ICGI 2014, Kyoto, Japan, September 17-19, 2014., vol-
ume 34 of JMLR Workshop and Conference Proceedings, pages 109–123. JMLR.org, 2014. URL
http://proceedings.mlr.press/v34/khalili14a.html. (Cited on pages 4, 7, 52, 91,
92, 98, 209 and 219.)

[162] Jin Hyun Kim, Kim Guldstrand Larsen, Brian Nielsen, Marius Mikucionis, and Petur Olsen. For-
mal analysis and testing of real-time automotive systems using UPPAAL tools. In Manuel Núñez
and Matthias Güdemann, editors, Formal Methods for Industrial Critical Systems - 20th Interna-
tional Workshop, FMICS 2015, Oslo, Norway, June 22-23, 2015 Proceedings, volume 9128 of
Lecture Notes in Computer Science, pages 47–61. Springer, 2015. ISBN 978-3-319-19457-8. doi:
10.1007/978-3-319-19458-5 4. URL https://doi.org/10.1007/978-3-319-19458-5_

4. (Cited on page 214.)

[163] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980. (Cited on page 197.)

[164] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey M. Voas. DDoS in the
IoT: Mirai and other botnets. IEEE Computer, 50(7):80–84, 2017. doi: 10.1109/MC.2017.201.
URL https://doi.org/10.1109/MC.2017.201. (Cited on page 1.)

[165] Anvesh Komuravelli, Corina S. Pasareanu, and Edmund M. Clarke. Learning probabilistic sys-
tems from tree samples. In Proceedings of the 27th Annual IEEE Symposium on Logic in Com-
puter Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 441–450. IEEE Com-
puter Society, 2012. ISBN 978-1-4673-2263-8. doi: 10.1109/LICS.2012.54. URL https:

//doi.org/10.1109/LICS.2012.54. (Cited on page 210.)

[166] I. Koufareva, Alexandre Petrenko, and Nina Yevtushenko. Test generation driven by user-
defined fault models. In Gyula Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors, Testing
of Communicating Systems: Methods and Applications, IFIP TC6 12th International Workshop
on Testing Communicating Systems, September 1-3, 1999, Budapest, Hungary, volume 147 of
IFIP Conference Proceedings, pages 215–236. Kluwer, 1999. ISBN 0-7923-8581-0. doi: 10.
1007/978-0-387-35567-2 14. URL https://doi.org/10.1007/978-0-387-35567-2_14.
(Cited on page 66.)

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s10009-016-0418-1
https://doi.org/10.1007/s10009-016-0418-1
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
http://proceedings.mlr.press/v34/khalili14a.html
https://doi.org/10.1007/978-3-319-19458-5_4
https://doi.org/10.1007/978-3-319-19458-5_4
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/LICS.2012.54
https://doi.org/10.1109/LICS.2012.54
https://doi.org/10.1007/978-0-387-35567-2_14

242 Bibliography

[167] John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Complex adaptive systems. MIT Press, 1993. ISBN 978-0-262-11170-6. (Cited on
pages 8, 10, 163 and 165.)

[168] Willibald Krenn, Dejan Nickovic, and Loredana Tec. Incremental language inclusion check-
ing for networks of timed automata. In Vı́ctor A. Braberman and Laurent Fribourg, editors,
Formal Modeling and Analysis of Timed Systems - 11th International Conference, FORMATS
2013, Buenos Aires, Argentina, August 29-31, 2013. Proceedings, volume 8053 of Lecture Notes
in Computer Science, pages 152–167. Springer, 2013. ISBN 978-3-642-40228-9. doi: 10.
1007/978-3-642-40229-6 11. URL https://doi.org/10.1007/978-3-642-40229-6_11.
(Cited on page 214.)

[169] Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard K. Aichernig, Elisabeth Jöbstl, and
Harald Brandl. Momut::UML model-based mutation testing for UML. In 8th IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST 2015, Graz, Aus-
tria, April 13-17, 2015, pages 1–8. IEEE Computer Society, 2015. ISBN 978-1-4799-7125-1.
doi: 10.1109/ICST.2015.7102627. URL https://doi.org/10.1109/ICST.2015.7102627.
(Cited on pages 7, 213 and 220.)

[170] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems. Formal Methods
in System Design, 34(3):238–304, 2009. doi: 10.1007/s10703-009-0065-1. URL https://doi.

org/10.1007/s10703-009-0065-1. (Cited on pages 162 and 214.)

[171] Sebastian Kunze, Wojciech Mostowski, Mohammad Reza Mousavi, and Mahsa Varshosaz. Gen-
eration of failure models through automata learning. In 2016 Workshop on Automotive Systems/-
Software Architectures (WASA’16), pages 22–25. IEEE, April 2016. doi: 10.1109/WASA.2016.7.
URL https://doi.org/10.1109/WASA.2016.7. (Cited on page 206.)

[172] Marta Z. Kwiatkowska and David Parker. Automated verification and strategy synthesis for
probabilistic systems. In Dang Van Hung and Mizuhito Ogawa, editors, Automated Technol-
ogy for Verification and Analysis - 11th International Symposium, ATVA 2013, Hanoi, Vietnam,
October 15-18, 2013. Proceedings, volume 8172 of Lecture Notes in Computer Science, pages
5–22. Springer, 2013. ISBN 978-3-319-02443-1. doi: 10.1007/978-3-319-02444-8 2. URL
http://dx.doi.org/10.1007/978-3-319-02444-8_2. (Cited on page 95.)

[173] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Analysis of a gossip protocol
in PRISM. SIGMETRICS Performance Evaluation Review, 36(3):17–22, 2008. doi: 10.
1145/1481506.1481511. URL https://doi.org/10.1145/1481506.1481511. (Cited on
pages 92 and 98.)

[174] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-
20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 585–591.
Springer, 2011. ISBN 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1 47. URL http:

//dx.doi.org/10.1007/978-3-642-22110-1_47. (Cited on pages 96, 100, 101, 102, 103,
110, 116, 152, 153, 155 and 209.)

[175] Zhifeng Lai, S. C. Cheung, and Yunfei Jiang. Dynamic model learning using genetic algorithm
under adaptive model checking framework. In Sixth International Conference on Quality Software
(QSIC 2006), 26-28 October 2006, Beijing, China, pages 410–417. IEEE Computer Society, 2006.
ISBN 0-7695-2718-3. doi: 10.1109/QSIC.2006.25. URL https://doi.org/10.1109/QSIC.

2006.25. (Cited on pages 205 and 211.)

https://doi.org/10.1007/978-3-642-40229-6_11
https://doi.org/10.1109/ICST.2015.7102627
https://doi.org/10.1007/s10703-009-0065-1
https://doi.org/10.1007/s10703-009-0065-1
https://doi.org/10.1109/WASA.2016.7
http://dx.doi.org/10.1007/978-3-319-02444-8_2
https://doi.org/10.1145/1481506.1481511
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/QSIC.2006.25
https://doi.org/10.1109/QSIC.2006.25

Bibliography 243

[176] Kim Guldstrand Larsen. Verification and performance analysis of embedded and cyber-physical
systems using UPPAAL. In César Benavente-Peces, Andreas Ahrens, and Joaquim Filipe, edi-
tors, PECCS 2014 - Proceedings of the 4th International Conference on Pervasive and Embed-
ded Computing and Communication Systems, Lisbon, Portugal, 7-9 January, 2014. SciTePress,
2014. ISBN 978-989-758-000-0. URL http://www.peccs.org/KeynoteSpeakers.aspx?

y=2014. Keynote Lecture. (Cited on page 189.)

[177] Kim Guldstrand Larsen and Axel Legay. Statistical model checking: Past, present, and fu-
ture. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation: Foundational Techniques - 7th International Symposium,
ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I, volume 9952
of Lecture Notes in Computer Science, pages 3–15, 2016. ISBN 978-3-319-47165-5. doi: 10.
1007/978-3-319-47166-2 1. URL http://dx.doi.org/10.1007/978-3-319-47166-2_

1. (Cited on pages 97, 100, 101, 102 and 103.)

[178] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997. doi: 10.1007/
s100090050010. URL https://doi.org/10.1007/s100090050010. (Cited on pages 162,
164, 174 and 214.)

[179] Kim Guldstrand Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of real-time
systems using Uppaal. In Jens Grabowski and Brian Nielsen, editors, Formal Approaches to
Software Testing, 4th International Workshop, FATES 2004, Linz, Austria, September 21, 2004,
Revised Selected Papers, volume 3395 of Lecture Notes in Computer Science, pages 79–94.
Springer, 2004. ISBN 3-540-25109-X. doi: 10.1007/978-3-540-31848-4 6. URL https:

//doi.org/10.1007/978-3-540-31848-4_6. (Cited on page 122.)

[180] Kim Guldstrand Larsen, Marius Mikucionis, and Jakob Haahr Taankvist. Safe and optimal
adaptive cruise control. In Roland Meyer, André Platzer, and Heike Wehrheim, editors, Cor-
rect System Design - Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His
60th Birthday, Oldenburg, Germany, September 8-9, 2015. Proceedings, volume 9360 of Lecture
Notes in Computer Science, pages 260–277. Springer, 2015. ISBN 978-3-319-23505-9. doi: 10.
1007/978-3-319-23506-6 17. URL https://doi.org/10.1007/978-3-319-23506-6_17.
(Cited on page 212.)

[181] Kim Guldstrand Larsen, Florian Lorber, Brian Nielsen, and Ulrik Nyman. Mutation-based
test-case generation with Ecdar. In 2017 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops, ICST Workshops 2017, Tokyo, Japan, March 13-
17, 2017, pages 319–328. IEEE Computer Society, 2017. ISBN 978-1-5090-6676-6. doi:
10.1109/ICSTW.2017.60. URL https://doi.org/10.1109/ICSTW.2017.60. (Cited on
page 214.)

[182] Kim Guldstrand Larsen, Adrien Le Coënt, Marius Mikucionis, and Jakob Haahr Taankvist. Guar-
anteed control synthesis for continuous systems in Uppaal Tiga. In Roger D. Chamberlain, Walid
Taha, and Martin Törngren, editors, Cyber Physical Systems. Model-Based Design - 8th Interna-
tional Workshop, CyPhy 2018, and 14th International Workshop, WESE 2018, Turin, Italy, Oc-
tober 4-5, 2018, Revised Selected Papers, volume 11615 of Lecture Notes in Computer Science,
pages 113–133. Springer, 2018. ISBN 978-3-030-23702-8. doi: 10.1007/978-3-030-23703-5 6.
URL https://doi.org/10.1007/978-3-030-23703-5_6. (Cited on page 212.)

[183] David Lee and Mihalis Yannakakis. Testing finite-state machines: State identification and verifi-
cation. IEEE Transactions on Computers, 43(3):306–320, 1994. doi: 10.1109/12.272431. URL
https://doi.org/10.1109/12.272431. (Cited on pages 30, 57, 68 and 208.)

http://www.peccs.org/KeynoteSpeakers.aspx?y=2014
http://www.peccs.org/KeynoteSpeakers.aspx?y=2014
http://dx.doi.org/10.1007/978-3-319-47166-2_1
http://dx.doi.org/10.1007/978-3-319-47166-2_1
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1109/ICSTW.2017.60
https://doi.org/10.1007/978-3-030-23703-5_6
https://doi.org/10.1109/12.272431

244 Bibliography

[184] David Lee and Mihalis Yannakakis. Principles and methods of testing finite state machines – a
survey. Proceedings of the IEEE, 84(8):1090–1123, Aug 1996. ISSN 0018-9219. doi: 10.1109/5.
533956. URL https://doi.org/10.1109/5.533956. (Cited on pages 25, 28, 56 and 213.)

[185] Edward A. Lee. Cyber physical systems: Design challenges. In ISORC 2018, 11th IEEE In-
ternational Symposium on Object and Component-Oriented Real-Time Distributed Computing,
pages 363–369. IEEE, 2008. doi: 10.1109/ISORC.2008.25. URL http://doi.org/10.1109/

ISORC.2008.25. (Cited on page 189.)

[186] Raluca Lefticaru, Florentin Ipate, and Cristina Tudose. Automated model design using genetic al-
gorithms and model checking. In Petros Kefalas, Demosthenes Stamatis, and Christos Douligeris,
editors, 2009 Fourth Balkan Conference in Informatics, BCI 2009, Thessaloniki, Greece, 17-
19 September 2009, pages 79–84. IEEE Computer Society, 2009. ISBN 978-0-7695-3783-2.
doi: 10.1109/BCI.2009.15. URL https://doi.org/10.1109/BCI.2009.15. (Cited on
page 212.)

[187] Axel Legay, Benoı̂t Delahaye, and Saddek Bensalem. Statistical model checking: An overview.
In Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J.
Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors, Runtime Verification - First
International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, vol-
ume 6418 of Lecture Notes in Computer Science, pages 122–135. Springer, 2010. ISBN 978-
3-642-16611-2. doi: 10.1007/978-3-642-16612-9 11. URL https://doi.org/10.1007/

978-3-642-16612-9_11. (Cited on page 100.)

[188] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Scalable verification of Markov deci-
sion processes. In Carlos Canal and Akram Idani, editors, Software Engineering and Formal Meth-
ods - SEFM 2014 Collocated Workshops: HOFM, SAFOME, OpenCert, MoKMaSD, WS-FMDS,
Grenoble, France, September 1-2, 2014, Revised Selected Papers, volume 8938 of Lecture Notes
in Computer Science, pages 350–362. Springer, 2014. ISBN 978-3-319-15200-4. doi: 10.1007/
978-3-319-15201-1 23. URL http://dx.doi.org/10.1007/978-3-319-15201-1_23.
(Cited on page 211.)

[189] Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25 accidents. Computer,
26(7):18–41, July 1993. ISSN 0018-9162. doi: 10.1109/MC.1993.274940. URL https://doi.

org/10.1109/MC.1993.274940. (Cited on page 1.)

[190] Keqin Li, Roland Groz, and Muzammil Shahbaz. Integration testing of components guided by
incremental state machine learning. In Phil McMinn, editor, Testing: Academia and Indus-
try Conference - Practice And Research Techniques (TAIC PART 2006), 29-31 August 2006,
Windsor, United Kingdom, pages 59–70. IEEE Computer Society, 2006. ISBN 0-7695-2672-1.
doi: 10.1109/TAIC-PART.2006.15. URL https://doi.org/10.1109/TAIC-PART.2006.

15. (Cited on page 206.)

[191] Shang-Wei Lin, Étienne André, Jin Song Dong, Jun Sun, and Yang Liu. An efficient algorithm
for learning event-recording automata. In Tevfik Bultan and Pao-Ann Hsiung, editors, Automated
Technology for Verification and Analysis, 9th International Symposium, ATVA 2011, Taipei, Tai-
wan, October 11-14, 2011. Proceedings, volume 6996 of Lecture Notes in Computer Science,
pages 463–472. Springer, 2011. ISBN 978-3-642-24371-4. doi: 10.1007/978-3-642-24372-1 35.
URL https://doi.org/10.1007/978-3-642-24372-1_35. (Cited on page 211.)

[192] Shang-Wei Lin, Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. Learning assumptions for
compositional verification of timed systems. IEEE Transactions on Software Engineering, 40(2):
137–153, 2014. doi: 10.1109/TSE.2013.57. URL https://doi.org/10.1109/TSE.2013.

57. (Cited on page 211.)

https://doi.org/10.1109/5.533956
http://doi.org/10.1109/ISORC.2008.25
http://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/BCI.2009.15
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/TAIC-PART.2006.15
https://doi.org/10.1109/TAIC-PART.2006.15
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1109/TSE.2013.57
https://doi.org/10.1109/TSE.2013.57

Bibliography 245

[193] Florian Lorber, Kim Guldstrand Larsen, and Brian Nielsen. Model-based mutation testing of real-
time systems via model checking. In 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops, ICST Workshops, Västerås, Sweden, April 9-13, 2018,
pages 59–68. IEEE Computer Society, 2018. ISBN 978-1-5386-6352-3. doi: 10.1109/ICSTW.
2018.00029. URL https://doi.org/10.1109/ICSTW.2018.00029. (Cited on page 214.)

[194] Simon M. Lucas and T. Jeff Reynolds. Learning DFA: Evolution versus evidence driven state
merging. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2003, 8 -
12 December 2003, Canberra, Australia, pages 351–358. IEEE, 2003. doi: 10.1109/CEC.2003.
1299597. URL https://doi.org/10.1109/CEC.2003.1299597. (Cited on page 211.)

[195] Oded Maler and Amir Pnueli. On the learnability of infinitary regular sets. Information and
Computation, 118(2):316–326, 1995. doi: 10.1006/inco.1995.1070. URL https://doi.org/

10.1006/inco.1995.1070. (Cited on page 22.)

[196] Zohar Manna and Amir Pnueli. Verifying hybrid systems. In Robert L. Grossman, Anil Nerode,
Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems. HS 1992, HS 1991, volume 736 of
Lecture Notes in Computer Science, pages 4–35. Springer, 1992. ISBN 3-540-57318-6. doi: 10.
1007/3-540-57318-6 22. URL https://doi.org/10.1007/3-540-57318-6_22. (Cited
on pages 5 and 189.)

[197] Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, Kim Guldstrand Larsen, and
Brian Nielsen. Learning probabilistic automata for model checking. In Eighth International
Conference on Quantitative Evaluation of Systems, QEST 2011, Aachen, Germany, 5-8 Septem-
ber, 2011, pages 111–120. IEEE Computer Society, 2011. ISBN 978-1-4577-0973-9. doi:
10.1109/QEST.2011.21. URL http://dx.doi.org/10.1109/QEST.2011.21. (Cited on
pages 94 and 209.)

[198] Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, Kim Guldstrand Larsen, and Brian
Nielsen. Learning Markov decision processes for model checking. In Uli Fahrenberg, Axel Legay,
and Claus R. Thrane, editors, Proceedings Quantities in Formal Methods, QFM 2012, Paris,
France, 28 August 2012., volume 103 of EPTCS, pages 49–63, 2012. doi: 10.4204/EPTCS.103.6.
URL http://dx.doi.org/10.4204/EPTCS.103.6. (Cited on pages 4, 92, 95, 100, 101,
103, 107, 115, 118, 121, 125, 126, 156 and 209.)

[199] Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, Kim Guldstrand Larsen, and
Brian Nielsen. Learning deterministic probabilistic automata from a model checking perspec-
tive. Machine Learning, 105(2):255–299, 2016. doi: 10.1007/s10994-016-5565-9. URL
https://doi.org/10.1007/s10994-016-5565-9. (Cited on pages 4, 7, 52, 92, 93, 94,
95, 96, 100, 101, 103, 107, 109, 110, 111, 112, 121, 125, 126, 138, 146, 152, 153, 156, 158, 161,
171, 209, 210, 218 and 221.)

[200] Tiziana Margaria, Oliver Niese, Harald Raffelt, and Bernhard Steffen. Efficient test-based model
generation for legacy reactive systems. In Ninth IEEE International High-Level Design Validation
and Test Workshop 2004, Sonoma Valley, CA, USA, November 10-12, 2004, pages 95–100. IEEE
Computer Society, 2004. ISBN 0-7803-8714-7. doi: 10.1109/HLDVT.2004.1431246. URL
https://doi.org/10.1109/HLDVT.2004.1431246. (Cited on pages 4, 15, 18 and 209.)

[201] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. AutoBlackTest: A tool
for automatic black-box testing. In Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic,
editors, Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 1013–1015. ACM, 2011. ISBN 978-1-
4503-0445-0. doi: 10.1145/1985793.1985979. URL https://doi.org/10.1145/1985793.

1985979. (Cited on page 207.)

https://doi.org/10.1109/ICSTW.2018.00029
https://doi.org/10.1109/CEC.2003.1299597
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1007/3-540-57318-6_22
http://dx.doi.org/10.1109/QEST.2011.21
http://dx.doi.org/10.4204/EPTCS.103.6
https://doi.org/10.1007/s10994-016-5565-9
https://doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/10.1145/1985793.1985979
https://doi.org/10.1145/1985793.1985979

246 Bibliography

[202] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. AutoBlackTest: Au-
tomatic black-box testing of interactive applications. In Giuliano Antoniol, Antonia Bertolino,
and Yvan Labiche, editors, Fifth IEEE International Conference on Software Testing, Verifi-
cation and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012, pages 81–90.
IEEE Computer Society, 2012. ISBN 978-1-4577-1906-6. doi: 10.1109/ICST.2012.88. URL
https://doi.org/10.1109/ICST.2012.88. (Cited on page 207.)

[203] Ramy Medhat, S. Ramesh, Borzoo Bonakdarpour, and Sebastian Fischmeister. A framework
for mining hybrid automata from input/output traces. In Alain Girault and Nan Guan, editors,
2015 International Conference on Embedded Software, EMSOFT 2015, Amsterdam, Nether-
lands, October 4-9, 2015, pages 177–186. IEEE, 2015. ISBN 978-1-4673-8079-9. doi: 10.
1109/EMSOFT.2015.7318273. URL https://doi.org/10.1109/EMSOFT.2015.7318273.
(Cited on page 190.)

[204] Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, and Saddek Bensalem. Improved
learning for stochastic timed models by state-merging algorithms. In Clark Barrett, Misty
Davies, and Temesghen Kahsai, editors, NASA Formal Methods - 9th International Symposium,
NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings, volume 10227 of Lec-
ture Notes in Computer Science, pages 178–193, 2017. ISBN 978-3-319-57287-1. doi: 10.
1007/978-3-319-57288-8 13. URL https://doi.org/10.1007/978-3-319-57288-8_13.
(Cited on page 210.)

[205] Karl Meinke. Learning-based testing of cyber-physical systems-of-systems: A platooning study.
In Philipp Reinecke and Antinisca Di Marco, editors, Computer Performance Engineering -
14th European Workshop, EPEW 2017, Berlin, Germany, September 7-8, 2017, Proceedings,
volume 10497 of Lecture Notes in Computer Science, pages 135–151. Springer, 2017. ISBN
978-3-319-66582-5. doi: 10.1007/978-3-319-66583-2 9. URL https://doi.org/10.1007/

978-3-319-66583-2_9. (Cited on pages 201 and 212.)

[206] Karl Meinke and Muddassar A. Sindhu. Incremental learning-based testing for reactive systems.
In Martin Gogolla and Burkhart Wolff, editors, Tests and Proofs - 5th International Conference,
TAP 2011, Zurich, Switzerland, June 30 - July 1, 2011. Proceedings, volume 6706 of Lecture
Notes in Computer Science, pages 134–151. Springer, 2011. ISBN 978-3-642-21767-8. doi: 10.
1007/978-3-642-21768-5 11. URL https://doi.org/10.1007/978-3-642-21768-5_11.
(Cited on pages 41 and 205.)

[207] Karl Meinke and Muddassar A. Sindhu. LBTest: A learning-based testing tool for reactive
systems. In Sixth IEEE International Conference on Software Testing, Verification and Valida-
tion, ICST 2013, Luxembourg, Luxembourg, March 18-22, 2013, pages 447–454. IEEE Com-
puter Society, 2013. ISBN 978-1-4673-5961-0. doi: 10.1109/ICST.2013.62. URL https:

//doi.org/10.1109/ICST.2013.62. (Cited on page 205.)

[208] Maik Merten, Falk Howar, Bernhard Steffen, and Tiziana Margaria. Automata learning with
on-the-fly direct hypothesis construction. In Reiner Hähnle, Jens Knoop, Tiziana Margaria, Di-
etmar Schreiner, and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification, and Validation - International Workshops, SARS 2011 and MLSC 2011, Held Un-
der the Auspices of ISoLA 2011 in Vienna, Austria, October 17-18, 2011. Revised Selected
Papers, volume 336 of Communications in Computer and Information Science, pages 248–
260. Springer, 2011. ISBN 978-3-642-34780-1. doi: 10.1007/978-3-642-34781-8 19. URL
https://doi.org/10.1007/978-3-642-34781-8_19. (Cited on page 50.)

[209] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998. ISBN 978-0-262-
63185-3. (Cited on pages 165, 166 and 168.)

https://doi.org/10.1109/ICST.2012.88
https://doi.org/10.1109/EMSOFT.2015.7318273
https://doi.org/10.1007/978-3-319-57288-8_13
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-642-21768-5_11
https://doi.org/10.1109/ICST.2013.62
https://doi.org/10.1109/ICST.2013.62
https://doi.org/10.1007/978-3-642-34781-8_19

Bibliography 247

[210] Joshua Moerman. Yannakakis – test-case generator, 2015. https://gitlab.science.ru.

nl/moerman/Yannakakis, accessed on November 4, 2019. (Cited on page 68.)

[211] Morteza Mohaqeqi, Mohammad Reza Mousavi, and Walid Taha. Conformance testing of cyber-
physical systems: A comparative study. Electronic Communications of the EASST, 70, 2014. doi:
10.14279/tuj.eceasst.70.982. URL https://doi.org/10.14279/tuj.eceasst.70.982.
(Cited on page 189.)

[212] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
The MIT Press, 2012. ISBN 026201825X, 9780262018258. (Cited on page 29.)

[213] MQTT. MQTT website. http://mqtt.org/, 2019. accessed on November 4, 2019. (Cited on
page 35.)

[214] Daniel Neider, Rick Smetsers, Frits W. Vaandrager, and Harco Kuppens. Benchmarks for au-
tomata learning and conformance testing. In Tiziana Margaria, Susanne Graf, and Kim Guld-
strand Larsen, editors, Models, Mindsets, Meta: The What, the How, and the Why Not? - Essays
Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday, volume 11200 of Lecture
Notes in Computer Science, pages 390–416. Springer, 2018. ISBN 978-3-030-22347-2. doi: 10.
1007/978-3-030-22348-9 23. URL https://doi.org/10.1007/978-3-030-22348-9_23.
(Cited on pages 9, 58, 69 and 79.)

[215] Laura Nenzi, Simone Silvetti, Ezio Bartocci, and Luca Bortolussi. A robust genetic algorithm for
learning temporal specifications from data. In Annabelle McIver and Andras Horvath, editors,
Quantitative Evaluation of Systems - 15th International Conference, QEST 2018, Beijing, China,
September 4-7, 2018, Proceedings, volume 11024 of Lecture Notes in Computer Science, pages
323–338. Springer, 2018. ISBN 978-3-319-99153-5. doi: 10.1007/978-3-319-99154-2 20. URL
https://doi.org/10.1007/978-3-319-99154-2_20. (Cited on pages 211 and 212.)

[216] Anil Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958. ISSN 0002-9939, 1088-6826/e. doi: 10.2307/2033204. URL
https://www.jstor.org/stable/2033204. (Cited on pages 21, 127 and 128.)

[217] Brian Nielsen and Arne Skou. Automated test generation from timed automata. Interna-
tional Journal on Software Tools for Technology Transfer, 5(1):59–77, 2003. doi: 10.1007/
s10009-002-0094-1. URL https://doi.org/10.1007/s10009-002-0094-1. (Cited on
page 214.)

[218] Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD thesis, Dortmund Uni-
versity of Technology, 2003. URL https://d-nb.info/969717474/34. (Cited on page 18.)

[219] Oliver Niggemann, Benno Stein, Asmir Vodencarevic, Alexander Maier, and Hans Kleine Büning.
Learning behavior models for hybrid timed systems. In Jörg Hoffmann and Bart Selman, editors,
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada. AAAI Press, 2012. URL http://www.aaai.org/ocs/index.

php/AAAI/AAAI12/paper/view/4993. (Cited on page 190.)

[220] Gethin Norman and Vitaly Shmatikov. Analysis of probabilistic contract signing. Journal of Com-
puter Security, 14(6):561–589, 2006. doi: 10.3233/JCS-2006-14604. URL http://content.

iospress.com/articles/journal-of-computer-security/jcs268. (Cited on
pages 92 and 98.)

[221] Ayoub Nouri, Balaji Raman, Marius Bozga, Axel Legay, and Saddek Bensalem. Faster
statistical model checking by means of abstraction and learning. In Borzoo Bonakdarpour
and Scott A. Smolka, editors, Runtime Verification - 5th International Conference, RV 2014,

https://gitlab.science.ru.nl/moerman/Yannakakis
https://gitlab.science.ru.nl/moerman/Yannakakis
https://doi.org/10.14279/tuj.eceasst.70.982
http://mqtt.org/
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-319-99154-2_20
https://www.jstor.org/stable/2033204
https://doi.org/10.1007/s10009-002-0094-1
https://d-nb.info/969717474/34
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993
http://content.iospress.com/articles/journal-of-computer-security/jcs268
http://content.iospress.com/articles/journal-of-computer-security/jcs268

248 Bibliography

Toronto, ON, Canada, September 22-25, 2014. Proceedings, volume 8734 of Lecture Notes
in Computer Science, pages 340–355. Springer, 2014. ISBN 978-3-319-11163-6. doi: 10.
1007/978-3-319-11164-3 28. URL https://doi.org/10.1007/978-3-319-11164-3_28.
(Cited on page 209.)

[222] Mariusz Nowostawski and Riccardo Poli. Parallel genetic algorithm taxonomy. In Lakhmi C. Jain,
editor, Third International Conference on Knowledge-Based Intelligent Information Engineering
Systems, KES 1999, Adelaide, South Australia, 31 August - 1 September 1999, Proceedings, pages
88–92. IEEE, 1999. ISBN 0-7803-5578-4. doi: 10.1109/KES.1999.820127. URL https://

doi.org/10.1109/KES.1999.820127. (Cited on page 166.)

[223] Masashi Okamoto. Some inequalities relating to the partial sum of binomial probabilities. Annals
of the Institute of Statistical Mathematics, 10(1):29–35, 1959. ISSN 1572-9052. doi: 10.1007/
BF02883985. URL http://dx.doi.org/10.1007/BF02883985. (Cited on pages 97, 103,
106, 110, 118 and 123.)

[224] Sean O’Kane. The Verge: Tesla owner discovers problem with ’dog mode’ air con-
ditioning feature. Available via https://www.theverge.com/2019/8/1/20750085/

tesla-dog-mode-flaw-elon-musk-software-update, news article, 2019. accessed on
November 4, 2019. (Cited on page 2.)

[225] José Oncina and Pedro Garcia. Identifying regular languages in polynomial time. In Advances
in Structural and Syntactic Pattern Recognition, volume 5 of Machine Perception and Artificial
Intelligence, pages 99–108. World Scientific, 1992. doi: 10.1142/9789812797919 0007. URL
https://doi.org/10.1142/9789812797919_0007. (Cited on page 4.)

[226] Martijn Oostdijk, Vlad Rusu, Jan Tretmans, René G. de Vries, and Tim A. C. Willemse. Inte-
grating verification, testing, and learning for cryptographic protocols. In Jim Davies and Jeremy
Gibbons, editors, Integrated Formal Methods, 6th International Conference, IFM 2007, Oxford,
UK, July 2-5, 2007, Proceedings, volume 4591 of Lecture Notes in Computer Science, pages
538–557. Springer, 2007. ISBN 978-3-540-73209-9. doi: 10.1007/978-3-540-73210-5 28. URL
https://doi.org/10.1007/978-3-540-73210-5_28. (Cited on page 205.)

[227] Fabrizio Pastore, Daniela Micucci, and Leonardo Mariani. Timed k-tail: Automatic inference
of timed automata. In 2017 IEEE International Conference on Software Testing, Verification
and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017, pages 401–411. IEEE Computer
Society, 2017. ISBN 978-1-5090-6031-3. doi: 10.1109/ICST.2017.43. URL https://doi.

org/10.1109/ICST.2017.43. (Cited on page 210.)

[228] Ron Patton. Software Testing (2nd Edition). Sams, Indianapolis, IN, USA, 2005. ISBN
0672327988. (Cited on page 2.)

[229] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. In Jian-
ping Wu, Samuel T. Chanson, and Qiang Gao, editors, Formal Methods for Protocol Engi-
neering and Distributed Systems, FORTE XII / PSTV XIX’99, IFIP TC6 WG6.1 Joint Inter-
national Conference on Formal Description Techniques for Distributed Systems and Commu-
nication Protocols (FORTE XII) and Protocol Specification, Testing and Verification (PSTV
XIX), October 5-8, 1999, Beijing, China, volume 156 of IFIP Conference Proceedings, pages
225–240. Kluwer, 1999. ISBN 0-7923-8646-9. doi: 10.1007/978-0-387-35578-8 13. URL
https://doi.org/10.1007/978-0-387-35578-8_13. (Cited on page 204.)

[230] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. Journal of
Automata, Languages and Combinatorics, 7(2):225–246, 2002. doi: 10.25596/jalc-2002-225.
URL https://doi.org/10.25596/jalc-2002-225. (Cited on pages 56, 99, 100, 204,
205, 207 and 208.)

https://doi.org/10.1007/978-3-319-11164-3_28
https://doi.org/10.1109/KES.1999.820127
https://doi.org/10.1109/KES.1999.820127
http://dx.doi.org/10.1007/BF02883985
https://www.theverge.com/2019/8/1/20750085/tesla-dog-mode-flaw-elon-musk-software-update
https://www.theverge.com/2019/8/1/20750085/tesla-dog-mode-flaw-elon-musk-software-update
https://doi.org/10.1142/9789812797919_0007
https://doi.org/10.1007/978-3-540-73210-5_28
https://doi.org/10.1109/ICST.2017.43
https://doi.org/10.1109/ICST.2017.43
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.25596/jalc-2002-225

Bibliography 249

[231] Alexandre Petrenko and Florent Avellaneda. Learning communicating state machines. In Dirk
Beyer and Chantal Keller, editors, Tests and Proofs - 13th International Conference, TAP 2019,
Held as Part of the Third World Congress on Formal Methods 2019, Porto, Portugal, October
9-11, 2019, Proceedings, volume 11823 of Lecture Notes in Computer Science, pages 112–128.
Springer, 2019. ISBN 978-3-030-31156-8. doi: 10.1007/978-3-030-31157-5 8. URL https:

//doi.org/10.1007/978-3-030-31157-5_8. (Cited on page 121.)

[232] Alexandre Petrenko, Keqin Li, Roland Groz, Karim Hossen, and Catherine Oriat. Inferring ap-
proximated models for systems engineering. In 15th International IEEE Symposium on High-
Assurance Systems Engineering, HASE 2014, Miami Beach, FL, USA, January 9-11, 2014, pages
249–253. IEEE Computer Society, 2014. ISBN 978-1-4799-3465-2. doi: 10.1109/HASE.2014.46.
URL https://doi.org/10.1109/HASE.2014.46. (Cited on page 205.)

[233] Alexandre Petrenko, Omer Nguena-Timo, and S. Ramesh. Multiple mutation testing from FSM.
In Elvira Albert and Ivan Lanese, editors, Formal Techniques for Distributed Objects, Compo-
nents, and Systems - 36th IFIP WG 6.1 International Conference, FORTE 2016, Held as Part
of the 11th International Federated Conference on Distributed Computing Techniques, DisCoTec
2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, volume 9688 of Lecture Notes
in Computer Science, pages 222–238. Springer, 2016. ISBN 978-3-319-39569-2. doi: 10.
1007/978-3-319-39570-8 15. URL https://doi.org/10.1007/978-3-319-39570-8_15.
(Cited on page 66.)

[234] Andrea Pferscher. Active model learning of timed automata via genetic programming, 2019.
Master’s thesis, Graz University of Technology. (Cited on pages 10, 12, 162, 179, 180, 181, 183,
184, 187, 217 and 219.)

[235] Jon Postel. Transmission control protocol. STD 7, RFC Editor, September 1981. URL http:

//www.rfc-editor.org/rfc/rfc793.txt. Internet Requests for Comments. (Cited on
pages 8 and 30.)

[236] Alexander Pretschner. Defect-based testing. In Maximilian Irlbeck, Doron A. Peled, and Alexan-
der Pretschner, editors, Dependable Software Systems Engineering, volume 40 of NATO Sci-
ence for Peace and Security Series, D: Information and Communication Security, pages 224–
245. IOS Press, 2015. ISBN 978-1-61499-494-7. doi: 10.3233/978-1-61499-495-4-224. URL
http://dx.doi.org/10.3233/978-1-61499-495-4-224. (Cited on page 61.)

[237] Harald Raffelt, Tiziana Margaria, Bernhard Steffen, and Maik Merten. Hybrid test of web appli-
cations with Webtest. In Tevfik Bultan and Tao Xie, editors, Proceedings of the 2008 Workshop
on Testing, Analysis, and Verification of Web Services and Applications, held in conjunction with
the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2008),
TAV-WEB 2008, Seattle, Washington, USA, July 21, 2008, pages 1–7. ACM, 2008. ISBN 978-1-
60558-053-1. doi: 10.1145/1390832.1390833. URL https://doi.org/10.1145/1390832.

1390833. (Cited on page 208.)

[238] Brian Randell. Fifty years of software engineering - or - the view from Garmisch. CoRR,
abs/1805.02742, 2018. URL http://arxiv.org/abs/1805.02742. (Cited on pages 1
and 215.)

[239] Adnan Rashid, Umair Siddique, and Osman Hasan. Formal verification of platoon control strate-
gies. In Einar Broch Johnsen and Ina Schaefer, editors, Software Engineering and Formal Meth-
ods - 16th International Conference, SEFM 2018, Held as Part of STAF 2018, Toulouse, France,
June 27-29, 2018, Proceedings, volume 10886 of Lecture Notes in Computer Science, pages 223–
238. Springer, 2018. ISBN 978-3-319-92969-9. doi: 10.1007/978-3-319-92970-5 14. URL
https://doi.org/10.1007/978-3-319-92970-5_14. (Cited on page 212.)

https://doi.org/10.1007/978-3-030-31157-5_8
https://doi.org/10.1007/978-3-030-31157-5_8
https://doi.org/10.1109/HASE.2014.46
https://doi.org/10.1007/978-3-319-39570-8_15
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://dx.doi.org/10.3233/978-1-61499-495-4-224
https://doi.org/10.1145/1390832.1390833
https://doi.org/10.1145/1390832.1390833
http://arxiv.org/abs/1805.02742
https://doi.org/10.1007/978-3-319-92970-5_14

250 Bibliography

[240] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing sequences.
Information and Computation, 103(2):299–347, 1993. doi: 10.1006/inco.1993.1021. URL
https://doi.org/10.1006/inco.1993.1021. (Cited on pages 22, 23, 24, 29, 30, 57,
58, 62, 68, 70, 79, 83, 131, 140, 208 and 216.)

[241] Krishan K. Sabnani and Anton T. Dahbura. A protocol test generation procedure. Computer
Networks, 15(4):285–297, 1988. doi: 10.1016/0169-7552(88)90064-5. URL https://doi.

org/10.1016/0169-7552(88)90064-5. (Cited on page 28.)

[242] Indranil Saha and Debapriyay Mukhopadhyay. Quantitative analysis of a probabilistic non-
repudiation protocol through model checking. In Atul Prakash and Indranil Gupta, editors, In-
formation Systems Security, 5th International Conference, ICISS 2009, Kolkata, India, Decem-
ber 14-18, 2009, Proceedings, volume 5905 of Lecture Notes in Computer Science, pages 292–
300. Springer, 2009. ISBN 978-3-642-10771-9. doi: 10.1007/978-3-642-10772-6 22. URL
https://doi.org/10.1007/978-3-642-10772-6_22. (Cited on page 98.)

[243] Richard Schumi, Priska Lang, Bernhard K. Aichernig, Willibald Krenn, and Rupert Schlick.
Checking response-time properties of web-service applications under stochastic user profiles. In
Nina Yevtushenko, Ana Rosa Cavalli, and Hüsnü Yenigün, editors, Testing Software and Sys-
tems - 29th IFIP WG 6.1 International Conference, ICTSS 2017, St. Petersburg, Russia, Octo-
ber 9-11, 2017, Proceedings, volume 10533 of Lecture Notes in Computer Science, pages 293–
310. Springer, 2017. ISBN 978-3-319-67548-0. doi: 10.1007/978-3-319-67549-7 18. URL
https://doi.org/10.1007/978-3-319-67549-7_18. (Cited on page 211.)

[244] Mathijs Schuts, Jozef Hooman, and Frits W. Vaandrager. Refactoring of legacy software using
model learning and equivalence checking: An industrial experience report. In Erika Ábrahám
and Marieke Huisman, editors, Integrated Formal Methods - 12th International Conference,
IFM 2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings, volume 9681 of Lecture Notes
in Computer Science, pages 311–325. Springer, 2016. ISBN 978-3-319-33692-3. doi: 10.
1007/978-3-319-33693-0 20. URL https://doi.org/10.1007/978-3-319-33693-0_20.
(Cited on page 206.)

[245] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of black-box prob-
abilistic systems. In Rajeev Alur and Doron A. Peled, editors, Computer Aided Verification,
16th International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings,
volume 3114 of Lecture Notes in Computer Science, pages 202–215. Springer, 2004. ISBN
3-540-22342-8. doi: 10.1007/978-3-540-27813-9 16. URL https://doi.org/10.1007/

978-3-540-27813-9_16. (Cited on page 209.)

[246] Muzammil Shahbaz and Roland Groz. Inferring Mealy machines. In Ana Cavalcanti and Dennis
Dams, editors, FM 2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands,
November 2-6, 2009. Proceedings, volume 5850 of Lecture Notes in Computer Science, pages
207–222. Springer, 2009. ISBN 978-3-642-05088-6. doi: 10.1007/978-3-642-05089-3 14. URL
https://doi.org/10.1007/978-3-642-05089-3_14. (Cited on pages 4, 18, 20, 21, 56,
79 and 209.)

[247] Muzammil Shahbaz and Roland Groz. Analysis and testing of black-box component-based sys-
tems by inferring partial models. Software Testing, Verification & Reliability, 24(4):253–288,
2014. doi: 10.1002/stvr.1491. URL https://doi.org/10.1002/stvr.1491. (Cited on
page 206.)

[248] Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning parameterized state machine model
for integration testing. In 31st Annual International Computer Software and Applications Con-
ference, COMPSAC 2007, Beijing, China, July 24-27, 2007. Volume 2, pages 755–760. IEEE

https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1016/0169-7552(88)90064-5
https://doi.org/10.1016/0169-7552(88)90064-5
https://doi.org/10.1007/978-3-642-10772-6_22
https://doi.org/10.1007/978-3-319-67549-7_18
https://doi.org/10.1007/978-3-319-33693-0_20
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1002/stvr.1491

Bibliography 251

Computer Society, 2007. doi: 10.1109/COMPSAC.2007.134. URL https://doi.org/10.

1109/COMPSAC.2007.134. (Cited on page 206.)

[249] Muzammil Shahbaz, Benoı̂t Parreaux, and Francis Klay. Model inference approach for detecting
feature interactions in integrated systems. In Lydie du Bousquet and Jean-Luc Richier, editors,
Ninth International Conference of Feature Interactions in Software and Communication Systems,
ICFI 2007, 3-5 September 2007, Grenoble, France, pages 161–171. IOS Press, 2007. ISBN
978-1-58603-845-8. URL http://ebooks.iospress.nl/publication/29339. (Cited on
page 206.)

[250] Guoqiang Shu and David Lee. Testing security properties of protocol implementations – a ma-
chine learning based approach. In 27th IEEE International Conference on Distributed Com-
puting Systems (ICDCS 2007), June 25-29, 2007, Toronto, Ontario, Canada, page 25. IEEE
Computer Society, 2007. ISBN 0-7695-2837-6. doi: 10.1109/ICDCS.2007.147. URL https:

//doi.org/10.1109/ICDCS.2007.147. (Cited on pages 205 and 207.)

[251] Guoqiang Shu, Yating Hsu, and David Lee. Detecting communication protocol security flaws
by formal fuzz testing and machine learning. In Kenji Suzuki, Teruo Higashino, Keiichi Ya-
sumoto, and Khaled El-Fakih, editors, Formal Techniques for Networked and Distributed Sys-
tems - FORTE 2008, 28th IFIP WG 6.1 International Conference, Tokyo, Japan, June 10-
13, 2008, Proceedings, volume 5048 of Lecture Notes in Computer Science, pages 299–304.
Springer, 2008. ISBN 978-3-540-68854-9. doi: 10.1007/978-3-540-68855-6 19. URL https:

//doi.org/10.1007/978-3-540-68855-6_19. (Cited on pages 205 and 207.)

[252] T.W. Simpson, A.J. Booker, D. Ghosh, A.A. Giunta, P.N. Koch, and R.-J. Yang. Approxima-
tion methods in multidisciplinary analysis and optimization: A panel discussion. Structural
and Multidisciplinary Optimization, 27(5):302–313, 2004. ISSN 1615-1488. doi: 10.1007/
s00158-004-0389-9. URL https://doi.org/10.1007/s00158-004-0389-9. (Cited on
page 190.)

[253] Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D. Keromytis, and Suman Jana.
HVLearn: Automated black-box analysis of hostname verification in SSL/TLS implementa-
tions. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May
22-26, 2017, pages 521–538. IEEE Computer Society, 2017. ISBN 978-1-5090-5533-3. doi:
10.1109/SP.2017.46. URL https://doi.org/10.1109/SP.2017.46. (Cited on pages 52
and 204.)

[254] Wouter Smeenk, Joshua Moerman, Frits W. Vaandrager, and David N. Jansen. Applying au-
tomata learning to embedded control software. In Michael J. Butler, Sylvain Conchon, and
Fatiha Zaı̈di, editors, Formal Methods and Software Engineering - 17th International Conference
on Formal Engineering Methods, ICFEM 2015, Paris, France, November 3-5, 2015, Proceed-
ings, volume 9407 of Lecture Notes in Computer Science, pages 67–83. Springer, 2015. ISBN
978-3-319-25422-7. doi: 10.1007/978-3-319-25423-4 5. URL https://doi.org/10.1007/

978-3-319-25423-4_5. (Cited on pages 30, 40, 51, 57, 58, 68, 76, 78, 208 and 216.)

[255] Rick Smetsers, Joshua Moerman, Mark Janssen, and Sicco Verwer. Complementing model learn-
ing with mutation-based fuzzing. CoRR, abs/1611.02429, 2016. URL http://arxiv.org/

abs/1611.02429. (Cited on page 208.)

[256] Jan Springintveld, Frits W. Vaandrager, and Pedro R. D’Argenio. Testing timed automata. Theo-
retical Computer Science, 254(1-2):225–257, 2001. doi: 10.1016/S0304-3975(99)00134-6. URL
https://doi.org/10.1016/S0304-3975(99)00134-6. (Cited on pages 164, 165, 168,
213 and 220.)

https://doi.org/10.1109/COMPSAC.2007.134
https://doi.org/10.1109/COMPSAC.2007.134
http://ebooks.iospress.nl/publication/29339
https://doi.org/10.1109/ICDCS.2007.147
https://doi.org/10.1109/ICDCS.2007.147
https://doi.org/10.1007/978-3-540-68855-6_19
https://doi.org/10.1007/978-3-540-68855-6_19
https://doi.org/10.1007/s00158-004-0389-9
https://doi.org/10.1109/SP.2017.46
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
http://arxiv.org/abs/1611.02429
http://arxiv.org/abs/1611.02429
https://doi.org/10.1016/S0304-3975(99)00134-6

252 Bibliography

[257] Andy Stanford-Clark and Hong Linh Truong. MQTT For Sensor Networks (MQTT-SN) – Pro-
tocol Specification Version 1.2. Technical report, International Business Machines Corporation
(IBM), November 2013. URL http://mqtt.org/new/wp-content/uploads/2009/06/

MQTT-SN_spec_v1.2.pdf. Available via http://mqtt.org/new/wp-content/uploads/
2009/06/MQTT-SN_spec_v1.2.pdf, accessed on November 4, 2019. (Cited on page 35.)

[258] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active automata learning from a
practical perspective. In Marco Bernardo and Valérie Issarny, editors, Formal Methods for Eternal
Networked Software Systems - 11th International School on Formal Methods for the Design of
Computer, Communication and Software Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011.
Advanced Lectures, volume 6659 of Lecture Notes in Computer Science, pages 256–296. Springer,
2011. ISBN 978-3-642-21454-7. doi: 10.1007/978-3-642-21455-4 8. URL https://doi.

org/10.1007/978-3-642-21455-4_8. (Cited on pages 20, 21, 23, 79, 85, 86, 127, 128, 130
and 209.)

[259] Martin Tappler. prob-black-reach – Java implementation of probabilistic black-box reachability
checking [16, 18], 2017. https://github.com/mtappler/prob-black-reach, accessed
on November 4, 2019. (Cited on pages 10 and 110.)

[260] Martin Tappler. mut-learn – randomised mutation-based equivalence testing for active automata
learning [15, 17], 2017. https://github.com/mtappler/mut-learn, accessed on Novem-
ber 4, 2019. (Cited on pages 10 and 68.)

[261] Martin Tappler. Evaluation material for L∗-based learning of Markov decision processes [265,
266], 2019. Available via https://doi.org/10.6084/m9.figshare.7960928.v1, ac-
cessed on November 4, 2019. (Cited on pages 10, 125, 152 and 158.)

[262] Martin Tappler and Andrea Pferscher. Supplementary material for “Learning timed automata via
genetic programming” [264] and “Time to learn – learning timed automata from tests” [267],
2019. Available via https://figshare.com/articles/Supplementary_Material_

for_Learning_Timed_Automata_via_Genetic_Programming_/5513575, accessed on
November 4, 2019. (Cited on pages 10, 163, 172 and 173.)

[263] Martin Tappler, Bernhard K. Aichernig, and Roderick Bloem. Model-based testing IoT commu-
nication via active automata learning. In 2017 IEEE International Conference on Software Test-
ing, Verification and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017, pages 276–287.
IEEE Computer Society, 2017. ISBN 978-1-5090-6031-3. doi: 10.1109/ICST.2017.32. URL
https://doi.org/10.1109/ICST.2017.32. (Cited on pages 6, 9, 10, 15, 33, 45, 46, 69,
73, 109, 113, 121, 154, 203 and 204.)

[264] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber. Learning
timed automata via genetic programming. CoRR, abs/1808.07744, 2018. URL http://arxiv.

org/abs/1808.07744. (Cited on pages 9, 11, 161, 203 and 252.)

[265] Martin Tappler, Bernhard K. Aichernig, Giovanni Bacci, Maria Eichlseder, and Kim Guldstrand
Larsen. L∗-based learning of Markov decision processes. In Maurice H. ter Beek, Annabelle
McIver, and José N. Oliveira, editors, Formal Methods - The Next 30 Years - Third World Congress,
FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings, volume 11800 of Lecture Notes
in Computer Science, pages 651–669. Springer, 2019. ISBN 978-3-030-30941-1. doi: 10.
1007/978-3-030-30942-8 38. URL https://doi.org/10.1007/978-3-030-30942-8_38.
(Cited on pages 9, 12, 91, 92, 125, 203 and 252.)

[266] Martin Tappler, Bernhard K. Aichernig, Giovanni Bacci, Maria Eichlseder, and Kim Guld-
strand Larsen. L∗-based learning of Markov decision processes (extended version). CoRR,
abs/1906.12239, 2019. URL http://arxiv.org/abs/1906.12239. (Cited on pages 9, 12,
91, 92, 125 and 252.)

http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://github.com/mtappler/prob-black-reach
https://github.com/mtappler/mut-learn
https://doi.org/10.6084/m9.figshare.7960928.v1
https://figshare.com/articles/Supplementary_Material_for_Learning_Timed_Automata_via_Genetic_Program ming_/5513575
https://figshare.com/articles/Supplementary_Material_for_Learning_Timed_Automata_via_Genetic_Program ming_/5513575
https://doi.org/10.1109/ICST.2017.32
http://arxiv.org/abs/1808.07744
http://arxiv.org/abs/1808.07744
https://doi.org/10.1007/978-3-030-30942-8_38
http://arxiv.org/abs/1906.12239

Bibliography 253

[267] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber. Time to
learn – learning timed automata from tests. In Étienne André and Mariëlle Stoelinga, editors,
Formal Modeling and Analysis of Timed Systems - 17th International Conference, FORMATS
2019, Amsterdam, The Netherlands, August 27-29, 2019, Proceedings, volume 11750 of Lecture
Notes in Computer Science, pages 216–235. Springer, 2019. ISBN 978-3-030-29661-2. doi: 10.
1007/978-3-030-29662-9 13. URL https://doi.org/10.1007/978-3-030-29662-9_13.
(Cited on pages 9, 11, 161, 203 and 252.)

[268] Robert A. Thacker, Kevin R. Jones, Chris J. Myers, and Hao Zheng. Automatic abstrac-
tion for verification of cyber-physical systems. In Janos Sztipanovits and Raj Rajkumar, ed-
itors, ACM/IEEE 1st International Conference on Cyber-Physical Systems, ICCPS ’10, Stock-
holm, Sweden, April 12-15, 2010, pages 12–21. ACM, 2010. ISBN 978-1-4503-0066-7. doi:
10.1145/1795194.1795197. URL https://doi.org/10.1145/1795194.1795197. (Cited
on page 189.)

[269] Jan Tretmans. Conformance testing with labelled transition systems: Implementation relations
and test generation. Computer Networks and ISDN Systems, 29(1):49–79, 1996. doi: 10.1016/
S0169-7552(96)00017-7. URL https://doi.org/10.1016/S0169-7552(96)00017-7.
(Cited on pages 24, 25, 98 and 165.)

[270] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software - Concepts
and Tools, 17(3):103–120, 1996. (Cited on pages 28, 38, 162, 209 and 214.)

[271] Jan Tretmans. Model based testing with labelled transition systems. In Robert M. Hierons,
Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and Testing, An Outcome of
the FORTEST Network, Revised Selected Papers, volume 4949 of Lecture Notes in Computer Sci-
ence, pages 1–38. Springer, 2008. ISBN 978-3-540-78916-1. doi: 10.1007/978-3-540-78917-8 1.
URL https://doi.org/10.1007/978-3-540-78917-8_1. (Cited on pages 3, 25, 26, 93
and 162.)

[272] Wen-Guey Tzeng. Learning probabilistic automata and Markov chains via queries. Machine
Learning, 8:151–166, 1992. doi: 10.1007/BF00992862. URL https://doi.org/10.1007/

BF00992862. (Cited on page 210.)

[273] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann, 2007. ISBN 978-0-12-372501-1. URL http://www.elsevierdirect.com/

product.jsp?isbn=9780123725011. (Cited on page 2.)

[274] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing
approaches. Software Testing, Verification & Reliability, 22(5):297–312, 2012. doi: 10.1002/stvr.
456. URL https://doi.org/10.1002/stvr.456. (Cited on pages 2, 39, 41 and 105.)

[275] Frits W. Vaandrager. Model learning. Communications of the ACM, 60(2):86–95, 2017. doi:
10.1145/2967606. URL https://doi.org/10.1145/2967606. (Cited on pages 18 and 19.)

[276] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984. doi: 10.1145/1968.1972. URL https://doi.org/10.1145/1968.1972. (Cited on
pages 29, 126, 158 and 159.)

[277] M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653–665, Jul 1973. ISSN 1573-
8337. doi: 10.1007/BF01068590. URL https://doi.org/10.1007/BF01068590. (Cited
on pages 26, 29, 43, 53, 56, 57, 79, 99, 100, 204, 205, 208, 213 and 218.)

[278] Margus Veanes, Colin Campbell, Wolfram Schulte, and Nikolai Tillmann. Online testing with
model programs. In Michel Wermelinger and Harald C. Gall, editors, ESEC/FSE-13, Pro-
ceedings of the 10th European Software Engineering Conference held jointly with 13th ACM

https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1145/1795194.1795197
https://doi.org/10.1016/S0169-7552(96)00017-7
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/BF00992862
https://doi.org/10.1007/BF00992862
http://www.elsevierdirect.com/product.jsp?isbn=9780123725011
http://www.elsevierdirect.com/product.jsp?isbn=9780123725011
https://doi.org/10.1002/stvr.456
https://doi.org/10.1145/2967606
https://doi.org/10.1145/1968.1972
https://doi.org/10.1007/BF01068590

254 Bibliography

SIGSOFT International Symposium on Foundations of Software Engineering, 2005, Lisbon,
Portugal, September 5-9, 2005, pages 273–282. ACM, 2005. ISBN 1-59593-014-0. doi:
10.1145/1081706.1081751. URL https://doi.org/10.1145/1081706.1081751. (Cited
on page 27.)

[279] Sicco Verwer, Mathijs De Weerdt, and Cees Witteveen. An algorithm for learning real-time au-
tomata. In Maarten van Someren, Sophia Katrenko, and Pieter Adriaans, editors, Benelearn 2007:
Proceedings of the Annual Machine Learning Conference of Belgium and the Netherlands, Ams-
terdam, The Netherlands, 14-15 May 2007, pages 128–135, 2007. (Cited on pages 4, 8, 161, 162,
190 and 210.)

[280] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. A likelihood-ratio test for identifying
probabilistic deterministic real-time automata from positive data. In José M. Sempere and Pe-
dro Garcı́a, editors, Grammatical Inference: Theoretical Results and Applications, 10th Inter-
national Colloquium, ICGI 2010, Valencia, Spain, September 13-16, 2010. Proceedings, vol-
ume 6339 of Lecture Notes in Computer Science, pages 203–216. Springer, 2010. ISBN 978-
3-642-15487-4. doi: 10.1007/978-3-642-15488-1 17. URL http://dx.doi.org/10.1007/

978-3-642-15488-1_17. (Cited on pages 4, 161, 162, 210 and 221.)

[281] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. The efficiency of identifying timed au-
tomata and the power of clocks. Information and Computation, 209(3):606–625, 2011. doi:
10.1016/j.ic.2010.11.023. URL https://doi.org/10.1016/j.ic.2010.11.023. (Cited
on page 53.)

[282] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. Efficiently identifying deterministic real-
time automata from labeled data. Machine Learning, 86(3):295–333, 2012. doi: 10.1007/
s10994-011-5265-4. URL https://doi.org/10.1007/s10994-011-5265-4. (Cited on
pages 4 and 53.)

[283] Michele Volpato and Jan Tretmans. Approximate active learning of nondeterministic input output
transition systems. Electronic Communications of the EASST, 72, 2015. doi: 10.14279/tuj.eceasst.
72.1008. URL https://doi.org/10.14279/tuj.eceasst.72.1008. (Cited on pages 4,
7, 52, 91, 139, 142, 204 and 209.)

[284] Gregor von Bochmann and Alexandre Petrenko. Protocol testing: Review of methods and rel-
evance for software testing. In Thomas J. Ostrand, editor, Proceedings of the 1994 Interna-
tional Symposium on Software Testing and Analysis, ISSTA 1994, Seattle, WA, USA, August 17-19,
1994, pages 109–124. ACM, 1994. ISBN 0-89791-683-2. doi: 10.1145/186258.187153. URL
https://doi.org/10.1145/186258.187153. (Cited on page 213.)

[285] Neil Walkinshaw and Gordon Fraser. Uncertainty-driven black-box test data generation. In
2017 IEEE International Conference on Software Testing, Verification and Validation, ICST 2017,
Tokyo, Japan, March 13-17, 2017, pages 253–263. IEEE Computer Society, 2017. ISBN 978-1-
5090-6031-3. doi: 10.1109/ICST.2017.30. URL https://doi.org/10.1109/ICST.2017.

30. (Cited on page 212.)

[286] Neil Walkinshaw, John Derrick, and Qiang Guo. Iterative refinement of reverse-engineered mod-
els by model-based testing. In Ana Cavalcanti and Dennis Dams, editors, FM 2009: Formal
Methods, Second World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceed-
ings, volume 5850 of Lecture Notes in Computer Science, pages 305–320. Springer, 2009. ISBN
978-3-642-05088-6. doi: 10.1007/978-3-642-05089-3 20. URL https://doi.org/10.1007/

978-3-642-05089-3_20. (Cited on page 180.)

[287] Neil Walkinshaw, Kirill Bogdanov, John Derrick, and Javier Paris. Increasing functional cover-
age by inductive testing: A case study. In Alexandre Petrenko, Adenilso da Silva Simão, and

https://doi.org/10.1145/1081706.1081751
http://dx.doi.org/10.1007/978-3-642-15488-1_17
http://dx.doi.org/10.1007/978-3-642-15488-1_17
https://doi.org/10.1016/j.ic.2010.11.023
https://doi.org/10.1007/s10994-011-5265-4
https://doi.org/10.14279/tuj.eceasst.72.1008
https://doi.org/10.1145/186258.187153
https://doi.org/10.1109/ICST.2017.30
https://doi.org/10.1109/ICST.2017.30
https://doi.org/10.1007/978-3-642-05089-3_20
https://doi.org/10.1007/978-3-642-05089-3_20

Bibliography 255

José Carlos Maldonado, editors, Testing Software and Systems - 22nd IFIP WG 6.1 International
Conference, ICTSS 2010, Natal, Brazil, November 8-10, 2010. Proceedings, volume 6435 of Lec-
ture Notes in Computer Science, pages 126–141. Springer, 2010. ISBN 978-3-642-16572-6. doi:
10.1007/978-3-642-16573-3 10. URL https://doi.org/10.1007/978-3-642-16573-3_

10. (Cited on page 207.)

[288] Felix Wallner. Benchmarking active automata learning configurations, 2019. Bachelor’s thesis,
Graz University of Technology. (Cited on pages 12, 55, 78, 79, 80 and 216.)

[289] Jingyi Wang, Jun Sun, and Shengchao Qin. Verifying complex systems probabilistically through
learning, abstraction and refinement. CoRR, abs/1610.06371, 2016. URL http://arxiv.org/

abs/1610.06371. (Cited on page 209.)

[290] Martin Weiglhofer and Franz Wotawa. ”On the fly” input output conformance verification. In
Proceedings of the IASTED International Conference on Software Engineering, SE ’08, pages
286–291, Anaheim, CA, USA, 2008. ACTA Press. ISBN 978-0-88986-716-1. URL http://

dl.acm.org/citation.cfm?id=1722603.1722655. (Cited on page 41.)

[291] Martin Weiglhofer, Bernhard K. Aichernig, and Franz Wotawa. Fault-based conformance
testing in practice. International Journal of Software and Informatics, 3(2-3):375–411,
2009. URL http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=375&

flag=1. (Cited on page 213.)

[292] Elaine J. Weyuker. Assessing test data adequacy through program inference. ACM Transactions
on Programming Languages and Systems (TOPLAS), 5(4):641–655, 1983. doi: 10.1145/69575.
357231. URL https://doi.org/10.1145/69575.357231. (Cited on page 29.)

[293] Tim A. C. Willemse. Heuristics for ioco-based test-based modelling. In Lubos Brim, Boudewijn R.
Haverkort, Martin Leucker, and Jaco van de Pol, editors, Formal Methods: Applications and
Technology, 11th International Workshop, FMICS 2006 and 5th International Workshop PDMC
2006, Bonn, Germany, August 26-27, and August 31, 2006, Revised Selected Papers, volume
4346 of Lecture Notes in Computer Science, pages 132–147. Springer, 2006. ISBN 978-
3-540-70951-0. doi: 10.1007/978-3-540-70952-7 9. URL https://doi.org/10.1007/

978-3-540-70952-7_9. (Cited on page 209.)

[294] Håkan L. S. Younes. Probabilistic verification for ”black-box” systems. In Kousha Etessami
and Sriram K. Rajamani, editors, Computer Aided Verification, 17th International Conference,
CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings, volume 3576 of Lecture
Notes in Computer Science, pages 253–265. Springer, 2005. ISBN 3-540-27231-3. doi: 10.1007/
11513988 25. URL https://doi.org/10.1007/11513988_25. (Cited on page 209.)

[295] Haidi Yue and Joost-Pieter Katoen. Leader election in anonymous radio networks: Model check-
ing energy consumption. In Khalid Al-Begain, Dieter Fiems, and William J. Knottenbelt, edi-
tors, Analytical and Stochastic Modeling Techniques and Applications, 17th International Con-
ference, ASMTA 2010, Cardiff, UK, June 14-16, 2010. Proceedings, volume 6148 of Lecture
Notes in Computer Science, pages 247–261. Springer, 2010. ISBN 978-3-642-13567-5. doi:
10.1007/978-3-642-13568-2 18. URL https://doi.org/10.1007/978-3-642-13568-2_

18. (Cited on page 98.)

[296] Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman. Model-Based Testing for Embed-
ded Systems. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2011. ISBN 1439818452,
9781439818459. (Cited on page 2.)

https://doi.org/10.1007/978-3-642-16573-3_10
https://doi.org/10.1007/978-3-642-16573-3_10
http://arxiv.org/abs/1610.06371
http://arxiv.org/abs/1610.06371
http://dl.acm.org/citation.cfm?id=1722603.1722655
http://dl.acm.org/citation.cfm?id=1722603.1722655
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=375&flag=1
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=375&flag=1
https://doi.org/10.1145/69575.357231
https://doi.org/10.1007/978-3-540-70952-7_9
https://doi.org/10.1007/978-3-540-70952-7_9
https://doi.org/10.1007/11513988_25
https://doi.org/10.1007/978-3-642-13568-2_18
https://doi.org/10.1007/978-3-642-13568-2_18

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Software Testing
	1.3 Model-Based Testing
	1.4 Learning-Based Testing and Test-Based Learning
	1.5 Automata Learning
	1.6 Scope and Research Goals
	1.6.1 Scope
	1.6.2 Research Context
	1.6.3 Research Plan
	1.6.4 Problem Statements and Research Questions
	1.6.5 Thesis Statement

	1.7 Structure of this Thesis
	1.8 Contributions and Publications
	1.8.1 Contributions
	1.8.2 Main Publications
	1.8.3 Related Publications

	1.9 Notation

	2 Introduction to Active Learning of Deterministic System Models
	2.1 Mealy Machines
	2.2 L* and the Minimally Adequate Teacher Framework
	2.2.1 Minimally Adequate Teacher Framework
	2.2.2 Learning Mealy Machines

	2.3 Improvements in Active Automata Learning
	2.3.1 Reduced Observation Tables & Distinguishing Suffixes
	2.3.2 Tree-Based Storage

	2.4 Conformance Testing
	2.4.1 The Conformance Testing Problem
	2.4.2 Conformance Testing Approaches
	2.4.3 Conformance Testing in Learning

	2.5 Alphabet Abstraction

	3 Learning-Based Testing of MQTT Brokers
	3.1 Learning-Based Testing of Network Protocols
	3.2 The MQTT Protocol
	3.3 Approach
	3.3.1 Learning Environment
	3.3.2 Learning-Based Testing via Cross-Checking Equivalence

	3.4 Case Study
	3.4.1 Implementation of Learning Environment
	3.4.2 Checking Equivalence between Models
	3.4.3 Experimental Setup
	3.4.4 Detected Bugs
	3.4.5 Efficiency

	3.5 Summary
	3.6 Results and Findings

	4 Efficient Conformance Testing in Active Automata Learning
	4.1 Introduction
	4.2 Test-Suite Generation
	4.2.1 Test-Case Generation
	4.2.2 Test-Case Selection
	4.2.3 Mutation-Based Selection
	4.2.4 The Complete Testing Process

	4.3 Mutation for Learning
	4.3.1 Split-State Mutation Operator Family
	4.3.2 Implementation of Mutant Generation
	4.3.3 Efficiency Considerations & Optimisation
	4.3.4 Additional Implementation Details

	4.4 Evaluation of Fault-Based Conformance Testing
	4.4.1 Measurement Setup
	4.4.2 TCP Experiments
	4.4.3 MQTT Experiments
	4.4.4 TLS Experiments
	4.4.5 Discussion, Limitations & Threats to Validity

	4.5 Benchmarking Active Automata Learning
	4.5.1 Measurement Setup
	4.5.2 Measurement Results

	4.6 Summary
	4.7 Results and Findings

	5 Modelling and Learning of Uncertain Behaviour
	5.1 Choice of Modelling Formalism for Learning-Based Testing of Uncertain Behaviour
	5.2 Basics
	5.2.1 Probability Distributions
	5.2.2 String Notation

	5.3 Markov Decision Processes
	5.3.1 Execution of Markov Decision Processes

	5.4 Learning Stochastic Automata
	5.5 Property Specification
	5.5.1 Step-Bounded Reachability

	5.6 Statistical Model-Checking
	5.7 Discussion

	6 Learning-Based Testing of Stochastic Systems
	6.1 Probabilistic Black-Box Reachability Checking
	6.2 Method
	6.2.1 Reachability Checking Process
	6.2.2 Convergence to the True Model
	6.2.3 Application and Choice of Parameters

	6.3 Experiments
	6.3.1 Measurement Setup and Criteria
	6.3.2 Slot-Machine Experiments
	6.3.3 MQTT Experiments
	6.3.4 TCP Experiments
	6.3.5 Gridworld Experiments
	6.3.6 Shared Coin Consensus-Protocol Experiments
	6.3.7 Convergence Check
	6.3.8 Runtime
	6.3.9 Discussion

	6.4 Summary
	6.5 Results and Findings

	7 Test-Based Learning of Stochastic Systems
	7.1 Introduction
	7.2 MDP Observations
	7.2.1 Sequences of Observations
	7.2.2 Semantics of MDPs

	7.3 Exact Learning of MDPs
	7.3.1 Queries
	7.3.2 Observation Tables
	7.3.3 Learning Algorithm
	7.3.4 Correctness & Termination

	7.4 Learning MDPs by Sampling
	7.4.1 Queries
	7.4.2 Learner Implementation
	7.4.3 Teacher Implementation

	7.5 Convergence of L*MDP
	7.5.1 Proof Structure
	7.5.2 Hoeffding-Bound-Based Difference Check
	7.5.3 Hypothesis Construction
	7.5.4 Equivalence Queries
	7.5.5 Putting Everything Together

	7.6 Experiments
	7.6.1 Measurement Setup
	7.6.2 Experiments with First Gridworld
	7.6.3 Experiments with Second Gridworld
	7.6.4 Shared Coin Consensus-Protocol Experiments
	7.6.5 Slot-Machine Experiments
	7.6.6 Discussion and Threats to Validity

	7.7 Summary
	7.8 Results and Findings

	8 Learning Timed Automata via Genetic Programming
	8.1 Introduction
	8.2 Preliminaries
	8.2.1 Timed Automata
	8.2.2 Genetic Programming

	8.3 Genetic Programming for Timed Automata
	8.3.1 Overview
	8.3.2 Creation of Initial Random Population
	8.3.3 Fitness Evaluation
	8.3.4 Creation of New Population
	8.3.5 Implementation

	8.4 Case Studies
	8.5 Summary
	8.6 Results and Findings

	9 Active Genetic Programming of Timed Automata
	9.1 Introduction
	9.2 Method
	9.2.1 Moving from Passive Learning to Active Learning
	9.2.2 The Active Genetic Programming Process
	9.2.3 Real-Time Test-Case Generation for Active Genetic Programming

	9.3 Evaluation
	9.3.1 Evaluation Setup
	9.3.2 Selected Results

	9.4 Summary
	9.5 Results and Findings

	10 Test-Based Learning of Hybrid Systems
	10.1 Introduction
	10.2 Methodology
	10.2.1 Testing Process
	10.2.2 Learning a Recurrent Neural Network Behaviour Model

	10.3 Evaluation
	10.3.1 Predicting Crashes with Recurrent Neural Networks
	10.3.2 Evaluation of the Detected Crash Times

	10.4 Summary
	10.5 Results and Findings

	11 Related Work
	11.1 Model Learning for Model-Based Testing
	11.1.1 Conformance Testing
	11.1.2 Requirements-Based Testing
	11.1.3 Security Testing
	11.1.4 Integration Testing
	11.1.5 Regression Testing
	11.1.6 Performance Testing
	11.1.7 GUI Testing
	11.1.8 Protocol Testing
	11.1.9 Web Service Testing

	11.2 Model-Based Testing for Model Learning
	11.3 Learning Models of Stochastic and Non-deterministic Systems
	11.4 Learning Models of Real-Time Systems
	11.5 Strategy Generation for Stochastic Systems
	11.6 Metaheuristic Approaches to Model Learning and Testing
	11.7 Further Related Work

	12 Conclusion and Outlook
	12.1 Summary
	12.1.1 Exploratory Research
	12.1.2 Contributions

	12.2 Conclusions
	12.3 Future Work

	Bibliography

